WO2014125600A1 - 分波装置、合波装置および中継装置 - Google Patents

分波装置、合波装置および中継装置 Download PDF

Info

Publication number
WO2014125600A1
WO2014125600A1 PCT/JP2013/053538 JP2013053538W WO2014125600A1 WO 2014125600 A1 WO2014125600 A1 WO 2014125600A1 JP 2013053538 W JP2013053538 W JP 2013053538W WO 2014125600 A1 WO2014125600 A1 WO 2014125600A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
demultiplexing
multiplexing
signals
compensation
Prior art date
Application number
PCT/JP2013/053538
Other languages
English (en)
French (fr)
Inventor
藤村 明憲
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/767,790 priority Critical patent/US9917634B2/en
Priority to CA2901165A priority patent/CA2901165C/en
Priority to EP13874865.2A priority patent/EP2958248B1/en
Priority to PCT/JP2013/053538 priority patent/WO2014125600A1/ja
Priority to JP2015500045A priority patent/JP5851645B2/ja
Publication of WO2014125600A1 publication Critical patent/WO2014125600A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/36Repeater circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18515Transmission equipment in satellites or space-based relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2045SS-FDMA, FDMA satellite switching

Definitions

  • the present invention relates to a demultiplexing device that demultiplexes a plurality of signals having various bandwidths, a multiplexing device that multiplexes a plurality of signals, and a relay device.
  • a reception analog filter is provided at the front stage of the A / D converter that performs analog / digital conversion of the uplink beam signal
  • a transmission analog filter is provided at the subsequent stage of the D / A converter that performs digital / analog conversion of the downlink beam signal.
  • Patent Documents 2 and 3 As countermeasures, techniques for digitally compensating the amplitude characteristics and group delay characteristics of the reception analog filter and the transmission analog filter are disclosed in Patent Documents 2 and 3 below.
  • the required performance of the analog filter can be lowered by mounting the digital compensation circuit on the relay satellite and compensating the in-band amplitude error of the analog filter, the phase nonlinearity due to the group delay deviation, etc. with the digital compensation circuit. Thereby, high out-of-band attenuation and high in-band flatness can be achieved while ensuring the feasibility of the analog filter.
  • Patent Documents 2 and 3 below since it is necessary to additionally mount the digital compensation circuit on the relay satellite, there is a problem that the circuit scale and power consumption of the relay satellite increase.
  • Patent Document 4 and Non-Patent Document 1 below disclose a technique for demultiplexing a signal to be compensated, performing each compensation on each demultiplexed signal, and recombining the signals.
  • JP 2006-516867 A Japanese Patent No. 3676576 Japanese Patent No. 4842186 Special table 2012-519985 gazette
  • Patent Document 4 and Non-Patent Document 1
  • the present invention has been made in view of the above, and includes a demultiplexing device, a multiplexing device, and a relay device capable of simultaneously realizing high out-of-band attenuation and high in-band flatness while suppressing an increase in circuit scale.
  • the purpose is to obtain.
  • the present invention provides a reception analog filter that extracts a desired signal from a reception signal, and an A / D conversion that converts the signal that has passed through the reception analog filter into a digital signal.
  • Means, a demultiplexing means for demultiplexing the digital signal converted by the A / D conversion means into m signals, and the reception analog filter for the m signals demultiplexed by the demultiplexing means Receiving side compensation means for digitally compensating the analog characteristics of the signal, and multiplexing means for multiplexing the m signals digitally compensated by the receiving side compensation means, the receiving side compensation means further comprising digital compensation Among the m signals that are not sufficiently compensated among the m signals, each signal is demultiplexed into k signals, and the analog characteristics of the reception analog filter are digitally compensated, and digital Multiplexes the k signals ⁇ , characterized in that.
  • the branching device, the multiplexing device, and the relay device according to the present invention have an effect that a high out-of-band attenuation and a high in-band flatness can be realized at the same time while suppressing an increase in circuit scale.
  • FIG. 1 is a diagram illustrating a configuration example of a demultiplexing device, a multiplexing device, and a relay device including these according to the first embodiment.
  • FIG. 2 is a diagram illustrating a flow of a relay signal by the relay process of the relay satellite according to the first embodiment.
  • FIG. 3 is a diagram showing the flow of signal relay processing when the frequency vs. amplitude / phase characteristics of RXF and TXF are ideal.
  • FIG. 4 is a diagram illustrating a flow of signal relay processing when the frequency vs. amplitude / phase characteristics of RXF and TXF are not ideal and are curved and no measures are taken.
  • FIG. 5 is a diagram illustrating a flow of signal relay processing when the RX compensator is operated.
  • FIG. 6 is a diagram illustrating a flow of signal relay processing when the TX compensation unit is operated.
  • FIG. 7 is a diagram illustrating a configuration example of the RX compensation unit of the second embodiment.
  • FIG. 8 is a diagram illustrating a configuration example of the TX compensation unit of the second embodiment.
  • FIG. 9 is a diagram illustrating a configuration example of the demultiplexing unit according to the third embodiment.
  • FIG. 10 is a diagram illustrating a configuration example of a multiplexing unit according to the third embodiment.
  • FIG. 11 is a diagram illustrating a configuration example of the satellite communication system according to the fourth embodiment.
  • FIG. 12 is a diagram illustrating a configuration example of a relay satellite that automatically compensates for the TXF characteristics according to the fifth embodiment.
  • FIG. 14 is a diagram illustrating a configuration example of a relay satellite that automatically compensates for the RXF characteristics of the fifth embodiment.
  • FIG. 15 is a diagram illustrating a configuration example of a relay satellite that automatically compensates for the characteristics of the up-converter and the down-converter according to the sixth embodiment.
  • FIG. 16 is a diagram illustrating a configuration example of the demultiplexing unit according to the seventh embodiment.
  • FIG. 17 is a diagram illustrating a configuration example of a multiplexing unit according to the seventh embodiment.
  • FIG. 18 is a diagram illustrating an example of compensation processing on the reception side according to the seventh embodiment.
  • FIG. 19 is a diagram illustrating an example of compensation processing on the transmission side according to the seventh embodiment.
  • Embodiment 1 FIG.
  • a demultiplexing device, a multiplexing device, and a relay including the demultiplexing device and the multiplexing device that simultaneously realize high out-of-band attenuation and high in-band flatness while suppressing an increase in circuit scale.
  • the apparatus will be described.
  • FIG. 1 is a diagram illustrating a configuration example of a demultiplexing device, a multiplexing device, and a relay device including these according to the present embodiment.
  • the relay apparatus shown in FIG. 1 is mounted on, for example, the relay satellite 10 and relays a multicarrier signal transmitted from the ground. At this time, the received signals are demultiplexed, rearranged as necessary, and then multiplexed and transmitted.
  • the relay satellite 10 includes receiving antennas 11-0 to 11-2, down converters (D / C) 12-0 to 12-2, receiving analog filters (RXF) 13-0 to 13-2, A / D Converters (A / D) 14-0 to 14-2, demultiplexing units 15-0 to 15-2, receiving side compensation (RX compensation) units 16-0 to 16-2, switch matrix 17, Transmission side compensation (TX compensation) units 18-0 to 18-2, multiplexing units 19-0 to 19-2, D / A converters (D / A) 20-0 to 20-2, transmission analog Filters (TXF) 21-0 to 21-2, up-converters (U / C) 22-0 to 22-2, and transmission antennas 23-0 to 23-2 are provided.
  • One multiplexer is configured by the antenna 23-n.
  • a multiplexing unit 19-n may be added to form a demultiplexing device, and a demultiplexing unit 15-n may be added to form a multiplexing device.
  • the relay satellite 10 includes as many demultiplexing devices as the number of input ports (input-side beam areas) and as many as as many as as many as the output ports (output-side beam areas).
  • the relay satellite 10 receives the uplink signals from the beam areas 100-0, 100-1, and 100-2, performs various processing (demultiplexing processing, multiplexing processing, etc.) described later, and then performs the beam area 300-0. , 300-1 and 300-2 are transmitted as downlink signals.
  • the relay satellite 10 is connected to the control station 200, and the control station 200 issues an instruction to change the internal setting of the relay satellite 10, an operation instruction, and the like.
  • the receiving antenna 11-n receives an uplink signal from the beam area 100-n.
  • the down converter 12-n multiplies the uplink signal received by the receiving antenna 11-n by the local signal generated inside the satellite.
  • the reception analog filter (RXF) 13-n extracts a baseband signal from the signals multiplied by the down converter 12-n.
  • the A / D converter 14-n samples the baseband signal extracted by the reception analog filter (RXF) 13-n.
  • the demultiplexing unit 15-n demultiplexes the digital signal input from the A / D converter 14-n into m (0 to m-1) signals.
  • the reception side compensation (RX compensation) unit 16-n applies the amplitude / phase error of the reception analog filter (RXF) 13-n in the previous stage to the m pieces of demultiplexed data output from the demultiplexing unit 15-n. Perform digital amplitude / phase compensation to cancel out. Detailed operation will be described later.
  • the switch matrix 17 switches signals input from a plurality of upstream processing units (receiving-side compensation (RX compensation) units 16-0, 16-1, 16-2) to perform a plurality of downstream processing units (transmission described later).
  • the transmission side compensation (TX compensation) unit 18-n further applies the amplitude of the transmission analog filter (TXF) 21-n located in the subsequent stage to the m pieces of combined data to be provided to the subsequent stage multiplexing unit 19-n. ⁇ Digital inverse amplitude / phase compensation to cancel phase error. Detailed operation will be described later.
  • the multiplexing unit 19-n multiplexes the m pieces of demultiplexed data subjected to the reverse amplitude / phase compensation by the transmission side compensation (TX compensation) unit 18-n into one wave (signal).
  • the D / A converter 20-n converts the digital signal output from the multiplexing unit 19-n into an analog signal.
  • the transmission analog filter (TXF) 21-n passes only the baseband component of the signal output from the D / A converter 20-n and removes unnecessary waves such as harmonics.
  • a signal after passing through the transmission analog filter (TXF) 21-n is flattened in amplitude / phase characteristics by the inverse amplitude / phase compensation by the transmission side compensation (TX compensation) unit 18-n.
  • the up-converter 22-n converts the analog baseband signal output from the transmission analog filter (TXF) 21-n into a radio frequency band signal.
  • the transmission antenna 23-n transmits the signal output from the up-converter 22-n to the beam area 300-n as a downlink signal.
  • the uplink beam areas 100-0, 100-1, 100-2 and the downlink beam areas 300-0, 300-1, 300-2 may be geographically the same area (location).
  • FIG. 2 is a diagram illustrating a flow of a relay signal by the relay processing of the relay satellite according to the present embodiment.
  • the relay satellite 10 serving as a relay device transmits each uplink signal from the beam areas 100-0, 100-1, and 100-2 shown in FIG. 2A to the beam areas 300-0 and 300-2 shown in FIG. Relay as each downlink signal to 300-1 and 300-2. That is, the relay satellite 10 outputs an uplink signal from each beam area as a downlink signal while distributing the uplink signal to a desired beam area and converting it to a desired frequency.
  • the relay satellite 10 rearranges the frequencies as shown in FIG. 2 to transfer the uplink signal A from the beam area 100-0 to the beam area 300-0 and the uplink from the beam area 100-0.
  • Signal B to beam area 300-1
  • uplink signal C from beam area 100-1 to beam area 300-2
  • uplink signal D from beam area 100-2 to beam area 300-2
  • beam area The uplink signal E from 100-2 is relayed to the beam area 300-1.
  • the radio frequency band passes through the down converter 12-0 and the RXF 13-0.
  • the A / D converter 14-0 samples the signals A and B converted into the baseband
  • the demultiplexing unit 15-0 converts the sampled signals A and B into eight signals shown in FIG. Of the bands ((1-1) to (1-8)), the signal A is in the bands (1-1) to (1-3), and the signal B is in the bands (1-4) to (1-8).
  • Digital demultiplexing Note that the method of digital demultiplexing and the method of digital multiplexing described later are not particularly limited, and a conventional method, for example, a method described in one of the following two documents can be used.
  • the demultiplexing unit 15-0 demultiplexes the signal A into three and the signal B into five by any of the demultiplexing processes described above.
  • the relay satellite 10 performs digital amplitude / phase control on the signal A divided into three by the RX compensator 16-0, and then inputs the signal A to the TX compensator 18-0 via the switch matrix 17.
  • the switch matrix 17 connects the signal A divided into three to the bands (4-5) to (4-7). That is, the relay satellite 10 receives the signal A via the TX compensation unit 18-0, the multiplexing unit 19-0, the D / A converter 20-0, the TXF 21-0, and the up-converter 22-0. From 23-0, the data is output to the frequency positions (bands (4-5) to (4-7)) shown in FIG.
  • the relay satellite 10 performs digital amplitude / phase control on the signal B divided into five by the RX compensator 16-0, and then inputs the signal B to the TX compensator 18-1 via the switch matrix 17. To do. At that time, the switch matrix 17 connects the signal B divided into five to the bands (5-1) to (5-5). That is, the relay satellite 10 receives the signal B via the TX compensation unit 18-1, the multiplexing unit 19-1, the D / A converter 20-1, the TXF 21-1, and the up-converter 22-1 as a reception antenna. 23-1 is output to the frequency positions (bands (5-1) to (5-5)) shown in FIG.
  • the radio frequency passes through the down converter 12-1 and the RXF 13-1. Convert from band to baseband.
  • the A / D converter 14-1 samples the signal C converted to the baseband, and the demultiplexing unit 15-1 converts the sampled signal C into eight bands ((2 -1) to (2-8)), digital demultiplexing into bands (2-1) to (2-7).
  • the relay satellite 10 performs digital amplitude / phase control on the signal C divided into seven signals by the RX compensator 16-1, and then inputs the signal C to the TX compensator 18-2 via the switch matrix 17. To do. At that time, the switch matrix 17 connects the signal C divided into seven to the bands (6-2) to (6-8). That is, the relay satellite 10 receives the signal C via the TX compensation unit 18-2, the multiplexing unit 19-2, the D / A converter 20-2, the TXF 21-2, and the up-converter 22-2. 23-2 is output to the frequency positions (bands (6-2) to (6-8)) shown in FIG.
  • the relay satellite 10 receives the signals E and D from the beam area 100-2 shown in FIG. 2A by the receiving antenna 11-2, and then wirelessly passes through the down converter 12-2 and the RXF 13-2. Convert from frequency band to baseband.
  • the A / D converter 14-2 samples the signals E and D converted into the baseband, and the demultiplexing unit 15-2 converts the sampled signal E into eight bands (see FIG. 2A). Among (3-1) to (3-8)), the signal E is digitally demultiplexed into bands (3-1) to (3-3).
  • the relay satellite 10 performs digital amplitude / phase control on the signal E divided into three by the RX compensator 16-2 and then inputs the signal E to the TX compensator 18-1 via the switch matrix 17.
  • the switch matrix 17 connects the signal E divided into three to the bands (5-6) to (5-8). That is, the relay satellite 10 receives the signal E via the TX compensation unit 18-1, the multiplexing unit 19-1, the D / A converter 20-1, the TXF 21-1, and the up-converter 22-1 as a reception antenna.
  • 23-1 is output to the frequency positions (bands (5-6) to (5-8)) shown in FIG.
  • the relay satellite 10 only extracts the signal D without demultiplexing because the signal D is less than the bandwidth Fc.
  • the relay satellite 10 performs digital amplitude / phase control on the signal D in the band (3-8) by the RX compensation unit 16-2, and then inputs the signal D to the TX compensation unit 18-2 via the switch matrix 17.
  • the switch matrix 17 connects the signal D to the band (6-1). That is, the relay satellite 10 receives the signal D via the TX compensation unit 18-2, the multiplexing unit 19-2, the D / A converter 20-2, the TXF 21-2, and the up-converter 22-2. 23-2 is output to the frequency position (band (6-1)) shown in FIG.
  • connection control of the switch matrix 17 is performed by the control station 200 shown in FIG.
  • the control station 200 collectively manages connections and use frequency bands of all satellite lines, and performs connection control of the switch matrix 17 in the relay satellite 10 via another radio frequency line in response to a communication request.
  • FIG. 3 shows the beam areas 100-0 and 100-2 to the beam area 300-1 in the relay satellite 10 of the present embodiment when the frequency vs. amplitude / phase characteristics of the RXF 13-n and TXF 21-n are ideal. It is a figure which shows the flow of a signal relay process. It should be noted that the frequency vs.
  • RXF13-n and TXF21-n are ideal (no in-band amplitude deviation and group delay deviation), and RX compensator 16-n and TX compensator 18-n are not operated. The case where an input signal is output as it is is shown.
  • the relay satellite 10 demultiplexes the signal B into five subchannels by the demultiplexing unit 15-0, demultiplexes the signal E into three subchannels by the demultiplexing unit 15-1, and then switches matrixes. 17 shows a series of signal processing from collecting to the multiplexing unit 19-1 to multiplexing.
  • the relay satellite 10 when the frequency vs. amplitude / phase characteristics of the RXF 13-n and the TXF 21-n are ideal, signal distortion may occur in the uplink signals B and E without taking any special measures. Can be relayed to the downlink beam area 300-1.
  • the frequency vs. amplitude / phase characteristics of the RXF 13-n and the TXF 21-n are not ideal and no measures are taken, that is, the RX compensator 16-n and the TX compensator 18- When n does not operate and outputs the input signal as it is, distortion of the signal occurs in the uplink signals B and E via the relay satellite 10.
  • FIG. 4 shows a beam area 100-0 in the relay satellite 10 of the present embodiment when the frequency vs. amplitude / phase characteristics of the RXF 13-n and TXF 21-n are not ideal but are curved and no measures are taken. It is a figure which shows the flow of the signal relay process from 100-2 to the beam area 300-1.
  • the solid line characteristic indicates the frequency-to-amplitude characteristic of RXF 13-0
  • the dotted line characteristic indicates the frequency-to-group delay characteristic of RXF 13-0.
  • the solid line characteristic shown in FIG. 4B indicates the frequency-to-amplitude characteristic of the RXF 13-2
  • the dotted line characteristic indicates the frequency-to-group delay characteristic of the RXF 13-2.
  • the solid line characteristic indicates the frequency-to-amplitude characteristic of the TXF 21-1
  • the broken line characteristic indicates the frequency-to-group delay characteristic of the TXF 21-1.
  • the signals A and B are distorted by the frequency-amplitude characteristic of the RXF 13-0 (FIG. 4A), and the signals E and D are also the RXF 13-2. Distortion is caused by the frequency-amplitude characteristic (FIG. 4B).
  • the frequency-amplitude characteristics (spectrum) of the signals B and E after the digital multiplexing combined by the multiplexing unit 19-1 are distorted as shown in FIG.
  • the in-band group delay characteristics of the signals B and E are not constant as shown by dotted lines in each signal spectrum of FIG.
  • the relay satellite 10 adds the frequency-amplitude characteristic (solid line) of TXF 21-n shown in FIG. 4D during signal transmission, the signals B and E output from the relay satellite 10 to the beam area 300-1 are added. In the frequency versus amplitude characteristic (spectrum), distortion is increased as shown in FIG. In addition, the in-band group delay deviation of each signal is newly added as the characteristic of the broken line shown in FIG. 4D, and the overall in-band group delay deviation tends to increase.
  • the RX compensating unit 16-n and the TX compensating unit 18-n perform an operation for compensating the characteristics of each analog filter.
  • FIG. 5 shows a flow of signal relay processing from the beam areas 100-0 and 100-2 to the beam area 300-1 in the relay satellite 10 of the present embodiment when the RX compensator 16-n is operated.
  • FIG. The frequency-amplitude characteristic of the RXF 13-n is not ideal, and shows an operation when the RXF 13-n is curved and when the RX compensator 16-n is operated.
  • FIG. 6 shows the flow of signal relay processing from the beam areas 100-0 and 100-2 to the beam area 300-1 in the relay satellite 10 of the present embodiment when the TX compensator 18-n is operated.
  • FIG. 5 In the case of transmitting the signal compensated in FIG. 5, the frequency-amplitude characteristic of the TXF 21-n is not ideal, it shows an operation when the TX compensation unit 18-n is operated when it is curved.
  • the signals A and B (FIG. 5 (a)) affected by the analog characteristics of the RXF 13-0 are divided into eight subchannels as shown in FIG. 5 (c) by the demultiplexing unit 15-0.
  • the signal is demultiplexed and input to the RX compensator 16-0.
  • the signals E and D (FIG. 5B) affected by the analog characteristics of the RXF 13-2 are separated into four signals as shown in FIG.
  • the signal is demultiplexed into subchannels and input to the RX compensator 16-2.
  • FIG. 5 (e) shows each demultiplexed signal after compensation by the RX compensator 16-0
  • FIG. 5 (f) shows each demultiplexed signal after compensation by the RX compensator 16-2.
  • variations in the amplitude and group delay characteristic of each input signal shown in FIGS. 5C and 5D are made uniform in units of bandwidth Fc after compensation.
  • the signal spectrum obtained by digitally multiplexing the compensated demultiplexed signal again is as shown in FIGS. 5 (g) and 5 (h). It can be seen that the amplitude slope and the group delay deviation are improved as compared with the spectrum in the case where the compensation shown in FIGS. 5A and 5B is not performed.
  • the RX compensator 16-n performs complex multiplication represented by the following equation (1) using the complex coefficient W R (m, n).
  • the RX compensator 16-n compensates not only the amplitude of each signal S (m, n) but also the phase delay by performing complex multiplication to compensate for the group delay deviation.
  • the complex multiplication can be realized by four multiplications and two additions as shown in the following equations (2) and (3).
  • Re [*] is the real part of *
  • Im [*] is the imaginary part of *.
  • the number of multipliers required in the nth RX compensation unit 16-n may be four and the number of adders may be two, and the necessary number of multipliers and adders can be reduced to 1 / m times. .
  • the group delay deviation cannot be compensated, but it may be compensated by a real type coefficient G R (m, n) shown in the following equations (4) and (5).
  • the number of multipliers required in the n-th RX compensation unit 16-n is 2 after performing the time division processing.
  • the number of adders may be zero.
  • FIG. 6 shows a signal B compensated by the relay satellite 10 by the RX compensator 16-0 of FIG. 5 (actually, it is demultiplexed into five subchannels of signals b1 ′, b2 ′, b3 ′, b4 ′, and b5 ′).
  • the signal compensator E-1 compensated by the RX compensator 16-2 (actually, the signals E1 ′, e2 ′, and e3 ′ are demultiplexed into three subchannels) are transmitted to the beam area 300-1. Shows the processing.
  • FIG. 6A shows a signal B (signals b1 ′, b2 ′, b3 ′, b4 ′, b5 ′) and a signal E (signals e1 ′, e2 ′, e3 ′) input to the TX compensation unit 18-1. Indicates.
  • the TX compensator 18-n has a complex coefficient W T (m, n) having a frequency characteristic opposite to that of the subsequent TXF 21-n (transmission analog filter), and uses this coefficient to perform the subsequent RXF 13-n. Compensation for canceling the slope and ripple of the frequency vs. amplitude / group delay characteristics is performed for each subchannel.
  • m indicates the demultiplexing / multiplexing number
  • n is each port number
  • n 0, 1, or 2.
  • FIG. 6B shows each demultiplexed signal after compensation by the TX compensation unit 18-1.
  • the TX compensation unit 18-1 amplifies the amplitude of the outer demultiplexed signal so as to cancel the frequency characteristic of the subsequent TXF 21-1, and cancels the phase delay so as to cancel the group delay. To control.
  • the TX compensation unit 18-N performs complex multiplication represented by the following equation (6) using the complex coefficient W T (m, n).
  • complex multiplication can be realized by four multiplications and two additions as shown in the following equations (7) and (8).
  • Re [*] is the real part of *
  • Im [*] is the imaginary part of *.
  • the sampling speed of the data after demultiplexing is thinned out by 1 / m times ( ⁇ m) with respect to the sampling speed before demultiplexing, these calculations are performed similarly to the RX compensator 16-n.
  • the number of multipliers required in the nth TX compensation unit 18-n may be four and the number of adders may be two, and the necessary number of multipliers and adders can be reduced to 1 / m times. .
  • Equation (9) may be compensated by the real coefficients G T shown in (10) (m, n).
  • the number of multipliers required in the nth TX compensation unit 18-n is 2 after performing the time division processing.
  • the number of adders may be zero.
  • Each coefficient (W R (m, n), W T (m, n) or G R (m, n), G T (m, n)) on the RX compensation side and TX compensation side is It may be stored in the relay satellite 10 or, in general, the characteristics of the analog filter change depending on aging and temperature, and may be rewritable.
  • an optimum coefficient series is obtained for each temperature, stored in a memory (storage means) such as a ROM table (not shown) in the relay satellite 10, and after launch, the optimum coefficient sequence is obtained from the memory based on the temperature information. Even if a coefficient series is selected and read out, and each coefficient (W R (m, n), W T (m, n) or G R (m, n), G T (m, n)) is updated. Good.
  • these coefficients (W R (m, n), W T (m, n), or G R (m, n), G T (m, n)) are transferred from the ground control station 200 to the relay satellite 10.
  • W R (m, n) or G (m, n) may be rewritten from the ground even after the relay satellite 10 is launched.
  • the multiplexing unit 19-1 multiplexes each demultiplexed signal output from the TX compensation unit 18-1, and the signal shown in FIG. B "and signal E" are output.
  • the signal is intentionally added with an amplitude gradient and a group delay deviation so as to be canceled by the subsequent TXF 21-n.
  • the signal after the multiplexing by the multiplexing unit 19-1 is input to the TXF 21-1 via the D / A converter 20-1.
  • the solid line indicates the frequency-to-amplitude characteristic of TXF 21-1
  • the dotted line indicates the frequency-to-group delay characteristic of TXF 21-1.
  • the signal B ′′ and the signal E ′′ output from the TXF 21-1 have the amplitude slope and group delay deviation intentionally added by the TX compensation unit 18-1 in the previous stage, and the frequency versus amplitude of the TXF 21-1. -It will be canceled by the group delay deviation characteristic.
  • the relay satellite 10 flattens the amplitude characteristic and the group delay deviation characteristic at the bandwidth Fc step, and then outputs the signal B ′′ and the signal E ′′ from the antenna 23-1.
  • the processing has been described, it is an example, and the present invention is not limited to this.
  • the signal C received from the beam area 100-1 is compensated by the RX compensation unit 16-1, and the signal C transmitted to the beam area 300-0 is inversely compensated by the TX compensation unit 18-0.
  • the signals D and C transmitted to the beam area 300-2 are reverse compensated by the TX compensation unit 18-2 and relayed.
  • the circuit scale of the demultiplexing unit 15-n and the multiplexing unit 19-n increases, but on the other hand, the signal band Fc after demultiplexing that determines the frequency resolution is reduced. Therefore, signal distortion can be finely compensated in the frequency direction.
  • the configuration of the relay satellite 10 has been described in which one analog filter is provided for each of the reception side and the transmission side (RXF13-n, TXF21-n). , May be composed of a plurality.
  • the RX compensation and TX compensation coefficients may be set so as to compensate the frequency characteristics and the like obtained by combining a plurality of analog filters.
  • the relay device digitally compensates for the characteristics of the analog filter on the reception side (demultiplexing device) and the transmission side (multiplexing device).
  • the amplitude slope, ripple, and group delay deviation of the reception-side analog filter and the amplitude slope, ripple, and group delay deviation of the transmission-side analog filter can be reduced by adding a few circuits without greatly increasing the circuit scale. Even if the inclination is partly strong, it can be compensated flatly.
  • the required specifications of the reception analog filter and transmission analog filter can be relaxed, so that it is possible to reduce the circuit scale and adjustment points of the reception analog filter and transmission analog filter. it can. This leads to a reduction in the development cost and adjustment man-hours of the reception analog filter and transmission analog filter of the relay device, which can lead to a reduction in the cost of the relay device.
  • the present invention can be applied not only to the relay apparatus but also to a ground receiving station and transmitting station.
  • the receiving station selects only subchannels necessary for demodulation by the switch matrix 17 from the subchannel signals compensated in the same manner as described above by the RX compensator 16-n.
  • the multiplexing unit 19-n By collecting the signals and combining them by the multiplexing unit 19-n, it is possible to obtain a reception signal in which the error generated in the RXF 13-n is compensated.
  • the terrestrial receiving station can obtain good reception characteristics (bit error rate characteristics) by demodulating the compensated signal.
  • the transmitting station when applied to a terrestrial transmitting station, the transmitting station once demultiplexes the signal to be modulated in subchannel units by the demultiplexing unit 15-n, and then performs TX compensation 18-n in the subsequent stage as described above.
  • TX compensation 18-n By providing compensation for canceling the analog error generated in the TXF 21-n and then multiplexing in the multiplexing unit 19-n, it is possible to output a transmission signal in which the error generated in the TXF 21-n is compensated.
  • the receiving station on the transmission counterpart side can obtain good reception characteristics (bit error rate characteristics) by demodulating the compensated signal.
  • Embodiment 2 if the signal band Fc after demultiplexing is made sufficiently small (m is made sufficiently large) by a series of processing, good compensation of the analog filter characteristics can be realized. However, increasing the demultiplexing / multiplexing number m increases the circuit scale, leading to an increase in power consumption and cost.
  • a large amplitude deviation and group delay deviation generated at the end of the pass band has a small m (rough frequency resolution), and the amplitude characteristics and group delay characteristics remaining in the signal band vary greatly (unevenness). Leads to deterioration of relay performance.
  • the demultiplexing / combining number m is kept at 8 and only subchannels to be compensated with finer frequency resolution are newly added after performing RX compensation as in the first embodiment. Compensation is performed after demultiplexing by the demultiplexing unit. A different part from Embodiment 1 is demonstrated.
  • FIG. 7 is a diagram illustrating a configuration example of the reception side compensation (RX compensation) unit of the relay satellite according to the present embodiment.
  • the relay satellite 10 replaces the RX compensation unit 16-0 with a reception side compensation (RX compensation) unit 31-0, demultiplexing units 32-0 and 32-1, and a reception side compensation (RX compensation) unit 33-. 0, 33-1, multiplexing units 34-0, 34-1 and a delay unit 35.
  • the structure of the receiving side analog compensation part when a demultiplexing part and a multiplexing part are comprised in multistage is shown.
  • the same configuration is used between the demultiplexing units 15-1 and 15-2 and the switch matrix 17.
  • the RX compensator 31-0 performs the same RX compensation as in the first embodiment, and the sub-channel signal for which the analog compensation is not sufficient because the frequency resolution Fc is coarse is sent to the subsequent demultiplexers 32-0 and 32-1. Output.
  • the demultiplexing units 32-0 and 32-1 demultiplex the input subchannel signal into k.
  • RX compensation sections 33-0 and 33-1 perform RX compensation similar to that of the first embodiment on the sub-channel signals input from demultiplexing sections 32-0 and 32-1, respectively.
  • the multiplexing units 34-0 and 34-1 combine the sub-channel signals after the RX compensation by the RX compensating units 33-0 and 33-1, respectively.
  • the delay unit 35 delays sub-channel signals that do not pass through the demultiplexing units 32-0 and 32-1, the RX compensation units 33-0 and 33-1, and the multiplexing units 34-0 and 34-1.
  • a configuration in which the number of subchannels to be compensated with frequency resolution is 2 is shown.
  • the channel signal is further output to the demultiplexing units 32-0 and 32-1.
  • the demultiplexing units 32-0 and 32-1 demultiplex the input subchannel signals into four, respectively, and the RX compensators 33-0 and 33-1 perform the respective demultiplexed waves (signals).
  • Amplitude / group delay compensation is performed, and the multiplexing units 34-0 and 34-1 multiplex these amplitude / group delay compensated signals.
  • the delay unit 35 delays the six subcarriers that do not need to be compensated with a finer frequency resolution so as not to cause a time difference between the two subcarriers compensated with the finer frequency resolution.
  • the relay satellite 10 can compensate with the frequency resolution of Fc / 4 for two subchannels to be compensated with a frequency resolution finer than the frequency resolution Fc.
  • the demultiplexing / combining number is simply achieved. Compared with the case where the frequency resolution is improved by increasing m, it is possible to suppress an increase in the circuit scale of the demultiplexing unit / multiplexing unit and the circuit scale of the switch unit.
  • the circuit scale to be added is two quadrants (demultiplexing units 32-0 and 32-1), It is about RX compensation (RX compensation units 33-0 and 33-1) and 4 multiplexing (multiplexing units 34-0 and 34-1). Since the number of interface signals with the switch matrix 17 does not increase, the circuit scale of the switch matrix 17 does not increase. In this way, with the configuration shown in FIG. 7, the amount of circuit increase can be estimated to be twice or less that of the basic configuration shown in FIG. 1, compared with a case where the demultiplexing / multiplexing number m is simply increased. Thus, the increase in circuit scale can be suppressed to 1 ⁇ 2 times or less.
  • the two subchannels that are the output of the RX compensation unit 31-0 are fixedly connected to the demultiplexing units 32-0 and 32-1, but the RX compensation unit 31 An additional switch is provided between ⁇ 0 and the demultiplexing units 32-0 and 32-1, and two subchannels are arbitrarily selected from the eight subchannels output from the RX compensating unit 31-0, and the demultiplexing unit You may supply to 32-0 and 32-1.
  • the two subchannels compensated with the frequency resolution Fc / 4 are switched by the subsequent switch matrix 17 together with the other subchannels. In this case, since the band for analog compensation can be freely selected with the frequency resolution Fc / 4, the relay satellite 10 can cope with various cases at the time of signal reception.
  • the configuration of the first embodiment includes the demultiplexing units 32-0 and 32-1, the receiving side compensation (RX compensation) units 33-0 and 33-1, and the multiplexing units 34-0 and 34. ⁇ 1 and a delay unit 35 may be added.
  • the demultiplexing / combining number m remains 8, and it is possible to perform reverse compensation with a finer frequency resolution in advance only for some subchannels before TX compensation.
  • FIG. 8 is a diagram illustrating a configuration example of the transmission side compensation (TX compensation) unit of the relay satellite according to the present embodiment.
  • TX compensation transmission side compensation
  • the relay satellite 10 replaces the TX compensation unit 18-0 with demultiplexing units 41-0 and 41-1, transmission side compensation (TX compensation) units 42-0 and 42-1 and a multiplexing unit 43-0. 43-1, a delay unit 44, and a transmission side compensation (TX compensation) unit 45-0.
  • the configuration of the transmission side analog compensation unit when the demultiplexing unit and the multiplexing unit are configured in multiple stages is shown.
  • a similar configuration is adopted between the switch matrix 17 and the multiplexing units 19-1 and 19-2.
  • the demultiplexing units 41-0 and 41-1 demultiplex the input subchannel signal into k.
  • the TX compensation units 42-0 and 42-1 perform TX compensation similar to that of the first embodiment on the sub-channel signals input from the demultiplexing units 41-0 and 41-1, respectively.
  • the multiplexing units 43-0 and 43-1 multiplex the sub-channel signals after TX compensation by the TX compensation units 42-0 and 42-1 respectively.
  • the delay unit 44 delays sub-channel signals that do not pass through the demultiplexing units 41-0 and 41-1, the TX compensation units 42-0 and 42-1, and the multiplexing units 43-0 and 43-1.
  • the TX compensation unit 45-0 performs the same TX compensation as in the first embodiment.
  • the TX compensation unit 45-0 when the analog compensation of two subchannels out of the eight subchannels back-compensated by the TX compensation unit 45-0 is not sufficient because the frequency resolution Fc is rough, these two subchannels
  • the subchannel signal is output in advance to the demultiplexing units 41-0 and 41-1.
  • the demultiplexing units 41-0 and 41-1 demultiplex the input subchannel signals into four, respectively, and the TX compensation units 42-0 and 42-1 perform the demultiplexed waves (signals).
  • the amplitude / group delay is inversely compensated, and the multiplexing units 43-0 and 43-1 multiplex the signals after the amplitude / group delay inverse compensation.
  • the delay unit 44 delays the six subcarriers that do not need to be back-compensated with a finer frequency resolution so as not to cause a time difference between the two subcarriers that are back-compensated with a finer frequency resolution.
  • the relay satellite 10 can perform reverse compensation with a frequency resolution of Fc / 4 for two subchannels to be compensated with a frequency resolution finer than the frequency resolution Fc by this series of processing.
  • the increase in circuit scale can be suppressed to 1 ⁇ 2 times or less as compared with the case where the demultiplexing / multiplexing number m is simply increased.
  • two subchannels input to the TX compensation unit 45-0 are fixedly connected to the multiplexing units 43-0 and 43-1, but the switch matrix 17
  • the subchannel to be reversely compensated with the resolution of Fc / 4 is input to the demultiplexing units 41-0 and 41-1, and a switch is added between the multiplexing units 43-0 and 43-1 and the TX compensating unit 45-0.
  • the eight subchannels before being input to the TX compensation unit 45-0 may be rearranged arbitrarily, and then the reverse compensation may be performed by the TX compensation unit 45-0. Since the band for analog inverse compensation can be freely selected with the frequency resolution Fc / 4, the relay satellite 10 can cope with various cases at the time of signal transmission.
  • the configuration of the first embodiment includes the demultiplexing units 41-0 and 41-1, the transmission side compensation (TX compensation) units 42-0 and 42-1, and the multiplexing units 43-0 and 43. ⁇ 1 and a delay unit 44 may be added.
  • the RX compensation unit 16-0 of the first embodiment is replaced with the configuration of the RX compensation unit 31-0 to the delay unit 35, but the RX compensation unit 31-0 to the delay unit The 35 operations may be performed as one RX compensation unit.
  • the TX compensation unit 18-0 of the first embodiment is replaced with the configuration of the demultiplexing units 41-0, 41-1 to TX compensation unit 45-0.
  • the operations of the wave units 41-0, 41-1 to TX compensation unit 45-0 may be performed as one TX compensation unit.
  • the subchannel to be compensated with a finer frequency resolution among the m subchannel signals is divided by k by the newly added demultiplexing unit. It was decided to compensate after the wave. As a result, it is possible to compensate with finer frequency resolution as a whole while suppressing an increase in circuit scale.
  • Embodiment 3 FIG. In the first embodiment, the case has been described in which the RXF 13-n extracts a baseband signal from the multiplied signal, and the A / D converter 14-n samples the baseband signal extracted by the RXF 13-n.
  • RXF 13-n extracts an intermediate frequency (IF) signal from the multiplied signal
  • a / D converter 14-n extracts the intermediate frequency (IF) signal extracted by RXF 13-n.
  • IF intermediate frequency
  • the demultiplexing unit 15-n may perform demultiplexing processing after digitally quadrature-detecting the sampled IF signal and converting it to a baseband signal.
  • FIG. 9 is a diagram illustrating a configuration example of the demultiplexing unit 15-n of the relay satellite according to the present embodiment.
  • the demultiplexing unit 15-n includes a digital quadrature detection unit 51, a low-pass filter 52, a downsampler 53, and a digital demultiplexing unit 54.
  • the digital quadrature detection unit 51 multiplies the reception IF signal by a digital complex local signal having the same frequency.
  • the low-pass filter 52 extracts a baseband component and removes a harmonic component.
  • the down sampler 53 thins out the sampling rate of the baseband signal output from the low pass filter 52 to 1 ⁇ 2, and then outputs it to the digital demultiplexing unit 54 which is the main function.
  • the digital demultiplexing unit 54 demultiplexes the digital signal input from the down sampler 53 into m signals.
  • the combined signal output from the combining unit 19-n is converted into an analog baseband signal by the D / A converter 20-n, and then the up-converter is transmitted via the TXF 21-0.
  • the up-converter is transmitted via the TXF 21-0. The case of converting from the baseband to the radio frequency band in 22-n has been described.
  • the multiplexing unit 19-n digitally quadrature-modulates the combined signal into intermediate frequency (IF) data, and the D / A converter 20-n converts the analog IF signal into a TXF21- A case where the up-converter 22-0 converts the analog IF signal to the radio frequency band via 0 will be described.
  • FIG. 10 is a diagram illustrating a configuration example of the multiplexing unit 19-n according to the present embodiment.
  • the multiplexing unit 19-n includes a digital multiplexing unit 61, an upsampler 62, a low-pass filter 63, and an orthogonal modulation unit 64.
  • the digital multiplexing unit 61 multiplexes each input baseband signal into one wave (signal).
  • the up-sampler 62 increases the sampling rate by double by inserting zeros into the baseband data sequence after the multiplexing.
  • the low-pass filter 63 removes harmonics generated when the sampling speed is doubled by zero insertion, and extracts a baseband component.
  • the quadrature modulation unit 64 converts the baseband data input from the low-pass filter 63 into IF data.
  • the signal to be relayed in the relay satellite is an IF signal.
  • the interface between the digital unit and the analog unit is an IF signal, so that the required sampling speed of the A / D converter 14-n and the D / A converter 20-n increases, but quadrature detection and quadrature modulation are performed. Since it is performed digitally, it is possible to eliminate I and Q amplitude errors and quadrature errors that occur in analog quadrature detection and analog quadrature modulation. Further, the number of required A / D converters, D / A converters, RXFs, and TXFs can be reduced from two to one, respectively.
  • Embodiment 4 the characteristics of the transmission filter and the reception filter of the ground station are compensated in addition to the analog filter characteristics (RXF, TXF) of the relay satellite 10.
  • RXF, TXF analog filter characteristics
  • FIG. 11 is a diagram illustrating a configuration example of a satellite communication system including the relay device according to the present embodiment.
  • the configuration of the relay satellite 10 is the same as that of the first embodiment.
  • the transmitting station 400 is in the beam area 100-0, and the transmitting station 400 is in the beam area 100-0.
  • the receiving station 500 is in the beam area 300-1, and in the beam area 300-2.
  • the transmitting station 400 in the beam area 100-0 transmits the signal B shown in FIG. 2A
  • the relay satellite 10 relays the signal B and is located in the beam area 300-1.
  • the relay satellite 10 compensates for the analog filter characteristics (RXF, TXF) provided therein and the characteristics of the transmitting-side analog filter of the transmitting station 400. Processing for performing compensation and compensation for the characteristics of the reception-side analog filter of the receiving station 500 will be described.
  • the characteristics of the transmission-side analog filter of the transmission station 400 and the characteristics of the reception-side analog filter of the reception station 500 are obtained in advance.
  • the transmission-side analog filter characteristics of the transmission station 400 are similarly compensated according to the principle and procedure in which the RX compensation unit 16-n of the relay satellite 10 compensates the filter of the RXF 13-n described in the first embodiment. can do.
  • the reception side analog filter characteristics of the receiving station 500 are similarly compensated in accordance with the principle and procedure for the TX compensation unit 18-n of the relay satellite 10 to compensate the filter of the TXF 21-n described in the first embodiment. be able to.
  • the transmitting station 400 obtains a coefficient W A (i) for compensating the transmitting-side analog filter characteristics of the transmitting station 400 by the RX compensating unit 16-n.
  • the receiving station 500 obtains a coefficient W B (i) for compensating the receiving-side analog filter characteristics of the receiving station 500 by the TX compensating unit 21-n.
  • the coefficient data number i is determined by the bandwidth of the communication signal.
  • the control station 200 receives the coefficient W A (i) from the transmission station 400 via another wireless line or a wired line. Similarly, before starting communication of the signal B, the control station 200 receives the coefficient W B (i) from the receiving station 500 via another wireless line or a wired line.
  • control station 200 in response to the communication request signal B, performs connection control of the switch matrix 17 of a relay satellite 10, the coefficient W A (i) to the RX compensator 16-0 of the relay satellite 10, coefficient W B (i) is set in the TX compensator 18-1 of the relay satellite 10.
  • the setting from the control station 200 to the relay satellite 10 is performed using another radio line.
  • the control station 200 is the same as the filter compensation coefficient W R (j, 0) of RXF13-0.
  • the result of complex multiplication of the coefficient W A (j) corresponding to the subchannel number is set in the RX compensator 16-0 of the relay satellite 10.
  • the RX compensator 16-0 can simultaneously compensate for both the filter characteristics of the RXF 13-0 and the transmission-side analog filter characteristics of the transmission station 400.
  • the control station 200 has the same sub-value as the filter compensation coefficient W T (j, 1) of the TXF 21-1.
  • the result of complex multiplication of the coefficient W B (j) corresponding to the channel number is set in the TX compensator 18-1 of the relay satellite 10.
  • the TX compensation unit 18-1 can simultaneously compensate both the filter characteristics of the TXF 21-1 and the reception-side analog filter characteristics of the receiving station 500.
  • the transmitting station 400 transmits the signal B
  • the relay satellite 10 relays the signal B
  • the receiving station 500 receives the signal B.
  • the compensation of the analog filter of the transmitting station 400 and the RXF 13-0 of the relay satellite 10 is performed by the RX compensator 16-0
  • the compensation of the analog filter of the receiving station 500 and the compensation of the TXF 21-1 of the relay satellite 10 are performed. This is performed by the TX compensator 18-1.
  • the control station 200 determines the coefficients of the transmitting station 401 and the receiving station 501 of the relay satellite 10 as RX compensators 16-0 of the relay satellite 10, respectively. Set to TX compensator 18-1.
  • the relay satellite also compensates each analog filter of the ground receiving station and transmitting station. As a result, not only the relay satellite but also the ground receiving station and transmitting station development costs and adjustment man-hours can be reduced.
  • control station 200 may hold in advance a table for transmission filter compensation coefficients and reception filter compensation coefficients for all (or part of) ground stations connected to the satellite communication system. In this case, the control station 200 can save time and effort for receiving coefficient information from each ground station each time it connects each ground station, so that the line connection time can be shortened.
  • Embodiment 5 the compensation coefficients W R (m, n) and W T (m, n) are obtained by the relay satellite itself and automatically compensated, thereby easily realizing analog compensation and coefficient update. .
  • compensation coefficients W R (m, n) and W T (m, n) are automatically obtained in the relay satellite 10 and the amplitude and phase deviation are automatically calculated using the obtained values. To compensate.
  • compensation performed in this embodiment is performed by generating a non-modulated (CW) wave for correction in the relay satellite 10, the relay signal input / output to the corresponding port is stopped and the standby state is set. Perform above.
  • the relay satellite 10 does not secure only the number of ports necessary for actual operation, and has a plurality of spare ports in preparation for failure. Therefore, in the relay satellite 10, when each port is sequentially set to the standby state and compensated, the situation where the signal relay is temporarily interrupted can be avoided by performing the following procedures (1) to (6). it can.
  • Procedure (1) The relay satellite 10 starts up the standby port, and sends the same relay signal to the standby port as the compensation target port.
  • Step (2) When the same signal starts to flow in both the standby port and the compensation target port, the relay satellite 10 relays the data of the standby port at a certain timing inside the digital (for example, the switch matrix 17). At the same time, the data relay of the compensation target port is stopped. By this digital switching, the signal is relayed from the compensation target port to the standby port without any signal disconnection.
  • the digital for example, the switch matrix 17
  • the relay satellite 10 performs automatic compensation of the transmission analog filter (TXF21-n) of the compensation target port based on a method described later.
  • the relay satellite 10 performs automatic compensation of the reception analog filter (RXF13-n) of the compensation target port based on the method described later.
  • the relay satellite 10 After compensating the transmission / reception analog filter, the relay satellite 10 sends the same relay signal not only to the standby port but also to the compensated port. However, control is performed so that the two signals are not synthesized by making the data of the compensated port not output in the digital (for example, switch matrix 17).
  • Step (6) When the same signal begins to flow through both the compensation target port and the standby port, the relay satellite 10 outputs the compensated port data at a certain timing within the digital (eg, switch matrix 17). Stop the data of the standby port. By this digital switching, the signal is relayed from the standby port to the compensated port without any signal disconnection.
  • the digital eg, switch matrix 17
  • the relay satellite 10 it is possible to avoid interruption of the signal to be relayed by sequentially and automatically performing transmission / reception analog filter compensation for each port in accordance with the above procedure.
  • the procedure is such that the relay signal is once transferred from the compensation target port to the backup port and returned after the compensation.
  • the procedure described above is used. Can be compensated at any time.
  • the signal to be relayed is assigned to another frequency band or stopped, the signal is handled in the signal band handled by the compensation target port, then switched to the standby port, and the signal is relayed again.
  • FIG. 12 is a diagram illustrating a configuration example of the relay satellite 10 that automatically compensates for the characteristics of the TXF 21-0 of the present embodiment.
  • a correction data generation unit 71-0 In addition to the configuration of the first embodiment, a correction data generation unit 71-0, analog switches 72-0 and 73-0, and an amplitude / phase difference detection unit 74-0 are provided.
  • unmodulated data output from the correction data generation unit 71-0 is multiplexed by the multiplexing unit 19-0, and D / A converted by the D / A converter 20-0. 2 shows an example of a signal spectrum after being processed.
  • the correction data generation unit 71-0 generates a correction baseband unmodulated signal.
  • the analog switch 72-0 switches the output destination of the signal from the TXF 21-0.
  • the analog switch 73-0 switches the signal input source to the A / D converter 14-0.
  • the amplitude / phase difference detector 74-0 obtains a coefficient for TXF compensation.
  • the analog switch 72-0 connects the output of the TXF 21-0 to the input of the analog switch 73-0 instead of the upconverter 22-0.
  • the analog switch 73-0 selects the output of the TXF 21-0, not the RXF 13-0.
  • correction data generation unit 71-0 generates m correcting baseband unmodulated signal C b.
  • Baseband unmodulated signal C b shown in equation (11).
  • m branching and multiplexing number Fc subchannel bandwidth
  • b is the frequency number ( ⁇ ⁇ 1,2, ..., m ⁇ )
  • A is the amplitude
  • theta b represents an initial phase.
  • the initial phase ⁇ b may be randomized so as to reduce the peak power of the multicarrier signal.
  • the multiplexing unit 19-0 after combining these m baseband unmodulated signals, converts the baseband band to an intermediate frequency fm in some cases, for example, converts it into a multicarrier signal shown in FIG.
  • this multicarrier signal is converted into an analog signal by the D / A converter 20-0 according to the settings of the analog switches 72-0 and 73-0, and then A / D converted via the TXF 21-0. Input to the device 14-0.
  • the A / D converter 14-0 samples the input multicarrier signal, and the demultiplexing unit 15-0 demultiplexes the sampled signal into m received baseband unmodulated signals. Incidentally, if the input to the intermediate frequency f m in the demultiplexer 15-0, the demultiplexing section 15-0 performs demultiplexing after frequency conversion into baseband.
  • the b th received baseband unmodulated signal R b is shown in equation (12).
  • b is the frequency number ( ⁇ ⁇ 1, 2,..., M ⁇ )
  • ⁇ A b is the amplitude of the b th received baseband unmodulated signal
  • ⁇ b is the phase of the b th received baseband unmodulated signal. is there.
  • Amplitude and phase difference detection unit 74-0 stores a baseband unmodulated signal C b, as shown in the following equation (13), the baseband unmodulated signal C b by the reception baseband unmodulated signal R b A coefficient W T (m, 0) for TXF compensation is obtained by division.
  • the amplitude / phase difference detector 74-0 sets the TXF compensation coefficient W T (m, 0) obtained by the equation (13) in the TX compensator 18-0.
  • TX compensator 18-0 if already set the coefficient W T (m, 0), the coefficient W T (m, 0) updating (correction).
  • the relay satellite 10 automatically sets the coefficient W T (m, 0) for compensating for the amplitude / phase error of the TXF 21-0 in the TX compensation unit 18-0. Can do.
  • the same method can be used.
  • the interval between the correction CW signals is set to the interval shown in FIG.
  • the data may be transmitted from the correction data generation unit 71-0 after narrowing to 1/4 times and increasing the eight CW signals shown in FIG. 13 to 32 CW signals.
  • the amplitude / phase difference detection unit 74-0 divides the output of the demultiplexing units 41-0 and 41-1 by the baseband non-modulated signal stored in advance, thereby the TX compensation unit 42-0. , 42-1 are obtained and set in the TX compensator 45-0.
  • FIG. 14 is a diagram illustrating a configuration example of the relay satellite 10 that automatically compensates for the characteristics of the RXF 13-0 of the present embodiment.
  • a correction data generation unit 71-0 analog switches 76-0 and 77-0, and an amplitude / phase difference detection unit 78-0 are provided.
  • Analog switch 76-0 switches the output destination of the signal from D / A converter 20-0.
  • the analog switch 77-0 switches the signal input source to the RXF 13-0.
  • the amplitude / phase difference detector 78-0 obtains a coefficient for RXF compensation.
  • the analog switch 76-0 connects the output of the D / A converter 20-0 to the input of the analog switch 77-0 instead of the TXF 21-0.
  • the analog switch 77-0 selects the output of the D / A converter 20-0, not the down converter 12-0.
  • correction data generation unit 71-0 is, m-number of correction baseband unmodulated signal C b the formula (11) Generate according to
  • the multiplexing unit 19-0 combines these m baseband unmodulated signals and converts them into multicarrier signals, and then passes through the D / A converter 20-0 and the RXF 13-0.
  • the multicarrier signal is input to the A / D converter 14-0.
  • the A / D converter 14-0 samples the input multicarrier signal, and the demultiplexing unit 15-0 demultiplexes the sampled signal into m received baseband unmodulated signals.
  • the amplitude / phase difference detector 78-0 sets the RXF compensation coefficient W R (m, 0) obtained by the equation (14) in the RX compensator 16-0.
  • RX compensator 16-0 if already set the coefficient W R (m, 0), the coefficient W R (m, 0) updating (correction).
  • the relay satellite 10 automatically sets the coefficient W R (m, 0) for compensating for the amplitude / phase error of the RXF 13-0 in the RX compensator 16-0. Can do.
  • the RX compensation unit 16-0 shown in FIG. 7 has the configuration and the automatic compensation of the RX compensation units 33-0 and 33-1 is desired to be realized, the same method can be used.
  • the data may be transmitted from the correction data generation unit 71-0 after narrowing to 1/4 times and increasing the eight CW signals shown in FIG. 13 to 32 CW signals.
  • the amplitude / phase difference detection unit 78-0 divides the output of the demultiplexing units 32-0 and 32-1 by the baseband non-modulated signal stored in advance, thereby the RX compensation unit 33-0. , 33-1 are calculated and set in the RX compensator 16-0.
  • the relay satellite 10 determines and automatically sets the compensation coefficients W R (m, n) and W T (m, n) by itself. . Thereby, compared with manual compensation, adjustment time can be shortened and reduction of an adjustment man-hour can be implement
  • the relay satellite 10 can ensure the communication quality of the signal to be relayed.
  • Embodiment 6 FIG.
  • the automatic compensation related to the frequency characteristics of the transmission analog filter (TXF) and the reception analog filter (RXF) in the baseband or intermediate frequency band has been described.
  • a method for automatically compensating the frequency characteristics of the transmission analog filter in the up-converter 22-0 and the reception analog filter in the down-converter 12-0 in the same manner will be described.
  • the automatic compensation for the frequency characteristics of the transmission analog filter (TXF) and the reception analog filter (RXF) in the intermediate frequency band is performed in the fifth embodiment before automatic compensation of each analog filter of the up converter and the down converter. It shall be completed as shown.
  • FIG. 15 is a diagram illustrating a configuration example of the relay satellite 10 that automatically compensates for the characteristics of the up-converter 22-0 and the down-converter 12-0 of the present embodiment.
  • the down converter 12-0 includes a frequency converter 81-0, a switch 85-0, a reception band pass filter (BPF) 86-0, a switch 87-0, and a mixer 88-0.
  • the frequency conversion unit 81-0 includes a band pass filter (BPF) 82-0, a local signal oscillator 83, and a mixer 84-0.
  • the frequency converter 81-0 converts the upstream frequency into the downstream frequency.
  • the BPF 82-0 is an analog bandpass filter that allows a signal to pass while partially including a signal band of an adjacent system.
  • the local signal oscillator 83 generates a signal for converting the upstream frequency to the downstream frequency.
  • the mixer 84-0 converts the upstream signal into a downstream frequency from the upstream signal output from the BPF 82-0 and the local signal output from the local signal oscillator 83.
  • the switch 85-0 switches the signal input source to the reception BPF 86-0.
  • the reception BPF 86-0 extracts the signal converted to the downstream frequency.
  • the switch 87-0 switches the signal input source to the mixer 88-0.
  • the mixer 88-0 down-converts the correction multicarrier signal.
  • the up-converter 22-0 includes a local signal oscillator 89, a mixer 90-0, and a transmission bandpass filter (BPF) 91-0.
  • BPF transmission bandpass filter
  • the local signal oscillator 89 generates a signal for converting between the downlink frequency (Fd) and the intermediate frequency fm.
  • the mixer 90-0 up-converts the correction multicarrier signal.
  • the transmission BPF 91-0 outputs a correction multicarrier signal to which frequency characteristics are added.
  • a frequency conversion unit 81-0 that converts an uplink frequency (Fu) to a downlink frequency (Fd) is provided as shown in FIG. In a radio system having the same downlink frequency, the frequency conversion unit 81-0 is not necessary.
  • the frequency bands of the reception BPF 86-0 and the transmission BPF 91-0 to be compensated are shared by the downstream frequency (Fd), the transmission analog filter (TXF) and the reception analog filter (RXF) described above are used. It is possible to compensate the reception BPF 86-0 and the transmission BPF 91-0 in the same manner as the automatic compensation.
  • the frequency converter 81-0 converts the signal of the upstream frequency Fu received by the receiving antenna 11-0 into the downstream frequency.
  • the BPF 82-0 passes the signal band of its own system partially including the signal band of the adjacent system.
  • the slope of the out-of-band attenuation characteristic required for the BPF 82-0 may be gentle. Therefore, the BPF 82-0 can be realized relatively easily, and the amplitude error and the group delay deviation in the band can be designed to be sufficiently small, so that the BPF 82-0 is excluded from compensation in this embodiment.
  • the BPF 82-0 may be deleted when a signal of another system does not exist in an adjacent frequency or when the reception level is sufficiently small even if it exists.
  • the mixer 84-0 multiplies the upstream signal output from the BPF 82-0 by the local signal output from the local signal oscillator 83, and converts the upstream signal into a downstream frequency (Fd).
  • the receiving BPF 86-0 extracts the signal converted to the downlink frequency (Fd) from the signal input via the switch 85-0 and removes other unnecessary waves. And output.
  • switch 85-0 is switched to select the output of mixer 90-0 instead of mixer 84-0.
  • the correction data generation unit 71-0 generates and outputs a correction multicarrier signal.
  • the D / A converter 20-0 outputs the D / A converted multicarrier signal for correction to the mixer 90-0 of the up-converter 22-0 via the switches 76-0 and TXF 21-0.
  • the mixer 90-0 multiplies the correction multicarrier signal by the local signal generated by the local signal oscillator 89, and upconverts the correction multicarrier signal to the downlink frequency (Fd).
  • the mixer 90-0 outputs the up-converted multicarrier signal for correction to the reception BPF 86-0 via the switch 85-0, and the reception BPF 86-0 adds the frequency characteristic and outputs the result.
  • the reception BPF 86-0 outputs the correction multicarrier signal to which the frequency characteristic is added to the mixer 88-0 via the switch 87-0.
  • the mixer 88-0 multiplies the correction multicarrier signal by the local signal generated by the local signal oscillator 89, and downconverts the correction multicarrier signal to the intermediate frequency (fm) or the baseband.
  • the up converter 22-0 and the down converter 12-0 use the local signal oscillator 89 in common. be able to.
  • the correction multicarrier signal down-converted to the intermediate frequency (fm) or the baseband band is converted into a switch 77-0, RXF 13-0, A / D converter 14-, as shown in FIG. 0, via the demultiplexing unit 15-0, and output to the amplitude / phase difference detection unit 78-0.
  • the amplitude / phase difference detection unit 78-0 obtains the compensation coefficient W B (m, 0) for the reception BPF 86-0 in the same manner as the processing for obtaining the RXF compensation coefficient, and outputs it to the RX compensation unit 16-0. To do.
  • the RX compensator 16-0 complex-multiplies the already-set RXF compensation coefficient W R (m, 0) by the newly input compensation coefficient W B (m, 0), and the result of the multiplication Is set as a new compensation coefficient. Through this series of processing, the RX compensator 16-0 can compensate for errors in the filters of both the RXF 13-0 and the reception BPF 86-0.
  • switch 87-0 is switched to select the output of transmission BPF91-0, not BPF86-0.
  • the correction data generation unit 71-0 generates and outputs a correction multicarrier signal.
  • the D / A converter 20-0 outputs the D / A converted multicarrier signal for correction to the mixer 90-0 of the upconverter 22-0 via the TXF 21-0 and the switch 72-0.
  • the mixer 90-0 multiplies the correction multicarrier signal by the local signal generated by the local signal oscillator 89-0, and upconverts the correction multicarrier signal to the downlink frequency (Fd).
  • the mixer 90-0 outputs the upconverted correction multicarrier signal to the transmission BPF 91-0.
  • the transmission BPF 91-0 transmits the correction multicarrier signal to which the frequency characteristic is added via the switch 87-0.
  • the mixer 88-0 multiplies the correction multicarrier signal by the local signal generated by the local signal oscillator 89, and downconverts the correction multicarrier signal to the intermediate frequency (fm) or the baseband.
  • the correction multicarrier signal down-converted to the intermediate frequency (fm) or the baseband band is converted into an RXF 13-0, a switch 73-0, an A / D converter 14-, as shown in FIG. 0, via the demultiplexing unit 15-0, and output to the amplitude / phase difference detection unit 74-0.
  • the amplitude / phase difference detection unit 74-0 obtains the compensation coefficient W C (m, 0) for the transmission BPF 61-0 in the same manner as the process for obtaining the TXF compensation coefficient, and outputs it to the TX compensation unit 18-0. To do.
  • the TX compensator 18-0 performs complex multiplication of the already-set TXF compensation coefficient W T (m, 0) with the newly input compensation coefficient W C (m, 0), and the result of the multiplication Is set as a new compensation coefficient. Through this series of processing, the TX compensation unit 18-0 can compensate for errors in both the TXF 21-0 and the transmission BPF 91-0.
  • the frequency converter 81-0 is provided between the reception antenna 11-0 and the switch 85-0. However, the frequency converter 81-0 is provided between the transmission BPF 91-0 and the transmission antenna 23-0.
  • the frequency of the oscillator 89 is changed so that the frequency output from the transmission BPF 91-0 becomes the upstream frequency (Fu), and the frequency characteristics of the transmission BPF 91-0 and the reception BPF 86-0 are centered on the upstream frequency Fu. You may change so that it may become a frequency.
  • the frequency conversion unit 81-0 converts the frequency of the signal output from the transmission BPF 91-0 from Fu to Fd and outputs it from the transmission antenna 23-0.
  • the frequency converter 81-0 is moved between the transmission BPF 61-0 and the transmission antenna 23-0 in this way, and the reception BPF 86-0 and the transmission BPF 91- If the configuration is changed to a configuration in which 0 is used to handle an upstream frequency (Fu) signal, the downstream frequency Fd signal amplified with high power may sneak into the reception BPF 86-0, the transmission BPF 91-0, etc., and adversely affect the same frequency interference. Sex can be excluded.
  • the relay satellite 10 further automatically compensates for the frequency characteristics of the transmission analog filter in the up-converter and the reception analog filter in the down-converter.
  • adjustment time can further be shortened and reduction of an adjustment man-hour can be implement
  • Embodiment 7 FIG. In this embodiment, a method that realizes a good analog compensation characteristic while suppressing an increase in the digital circuit scale by a method different from the method shown in Embodiment 1 will be described.
  • the overall configuration of the relay satellite 10 provided with the relay device in the present embodiment is the same as that in FIG. 1, but the RX compensators 16-0 to 16-2, the TX compensators 19-0 to 19-2, and the demultiplexer
  • the configurations and functions of 15-0 to 15-2 and multiplexing units 19-0 to 19-2 are different.
  • the RX compensation units 16-0 to 16-n have a configuration in which the RX compensation unit 31-0 is left and the rest is deleted from the configuration shown in FIG. 7 in the first embodiment.
  • the TX compensation units 19-0 to 19-2 have a configuration in which the RX compensation unit 45-0 is left and the rest is deleted from the configuration of the first embodiment shown in FIG.
  • the function of demultiplexing the m-demultiplexed signal with a finer frequency resolution or the function of multiplexing is deleted, and the circuit scale of the RX compensator and TX compensator is reduced.
  • FIG. 16 is a diagram illustrating a configuration example of the demultiplexing unit 15-n according to the present embodiment.
  • a complex multiplication type low-pass filter (complex multiplication type low-pass filter 52a) is provided.
  • FIG. 17 is a diagram illustrating a configuration example of the multiplexing unit 19-n according to the present embodiment.
  • a complex multiplication type low-pass filter (complex multiplication type low-pass filter 63a) is provided.
  • the amplitude error and group delay deviation of the analog filter are roughly compensated using these complex multiplication type low-pass filters, and the residual error components that have not been compensated for are compensated for by the RX compensation unit 16-n and the TX compensation unit 18-. n is precisely compensated.
  • the first purpose of the complex multiplication type low-pass filter is to compensate until the slope of the amplitude error and group delay deviation of the analog filter becomes gentle.
  • the complex multiplying low-pass filters 52a and 63a alone can be completed without further compensation by the RX compensating unit 16-n and TX compensating unit 18-n.
  • the analog filter characteristics can be compensated for, but the circuit scale increases.
  • the complex multiplying low-pass filters 52a and 63a are compensated within the range of the number of filter taps necessary for harmonic removal, which is the original purpose, as with the low-pass filters 52 and 63.
  • Complex multiplication low-pass filters 52a and 63a like the low-pass filters 52 and 63, simultaneously compensate for frequency versus amplitude characteristics and frequency versus group delay characteristics while removing harmonics.
  • the complex multiplication low-pass filters 52a and 63a have complex tap coefficients, and multiplication performed in the FIR filter is also complex multiplication. Therefore, even if the low-pass filters 52 and 63 and the complex multiplication low-pass filters 52a and 63a have the same number of taps, the complex multiplication low-pass filters 52a and 63a double the required number of multipliers. The amount is small compared to the circuit scale of the entire device.
  • FIG. 18 is a diagram illustrating an example of compensation processing on the reception side according to the present embodiment.
  • 18A shows the uplink signals A and B from the beam area 100-0 when the RXF 13-0 error is added
  • FIG. 18B shows the beam area 100 when the RXF 13-2 error is added.
  • -Uplink signals E and D from -2.
  • the complex multiplication type low-pass filter does not realize complete compensation, but compensates to a degree that moderately suppresses the remaining amplitude error and group delay deviation with a limited circuit scale.
  • FIG. 18 (e) shows the signal spectrum when combined after being compensated by the RX compensator 16-0
  • FIG. 18 (f) shows the signal spectrum when combined after being compensated by the RX compensator 16-2. .
  • the overall amplitude characteristic is obtained by a two-stage compensation process in which each of the subsequent RX compensation units compensates for a gradual error that could not be compensated by the complex multiplication low-pass filter.
  • the group delay characteristic can be flattened.
  • FIG. 19 is a diagram illustrating an example of compensation processing on the transmission side according to the present embodiment.
  • FIG. 19A shows each demultiplexed data input to the TX compensator 18-1.
  • the TX compensation unit 18-1 performs inverse amplitude compensation and inverse group delay deviation compensation for each demultiplexed data in units of bandwidth Fc.
  • Fc bandwidth
  • the multiplexing unit 19-1 compensates the remaining amplitude error and group delay deviation with the complex multiplication low-pass filter in the multiplexing unit 19-1, and FIG. As shown in FIG. 4, a signal that cancels the amplitude characteristics and group delay characteristics of the TXF 21-1 at the subsequent stage is output.
  • the amplitude characteristic and the group delay characteristic of the downlink signal to the beam area 300-1 can be flattened as shown in FIG.
  • compensation is performed by the complex multiplication type low-pass filter included in the demultiplexing unit on the reception side, and further compensation is performed by the RX compensation unit at the subsequent stage. Then, compensation is performed by the RX compensator, and then compensation is performed by a complex multiplication type low-pass filter included in the subsequent multiplexing unit.
  • the filter tap coefficients set in the complex multiplication low-pass filters 52a and 63a may be rewritable.
  • RX compensator since the frequency versus amplitude characteristic of the complex multiplication type low-pass filter, a frequency to the group delay characteristics can be freely changed, RX compensator, together with the coefficient W R, W T given to TX compensator, of the transmitting and receiving analog filter characteristic Fine amplitude adjustment and group delay adjustment can be realized so as to absorb individual differences. Even after launching the satellite, fine amplitude adjustment and group delay adjustment can be realized by transmitting and setting these tap coefficients from the ground station. Thereby, since the required performance for the analog filter can be relaxed, the cost, capacity, and weight of the analog filter can be reduced. Further, as in the fifth and sixth embodiments, the automatic compensation may be realized by incorporating the complex multiplication low-pass filters 52a and 63a.
  • Relay satellite 11-0 to 11-2, receiving antenna, 12-0 to 12-2, down converter, 13-0 to 13-2, receiving analog filter (RXF), 14-0 to 14-2, A / D converter , 15-0 to 15-2, demultiplexing unit, 16-0 to 16-2, reception side compensation (RX compensation) unit, 17 switch matrix, 18-0 to 18-2, transmission side compensation (TX compensation) unit, 19- 0 to 19-2 multiplexing unit, 20-0 to 20-2 D / A converter, 21-0 to 21-2, transmission analog filter (TXF), 22-0 to 22-2 up converter, 23-0 to 23-2 Transmitting antenna, 31-0 receiving side compensation (RX compensation) unit, 32-0, 32-1 demultiplexing unit, 33-0, 33-1 receiving side compensation (RX compensation) unit, 34-0, 34 -1 multiplexing unit, 35 delay unit, 41 0, 41-1 demultiplexing unit, 42-0, 42-1 transmission side compensation (TX compensation) unit, 43-0, 43-1 multiplexing unit, 44 delay unit, 45-0 transmission side compensation (TX compensation)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

 受信信号から所望の信号を抽出する受信アナログフィルタ13-n(n=0,1,2)と、受信アナログフィルタ13-n通過後の信号をデジタル信号に変換するA/D変換器14-nと、A/D変換器14-nで変換されたデジタル信号をm個の信号に分波する分波部15-nと、分波部15-nで分波されたm個の信号に対して、受信アナログフィルタ13-nのアナログ特性をデジタル補償する受信側補償部16-nと、受信側補償部16-nでデジタル補償されたm個の信号を合波する合波部19-nと、を備え、受信側補償部16-nは、さらに、デジタル補償されたm個の信号のうち補償が十分ではないx個の信号について、それぞれの信号を、k個の信号に分波して受信アナログフィルタ13-nのアナログ特性をデジタル補償し、デジタル補償後のk個の信号を合波する。

Description

分波装置、合波装置および中継装置
 本発明は、多様な帯域幅を有する複数の信号を分波する分波装置、複数の信号を合波する合波装置、および中継装置に関する。
 従来、衛星通信の周波数有効利用、衛星システムの容量拡大等を実現するため、複数のアップリンクビームから複数のダウンリンクビームにデータを中継するデジタルチャネライザ搭載の中継衛星が提案されている。このようなデジタルチャネライザ搭載の中継衛星に関する技術が、例えば、下記特許文献1において開示されている。
 中継衛星では、アップリンクのビーム信号をアナログデジタル変換するA/D変換器の前段に受信アナログフィルタが、ダウンリンクのビーム信号をデジタルアナログ変換するD/A変換器の後段に送信アナログフィルタが、それぞれ存在する。デジタルチャネライザ搭載の中継衛星では、各アップリンク信号がお互い干渉を与えないよう、受信アナログフィルタの帯域外減衰量を高める必要がある。同様に、ダウンリンク信号もお互い干渉を与えないよう、送信アナログフィルタの帯域外減衰量を高める必要がある。さらに、各フィルタとも様々な通信波を通すため、高い帯域内平坦度も要求される。一般に、アナログフィルタ単独でこのような高い帯域外減衰量と高い帯域内平坦度を同時に実現することは、アナログ回路の規模が増加し、調整箇所も増えて複雑化していくため限界がある。
 この対策として、受信アナログフィルタ、送信アナログフィルタの振幅特性、群遅延特性をデジタル補償する技術が、下記特許文献2,3において開示されている。デジタル補償回路を中継衛星に搭載し、デジタル補償回路でアナログフィルタの帯域内振幅誤差、群遅延偏差による位相非直線性等を補償することで、アナログフィルタの要求性能を下げることができる。これにより、アナログフィルタの実現性を確保しつつ、高い帯域外減衰量と高い帯域内平坦度を達成することができる。しかしながら、下記特許文献2,3では、中継衛星に上記デジタル補償回路を新たに追加実装する必要があるため、中継衛星の回路規模、消費電力が増加するという課題があった。
 上記課題に対して、補償する信号を一旦分波後、分波した各信号に対して各補償を行い再度合波する技術が、下記特許文献4、下記非特許文献1において開示されている。
特表2006-516867号公報 特許第3676576号公報 特許第4842186号公報 特表2012-519985号公報
貴家仁志,"マルチレート信号処理",pp90-91,昭晃堂,1995年10月初版発行
 しかしながら、上記従来の技術(特許文献4、非特許文献1)によれば、良好な補償性能を実現するためには、分波/合波数を大きく確保する必要があるため、デジタル部の回路規模の増加を招く、という問題があった。
 本発明は、上記に鑑みてなされたものであって、回路規模の増加を抑えつつ、高い帯域外減衰量と高い帯域内平坦度を同時に実現可能な分波装置、合波装置および中継装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、受信信号から所望の信号を抽出する受信アナログフィルタと、前記受信アナログフィルタ通過後の信号をデジタル信号に変換するA/D変換手段と、前記A/D変換手段で変換されたデジタル信号をm個の信号に分波する分波手段と、前記分波手段で分波されたm個の信号に対して、前記受信アナログフィルタのアナログ特性をデジタル補償する受信側補償手段と、前記受信側補償手段でデジタル補償されたm個の信号を合波する合波手段と、を備え、前記受信側補償手段は、さらに、デジタル補償されたm個の信号のうち補償が十分ではないx個の信号について、それぞれの信号を、k個の信号に分波して前記受信アナログフィルタのアナログ特性をデジタル補償し、デジタル補償後のk個の信号を合波する、ことを特徴とする。
 本発明にかかる分波装置、合波装置および中継装置は、回路規模の増加を抑えつつ、高い帯域外減衰量と高い帯域内平坦度を同時に実現できる、という効果を奏する。
図1は、実施の形態1の分波装置、合波装置、およびこれらを備えた中継装置の構成例を示す図である。 図2は、実施の形態1の中継衛星の中継処理による中継信号の流れを示す図である。 図3は、RXF、TXFの周波数対振幅・位相特性が理想の場合の、信号中継処理の流れを示す図である。 図4は、RXF、TXFの周波数対振幅・位相特性が理想ではなく湾曲し、かつ何も対策を講じない場合の、信号中継処理の流れを示す図である。 図5は、RX補償部を動作させた場合の、信号中継処理の流れを示す図である。 図6は、TX補償部を動作させた場合の、信号中継処理の流れを示す図である。 図7は、実施の形態2のRX補償部の構成例を示す図である。 図8は、実施の形態2のTX補償部の構成例を示す図である。 図9は、実施の形態3の分波部の構成例を示す図である。 図10は、実施の形態3の合波部の構成例を示す図である。 図11は、実施の形態4の衛星通信システムの構成例を示す図である。 図12は、実施の形態5のTXFの特性を自動補償する中継衛星の構成例を示す図である。 図13は、中間周波数fm、m=8におけるマルチキャリア信号に変換された各補正用無変調信号の周波数配置例を示す図である。 図14は、実施の形態5のRXFの特性を自動補償する中継衛星の構成例を示す図である。 図15は、実施の形態6のアップコンバータとダウンコンバータの特性を自動補償する中継衛星の構成例を示す図である。 図16は、実施の形態7の分波部の構成例を示す図である。 図17は、実施の形態7の合波部の構成例を示す図である。 図18は、実施の形態7の受信側の補償処理の例を示す図である。 図19は、実施の形態7の送信側の補償処理の例を示す図である。
 以下に、本発明にかかる分波装置、合波装置および中継装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 本実施の形態では、回路規模の増加を抑えつつ、高い帯域外減衰量と高い帯域内平坦度を同時に実現する分波装置、合波装置、および、分波装置と合波装置を備えた中継装置について説明する。
 図1は、本実施の形態の分波装置、合波装置、およびこれらを備えた中継装置の構成例を示す図である。図1に示す中継装置は、例えば、中継衛星10に搭載され、地上から送信されたマルチキャリア信号を中継する。このとき、受信した信号を分波し、必要に応じて並べ替えてから合波して送信する。
 中継衛星10は、受信アンテナ11-0~11-2と、ダウンコンバータ(D/C)12-0~12-2と、受信アナログフィルタ(RXF)13-0~13-2と、A/D変換器(A/D)14-0~14-2と、分波部15-0~15-2と、受信側補償(RX補償)部16-0~16-2と、スイッチマトリックス17と、送信側補償(TX補償)部18-0~18-2と、合波部19-0~19-2と、D/A変換器(D/A)20-0~20-2と、送信アナログフィルタ(TXF)21-0~21-2と、アップコンバータ(U/C)22-0~22-2と、送信アンテナ23-0~23-2と、を備える。
 ここでは、一例として、受信アンテナ11-n(n=0,1または2)から受信側補償(RX補償)部16-nで1つの分波装置を構成し、合波部19-nから送信アンテナ23-nで1つの合波装置を構成する。なお、さらに、合波部19-nを加えて分波装置とし、分波部15-nを加えて合波装置としてもよい。また、中継衛星10は、入力ポート(入力側のビームエリア)と同数以上の分波装置を備え、出力ポート(出力側のビームエリア)と同数以上の合波装置を備える。
 中継衛星10は、ビームエリア100-0、100-1および100-2からアップリンク信号を受信し、後述する各種処理(分波処理、合波処理等)を行った後、ビームエリア300-0、300-1および300-2へダウンリンク信号として送信する。なお、中継衛星10は制御局200と接続されており、制御局200は、中継衛星10の内部設定の変更指示、動作指示等を行う。
 受信アンテナ11-nは、ビームエリア100-nからのアップリンク信号を受信する。
 ダウンコンバータ12-nは、受信アンテナ11-nにより受信されたアップリンク信号に衛星内部で生成したローカル信号を乗算する。
 受信アナログフィルタ(RXF)13-nは、ダウンコンバータ12-nで乗算後の信号のうち、ベースバンド信号を抽出する。
 A/D変換器14-nは、受信アナログフィルタ(RXF)13-nで抽出したベースバンド信号をサンプリングする。
 分波部15-nは、A/D変換器14-nから入力したデジタル信号をm(0~m-1)個の信号に分波する。
 受信側補償(RX補償)部16-nは、分波部15-nから出力されるm個の分波データに対して、前段の受信アナログフィルタ(RXF)13-nの振幅・位相誤差を打ち消すためのデジタル振幅・位相補償を行う。詳細な動作は後述する。
 スイッチマトリックス17は、前段の複数の処理部(受信側補償(RX補償)部16-0,16-1,16-2)から入力した信号をスイッチングして後段の複数の処理部(後述する送信側補償(TX補償)部18-0,18-1,18-2)へ出力する。具体的には、前段の複数の処理部から入力した信号に対して、周波数方向の並び替えおよび所望のビームエリア向けの出力ポートに振り分けを行い、所望のビームエリア向けの出力ポートと接続する後段の処理部へ信号を出力する。
 送信側補償(TX補償)部18-nは、後段の合波部19-nに与えるm個の合波データに対して、さらに、後段に位置する送信アナログフィルタ(TXF)21-nの振幅・位相誤差を打ち消すためのデジタル逆振幅・位相補償を行う。詳細な動作は後述する。
 合波部19-nは、送信側補償(TX補償)部18-nで逆振幅・位相補償されたm個の分波データを1つの波(信号)に合波する。
 D/A変換器20-nは、合波部19-nから出力されるデジタル信号をアナログ信号に変換する。
 送信アナログフィルタ(TXF)21-nは、D/A変換器20-nから出力される信号のベースバンド成分のみ通過させ高調波等の不要波を除去する。送信アナログフィルタ(TXF)21-n通過後の信号は、前述の送信側補償(TX補償)部18-nによる逆振幅・位相補償により、振幅・位相特性が平坦化される。
 アップコンバータ22-nは、送信アナログフィルタ(TXF)21-nから出力されたアナログベースバンド信号を無線周波数帯の信号に変換する。
 送信アンテナ23-nは、アップコンバータ22-nから出力された信号をダウンリンク信号としてビームエリア300-nへ送信する。
 なお、アップリンクのビームエリア100-0,100-1,100-2とダウンリンクのビームエリア300-0,300-1,300-2は地理的に同じエリア(場所)であってもよい。また、図1において、中継衛星10の各構成要素(受信アンテナ、ダウンコンバータ、A/D変換器、…、送信アンテナ等)の数を3つ(入力ポート数=3、出力ポート数=3)にしているが、一例であり、図1に示したもの(3つ)に限定するものではない。
 つづいて、本実施の形態の中継装置を備えた中継衛星10の中継処理の動作について説明する。図2は、本実施の形態の中継衛星の中継処理による中継信号の流れを示す図である。中継装置である中継衛星10は、図2(a)に示すビームエリア100-0,100-1,100-2からの各アップリンク信号を、図2(b)に示すビームエリア300-0,300-1,300-2への各ダウンリンク信号として中継する。すなわち、中継衛星10は、各ビームエリアからのアップリンク信号を、所望のビームエリア向けに振り分け、かつ所望の周波数に変換しながら、ダウンリンク信号として出力する。
 具体的に、中継衛星10は、図2に示すように周波数を再配置して、ビームエリア100-0からのアップリンク信号Aをビームエリア300-0へ、ビームエリア100-0からのアップリンク信号Bをビームエリア300-1へ、ビームエリア100-1からのアップリンク信号Cをビームエリア300-2へ、ビームエリア100-2からのアップリンク信号Dをビームエリア300-2へ、ビームエリア100-2からのアップリンク信号Eをビームエリア300-1へ、それぞれ中継する。なお、分波されたデータ数および合波前のデータ数はm=8とし、分波された信号の各帯域幅はFcとする。
 中継衛星10では、図2(a)に示すビームエリア100-0からの信号A,Bを、受信アンテナ11-0で受信後、ダウンコンバータ12-0、RXF13-0を経由して無線周波数帯からベースバンド帯に変換する。A/D変換器14-0は、ベースバンド帯に変換された信号A,Bをサンプリングし、分波部15-0は、サンプリング後の信号A,Bを図2(a)に示す8つの帯域((1-1)~(1-8))のうち、信号Aを帯域(1-1)~(1-3)に、信号Bを帯域(1-4)~(1-8)にデジタル分波する。なお、デジタル分波および後述するデジタル合波の方式については特に限定せず、従来からの方式、例えば、下記2つのいずれかの文献に記載の方式を用いることができる。
 山下 他,“衛星搭載用帯域可変FFTフィルタバンクの提案と基本動作特性” 電子情報通信学会技術研究報告.SAT,衛星通信 100(484), 37-42, 2000-12-01。
 藤村 他,“衛星搭載用再生/非再生中継器に適した分波/合波方式の検討” 2011年電子情報通信学会通信ソサイエティ大会 B-3-10。
 中継衛星10では、分波部15-0は、上記いずれかの分波処理により、信号Aを3つに、信号Bを5つに分波する。
 中継衛星10は、3つに分波された信号Aについて、RX補償部16-0でデジタル振幅・位相制御を行った後、スイッチマトリックス17を経由してTX補償部18-0へ入力する。その際、スイッチマトリックス17は、3つに分波された信号Aを帯域(4-5)~(4-7)に接続する。すなわち、中継衛星10は、信号Aを、TX補償部18-0、合波部19-0、D/A変換器20-0、TXF21-0、アップコンバータ22-0を経由して、受信アンテナ23-0から、図2(b)に示す周波数位置(帯域(4-5)~(4-7))へ出力する。
 また、中継衛星10は、5つに分波された信号Bについて、RX補償部16-0でデジタル振幅・位相制御を行った後、スイッチマトリックス17を経由してTX補償部18-1へ入力する。その際、スイッチマトリックス17は、5つに分波された信号Bを帯域(5-1)~(5-5)に接続する。すなわち、中継衛星10は、信号Bを、TX補償部18-1、合波部19-1、D/A変換器20-1、TXF21-1、アップコンバータ22-1を経由して、受信アンテナ23-1から、図2(b)に示す周波数位置(帯域(5-1)~(5-5))へ出力する。
 同様に、中継衛星10では、図2(a)に示すビームエリア100-1からの信号Cを、受信アンテナ11-1で受信後、ダウンコンバータ12-1、RXF13-1を経由して無線周波数帯からベースバンド帯に変換する。A/D変換器14-1は、ベースバンド帯に変換された信号Cをサンプリングし、分波部15-1は、サンプリング後の信号Cを図2(a)に示す8つの帯域((2-1)~(2-8))のうち、帯域(2-1)~(2-7)にデジタル分波する。
 そして、中継衛星10は、7つに分波された信号Cについて、RX補償部16-1でデジタル振幅・位相制御を行った後、スイッチマトリックス17を経由してTX補償部18-2へ入力する。その際、スイッチマトリックス17は、7つに分波された信号Cを帯域(6-2)~(6-8)に接続する。すなわち、中継衛星10は、信号Cを、TX補償部18-2、合波部19-2、D/A変換器20-2、TXF21-2、アップコンバータ22-2を経由して、受信アンテナ23-2から、図2(b)に示す周波数位置(帯域(6-2)~(6-8))へ出力する。
 また、中継衛星10では、図2(a)に示すビームエリア100-2からの信号E,Dを、受信アンテナ11-2で受信後、ダウンコンバータ12-2、RXF13-2を経由して無線周波数帯からベースバンド帯に変換する。A/D変換器14-2は、ベースバンド帯に変換された信号E,Dをサンプリングし、分波部15-2は、サンプリング後の信号Eを図2(a)に示す8つの帯域((3-1)~(3-8))のうち、信号Eを帯域(3-1)~(3-3)にデジタル分波する。
 中継衛星10は、3つに分波された信号Eについて、RX補償部16-2でデジタル振幅・位相制御を行った後、スイッチマトリックス17を経由してTX補償部18-1へ入力する。その際、スイッチマトリックス17は、3つに分波された信号Eを帯域(5-6)~(5-8)に接続する。すなわち、中継衛星10は、信号Eを、TX補償部18-1、合波部19-1、D/A変換器20-1、TXF21-1、アップコンバータ22-1を経由して、受信アンテナ23-1から、図2(b)に示す周波数位置(帯域(5-6)~(5-8))へ出力する。
 なお、中継衛星10は、信号Dについては帯域幅Fc未満のため分波せずに抽出のみ行う。中継衛星10は、帯域(3-8)の信号Dについて、RX補償部16-2でデジタル振幅・位相制御を行った後、スイッチマトリックス17を経由してTX補償部18-2へ入力する。その際、スイッチマトリックス17は、信号Dを帯域(6-1)に接続する。すなわち、中継衛星10は、信号Dを、TX補償部18-2、合波部19-2、D/A変換器20-2、TXF21-2、アップコンバータ22-2を経由して、受信アンテナ23-2から、図2(b)に示す周波数位置(帯域(6-1))へ出力する。
 なお、スイッチマトリックス17の接続制御は、図1に示す制御局200によって行われる。制御局200は、全ての衛星回線の接続、使用周波数帯を一括して管理しており、通信要求に応じて中継衛星10におけるスイッチマトリックス17の接続制御を別の無線周波数回線経由で行う。
 つづいて、本実施の形態において特徴的な動作となるRX補償部16-n、TX補償部18-nでの補償の必要性について説明する。
 まず、RXF13-n、TXF21-nの周波数対振幅・位相特性が理想の場合、すなわち、帯域内振幅偏差、群遅延偏差が無い場合について説明する。図3は、RXF13-n、TXF21-nの周波数対振幅・位相特性が理想の場合の、本実施の形態の中継衛星10におけるビームエリア100-0,100-2からビームエリア300-1への信号中継処理の流れを示す図である。なお、RXF13-n、TXF21-nの周波数対振幅・位相特性は理想(帯域内振幅偏差、群遅延偏差が無い)として、RX補償部16-n、TX補償部18-nは動作させず、入力信号をそのまま出力する場合を示す。
 図3では、中継衛星10が、信号Bを分波部15-0で5つのサブチャネルに分波後、信号Eを分波部15-1で3つのサブチャネルに分波後、それぞれスイッチマトリックス17で合波部19-1に集めて合波するまでの一連の信号処理を示している。図3から明らかなように、中継衛星10では、RXF13-n、TXF21-nの周波数対振幅・位相特性が理想の場合、特に対策を施さなくてもアップリンクの信号B,Eに信号の歪は発生せず、ダウンリンクのビームエリア300-1へ中継することができる。
 ところが、中継衛星10では、RXF13-n、TXF21-nの周波数対振幅・位相特性が理想ではなく、かつ、何も対策を講じない場合、すなわち、RX補償部16-n、TX補償部18-nは動作させずに入力信号をそのまま出力させる場合、アップリンクの信号B,Eには中継衛星10を介することで信号の歪が発生する。
 図4は、RXF13-n、TXF21-nの周波数対振幅・位相特性が理想ではなく湾曲し、かつ何も対策を講じない場合の、本実施の形態の中継衛星10におけるビームエリア100-0,100-2からビームエリア300-1への信号中継処理の流れを示す図である。図4(a)に示す実線の特性がRXF13-0の周波数対振幅特性、点線の特性がRXF13-0の周波数対群遅延特性を示している。同様に、図4(b)に示す実線の特性がRXF13-2の周波数対振幅特性、点線の特性がRXF13-2の周波数対群遅延特性を示している。また、図4(d)に示す実線の特性がTXF21-1の周波数対振幅特性、破線の特性がTXF21-1の周波数対群遅延特性を示している。
 図4から明らかなように、この場合、信号A,Bは、RXF13-0の周波数対振幅特性によって歪むことになり(図4(a))、また、信号E,Dも、RXF13-2の周波数対振幅特性によって歪むことになる(図4(b))。これにより、合波部19-1で合波されたデジタル合波後の信号B,Eの周波数対振幅特性(スペクトラム)は、図4(c)に示すように歪んでしまうことが判る。また、信号B,Eの帯域内群遅延特性も、図4(c)の各信号スペクトラムに点線で示されるように、一定とはならず、帯域内で傾斜が発生する。
 さらに、中継衛星10では、信号送信時に図4(d)に示すTXF21-nの周波数対振幅特性(実線)が加わるため、中継衛星10からビームエリア300-1へ出力される信号B,Eの周波数対振幅特性(スペクトラム)は、図4(d)に示すように歪みが増加されてしまう。また、各信号の帯域内群遅延偏差も、新たに図4(d)に示す破線の特性として加わり、全体の帯域内群遅延偏差は増加する傾向となる。
 このように、中継衛星10では、信号が各アナログフィルタを通過するごとに、各信号の周波数対振幅特性(スペクトラム)は歪みが増加し、また、各信号の帯域内群遅延偏差も増加することから、本実施の形態では、RX補償部16-nおよびTX補償部18-nにおいて、各アナログフィルタの特性を補償する動作を行う。
 図5は、RX補償部16-nを動作させた場合の、本実施の形態の中継衛星10におけるビームエリア100-0,100-2からビームエリア300-1への信号中継処理の流れを示す図である。RXF13-nの周波数対振幅特性が理想ではなく、湾曲した場合で、かつ、RX補償部16-nを動作させた場合の動作を示している。
 また、図6は、TX補償部18-nを動作させた場合の、本実施の形態の中継衛星10におけるビームエリア100-0,100-2からビームエリア300-1への信号中継処理の流れを示す図である。図5で補償した信号を送信する場合において、TXF21-nの周波数対振幅特性が理想ではなく、湾曲した場合で、かつ、TX補償部18-nを動作させた場合の動作を示している。
 まず、RXF13-nの周波数対振幅特性が理想ではなく、湾曲した場合で、かつ、RX補償部16-nを動作させた場合の動作例について、図5を用いて説明する。中継衛星10では、RXF13-0のアナログ特性の影響を受けた信号A,B(図5(a))を、分波部15-0で図5(c)に示すように8つのサブチャネルに分波して、RX補償部16-0へ入力する。同様に、中継衛星10では、RXF13-2のアナログ特性の影響を受けた信号E,D(図5(b))を、分波部15-2で図5(d)に示すように4つのサブチャネルに分波して、RX補償部16-2へ入力する。
 RX補償部16-nは、前段のRXF13-n(受信アナログフィルタ)と逆の周波数特性を有する複素係数WR(m,n)を有しおり、この係数を用いて前段のRXF13-nの周波数対振幅・群遅延特性の傾斜、リップルを打ち消す補償を各サブチャネルに対して行う。なお、mは分波・合波数を示し、nは各ポート番号であり、本実施の形態ではn=0,1,2のいずれかとなる。
 図5(e)に、前段のRXF13-0の振幅特性の傾斜、リップルを打ち消すための振幅特性(=逆振幅特性)を実線で、前段のRXF13-0の群遅延偏差を示す打ち消すための群遅延特性(=逆群遅延特性)を点線で示す。同様に、図5(f)に、前段のRXF13-2の振幅特性の傾斜、リップルを打ち消すための振幅特性(=逆振幅特性)を実線で、前段のRXF13-2の群遅延偏差を示す打ち消すための群遅延特性(=逆群遅延特性)を点線で示す。
 また、図5(e)に、RX補償部16-0で補償後の各分波信号を示し、図5(f)に、RX補償部16-2で補償後の各分波信号を示す。各図から判るように、図5(c)、図5(d)で示される各入力信号の振幅、群遅延特性のばらつきは、補償後に帯域幅Fcの単位で揃えられる。
 ここで、仮に補償後の分波信号を再度デジタル合波した信号スペクトラムを示すと、図5(g)、図5(h)のようになる。図5(a)、図5(b)に示す補償を行わない場合のスペクトラムと比較すると、振幅傾斜や群遅延偏差が改善されることが判る。
 以降、RX補償部16-nの具体的な演算内容について説明する。RX補償部16-nに入力されるベースバンド信号をS(m,n)、RX補償部16-nで補償されたベースバンド信号をS’(m,n)とすると、RX補償部16-nは、複素係数WR(m,n)を用いて次式(1)に示す複素乗算を行う。RX補償部16-nでは、複素乗算によって、各信号S(m,n)の振幅だけでなく、位相の補償まで行うことで群遅延偏差も補償する。
  S’(m,n)=S(m,n)*WR(m,n)  …(1)
 複素乗算は、具体的には、次式(2),(3)で示すように、4つの乗算と2つの加算で実現することができる。なお、Re[*]は*の実数部分、Im[*]は*の虚数部分である。
  Re[S’(m,n)]
   =Re[S(m,n)]*Re[WR(m,n)]
   -Im[S(m,n)]*Im[WR(m,n)]  …(2)
  Im[S’(m,n)]
   =Re[S(m,n)]*Im[WR(m,n)]
   +Im[S(m,n)]*Re[WR(m,n)]  …(3)
 ここで、分波後のデータのサンプリング速度は、分波前のサンプリング速度に対して1/m倍(↓m)で間引かれるため、これらの演算は、m=8で時分割処理してもよい。この場合、n番目のRX補償部16-nで必要となる乗算器の数は4個、加算器の数は2個でよく、乗算器および加算器の必要数を1/m倍に削減できる。
 さらに回路規模を減らしたい場合は、群遅延偏差を補償できなくなるが、次式(4),(5)に示す実数型係数GR(m,n)で補償してもよい。
  Re[S’(m,n)]=Re[S(m,n)]*GR(m,n)                              …(4)
  Im[S’(m,n)]=Im[S(m,n)]*GR(m,n)                              …(5)
 この場合、RXF13-nの周波数対振幅特性の補償だけ行われることになるが、前記時分割処理を施した上で、n番目のRX補償部16-nで必要となる乗算器の数は2個、加算器は0個でよい。
 つぎに、TXF21-nの周波数対振幅特性が理想ではなく、湾曲した場合で、かつ、TX補償部18-nを動作させた場合の動作例について、図6を用いて説明する。図6は、中継衛星10が、図5のRX補償部16-0で補償された信号B(実際は信号b1’,b2’,b3’,b4’,b5’の5つのサブチャネルに分波)とRX補償部16-2で補償された信号E(実際は信号e1’,e2’,e3’の3つのサブチャネルに分波)をビームエリア300-1に送信する際のTX補償部18-1の処理を示している。
 図6(a)に、TX補償部18-1に入力される信号B(信号b1’,b2’,b3’,b4’,b5’)と信号E(信号e1’,e2’,e3’)を示す。
 TX補償部18-nは、後段のTXF21-n(送信アナログフィルタ)と逆の周波数特性を有する複素係数WT(m,n)を有しており、この係数を用いて後段のRXF13-nの周波数対振幅・群遅延特性の傾斜、リップルを打ち消す補償を各サブチャネルに対して行う。前述のように、mは分波・合波数を示し、nは各ポート番号であり、n=0,1,2のいずれかとなる。
 図6(b)に、後段のTXF21-1の振幅特性の傾斜、リップルを打ち消すための振幅特性(=逆振幅特性)を実線で、後段のTXF21-1の群遅延偏差を示す打ち消すための群遅延特性(=逆群遅延特性)を点線で示す。
 また、図6(b)に、TX補償部18-1で補償後の各分波信号を示す。図6(b)から明らかなように、TX補償部18-1は、予め後段のTXF21-1の周波数特性を打ち消すように外側の分波信号の振幅を増幅し、群遅延も打ち消すように位相を制御する。
 以降、TX補償部18-nの具体的な演算内容について説明する。TX補償部18-nに入力されるベースバンド信号をS’(m,n)、TX補償部18-nで補償されたベースバンド信号をS”(m,n)とすると、TX補償部18-nは、複素係数WT(m,n)を用いて次式(6)に示す複素乗算を行う。
  S”(m,n)=S’(m,n)*WT(m,n)  …(6)
 複素乗算は、具体的には、次式(7),(8)で示すように、4つの乗算と2つの加算で実現することができる。前述のように、Re[*]は*の実数部分、Im[*]は*の虚数部分である。
  Re[S”(m,n)]
   =Re[S’(m,n)]*Re[WT(m,n)]
   -Im[S’(m,n)]*Im[WT(m,n)]  …(7)
  Im[S”(m,n)]
   =Re[S’(m,n)]*Im[WT(m,n)]
   +Im[S’(m,n)]*Re[WT(m,n)]  …(8)
 ここで、分波後のデータのサンプリング速度は、分波前のサンプリング速度に対して1/m倍(↓m)で間引かれるため、RX補償部16-nと同様、これらの演算は、m=8で時分割処理してもよい。この場合、n番目のTX補償部18-nで必要となる乗算器の数は4個、加算器の数は2個でよく、乗算器および加算器の必要数を1/m倍に削減できる。
 さらに回路規模を減らしたい場合は、群遅延偏差を補償できなくなるが、次式(9),(10)に示す実数型係数GT(m,n)で補償してもよい。
  Re[S’(m,n)]=Re[S(m,n)]*GT(m,n)                               …(9)
  Im[S’(m,n)]=Im[S(m,n)]*GT(m,n)                               …(10)
 この場合、TXF21-nの周波数対振幅特性の補償だけ行われることになるが、前記時分割処理を施した上で、n番目のTX補償部18-nで必要となる乗算器の数は2個、加算器は0個でよい。
 なお、これらのRX補償側、TX補償側の各係数(WR(m,n),WT(m,n)、またはGR(m,n),GT(m,n))は、中継衛星10内部で記憶してもよいし、一般にアナログフィルタの特性は経年や温度によって変化するため、書換え可能としてもよい。
 例えば、中継衛星10の打ち上げ前に、温度ごとに最適な係数系列を求め、中継衛星10において図示しないROMテーブル等のメモリ(記憶手段)に記憶させ、打上げ後、温度情報を元にメモリから最適な係数系列を選択して読み出し、各係数(WR(m,n),WT(m,n)、またはGR(m,n),GT(m,n))を更新してもよい。
 あるいは、これら各係数(WR(m,n),WT(m,n)、またはGR(m,n),GT(m,n))を、地上の制御局200から中継衛星10に別の無線周波数回線経由で送信することで、中継衛星10打ち上げ後も地上から係数W(m,n)またはG(m,n)を書き換えられる構成としてもよい。
 中継衛星10では、TX補償部18-1の補償後、合波部19-1が、TX補償部18-1から出力された各分波信号を合波し、図6(c)に示す信号B”と信号E”を出力する。図6(c)に示すように、後段のTXF21-nで打ち消されるように、意図的に振幅傾斜、群遅延偏差が付加された信号となっている。中継衛星10では、合波部19-1による合波後の信号を、D/A変換器20-1を介して、TXF21-1へ入力する。図6(d)において、実線はTXF21-1の周波数対振幅特性を示し、点線はTXF21-1の周波数対群遅延特性を示している。
 このように、TXF21-1から出力される信号B”および信号E”は、前段のTX補償部18-1で意図的に付加された振幅傾斜、群遅延偏差が、TXF21-1の周波数対振幅・群遅延偏差特性で打ち消されることになる。中継衛星10は、図6(d)に示すように、振幅特性および群遅延偏差特性が帯域幅Fcステップで平坦化した上で、信号B”および信号E”をアンテナ23-1から出力する。
 RX補償およびTX補償を行わない場合の出力信号スペクトラム(図4(d))と比較して明らかなように、RX補償およびTX補償を行うことによって、中継衛星10内部で発生する信号B、信号Eの信号歪を大幅に改善できることが判る。
 なお、各アナログフィルタの周波数特性が湾曲した場合について説明したが、これに限定するものではない。例えば、振幅特性、群遅延特性がリップル(凸凹)した場合についても、同様に補償することができる。
 また、本実施の形態では、ビームエリア100-0とビームエリア100-2からの各アップリンク信号A,B,E,Dの内、ビームエリア300-1に中継する信号B,Eに対する一連の処理について説明したが、一例であり、これに限定するものではない。中継衛星10では、同様に、ビームエリア100-1から受信した信号CをRX補償部16-1で補償し、ビームエリア300-0へ送信する信号CをTX補償部18-0で逆補償、また、ビームエリア300-2へ送信する信号D,CをTX補償部18-2で逆補償して中継する。
 これにより、中継衛星10では、例えRXF13-n、TXF21-nの周波数対振幅・群遅延特性が平坦ではなく、傾斜していた、またはリップル(凸凹)していた場合でも、信号歪が少ない信号を中継することができる。
 なお、本実施の形態では、分波・合波数m=8として説明したが、m=8に限らず、2以上であれば幾つであってもよい。特に、分波・合波数mを上げていくと、分波部15-n、合波部19-nの回路規模は増加するが、反面、周波数分解能を決定する分波後の信号帯域Fcが小さくなるため、信号歪を周波数方向にきめ細かく補償することができる。
 また、ポート数を3個(n=0,1,2)の場合について説明したが、これに限定するものではなく、1個以上であれば何個でもよい。
 また、中継衛星10の構成として、アナログフィルタが受信側と送信側それぞれ1個(RXF13-n、TXF21-n)の場合について説明したが、アナログフィルタは送受信側でそれぞれ1個である必要はなく、複数で構成されてもよい。この場合、複数のアナログフィルタを総合した周波数特性等を補償するように、RX補償およびTX補償の各係数を設定すればよい。
 以上説明したように、本実施の形態によれば、中継装置は、受信側(分波装置)および送信側(合波装置)において、アナログフィルタの特性をデジタル補償することとした。これにより、回路規模を大きく増加させることなく、僅かな回路追加によって、受信側アナログフィルタの振幅傾斜、リップル、群遅延偏差、および、送信側アナログフィルタの振幅傾斜、リップル、群遅延偏差を、その傾斜が一部強くても平坦に補償することができる。
 また、本デジタル補償機能を実装することで、受信アナログフィルタ、送信アナログフィルタの要求仕様を緩和することができるため、受信アナログフィルタ、送信アナログフィルタの回路規模・調整箇所の削減を実現することができる。これは、中継装置の受信アナログフィルタ、送信アナログフィルタの開発コスト、調整工数削減に結びつくため、中継装置の低コスト化につながるといえる。
 なお、本実施の形態では、中継装置のアナログフィルタの誤差を補償する内容で説明したが、必ずしも中継装置だけでなく、地上の受信局、送信局にも同様に適用することができる。例えば、地上の受信局に適用する場合、受信局では、RX補償部16-nで上記と同様にして補償されたサブチャネル信号の中から、復調に必要なサブチャネルだけスイッチマトリックス17で選択して集め、合波部19-nで合波することで、RXF13-nで生じた誤差が補償された受信信号を得ることができる。これにより、地上の受信局は、この補償された信号を復調することで良好な受信特性(ビット誤り率特性)を得ることができる。
 同様に、地上の送信局に適用する場合、送信局では、変調対象の信号を一旦、分波部15-nでサブチャネル単位に分波後、上記と同様、TX補償18-nで後段のTXF21-nで生じるアナログ誤差を打ち消す補償を与えてから、合波部19-nで合波することで、TXF21-nで生じた誤差が補償された送信信号を出力することができる。これにより、送信相手側の受信局は、この補償された信号を復調することで良好な受信特性(ビット誤り率特性)を得ることができる。
実施の形態2.
 実施の形態1では、一連の処理により分波後の信号帯域Fcを十分小さくすれば(mを十分大きくすれば)、アナログフィルタ特性の良好な補償を実現できる。しかしながら、分波・合波数mを増加させると回路規模も増加し、消費電力、コストの増加につながる。
 図5(g)、図5(h)に示すRX補償された信号、図6(d)に示すTX補償された信号は、m=8と小さいため回路規模は小さく抑えられるが、mを小さくすると周波数分解能が粗くなるため、各図に示されるように信号帯域が完全に平滑化されているとは言えず、若干振幅特性、群遅延特性にバラつき(凸凹)が残留する。
 特に、通過帯域の端で発生する傾きの大きい振幅偏差、群遅延偏差は、mが小さい(周波数分解能が粗い)と、信号帯域内で残留する振幅特性、群遅延特性もバラつき(凸凹)も大きくなり、中継性能の劣化につながる。
 そこで、本実施の形態では、例えば、分波・合波数mは8のままとし、実施の形態1と同様にRX補償まで実施後、さらに細かい周波数分解能で補償すべきサブチャネルのみ、新たに追加した分波部でk分波後に補償する。実施の形態1と異なる部分について説明する。
 まず、受信側(分波装置)の構成について説明する。図7は、本実施の形態の中継衛星の受信側補償(RX補償)部の構成例を示す図である。分波部15-0からスイッチマトリックス17の間の構成を示している。中継衛星10は、RX補償部16-0に替えて、受信側補償(RX補償)部31-0と、分波部32-0,32-1と、受信側補償(RX補償)部33-0,33-1と、合波部34-0,34-1と、遅延部35と、を備える。分波部・合波部を多段構成した場合の受信側アナログ補償部の構成を示す。なお、分波部15-1,15-2とスイッチマトリックス17の間も同様の構成とする。
 RX補償部31-0は、実施の形態1と同様のRX補償を行い、周波数分解能Fcが粗いためアナログ補償が十分ではないサブチャネルの信号を後段の分波部32-0,32-1へ出力する。分波部32-0,32-1は、入力したサブチャネルの信号をk分波する。RX補償部33-0,33-1は、それぞれ、分波部32-0,32-1から入力したサブチャネルの信号について、実施の形態1と同様のRX補償を行う。合波部34-0,34-1は、それぞれ、RX補償部33-0,33-1でRX補償後のサブチャネルの信号を合波する。遅延部35は、分波部32-0,32-1、RX補償部33-0,33-1、合波部34-0,34-1を経由しないサブチャネルの信号を遅延させる。
 図7から明らかなように、初段の分波部15-0の分波数はm=8、次の段の分波部32-0,32-1の分波数はk=4であり、さらに細かい周波数分解能で補償すべきサブチャネル数が2の場合の構成を示している。
 中継衛星10では、例えば、RX補償部31-0から出力される8つのサブチャネルのうち、2つのサブチャネルのアナログ補償が、周波数分解能Fcが粗いことで十分ではない場合、これらの2つのサブチャネルの信号を、さらに分波部32-0,32-1へ出力する。分波部32-0,32-1は、入力したサブチャネルの信号をそれぞれ4分波し、RX補償部33-0,33-1は、分波されたそれぞれの波(信号)に対して振幅・群遅延の補償を行い、合波部34-0,34-1は、これら振幅・群遅延補償後の信号を合波する。なお、遅延部35は、さらに細かい周波数分解能で補償する必要がない6つのサブキャリアについて、さらに細かい周波数分解能で補償された2つのサブキャリアとの間で時間差が発生しないように遅延させる。
 中継衛星10では、この一連の処理により、周波数分解能Fcより細かい周波数分解能で補償すべき2つのサブチャネルについて、Fc/4の周波数分解能で補償することができる。
 すなわち、中継衛星10では、周波数分解能に相当する信号帯域幅Fcでは分解能が不十分となる一部の帯域のみ、さらに信号帯域幅Fc/kの分解能で補償することにより、単に分波・合波数mを上げて周波数分解能を向上させる場合と比較して、分波部・合波部の回路規模、スイッチ部の回路規模の増加を抑えることができる。
 例えば、図7と同様の分解能(Fc/4)を、分波・合波数mを上げて対処すると、mは8から32に増やす必要がある。この場合、分波部15-0~15-2、合波部19-0~19-2、スイッチマトリックス17の各回路規模は、m=8の場合と比較して4倍以上に増加する。
 一方、図7に示す構成のように、分波部・合波部を多段構成する場合、追加される回路規模は、2式の4分波(分波部32-0,32-1)、RX補償(RX補償部33-0,33-1)、4合波(合波部34-0,34-1)程度である。スイッチマトリックス17とのインタフェース信号数は増えないため、スイッチマトリックス17の回路規模は増えない。このように、図7に示す構成とすることで、回路増加量は図1に示す基本構成の2倍以下と見積もることができ、単に分波・合波数mを上げて対処する場合と比較して、回路規模の増加を1/2倍以下に抑えることができる。
 なお、図7では、RX補償部31-0の出力である2つのサブチャネルが、分波部32-0,32-1に固定的に接続される構成となっているが、RX補償部31-0と分波部32-0,32-1の間にスイッチを追加で設け、RX補償部31-0から出力される8つのサブチャネルから任意に2つのサブチャネルを選択し、分波部32-0,32-1に供給してもよい。周波数分解能Fc/4で補償された2つのサブチャネルは、他のサブチャネルと合わせて、後段のスイッチマトリックス17でスイッチングされる。この場合、周波数分解能Fc/4でアナログ補償する帯域を自由に選べることができるので、中継衛星10では、信号受信時における様々なケースに対応することができる。
 なお、図7では、m=8、k=4、さらに細かい周波数分解能で補償すべきサブチャネル数が2の場合について説明したが、一例であり、それぞれ、これらの数に限定するものではない。
 また、実施の形態1のRX補償部16-0から構成を置き換える場合について説明したが、例えば、本実施の形態の受信側補償(RX補償)部31-0と実施の形態1のRX補償部16-0は同じ性能のものでも異なる性能のものでもよい。同じ性能の場合には、実施の形態1の構成に、分波部32-0,32-1、受信側補償(RX補償)部33-0,33-1、合波部34-0,34-1、遅延部35、を追加する構成としてもよい。
 つぎに、送信側(合波装置)の構成について説明する。中継衛星10では、受信側と同様、分波・合波数mは8のままとし、TX補償前に、予め一部のサブチャネルだけさらに細かい周波数分解能で逆補償することができる。
 図8は、本実施の形態の中継衛星の送信側補償(TX補償)部の構成例を示す図である。スイッチマトリックス17から合波部19-0の間の構成を示している。中継衛星10は、TX補償部18-0に替えて、分波部41-0,41-1と、送信側補償(TX補償)部42-0,42-1と、合波部43-0,43-1と、遅延部44と、送信側補償(TX補償)部45-0と、を備える。分波部・合波部を多段構成した場合の送信側アナログ補償部の構成を示す。なお、スイッチマトリックス17と合波部19-1,19-2の間も同様の構成とする。
 分波部41-0,41-1は、入力したサブチャネルの信号をk分波する。TX補償部42-0,42-1は、それぞれ、分波部41-0,41-1から入力したサブチャネルの信号について、実施の形態1と同様のTX補償を行う。合波部43-0,43-1は、それぞれ、TX補償部42-0,42-1でTX補償後のサブチャネルの信号を合波する。遅延部44は、分波部41-0,41-1、TX補償部42-0,42-1、合波部43-0,43-1を経由しないサブチャネルの信号を遅延させる。TX補償部45-0は、実施の形態1と同様のTX補償を行う。
 図8から明らかなように、後段の合波部19-0の合波数はm=8、前段の分波部41-0,41-1の分波数はk=4であり、さらに細かい周波数分解能で逆補償すべきサブチャネル数が2の場合の構成を示している。
 中継衛星10では、例えば、TX補償部45-0で逆補償される8つのサブチャネルのうち、2つのサブチャネルのアナログ補償が、周波数分解能Fcが粗いことで十分ではない場合、これらの2つのサブチャネル信号を、事前に分波部41-0,41-1へ出力する。分波部41-0,41-1は、入力したサブチャネルの信号をそれぞれ4分波し、TX補償部42-0,42-1は、分波されたそれぞれの波(信号)に対して振幅・群遅延の逆補償を行い、合波部43-0,43-1は、これら振幅・群遅延逆補償後の信号を合波する。なお、遅延部44は、さらに細かい周波数分解能で逆補償する必要がない6つのサブキャリアについて、さらに細かい周波数分解能で逆補償された2つのサブキャリアとの間で時間差が発生しないように遅延させる。
 中継衛星10では、この一連の処理により、周波数分解能Fcより細かい周波数分解能で補償すべき2つのサブチャネルについて、Fc/4の周波数分解能で逆補償することができる。
 この場合、図7に示した受信側と同様、単に分波・合波数mを上げて対処する場合と比較して、回路規模の増加を1/2倍以下に抑えることができる。
 なお、図8では、TX補償部45-0に入力する2つのサブチャネルが、合波部43-0,43-1に固定的に接続される構成となっているが、スイッチマトリックス17で、Fc/4の分解能で逆補償したいサブチャネルを分波部41-0,41-1に入力し、合波部43-0,43-1とTX補償部45-0の間にスイッチを追加で設け、TX補償部45-0に入力される前の8つのサブチャネルを任意に並び換えてから、TX補償部45-0で逆補償してもよい。周波数分解能Fc/4でアナログ逆補償する帯域を自由に選べることができるので、中継衛星10では、信号送信時における様々なケースに対応することができる。
 なお、図8では、m=8、k=4、さらに細かい周波数分解能で補償すべきサブチャネル数が2の場合について説明したが、一例であり、それぞれ、これらの数に限定するものではない。
 また、実施の形態1のTX補償部18-0から構成を置き換える場合について説明したが、例えば、本実施の形態の送信側補償(TX補償)部45-0と実施の形態1のTX補償部18-0は同じ性能のものでも異なる性能のものでもよい。同じ性能の場合には、実施の形態1の構成に、分波部41-0,41-1、送信側補償(TX補償)部42-0,42-1、合波部43-0,43-1、遅延部44、を追加する構成としてもよい。
 また、受信側(分波装置)と送信側(合波装置)について、細かく周波数分解する対象のサブチャネルの数(2つ)およびそのサブチャネルをさらに細かく周波数分解する数(4つ)が同数として説明したが、一例であり、受信側(分波装置)と送信側(合波装置)で異なっていてもよい。なお、受信側(分波装置)において、実施の形態1のRX補償部16-0をRX補償部31-0~遅延部35の構成に置き換えていたが、RX補償部31-0~遅延部35の動作を1つのRX補償部として行うようにしてもよい。同様に、送信側(合波装置)において、実施の形態1のTX補償部18-0を分波部41-0,41-1~TX補償部45-0の構成に置き換えていたが、分波部41-0,41-1~TX補償部45-0の動作を1つのTX補償部として行うようにしてもよい。
 以上説明したように、本実施の形態によれば、m個に分波されたサブチャネルの信号のうち、さらに細かい周波数分解能で補償すべきサブチャネルのみ、新たに追加した分波部でk分波後に補償することとした。これにより、回路規模の増加を抑えつつ、全体として、さらに細かい周波数分解能で補償することができる。
実施の形態3.
 実施の形態1では、RXF13-nが、乗算後の信号からベースバンド信号を抽出し、A/D変換器14-nが、RXF13-nで抽出したベースバンド信号をサンプリングする場合について説明した。
 本実施の形態では、RXF13-nが、乗算後の信号のから中間周波数(IF)信号を抽出し、A/D変換器14-nが、RXF13-nで抽出した中間周波数(IF)信号をサンプリングする場合について説明する。この場合、分波部15-nが、サンプリングしたIF信号をデジタル直交検波してベースバンド信号に変換後、分波処理を行えばよい。
 図9は、本実施の形態の中継衛星の分波部15-nの構成例を示す図である。分波部15-nは、デジタル直交検波部51と、ローパスフィルタ52と、ダウンサンプラ53と、デジタル分波部54と、を備える。
 デジタル直交検波部51は、受信IF信号に対して同じ周波数のデジタル複素ローカル信号を乗算する。ローパスフィルタ52は、ベースバンド成分を抽出し、高調波成分を除去する。ダウンサンプラ53は、ローパスフィルタ52から出力されたベースバンド信号のサンプリング速度を1/2に間引いた上で、メイン機能であるデジタル分波部54へ出力する。デジタル分波部54は、ダウンサンプラ53から入力したデジタル信号をm個の信号に分波する。
 同様に、実施の形態1では、合波部19-nから出力された合波信号は、D/A変換器20-nでアナログベースバンド信号に変換後、TXF21-0を介して,アップコンバータ22-nでベースバンド帯から無線周波数帯に変換する場合について説明した。
 本実施の形態では、合波部19-nが、合波した信号を中間周波数(IF)データにデジタル直交変調し、D/A変換器20-nが、アナログIF信号に変換後、TXF21-0を介して、アップコンバータ22-0が、アナログIF信号から無線周波数帯に変換する場合について説明する。
 図10は、本実施の形態の合波部19-nの構成例を示す図である。合波部19-nは、デジタル合波部61と、アップサンプラ62と、ローパスフィルタ63と、直交変調部64と、を備える。
 デジタル合波部61は、各入力ベースバンド信号を1つの波(信号)に合波する。アップサンプラ62は、合波後のベースバンドデータ系列にゼロを挿入することで、サンプリング速度を2倍に上げる。ローパスフィルタ63は、ゼロ挿入でサンプリング速度が2倍に上げられたことで発生する高調波を除去し、ベースバンド成分を抽出する。直交変調部64は、ローパスフィルタ63から入力したベースバンドデータを、IFデータに変換する。
 以上説明したように、本実施の形態によれば、中継衛星内で中継処理の対象とする信号をIF信号にすることとした。このように、デジタル部とアナログ部のインタフェースをIF信号とすることで、A/D変換器14-n、D/A変換器20-nの所要サンプリング速度は上がるが、直交検波、直交変調をデジタルで行うため、アナログ直交検波、アナログ直交変調で発生するI,Q振幅誤差、直交誤差を無くすことができる。また、所要のA/D変換器、D/A変換器、RXF、TXFの数を、それぞれ2個から1個に削減することができる。
実施の形態4.
 本実施の形態では、中継衛星10のアナログフィルタ特性(RXF,TXF)の補償の他、地上局の送信フィルタ、受信フィルタの特性を補償する。
 図11は、本実施の形態の中継装置を備えた衛星通信システムの構成例を示す図である。中継衛星10の構成は、実施の形態1と同様である。受信側において、ビームエリア100-0内に送信局400、ビームエリア100-0内に送信局400があり、送信側において、ビームエリア300-1内に受信局500、ビームエリア300-2内に受信局501がある。
 ここでは、一例として、ビームエリア100-0内の送信局400が図2(a)に示す信号Bを送信し、中継衛星10が信号Bを中継して、ビームエリア300-1内に位置する受信局500が図2(b)に示す信号Bを受信する過程において、中継衛星10が、自身が備えるアナログフィルタ特性(RXF,TXF)の補償とともに、送信局400の送信側アナログフィルタの特性の補償、および受信局500の受信側アナログフィルタの特性の補償を行う処理について説明する。
 まず、中継衛星10を介した通信を開始する前に、予め送信局400の送信側アナログフィルタの特性と受信局500の受信側アナログフィルタの特性を求めておく。
 この内、送信局400の送信側アナログフィルタ特性については、中継衛星10のRX補償部16-nが、実施の形態1で示したRXF13-nのフィルタを補償する原理・要領で、同様に補償することができる。また、受信局500の受信側アナログフィルタ特性については、中継衛星10のTX補償部18-nが、実施の形態1で示したTXF21-nのフィルタを補償する原理・要領で、同様に補償することができる。
 そのため、送信局400は、送信局400の送信側アナログフィルタ特性をRX補償部16-nで補償するための係数WA(i)を求めておく。同様に、受信局500は、受信局500の受信側アナログフィルタ特性をTX補償部21-nで補償するための係数WB(i)を求めておく。
 ここで、係数データ数iは、通信信号の帯域幅で決定される。例えば、信号Bの場合、図2(a)に示すように帯域幅は5Fcとなるため、係数データの数はi=5となる。
 つぎに、制御局200は、信号Bの通信を開始する前に、送信局400から係数WA(i)を別の無線回線または有線回線で受信する。同様に、制御局200は、信号Bの通信を開始する前に、受信局500から係数WB(i)を別の無線回線または有線回線で受信する。
 そして、制御局200は、信号Bの通信要求に応じて、中継衛星10のスイッチマトリックス17の接続制御を行うとともに、係数WA(i)を中継衛星10のRX補償部16-0に、係数WB(i)を中継衛星10のTX補償部18-1に設定する。制御局200から中継衛星10への設定は、いずれも別の無線回線を用いて行う。
 具体的に、制御局200は、サブチャネル番号をj(∈{1,2,3,…,8})とすると、RXF13-0のフィルタ補償用の係数WR(j,0)と、同じサブチャネル番号に相当する係数WA(j)を複素乗算した結果を、中継衛星10のRX補償部16-0に設定する。これにより、RX補償部16-0は、RXF13-0のフィルタ特性とともに、送信局400の送信側アナログフィルタ特性の両方を同時に補償することができる。
 同様に、制御局200は、サブチャネル番号をj(∈{1,2,3,…,8})とすると、TXF21-1のフィルタ補償用の係数WT(j,1)と、同じサブチャネル番号に相当する係数WB(j)を複素乗算した結果を、中継衛星10のTX補償部18-1に設定する。これにより、TX補償部18-1は、TXF21-1のフィルタ特性とともに、受信局500の受信側アナログフィルタ特性の両方を同時に補償することができる。
 以上の設定が完了すると、送信局400は信号Bを送信し、中継衛星10は信号Bを中継し、受信局500は信号Bを受信する。この過程で、送信局400のアナログフィルタと中継衛星10のRXF13-0の補償はRX補償部16-0で行われ、受信局500のアナログフィルタの補償と中継衛星10のTXF21-1の補償はTX補償部18-1で行われる。
 なお、送信局400と受信局500の間の通信が終了し、別の地上局間の通信(例えば、図11に示す送信局401と受信局501との間の通信)に切り替わる場合も同様に対応することができる。送信局401および受信局501は、自局の係数を求めておき、制御局200は、中継衛星10の送信局401および受信局501の係数を、それぞれ中継衛星10のRX補償部16-0、TX補償部18-1に設定する。
 このように、あらかじめ地上局のフィルタ特性を求めておき、中継衛星10に設定することで、中継衛星10を用いた衛星通信システムでは中継衛星10のアナログフィルタ特性だけでなく、全ての地上局の送受信アナログフィルタ特性も、特別な回路を追加することなく補償することができる。
 このように中継衛星10で地上局のフィルタ特性を補償することにより、中継衛星10を介して通信を行う地上の送信局および受信局の各アナログフィルタの要求仕様を緩和することができる。また、中継衛星10だけでなく、地上の送信局および受信局のアナログフィルタの回路規模、調整箇所の削減を実現することができる。
 以上説明したように、本実施の形態によれば、中継衛星において、地上の受信局、送信局の各アナログフィルタについても補償することとした。これにより、中継衛星だけではなく、地上の受信局、送信局の開発コスト、調整工数削減を実現することができる。
 なお、制御局200は、衛星通信システムに接続する地上局の全て(または一部)の送信フィルタ補償用の係数および受信フィルタ補償用の係数を、予めテーブル表で保持しておいてもよい。この場合、制御局200は、各地上局を接続する毎に、各地上局からの係数情報を受信する手間が省けるため、回線接続時間を短縮することができる。
実施の形態5.
 本実施の形態では、補償用の係数WR(m,n)およびWT(m,n)を中継衛星自ら求めて自動的に補償することで、アナログ補償および係数の更新を容易に実現する。
 アナログフィルタの補償を行う際、運用システムの管理者等が手動で実施してもよいが補償に時間がかかる。また、一旦補償をしても、経年変化、温度変動により、時間、月、年単位で緩やかに振幅・位相ずれが再度生じる場合も考えられる。そのため、本実施の形態では、中継衛星10内で補償用の係数WR(m,n)およびWT(m,n)を自動的に求め、求めた値を用いて振幅・位相ずれを自動補償する。
 なお、本実施の形態で実施する補償は、中継衛星10内部で補正用の無変調(CW)波を生成して行うため、該当のポートへの中継信号入出力を停止し、スタンバイ状態にした上で実施する。
 一般に、中継衛星10は、実際の運用に必要なポート数だけを確保することはなく、故障に備えて予備のポートも複数備えている。したがって、中継衛星10では、各ポートを順次スタンバイ状態にして補償する際は、以下の手順(1)~(6)で実施することで、一旦信号中継が中断されてしまう事態を回避することができる。
 手順(1) 中継衛星10は、予備系のポートを立ち上げ、予備系のポートにも補償対象のポートと同じ中継信号を流す。
 手順(2) 中継衛星10は、予備系のポートと補償対象のポートの両方に同じ信号が流れ始めたら、デジタル内部(例えば、スイッチマトリクス17)で、あるタイミングで予備系のポートのデータを中継し、同時に補償対象のポートのデータ中継を停止する。このデジタル的な切り替えにより、信号断線が発生することなく、補償対象のポートから予備系のポートに移って信号が中継されることになる。
 手順(3) 中継衛星10は、後述する方法に基づいて、補償対象ポートの送信アナログフィルタ(TXF21-n)の自動補償を実施する。
 手順(4) 中継衛星10は、同様に、後述する方法に基づいて、補償対象ポートの受信アナログフィルタ(RXF13-n)の自動補償を実施する。
 手順(5) 中継衛星10は、送受のアナログフィルタの補償後、予備系のポートだけでなく、補償済みのポートにも同じ中継信号を流す。ただし、デジタル内部(例えば、スイッチマトリクス17)で補償済みポートのデータを未出力とすることで、2つの信号が合成されないように制御する。
 手順(6) 中継衛星10は、補償対象のポートと予備系のポートの両方に同じ信号が流れ始めたら、デジタル内部(例えば、スイッチマトリクス17)で、あるタイミングで補償済みポートのデータを出力し、予備系のポートのデータを停止する。このデジタル的な切り替えにより、信号断線が発生することなく、予備系のポートから補償済みのポートに移って信号が中継されることになる。
 中継衛星10では、上記手順に則って各ポートの送受アナログフィルタの補償を順次自動で実施していくことで、中継する信号が途切れることを回避することができる。なお、上記の例では、一旦補償対象のポートから予備系ポートに中継信号を移して補償後に戻すという手順としたが、予備系ポートの補償については、既に信号が中継されていないため、上記手順は関係なくいつでも補償を行うことができる。
 また、運用システム側で、中継する信号を別の周波数帯に割り当てる、または停止させ、補償対象のポートが扱う信号帯域に信号を無くしてから予備系のポートに切り替え、再度信号を中継させていく方法もある。この場合、中継する信号を一旦止めるため運用制約は生じるが、中継の切り替え手順は簡単化できる。なお、主系のポートの一部が故障し、常に予備系のポートも動作させる必要がある場合には、中継する信号を一旦止めてから自動補償を実施していくこととする。
 以降、上記手順(3),(4)で実施するアナログフィルタ補償の詳細について説明する。まず、送信アナログフィルタ(TXF21-n)の特性を自動補償する方法について説明する。
 図12は、本実施の形態のTXF21-0の特性を自動補償する中継衛星10の構成例を示す図である。実施の形態1の構成に加えて、補正用データ生成部71-0と、アナログスイッチ72-0,73-0と、振幅・位相差検出部74-0と、を備える。図12中に示す信号スペクトラム75は、補正用データ生成部71-0から出力された無変調データが、合波部19-0で合波、D/A変換器20-0でD/A変換された後の信号スペクトラムの一例を示している。
 補正用データ生成部71-0は、補正用ベースバンド無変調信号を生成する。アナログスイッチ72-0は、TXF21-0からの信号の出力先を切り替える。アナログスイッチ73-0は、A/D変換器14-0への信号の入力元を切り替える。振幅・位相差検出部74-0は、TXF補償用の係数を求める。
 中継衛星10では、自動補償時、アナログスイッチ72-0は、TXF21-0の出力をアップコンバータ22-0ではなく、アナログスイッチ73-0の入力に接続する。アナログスイッチ73-0は、RXF13-0ではなく、TXF21-0の出力を選択する。このように各アナログスイッチ72-0,73-0の設定を行った上で、補正用データ生成部71-0は、m個の補正用ベースバンド無変調信号Cbを生成する。
 ベースバンド無変調信号Cbを式(11)に示す。ここで、mは分波・合波数、Fcはサブチャネル帯域幅、bは周波数番号(∈{1,2,…,m})、Aは振幅、θbは初期位相を示す。初期位相θbは、マルチキャリア信号のピーク電力を下げるようにランダマイズさせてもよい。
  Cb=Aexp(jθb)  …(11)
 合波部19-0は、これらm個のベースバンド無変調信号を合波後、場合によってはベースバンド帯から中間周波数fmに変換し、例えば、図13に示すマルチキャリア信号に変換する。図13は,中間周波数fm、m=8におけるマルチキャリア信号に変換された各補正用無変調信号の周波数配置例を示す図である。周波数fm-3.5Fcから周波数fm+3.5Fcの間で、帯域幅Fcで8つの補正用無変調信号が配置されている状態を示すものである。中継衛星10では、このマルチキャリア信号を、アナログスイッチ72-0,73-0の設定により、D/A変換器20-0でアナログ信号に変換後、TXF21-0を介して、A/D変換器14-0に入力する。
 A/D変換器14-0が、入力したマルチキャリア信号をサンプリングし、分波部15-0が、サンプリング後の信号をm個の受信ベースバンド無変調信号に分波する。なお、中間周波数fmで分波部15-0に入力される場合、分波部15-0は、ベースバンド帯に周波数変換してから分波を行う。
 b番目の受信ベースバンド無変調信号Rbを式(12)に示す。ここで、bは周波数番号(∈{1,2,…,m})、ΔAbはb番目の受信ベースバンド無変調信号の振幅、Δθbはb番目の受信ベースバンド無変調信号の位相である。
  Rb=ΔAbexp(jΔθb)  …(12)
 振幅・位相差検出部74-0は、ベースバンド無変調信号Cbを記憶しており、次式(13)で示すとおり、ベースバンド無変調信号Cbを受信ベースバンド無変調信号Rbで除算することでTXF補償用の係数WT(m,0)を求める。
  WT(m,0)
   =Cb/Rb
   =(Re[Cb]+jIm[Cb])/(Re[Rb]+jIm[Rb])
   =(Re[Cb]*Re[Rb]+Im[Cb]*Im[Rb])
    /(Re[Rb2+Im[Rb2
    +j(Im[Cb]*Re[Rb]-Re[Cb]*Im[Rb])
    /(Re[Rb2+Im[Rb2)          …(13)
 振幅・位相差検出部74-0は、式(13)で求めたTXF補償用の係数WT(m,0)をTX補償部18-0に設定する。TX補償部18-0は、すでに係数WT(m,0)が設定されていた場合には、係数WT(m,0)を更新(補正)する。上記一連の処理により、本実施の形態では、中継衛星10は、TXF21-0の振幅・位相誤差を補償する係数WT(m,0)を自動的にTX補償部18-0に設定することができる。
 なお、ここでは、0ポート目(n=0)のTXF21-0に関する補償について説明したが、1ポート目のTXF21-1、2ポート目のTXF21-2を補償するための係数WT(m,1),WT(m,2)についても同様に求めることができる。
 また、図8に示す構成で、さらにTX補償部42-0,42-1の自動補償を実現したい場合も、同様の方法で実現することができる。例えば、分波部41-0,41-1の分波数、合波部43-0,43-1の合波数がk=4の場合、補正用CW信号の間隔を、図13に示す間隔の1/4倍に狭め、図13に示す8本のCW信号を32本のCW信号に増やした上で、補正用データ生成部71-0から送信してもよい。この場合、振幅・位相差検出部74-0は、分波部41-0,41-1の出力を、予め記憶しているベースバンド無変調信号で除算することで、TX補償部42-0,42-1用の補償用の係数を求め、TX補償部45-0に設定する。
 つぎに、受信アナログフィルタ(RXF13-n)の特性を自動補償する方法について説明する。
 図14は、本実施の形態のRXF13-0の特性を自動補償する中継衛星10の構成例を示す図である。実施の形態1の構成に加えて、補正用データ生成部71-0と、アナログスイッチ76-0,77-0と、振幅・位相差検出部78-0と、を備える。
 アナログスイッチ76-0は、D/A変換器20-0からの信号の出力先を切り替える。アナログスイッチ77-0は、RXF13-0への信号の入力元を切り替える。振幅・位相差検出部78-0は、RXF補償用の係数を求める。
 中継衛星10では、自動補償時、アナログスイッチ76-0は、D/A変換器20-0の出力をTXF21-0ではなく、アナログスイッチ77-0の入力に接続する。アナログスイッチ77-0は、ダウンコンバータ12-0ではなく、D/A変換器20-0の出力を選択する。このように各アナログスイッチ76-0,77-0の設定を行った上で、補正用データ生成部71-0は、m個の補正用ベースバンド無変調信号Cbを前記の式(11)に則って生成する。
 中継衛星10では、合波部19-0が、これらm個のベースバンド無変調信号を合波してマルチキャリア信号に変換後、D/A変換器20-0、RXF13-0を介して、マルチキャリア信号をA/D変換器14-0に入力する。A/D変換器14-0が、入力したマルチキャリア信号をサンプリングし、分波部15-0が、サンプリング後の信号をm個の受信ベースバンド無変調信号に分波する。
 ここで、分波後のb番目の受信ベースバンド無変調信号Rbを前記の式(12)で表記すると、振幅・位相差検出部78-0は、式(13)と同様、RXF補償用の係数WR(m,0)を式(14)で求める。RX補償部16-0に設定する。
  WR(m,0)
   =Cb/Rb
   =(Re[Cb]*Re[Rb]+Im[Cb]*Im[Rb])
   /(Re[Rb2+Im[Rb2
   +j(Im[Cb]*Re[Rb]-Re[Cb]*Im[Rb])
   /(Re[Rb2+Im[Rb2)           …(14)
 振幅・位相差検出部78-0は、式(14)で求めたRXF補償用の係数WR(m,0)をRX補償部16-0に設定する。RX補償部16-0は、すでに係数WR(m,0)が設定されていた場合には、係数WR(m,0)を更新(補正)する。上記一連の処理により、本実施の形態では、中継衛星10は、RXF13-0の振幅・位相誤差を補償する係数WR(m,0)を自動的にRX補償部16-0に設定することができる。
 なお、ここでは、0ポート目(n=0)のRXF13-0に関する補償について説明したが、1ポート目のRXF13-1、2ポート目のRXF13-2を補償するための係数WR(m,1),WR(m,2)についても同様に求めることができる。
 また、図7に示すRX補償部16-0の構成で、さらにRX補償部33-0,33-1の自動補償を実現したい場合も、同様の方法で実現することができる。例えば、分波部32-0,32-1の分波数、合波部34-0,34-1の合波数がk=4の場合、補正用CW信号の間隔を、図13に示す間隔の1/4倍に狭め、図13に示す8本のCW信号を32本のCW信号に増やした上で、補正用データ生成部71-0から送信してもよい。この場合、振幅・位相差検出部78-0は、分波部32-0,32-1の出力を、予め記憶しているベースバンド無変調信号で除算することで、RX補償部33-0,33-1用の補償用の係数を求め、RX補償部16-0に設定する。
 以上説明したように、本実施の形態によれば、中継衛星10は、補償用の係数WR(m,n),WT(m,n)を自ら求めて自動的に設定することとした。これにより、手動補償と比較して、調整時間を短縮することができ、また、調整工数の削減を実現することができる。
 さらに、周期的に自動補償、すなわち周期的に係数WR(m,n),WT(m,n)の更新を行うことで、経年変化や温度変動により、時間、月、年単位で緩やかに中継衛星10のアナログフィルタの振幅・位相ずれが生じた場合においても、中継衛星10では、中継する信号の通信品質を確保することができる。
実施の形態6.
 本実施の形態5では、ベースバンド帯または中間周波数帯の送信アナログフィルタ(TXF)、受信アナログフィルタ(RXF)の周波数特性に関する自動補償について説明した。本実施の形態では、同様の要領で、アップコンバータ22-0内の送信アナログフィルタ、ダウンコンバータ12-0内の受信アナログフィルタの周波数特性も自動補償する方法について説明する。
 前提として、アップコンバータとダウンコンバータの各アナログフィルタの自動補償を行う前に、中間周波数帯の送信アナログフィルタ(TXF)、受信アナログフィルタ(RXF)の周波数特性に関する自動補償が、実施の形態5に示す要領で完了しているものとする。
 図15は、本実施の形態のアップコンバータ22-0とダウンコンバータ12-0の特性を自動補償する中継衛星10の構成例を示す図である。ダウンコンバータ12-0は、周波数変換部81-0と、スイッチ85-0と、受信バンドパスフィルタ(BPF)86-0と、スイッチ87-0と、ミキサ88-0と、を備える。また、周波数変換部81-0は、バンドパスフィルタ(BPF)82-0と、ローカル信号発振器83と、ミキサ84-0と、を備える。
 周波数変換部81-0は、上り周波数を下り周波数に変換する。BPF82-0は、隣接するシステムの信号帯域を一部含んで信号を通過させるアナログバンドパスフィルタである。ローカル信号発振器83は、上り周波数を下り周波数に変換するための信号を発生する。ミキサ84-0は、BPF82-0から出力された上り信号およびローカル信号発振器83から出力されたローカル信号より、上り信号を下り周波数に変換する。スイッチ85-0は、受信BPF86-0への信号の入力元を切り替える。受信BPF86-0は、下り周波数に変換された信号を抽出する。スイッチ87-0は、ミキサ88-0への信号の入力元を切り替える。ミキサ88-0は、補正用マルチキャリア信号をダウンコンバートする。
 また、アップコンバータ22-0は、ローカル信号発振器89と、ミキサ90-0と、送信バンドパスフィルタ(BPF)91-0と、を備える。
 ローカル信号発振器89は、ダウンリンク周波数(Fd)と中間周波数fmの間を変換するための信号を発生する。ミキサ90-0は、補正用マルチキャリア信号をアップコンバートする。送信BPF91-0は、周波数特性を付加した補正用マルチキャリア信号を出力する。
 一般に、衛星通信システムでは、上り周波数と下り周波数は異なるため、図15に示すように上り周波数(Fu)を下り周波数(Fd)に変換する周波数変換部81-0を設けたが、上り周波数と下り周波数が同じ無線システムでは、周波数変換部81-0は不要である。
 図15に示すように、補償対象の受信BPF86-0と送信BPF91-0の周波数帯を下り周波数(Fd)に共通化したことで、前述の送信アナログフィルタ(TXF)、受信アナログフィルタ(RXF)の自動補償と同じ方法で受信BPF86-0、送信BPF91-0を補償することができる。
 まず、周波数変換部81-0の動作について説明する。ダウンコンバータ12-0では、周波数変換部81-0が、受信アンテナ11-0で受信した上り周波数Fuの信号を下り周波数に変換する。周波数変換部81-0では、はじめにBPF82-0が、自システムの信号帯域を、隣接するシステムの信号帯域を一部含んで通過させる。
 ここで、BPF82-0は、他システムの信号を多く取り込まないように設けているため、BPF82-0に要求される帯域外減衰特性の傾斜は緩やかであってよい。したがって、BPF82-0は比較的容易に実現でき、帯域内の振幅誤差、群遅延偏差は十分小さく抑えた設計ができるため、本実施の形態での補償の対象外とする。隣接する周波数に他システムの信号が存在しない場合、または存在しても十分小さな受信レベルである場合には、BPF82-0は削除してもよい。
 ミキサ84-0は、BPF82-0から出力された上り信号と、ローカル信号発振器83から出力されたローカル信号を乗算し、上り信号を下り周波数(Fd)に変換する。
 自動補償を行わない通常の信号中継動作時では、受信BPF86-0は、スイッチ85-0経由で入力する信号から、下り周波数(Fd)に変換された信号を抽出し、他の不要波を除去して出力する。
 つぎに、受信BPF86-0の補償方法について説明する。なお、受信BPF86-0を補償する前に、中間周波数帯の送信アナログフィルタ(TXF)、受信アナログフィルタ(RXF)の周波数特性に関する自動補償を完了させておく。
 まず、スイッチ85-0を、ミキサ84-0ではなく、ミキサ90-0の出力を選択するように切り替える。また、図14において、補正用データ生成部71-0は、補正用マルチキャリア信号を生成して出力する。D/A変換器20-0は、D/A変換した補正用マルチキャリア信号を、スイッチ76-0、TXF21-0を介して、アップコンバータ22-0のミキサ90-0へ出力する。
 図15において、ミキサ90-0は、補正用マルチキャリア信号に、ローカル信号発振器89で生成されたローカル信号を乗算し、補正用マルチキャリア信号をダウンリンク周波数(Fd)にアップコンバートする。ミキサ90-0は、アップコンバートされた補正用マルチキャリア信号を、スイッチ85-0を介して受信BPF86-0へ出力し、受信BPF86-0は、周波数特性を付加して出力する。受信BPF86-0は、周波数特性を付加した補正用マルチキャリア信号を、スイッチ87-0を介してミキサ88-0へ出力する。ミキサ88-0は、補正用マルチキャリア信号に、ローカル信号発振器89で生成されたローカル信号を乗算し、補正用マルチキャリア信号を中間周波数(fm)またはベースバンド帯にダウンコンバートする。
 このように、上り周波数(Fu)の信号を周波数変換部81-0で下り周波数に変換する構成としたため、アップコンバータ22-0、ダウンコンバータ12-0は、ローカル信号発振器89を共通して用いることができる。
 以降、中継衛星10では、中間周波数(fm)またはベースバンド帯にダウンコンバートした補正用マルチキャリア信号を、図14に示すように、スイッチ77-0、RXF13-0、A/D変換器14-0、分波部15-0を経由して、振幅・位相差検出部78-0へ出力する。
 振幅・位相差検出部78-0は、RXF補償用の係数を求める処理と同様にして受信BPF86-0の補償用の係数WB(m,0)を求め、RX補償部16-0へ出力する。
 RX補償部16-0は、既に設定済みのRXFの補償用の係数WR(m,0)に、新たに入力した補償用の係数WB(m,0)を複素乗算し、その乗算結果を新たな補償用の係数として設定し直す。この一連の処理により、RX補償部16-0は、RXF13-0と受信BPF86-0の両方のフィルタの誤差を補償することができる。
 つぎに、送信BPF61-0の補償方法について説明する。なお、送信BPF61-0を補償する前に、中間周波数帯の送信アナログフィルタ(TXF)、受信アナログフィルタ(RXF)の周波数特性に関する自動補償を完了させておく。
 まず、スイッチ87-0を、BPF86-0ではなく、送信BPF91-0の出力を選択するように切り替える。また、図12において、補正用データ生成部71-0は、補正用マルチキャリア信号を生成して出力する。D/A変換器20-0は、D/A変換した補正用マルチキャリア信号を、TXF21-0、スイッチ72-0を介して、アップコンバータ22-0のミキサ90-0へ出力する。
 図15において、ミキサ90-0は、補正用マルチキャリア信号に、ローカル信号発振器89-0で生成されたローカル信号を乗算し、補正用マルチキャリア信号をダウンリンク周波数(Fd)にアップコンバートする。ミキサ90-0は、アップコンバートされた補正用マルチキャリア信号を、送信BPF91-0へ出力し、送信BPF91-0は、周波数特性を付加した補正用マルチキャリア信号を、スイッチ87-0を介してミキサ88-0へ出力する。ミキサ88-0は、補正用マルチキャリア信号に、ローカル信号発振器89で生成されたローカル信号を乗算し、補正用マルチキャリア信号を中間周波数(fm)またはベースバンド帯にダウンコンバートする。
 以降、中継衛星10では、中間周波数(fm)またはベースバンド帯にダウンコンバートした補正用マルチキャリア信号を、図12に示すように、RXF13-0、スイッチ73-0、A/D変換器14-0、分波部15-0を経由して、振幅・位相差検出部74-0へ出力する。
 振幅・位相差検出部74-0は、TXF補償用の係数を求める処理と同様にして送信BPF61-0の補償用の係数WC(m,0)を求め、TX補償部18-0へ出力する。
 TX補償部18-0は、既に設定済みのTXFの補償用の係数WT(m,0)に、新たに入力した補償用の係数WC(m,0)を複素乗算し、その乗算結果を新たな補償用の係数として設定し直す。この一連の処理により、TX補償部18-0は、TXF21-0と送信BPF91-0の両方のフィルタの誤差を補償することができる。
 なお、図15において、ローカル信号発振器83,89は、各ポート(n=0,1,2)で共有する構成とすることで、部品点数を減らすことができる。
 また、図13では、周波数変換部81-0を、受信アンテナ11-0とスイッチ85-0の間に設けたが、周波数変換部81-0を送信BPF91-0と送信アンテナ23-0の間に移動し、送信BPF91-0から出力される周波数を、上り周波数(Fu)になるように発振器89の周波数を変更し、送信BPF91-0、受信BPF86-0の周波数特性を上り周波数Fuを中心周波数とするように変更してもよい。この場合、周波数変換部81-0は、送信BPF91-0から出力される信号の周波数をFuからFdに変換して、送信アンテナ23-0から出力する。
 一般に、下り信号は、アンプで増幅されて出力されるため、このように周波数変換部81-0を送信BPF61-0と送信アンテナ23-0の間に移動させ、受信BPF86-0、送信BPF91-0が上り周波数(Fu)の信号を扱う構成に変更すると、強電力で増幅された下り周波数Fdの信号が、受信BPF86-0、送信BPF91-0等に回り込み、同一周波数干渉として悪影響を与える可能性を排除することができる。
 以上説明したように、本実施の形態によれば、中継衛星10は、さらに、アップコンバータ内の送信アナログフィルタおよびダウンコンバータ内の受信アナログフィルタの周波数特性についても自動補償することとした。これにより、実施の形態5と比較して、さらに、調整時間を短縮することができ、また、調整工数の削減を実現することができる。
実施の形態7.
 本実施の形態は、実施の形態1で示した方法と別の手法で、同様にデジタル回路規模の増加量を少なく抑えながら、良好なアナログ補償特性を実現する方法について説明する。
 本実施の形態における中継装置を備えた中継衛星10の全体構成は図1と同様であるが、RX補償部16-0~16-2、TX補償部19-0~19-2、分波部15-0~15-2、合波部19-0~19-2の構成と機能が異なる。
 本実施の形態では、RX補償部16-0~16-nは、実施の形態1が図7に示す構成に対して、RX補償部31-0を残し、残りは削除した構成となる。
 同様に、TX補償部19-0~19-2は、実施の形態1が図8に示す構成に対して、RX補償部45-0を残し、残りは削除した構成となる。このように、m分波した信号をさらに細かい周波数分解能で分波する機能、あるいは合波する機能を削除し、RX補償部、TX補償部の回路規模を削減する。
 つぎに、本実施の形態における分波部15-0~15-2、合波部19-0~19-2の構成を説明する。図16は、本実施の形態の分波部15-nの構成例を示す図である。図9に示すローパスフィルタ52に替えて複素乗算型のローパスフィルタ(複素乗算型ローパスフィルタ52a)を備える。また、図17は、本実施の形態の合波部19-nの構成例を示す図である。図10に示すローパスフィルタ63に替えて複素乗算型のローパスフィルタ(複素乗算型ローパスフィルタ63a)を備える。
 本実施の形態では、これら複素乗算型ローパスフィルタを用いてアナログフィルタの振幅誤差、群遅延偏差を粗補償し、補償仕切れなかった残留誤差成分を、RX補償部16-n、TX補償部18-nで精密補償するものである。
 特に、複素乗算型ローパスフィルタは、アナログフィルタの振幅誤差、群遅延偏差の傾きを緩やかにするまで補償することを第一目的とする。当然、複素乗算型ローパスフィルタ52a,63aのフィルタタップ数を増やせば、RX補償部16-n、TX補償部18-nでさらに補償することなく、複素乗算型ローパスフィルタ52a,63a単独で、完全にアナログフィルタ特性を補償することができるが、回路規模が増加してしまう。
 そのため、本実施の形態では、複素乗算型ローパスフィルタ52a,63aを、ローパスフィルタ52,63と同様、本来の目的である高調波除去に必要なフィルタタップ数の範囲で補償を行う。
 複素乗算型ローパスフィルタ52a,63aは、ローパスフィルタ52,63と同様、高調波除去を除去しながら、同時に周波数対振幅特性と周波数対群遅延特性を補償する。これらの補償を実現するため、複素乗算型ローパスフィルタ52a,63aは、ローパスフィルタ52,63と異なり、そのタップ係数は複素数となり、FIRフィルタ内で行われる乗算も複素乗算になる。そのため、ローパスフィルタ52,63と、複素乗算型ローパスフィルタ52a,63aが同じタップ数であっても、複素乗算型ローパスフィルタ52a,63aの方が乗算器の所要数は倍に増えるが、その増加量は装置全体の回路規模と比較すると僅かといえる。
 つづいて、本実施の形態における信号の補償処理について説明する。図18は、本実施の形態の受信側の補償処理の例を示す図である。図18(a)は、RXF13-0の誤差が加わった場合のビームエリア100-0からのアップリンク信号A,B、図18(b)はRXF13-2の誤差が加わった場合のビームエリア100-2からのアップリンク信号E,Dを示している。
 まず、図18(c)に示す分波部15-0内の複素乗算型ローパスフィルタ(LPF)52aの振幅特性、群遅延特性によって、図18(a)に示す信号A,Bは、図18(c)に示す信号A,Bに粗く補償される。図18(c)に示すように、若干の緩やかな振幅誤差と、群遅延偏差が残留する。
 同様に、図18(d)に示す分波部15-2内の複素乗算型ローパスフィルタ(LPF)52aの振幅特性、群遅延特性によって、図18(b)に示す信号E,Dは、図18(d)に示す信号E,Dに粗く補償される。図18(d)に示すように、若干の緩やかな振幅誤差と、群遅延偏差が残留する。
 このように、複素乗算型ローパスフィルタは、完全な補償を実現するものではなく、限られた回路規模で、残留する振幅誤差や群遅延偏差を緩やかに抑える程度に補償する。
 中継衛星10では、複素乗算型ローパスフィルタで補償されたこれらの信号について、後段のRX補償部でさらに実施の形態1で示した同様の手法で補償する。図18(e)にRX補償部16-0で補償後、合波した場合の信号スペクトラムを、図18(f)にRX補償部16-2で補償後、合波した場合の信号スペクトラムを示す。
 図18(e),(f)に示すように、複素乗算型ローパスフィルタで補償しきれなかった緩やかな誤差を、後段の各RX補償部で補償する2段階の補償処理により、全体の振幅特性、群遅延特性を平坦化することができる。
 つぎに、図19は、本実施の形態の送信側の補償処理の例を示す図である。図19(a)は、TX補償部18-1に入力される各分波データを示している。これに対して、図19(b)に示すように、TX補償部18-1は各分波データに対して、帯域幅Fc単位の逆振幅補償と、逆群遅延偏差補償を行う。この時点では、補償の周波数分解能がFcと粗いため、振幅誤差や群遅延偏差が残留する。
 そこで、合波部19-1は、これら8つのデータを合波後、合波部19-1内の複素乗算型ローパスフィルタで残留する振幅誤差や群遅延偏差を補償し、図19(c)に示すように、後段のTXF21-1の振幅特性、群遅延特性を打ち消すような信号を出力する。このような2段階の補償処理によって、ビームエリア300-1へのダウンリンク信号は、図19(d)に示すように振幅特性と群遅延特性を平坦化することができる。
 以上説明したように、本実施の形態によれば、受信側では、分波部が備える複素乗算型のローパスフィルタで補償を行い、その後、後段のRX補償部でさらに補償を行い、送信側では、RX補償部で補償を行い、その後、後段の合波部が備える複素乗算型のローパスフィルタで補償を行う。
 なお、複素乗算型ローパスフィルタ52a,63aに設定するフィルタのタップ係数は、書き換え可能な構成にしてもよい。この場合、複素乗算型ローパスフィルタの周波数対振幅特性、周波数対群遅延特性を自由に変更できるため、RX補償部、TX補償部に与える係数WR,WTと合わせて、送受信アナログフィルタ特性の個体差を吸収するよう、きめ細かい振幅調整、群遅延調整を実現することができる。また、衛星打ち上げ後も、地上局からこれらのタップ係数を送信し、設定する構成により、きめ細かい振幅調整、群遅延調整を実現することができる。これにより、アナログフィルタへの要求性能を緩和できるため、アナログフィルタのコストや容量、重さの低減を実現することができる。また、実施の形態5,6と同様にして、本複素乗算型ローパスフィルタ52a,63aを組み込んだ自動補償を実現する構成としてもよい。
 10 中継衛星、11-0~11-2 受信アンテナ、12-0~12-2 ダウンコンバータ、13-0~13-2 受信アナログフィルタ(RXF)、14-0~14-2 A/D変換器、15-0~15-2 分波部、16-0~16-2 受信側補償(RX補償)部、17 スイッチマトリックス、18-0~18-2 送信側補償(TX補償)部、19-0~19-2 合波部、20-0~20-2 D/A変換器、21-0~21-2 送信アナログフィルタ(TXF)、22-0~22-2 アップコンバータ、23-0~23-2 送信アンテナ、31-0 受信側補償(RX補償)部、32-0,32-1 分波部、33-0,33-1 受信側補償(RX補償)部、34-0,34-1 合波部、35 遅延部、41-0,41-1 分波部、42-0,42-1 送信側補償(TX補償)部、43-0,43-1 合波部、44 遅延部、45-0 送信側補償(TX補償)部、51 デジタル直交検波部、52 ローパスフィルタ、52a 複素乗算型ローパスフィルタ、53 ダウンサンプラ、54 デジタル分波部、61 デジタル合波部、62 アップサンプラ、63 ローパスフィルタ、63a 複素乗算型ローパスフィルタ、64 直交変調部、71-0 補正用データ生成部、72-0,73-0 アナログスイッチ、74-0 振幅・位相差検出部、75 信号スペクトラム、76-0,77-0 アナログスイッチ、78-0 振幅・位相差検出部、81-0 周波数変換部、82-0 バンドパスフィルタ(BPF)、83 ローカル信号発振器、84-0 ミキサ、85-0 スイッチ、86-0 受信バンドパスフィルタ(BPF)、87-0 スイッチ、88-0 ミキサ、89 ローカル信号発振器、90-0 ミキサ、91-0 送信バンドパスフィルタ(BPF)、100-0~100-2 ビームエリア(アップリンク)、200 制御局、300-0~300-2 ビームエリア(ダウンリンク)、400,401 送信局、500,501 受信局。

Claims (15)

  1.  受信信号から所望の信号を抽出する受信アナログフィルタと、
     前記受信アナログフィルタ通過後の信号をデジタル信号に変換するA/D変換手段と、
     前記A/D変換手段で変換されたデジタル信号をm個の信号に分波する分波手段と、
     前記分波手段で分波されたm個の信号に対して、前記受信アナログフィルタのアナログ特性をデジタル補償する受信側補償手段と、
     前記受信側補償手段でデジタル補償されたm個の信号を合波する合波手段と、
     を備え、
     前記受信側補償手段は、さらに、デジタル補償されたm個の信号のうち補償が十分ではないx個の信号について、それぞれの信号を、k個の信号に分波して前記受信アナログフィルタのアナログ特性をデジタル補償し、デジタル補償後のk個の信号を合波する、
     ことを特徴とする分波装置。
  2.  受信信号から所望の信号を抽出する受信アナログフィルタと、
     前記受信アナログフィルタ通過後の信号をデジタル信号に変換するA/D変換手段と、
     前記A/D変換手段で変換されたデジタル信号をm個の信号に分波する分波手段と、
     前記分波手段で分波されたm個の信号に対して、前記受信アナログフィルタのアナログ特性をデジタル補償する受信側補償手段と、
     前記受信側補償手段でデジタル補償されたm個の信号を合波する合波手段と、
     を備え、
     前記受信側補償手段は、自装置へ信号を送信した送信局が備える送信局アナログフィルタの特性を取得し、送信局アナログフィルタ特性をデジタル補償する、
     ことを特徴とする分波装置。
  3.  受信信号から所望の信号を抽出する受信アナログフィルタと、
     前記受信アナログフィルタ通過後の信号をデジタル信号に変換するA/D変換手段と、
     前記A/D変換手段で変換されたデジタル信号をm個の信号に分波する分波手段と、
     前記分波手段で分波されたm個の信号に対して、前記受信アナログフィルタのアナログ特性をデジタル補償する受信側補償手段と、
     前記受信側補償手段でデジタル補償されたm個の信号を合波する合波手段と、
     を備え、
     前記分波手段は、複素乗算型ローパスフィルタを備え、分波前のデジタル信号に対して、前記複素乗算型ローパスフィルタを用いて前記受信アナログフィルタのアナログ特性を補償し、その後にm個の信号に分波する、
     ことを特徴とする分波装置。
  4.  さらに、
     複数の異なる前記受信側係数を記憶する記憶手段、
     を備え、
     前記受信側補償手段は、前記記憶手段から受信側係数を選択して使用する、
     ことを特徴とする請求項1,2または3に記載の分波装置。
  5.  前記受信側補償手段は、自装置を制御する制御局から前記受信側係数を受信する、
     ことを特徴とする請求項1,2または3に記載の分波装置。
  6.  デジタル信号をm個の信号に分波する分波手段と、
     前記分波手段で分波されたm個の信号に対してデジタル補償する送信側補償手段と、
     前記送信側補償手段でデジタル補償されたm個の信号を合波する合波手段と、
     前記合波手段で合波後の信号をアナログ信号に変換するD/A変換手段と、
     前記D/A変換手段で変換されたアナログ信号から所望の信号を抽出する送信アナログフィルタと、
     を備え、
     前記送信側補償手段は、前記m個の信号に対して前記送信アナログフィルタのアナログ特性をデジタル補償し、さらに、デジタル補償されたm個の信号のうち補償が十分ではないy個の信号について、それぞれの信号を、p個の信号に分波して前記送信アナログフィルタのアナログ特性をデジタル補償し、デジタル補償後のp個の信号を合波する、
     ことを特徴とする合波装置。
  7.  デジタル信号をm個の信号に分波する分波手段と、
     前記分波手段で分波されたm個の信号に対してデジタル補償する送信側補償手段と、
     前記送信側補償手段でデジタル補償されたm個の信号を合波する合波手段と、
     前記合波手段で合波後の信号をアナログ信号に変換するD/A変換手段と、
     前記D/A変換手段で変換されたアナログ信号から所望の信号を抽出する送信アナログフィルタと、
     を備え、
     前記送信側補償手段は、前記m個の信号に対して前記送信アナログフィルタのアナログ特性をデジタル補償し、さらに、自装置から信号を受信する受信局が備える受信局アナログフィルタの特性を取得し、受信局アナログフィルタ特性をデジタル補償する、
     ことを特徴とする合波装置。
  8.  デジタル信号をm個の信号に分波する分波手段と、
     前記分波手段で分波されたm個の信号に対してデジタル補償する送信側補償手段と、
     前記送信側補償手段でデジタル補償されたm個の信号を合波する合波手段と、
     前記合波手段で合波後の信号をアナログ信号に変換するD/A変換手段と、
     前記D/A変換手段で変換されたアナログ信号から所望の信号を抽出する送信アナログフィルタと、
     を備え、
     前記送信側補償手段は、前記m個の信号に対して前記送信アナログフィルタのアナログ特性をデジタル補償し、
     前記合波手段は、複素乗算型ローパスフィルタを備え、合波後のデジタル信号に対して、前記複素乗算型ローパスフィルタを用いて前記送信アナログフィルタのアナログ特性を補償する、
     ことを特徴とする合波装置。
  9.  さらに、
     複数の異なる前記送信側係数を記憶する記憶手段、
     を備え、
     前記送信側補償手段は、前記記憶手段から送信側係数を選択して使用する、
     ことを特徴とする請求項6,7または8に記載の合波装置。
  10.  前記送信側補償手段は、自装置を制御する制御局から前記送信側係数を受信する、
     ことを特徴とする請求項6,7または8に記載の合波装置。
  11.  1つ以上の入力ポートから受信した信号を1つ以上の出力ポートから出力する中継装置であって、
     前記入力ポートの数以上の請求項1、あるいは請求項2、あるいは請求項3に記載の分波装置と、
     前記出力ポートの数以上の請求項6、あるいは請求項7、あるいは請求項8に記載の合波装置と、
     前記分波装置と前記合波装置の間に配置され、前記分波装置から出力された信号を入力とし、入力した信号に対して周波数方向の並び替えおよび所望のビームエリア向けの出力ポートに振り分けを行い、前記所望のビームエリア向けの出力ポートと接続する前記合波装置へ信号を出力するスイッチマトリックスと、
     を備え、
     重複する構成については、前記分波装置が備える合波手段を削除し、前記合波装置が備える分波手段を削除することを特徴とする中継装置。
  12.  さらに、
     補正用の無変調信号を生成し、前記合波装置の合波手段へ出力する補正用データ生成手段と、
     前記分波装置の前記分波手段から出力されたm個のデジタル信号に基づいて、前記送信側係数を求める送信側振幅位相差検出手段と、
     を備え、
     前記合波装置では、前記合波手段が前記補正用データ生成手段からの無変調信号を合波し、自身の送信アナログフィルタ通過後、合波した無変調信号を前記分波装置へ出力し、
     前記分波装置では、前記合波装置で合波された無変調信号を受信すると、自身の受信アナログフィルタを通過させず、前記分波手段が合波された前記無変調信号を分波して前記送信側振幅位相差検出手段へ出力し、
     前記送信側振幅位相差検出手段は、求めた前記送信側係数を前記合波装置の送信側補償手段へ出力し、
     前記合波装置の送信側補償手段は、前記送信側振幅位相差検出手段から受信した送信側係数を使用してデジタル補償を行う、
     ことを特徴とする請求項11に記載の中継装置。
  13.  さらに、
     前記分波装置が前記受信アナログフィルタの前段に受信信号をダウンコンバートするダウンコンバータを備え、前記合波装置が前記送信アナログフィルタの後段に送信信号をアップコンバートするアップコンバータを備える場合に、
     前記合波装置では、前記アップコンバータが、前記合波した無変調信号をアップコンバートし、自身が備える送信側バンドパスフィルタ通過後に前記分波装置の前記ダウンコンバータへ出力し、
     前記分波装置では、前記ダウンコンバータが合波された無変調信号を受信すると、自身が備える受信側バンドパスフィルタを通過させずにダウンコンバートし、前記分波手段が合波された前記無変調信号を分波して前記送信側振幅位相差検出手段へ出力する、
     ことを特徴とする請求項12に記載の中継装置。
  14.  さらに、
     補正用の無変調信号を生成し、前記合波装置の前記合波手段へ出力する補正用データ生成手段と、
     前記分波装置の前記分波手段から出力されたm個のデジタル信号に基づいて、前記受信側係数を求める受信側振幅位相差検出手段と、
     を備え、
     前記合波装置では、前記合波手段が前記補正用データ生成手段からの無変調信号を合波し、自身の送信アナログフィルタを通過させず、合波した無変調信号を前記分波装置へ出力し、
     前記分波装置では、前記合波装置で合波された無変調信号を受信すると、自身の受信アナログフィルタ通過後、前記分波手段が合波された前記無変調信号を分波して前記送信側振幅位相差検出手段へ出力し、
     前記受信側振幅位相差検出手段は、求めた前記受信側係数を前記分波装置の受信側補償手段へ出力し、
     前記分波装置の受信側補償手段は、前記受信側振幅位相差検出手段から受信した受信側係数を使用してデジタル補償を行う、
     ことを特徴とする請求項11に記載の中継装置。
  15.  さらに、
     前記分波装置が前記受信アナログフィルタの前段に受信信号をダウンコンバートするダウンコンバータを備え、前記合波装置が前記送信アナログフィルタの後段に送信信号をアップコンバートするアップコンバータを備える場合に、
     前記合波装置では、前記アップコンバータが、前記合波した無変調信号をアップコンバートし、自身が備える送信側バンドパスフィルタを通過させずに前記分波装置の前記ダウンコンバータへ出力し、
     前記分波装置では、前記ダウンコンバータが合波された無変調信号を受信すると、自身が備える受信側バンドパスフィルタ通過後にダウンコンバートし、前記分波手段が合波された前記無変調信号を分波して前記受信側振幅位相差検出手段へ出力する、
     ことを特徴とする請求項14に記載の中継装置。
PCT/JP2013/053538 2013-02-14 2013-02-14 分波装置、合波装置および中継装置 WO2014125600A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/767,790 US9917634B2 (en) 2013-02-14 2013-02-14 Demultiplexing apparatus, multiplexing apparatus, and relay apparatus
CA2901165A CA2901165C (en) 2013-02-14 2013-02-14 Demultiplexing apparatus, multiplexing apparatus, and relay apparatus
EP13874865.2A EP2958248B1 (en) 2013-02-14 2013-02-14 Demultiplexing device, multiplexing device, and relay device
PCT/JP2013/053538 WO2014125600A1 (ja) 2013-02-14 2013-02-14 分波装置、合波装置および中継装置
JP2015500045A JP5851645B2 (ja) 2013-02-14 2013-02-14 分波装置、合波装置および中継装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/053538 WO2014125600A1 (ja) 2013-02-14 2013-02-14 分波装置、合波装置および中継装置

Publications (1)

Publication Number Publication Date
WO2014125600A1 true WO2014125600A1 (ja) 2014-08-21

Family

ID=51353630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053538 WO2014125600A1 (ja) 2013-02-14 2013-02-14 分波装置、合波装置および中継装置

Country Status (5)

Country Link
US (1) US9917634B2 (ja)
EP (1) EP2958248B1 (ja)
JP (1) JP5851645B2 (ja)
CA (1) CA2901165C (ja)
WO (1) WO2014125600A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184096A (ja) * 2016-03-31 2017-10-05 三菱電機株式会社 通信機および衛星通信システム
WO2018146750A1 (ja) * 2017-02-08 2018-08-16 三菱電機株式会社 衛星中継装置
WO2019155952A1 (ja) * 2018-02-09 2019-08-15 三菱電機株式会社 衛星受信機、および衛星通信システム
US10454567B2 (en) 2016-03-02 2019-10-22 Mitsubishi Electric Corporation Multi-beam satellite communication system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123362B2 (en) * 2013-12-18 2018-11-06 Telefonaktiebolaget Lm Ericsson (Publ) Operation of a multi-standard base station site supporting at least two different radio access technologies
US9973984B1 (en) * 2016-09-09 2018-05-15 Northrop Grumman Systems Corporation Satellite system with switched communication channels among earth stations
US10855366B2 (en) * 2017-10-10 2020-12-01 Macdonald, Dettwiler And Associates Corporation Modular channelizer
FR3092455B1 (fr) * 2019-01-31 2021-08-06 Thales Sa Systeme de communication par satellite a demodulation distribuee
US11316656B1 (en) * 2020-07-08 2022-04-26 The Johns Hopkins University Time transfer modem
CN113922889B (zh) * 2021-12-13 2022-02-22 中国人民解放军海军工程大学 Ku和Ka双频段卫通地面站的多频点干扰对消装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507891A (ja) * 1994-10-20 1998-07-28 マサチューセッツ・インスティテュート・オブ・テクノロジー ハイブリッドフィルタバンクアナログ/デジタルコンバータ
JP2000252937A (ja) * 1999-02-26 2000-09-14 Trw Inc 効率的ディジタル・チャネライザ・システムおよびそのオペレーション方法
JP3676576B2 (ja) 1998-07-17 2005-07-27 富士通株式会社 自動遅延等化器及び自動遅延等化方法並びに自動遅延・振幅等化器及び自動遅延・振幅等化方法
JP2006516867A (ja) 2003-01-28 2006-07-06 ザ・ボーイング・カンパニー 衛星通信データのデジタル処理のためのシステムおよび方法
JP4842186B2 (ja) 2007-03-28 2011-12-21 日本無線株式会社 無線受信機
JP2012519985A (ja) 2009-02-27 2012-08-30 アストリウム・リミテッド 補償装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341213B1 (en) * 1999-08-11 2002-01-22 Hughes Electronics Corporation Dynamic repeater configuration for multilink satellite systems with robust subchannel interconnect capability
JP2004073229A (ja) * 2002-08-09 2004-03-11 Aisin Seiki Co Ltd 刺繍機
RU2009145693A (ru) * 2007-05-10 2011-06-20 Астриум Лимитед (Gb) Система обработки сигналов
JP5049305B2 (ja) * 2008-03-10 2012-10-17 アンリツ株式会社 周波数変換装置
EP2266222B1 (en) * 2008-04-18 2016-05-11 Astrium Limited Modular digital processing system for telecommunications satellite payloads
JP5261574B2 (ja) * 2009-04-01 2013-08-14 日本電信電話株式会社 無線伝送方法、無線伝送システム、無線伝送システムの送信装置および受信装置
JP2011029720A (ja) * 2009-07-21 2011-02-10 Mitsubishi Electric Corp 衛星通信装置および衛星通信システム
US8755425B2 (en) * 2010-06-30 2014-06-17 Comtech Ef Data Corp. Method and system for transmission of identification via metadata for repeating relays using spread-spectrum technology
JP5450278B2 (ja) 2010-06-16 2014-03-26 日本電信電話株式会社 通信システム、受信装置、送信装置
US20140036765A1 (en) * 2011-04-28 2014-02-06 Mitsubishi Electric Corporation Relay satellite and satellite communication system
WO2014076606A1 (en) * 2012-11-15 2014-05-22 Novelsat Ltd. Echo cancellation in communication transceivers
WO2014112040A1 (ja) 2013-01-15 2014-07-24 三菱電機株式会社 中継衛星、中継装置および衛星通信システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507891A (ja) * 1994-10-20 1998-07-28 マサチューセッツ・インスティテュート・オブ・テクノロジー ハイブリッドフィルタバンクアナログ/デジタルコンバータ
JP3676576B2 (ja) 1998-07-17 2005-07-27 富士通株式会社 自動遅延等化器及び自動遅延等化方法並びに自動遅延・振幅等化器及び自動遅延・振幅等化方法
JP2000252937A (ja) * 1999-02-26 2000-09-14 Trw Inc 効率的ディジタル・チャネライザ・システムおよびそのオペレーション方法
JP2006516867A (ja) 2003-01-28 2006-07-06 ザ・ボーイング・カンパニー 衛星通信データのデジタル処理のためのシステムおよび方法
JP4842186B2 (ja) 2007-03-28 2011-12-21 日本無線株式会社 無線受信機
JP2012519985A (ja) 2009-02-27 2012-08-30 アストリウム・リミテッド 補償装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUJIMURA ET AL.: "A Study of Digital Demultiplexer / Multiplexer for Flexible Regenerative Transponders", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS COMMUNICATION SOCIETY CONFERENCE, 2011, pages B-3 - 10
HITOSHI KIYA: "Multi-rate Signal Processing", October 1995, SHOKODO, pages: 90 - 91
YAMASHITA ET AL.: "Proposal and Basic Operation Characteristics of a Variable Band FFT Filter Bank for Satellite Mounting", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL RESEARCH REPORT. SAT, SATELLITE COMMUNICATION, vol. 100, no. 484, 1 December 2000 (2000-12-01), pages 37 - 42

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10454567B2 (en) 2016-03-02 2019-10-22 Mitsubishi Electric Corporation Multi-beam satellite communication system
JP2017184096A (ja) * 2016-03-31 2017-10-05 三菱電機株式会社 通信機および衛星通信システム
WO2018146750A1 (ja) * 2017-02-08 2018-08-16 三菱電機株式会社 衛星中継装置
WO2019155952A1 (ja) * 2018-02-09 2019-08-15 三菱電機株式会社 衛星受信機、および衛星通信システム
JPWO2019155952A1 (ja) * 2018-02-09 2020-02-27 三菱電機株式会社 衛星受信機、および衛星通信システム
US11387894B2 (en) 2018-02-09 2022-07-12 Mitsubishi Electric Corporation Satellite receiver and satellite communication system

Also Published As

Publication number Publication date
CA2901165A1 (en) 2014-08-21
JPWO2014125600A1 (ja) 2017-02-02
JP5851645B2 (ja) 2016-02-03
US9917634B2 (en) 2018-03-13
EP2958248A1 (en) 2015-12-23
CA2901165C (en) 2018-08-21
US20150381266A1 (en) 2015-12-31
EP2958248A4 (en) 2017-03-29
EP2958248B1 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
JP5851645B2 (ja) 分波装置、合波装置および中継装置
JP5698419B2 (ja) マルチバンド送信機における単一の電力増幅器のための線形化
JP5372294B2 (ja) 中継衛星および衛星通信システム
CN110999234B (zh) 用于数字预失真的方法和装置
JP6657093B2 (ja) ビーム形成器のための位相または振幅補償
CA2753147C (en) Compensation apparatus
US9136933B2 (en) Demultiplexing apparatus, multiplexing apparatus, and relay apparatus
EP3654539A1 (en) Cable modem and digital compensation for switchable analog filter to assist echo cancellation in full duplex cable modem
JP4677610B2 (ja) デジタル信号処理による構内無線分散中継システム
KR100691285B1 (ko) 동일채널 중계기의 변조장치 및 그 방법
EP3111583B1 (en) Method and apparatus for high data rate communication
KR20130057073A (ko) 전송 속도 경감을 위한 중계기 및 그 방법
JP5889145B2 (ja) 分波装置、合波装置および中継装置
KR101569726B1 (ko) 혼 변조 신호 제거 장치 및 방법
JP2012175542A (ja) 中継装置
KR20170073407A (ko) 디지털 중계기의 모니터 포트 일체화 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500045

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2901165

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14767790

Country of ref document: US

Ref document number: 2013874865

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE