WO2014124886A1 - Verfahren zur herstellung eines mehrschichtigen, bewehrten betonelements - Google Patents

Verfahren zur herstellung eines mehrschichtigen, bewehrten betonelements Download PDF

Info

Publication number
WO2014124886A1
WO2014124886A1 PCT/EP2014/052500 EP2014052500W WO2014124886A1 WO 2014124886 A1 WO2014124886 A1 WO 2014124886A1 EP 2014052500 W EP2014052500 W EP 2014052500W WO 2014124886 A1 WO2014124886 A1 WO 2014124886A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete wall
concrete
insulating layer
reinforcing body
mold
Prior art date
Application number
PCT/EP2014/052500
Other languages
English (en)
French (fr)
Inventor
Rolf Roers
Haval Khaffaf
Michael LOOF
Achim Symannek
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to CN201480008971.9A priority Critical patent/CN104981330B/zh
Priority to US14/766,148 priority patent/US20150368902A1/en
Priority to EP14705737.6A priority patent/EP2956283B1/de
Priority to MX2015010227A priority patent/MX2015010227A/es
Priority to RU2015139040A priority patent/RU2015139040A/ru
Publication of WO2014124886A1 publication Critical patent/WO2014124886A1/de

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/04Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers
    • B28B11/042Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers with insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • B28B19/003Machines or methods for applying the material to surfaces to form a permanent layer thereon to insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • B28B23/028Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members for double - wall articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/342Moulds, cores, or mandrels of special material, e.g. destructible materials which are at least partially destroyed, e.g. broken, molten, before demoulding; Moulding surfaces or spaces shaped by, or in, the ground, or sand or soil, whether bound or not; Cores consisting at least mainly of sand or soil, whether bound or not
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/049Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres completely or partially of insulating material, e.g. cellular concrete or foamed plaster
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast

Definitions

  • the invention relates to a method for producing a multilayer, reinforced concrete element, wherein the multi-layer reinforced concrete element comprises at least a first concrete wall in combination with a reinforcing body, wherein the concrete element comprises an at least indirectly applied to the first concrete wall insulating layer and wherein the reinforcing body at least partially protruding from the first concrete wall and the insulating layer is formed penetrating.
  • Precast concrete plays an important role in the construction industry.
  • precast concrete elements have been fitted with integrated insulation layers at the factory for a number of years, in particular for reinforced concrete walls and ceilings with core insulation.
  • insulation boards in particular of mineral wool and polystyrene, are introduced by hand.
  • EP 1 010 828 B1 shows a further production of a prefabricated wall part with an inner shell and an outer shell made of concrete, which are connected to one another via supports of a reinforcing body.
  • PU foam is applied to the inside of the foam, which is facing upwards in order to apply the PU foam.
  • the complementary concrete shell is then produced by immersion in a concrete bed and subsequent curing. A defined cavity for the PU foam body is not created, and a subsequent pouring with further concrete takes place on an undefined PU insulating layer surface.
  • the not yet cured PU foam body, which is applied as a reaction mixture, is distributed by means of an air stream.
  • the height of the cured foam results from the applied height of the reaction mixture, the height of which is again determined by the speed of the application for a given reaction time and has an irregular topography.
  • a structural geometric limitation of the cavity is therefore not created, so that disadvantageously no insulating layer of a defined thickness can be formed.
  • a similar process is disclosed in EP 1 106 745 A2.
  • a method for producing a prefabricated ceiling element is described as a prefabricated component, wherein two sheets of reinforced concrete by a plurality of lattice girder are spaced from each other, and wherein the lattice girders are embedded in the respective disc and wherein the end sections comprise at least the longitudinal bars with welded strut knot, and wherein the space between the panes is completely filled with foamed polyurethane.
  • the resulting between the two discs cavity is filled with polyurethane foam during production already.
  • the hardened polyurethane layer should support the structural-technical function of the lattice girders and the concrete slabs. It is further stated that such a production can advantageously be carried out economically on a circulation pallet plant in production operation.
  • the prefabricated ceiling element can be completed only with a sandwich construction, as two spaced apart concrete disc elements are necessarily necessary to define a cavity for the input of the reaction mixture to form the polyurethane layer.
  • the object of the present invention is to provide an improved method for producing a multilayer, reinforced concrete element, and in particular the object of the invention is to be able to form the insulating layer of a PU foam, preferably with different thicknesses in a flexible manner.
  • a method for producing a multi-layer, reinforced concrete element comprising a first concrete wall in combination with a reinforcing body and has an at least indirectly adjacent to the first concrete wall insulating layer, wherein the first concrete wall via a reinforcing body, in particular a GRP or Steel reinforcement body, is connected to the insulating layer and in particular with a second concrete wall.
  • the inventive method comprises the following steps: As a first step, the provision of the first concrete wall can be done with a reinforcing body, wherein the reinforcing body is partially cast in the first concrete wall.
  • the step of arranging the first concrete wall and the reinforcing body arranged thereon follows with a vertical distance of the underside of the first concrete wall above a bed, in particular of quartz sand, which has been previously introduced into a bed and, for example, shaken or smoothed.
  • the projecting portion is arranged on the underside of the first concrete wall and immersed in the bed, the bed can be shaken in particular subsequently.
  • a predefined free space remains between the surface of the bed and the underside of the first concrete wall. This is followed by the filling of the free space with a reaction mixture to form polyurethane foam, which forms an insulating layer. This is followed by the step of curing the insulation layer. In a final step, the concrete wall can be removed from the bed with the reinforcing body and cured on this composite insulating polyurethane layer and in particular be freed from the material of the bed.
  • the essence of the invention consists in particular in that the concrete wall provided with the reinforcing body, for example with integrated metallic lattice girders or fiberglass anchors for forming the reinforcement body, upside down, ie. with the reinforcing body facing downwards, placed over a preferably vibratory bedding container or the like, in which the bed of flowable solids is provided, in particular of granules of fine granularity such as quartz sand.
  • the filling height of the bed or the height at which the concrete wall is held above the surface of the bed can be set arbitrarily.
  • the insulating layer can be formed highly flexible with different thicknesses.
  • the thickness of the insulating layer may for example be a value of 2cm to 40cm, preferably for example from 5cm to 30cm and more preferably for example from 10cm to 25cm, as these thicknesses can be foamed particularly well with a reaction mixture.
  • Reaction mixtures of polyol and isocyanate are particularly suitable for the production of polyurethane insulating layers, but the insulating layer may comprise any further insulating material, for example also a phenolic resin foam.
  • the reinforcement body need not be made in one piece and it may, for example, individual, preferably glass fiber reinforced polymer rods or baskets form the reinforcing body. Also, so-called shear mandrels are known, so that the reinforcing body in particular may also be constructed of a Schubdomsystem consisting of steel elements or fiber-reinforced polymer elements which form the shear mandrels.
  • Filling the clearance with the reaction mixture may be accomplished by a flexible casting system, such as a sprue system, a rigid or oscillating casting head, or a casting mandrel designed to exist between the concrete element and the bed surface despite the presence of the reinforcement body can be moved.
  • a flexible casting system such as a sprue system, a rigid or oscillating casting head, or a casting mandrel designed to exist between the concrete element and the bed surface despite the presence of the reinforcement body can be moved.
  • the casting can also be done from the side, and the reaction mixture can enter the free space.
  • the term casting also encompasses any type of spraying or spraying of the reaction mixture.
  • the bed can in principle be formed by any type of flowable solids and may also comprise mixtures of different solids.
  • the bed should be suitable to form a barrier to the reaction mixture so as to form forming, wherein the reaction mixture, which comprises in particular the components polyol and isocyanate, in the approximately horizontally flat extending fondrechenden space with vertically defined height can foam.
  • the thus created cavity forms a defined cavity with a substantially flat, parallel to the first concrete wall extending extension between the surface of the bed as the lower boundary and the bottom of the first concrete wall as the upper boundary, and this cavity can in particular by means of a distribution system over the entire surface with flowable Reaction mixture or another at least phased flowable mixture are filled to form the insulating layer after curing.
  • the second concrete wall can be cast onto the manufactured element or the insulated first concrete wall can be immersed in the still fresh (non-set) second concrete wall, so that the end component is a reinforced concrete sandwich element with two concrete walls and the intermediate insulating layer, in particular a PU - Hard foam core insulation results.
  • the following process step takes place after curing of the insulating layer: Insertion of the first concrete wall with the reinforcing body in a casting mold, wherein the protruding portion and the insulating layer are arranged below the first concrete wall. It can then be done filling the mold with concrete, but preferably can take place the first concrete wall in the already reinforced and freshly concreted second wall.
  • the casting of the concrete for the second wall is usually carried out so before inserting the already cured first wall.
  • the result is the second concrete wall, in which the protruding portion of the reinforcing body is at least partially also cast. In this embodiment, therefore, the projecting portion protrudes downwards.
  • the mold is delimited upwards by the concrete wall. Depending on the amount of liquid concrete, which is introduced into the mold, the free space is thus selectively filled.
  • the second concrete wall can also be formed in such a way that the second concrete wall rests against the insulating layer, at least indirectly, by completely filling the free space. So it is then in the finished product no gap between the second concrete wall and insulation layer available.
  • the free space in the casting mold between the bottom of the casting mold and the insulating layer is only partially filled with liquid concrete, so that a gap remains between the insulating layer and the second concrete wall.
  • Such a gap can be filled with concrete, for example, later on the site.
  • the composite of insulating layer and the first concrete wall is inserted with the reinforcing body in the mold, wherein the protruding portion of the reinforcing body and the insulating layer is disposed above the first concrete wall.
  • the insulating layer can form the bottom of the mold thus created.
  • the composite of the first concrete wall with the reinforcing body and the insulating layer is immersed in an already filled with concrete mold with the insulating layer facing down and the concrete is then cured for this process step. In This embodiment, no gap between the second concrete wall and insulation layer is generated.
  • An indirect concern also means a structure in which a further layer of material is provided between the concrete wall and the adjacent insulating layer, for example an insulating film.
  • a further layer of material is provided between the concrete wall and the adjacent insulating layer, for example an insulating film.
  • the two layers are no longer in contact with each other.
  • the concrete walls which may basically be plate-shaped, are oriented substantially horizontally.
  • FIG. 1 shows the first part of the production process in several steps
  • Figure 2 shows the second part of the manufacturing process in a first embodiment in several steps
  • Figure 3 shows the second part of the manufacturing process in a second embodiment in several steps.
  • FIG. 2c shows a finished reinforced concrete element 10, which was prepared by a method according to the invention.
  • the reinforced concrete element 10 includes an overhead arranged first concrete wall 11 and a second concrete wall spaced therefrom 12. Between the two concrete walls 11 and 12, an insulating layer 14 is provided. The insulating layer 14 is applied to the first concrete wall 11, and between the insulating layer 14 and the second concrete wall 12, a free space 20 is formed.
  • Figure 3c shows an alternative reinforced concrete element 10. This corresponds largely to the structure of the reinforced concrete element of Figure 2c, wherein the free gap 22 is omitted.
  • the insulating layer 14 is now also on the second concrete wall 12. Between the insulating layer 14 and the adjoining concrete walls can be arranged, for example, plastic films or other layers of material.
  • a reinforcing body 13 is shown in the form of a steel reinforcement basket, visible in the intermediate space 20.
  • the reinforcing body 13 is completely enclosed by concrete or the insulating layer 14 and therefore not visible.
  • FIG. 1 A first part of the production method according to the invention will now be described with reference to FIG.
  • the reinforcing body 13 is inserted in a first mold 17.
  • the first mold 17 is now partially filled with liquid concrete 22.
  • the concrete then cures to the first concrete wall 11, see Figure lb.
  • a section 13 "of the reinforcing body 13 is now cast in the first concrete wall 11.
  • Another section 13 'of the reinforcing body 13 protrudes from the first concrete wall 11.
  • first concrete wall (11) and reinforcing body (13) is reversed, so that the protruding portion 13 'is arranged on the underside of the first concrete wall 11.
  • the bed 15 is formed by sand, in particular by quartz sand. But it is only the reinforcing body 13 with its protruding portion 13 'immersed in the bed 15.
  • the first concrete wall 11 remains completely above and arranged at a distance from the bed 15. There thus remains a vertical space 16 between the first concrete wall 11 and the bed 15 in the hopper 23, see Figure ld.
  • the bed 15 can be shaken by means of a vibrator.
  • the shaking of the bed 15 is useful so as to distribute the bed as evenly as possible and to obtain a flat surface as possible.
  • the free space 16 is now completely filled with a flowable reaction mixture, in the present example PU foam made of polyol and isocyanate.
  • the reaction mixture is solid and forms a composite of the insulating layer 14 with the first concrete wall 11 and the reinforcing body, see Figure le.
  • Figure lf now the intermediate product is shown, which comprises the first concrete wall 11, the adjacent thereto insulating layer 14 and the reinforcing body 13.
  • FIGS. 2 (first embodiment) and 3 (second embodiment) the further processing of the intermediate product according to FIG. 1 f to the finished reinforced concrete element 10 will now be explained.
  • the intermediate product according to FIG. 1f may also represent a finished reinforced concrete element.
  • the intermediate product is inserted into a second mold 18, see Figure 3a.
  • the reinforcing body 13 is inserted with its protruding portion 13 'down into the second mold 18. Spacers, not shown, can ensure that the reinforcing body 13 basically has a certain distance from the bottom 19 of the casting mold 18. It can be seen in FIG. 2b that a free space 21 is now formed between the insulating layer 14 and the bottom 19 of the casting mold 18.
  • the protruding portion 13 'of the reinforcing body 13 is arranged.
  • This space 21 is now at least partially filled with concrete 22. There remains a gap 20, since the space 21 is only partially filled. But it is also possible that the space 21 is completely filled. So then the second concrete wall 12 is brought into contact with the insulating layer 14.
  • the intermediate product according to FIG. 1 f is inserted into the second casting mold 18 such that the protruding section 13 'of the reinforcing body 13 faces upwards and the first concrete wall 11 is arranged below the insulating layer 14, see FIG. FIG. 3 b shows the intermediate product according to FIG. 1 f within the second casting mold 18.
  • the first concrete wall 11 rests on the bottom 19 of the second casting mold 18.
  • the mold 18 is filled from above with concrete 22. Due to gravity now puts the filled concrete 22 to the insulating layer 14, so that it is not provided in this embodiment, that a gap 20 between the insulating layer and the second concrete wall 12 is formed.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines mehrschichtigen, bewehrten Betonelementes (10), aufweisend wenigstens eine erste Betonwandung (11) im Verbund mit einem Bewehrungskörper (13), wobei das Betonelement (10) eine zumindest mittelbar an die erste Betonwandung (11) anliegende Dämmschicht (14) umfasst und wobei der Bewehrungskörper (13) wenigstens teilweise aus der ersten Betonwandung (11) hervorstehend und die Dämmschicht (14) durchdringend ausgebildet ist, umfassend die folgenden Schritte: Bereitstellen des Verbundes aus der ersten Betonwandung (11) mit dem teilweise aus dieser hervorstehenden Bewehrungskörper (13), Bereitstellen einer Schüttung (15) insbesondere in einem nach oben offenen Schüttungsbehältnis (23), Anordnen der ersten Betonwandung (11) mit dem daran angeordneten Bewehrungskörper (13) über der Oberfläche der Schüttung (15), derart, dass ein hervorstehender Abschnitt (13') des Bewehrungskörpers (13) unterseitig der ersten Betonwandung (11) angeordnet ist und nur teilweise in die Schüttung (15) eingetaucht wird, sodass ein vertikaler Freiraum (16) zwischen der Oberfläche der Schüttung (15) und der Unterseite der ersten Betonwandung (11) verbleibt, Auffüllen des Freiraums (16) mit einem Reaktionsgemisch und Aushärten des Reaktionsgemisches (14) zur Bildung der Dämmschicht (14).

Description

Verfahren zur Herstellung eines mehrschichtigen, bewehrten Betonelements
Beschreibung Die Erfindung betrifft ein Verfahren zur Herstellung eines mehrschichtigen, bewehrten Betonelements, wobei das mehrschichtige, bewehrte Betonelement wenigstens eine erste Betonwandung im Verbund mit einem Bewehrungskörper aufweist, wobei das Betonelement eine zumindest mittelbar an die erste Betonwandung anliegende Dämmschicht umfasst und wobei der Bewehrungskörper wenigstens teilweise aus der ersten Betonwandung hervorstehend und die Dämmschicht durchdringend ausgebildet ist.
STAND DER TECHNIK
Betonfertigteile spielen in der Bauindustrie eine wichtige Rolle. Angesichts steigender Anforderungen an Energieeffizienz werden seit einigen Jahren Betonfertigteile werkseitig mit integrierten Dämmschichten ausgestattet, insbesondere betrifft dies Wand und Decken aus Stahlbeton mit einer Kerndämmung. Meist wird allerdings bei dem nahezu vollständig automatisierten Produktionsprozess händisch Dämmplattenware, insbesondere aus Mineralwolle und Polystyrol, eingebracht.
Die EP 1 010 828 Bl zeigt eine weiterführende Herstellung eines Wandfertigteils mit einer Innenschale und einer Außenschale aus Beton, die über Träger eines Bewehrungskörpers miteinander verbunden sind. Nach dem Herstellen der Außenschale wird auf deren Innenseite PU- Schaum aufgebracht, die zum Aufbringen des PU- Schaums nach oben weist. Die komplementäre Betonschale wird anschließend durch Eintauchen in ein Betonbett und nachfolgendes Aushärten hergestellt. Ein definierter Hohlraum für den PU- Schaumkörper wird dabei nicht geschaffen, und ein anschließendes Ausgießen mit weiterem Beton erfolgt auf eine Undefinierte PU- Dämmschichtoberfläche. Der noch nicht ausgehärtete PU- Schaumkörper, der als Reaktionsgemisch aufgetragen wird, wird mittels eines Luftstroms verteilt. Die Höhe des ausgehärteten Schaums ergibt sich dabei aus der aufgetragenen Höhe des Reaktionsgemisches, wobei dessen Höhe wiederum durch die Geschwindigkeit des Auftrags bei gegebener Reaktionszeit bestimmt wird und eine unregelmäßige Topographie aufweist. Eine baulich geometrische Begrenzung des Hohlraums wird daher nicht geschaffen, sodass nachteilhafterweise keine Dämmschicht einer definierten Dicke gebildet werden kann. Ein ähnliches Verfahren offenbart die EP 1 106 745 A2. Hierbei wird ebenfalls ein Verfahren zur Herstellung eines vorgefertigten Deckenelementes als Fertigbauteil beschrieben, wobei zwei Scheiben aus Stahlbeton durch mehrere Gitterträger im Abstand voneinander gehalten werden, und wobei die Gitterträger in der jeweiligen Scheibe einbetoniert sind und wobei die Endabschnitte zumindest die Längsstäbe mit angeschweißten Strebenknoten umfassen, und wobei der Raum zwischen den Scheiben vollständig mit geschäumtem Polyurethan ausgefüllt wird. Der sich zwischen den zwei Scheiben ergebende Hohlraum wird bereits bei der Herstellung mit Polyurethan-Ortschaum ausgeschäumt. Die ausgehärtete Polyurethanschicht soll dabei die baustatische Funktion der Gitterträger und der Betonscheiben unterstützen. Dabei ist weiterhin angegeben, dass eine solche Fertigung vorteilhaft auf einer Umlauf-Palettenanlage im Produktionsbetrieb wirtschaftlich erfolgen kann. Die geforderte Wärmedämmung ist dabei über die Dicke der Polyurethanschicht einstellbar, nachteilhafterweise kann jedoch das vorgefertigte Deckenelement nur mit einem Sandwichaufbau fertiggestellt werden, da zwingend zwei beabstandet zueinander angeordnete Betonscheibenelemente notwendig sind, um einen Hohlraum für das Eingeben des Reaktionsgemisches zur Bildung der Polyurethanschicht zu definieren.
OFFENBARUNG DER ERFINDUNG
Die Aufgabe der vorliegenden Erfindung besteht darin, ein verbessertes Verfahren zur Herstellung eines mehrschichtigen, bewehrten Betonelements bereit zu stellen, und insbesondere ergibt sich die Aufgabe der Erfindung, auf flexible Weise die Dämmschicht aus einem PU- Schaum vorzugsweise mit verschiedenen Dicken bilden zu können.
Die der Erfindung zugrundeliegende Aufgabe wird gelöst durch ein Verfahren nach Anspruch 1 , vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.
Erfindungsgemäß ist ein Verfahren zur Herstellung eines mehrschichtigen, bewehrten Betonelements vorgesehen, wobei das Betonelement eine erste Betonwandung im Verbund mit einem Bewehrungskörper umfasst und eine an der ersten Betonwandung zumindest mittelbar anliegende Dämmschicht aufweist, wobei die erste Betonwandung über einen Bewehrungskörper, insbesondere einen GFK- oder Stahlbewehrungskörper, mit der Dämmschicht und insbesondere mit einer zweiten Betonwandung verbunden ist. Das erfindungsgemäße Verfahren umfasst dabei die nachfolgend genannten Schritte: Als erster Schritt kann das Bereitstellen der ersten Betonwandung mit einem Bewehrungskörper erfolgen, wobei der Bewehrungskörper teilweise in die erste Betonwandung eingegossen ist. Dies kann durch Gießen und Aushärten der ersten Betonwandung in einer Gießform erfolgen, wobei während des Gießens ein Abschnitt des Bewehrungskörpers in die Betonwandung eingegossen wird (im Folgenden: eingegossener Abschnitt), und ein weiterer Abschnitt des Bewehrungskörpers kann aus der ersten Betonwandung hervorstehen (im Folgenden: hervorstehender Abschnitt). Es folgt anschließend der Schritt des Anordnens der ersten Betonwandung und dem daran angeordneten Bewehrungskörper mit einem vertikalen Abstand der Unterseite der ersten Betonwandung über einer Schüttung, insbesondere aus Quarzsand, der zuvor in ein Schüttungsbehältnis eingegeben und beispielsweise gerüttelt oder glattgestrichen wurde. Der hervorstehende Abschnitt ist dabei unterseitig der ersten Betonwandung angeordnet ist und taucht in die Schüttung ein, wobei die Schüttung insbesondere anschließend gerüttelt werden kann. Ein vordefinierter Freiraum verbleibt dabei zwischen der Oberfläche der Schüttung und der Unterseite der ersten Betonwandung. Anschließend folgt das Auffüllen des Freiraums mit einem Reaktionsgemisch zur Bildung von Polyurethanschaum, der eine Dämmschicht bildet. Anschließend folgt der Schritt des Aushärtens der Dämmschicht. In einem abschließenden Schritt kann die Betonwandung mit dem Bewehrungskörper und der an diesem Verbund ausgehärteten Dämmschicht aus Polyurethan aus der Schüttung entnommen werden und insbesondere vom Material der Schüttung befreit werden.
Der Kern der Erfindung besteht insbesondere darin, dass die mit dem Bewehrungskörper versehene Betonwandung, beispielsweise mit integrierten metallischen Gitterträgern oder GFK- Ankern zur Bildung des Bewehrungskörpers, kopfüber, d.h. mit dem Bewehrungskörper nach unten weisend, über einem vorzugsweise rüttelfähigen Schüttungsbehältnis oder dergleichen platziert wird, in der die Schüttung aus fließfähigen Feststoffen vorgesehen ist, insbesondere aus einem Granulat feiner Körnung wie beispielsweise Quarzsand. Die Füllhöhe der Schüttung bzw. die Höhe, mit der die Betonwandung über der Oberfläche der Schüttung gehalten wird, kann beliebig vorgegeben werden. So kann die Dämmschicht höchst flexibel mit verschiedenen Dicken gebildet werden. Die Dicke der Dämmschicht kann beispielsweise einen Wert von 2cm bis 40cm, bevorzugt beispielsweise von 5cm bis 30cm und besonders bevorzugt beispielsweise von 10cm bis 25cm betragen, da diese Dicken besonders gut mit einem Reaktionsgemisch geschäumt werden können. Besonders eignen sich Reaktionsgemische aus Polyol und Isocyanat zur Herstellung von Polyurethan- Dämmschichten, die Dämmschicht kann jedoch jedes weitere Dämmmaterial umfassen, beispielsweise auch einen Phenolharzschaum.
Der Bewehrungskörper muss nicht einstückig ausgeführt sein und es können beispielsweise auch einzelne, vorzugsweise glasfaserverstärkte Polymerstäbe oder -körbe den Bewehrungskörper bilden. Auch sind sogenannte Schubdorne bekannt, sodass der Bewehrungskörper insbesondere auch aus einem Schubdomsystem aufgebaut sein kann, das aus Stahlelementen oder faserverstärkten Polymerelementen besteht, die die Schubdorne bilden.
Das Ausfüllen des Freiraumes mit dem Reaktionsgemisch kann durch ein flexibles Gießsystem erfolgen, beispielsweise mit einem Gießharkensystem, mit einem starren oder mit einem oszillierenden Gießkopf oder mit einem Gießdorn, der so beschaffen ist, dass dieser trotz des Vorhandenseins des Bewehrungskörpers zwischen das Betonelement und die Schüttungsoberfläche bewegt werden kann. Bevorzugt kann jedoch das Gießen auch von der Seite erfolgen, und das Reaktionsgemisch kann in den Freiraum einlaufen. Der Begriff des Gießens umfasst dabei ebenfalls jede Art des Sprühens oder Spritzens des Reaktionsgemisches.
Die Schüttung kann grundsätzlich durch jede Art von fließfähigen Feststoffen gebildet werden und kann auch Mischungen unterschiedlicher Feststoffe umfassen. Die Schüttung soll dabei geeignet sein, eine Barriere für das Reaktionsgemisch zu bilden um so formbildend zu wirken, wobei das Reaktionsgemisch, das insbesondere die Komponenten Polyol und Isocyanat umfasst, im sich etwa horizontal flach erstreckenden erstrechenden Freiraum mit vertikal definierter Höhe aufschäumen kann.
Hierfür hat sich insbesondere Quarzsand als geeignet herausgestellt. Der so geschaffene Hohlraum bildet eine definierte Kavität mit einer im Wesentlichen flachen, parallel zur ersten Betonwandung sich erstreckenden Ausdehnung zwischen der Oberfläche der Schüttung als untere Begrenzung und der Unterseite der ersten Betonwandung als obere Begrenzung, und dieser Hohlraum kann insbesondere mittels eines Verteilungssystems vollflächig mit fließfähigem Reaktionsgemisch oder einem anderen zumindest phasenweise fließfähigen Gemisch befüllt werden, um nach einer Aushärtung die Dämmschicht zu bilden.
Im Anschluss daran kann die zweite Betonwandung an das hergestellte Element angegossen oder die gedämmte erste Betonwandung in die noch frische (nicht-abgebundene) zweite Betonwandung eingetaucht werden, so dass sich als Endbauteil ein Stahlbetonsandwichelement mit zwei Betonwandungen und der dazwischen liegenden Dämmschicht, insbesondere einer PU- Hartschaumkerndämmung, ergibt.
Es hat sich gezeigt, dass der Einsatz einer Polyurethanhartschaumdämmung, die als flüssige, reaktive Mischung in den Freiraum eingebracht werden kann, deutliche Vorteile hinsichtlich einer effizienteren, automatisierten Herstellung und/oder eines energieeffizienteren, schlankeren Bauteils ermöglicht. Es kann durch das erfindungsgemäße Verfahren ein automatisierter Eintrag einer Polyurethandämmschicht als flüssige Reaktionsmischung ermöglicht werden und in gesamten Produktionsprozess integriert werden.
In einer ersten bevorzugten Ausgestaltung erfolgt nach dem Aushärten der Dämmschicht der folgende Verfahrensschritt: Einlegen der ersten Betonwandung mit dem Bewehrungskörper in eine Gießform, wobei der hervorstehende Abschnitt und die Dämmschicht unterhalb der ersten Betonwandung angeordnet sind. Es kann anschließend das Auffüllen der Gießform mit Beton erfolgen, bevorzugt kann jedoch das Einlegen der ersten Betonwandung in die bereits bewehrte und frisch betonierte zweite Wandung stattfinden.
Das Gießen des Betons für die zweite Wandung erfolgt üblicherweise also vor dem Einlegen der bereits ausgehärteten ersten Wandung. So entsteht die zweite Betonwandung, in die der hervorstehende Abschnitt des Bewehrungskörpers zumindest teilweise ebenfalls eingegossen wird. In dieser Ausgestaltung ragt also der hervorstehende Abschnitt nach unten. Die Gießform wird nach oben durch die Betonwandung abgegrenzt. Je nach Menge an flüssigem Beton, die in die Gießform eingebracht ist, wird der Freiraum somit gezielt aufgefüllt.
Dabei kann auch wahlweise durch ein vollständiges Auffüllen des Freiraums die zweite Betonwandung derart gebildet werden, dass die zweite Betonwandung an die Dämmschicht zumindest mittelbar anliegt. Es ist also dann im fertigen Produkt kein Zwischenraum mehr zwischen zweiter Betonwandung und Dämmschicht vorhanden. Alternativ kann aber auch vorgesehen sein, dass der Freiraum in der Gießform zwischen dem Boden der Gießform und der Dämmschicht nur teilweise mit flüssigem Beton ausgegossen wird, so dass ein Zwischenraum zwischen der Dämmschicht und der zweiten Betonwandung verbleibt. Ein solcher Zwischenraum kann beispielsweise später auf der Baustelle mit Beton aufgefüllt werden.
In einer zweiten bevorzugten Ausgestaltung ist vorgesehen, dass nach dem Aushärten der Verbund aus Dämmschicht und der ersten Betonwandung mit dem Bewehrungskörper in die Gießform eingelegt wird, wobei der hervorstehende Abschnitt des Bewehrungskörpers und die Dämmschicht oberhalb der ersten Betonwandung angeordnet ist. In diesem Fall kann die Dämmschicht den Boden der so geschaffenen Gießform bilden. Das anschließende Auffüllen dieser Gießform mit flüssigem Beton wird dann dazu führen, dass zwangsläufig die zweite Betonwandung zumindest mittelbar in Anlage mit der Dämmschicht gebracht wird. Bevorzugt wird auch für diesen Verfahrensschritt der Verbund aus der ersten Betonwandung mit dem Bewehrungskörper und der Dämmschicht in eine bereits mit Beton verfüllte Gießform mit der Dämmschicht nach unten weisend eingetaucht und der Beton wird anschließend ausgehärtet. In dieser Ausgestaltung wird kein Zwischenraum zwischen zweiter Betonwandung und Dämmschicht erzeugt.
Unter einem mittelbaren Anliegen ist dabei auch ein Aufbau gemeint, bei dem zwischen der Betonwandung und der daran anliegenden Dämmschicht eine weitere Materiallage vorgesehen ist, beispielsweise eine Isolierfolie. Sollte allerdings zwischen zwei Schichten ein freier, insbesondere mit Luft befüllter Zwischenraum vorgesehen sein, so befinden sich die beiden Schichten nicht mehr in Anlage miteinander.
Während der Auffüllvorgänge sind die Betonwandungen, die grundsätzlich plattenförmig sein können, im Wesentlichen horizontal ausgerichtet.
BEVORZUGTE AUSFÜHRUNGSBEISPIELE DER ERFINDUNG
Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung bevorzugter Ausführungsbeispiele der Erfindung anhand der Figuren näher dargestellt. Es zeigt:
Figur 1 den ersten Teil des Herstellungsverfahrens in mehreren Schritten,
Figur 2 den zweiten Teil des Herstellungsverfahrens in einer ersten Ausgestaltung in mehreren Schritten und
Figur 3 den zweiten Teil des Herstellungsverfahrens in einer zweiten Ausgestaltung in mehreren Schritten.
Figur 2c zeigt ein fertiges Stahlbetonelement 10, welches durch ein erfindungsgemäßes Verfahren hergestellt wurde. Das Stahlbetonelement 10 umfasst eine obenliegend angeordnete erste Betonwandung 11 und eine dazu beabstandete zweite Betonwandung 12. Zwischen den beiden Betonwandungen 11 und 12 ist eine Dämmschicht 14 vorgesehen. Die Dämmschicht 14 liegt an der ersten Betonwandung 11 an, und zwischen der Dämmschicht 14 und der zweiten Betonwandung 12 ist ein freier Zwischenraum 20 gebildet.
Figur 3c zeigt ein alternatives Stahlbetonelement 10. Dies entspricht weitgehend dem Aufbau des Stahlbetonelements nach Figur 2c, wobei der freie Zwischenraum 22 entfällt. Insofern liegt die Dämmschicht 14 nun auch an der zweiten Betonwandung 12 an. Zwischen der Dämmschicht 14 und den daran anliegenden Betonwandungen können beispielsweise Kunststofffolien oder andere Materiallagen angeordnet sein.
In der Ausgestaltung nach Figur 2c ist ein Bewehrungskörper 13 in Form eines Stahlbewehrungskorbes gezeigt, sichtbar im Zwischenraum 20. In der Figur 3c ist der Bewehrungskörper 13 vollständig von Beton bzw. der Dämmschicht 14 umschlossen und daher nicht sichtbar.
Anhand der Figur 1 wird nun ein erster Teil des erfindungsgemäßen Herstellungsverfahrens beschrieben. In Figur la ist der Bewehrungskörper 13 in einer ersten Gießform 17 eingelegt. Die erste Gießform 17 wird nun mit flüssigem Beton 22 teilweise aufgefüllt. Der Beton härtet anschließend zur ersten Betonwandung 11 aus, siehe Figur lb. Ein Abschnitt 13" des Bewehrungskörpers 13 ist nun in die erste Betonwandung 11 eingegossen. Ein anderer Abschnitt 13' des Bewehrungskörpers 13 ragt aus der ersten Betonwandung 11 hervor.
Anschließend wird das entstehende Element aus erster Betonwandung (11) und Bewehrungskörper (13) umgedreht, sodass der hervorstehende Abschnitt 13' unterseitig der ersten Betonwandung 11 angeordnet ist. Quasi kopfüber wird nun der Bewehrungskörper 13 in eine Schüttung 15 mit definierter Tiefe eingetaucht, die in ein Schüttungsbehältnis 23 eingegeben ist, siehe Figur lc. Die Schüttung 15 wird durch Sand, insbesondere durch Quarzsand, gebildet. Es wird aber lediglich der Bewehrungskörper 13 mit seinem hervorstehenden Abschnitt 13' in die Schüttung 15 eingetaucht. Die erste Betonwandung 11 bleibt vollständig oberhalb und mit Abstand zur Schüttung 15 angeordnet. Es verbleibt somit ein vertikaler Freiraum 16 zwischen erster Betonwandung 11 und der Schüttung 15 im Schüttungsbehältnis 23, siehe Figur ld.
Die Schüttung 15 kann mittels einer Rüttelvorrichtung gerüttelt werden. Insbesondere nach dem Eintauchen des Bewehrungskörpers 13 ist das Rütteln der Schüttung 15 sinnvoll, um so die Schüttung möglichst gleichmäßig zu verteilen und eine möglichst ebene Oberfläche zu erhalten. Der Freiraum 16 wird nun vollständig mit einem fließfähigen Reaktionsgemisch, im vorliegenden Beispiel PU-Schaum aus Polyol und Isocyanat, ausgefüllt. Dabei bzw. anschließend wird das Reaktionsgemisch fest und bildet einen Verbund aus der Dämmschicht 14 mit der ersten Betonwandung 11 und dem Bewehrungskörper, siehe Figur le. In Figur lf ist nun das Zwischenprodukt gezeigt, welches die erste Betonwandung 11, die daran anliegende Dämmschicht 14 und den Bewehrungskörper 13 umfasst. Anhand der Figuren 2 (erste Ausgestaltung) und 3 (zweite Ausgestaltung) wird nun die Weiterverarbeitung des Zwischenprodukts nach Figur lf zum fertigen Stahlbetonelement 10 erläutert. Allerdings kann auch je nach Anwendung bereits das Zwischenprodukt nach Figur lf ein fertiges Stahlbetonelement darstellen.
In der ersten Ausgestaltung wird das Zwischenprodukt in eine zweite Gießform 18 eingesetzt, siehe Figur 3a. Der Bewehrungskörper 13 wird mit seinem hervorstehenden Abschnitt 13' nach unten in die zweite Gießform 18 eingesetzt. Nicht dargestellte Abstandshalter können sicherstellen, dass der Bewehrungskörper 13 grundsätzlich einen gewissen Abstand zum Boden 19 der Gießform 18 aufweist. In Figur 2b ist zu erkennen, dass nun ein Freiraum 21 zwischen der Dämmschicht 14 und dem Boden 19 der Gießform 18 gebildet ist. Hierin wird der hervorstehende Abschnitt 13' des Bewehrungskörpers 13 angeordnet. Dieser Freiraum 21 wird nun mit Beton 22 zumindest teilweise aufgefüllt. Es verbleibt ein Zwischenraum 20, da der Freiraum 21 nur teilweise aufgefüllt wird. Es ist aber auch möglich, dass der Freiraum 21 vollständig aufgefüllt wird. So wird dann auch die zweite Betonwandung 12 in Anlage mit der Dämmschicht 14 gebracht.
In der zweiten Ausgestaltung wird das Zwischenprodukt nach Figur 1 f so in die zweite Gießform 18 eingesetzt, dass der hervorstehende Abschnitt 13' des Bewehrungskörpers 13 nach oben weist und sodass die erste Betonwandung 11 unterhalb der Dämmschicht 14 angeordnet ist, siehe Figur 3a. In Figur 3b ist nun das Zwischenprodukt nach Figur lf innerhalb der zweiten Gießform 18 gezeigt. Die erste Betonwandung 11 liegt auf dem Boden 19 der zweiten Gießform 18 auf. Nun wird die Gießform 18 von oben mit Beton 22 aufgefüllt. Aufgrund der Schwerkraft legt sich nun der eingefüllte Beton 22 an die Dämmschicht 14 an, so dass in dieser Ausgestaltung es nicht vorgesehen ist, dass ein Zwischenraum 20 zwischen der Dämmschicht und der zweiten Betonwandung 12 entsteht.
Es ist nicht erforderlich, dass das Auffüllen der Gießformen 17, 18 mit Beton 22 (Figur la, 2b, 3b) oder das Auffüllen des Freiraumes 16 oberhalb der Schüttung 15 mit der Dämmschicht 14 (Figur l e) zwingend nach dem Einlegen des Bewehrungskörpers 13 zu erfolgen hat. Vielmehr kann der Bewehrungskörper 13 auch in die bereits mit Beton oder der Dämmschicht 14 gefüllte Form eingetaucht werden. Die Gießformen können rüttelfähig sein, um eine Verdichtung des Betons zu erreichen. Die Erfindung beschränkt sich in ihrer Ausführung nicht auf das vorstehend angegebene bevorzugte Ausführungsbeispiel. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearteten Ausführungen Gebrauch macht. Sämtliche aus den Ansprüchen, der Beschreibung oder den Zeichnungen hervorgehenden Merkmale und/oder Vorteile, einschließlich konstruktiver Einzelheiten oder räumlicher Anordnungen, können sowohl für sich als auch in den verschiedensten Kombinationen erfindungswesentlich sein.
Bezugszeichenliste
10 Betonelement
11 erste Betonwandung
12 zweite Betonwandung
13 Bewehrungskörper
13' hervorstehender Abschnitt des Bewehrungskörpers
13" eingegossener Abschnitt des Bewehrungskörpers
14 Dämmschicht
15 Schüttung
16 vertikaler Freiraum
17 Gießform
18 Gießform
19 Boden
20 Zwischenraum
21 Freiraum
22 flüssiger Beton
23 Schüttungsbehältnis

Claims

Verfahren zur Herstellung eines mehrschichtigen, bewehrten Betonelementes (10), aufweisend wenigstens eine erste Betonwandung (11) im Verbund mit einem Bewehrungskörper (13), wobei das Betonelement (10) eine zumindest mittelbar an die erste Betonwandung (11) anliegende Dämmschicht (14) umfasst und wobei der Bewehrungskörper (13) wenigstens teilweise aus der ersten Betonwandung (11) hervorstehend und die Dämmschicht (14) durchdringend ausgebildet ist, umfassend die folgenden Schritte:
Bereitstellen des Verbundes aus der ersten Betonwandung (11) mit dem teilweise aus dieser hervorstehenden Bewehrungskörper (13),
Bereitstellen einer Schüttung (15) insbesondere in einem nach oben offenen Schüttungsbehältnis (23),
Anordnen der ersten Betonwandung (11) mit dem daran angeordneten Bewehrungskörper (13) über der Oberfläche der Schüttung (15), derart, dass ein hervorstehender Abschnitt (13') des Bewehrungskörpers (13) unterseitig der ersten Betonwandung (11) angeordnet ist und nur teilweise in die Schüttung (15) eingetaucht wird, sodass ein vertikaler Freiraum (16) zwischen der Oberfläche der Schüttung (15) und der Unterseite der ersten Betonwandung (11) verbleibt,
Auffüllen des Freiraums (16) mit einem Reaktionsgemisch und
Aushärten des Reaktionsgemisches zur Bildung der Dämmschicht (14).
Verfahren nach Anspruch 1, gekennzeichnet durch den vorgelagerten Schritt des Gießens und Aushärtens der ersten Betonwandung (11), wobei mit dem Gießen ein Abschnitt (13") des Bewehrungskörpers (13) in die erste Betonwandung (11) eingegossen wird und ein weiterer Abschnitt (13') des Bewehrungskörpers (13) aus der ersten Betonwandung (11) hervorsteht.
Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch die nach der Bildung der Dämmschicht (14) vorgesehenen weiteren Verfahrensschritte:
Bereitstellen einer Gießform (18),
Einlegen des Verbundes aus der ersten Betonwandung (1 1), dem teilweise aus dieser hervorstehenden Bewehrungskörper (13) und der gebildeten Dämmschicht (14) in die insbesondere bereits mit flüssigem Beton gefüllte Gießform (18), wobei der hervorstehende Abschnitt (13') des Bewehrungskörpers (13) und die gebildete Dämmschicht (14) unterhalb der ersten Betonwandung (11) angeordnet ist, Auffüllen der Gießform (18) mit flüssigem Beton (22), wenn diese nicht bereits mit Beton vorgefüllt ist,
Aushärten der zweiten Betonwandung (12), in die der hervorstehende Abschnitt (13') des Bewehrungskörpers (13) zumindest teilweise eingegossen ist.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass beim Auffüllen der Gießform (18) mit flüssigem Beton (22) und Erzeugen der zweiten Betonwandung (12) ein zwischen einem Boden (19) der Gießform (18) und der Unterseite der Dämmschicht (14) gebildeter Freiraum (21) nur teilweise mit flüssigem Beton (22) ausgegossen wird, sodass ein freier Zwischenraum (20) zwischen der Dämmschicht (14) und der zweiten
Betonwandung (12) gebildet wird.
Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass beim Auffüllen der Gießform (18) mit flüssigem Beton (22) und Erzeugen der zweiten Betonwandung (12) ein zwischen einem Boden (19) der Gießform (18) und der Unterseite der Dämmschicht (14) gebildeter Freiraum (21) in der Gießform (18) vollständig mit flüssigem Beton (22) ausgegossen wird, sodass die Dämmschicht (14) mit der zweiten Betonwandung (12) wenigstens mittelbar aneinander anliegend ausgebildet wird.
Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch die nach der Bildung der
Dämmschicht (14) vorgesehenen weiteren Verfahrensschritte:
Einlegen des Verbundes aus der ersten Betonwandung (1 1), dem teilweise aus dieser hervorstehenden Bewehrungskörper (13) und der gebildeten Dämmschicht (14) in die Gießform (18), wobei der hervorstehende Abschnitt (13') und die Dämmschicht (14) oberhalb der ersten Betonwandung (11) angeordnet ist,
Auffüllen der Gießform (18) mit flüssigem Beton (22), wodurch nach Aushärten eine zweite Betonwandung (12) gebildet wird, wobei der hervorstehende Abschnitt (13') des Bewehrungskörpers (13) zumindest teilweise und vorzugsweise vollständig mit dem Beton der zweiten Betonwandung (12) eingegossen wird.
Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass während der Auffüllvorgänge der Gießformen (18) die erste Betonwandung (11) und/oder die Dämmschicht (14) im Wesentlichen horizontal ausgerichtet ist.
PCT/EP2014/052500 2013-02-15 2014-02-10 Verfahren zur herstellung eines mehrschichtigen, bewehrten betonelements WO2014124886A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480008971.9A CN104981330B (zh) 2013-02-15 2014-02-10 用于生产多层增强混凝土元件的方法
US14/766,148 US20150368902A1 (en) 2013-02-15 2014-02-10 Method for producing a multi-layered reinforced concrete element
EP14705737.6A EP2956283B1 (de) 2013-02-15 2014-02-10 Verfahren zur herstellung eines mehrschichtigen, bewehrten betonelements
MX2015010227A MX2015010227A (es) 2013-02-15 2014-02-10 Metodo para producir un elemento de hormigon armado de multiples capas.
RU2015139040A RU2015139040A (ru) 2013-02-15 2014-02-10 Способ изготовления многослойного армированного бетонного элемента

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13155444.6 2013-02-15
EP13155444.6A EP2767373A1 (de) 2013-02-15 2013-02-15 Verfahren zur Herstellung eines mehrschichtigen, bewehrten Betonelements

Publications (1)

Publication Number Publication Date
WO2014124886A1 true WO2014124886A1 (de) 2014-08-21

Family

ID=47748435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/052500 WO2014124886A1 (de) 2013-02-15 2014-02-10 Verfahren zur herstellung eines mehrschichtigen, bewehrten betonelements

Country Status (6)

Country Link
US (1) US20150368902A1 (de)
EP (2) EP2767373A1 (de)
CN (1) CN104981330B (de)
MX (1) MX2015010227A (de)
RU (1) RU2015139040A (de)
WO (1) WO2014124886A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104499654A (zh) * 2014-12-17 2015-04-08 张跃 一种预制装配式屋顶及其制作方法
CN107553806A (zh) * 2016-07-01 2018-01-09 科思创聚合物(中国)有限公司 聚氨酯混凝土夹芯元件及其制法
AU2019210599B2 (en) * 2012-08-02 2021-05-27 L. & A. Fazzini Manufacturing Pty Ltd Improved mesh, mesh panels, composite building elements and method of reinforcing and articles reinforced by the method, duct and riser walls and methods for their construction

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072933B2 (en) * 2016-02-26 2021-07-27 Ashgrove Holdings, Inc. Panel production kits, methods, and systems
CN109176867A (zh) * 2018-09-14 2019-01-11 西安建工绿色建筑集团有限公司 一种预制ptw墙板生产定位装置及预制ptw墙板生产方法
CN110219417B (zh) * 2019-05-05 2021-02-12 江苏建筑职业技术学院 一种高粘结性钢骨及生产工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1167500A (en) * 1966-09-19 1969-10-15 Sven Melker Nilsson Improvements relating to the manufacture of Construction Elements
DE3309820A1 (de) * 1983-03-18 1984-09-20 Ainedter, Dieter, Dipl.-Ing., Salzburg Deckenplatte und verfahren zu ihrer herstellung
EP1010828B1 (de) * 1998-12-17 2004-06-09 Glatthaar-Fertigkellerbau GmbH Verfahren zur Herstellung eines Wandfertigteils für die Erstellung von Gebäudewänden

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU77320A1 (de) * 1976-05-14 1977-08-24
IL53573A (en) * 1976-12-27 1980-09-16 Maso Therm Corp Composite building panel with reinforced shell
DE2849520A1 (de) * 1978-11-15 1980-05-29 Fricker Frimeda Metall Draht Verbindungsanker fuer eine mehrschichtenbauplatte
DE3027256A1 (de) * 1980-07-18 1982-02-18 Robert Bosch Gmbh, 7000 Stuttgart Mehrschichtsystem fuer waermeschutzanwendungen und verfahren zu seiner herstellung
US4486996A (en) * 1982-05-19 1984-12-11 Luis Alejos Construction-panel prefabrication method, panels thus made and equipment for implementing said method
JPH0483041A (ja) * 1990-07-25 1992-03-17 Toyo Tire & Rubber Co Ltd 型枠兼用金網入り断熱ボード
AT396274B (de) * 1991-04-23 1993-07-26 Avi Alpenlaendische Vered Bewehrungskoerper fuer eine deckenplatte
FR2681357A1 (fr) * 1991-09-12 1993-03-19 Beaupere Gerard Panneau prefabrique a parement de beton, procede pour sa fabrication et module de batiment forme de tels panneaux.
AT406064B (de) * 1993-06-02 2000-02-25 Evg Entwicklung Verwert Ges Bauelement
JPH09295313A (ja) * 1996-04-30 1997-11-18 Fudo Constr Co Ltd 沈埋函の製作方法
JPH1025854A (ja) * 1996-07-12 1998-01-27 Jiyoisuto:Kk 軽量コンクリート板
AT410688B (de) * 1996-11-21 2003-06-25 Evg Entwicklung Verwert Ges Bauelement
SE9701500D0 (sv) * 1997-04-20 1997-04-20 George Wegler Anordning vid väggupplag
US6226942B1 (en) * 1999-02-09 2001-05-08 Pete J. Bonin Building construction panels and method thereof
DE29921645U1 (de) * 1999-12-09 2000-02-17 Schwoerer Haus Kg Vorgefertigtes Deckenelement mit geschäumtem Polyurethan
ATE376612T1 (de) * 2002-11-21 2007-11-15 Schwoerer Haus Kg Fertigbauteil mit dämmaterial und in beton eingebetteten heizleitungen sowie zugehöriges herstellungsverfahren
DE202005005924U1 (de) * 2005-04-12 2005-06-30 Glatthaar-Fertigkeller Gmbh Kerngedämmte Fertigteilwand mit Verbundnadeln
NZ574900A (en) * 2006-07-14 2011-06-30 Thermo Tech Mark Ii Ltd Wall panel with concrete outer portion having protruding boundary which encloses a plastic sheet
ATE430854T1 (de) * 2007-02-13 2009-05-15 Iconorm Gmbh Bewehrter dämmkörper für eine einseitig wärmegedämmte fertigteilwand und fertigteilwand sowie verfahren zur herstellung
US20090113829A1 (en) * 2007-05-14 2009-05-07 Meier Franz X Three dimensional building element
US20110023410A1 (en) * 2008-04-15 2011-02-03 Carlos Hernandez Gallardo Integral panel for walls and floors
CN101863069A (zh) * 2010-05-29 2010-10-20 闫丕春 一种内墙板的制作方法
CN202047520U (zh) * 2011-03-09 2011-11-23 孟术 格构复合板
CN202073233U (zh) * 2011-05-04 2011-12-14 吉林省佳和钢结构安装有限公司 预制混凝土复合保温墙板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1167500A (en) * 1966-09-19 1969-10-15 Sven Melker Nilsson Improvements relating to the manufacture of Construction Elements
DE3309820A1 (de) * 1983-03-18 1984-09-20 Ainedter, Dieter, Dipl.-Ing., Salzburg Deckenplatte und verfahren zu ihrer herstellung
EP1010828B1 (de) * 1998-12-17 2004-06-09 Glatthaar-Fertigkellerbau GmbH Verfahren zur Herstellung eines Wandfertigteils für die Erstellung von Gebäudewänden

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019210599B2 (en) * 2012-08-02 2021-05-27 L. & A. Fazzini Manufacturing Pty Ltd Improved mesh, mesh panels, composite building elements and method of reinforcing and articles reinforced by the method, duct and riser walls and methods for their construction
CN104499654A (zh) * 2014-12-17 2015-04-08 张跃 一种预制装配式屋顶及其制作方法
CN104499654B (zh) * 2014-12-17 2019-04-02 张跃 一种预制装配式屋顶及其制作方法
CN107553806A (zh) * 2016-07-01 2018-01-09 科思创聚合物(中国)有限公司 聚氨酯混凝土夹芯元件及其制法
CN107553806B (zh) * 2016-07-01 2021-08-24 科思创德国股份有限公司 聚氨酯混凝土夹芯元件及其制法

Also Published As

Publication number Publication date
RU2015139040A (ru) 2017-03-22
CN104981330A (zh) 2015-10-14
EP2956283A1 (de) 2015-12-23
CN104981330B (zh) 2017-09-01
EP2956283B1 (de) 2017-02-01
EP2767373A1 (de) 2014-08-20
US20150368902A1 (en) 2015-12-24
MX2015010227A (es) 2016-10-26

Similar Documents

Publication Publication Date Title
EP2956283B1 (de) Verfahren zur herstellung eines mehrschichtigen, bewehrten betonelements
EP2281964B1 (de) Gegossenes Wandelement und Verfahren zu dessen Herstellung
DE2135007A1 (de) Konstruktionselement
EP0051101B1 (de) Zementplatte, sowie Verfahren und Vorrichtung zu deren Herstellung
DE2944424A1 (de) Verfahren zur herstellung von stahlbetonplattenaggregaten und fuer das verfahren eingerichteter elementensatz
CH648889A5 (de) Stahlbetonplatten-aggregat und verfahren zu seiner herstellung.
DE2714016C3 (de) Verfahren zur Herstellung einer Zweischichtenplatte
DE102017101205A1 (de) Vorrichtung und Verfahren zur Wärmedämmung einer Massivwand eines Gebäudes
EP0648902A1 (de) Bauelement und Verfahren zu dessen Herstellung
EP3296476A1 (de) Anordnung zum verbinden einer gebäudewand mit einer boden- oder deckenplatte und formbaustein für eine solche anordnung
EP3296478A1 (de) Anordnung zum verbinden einer gebäudewand mit einer boden- oder deckenplatte und formbaustein für eine solche anordnung
EP1190826B1 (de) Verfahren zum Herstellen eines Wandfertigteils
DE2940349A1 (de) Plattenfoermiger fertigbauteil und verfahren zu dessen herstellung
DE2616294B2 (de) Verfahren zum Herstellen einer selbsttragenden Mehrschichtenplatte oder -schale
DE2644316B1 (de) Raumzelle, fertiggarage o.dgl. aus stahlbeton
DE102017129383A1 (de) Verfahren zur Herstellung eines mehrschichtigen Fertigbauelements
AT352963B (de) Plattenfoermiges bauelement sowie vorrichtung und verfahren zu dessen herstellung
DE896860C (de) In sich vorgespanntes Bewehrungselement aus Formsteinen
DE112022001027T5 (de) Luftformendes konstruktives system
DE4031643A1 (de) Giessverfahren zur herstellung von stahlbetonstegdielenplatten bzw. stahlbetonrippendeckenplatten und insbesondere von i-foermigen stahlbetonrippenplatten
EP3918145A1 (de) Schalldämmendes wand- oder deckenbauelement und verfahren zu seiner herstellung
DE2727458A1 (de) Bauteil aus kunststoff-hartschaum und verfahren zu seiner herstellung
DE2026191C (de) Vorgefertigte Stahlbetonplatte
DE3004658A1 (de) Bauelemente, das dazugehoerige bauverfahren sowie vorrichtung und verfahren zur herstellung der bauelemente als praefabrikations system
EP3296477A1 (de) Formbaustein zum anordnen auf einer boden- oder auf oder unter einer deckenplatte und verfahren zum herstellen des formbausteins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14705737

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014705737

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014705737

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14766148

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/010227

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015139040

Country of ref document: RU

Kind code of ref document: A