WO2014119528A1 - 顕微鏡観察用容器の製造方法 - Google Patents

顕微鏡観察用容器の製造方法 Download PDF

Info

Publication number
WO2014119528A1
WO2014119528A1 PCT/JP2014/051732 JP2014051732W WO2014119528A1 WO 2014119528 A1 WO2014119528 A1 WO 2014119528A1 JP 2014051732 W JP2014051732 W JP 2014051732W WO 2014119528 A1 WO2014119528 A1 WO 2014119528A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
container
microscope observation
microscope
injection molding
Prior art date
Application number
PCT/JP2014/051732
Other languages
English (en)
French (fr)
Inventor
昌志 小林
阿井 敏幸
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2014559672A priority Critical patent/JPWO2014119528A1/ja
Publication of WO2014119528A1 publication Critical patent/WO2014119528A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/34Microscope slides, e.g. mounting specimens on microscope slides

Definitions

  • the present invention relates to a method for manufacturing a microscope observation container used for observing an inspection object using a microscope.
  • microscopes such as a stereo microscope, a fluorescence microscope, a phase contrast microscope, a differential interference microscope, and the like, which are appropriately selected and used depending on the purpose of the research and the properties of the target.
  • an image pickup device such as a CCD and displays it on a monitor, or stores it as image data in a personal computer or the like. Image processing and the like can be performed.
  • the microscope observation container When observing such time-dependent changes of cells and the like with a microscope, a microscope observation container that also serves as a culture container is generally used.
  • the microscope observation container includes a storage unit that stores an object to be inspected such as a cell, and the storage unit includes a plate-like portion that forms a bottom surface and a cylindrical side wall portion that forms a side wall.
  • a container having a single housing portion there are a so-called cell culture dish and a microplate in which a plurality of housing portions are arranged in an array (matrix).
  • the plate-like portion of the housing portion Since at least the plate-like portion of the housing portion needs to transmit illumination light, it is formed of a material having high light transmittance, and has a plate thickness thinner than a value determined in relation to the focal length of the objective lens of the microscope, and the like. Need to be done.
  • a plate for microscopic observation a glass plate having good optical properties and capable of maintaining a desired strength even with a relatively thin plate thickness is used as the plate-like portion, and the remaining portion such as the cylindrical portion is made of resin. What is formed is known.
  • the entire container including the plate-like portion is also made of resin.
  • Patent Document 1 discloses a cell culture vessel that is an optically transparent plastic in which a bottom plate constituting a culture unit has a thickness of 0.10 mm or more and 1.50 mm or less.
  • a container containing the inspection object is installed on the stage of the microscope, and the inspection object on the plate-like portion is placed. After magnifying a part and observing (imaging) at multiple points, remove it from the stage, place it on the stage again after a while, and repeat the operation several times to observe at the same position and magnification Will be implemented.
  • a reference regarding the position on the plate-like portion is required.
  • Patent Document 2 discloses a grid-like grid coordinate composed of a plurality of latitudes and meridians on a plate-like portion, and a symbol for distinguishing each latitude and longitude from other latitudes and meridians.
  • a microscope observation container provided by imprinting or photolithography is disclosed.
  • Patent Document 3 discloses a cell culture container in which a fine uneven pattern is formed on a plate-like portion for the purpose of causing cells to exhibit functions in vivo.
  • the present invention was devised in view of the above-described problems, and provides a method for producing an industrially advantageous product with high productivity even for a microscopic observation container having fine grid lines and uneven patterns. Objective.
  • the inventors of the present invention have achieved the above problem by integrally molding a microscope observation container having a thick side wall portion and a thin plate portion by injection molding a resin having an alicyclic structure. Based on this finding, the present inventors have completed the present invention.
  • [1] A method of manufacturing a microscope observation container for observing an inspection object using a microscope
  • the microscope observation container is Provided with a bottom plate and a side wall that rises from the periphery of the bottom plate,
  • the bottom plate portion has a plate-like portion that supports the inspection object,
  • the thickness of the side wall is at least three times that of the plate-like part
  • the microscope observation container is
  • the resin having an alicyclic structure is molded by injection molding, A method for producing a container for microscopic observation.
  • the plate-like portion has a grid composed of a plurality of latitudes and meridians arranged at a predetermined interval, The manufacturing method according to [1], wherein the grid is formed by the injection molding. [3] At least one of the inside of each grid and the latitude and the meridians forming the grid further includes a mark that can identify the absolute position of the grid, The manufacturing method according to [2], wherein the mark is formed by the injection molding. [4] The manufacturing method according to any one of [1] to [3], further including a step of flattening the plate-like portion by heat treatment after the injection molding.
  • the plate-like portion has a first surface that supports the object to be inspected and a second surface opposite to the first surface
  • the mold used for the injection molding includes a transfer surface that forms at least the first surface and the second surface
  • the mold includes a stamper that is removable from the mold body, and a transfer surface that is the optical mirror surface is formed on the stamper.
  • a microscope observation container having a flat plate-like portion and formed with marks that can identify the absolute position of the grid according to various purposes is produced with high productivity. It can be produced advantageously.
  • FIG.1 and FIG.2. 6 is a photograph of the plate-like portion of the microscope observation container obtained in Example 3 observed with a microscope. It is side sectional drawing which shows an example of the container for microscope observation which concerns on embodiment of this invention.
  • the manufacturing method of the present invention is a method of manufacturing a microscope observation container for observing an object to be inspected using a microscope.
  • a microscope observation container according to an embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 is a side sectional view showing an overall configuration of an example of a microscope observation container (hereinafter also simply referred to as “container”) according to an embodiment of the present invention.
  • FIG. 2 is a top view showing an overall configuration of an example of the microscope observation container according to the embodiment of the present invention.
  • the microscope observation container 10 is a container called a cell culture dish or the like, and includes a bottom plate portion 11 and a side wall portion 12 rising from a peripheral portion of the bottom plate portion.
  • the substantially cylindrical member having an upper surface opened and a lower surface closed. (Petri dish).
  • the inner diameter of the cylindrical container is preferably 20 mm to 40 mm, more preferably 25 mm to 35 mm. When the inner diameter of the container is within this range, it is suitable for integral molding by injection molding. Moreover, it is easy to suppress variations in the thickness of the container.
  • a plate-like portion 11a for supporting (or adhering to) a medium containing cells or the like as an object to be inspected is disposed at a substantially central portion of the bottom plate portion 11.
  • the thickness (plate thickness) of the plate-like portion 11a is a predetermined thickness in relation to the focal length of the objective lens of the microscope used when observing using the container 11.
  • the thickness of the plate-like portion 11a is preferably 0.05 mm to 0.5 mm, and more preferably 0.1 mm to 0.3 mm. When the thickness of the plate-like portion 11a is within this range, the strength of the plate-like portion is high, the moldability is good, and a sufficient focal length can be obtained in microscopic observation.
  • the diameter of the plate-like portion is preferably in the range of 30 to 70%, more preferably in the range of 40 to 60% with respect to the inner diameter of the container.
  • the diameter of the plate-like portion is within this range, a container having excellent flatness of the plate-like portion and a wide area where the object to be inspected can be observed can be easily integrally formed by injection molding.
  • the plate-like portion 11a is provided with a grid pattern area 13 in which grids and marks to be described later are formed.
  • FIG. 3 is an enlarged plan view of a part of the grid pattern area 13 of the plate-like portion 11a.
  • the grid pattern area 13 of the plate-like portion 11a is formed with a grid composed of a plurality of latitudes and meridians arranged at predetermined intervals, and a mark that can identify the absolute position of the grid. ing.
  • the interval between the latitude line and the meridian varies depending on the object to be inspected, but is preferably 50 ⁇ m to 300 ⁇ m, more preferably 100 ⁇ m to 200 ⁇ m.
  • a plurality of latitude lines (horizontal lines) Y0 to Y4... And a plurality of meridian lines (vertical lines) X0 to X4.
  • a first surface that supports the inspection object) is formed in a groove shape that is recessed from the surface.
  • the cross sections of the groove-like latitude lines and meridians are V-shaped and have a predetermined width (line width) and depth.
  • the width of the latitude and longitude lines is preferably 1 ⁇ m to 10 ⁇ m, more preferably 2 ⁇ m to 5 ⁇ m.
  • the depths of the parallels and meridians are preferably 0.5 ⁇ m to 5 ⁇ m, more preferably 1 ⁇ m to 2.5 ⁇ m.
  • the mark IM that can identify the absolute position of the grid is formed on the surface of the plate-like portion 11a (the surface that supports the object to be inspected) in a groove shape that is recessed from the surface.
  • the cross section of the groove-shaped mark IM is V-shaped, and has a predetermined width (line width) and depth similar to the latitude and longitude.
  • the mark IM is expressed by a four-digit number, and among the four digits, the upper two digits identify a latitude line and the lower two digits identify a meridian. With this notation, 100 lines from 00 to 99 can be identified for both latitude and meridian.
  • marks that can identify the latitude, meridian, and absolute positions of the grid are not limited to the present embodiment.
  • these may be formed on the back surface of the plate-like portion 11a (the second surface opposite to the first surface that supports the object to be inspected).
  • these may be formed in a bowl shape raised from the front surface or the back surface.
  • the cross-sectional shape when these are formed in a groove shape may be U-shaped, inverted trapezoidal, rectangular or the like.
  • a rectangular frame with a reference symbol Fi indicates the observation field (or imaging field) of the microscope when the container 10 is placed on the microscope stage and magnified and observed at a predetermined magnification. Yes.
  • the position of the observation visual field Fi in the figure is an example, and the microscope visual field Fi can be moved to an arbitrary position on the plate-like portion 11a by moving the microscope stage automatically or manually.
  • the mark that can identify the absolute position of the grid is not limited as long as the absolute position of the grid can be identified, and may be represented by an alphabet or a symbol, for example.
  • the latitude line and / or the meridian may have a mark function that can identify the absolute position of the grid.
  • the absolute position of the grid can be identifiably represented by the number of lines, the thickness of the line, the type of line, the symbol attached to the line, or a combination of at least two of these. Specifically, any of the methods disclosed in JP2009-237277A can be employed.
  • the thickness (plate thickness) of the bottom plate portion 11 excluding the plate-like portion 11a is preferably at least 3 times the thickness of the plate-like portion 11a, more preferably at least 4 times, even more preferably at least 5 times. Yes, preferably 20 times or less, more preferably 10 times or less.
  • the thickness of the bottom plate portion 11 excluding the plate-like portion 11a is preferably 0.5 mm to 2 mm. When the thickness of the bottom plate portion 11 is within this range, the container can be light and have sufficient strength.
  • the side wall part 12 has a leg part 12a so that the container 10 can be placed horizontally. Moreover, the side wall part 12 may be provided with the shape which can fix the cover body which is not shown in figure.
  • the lid is a substantially disk-shaped member that detachably closes the upper surface opening of the container 10.
  • the lid is a member in which an annular side wall portion is formed so as to fit the side wall portion 12.
  • the thickness (plate thickness) of the side wall portion 12 is 3 times or more, preferably 4 times or more, more preferably 5 times or more, preferably 20 times or less, more preferably 10 times the thickness of the plate-like portion 11a. Is less than double.
  • the thickness of the side wall portion 12 is preferably 0.5 mm to 2 mm.
  • the container can be light and have sufficient strength.
  • the height of the side wall portion 12 is preferably 5 mm or more, more preferably 7 mm or more. Moreover, it is preferably 20 mm or less, more preferably 15 mm or less.
  • the height of the side wall portion 12 is equal to or more than the above lower limit, leakage of the inspection object can be prevented and conveyance is easy. If it is below the upper limit, integral molding by injection molding is easy, and it is easy to bring the objective lens of the microscope close to the container, so that observation with a microscope can be easily performed.
  • the container 10 is formed of a resin having an alicyclic structure.
  • a resin having an alicyclic structure is excellent in heat resistance and has high fluidity at the time of melting, it is possible to integrally mold a container having a flat and uniform plate-like portion.
  • the resin having an alicyclic structure can achieve sufficient mechanical strength even at a thinness (thickness) required for the plate-shaped part, and has high light transmission, flatness, uniformity, and low birefringence.
  • the optical characteristics required for the light transmission part including the plate-like part of the container such as the property can be satisfactorily realized. Furthermore, since the resin having an alicyclic structure has small autofluorescence due to the material, it can be suitably used for fluorescent observation. Moreover, since it is excellent also in chemical resistance, when the microscope observation container according to the present invention is used for cell culture, it is preferable because there is little alteration due to the culture medium.
  • the resin having an alicyclic structure is a resin containing a polymer having an alicyclic structure in a repeating unit of the polymer.
  • a polymer any of a polymer having an alicyclic structure in the main chain and a polymer having an alicyclic structure in the side chain may be used.
  • a polymer containing an alicyclic structure in the main chain is preferable from the viewpoint of mechanical strength, heat resistance, and the like.
  • Examples of the alicyclic structure include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure.
  • a saturated alicyclic hydrocarbon cycloalkane
  • an unsaturated alicyclic hydrocarbon cycloalkene, cycloalkyne
  • a cycloalkane structure and a cycloalkene structure are preferable, and a cycloalkane structure is particularly preferable.
  • Examples of the polymer having an alicyclic structure include a norbornene polymer, a monocyclic olefin polymer, a cyclic conjugated diene polymer, a vinyl alicyclic hydrocarbon polymer, and a hydride thereof. Etc. Among these, norbornene-based polymers can be suitably used because of their good transparency and moldability.
  • the norbornene polymer is a monomer (co) polymer having a norbornene structure.
  • a ring-opening polymer of a monomer having a norbornene structure a ring-opening copolymer of a monomer having a norbornene structure and another monomer, or a hydride thereof; a monomer having a norbornene structure Or an addition copolymer of a monomer having a norbornene structure with another monomer, or a hydride thereof.
  • a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like.
  • the “(co) polymer” means a polymer and a copolymer.
  • Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7. -Diene (common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.12,5] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0 .12, 5. 1 7,10 ] dodec-3-ene (common name: tetracyclododecene), and derivatives of these compounds (for example, those having a substituent in the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group. Moreover, these substituents may be the same or different, and a plurality thereof may be bonded to the ring.
  • the monomer which has a norbornene structure may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • Examples of the polar group include heteroatoms or atomic groups having heteroatoms.
  • Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
  • norbornene polymers those satisfying all the following three requirements are preferable. That is, first, as a repeating unit, X: bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane-7 , 9-diyl-ethylene structure. Second, the content of these repeating units is 90% by weight or more based on the entire repeating units of the norbornene polymer. Third, the ratio of the content ratio of X to the content ratio of Y is 100: 0 to 40:60 in terms of a weight ratio of X: Y. Such a norbornene polymer is particularly preferable since it has high heat resistance and mechanical strength and is excellent in moldability.
  • the polymer having an alicyclic structure has a weight average molecular weight (Mw) of usually 10,000 or more, preferably 15,000 or more, more preferably 20,000 or more, and usually 100,000 or less, preferably Is 80,000 or less, more preferably 50,000 or less.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) is a polyisoprene or polystyrene equivalent weight average molecular weight measured by gel permeation chromatography using cyclohexane (toluene when the sample is not dissolved in cyclohexane) as a solvent. is there.
  • the weight average molecular weight is in such a range, the mechanical strength and the moldability are highly balanced and suitable.
  • the glass transition temperature (Tg) of the polymer having an alicyclic structure is usually 50 to 300 ° C., preferably 100 to 200 ° C., more preferably 120 to 160 ° C. When the glass transition temperature is in such a range, the mechanical strength and formability are highly balanced, which is preferable.
  • the resin having an alicyclic structure may contain other optional components besides the polymer as long as the effects of the present invention are not significantly impaired.
  • optional components include additives such as a dispersant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an antistatic agent, an antioxidant, a lubricant, and the like.
  • an arbitrary component may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the resin having an alicyclic structure is preferably pelletized and used for injection molding described later.
  • the pellet manufacturing method it is formed by mixing a resin with an alicyclic structure using a mixer such as a twin-screw kneader, extruding it into a strand, and cutting it finely with a pelletizer.
  • the size of the pellets to be obtained but from the viewpoint of suppressing molding defects in thin portions such as plate-like portions of a microscope observation container, the long side is preferably 0.5 to 10.0 mm and the short side is 0.
  • the length is 3 to 5.0 mm, more preferably 1.0 to 5.0 mm on the long side and 1.0 to 3.0 mm on the short side.
  • the size of the pellet is an average value of 10 pellets obtained by placing the sample on a horizontal and flat sample table and measuring the height, the short side and the long side in the horizontal plane.
  • the manufacturing method of the present invention is characterized in that the microscope observation container is integrally formed by injection molding the resin having the alicyclic structure.
  • “molding integrally” means that the bottom plate portion and the side wall portion including the plate-like portion are simultaneously formed by one molding.
  • the plate-like portion has marks that can identify the latitude and longitude lines and the absolute position of the grid, it is preferable that these are also formed simultaneously by one molding.
  • a resin having an alicyclic structure is supplied to an injection molding machine, heated and melted, and then injected into a mold for molding.
  • the injection molding machine used at the time of injection molding is not particularly limited, and examples thereof include a plunger type, a pre-pull type, and a screw type. Among these, a pre-pull type and a screw type are preferable. By kneading with a screw, the resin having an alicyclic structure can be uniformly heated and melted.
  • the temperature of the cylinder of the injection molding machine when the resin having an alicyclic structure is heated and melted is appropriately selected according to the type of the resin, but is preferably 280 ° C or higher, more preferably 300 ° C or higher, and further preferably 320. °C or more. Since the fluidity at the time of melting of the resin having an alicyclic structure is higher as the cylinder temperature is higher, the flatness of the plate-like portion can be increased and the variation in thickness can be reduced.
  • the upper limit of the cylinder temperature is appropriately selected below the decomposition temperature of the resin having an alicyclic structure, and preferably 400 ° C. or less.
  • the mold used for injection molding is usually composed of a fixed side mold and a movable side mold.
  • the mold clamping pressure and the holding pressure during molding are adjusted by opening and closing movement of the movable side mold, and the molded product after molding (for microscope observation) Eject the container.
  • the fixed side mold and / or the movable side mold may include a stamper that is detachable from the mold body.
  • the transfer surface for forming these is preferably a stamper. Since the mold has such a configuration, it is possible to manufacture a microscope observing container having a different kind of the above-mentioned mark or the like only by replacing the stamper without replacing the mold body.
  • At least one of the transfer surface for forming the first surface of the mold (including the stamper) that supports the object to be inspected in the plate-like portion and the second surface opposite to the first surface is at least one of them.
  • An optical mirror surface processed with high accuracy is preferable.
  • a mark or the like is formed on the first surface or the second surface, it is preferable that a portion other than the mark or the like on the first surface or the second surface is an optical mirror surface.
  • the optical mirror surface means that the flatness of the surface is 1 ⁇ m or less. The flatness can be measured by a contour shape measuring machine.
  • the mold temperature at the time of injection molding is appropriately selected according to the glass transition temperature (Tg) of the resin having an alicyclic structure, but is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, particularly preferably 80 ° C. That's it.
  • the mold temperature is Tg or less of the resin having an alicyclic structure, and is preferably 110 ° C. or less, more preferably 100 ° C. or less from the viewpoint of preventing sink marks during molding.
  • the injection pressure is appropriately selected depending on the position and diameter of the gate, but is preferably in the range of 10 to 200 MPa, more preferably in the range of 60 to 150 MPa.
  • the holding time in the injection molding is usually 1 to 300 seconds, preferably 5 to 150 seconds, and the holding pressure is preferably 0.5 MPa or more, more preferably 1 MPa or more, particularly preferably 2 MPa or more, preferably Is 50 MPa or less, more preferably 40 MPa or less, and particularly preferably 30 MPa or less.
  • the pressure holding time represents the time from when the resin having an alicyclic structure is injected until the pressurization is stopped.
  • the cooling time after the resin having an alicyclic structure is filled in the mold is preferably 5 to 20 seconds, more preferably 8 to 15 seconds. By setting the cooling time within this range, a microscope observation container having a uniform shape can be manufactured with high productivity.
  • the method further includes a step of flattening the plate-like portion by heat-treating the microscope observation container taken out of the mold after the injection molding.
  • the microscope observation container according to the present invention has a thick side wall and a thin plate-like portion, the shrinkage rate and the shrinkage speed differ between the side wall and the plate-like portion during cooling in injection molding. .
  • flatness may be impaired, for example, warpage occurs in the plate-like portion, the flatness of the plate-like portion can be further improved by performing heat treatment after molding.
  • productivity of the container for microscope observation can further be improved.
  • the temperature of the heat treatment is preferably 90 to 150 ° C, more preferably 90 to 140 ° C, and further preferably 100 to 130 ° C.
  • the heat treatment time is preferably 10 to 120 minutes, more preferably 20 to 60 minutes, and further preferably 20 to 40 minutes. When the temperature and time of the heat treatment are within this range, the flatness of the plate-like portion can be improved efficiently.
  • the microscope observation container having the entire configuration illustrated in FIGS. 1 and 2 has been described.
  • the microscope observation container having the entire configuration illustrated in FIG. 5 may be used.
  • the microscope observation container 14 includes a petri dish 16 and an upper lid 18, and the upper lid 18 is configured by a substantially disk-shaped member that detachably closes the upper surface opening of the petri dish 16.
  • An annular side wall is formed to fit the side wall.
  • the petri dish 16 is provided with a support portion 20 that supports the upper lid 18 when the upper lid 18 is fitted. 1 and 2, the petri dish 16 includes a bottom plate part 11 provided with a plate-like part 11 a, and the thickness of the side wall part of the petri dish 16 is the same as that of the bottom plate part 11. It is equivalent to the thickness. Since the bottom plate portion 11 and the plate-like portion 11a are the same as those in the above-described embodiment, detailed description thereof is omitted.
  • the petri dish 16 is formed of a resin having an alicyclic structure, like the container 10 shown in FIGS. 1 and 2.
  • the upper lid 18 may be formed of a resin having an alicyclic structure, but may be formed of a resin having no alicyclic structure such as polystyrene.
  • the upper lid 18 may be removed for observation.
  • a core-side circular stamper having a diameter of 18 mm and a thickness of 0.3 mm was manufactured by electroforming from a mold mold processed to have an optical mirror surface with a flatness of 1 ⁇ m or less and a mother mold subjected to fine processing.
  • This stamper has projections for forming grids at 150 ⁇ m intervals on the meridians and the parallels, and numbers (addresses) for identifying the positions of the grids over a rectangular area having a center size of 9 mm ⁇ 9 mm.
  • the cross-sectional shape of the protrusions was an isosceles triangle having a bottom width of 3 ⁇ m and a height of 1.5 ⁇ m.
  • an injection mold for molding a microscope observation container having the shape shown in FIG. 1 was prepared.
  • the stamper obtained above was attached to one of the molds constituting this mold to form a transfer surface that forms the first surface of the plate-like portion of the microscope observation container that supports the object to be inspected.
  • the transfer surface (cavity surface) that forms the second surface opposite to the first surface of the other mold was a smooth surface that is an optical mirror surface with a flatness of 1 ⁇ m or less.
  • cylinder temperature 300 using pellets of resin having an alicyclic structure (ZEONOR 1430R: Nippon Zeon, glass transition temperature 133 ° C.) as a raw material.
  • a microscope observation container was molded under the conditions of °C, mold temperature 95 ° C, holding pressure time 20 seconds, holding pressure 30 MPa.
  • the obtained microscope observation container had a diameter of 30 mm, a plate-like portion thickness of 0.17 mm, and a bottom plate portion other than the plate-like portion and a side wall portion having a thickness of 1.0 mm.
  • the line width of the meridian and the latitude line was 3 ⁇ m. It was also possible to clearly read meridians and latitudes, and numbers for identifying the positions of the grids.
  • the plate-like portion was slightly warped in a convex shape on the first surface side, and the Pt value was 100 ⁇ m.
  • Example 2 A microscope observation container was molded in the same manner as in Example 1 except that the mold temperature was 65 ° C., the pressure holding time was 10 seconds, and the holding pressure was 25 MPa.
  • the plate-like portion was observed at a magnification of 600 times using a microscope, the line width of meridians and latitudes was 3.5 ⁇ m. It was also possible to clearly read meridians and latitudes, and numbers for identifying the positions of the grids.
  • the plate-like portion was slightly warped in a convex shape on the first surface side, and the Pt value was 270 ⁇ m.
  • Example 3 The microscope observation container obtained in Example 1 was heat-treated at 100 ° C. for 30 minutes in an oven in a nitrogen atmosphere, and then cooled to room temperature.
  • the line width of meridians and parallels was 3 ⁇ m. It was also possible to clearly read meridians and latitudes, and numbers for identifying the positions of the grids.
  • the plate-like portion was almost flat and the Pt value was 5 ⁇ m.
  • the photograph which observed the plate-shaped part with the microscope is shown in FIG.
  • Example 4 The microscope observation container was heat-treated in the same manner as in Example 3 except that the microscope observation container obtained in Example 2 was used.
  • the plate-like portion of the obtained microscope observation container was observed at a magnification of 600 times using a microscope, the meridian and latitude line widths were 3.5 ⁇ m. It was also possible to clearly read meridians and latitudes, and numbers for identifying the positions of the grids.
  • the plate-like portion was almost flat and the Pt value was 25 ⁇ m.

Abstract

顕微鏡を用いて被検査物を観察するための顕微鏡観察用容器(10)を製造する方法であって、前記顕微鏡観察用容器(10)は、底板部(11)およびこの底板部(11)の周部から立ち上がる側壁部(12)を備え、前記底板部(11)は前記被検査物を支持する板状部(11a)を有し、前記側壁部(12)の厚さは前記板状部(11a)の3倍以上であり、前記顕微鏡観察用容器を、脂環式構造を有する樹脂を射出成形して一体に成形することで、顕微鏡観察用容器(10)を製造する。

Description

顕微鏡観察用容器の製造方法
 本発明は、顕微鏡を用いて被検査物を観察するために用いられる顕微鏡観察用容器の製造方法に関する。
 大学や企業の研究室等においては、生体細胞、生物組織片、微生物、細菌等、もしくはこれらの培養物、またはこれらに薬物や遺伝子等を注入したものの経時的な変化(形態変化、移動等)を顕微鏡で観察し、生物化学的、薬学的な研究等がなされている。顕微鏡としては、実体顕微鏡、蛍光顕微鏡、位相差顕微鏡、微分干渉顕微鏡等の種々の方式のものが存在しており、研究の目的や対象の性質等に応じて適宜選定されて用いられる。なお、近時においては、顕微鏡は接眼レンズを介した目視観察の他に、CCD等の撮像素子で撮像してモニタ上に表示し、あるいはパーソナルコンピュータ等に画像データとして記憶し
て、必要に応じて画像処理等も行い得るようになっている。
 このような細胞等の経時変化を顕微鏡で観察する際には、一般に培養容器をも兼ねた顕微鏡観察用容器が用いられる。顕微鏡観察用容器としては、細胞等の被検査物を収容する収容部を備え、この収容部は底面を構成する板状部、および側壁を構成する筒状の側壁部を有している。この収容部を単一で備える容器として細胞培養ディッシュ等とも呼ばれるものや複数の収容部を配列的(マトリクス状)に配置したマイクロプレート等とも呼ばれるものがある。
 収容部の少なくとも板状部は、照明光を透過させる必要があるため、光透過性の高い材料から形成され、顕微鏡の対物レンズの焦点距離等との関係で定められる値よりも薄い板厚とされる必要がある。顕微鏡観察用容器としては、この板状部として、光学的性質が良好で、比較的に薄い板厚でも所望の強度を維持できるガラス板を用い、筒状部等のその余の部分を樹脂で形成したものが知られている。但し、近時においては、板状部を含む容器の全体を樹脂で製造することも行われている。例えば特許文献1には、培養部を構成する底板が0.10mm以上、1.50mm以下の薄さを持つ、光学的に透明なプラスチックである細胞培養容器が開示されている。
 ところで、このような顕微鏡観察用容器を用いて被検査物の経時変化を観察する場合には、顕微鏡のステージ上に被検査物を収容した容器を設置し、板状部上の被検査物の一部を拡大して複数箇所において観察(撮像)した後、該ステージ上から一旦取り外して時間をおいて再度ステージ上に設置して、同じ位置、同じ倍率で観察するという動作を何回か繰り返し実施することになる。この場合に、細胞等の形態変化量や移動量を計測し、あるいは前後の観察画像を画像処理により重ね合わせて比較する場合等には、板状部上の位置に関する基準が必要となる。
 このような位置基準として、特許文献2には、板状部上に複数の緯線および経線からなる格子状のグリッド座標や、各緯線および経線を他の緯線および経線から識別するための記号をナノインプリンティングやフォトリソグラフィにより設けた顕微鏡観察用容器が開示されている。
 また特許文献3には、細胞に生体内で持っている機能を示させる目的で、板状部に微細凹凸パターンを形成した細胞培養容器が開示されている。
特開2007-89448号公報 特開2009-237277号公報 国際公開第2006/123570号
 しかしこれらの顕微鏡観察用容器は、生産性が十分ではないという課題があった。すなわち板状部を平坦に成形することが困難なため、板状部と側壁部とを別体で構成する場合があった。また板状部に微細なパターンを均一に形成することが困難なため、板状部を平面状に成形した後にプレス等によりパターンを形成する必要があった。
 本発明は上記の課題に鑑みて創案されたものであり、微細なグリッド線や凹凸パターンを有する顕微鏡観察用容器であっても、高い生産性で工業的有利に製造する方法を提供することを目的とする。
 本発明者らは鋭意検討の結果、脂環式構造を有する樹脂を射出成形して肉厚の側壁部と肉薄の板状部を有する顕微鏡観察用容器を一体に成形することにより、上記課題を解決できることを見出し、この知見に基づき本発明を完成するに至った。
 かくして本発明によれば、下記[1]~[6]が提供される。
[1] 顕微鏡を用いて被検査物を観察するための顕微鏡観察用容器を製造する方法であって、
 前記顕微鏡観察用容器は、
 底板部およびこの底板部の周部から立ち上がる側壁部を備え、
 前記底板部は前記被検査物を支持する板状部を有し、
 前記側壁部の厚さは前記板状部の3倍以上であり、
 前記顕微鏡観察用容器を、
 脂環式構造を有する樹脂を射出成形して一体に成形することを特徴とする、
 顕微鏡観察用容器の製造方法。
[2] 前記板状部が、所定間隔で配置された複数の緯線および経線により構成されるグリッドを有し、
 前記グリッドを前記射出成形により形成する、[1]記載の製造方法。
[3] それぞれの前記グリッドの内部と、当該グリッドを形成する前記緯線および前記経線との少なくとも一方には、前記グリッドの絶対位置を識別可能な目印をさらに有し、
 前記目印を前記射出成形により形成する、[2]記載の製造方法。
[4] 前記射出成形の後に、熱処理により前記板状部を平坦化する工程をさらに含む、[1]~[3]のいずれかに記載の製造方法。
[5] 前記板状部が、前記被検査物を支持する第1面および前記第1面とは反対側の第2面を有し、
 前記射出成形に用いる金型は少なくとも前記第1面および第2面を形成する転写面を備え、
 前記第1面および第2面を形成する転写面の少なくとも一方は高精度に加工された光学鏡面である、[1]~[4]のいずれかに記載の製造方法。
[6] 前記金型は金型本体から脱着可能なスタンパを備え、前記光学鏡面である転写面が該スタンパに形成されている、[5]に記載の製造方法。
 本発明の製造方法によれば、板状部が平坦で、かつ種々の目的に応じてグリッドやグリッドの絶対位置を識別可能な目印が形成された顕微鏡観察用容器を、高い生産性で工業的有利に製造することができる。
本発明の実施形態に係る顕微鏡観察用容器の一例を示す側断面図である。 本発明の実施形態に係る顕微鏡観察用容器の一例を示す上面図である。 図1及び図2の顕微鏡観察用容器の、板状部の一部を拡大した平面図である。 実施例3で得られた顕微鏡観察用容器の板状部をマイクロスコープで観察した写真である。 本発明の実施形態に係る顕微鏡観察用容器の一例を示す側断面図である。
 本発明の製造方法は、顕微鏡を用いて被検査物を観察するための顕微鏡観察用容器を製造する方法である。以下、本発明の実施形態に係る顕微鏡観察用容器について、図面を参照して説明する。
 図1は本発明の実施形態に係る顕微鏡観察用容器(以下、単に「容器」ともいう。)の一例の全体構成を示す側断面図である。また、図2は本発明の実施形態に係る顕微鏡観察用容器の一例の全体構成を示す上面図である。この顕微鏡観察用容器10は細胞培養ディッシュ等とも呼ばれる容器であり、底板部11およびこの底板部の周部から立ち上がる側壁部12を備える、上面が開口し、下面が閉塞された略円筒状の部材(シャーレ)である。
 円筒状の容器の内径は、好ましくは20mm~40mm、より好ましくは25mm~35mmである。容器の内径がこの範囲であると、射出成形による一体成形に好適である。また、容器の肉厚のバラツキを抑えることが容易である。
 底板部11の略中央部には、被検査物としての細胞等を含む培地を支持する(または付着させる)ための板状部11aが配置されている。板状部11aの厚さ(板厚)は、この容器11を用いて観察する際に用いられる顕微鏡の対物レンズの焦点距離等との関係において、所定の厚さとなっている。板状部11aの厚さは、0.05mm~0.5mmであることが好ましく、0.1mm~0.3mmであることがより好ましい。板状部11aの厚さがこの範囲であると、板状部の強度が高く成形性が良好であり、かつ顕微鏡観察において十分な焦点距離を得ることが可能である。
 板状部の直径は、上記容器の内径に対し30~70%の範囲であることが好ましく、40~60%の範囲であることがより好ましい。板状部の直径がこの範囲であると、板状部の平坦性に優れ、かつ被検査物を観察可能な面積が広い容器を、射出成形で容易に一体成形することができる。
 また、図2に示すように、板状部11aには後述するグリッド及び目印が形成されるグリッドパターンエリア13が設けられている。
 図3は、板状部11aのグリッドパターンエリア13の一部を拡大した平面図である。図3に示すように、板状部11aのグリッドパターンエリア13には、所定間隔で配置された複数の緯線および経線により構成されるグリッド、および前記グリッドの絶対位置を識別可能な目印が形成されている。緯線および経線の間隔は、被検査物によっても異なるが、好ましくは50μm~300μm、より好ましくは100μm~200μmである。
 図3において、複数の緯線(横線)Y0~Y4・・・および複数の経線(縦線)X0~X4・・・は、容器10の被検査物が支持される板状部11aの表面(被検査物を支持する第1面)に、表面から窪んだ溝状に形成されている。溝状の緯線および経線の断面はV字状に形成され、所定の幅(線幅)および深さを有している。緯線および経線の幅は好ましくは1μm~10μm、より好ましくは2μm~5μmである。また緯線および経線の深さは好ましくは0.5μm~5μm、より好ましくは1μm~2.5μmである。緯線および経線の幅および深さがこの範囲であると、射出成形により一体に成形することが容易で、かつ顕微鏡で観察する際に明瞭にグリッドを認識することができるので好ましい。
 図3において、グリッドの絶対位置を識別可能な目印IMは、板状部11aの表面(被検査物を支持する面)に、表面から窪んだ溝状に形成されている。溝状の目印IMの断面はV字状に形成され、緯線および経線と同様の、所定の幅(線幅)および深さを有している。目印IMは4桁の数字で表現しており、4桁のうち、上2桁が緯線を識別し、下2桁が経線を識別することを意味している。この表記法により、緯線、経線ともに、00~99までの100本の線の識別が可能である。
 なお緯線、経線およびグリッドの絶対位置を識別可能な目印(以下、これらを総称して「目印等」という)は、本実施形態に限定されない。例えばこれらは、板状部11aの裏面(被検査物を支持する第1面と反対側の第2面)に形成されていてもよい。またこれらは表面または裏面から盛り上がった畝状に形成されていてもよい。さらにこれらを溝状に形成する場合の断面形状は、U字状、逆台形、矩形などであってもよい。
 図3中、符号Fiを付した矩形状の枠線は、顕微鏡のステージ上にこの容器10を設置し、所定の倍率で拡大観察した場合の該顕微鏡の観察視野(または撮像視野)を示している。なお、この観察視野Fiの同図内における位置は、一例であり、顕微鏡のステージを自動または手動で移動させることによって、板状部11a上の任意の位置に移動可能である。
 グリッドの絶対位置を識別可能な目印は、グリッドの絶対位置を識別可能であれば限定されず、例えばアルファベットや記号により表されてもよい。また前記緯線および/または経線がグリッドの絶対位置を識別可能な目印の機能を有していてもよい。例えば、線の本数、線の太さ、線の種類、もしくは線に付された記号、またはこれらの少なくとも2つの組み合わせにより、グリッドの絶対位置を識別可能に表現することができる。具体的には、特開2009-237277号公報に開示される手法をいずれも採用することができる。
 底板部11の、板状部11aを除く部分の厚さ(板厚)は、好ましくは前記板状部11aの厚さの3倍以上、より好ましくは4倍以上、さらに好ましくは5倍以上であり、好ましくは20倍以下、より好ましくは10倍以下である。また底板部11の、板状部11aを除く部分の厚さは0.5mm~2mmであることが好ましい。底板部11の厚さがこの範囲であると、軽量でかつ十分な強度を有する容器とすることができる。
 側壁部12は脚部12aを有し、容器10を水平に載置できるようになっている。また側壁部12は、図示しない蓋体を固定できる形状を備えていてもよい。蓋体は、容器10の上面開口を着脱自在に閉塞する略円板状の部材から構成され、例えば側壁部12に嵌め合うように円環状の側壁部が形成されている部材である。側壁部12の厚さ(板厚)は、前記板状部11aの厚さの3倍以上、好ましくは4倍以上、より好ましくは5倍以上であり、好ましくは20倍以下、より好ましくは10倍以下である。また側壁部12の厚さは0.5mm~2mmであることが好ましい。側壁部12の厚さがこの範囲であると、軽量でかつ十分な強度を有する容器とすることができる。
 側壁部12の高さは、好ましくは5mm以上、より好ましくは7mm以上である。また好ましくは20mm以下、より好ましくは15mm以下である。側壁部12の高さが上記の下限以上であると、被検査物の漏洩を防止でき、かつ搬送が容易である。また上限以下であると、射出成形による一体成形が容易で、かつ顕微鏡の対物レンズを容器に接近させることが容易なので、顕微鏡による観察を容易に行うことができる。
 容器10は、脂環式構造を有する樹脂で形成されている。本発明に係る顕微鏡観察用容器のように、板厚が大きい部分と小さい部分を有する成形品は、一般に均一に成形することが困難である。しかし脂環式構造を有する樹脂は耐熱性に優れる一方で溶融時の流動性が高いため、平坦で均一な板状部を有する容器を一体に成形することが可能である。また脂環式構造を有する樹脂は板状部に要請される板厚(肉厚)程度の薄さでも十分な機械的強度を実現できるとともに、高光透過性、平坦性、均一性、低複屈折性等の容器の板状部を含む光透過部に要請される光学特性を良好に実現できる。さらに脂環式構造を有する樹脂は、材料に起因する自家蛍光が小さいので、蛍光観察する用途に好適に用いることができる。また耐薬品性にも優れていることから、本発明に係る顕微鏡観察用容器を細胞培養に用いる場合に、培養液による変質が少ないので好適である。
 脂環式構造を有する樹脂は、重合体の繰り返し単位中に脂環式構造を有する重合体を含む樹脂である。かかる重合体としては、主鎖に脂環式構造を有する重合体、及び、側鎖に脂環式構造を有する重合体のいずれを用いてもよい。中でも、機械的強度、耐熱性などの観点から、主鎖に脂環式構造を含有する重合体が好ましい。
 脂環式構造としては、例えば、飽和脂環式炭化水素(シクロアルカン)構造、不飽和脂環式炭化水素(シクロアルケン、シクロアルキン)構造などが挙げられる。中でも、機械強度、耐熱性などの観点から、シクロアルカン構造及びシクロアルケン構造が好ましく、中でもシクロアルカン構造が特に好ましい。
 脂環式構造を有する重合体としては、例えば、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素系重合体、及び、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系重合体は、透明性と成形性が良好なため、好適に用いることができる。
 ノルボルネン系重合体は、ノルボルネン構造を有する単量体の(共)重合体である。例えば、ノルボルネン構造を有する単量体の開環重合体、若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体、又はそれらの水素化物;ノルボルネン構造を有する単量体の付加重合体、若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体、又はそれらの水素化物;等を挙げることができる。これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、軽量性などの観点から、特に好適に用いることができる。なお、「(共)重合体」とは、重合体及び共重合体のことをいう。
 ノルボルネン構造を有する単量体としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、およびこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。また、これらの置換基は、同一または相異なって、複数個が環に結合していてもよい。なお、ノルボルネン構造を有する単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 極性基の種類としては、例えば、ヘテロ原子、またはヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン基などが挙げられる。
 ノルボルネン系重合体の中でも、以下の3要件を全て満たすものが好ましい。すなわち、第一に、繰り返し単位として、X:ビシクロ[3.3.0]オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ[4.3.0.12,5]デカン-7,9-ジイル-エチレン構造とを有する。第二に、これらの繰り返し単位の含有量が、ノルボルネン系重合体の繰り返し単位全体に対して90重量%以上である。第三に、Xの含有割合とYの含有割合との比が、X:Yの重量比で100:0~40:60である。このようなノルボルネン系重合体は、耐熱性と機械的強度が高く、成形性に優れるので特に好ましい。
 脂環式構造を有する重合体の分子量は、重量平均分子量(Mw)で、通常10,000以上、好ましくは15,000以上、より好ましくは20,000以上であり、通常100,000以下、好ましくは80,000以下、より好ましくは50,000以下である。ここで、前記の重量平均分子量(Mw)は、溶媒としてシクロヘキサン(試料がシクロヘキサンに溶解しない場合にはトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレンまたはポリスチレン換算の重量平均分子量である。重量平均分子量がこのような範囲にあるときに、機械的強度および成形性が高度にバランスされ好適である。
 脂環式構造を有する重合体のガラス転移温度(Tg)は、通常50~300℃、好ましくは100~200℃、より好ましくは120~160℃である。ガラス転移温度がこのような範囲にあるときに、機械的強度および成形性が高度にバランスされ好適である。
 脂環式構造を有する樹脂は、本発明の効果を著しく損なわない限り、重合体以外にもその他の任意成分を含んでいてもよい。任意成分の例を挙げると、分散剤;熱安定剤;光安定剤;紫外線吸収剤;耐電防止剤;酸化防止剤;滑剤;などの添加剤が挙げられる。なお、任意成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 脂環式構造を有する樹脂は、ペレット化して後述する射出成形に供することが好ましい。ペレットの製造方法に格別な制限はないが、脂環構造を有する樹脂を二軸混練機などの混合機を用いて混合した後、ストランド状に押出、それをペレタイザーなどで細かく切断して形成される。得られるペレットの大きさに格別な制限はないが、顕微鏡観察用容器の板状部など薄肉部の成形不良を抑制する観点から、好ましくは長辺0.5~10.0mm、短辺0.3~5.0mmであり、より好ましくは長辺1.0~5.0mm、短辺1.0~3.0mmである。ここでペレットの大きさは、水平、平坦な試料台に載せて、その高さ、水平面における短辺及び長辺を測定した、ペレット10個の平均値である。
 本発明の製造方法は、前記の顕微鏡観察用容器を、前記の脂環式構造を有する樹脂を射出成形して一体に成形することを特徴とする。ここで「一体に成形する」とは、前記の板状部を含む底板部と側壁部とを1回の成形で同時に形成することを表す。板状部が前記の緯線および経線、ならびにグリッドの絶対位置を識別可能な目印を有する場合には、これらも1回の成形で同時に形成することが好ましい。
 射出成形では、脂環式構造を有する樹脂を射出成形機に供給して加熱溶融し、これを金型内に射出して成形を行う。射出成形に際して使用される射出成形機は、特に限定されず、プランジャー式、プリプラ式、スクリュー式を例示することができるが、中でも、プリプラ式、スクリュー式が好ましい。スクリューで混練することで、脂環式構造を有する樹脂を均一に加熱溶融することができる。
 脂環式構造を有する樹脂を加熱溶融するときの、射出成形機のシリンダの温度は樹脂の種類に応じ適宜選択されるが、好ましくは280℃以上、より好ましくは300℃以上、さらに好ましくは320℃以上である。シリンダ温度が高いほど脂環式構造を有する樹脂の溶融時の流動性が高いので、板状部の平坦度を高く、肉厚のバラツキを小さくすることができる。シリンダ温度の上限は脂環式構造を有する樹脂の分解温度以下で適宜選択され、好ましくは400℃以下である。
 射出成形に用いる金型は、通常、固定側型と可動側型から構成され、可動側型の開閉運動により型締め圧力や成形時の保圧の調節、および成形後の成形品(顕微鏡観察用容器)の突き出しを行う。固定側型および/または可動側型は、型本体から脱着可能なスタンパを備えていてもよい。例えば、前記板状部に目印等を形成する場合、これらを形成するための転写面は、スタンパであることが好ましい。金型がこのような構成を有することにより、型本体を交換することなく、スタンパを交換するのみで、前記の目印等の種類が異なる顕微鏡観察用容器を製造することができる。
 射出成形に用いる金型は、そのゲートの位置を、顕微鏡観察用容器の側壁部に対応する位置に設けることが、容器の外観不良を防止でき、かつ顕微鏡観察を阻害しないので好ましい。
 金型(スタンパを含む)の、前記板状部における前記被検査物を支持する第1面および前記第1面とは反対側の第2面を形成するための転写面は、その少なくとも一方が高精度に加工された光学鏡面であることが好ましい。前記第1面または第2面に目印等を形成する場合は、前記第1面または第2面の目印等以外の部分を光学鏡面とすることが好ましい。ここで光学鏡面とは、面の平坦度が1μm以下であることを表す。平坦度は、輪郭形状測定機により測定することができる。第1面および第2面を形成するための転写面を光学鏡面とすることにより、板状部の透明性および平坦性に優れる顕微鏡観察用容器を得ることができる。
 射出成形時の金型温度は、脂環式構造を有する樹脂のガラス転移温度(Tg)に応じて適宜選択されるが、好ましくは50℃以上、より好ましくは70℃以上、特に好ましくは80℃以上である。金型温度が高いほど、金型の形状の転写性に優れ、均一な形状の顕微鏡観察容器を得ることができる。また、上記目印等を明瞭に識別することが可能となる。また金型温度は脂環式構造を有する樹脂のTg以下であり、成形時のヒケを防止するとの観点からは、好ましくは110℃以下、より好ましくは100℃以下である。
 射出圧力は、ゲ-トの位置や径などにより適宜選択されるが、10~200MPaの範囲であることが好ましく、60~150MPaの範囲であることがより好ましい。
 射出成形における保圧時間は、通常1~300秒間、好ましくは5~150秒間であり、保圧の圧力は好ましくは0.5MPa以上、より好ましくは1MPa以上、特に好ましくは2MPa以上であり、好ましくは50MPa以下、より好ましくは40MPa以下、特に好ましくは30MPa以下である。ここで保圧時間とは、脂環式構造を有する樹脂を射出してから、加圧を止めるまでの時間を表す。
 脂環式構造を有する樹脂が金型に充填された後の冷却時間は、好ましくは5~20秒、より好ましくは8~15秒である。冷却時間をこの範囲とすることで、形状が均一な顕微鏡観察用容器を高い生産性で製造することができる。
 射出成形後に、型から取り出した顕微鏡観察用容器を熱処理して、前記板状部を平坦化する工程をさらに含むことが好ましい。本発明に係る顕微鏡観察用容器は、厚さの厚い側壁部と厚さの薄い板状部を有しているので、射出成形における冷却時に側壁部と板状部で収縮率や収縮速度が異なる。このため板状部に反りが生じるなど、平坦性が損なわれる場合があるが、成形後に熱処理を行うことで、板状部の平坦性をより高めることができる。また前記の冷却時間を短くすることができるため、顕微鏡観察用容器の生産性をさらに高めることができる。
 熱処理の温度は、好ましくは90~150℃、より好ましくは90~140℃、さらに好ましくは100~130℃である。熱処理の時間は、好ましくは10~120分、より好ましくは20~60分、さらに好ましくは20~40分である。熱処理の温度および時間がこの範囲であると、効率よく板状部の平坦性を高めることができる。
 なお、上述の実施形態においては、図1及び図2に示す全体構成を有する顕微鏡観察用容器について説明したが、図5に示す全体構成を有する顕微鏡観察用容器であってもよい。
 図5に示すように、顕微鏡観察用容器14は、シャーレ16及び上蓋18を備え、上蓋18は、シャーレ16の上面開口を着脱自在に閉塞する略円板状の部材から構成され、シャーレ16の側壁部に嵌め合うように円環状の側壁部が形成されている。
 シャーレ16には、上蓋18を嵌め合わせた際に上蓋18を支持する支持部20が設けられている。また、図1及び図2に示す顕微鏡観察用容器10と同様に、シャーレ16は板状部11aが設けられた底板部11を備えており、シャーレ16の側壁部の厚さは底板部11の厚さと同等である。なお、底板部11及び板状部11aについては、上述の実施形態と同様であるため詳細な説明は省略する。
 また、シャーレ16は、図1及び図2に示す容器10と同様に、脂環式構造を有する樹脂で形成されている。上蓋18は、脂環式構造を有する樹脂で形成されていてもよいが、例えばポリスチレン等の脂環式構造を有さない樹脂により形成されていてもよい。
 従って、顕微鏡観察用容器14を用いて蛍光顕微鏡観察を行う場合には、上蓋18を取り外して観察を行ってもよい。
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。従って、上述した実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。なお、実施例および比較例中の部および%は、特に断りのない限り重量基準である。
 実施例において、各特性の測定は、下記に基づき行った。
〔板状部の平坦性〕
 板状部の平坦性は、輪郭形状測定機(フォームタリサーフS5K,S6C:テーラーホブソン社製)を用い、測定距離9mmで測定した。顕微鏡観察用容器を水平面に載置したときの、板状部の水平面からの最高点と最低点の高さの差をPt値とした。
〔グリッドの転写性〕
 グリッドの転写性は、マイクロスコープ(マイクロスコープVHX-900:キーエンス社製)を用い、倍率600倍で測定して判定した。
[実施例1]
 平坦度が1μm以下の光学鏡面となるように加工したキャビ型と微細加工を行ったマザー型から電鋳加工することにより、直径18mm、厚さ0.3mmのコア側円形スタンパを作製した。このスタンパには、その中心部の寸法9mm×9mmの矩形の領域全体に、経線および緯線のそれぞれを150μm間隔でグリッドを形成するための突起、ならびに各グリッドの位置を識別するための数字(番地)を形成するための突起を形成するようにした。突起の断面形状は、底面の幅が3μmで高さが1.5μmの二等辺三角形となるようにした。
 次いで、図1に示す形状の顕微鏡観察用容器を成形するための射出成形用金型を準備した。この金型を構成する一方の型に、上記で得たスタンパを取り付け、顕微鏡観察用容器の板状部の、被検査物を支持する第1面を形成する転写面とした。他方の金型の、前記第1面とは反対側の第2面を形成する転写面(キャビ面)は平坦度が1μm以下の光学鏡面である平滑面とした。
 このような金型を有する射出成形機(型締め力490kN)を用いて、脂環式構造を有する樹脂(ゼオノア1430R:日本ゼオン社製、ガラス転移温度133℃)のペレットを原料としてシリンダ温度300℃、金型温度95℃、保圧時間20秒、保持圧力30MPaの条件下で顕微鏡観察用容器を成形した。得られた顕微鏡観察用容器は直径が30mm、板状部の厚さは0.17mm、底板部の板状部以外の箇所および側壁部の厚さは1.0mmであった。板状部をマイクロスコープを用いて倍率600倍で観察したところ、経線および緯線の線幅は3μmであった。また経線および緯線、ならびに各グリッドの位置を識別するための数字を明瞭に読み取ることが可能であった。板状部は第1面側に凸形状となる反りが若干見られ、Pt値は100μmであった。
[実施例2]
 金型温度を65℃、保圧時間を10秒、保持圧力を25MPaとした他は実施例1と同様にして顕微鏡観察用容器を成形した。板状部をマイクロスコープを用いて倍率600倍で観察したところ、経線および緯線の線幅は3.5μmであった。また経線および緯線、ならびに各グリッドの位置を識別するための数字を明瞭に読み取ることが可能であった。板状部は第1面側に凸形状となる反りが若干見られ、Pt値は270μmであった。
[実施例3]
 実施例1で得られた顕微鏡観察用容器を、窒素雰囲気としたオーブン中、100℃で30分間の熱処理を行い、その後に室温まで冷却した。得られた顕微鏡観察用容器の板状部をマイクロスコープを用いて倍率600倍で観察したところ、経線および緯線の線幅は3μmであった。また経線および緯線、ならびに各グリッドの位置を識別するための数字を明瞭に読み取ることが可能であった。板状部はほぼ平坦であり、Pt値は5μmであった。板状部をマイクロスコープで観察した写真を図4に示す。
[実施例4]
 実施例2で得られた顕微鏡観察用容器を用いる他は、実施例3と同様にして顕微鏡観察用容器の熱処理を行った。得られた顕微鏡観察用容器の板状部をマイクロスコープを用いて倍率600倍で観察したところ、経線および緯線の線幅は3.5μmであった。また経線および緯線、ならびに各グリッドの位置を識別するための数字を明瞭に読み取ることが可能であった。板状部はほぼ平坦であり、Pt値は25μmであった。
 10 顕微鏡観察用容器
 11 底板部
 11a 板状部
 12 側壁部
 12a 脚部

Claims (6)

  1.  顕微鏡を用いて被検査物を観察するための顕微鏡観察用容器を製造する方法であって、
     前記顕微鏡観察用容器は、
     底板部およびこの底板部の周部から立ち上がる側壁部を備え、
     前記底板部は前記被検査物を支持する板状部を有し、
     前記側壁部の厚さは前記板状部の3倍以上であり、
     前記顕微鏡観察用容器を、
     脂環式構造を有する樹脂を射出成形して一体に成形することを特徴とする、
     顕微鏡観察用容器の製造方法。
  2.  前記板状部が、所定間隔で配置された複数の緯線および経線により構成されるグリッドを有し、
     前記グリッドを前記射出成形により形成する、請求項1記載の製造方法。
  3.  それぞれの前記グリッドの内部と、当該グリッドを形成する前記緯線および前記経線との少なくとも一方には、前記グリッドの絶対位置を識別可能な目印をさらに有し、
     前記目印を前記射出成形により形成する、請求項2記載の製造方法。
  4.  前記射出成形の後に、熱処理により前記板状部を平坦化する工程をさらに含む、請求項1~3のいずれかに記載の製造方法。
  5.  前記板状部が、前記被検査物を支持する第1面および前記第1面とは反対側の第2面を有し、
     前記射出成形に用いる金型は少なくとも前記第1面および第2面を形成する転写面を備え、
     前記第1面および第2面を形成する転写面の少なくとも一方は高精度に加工された光学鏡面である、請求項1~4のいずれかに記載の製造方法。
  6.  前記金型は金型本体から脱着可能なスタンパを備え、前記光学鏡面である転写面が該スタンパに形成されている、請求項5に記載の製造方法。
PCT/JP2014/051732 2013-01-29 2014-01-28 顕微鏡観察用容器の製造方法 WO2014119528A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014559672A JPWO2014119528A1 (ja) 2013-01-29 2014-01-28 顕微鏡観察用容器の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013014536 2013-01-29
JP2013-014536 2013-01-29

Publications (1)

Publication Number Publication Date
WO2014119528A1 true WO2014119528A1 (ja) 2014-08-07

Family

ID=51262242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051732 WO2014119528A1 (ja) 2013-01-29 2014-01-28 顕微鏡観察用容器の製造方法

Country Status (2)

Country Link
JP (1) JPWO2014119528A1 (ja)
WO (1) WO2014119528A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114596A (ja) * 1994-10-14 1996-05-07 Mitsubishi Materials Corp マイクロプレート
WO2006123570A1 (ja) * 2005-05-17 2006-11-23 Kuraray Co., Ltd. 細胞培養容器
WO2009034927A1 (ja) * 2007-09-12 2009-03-19 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology 細胞培養器具及びこれを用いた細胞培養方法
JP2009237277A (ja) * 2008-03-27 2009-10-15 Nippon Zeon Co Ltd 顕微鏡観察用容器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114596A (ja) * 1994-10-14 1996-05-07 Mitsubishi Materials Corp マイクロプレート
WO2006123570A1 (ja) * 2005-05-17 2006-11-23 Kuraray Co., Ltd. 細胞培養容器
WO2009034927A1 (ja) * 2007-09-12 2009-03-19 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology 細胞培養器具及びこれを用いた細胞培養方法
JP2009237277A (ja) * 2008-03-27 2009-10-15 Nippon Zeon Co Ltd 顕微鏡観察用容器

Also Published As

Publication number Publication date
JPWO2014119528A1 (ja) 2017-01-26

Similar Documents

Publication Publication Date Title
KR101362293B1 (ko) 세포배양구조체, 세포배양용기, 스페로이드를 갖는 구조체,스페로이드를 갖는 용기 및 이들의 제조방법
US8652833B2 (en) Cell culture container and method of producing the same
CN105359011A (zh) 光学用膜及其制造方法
JP2007077003A (ja) 複数の光学素子がつくられる平板状光学素子半製品及びその製造装置
US20210077997A1 (en) Method of Manufacture of Microfluidic or Microtiter Device
KR20100020524A (ko) 세포 배양 용기 및 세포 배양 방법
CN107272090A (zh) 用于制造微透镜的方法和装置
WO2016052078A1 (ja) プラスチック製容器
WO2014119528A1 (ja) 顕微鏡観察用容器の製造方法
US20180217494A1 (en) Method for making an epoxy resin mold from a lithography patterned microstructure master
US20150368599A1 (en) Design and hot embossing of macro and micro features with high resolution microscopy access
CN107037239A (zh) 适用于原子力显微镜观测沥青试样的精控热成型制备方法
JP2011229474A (ja) 顕微鏡観察用培養器に用いる摺接カバー、当該摺接カバーを備えた顕微鏡観察用培養器
JP6521432B2 (ja) 細胞培養器及び細胞培養方法
WO2017163378A1 (ja) 培養容器
CN108688205B (zh) 透镜的制造方法
KR101474944B1 (ko) 나노채널 형성방법
JP2021020332A (ja) 成形体の製造方法
US20190212540A1 (en) Microscope Slide for Liquid Cultures
JP4877743B2 (ja) ガラス成形体の製造方法および光学素子の製造方法
Dixon et al. One‐dimensional patterning of cells in silicone wells via compression‐induced fracture
CN216614708U (zh) 一种一体式微生物检验装置
WO2021107008A1 (ja) 薄肉成形品の製造方法及びウェルプレート
CN111527193B (zh) 细菌检查用抗菌剂导入平板以及透明平板
KR20190001979A (ko) 웰 플레이트, 이의 제조방법, 및 이를 이용하여 세포를 배양하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746734

Country of ref document: EP

Kind code of ref document: A1