WO2014119351A1 - イオンミリング装置、及びイオンミリング加工方法 - Google Patents

イオンミリング装置、及びイオンミリング加工方法 Download PDF

Info

Publication number
WO2014119351A1
WO2014119351A1 PCT/JP2014/050271 JP2014050271W WO2014119351A1 WO 2014119351 A1 WO2014119351 A1 WO 2014119351A1 JP 2014050271 W JP2014050271 W JP 2014050271W WO 2014119351 A1 WO2014119351 A1 WO 2014119351A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
ion beam
ion milling
ion
shielding member
Prior art date
Application number
PCT/JP2014/050271
Other languages
English (en)
French (fr)
Inventor
健人 堀之内
上野 敦史
岩谷 徹
麻美 許斐
高須 久幸
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Publication of WO2014119351A1 publication Critical patent/WO2014119351A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/002Cooling arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers

Definitions

  • the present invention relates to an ion milling apparatus that processes a sample with an ion beam, and more particularly to an ion milling apparatus that suppresses heat generated during ion beam irradiation.
  • the ion milling apparatus places a sample in an evacuated sample chamber, irradiates the sample with an argon ion beam applied to about 10 kV or less without focusing, and blows off atoms from the sample surface using physical sputtering. It is an apparatus that polishes the surface of a sample without stress, and is used when preparing a sample for a scanning electron microscope or a transmission electron microscope.
  • Patent Document 1 describes a method of shielding a sample from an ion beam while exposing a part of the sample by about 50 to 200 ⁇ m from the end surface of the shielding plate by a shielding plate (mask) formed of a material having a low sputtering yield. Has been. By irradiating the ion beam while partially exposing the sample, the sample is processed into a shape along the end face of the shielding plate.
  • Patent Document 2 describes a method for dissipating heat to a sample holder on which a sample is placed by disposing a heat radiating plate between the sample and the shielding plate in order to reduce the influence of heat upon irradiation of the sample with an ion beam. Yes.
  • the inventor of the present application diligently studied to suppress the heat generated during ion beam irradiation, and as a result, the following knowledge was obtained.
  • the ion milling apparatus places the sample in the sample chamber that has been evacuated, the heat radiation effect to the sample chamber atmosphere, which is a vacuum from the sample itself or the sample holding structure, is small. Further, since the acceleration voltage of the ion beam is about 10 kV and the ion beam current is about 200 ⁇ A, the amount of heat generated by the ion beam irradiation is about 2 J / s.
  • an ion milling apparatus that uses a shielding plate to expose a part of a sample from the shielding plate and irradiate an ion beam to obtain an ion milling surface in a shape along the end surface of the shielding plate.
  • a sample holding mechanism that can move and adjust the sample to the center of the ion beam is provided.
  • a sample processing method using an ion milling apparatus that irradiates an ion beam toward a sample in a state in which the shielding member is arranged on the sample, the shielding member or the shielding
  • a sample processing method using an ion milling apparatus that irradiates the shielding member and the sample with the ion beam while cooling the shielding member holding portion that holds the shielding member in contact with the member by the cooling member, and the We propose an ion milling device that realizes machining.
  • an ion milling apparatus in which an ionic liquid is located between the cooling mechanism and the shielding plate, and a sample processing method are proposed.
  • the shielding plate irradiated with a large number of ions is cooled, so that heat transfer to the sample can be suppressed.
  • summary of an ion milling apparatus The figure which shows the structure of the sample stand vicinity of an ion milling apparatus. The figure which shows the state which irradiated the ion beam to the sample supported by the sample stand provided with the cooling member.
  • an observation / analysis surface of a sample observed with a scanning electron microscope (SEM) or a transmission electron microscope (TEM) is irradiated with an ion beam to form a target observation surface.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the present invention relates to an ion milling apparatus including a cooling mechanism that suppresses thermal damage to a sample.
  • the shielding member or a shielding member holding unit that holds the shielding member in contact with the shielding member
  • a cooling member that cools the shielding member, and irradiating the shielding member and the sample with the ion beam while cooling the shielding member or the shielding member holding portion by the cooling member is disclosed.
  • the shielding member or the shielding member that holds the shielding member in contact with the shielding member Disclosing irradiation of the ion beam to the shielding member and the sample while cooling the member holding portion by the cooling member is disclosed.
  • the embodiment discloses that the ion beam is irradiated while the ionic liquid is interposed between the shielding member and the shielding member holding part and / or between the cooling member and the shielding member holding part.
  • the ion milling apparatus has a sample holding structure that can move and adjust a sample about the center of the ion beam, and the sample holding structure is biaxial planar moving means (X, Y biaxial fine movement) and tilt (tilt) with respect to the ion beam. ) Has a fine movement structure.
  • FIG. 1 is a diagram showing an outline of an ion milling apparatus. An ion source 1 is installed on the upper surface of the vacuum chamber 15, and a sample stage 8 is installed on the front surface.
  • a sample mask unit fine movement mechanism 4 is mounted on the sample unit base 5.
  • the lower surface of the sample mask unit fine movement mechanism 4 (the opposite side of the mask surface irradiated with the ion beam) and the upper surface of the sample unit base 5 are brought into contact with each other and fixed with screws.
  • the sample unit base 5 is configured to be able to rotate and tilt at an arbitrary angle with respect to the optical axis of the ion beam, and the direction and angle of rotation are controlled by the sample stage 8. By rotating and tilting the sample stage 8, the sample 3 placed on the sample stage 20 can be set at a predetermined angle with respect to the optical axis of the ion beam.
  • the sample stage 20 is configured to be movable in the front-rear and right-and-left directions, that is, in the X and Y directions, perpendicular to the optical axis of the ion beam.
  • the sample unit base 5 is arranged via a sample stage 8 (rotation mechanism) mounted on a flange 10 that also serves as a part of the container wall of the vacuum chamber 15, and the flange 10 is pulled out along the linear guide 11.
  • a sample stage 8 rotation mechanism
  • the sample unit base 5 is configured to be pulled out of the vacuum chamber. In this way, the sample stage drawing mechanism is configured.
  • the mask 2 (shielding plate) is arranged in contact with the sample holding structure or sample. Further, it has a uniaxial or biaxial fine movement structure independent of the biaxial sample plane moving means. Further, the sample, the shielding plate, and each fine movement structure can be easily detached from the ion milling main body, and the ion beam irradiation position and the sample position can be adjusted under observation with an optical microscope.
  • the ion beam irradiation conditions of an ion milling apparatus for creating a sample for an electron microscope are, for example, an acceleration voltage of about 10 kV or less and an ion beam current of about 200 ⁇ A or less.
  • the amount of heat given to the sample by the ion beam irradiation can be calculated as Joule heat obtained by multiplying the acceleration voltage by the ion beam current, and the acceleration voltage and ion beam current are about 2 J / s or less.
  • the ion beam irradiation time to the sample may take several hours. At this time, in a low melting point sample such as a resin, deformation and damage of the shape due to the temperature rise of the sample due to ion beam irradiation cannot be ignored.
  • sample holding means that can efficiently transfer heat from the ion beam irradiation to the sample holding structure or the like is essential. Some or all need to be cooled.
  • an ion milling device that obtains an ion milling surface in a shape along the end face of the shielding plate by exposing a part of the sample from the shielding plate and irradiating an ion beam with a shielding plate using a material having a low sputtering yield.
  • the part most in contact with the sample is a sample table or a shielding plate on which the sample is placed.
  • the shielding plate or the holding structure thereof may be cooled or the heat capacity may be sufficiently increased.
  • the ion gun is disposed on the shielding plate side of the sample, it is necessary to increase the volume of the structure in order to sufficiently increase the heat capacity of the shielding plate or its holding structure.
  • the ion beam of the ion milling device does not focus the ion beam, and the outer dimensions of the shielding plate having a sufficient heat capacity or its holding structure increase the distance between the ion gun and the sample, and the necessary ions. The current density of the beam cannot be satisfied.
  • the sample composition that is generally subject to ion milling processing
  • the thermal conductivity of the sample itself is small, so that the cooling effect is small.
  • the ion milling apparatus includes a sample stage that supports a sample irradiated with an ion beam emitted from an ion source, and includes a shielding plate that shields a part of the sample from the ion beam.
  • a cooling mechanism for cooling is provided, and the cooling mechanism proposes an ion milling device that cools the shielding plate by a refrigerant or a cooling element, and a sample processing method using the ion milling device.
  • an ion milling apparatus in which an ionic liquid is located between the cooling mechanism and the shielding plate, and a sample processing method are proposed.
  • FIG. 2 is a diagram illustrating a structure in the vicinity of the sample stage 20 of the ion milling apparatus illustrated in FIG.
  • the sample 3 which is a polymer material that is easily damaged by ion beam irradiation is fixed to the sample stage 20 with hot wax after being attached to the sample holding member 201 in order to maintain a planar shape.
  • the sample stage 20 on which the sample 3 is fixed is set on a sample holder provided in the sample mask unit fine movement mechanism 4.
  • the sample mask unit fine movement mechanism 4 moves in two orthogonal axes (X and Y directions) on a plane having the ion beam center as a normal line so that the sample stage 20 can be adjusted to the center of the irradiation position of the ion beam.
  • An enabling drive mechanism is provided.
  • the mask 2 for shielding a part of the ion beam to the sample is fixed to the sample mask unit fine movement mechanism 4 via the shielding plate holding unit 202.
  • the sample mask unit fine movement mechanism 4 is provided with a fine movement mechanism for adjusting the position of the mask 2, and is orthogonal to a plane having the ion beam center as a normal line 2 independently of the fine movement mechanism for finely moving the sample. Movement in the axis (X, Y direction) is possible. With this mechanism, the size (for example, 100 ⁇ m) of the ion beam exposed to the sample can be adjusted while observing with an optical microscope or the like.
  • a cooling member 203 is provided on the shielding holder 202 that holds the mask 2.
  • the cooling member 203 and the shielding plate holding part 202 have at least an upper surface (the ion beam irradiation source side) that is the surface having the widest area of the shielding holding member 202 of the plate-like body so that the contact with a large area is possible.
  • the lower surface of the cooling member 203 is configured to be in surface contact.
  • the cooling member 203 is composed of, for example, a Peltier element, and is not simply used for heat dissipation, but actively cools the shielding plate holding member 202. Further, a space where liquid nitrogen can be introduced may be provided in the cooling member 203 to cool the cooling member 203. By making surface contact with the mask 2 and actively cooling the mask 2, heat transfer to the sample can be greatly suppressed.
  • ionic liquids 204 and 205 are applied between the mask 2 and the shielding plate holding member 202 and between the cooling member 203 and the shielding plate holding member 202. Since the ionic liquid has the property of not evaporating even in a vacuum, the sample and mask holding unit can be placed in the vacuum sample chamber with the ionic liquid applied.
  • FIG. 3 is a view showing a state near the sample stage 20 in a state where the ion beam 301 is irradiated from the ion source 1 toward the sample 3. At this time, the end of the mask 2 on the side irradiated with the ion beam 301 is aligned so as to shield the sample 3 from the ion beam 301 except for the region to be processed of the sample 3.
  • the ion beam 301 is applied to the mask 2 and the portion of the sample 3 that is not shielded by the mask 2 and is physically sputtered.
  • the sample 3 or the sample holder 202 is scraped along the edge of the mask 2 to form a processing surface necessary for electron microscope analysis / observation.
  • the cooling member is arranged so as to cover the shielding plate holding portion 202, most of the ion beam is irradiated and the shielding plate (mask 2) serving as a main heat source is directly cooled. This makes it possible to achieve a significant reduction in heat transfer to the sample.
  • the acceleration voltage or ion beam current of the ion beam used for ion milling is about 10 kV or less and the ion beam current is about 200 ⁇ A or less, and is supplied to the ion beam irradiation surface as a substantially multiplied value, that is, Joule heat.
  • the heat transfer coefficient (heat transfer resistance) to the sample and the sample holding member varies greatly depending on the heat transfer coefficient (heat transfer resistance) to the sample and the sample holding member, specifically, the sample stage, the shielding plate, and the shielding plate holding member.
  • the sample chamber of the ion milling apparatus is evacuated to about 1 ⁇ 10 ⁇ 3 Pa. If each member is not sufficiently in contact, heat conduction under atmospheric pressure is reduced.
  • the heat transfer coefficient (heat transfer resistance) to each contact component in vacuum greatly depends on the thermal conductivity and surface shape of each member.
  • thermal conductivity with the cooling mechanism is improved by filling the contact surface between the members with a liquid
  • An ionic liquid that does not evaporate in the vacuum container is suitable as a material for filling the gap in the contact surface. 2 and 3, since the ionic liquid 204 is filled between the mask 2 and the shielding plate holding unit 202 and between the cooling member 203 and the shielding plate holding unit 202, the surface of these members is not damaged. Even if there is unevenness and a sufficient contact area cannot be ensured simply by contact, heat transfer to the sample can be suppressed based on ensuring high thermal conductivity.
  • the sample stage 20, the mask 2, the shielding plate holding part 202, and / or the cooling member 203 is provided with a recess (groove 206) that can sufficiently store the liquid. You may make it fill with an ionic liquid.
  • the structure in which the liquid is filled (intervened) between the members can also be expected to increase the contact area due to the wraparound of the liquid around the member, so that the cooling efficiency can be further increased.
  • the shielding holding member 202, and the member for increasing the heat capacity with the ionic liquid By filling the mask 2, the shielding holding member 202, and the member for increasing the heat capacity with the ionic liquid, the heat conduction from the shielding plate and the sample holding member by ion beam irradiation is improved, and the temperature of the sample itself is increased. It becomes possible to suppress.
  • the heat conduction increases as the temperature gradient, that is, the temperature difference increases.
  • thermal damage to the sample can be reduced by ion beam irradiation with an ion milling apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 イオンビーム照射によって発生する熱上昇を高い冷却効果のもとに抑制する試料加工方法、及びイオンミリング装置の提供を目的として、試料(3)上に遮蔽部材(2)を配置した状態で試料(3)に向かってイオンビーム(301)を照射する試料加工方法、及びイオンミリング装置であって、前記遮蔽部材(2)、或いは当該遮蔽部材(2)に接した状態で当該遮蔽部材(2)を保持する遮蔽部材保持部(202)を、冷却部材(203)によって冷却しつつ、前記イオンビーム(301)を前記遮蔽部材(2)と前記試料(3)に照射する試料加工方法、及びイオンミリング装置を提案する。

Description

イオンミリング装置、及びイオンミリング加工方法
 本発明は、イオンビームによって試料を加工するイオンミリング装置に係り、特にイオンビーム照射時に発生する熱を抑制するイオンミリング装置に関する。
 イオンミリング装置は、真空排気した試料室に試料を設置し、10kV程度以下に印加したアルゴンイオンビームを集束させずに試料に照射し、物理スパッタリング現象を利用して試料表面から原子を弾き飛ばし、無応力で試料表面を研磨する装置であり、走査電子顕微鏡や透過電子顕微鏡用試料を作成する際に使用される。
 特許文献1には、スパッタリング収率の小さい材料によって形成された遮蔽板(マスク)によって、試料の一部を遮蔽板端面から50~200μm程度露出させつつ、試料をイオンビームから遮蔽する手法が説明されている。試料を部分的に露出させつつ、イオンビーム照射を行うことによって、試料は遮蔽板の端面に沿った形状に加工されることになる。
 また、特許文献2には、試料へのイオンビーム照射時の熱の影響を低減させるために、試料と遮蔽板の間に放熱板を配設させ、試料を載せる試料ホルダへ放熱させる方法が記されている。
特開2007-14996号公報 特開2007-248368号公報
 本願発明者が、イオンビーム照射時に発生する熱を抑制することについて鋭意検討した結果、次の知見を得るに至った。
 イオンミリング装置は、真空排気した試料室に試料を設置するため、試料自体または試料保持構造からの真空である試料室雰囲気への放熱効果が小さい。また、イオンビームは加速電圧が10kV程度、イオンビーム電流は200μA程度であるため、イオンビーム照射によって生ずる熱量は概ね2J/s程度となる。
 特許文献1に開示されているように、遮蔽板により、試料の一部を遮蔽板から露出させてイオンビームを照射し、遮蔽板の端面に沿った形状にイオンミリング面を得るイオンミリング装置は、試料をイオンビーム中心に移動・調整できる試料保持機構が備えている。上述のようなイオンビーム照射によって発生する熱を、試料保持機構を冷却することによって抑制することが考えられるが、試料保持機構の各可動部品間の熱伝達抵抗により、十分な放熱効果を得られない場合がある。
 特許文献2に開示されているように、試料と遮蔽板の間に放熱板を設ける場合、熱伝導率が小さい試料では、放熱板への放熱効果が小さく、十分な放熱効果を得られない。
 以下に、イオンビーム照射によって発生する熱上昇を高い冷却効果のもとに抑制することを目的とするイオンミリング装置を説明する。
 上記目的を達成するための一態様として、試料上に遮蔽部材を配置した状態で試料に向かってイオンビームを照射するイオンミリング装置を用いた試料加工方法であって、前記遮蔽部材、或いは当該遮蔽部材に接した状態で当該遮蔽部材を保持する遮蔽部材保持部を、冷却部材によって冷却しつつ、前記イオンビームを前記遮蔽部材と前記試料に照射するイオンミリング装置を用いた試料加工方法、及び当該加工を実現するイオンミリング装置を提案する。
 また、上記目的を達成するための他の態様として、前記冷却機構と遮蔽板との間にイオン液体が位置するイオンミリング装置、及び試料加工方法を提案する。
 上記構成のように、遮蔽板を冷却する機構を設けることによって、多くのイオンが照射される遮蔽板を冷却することになるため、試料への熱伝達を抑制することが可能となる。
イオンミリング装置の概要を示す図。 イオンミリング装置の試料台近傍の構造を示す図。 冷却部材を備えた試料台に支持される試料にイオンビームを照射した状態を示す図。
 以下に説明する実施例は、走査形電子顕微鏡(SEM)や透過形電子顕微鏡(TEM)などで観察する試料の観察・分析面を、イオンビームを照射して、目的の観察面を形成するためのイオンミリング装置に係り、特に試料の熱ダメージを抑制する冷却機構を備えたイオンミリング装置に関するものである。
 実施例では、試料上に遮蔽部材を配置した状態で試料に向かってイオンビームを照射するイオンミリング装置において、遮蔽部材、或いは当該遮蔽部材に接した状態で当該遮蔽部材を保持する遮蔽部材保持部を冷却する冷却部材を備え、当該冷却部材によって遮蔽部材、或いは遮蔽部材保持部を冷却しつつ、イオンビームを遮蔽部材と試料に照射することを開示する。
 また、実施例では、試料上に遮蔽部材を配置した状態で試料に向かってイオンビームを照射するイオンミリング加工方法において、遮蔽部材、或いは当該遮蔽部材に接した状態で当該遮蔽部材を保持する遮蔽部材保持部を、冷却部材によって冷却しつつ、イオンビームを遮蔽部材と試料に照射することを開示する。
 また、実施例では、遮蔽部材と遮蔽部材保持部との間、及び/又は冷却部材と遮蔽部材保持部との間にイオン液体を介在させつつ、イオンビームを照射することを開示する。
 以下、上記およびその他の新規な特徴と効果について、図面を参酌して説明する。なお、図面は専ら発明の理解のために用いるものであり、権利範囲を限縮するものではない。
 イオンミリング装置は、試料をイオンビーム中心に移動・調整できる試料保持構造を有し、試料保持構造はイオンビームに対し、二軸の平面移動手段(X、Yの二軸微動)と傾斜(チルト)微動構造を有している。図1は、イオンミリング装置の概要を示す図である。真空チャンバ15の上面にイオン源1、前面に試料ステージ8が設置されている。
 試料ユニットベース5には、試料マスクユニット微動機構4が搭載される。搭載方法は、試料マスクユニット微動機構4の下面(イオンビームが照射されるマスク面の対面側)と試料ユニットベース5の上面を接触させて、ねじで固定される。試料ユニットベース5がイオンビームの光軸に対して任意の角度に回転傾斜できるように構成されており、回転傾斜させる方向と傾斜角度は、試料ステージ8により制御される。試料ステージ8を回転傾斜させることにより、試料台20上に設置される試料3をイオンビームの光軸に対して所定の角度に設定することができる。更に、試料ステージ8の回転傾斜軸と試料上面(マスク下面)の位置を一致させて、効率良く平滑な加工面を作製している。また、試料台20は、イオンビームの光軸に対して垂直方向の前後左右、すなわち、X方向とY方向に移動できるように構成される。
 試料ユニットベース5は、真空チャンバ15の容器壁の一部を兼ねるフランジ10に搭載されている試料ステージ8(回転機構)を介して配置されており、フランジ10をリニアガイド11に沿って引き出して真空チャンバ15を大気状態に開放した時に、試料ユニットベース5が真空チャンバの外部へ引き出されるように構成されている。このようにして、試料ステージ引出機構が構成される。
 マスク2(遮蔽板)は、前記試料保持構造もしくは試料と接触した状態で配置される。また、前記、二軸の試料平面移動手段とは独立した一軸もしくは二軸の微動構造を有する。また、前記試料や前記遮蔽板および各微動構造は、イオンミリング本体から容易に着脱可能であり、イオンビーム照射位置と試料の位置調整を光学顕微鏡観察下で行える。
 電子顕微鏡用試料を作成するイオンミリング装置のイオンビームの照射条件は、例えば加速電圧が10kV程度以下、イオンビーム電流は200μA程度以下である。このとき、イオンビーム照射によって試料に与えられる熱量は、加速電圧にイオンビーム電流を乗じたジュール熱として算出でき、前記の加速電圧、イオンビーム電流では概ね2J/s程度以下である。
 また、イオンミリング装置では、分析・観察に必要とする試料面を得るため、試料へのイオンビーム照射時間は数時間を要することがある。このとき、樹脂等の低融点試料では、イオンビーム照射による試料の温度上昇による形状の変形や損傷が無視できない。
 イオンビーム照射による試料の温度上昇を抑制するためには、イオンビーム照射による熱が試料から効率的に試料保持構造等に熱伝達できる試料保持手段が必須であり、場合によっては試料保持構造部品の一部または全部を冷却する必要がある。
 スパッタリング収率の小さい材料を用いた遮蔽板により、試料の一部を遮蔽板から露出させてイオンビームを照射し、遮蔽板の端面に沿った形状にイオンミリング面を得るイオンミリング装置においては、試料と最も接触している部品は試料を設置する試料台または遮蔽板である。
 この手法においては、イオビームの半分以上は遮蔽板により遮蔽されるため、イオンビーム照射により熱量は半分以上が遮蔽板に供給され、遮蔽板の温度上昇は当然ながら試料にも影響を与える。従い、試料および遮蔽板へのイオンビーム照射による試料の熱的損傷を低減するためには、遮蔽板またはその保持構造を冷却するかまたは熱容量を十分に大きくすれば良い。
 しかしながら、試料の遮蔽板側にはイオンガンが配置されるため、遮蔽板またはその保持構造の熱容量を十分に大きくするためには構造の容積を大きくする必要がある。
 他方、イオンミリング装置のイオンビームはイオンビームを集束させておらず、十分な熱容量を持たせた遮蔽板またはその保持構造の外形寸法では、イオンガンと試料間の距離が長くなるなり、必要なイオンビームの電流密度を満足できない。
 イオンミリング装置の試料台を試料室外に設置した液体窒素を用いて熱伝導率の高い銅製の編組線により間接的に冷却することも考えられるが、一般的にイオンミリングの処理対象となる試料組成において、且つ、イオンビーム照射による熱的な損傷が発生しやすい例えば高分子材料では、試料自体の熱伝導率が小さいため、冷却の効果が小さくなる。
 本実施例では、上記イオンミリング装置特有の課題に鑑み、新たな冷却機構を提案する。具体的には、イオン源から放出されるイオンビームが照射される試料を支持する試料台を備えたイオンミリング装置であって、前記イオンビームに対して前記試料の一部を遮蔽する遮蔽板を冷却する冷却機構を備え、当該冷却機構は冷媒、或いは冷却素子によって前記遮蔽板を冷却するイオンミリング装置、及び当該イオンミリング装置を用いた試料の加工方法を提案する。
 また、上記目的を達成するための他の態様として、前記冷却機構と遮蔽板との間にイオン液体が位置するイオンミリング装置、及び試料加工方法を提案する。
 以下に説明する本実施例では、イオンビーム照射による試料への熱的な損傷を抑えたイオンミリング装置およびイオンミリング装置用冷却装置を、図面を用いて説明する。図2は、図1に例示したイオンミリング装置の試料台20の近傍の構造を示す図である。
 イオンビーム照射により熱的損傷を受けやすい高分子材料である試料3は平面形状を維持するため試料保持材201に貼り付けた後に試料台20にホットワックス等で固定される。試料3を固定した試料台20は、試料マスクユニット微動機構4に設けられた試料ホルダにセットされる。
 試料マスクユニット微動機構4には、イオンビームの照射位置の中心へ試料台20を調整できるようイオンビーム中心を法線とする平面上に、直行する2軸(X、Y方向)への移動を可能とする駆動機構が設けられている。
 試料へのイオンビームの一部を遮蔽するためのマスク2は、遮蔽板保持部202を介して試料マスクユニット微動機構4に固定される。
 試料マスクユニット微動機構4には、マスク2の位置を調整するための微動機構が備えられ、試料を微動させる微動機構とは独立してイオンビーム中心を法線とする平面上に、直行する2軸(X、Y方向)への移動を可能としている。この機構により、試料へのイオンビームの暴露する寸法(例えば100μm等)を光学顕微鏡等で観察しながら調整できる。
 マスク2と遮蔽板保持部材202をひとつの部品とすることも可能であるが、遮蔽板はイオンビーム照射により削れて消耗するため、遮蔽板自体は消耗品である。本実施例においては、前記のように分離した部品として説明した。マスク2を保持する遮蔽保持部202上には冷却部材203が設けられている。冷却部材203と遮蔽板保持部202はなるべく大面積での接触が可能なように、少なくとも板状体の遮蔽保持部材202の最も広い面積を持つ面である上面(イオンビームの照射源側)と、冷却部材203の下面が面接触するように構成されている。
 冷却部材203は例えばペルチェ素子で構成され、単に放熱に用いられるのではなく、積極的に遮蔽板保持部材202を冷却する構成となっている。また、冷却部材203内に液体窒素の導入が可能な空間を設け、冷却部材203を冷却するようにしても良い。マスク2に面接触すると共に、マスク2を積極的に冷却する構成とすることによって、試料への熱伝達を大幅に抑制することが可能となる。
 また、マスク2と遮蔽板保持部材202との間、及び冷却部材203と遮蔽板保持部材202との間にはイオン液体204、205が塗布されている。イオン液体は、真空中でも蒸発しない特性を持っているため、イオン液体が塗布された状態で試料とマスクの保持ユニットを真空試料室内に配置することができる。
 図3は、イオン源1からイオンビーム301が試料3に向けて照射されている状態の試料台20近傍の様子を示す図である。このときマスク2のイオンビーム301が照射される側の端部は、試料3の加工対象となる領域を除いて、イオンビーム301から試料3を遮蔽するように、位置合わせされている。
 イオンビーム301はマスク2と、試料3の内、マスク2に遮蔽されていない部分に照射され、物理スパッタリングされる。マスク2の端部に沿って試料3または試料保持部202が削れ、電子顕微鏡分析・観察に必要な加工面が形成される。
 本実施例では、冷却部材を、遮蔽板保持部202を覆うように配置しているため、イオンビームの大半が照射され、主な熱源となる遮蔽板(マスク2)を直接的に冷却することによる試料への熱伝達の大幅な低減を実現することが可能となる。
 イオンミリングに用いるイオンビームの加速電圧やイオンビーム電流は加速電圧が10kV程度以下、イオンビーム電流は200μA程度以下であり、ほぼ乗じた値すなわちジュール熱としてイオンビーム照射面に供給され、各々の熱容量(比熱に体積を乗じた値)に応じて温度上昇する。この温度上昇は、実際には、試料や試料保持部材の形状や、試料や試料保持部材に接触する各構成部品への熱伝導により著しく変わる。
 特に、試料や試料保持部材、具体的には試料台、遮蔽板、遮蔽板保持部材への熱伝達係数(熱伝達抵抗)により大きく変わる。イオンミリング装置の試料室内は1×10-3Pa程度に真空排気されており、各部材が十分に接触しないと、大気圧下での熱伝導が小さくなる。真空中での各接触部品への熱伝達係数(熱伝達抵抗)は、各部材の熱伝導率と表面形状に大きく依存する。
 また、熱伝導を大きくするためには、各部品の一体化が必要である一方で、各々独立させた微動構造が実用上は必要なため、接触面の接触率を向上させる、即ち鏡面化が必要となる。
 各部材の接触面を鏡面化しても、装置の使用回数経過によって各部材同士が接触して発生するキズ等により接触が十分で無くなり、結果として熱伝導が低下してしまう。
 本実施例では、部材間の接触面を液体で埋めることによって、冷却機構との熱伝導性を向上する例を説明する。接触面の空隙を埋める材料としては、真空容器の中で蒸発しないイオン液体が適している。図2、3では、イオン液体204をマスク2と遮蔽板保持部202との間、及び冷却部材203と遮蔽板保持部202との間に充填しているため、これらの部材の表面に傷や凹凸があり、単に接触させただけでは十分に接触面積が確保できない場合であっても、高い熱伝導性の確保に基づく、試料への熱伝達の抑制を行うことが可能となる。
 また、十分にイオン液体を充填するために、試料台20、マスク2、遮蔽板保持部202、及び/又は冷却部材203に液体を十分に収容可能な凹部(溝206)を設け、当該部分にイオン液体を充填するようにしても良い。更に液体を部材間に充填する(介在させる)ような構成によって、液体の部材周囲への周り込みによる接触面積の増加の効果も期待できるため、冷却効率をより高めることが可能となる。
 イオン液体によって、マスク2、遮蔽保持部材202、さらには熱容量を増やすための部材間を満たすことによって、イオンビーム照射による遮蔽板、試料保持部材からの熱伝導を向上させ、試料自体の温度上昇を抑制することが可能となる。熱伝導は温度勾配、すなわち温度差を大きくすると熱伝導も大きくなる。冷却部材を試料室外に設置した液体窒素等により銅線を介して冷却することで、更に効果を試料の熱損傷を低減できる。
 上記構成によって、イオンミリング装置でのイオンビーム照射により試料の熱損傷を低減できる。
1 イオン源
2 マスク
3 試料
4 試料マスクユニット微動機構
5 試料ユニットベース
6 真空排気系
8 試料ステージ
10 フランジ
11 リニアガイド
15 真空チャンバ
20 試料台
201 試料保持材
202 遮蔽板保持部
203 冷却部材
204 イオン液体
205 イオン液体
206 溝
301 イオンビーム

Claims (4)

  1.  試料上に遮蔽部材を配置した状態で前記試料に向かってイオンビームを照射するイオンミリング装置において、
     前記遮蔽部材、或いは当該遮蔽部材に接した状態で当該遮蔽部材を保持する遮蔽部材保持部を冷却する冷却部材を備え、当該冷却部材によって前記遮蔽部材、或いは遮蔽部材保持部を冷却しつつ、前記イオンビームを前記遮蔽部材と前記試料に照射することを特徴とするイオンミリング装置。
  2.  請求項1記載のイオンミリング装置において、
     前記遮蔽部材と前記遮蔽部材保持部との間、及び/又は前記冷却部材と前記遮蔽部材保持部との間にイオン液体を介在させつつ、前記イオンビームを照射することを特徴とするイオンミリング装置。
  3.  試料上に遮蔽部材を配置した状態で試料に向かってイオンビームを照射するイオンミリング加工方法において、
     前記遮蔽部材、或いは当該遮蔽部材に接した状態で当該遮蔽部材を保持する遮蔽部材保持部を、冷却部材によって冷却しつつ、前記イオンビームを前記遮蔽部材と前記試料に照射することを特徴とするイオンミリング加工方法。
  4.  請求項3記載のイオンミリング加工方法において、
     前記遮蔽部材と前記遮蔽部材保持部との間、及び/又は前記冷却部材と前記遮蔽部材保持部との間にイオン液体を介在させつつ、前記イオンビームを照射することを特徴とするイオンミリング加工方法。
PCT/JP2014/050271 2013-01-30 2014-01-10 イオンミリング装置、及びイオンミリング加工方法 WO2014119351A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-014966 2013-01-30
JP2013014966A JP2016095895A (ja) 2013-01-30 2013-01-30 イオンミリング装置を用いた試料の加工方法、及びイオンミリング装置

Publications (1)

Publication Number Publication Date
WO2014119351A1 true WO2014119351A1 (ja) 2014-08-07

Family

ID=51262066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050271 WO2014119351A1 (ja) 2013-01-30 2014-01-10 イオンミリング装置、及びイオンミリング加工方法

Country Status (2)

Country Link
JP (1) JP2016095895A (ja)
WO (1) WO2014119351A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203676A1 (ja) * 2016-05-27 2017-11-30 株式会社日立ハイテクノロジーズ 荷電粒子線装置
CN108181333A (zh) * 2017-12-04 2018-06-19 南京腾元软磁有限公司 一种精制非晶态固体合金三维重构透射电镜样品的工艺方法及评价方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053074A1 (ja) * 2022-09-08 2024-03-14 株式会社日立ハイテク イオンミリング装置及び試料加工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174940A (ja) * 2008-01-23 2009-08-06 Jeol Ltd 試料断面作製装置の遮蔽材保持機構
JP2012033335A (ja) * 2010-07-29 2012-02-16 Hitachi High-Technologies Corp イオンミリング装置
JP2012191043A (ja) * 2011-03-11 2012-10-04 Denso Corp 熱伝達装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174940A (ja) * 2008-01-23 2009-08-06 Jeol Ltd 試料断面作製装置の遮蔽材保持機構
JP2012033335A (ja) * 2010-07-29 2012-02-16 Hitachi High-Technologies Corp イオンミリング装置
JP2012191043A (ja) * 2011-03-11 2012-10-04 Denso Corp 熱伝達装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203676A1 (ja) * 2016-05-27 2017-11-30 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JPWO2017203676A1 (ja) * 2016-05-27 2019-04-04 株式会社日立ハイテクノロジーズ 荷電粒子線装置
CN108181333A (zh) * 2017-12-04 2018-06-19 南京腾元软磁有限公司 一种精制非晶态固体合金三维重构透射电镜样品的工艺方法及评价方法
CN108181333B (zh) * 2017-12-04 2020-04-21 南京腾元软磁有限公司 一种精制非晶态固体合金三维重构透射电镜样品的工艺方法及评价方法

Also Published As

Publication number Publication date
JP2016095895A (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
JP5857158B2 (ja) イオンミリング装置
JP6198942B2 (ja) イオンミリング装置、及び試料加工方法
CN109243947B (zh) 用于x射线生成的薄片状靶
JP5732421B2 (ja) イオンミリング装置
JP5250470B2 (ja) 試料ホールダ,該試料ホールダの使用法、及び荷電粒子装置
US8173952B2 (en) Arrangement for producing electromagnetic radiation and method for operating said arrangement
US20090152462A1 (en) Gas field ionization ion source, scanning charged particle microscope, optical axis adjustment method and specimen observation method
JP5738980B2 (ja) イオンビーム試料準備装置及び方法
US20210287871A1 (en) Ion milling apparatus
JP5512450B2 (ja) イオンミリング装置
WO2014119351A1 (ja) イオンミリング装置、及びイオンミリング加工方法
WO2014208307A1 (ja) イオンミリング装置
JP5020794B2 (ja) 試料断面作製装置の試料遮蔽機構
US12080511B2 (en) Sample holder, method for using sample holder, projection amount adjustment jig, projection amount adjustment method and charged particle beam device
JP2013140741A (ja) 真空容器を備えた荷電粒子線照射装置
JPWO2007141868A1 (ja) X線顕微鏡およびx線顕微方法
JP6262428B2 (ja) 荷電粒子ビーム・システムにおけるドリフト制御
JP2007053048A (ja) 集束荷電粒子ビームを用いた加工装置
JP6629442B2 (ja) 荷電粒子線装置の試料加工方法
JP2017016810A (ja) 荷電粒子線装置、および試料ホルダの温度制御方法
JP2011192521A (ja) イオンビーム加工方法及び加工装置
JP6372405B2 (ja) 断面試料作成装置、及び、断面試料作成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP