WO2014118893A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2014118893A1
WO2014118893A1 PCT/JP2013/051912 JP2013051912W WO2014118893A1 WO 2014118893 A1 WO2014118893 A1 WO 2014118893A1 JP 2013051912 W JP2013051912 W JP 2013051912W WO 2014118893 A1 WO2014118893 A1 WO 2014118893A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
air
exhaust
output current
reference cell
Prior art date
Application number
PCT/JP2013/051912
Other languages
English (en)
French (fr)
Inventor
剛 林下
圭一郎 青木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201380071606.8A priority Critical patent/CN104956058B/zh
Priority to EP13873938.8A priority patent/EP2952721B1/en
Priority to JP2014559392A priority patent/JP5949959B2/ja
Priority to RU2015131027A priority patent/RU2617423C2/ru
Priority to AU2013376227A priority patent/AU2013376227B2/en
Priority to US14/763,022 priority patent/US10001076B2/en
Priority to BR112015017838-3A priority patent/BR112015017838B1/pt
Priority to PCT/JP2013/051912 priority patent/WO2014118893A1/ja
Priority to KR1020157011658A priority patent/KR20150063555A/ko
Publication of WO2014118893A1 publication Critical patent/WO2014118893A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1455Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor resistivity varying with oxygen concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Definitions

  • the present invention relates to a control device for an internal combustion engine that controls the internal combustion engine in accordance with the output of an air-fuel ratio sensor.
  • Such air-fuel ratio sensors are roughly classified into a one-cell type air-fuel ratio sensor (for example, Patent Documents 2 and 4) and a two-cell type air-fuel ratio sensor (for example, Patent Documents 1, 3, and 5).
  • a one-cell type air-fuel ratio sensor only one cell including a solid electrolyte layer capable of passing oxygen ions and two electrodes provided on both side surfaces thereof is provided. One of the electrodes is exposed to the atmosphere, and the other electrode is exposed to the exhaust gas through the diffusion rate controlling layer.
  • a voltage is applied between two electrodes arranged on both side surfaces of the solid electrolyte layer, and accordingly, between both side surfaces of the solid electrolyte layer.
  • exhaust air-fuel ratio the air-fuel ratio of exhaust gas (hereinafter also referred to as “exhaust air-fuel ratio”) is detected (for example, Patent Document 2).
  • the two-cell type air-fuel ratio sensor two cells each having a solid electrolyte layer capable of passing oxygen ions and two electrodes provided on both side surfaces thereof are provided.
  • One of these cells (reference cell) is configured such that the detection voltage (electromotive force) changes according to the oxygen concentration in the exhaust gas in the measured gas chamber.
  • the other cell pumps oxygen in and out of the exhaust gas in the measured gas chamber according to the pump current.
  • the pump current of the pump cell is set so that oxygen is pumped in and pumped out so that the detected voltage detected in the reference cell matches the target voltage value. By detecting this pump current, the exhaust air-fuel ratio is reduced. Detected.
  • the air-fuel ratio sensors described in Patent Documents 1 to 5 are generally configured to have output characteristics indicated by a solid line A in FIG. That is, in such an air-fuel ratio sensor, the output current from the air-fuel ratio sensor increases as the exhaust air-fuel ratio increases (that is, as the exhaust air-fuel ratio becomes leaner).
  • such an air-fuel ratio sensor is configured such that the output current becomes zero when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio.
  • the slope in FIG. 2, that is, the ratio of the increase amount of the output current to the increase amount of the exhaust air-fuel ratio (hereinafter referred to as “output current change rate”) is not necessarily the same even through the same production process. Even a type of air-fuel ratio sensor will vary among individuals. In addition, even in the same air-fuel ratio sensor, the output current change rate changes due to deterioration over time. As a result, even if the same type of sensor is used, the rate of change in the output current decreases as shown by the broken line B in FIG. The rate of current change will increase.
  • the output current of the air-fuel ratio sensor varies depending on the sensor used, the period of use, and the like. For example, when the air-fuel ratio sensor has output characteristics as indicated by the solid line A, the output current when measuring the exhaust gas having an air-fuel ratio of af 1 is I 2 . However, when the air-fuel ratio sensor has output characteristics as indicated by the broken line B or the alternate long and short dash line C, the output currents when measuring the exhaust gas having an air-fuel ratio of af 1 are I 1 and I, respectively. 3 , resulting in an output current different from I 2 described above.
  • such an air-fuel ratio sensor can accurately detect that the stoichiometric air-fuel ratio and the stoichiometric air-fuel ratio are rich and lean.
  • the air-fuel ratio of the exhaust gas is not the stoichiometric air-fuel ratio, its absolute The value (that is, the rich degree or the lean degree) could not be accurately detected.
  • an object of the present invention is to provide an internal combustion engine using an air-fuel ratio sensor that can detect the absolute value of the air-fuel ratio of the exhaust gas even when the air-fuel ratio of the exhaust gas is not the stoichiometric air-fuel ratio. It is to provide an engine control device.
  • the first invention includes an air-fuel ratio sensor provided in an exhaust passage of the internal combustion engine, and an engine control device that controls the internal combustion engine based on a sensor output current of the air-fuel ratio sensor.
  • the air-fuel ratio sensor includes a measured gas chamber into which an exhaust gas that is an air-fuel ratio detection target is allowed to flow, and a reference cell according to the air-fuel ratio of the exhaust gas in the measured gas chamber A reference cell in which an output current changes; and a pump cell that pumps oxygen into and out of the exhaust gas in the measured gas chamber in accordance with a pump current, and the reference cell is in the measured gas chamber.
  • the applied voltage at which the reference cell output current becomes zero changes according to the air-fuel ratio of the exhaust gas, and the applied voltage in the reference cell is changed when the air-fuel ratio of the exhaust gas in the measured gas chamber is the stoichiometric air-fuel ratio.
  • the applied voltage in the reference cell is fixed at a constant voltage.
  • the pump current control device controls the pump current so that the reference cell output current is zero when the reference cell output current is zero when the air-fuel ratio is different from the stoichiometric air-fuel ratio.
  • a pump current detection device that detects the pump current as the sensor output current.
  • the reference cell in a second invention, includes a first electrode exposed to the exhaust gas in the measured gas chamber, a second electrode exposed to a reference atmosphere, and the first electrode.
  • the diffusion rate controlling layer is arranged such that exhaust gas in the measured gas chamber reaches the first electrode through the diffusion rate controlling layer.
  • the reference cell has a limit current region that is a voltage region in which the reference cell output current becomes a limit current for each exhaust air-fuel ratio.
  • the constant voltage is a voltage within the limit current region when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio.
  • the reference cell is proportional to the increase of the applied voltage with respect to the relationship between the applied voltage and the reference cell output current for each exhaust air-fuel ratio. Proportional to the voltage region in which the reference cell output current increases, and the water decomposition region in which the reference cell output current changes according to the change in applied voltage due to the occurrence of water decomposition.
  • An intermediate region that is a voltage region between the region and the water splitting region, and the constant voltage is a voltage within the intermediate region when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio.
  • the constant voltage is a voltage at which a reference cell output current becomes zero when the exhaust air-fuel ratio is 1% higher than the stoichiometric air-fuel ratio
  • the air-fuel ratio of the exhaust gas in the measured gas chamber is 1% lower than the stoichiometric air-fuel ratio, it is set to a voltage between the voltage at which the reference cell output current becomes zero.
  • the reference cell increases the applied voltage with respect to the relationship between the applied voltage and the reference cell output current for each exhaust air-fuel ratio.
  • the reference cell output current increases to the first inflection point, and as the applied voltage increases from the first inflection point, the reference cell output current increases to the second inflection point, and the applied voltage increases from the second inflection point.
  • the increase in the reference cell output current relative to the increase in applied voltage is smaller in the voltage region between the first and second bending points than in the other voltage regions.
  • the constant voltage is a voltage between the first bending point and the second bending point when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio.
  • the reference cell includes a current increasing region that is a voltage region in which the reference cell output current increases as the applied voltage increases for each exhaust air-fuel ratio;
  • a current slightly increasing region that is a voltage region in which the amount of increase in the reference cell output current with respect to the amount of increase in the applied voltage is smaller than that in the current increasing region. This is the voltage within the current slightly increasing region when the fuel ratio is the stoichiometric air-fuel ratio.
  • the diffusion-controlling layer is made of alumina, and the constant voltage is 0.1 V or more and 0.9 V or less.
  • the engine control device has an exhaust air / fuel ratio different from a stoichiometric air / fuel ratio when a sensor output current of the air / fuel ratio sensor becomes zero. It is determined that the air-fuel ratio is determined in advance.
  • the internal combustion engine is an exhaust purification device capable of storing oxygen provided in the exhaust passage upstream of the air-fuel ratio sensor in the exhaust flow direction.
  • the constant voltage is set so that the reference cell output current becomes zero when the exhaust air-fuel ratio is a predetermined rich determination air-fuel ratio that is richer than the stoichiometric air-fuel ratio.
  • the engine control device can control the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst, and the sensor output current of the air-fuel ratio sensor becomes zero or less.
  • the target air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is made leaner than the stoichiometric air-fuel ratio.
  • the engine control apparatus according to the twelfth aspect of the present invention, wherein the oxygen storage amount of the exhaust purification catalyst is greater than the maximum oxygen storage amount when the sensor output current of the air-fuel ratio sensor becomes zero or less.
  • Oxygen storage amount increasing means for continuously or intermittently making the target air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst leaner than the stoichiometric air-fuel ratio until the predetermined storage amount decreases, and oxygen of the exhaust purification catalyst
  • the target air-fuel ratio is continuously or intermittently stoichiometrically reduced so that the oxygen occlusion amount decreases toward zero without reaching the maximum oxygen occlusion amount.
  • Oxygen storage amount reducing means for making the fuel richer than the fuel ratio.
  • the difference is larger than the difference between the target air-fuel ratio and the stoichiometric air-fuel ratio during a period in which the oxygen storage amount reducing means is continuously or intermittently made richer than the stoichiometric air-fuel ratio.
  • the internal combustion engine control device includes an upstream air-fuel ratio provided in the engine exhaust passage upstream of the exhaust purification catalyst in the exhaust flow direction.
  • a sensor is provided, and the engine control device controls the exhaust air-fuel ratio based on the output of the upstream air-fuel ratio sensor so that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst becomes the target air-fuel ratio.
  • the upstream air-fuel ratio sensor is configured such that the applied voltage at which the sensor output current becomes zero changes according to the exhaust air-fuel ratio and the exhaust air-fuel ratio is the stoichiometric air-fuel ratio.
  • the applied voltage in the upstream air-fuel ratio sensor is increased, the sensor output current increases accordingly.
  • the applied voltage in the upstream air-fuel ratio sensor is greater than the applied voltage of the air-fuel ratio sensor. Is also low.
  • the applied voltage in the upstream air-fuel ratio sensor is fixed at a constant voltage
  • the constant voltage is The voltage at which the sensor output current becomes zero when the air-fuel ratio of the exhaust gas in the gas measurement chamber is the stoichiometric air-fuel ratio.
  • a control device for an internal combustion engine using an air-fuel ratio sensor capable of detecting an absolute value of an air-fuel ratio of exhaust gas even when the air-fuel ratio of the exhaust gas is not a stoichiometric air-fuel ratio.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which a control device according to a first embodiment of the present invention is used.
  • FIG. 2 is a diagram showing output characteristics of the air-fuel ratio sensor.
  • FIG. 3 is a schematic cross-sectional view of the air-fuel ratio sensor.
  • FIG. 4 is a diagram schematically showing the operation of the air-fuel ratio sensor.
  • FIG. 5 is a diagram showing output characteristics of the air-fuel ratio sensor.
  • FIG. 6 is a diagram schematically showing the operation of the reference cell.
  • FIG. 7 is a diagram showing the relationship between the sensor applied voltage and the reference cell output current at each exhaust air-fuel ratio.
  • FIG. 8 is a diagram showing the relationship between the exhaust air-fuel ratio and the reference cell output current at each sensor applied voltage.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which a control device according to a first embodiment of the present invention is used.
  • FIG. 2 is a diagram showing output characteristics of the air-fuel ratio sensor.
  • FIG. 9 is a diagram showing the relationship between the sensor applied voltage and the reference cell output current in the air-fuel ratio sensor.
  • FIG. 10 is a diagram showing the relationship between the exhaust air-fuel ratio and the reference cell output current in the air-fuel ratio sensor.
  • FIG. 11 is a diagram illustrating the relationship between the sensor applied voltage and the reference cell output current.
  • FIG. 12 is a view similar to FIG. 8 showing the relationship between the exhaust air-fuel ratio and the reference cell output current at each sensor applied voltage, and shows a wider range than FIG.
  • FIG. 13 is a diagram illustrating an example of a specific circuit constituting the voltage application device and the reference cell output current detection device.
  • FIG. 14 shows the relationship between the oxygen storage amount of the exhaust purification catalyst and the concentrations of NOx and unburned gas in the exhaust gas flowing out from the exhaust purification catalyst.
  • FIG. 15 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 16 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 17 is a functional block diagram of the control device.
  • FIG. 18 is a flowchart showing a control routine of calculation control of the air-fuel ratio correction amount.
  • FIG. 19 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 20 is a cross-sectional view similar to FIG. 3, schematically showing the configuration of the air-fuel ratio sensor of the third embodiment.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which a control device according to a first embodiment of the present invention is used.
  • 1 is an engine body
  • 2 is a cylinder block
  • 3 is a piston that reciprocates in the cylinder block
  • 4 is a cylinder head fixed on the cylinder block
  • 5 is a piston 3 and a cylinder head 4.
  • a combustion chamber formed therebetween 6 is an intake valve
  • 7 is an intake port
  • 8 is an exhaust valve
  • 9 is an exhaust port.
  • the intake valve 6 opens and closes the intake port 7, and the exhaust valve 8 opens and closes the exhaust port 9.
  • a spark plug 10 is disposed at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is disposed around the inner wall surface of the cylinder head 4.
  • the spark plug 10 is configured to generate a spark in response to the ignition signal.
  • the fuel injection valve 11 injects a predetermined amount of fuel into the combustion chamber 5 according to the injection signal.
  • the fuel injection valve 11 may be arranged so as to inject fuel into the intake port 7.
  • gasoline having a theoretical air-fuel ratio of 14.6 in the exhaust purification catalyst is used as the fuel.
  • the internal combustion engine of the present invention may use other fuels.
  • the intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13, and the surge tank 14 is connected to an air cleaner 16 via an intake pipe 15.
  • the intake port 7, the intake branch pipe 13, the surge tank 14, and the intake pipe 15 form an intake passage.
  • a throttle valve 18 driven by a throttle valve drive actuator 17 is disposed in the intake pipe 15. The throttle valve 18 is rotated by a throttle valve drive actuator 17 so that the opening area of the intake passage can be changed.
  • the exhaust port 9 of each cylinder is connected to an exhaust manifold 19.
  • the exhaust manifold 19 has a plurality of branches connected to the exhaust ports 9 and a collective part in which these branches are assembled.
  • a collecting portion of the exhaust manifold 19 is connected to an upstream casing 21 containing an upstream exhaust purification catalyst 20.
  • the upstream casing 21 is connected to a downstream casing 23 containing a downstream exhaust purification catalyst 24 via an exhaust pipe 22.
  • the exhaust port 9, the exhaust manifold 19, the upstream casing 21, the exhaust pipe 22, and the downstream casing 23 form an exhaust passage.
  • An electronic control unit (ECU) 31 comprises a digital computer, and is connected to each other via a bidirectional bus 32, a RAM (Random Access Memory) 33, a ROM (Read Only Memory) 34, a CPU (Microprocessor) 35, and an input.
  • a port 36 and an output port 37 are provided.
  • An air flow meter 39 for detecting the flow rate of air flowing through the intake pipe 15 is disposed in the intake pipe 15, and the output of the air flow meter 39 is input to the input port 36 via the corresponding AD converter 38.
  • an upstream air-fuel ratio sensor 40 that detects the air-fuel ratio of the exhaust gas flowing through the exhaust manifold 19 (that is, the exhaust gas flowing into the upstream exhaust purification catalyst 20) is disposed at the collecting portion of the exhaust manifold 19.
  • the downstream side that detects the air-fuel ratio of the exhaust gas that flows in the exhaust pipe 22 (that is, the exhaust gas that flows out of the upstream side exhaust purification catalyst 20 and flows into the downstream side exhaust purification catalyst 24).
  • An air-fuel ratio sensor 41 is arranged. The outputs of these air-fuel ratio sensors 40 and 41 are also input to the input port 36 via the corresponding AD converter 38. The configuration of these air-fuel ratio sensors 40 and 41 will be described later.
  • a load sensor 43 that generates an output voltage proportional to the amount of depression of the accelerator pedal 42 is connected to the accelerator pedal 42, and the output voltage of the load sensor 43 is input to the input port 36 via the corresponding AD converter 38.
  • the crank angle sensor 44 generates an output pulse every time the crankshaft rotates 15 degrees, and this output pulse is input to the input port 36.
  • the CPU 35 calculates the engine speed from the output pulse of the crank angle sensor 44.
  • the output port 37 is connected to the spark plug 10, the fuel injection valve 11, and the throttle valve drive actuator 17 via the corresponding drive circuit 45.
  • the ECU 31 functions as an engine control device that controls the internal combustion engine based on outputs from various sensors and the like.
  • FIG. 3 is a schematic cross-sectional view of the air-fuel ratio sensors 40 and 41.
  • the air-fuel ratio sensors 40 and 41 in the present embodiment are two-cell type air-fuel ratio sensors having two cells each composed of a solid electrolyte layer and a pair of electrodes.
  • the air-fuel ratio sensors 40 and 41 include a measured gas chamber 51, a reference gas chamber 52, and two solid electrolyte layers 53 and 54 disposed on both sides of the measured gas chamber 51. It has.
  • the reference gas chamber 52 is provided on the opposite side of the measured gas chamber 51 with the second solid electrolyte layer 54 interposed therebetween.
  • a gas chamber side electrode (third electrode) 55 is disposed on the side surface of the first solid electrolyte layer 53 on the measured gas chamber 51 side, and an exhaust side electrode is disposed on the side surface of the first solid electrolyte layer 53 on the exhaust gas side. (Fourth electrode) 56 is arranged.
  • the first solid electrolyte layer 53, the gas chamber side electrode 55 and the exhaust side electrode 56 constitute a pump cell 60.
  • a gas chamber side electrode (first electrode) 57 is disposed on the side surface of the second solid electrolyte layer 54 on the measured gas chamber 51 side, and on the side surface of the second solid electrolyte layer 54 on the reference gas chamber 52 side.
  • a reference side electrode (second electrode) 58 is disposed.
  • the second solid electrolyte layer 54, the gas chamber side electrode 57 and the reference side electrode 58 constitute a reference cell 61.
  • a diffusion rate controlling layer 63 is provided so as to surround the gas chamber side electrode 55 of the pump cell 60 and the gas chamber side electrode 57 of the reference cell 61. Therefore, the measured gas chamber 51 is defined by the first solid electrolyte layer 53, the second solid electrolyte layer 54, and the diffusion-controlling layer 63. Exhaust gas is allowed to flow into the measured gas chamber 51 via the diffusion-controlling layer 63. Therefore, the electrodes arranged in the measured gas chamber 51, that is, the gas chamber side electrode 55 of the pump cell 60 and the gas chamber side electrode 57 of the reference cell 61 are exposed to the exhaust gas through the diffusion control layer 63. Become.
  • the diffusion control layer 63 is not necessarily provided so that the exhaust gas flowing into the measured gas chamber 51 passes through. As long as the exhaust gas that reaches the gas chamber side electrode 57 of the reference cell 61 becomes the exhaust gas that has passed through the diffusion control layer, the diffusion control layer may be arranged in any manner.
  • a heater portion 64 is provided on the side surface of the second solid electrolyte layer 54 on the side of the reference gas chamber 52 so as to surround the reference gas chamber 52. Therefore, the reference gas chamber 52 is defined by the second solid electrolyte layer 54 and the heater unit 64. A reference gas is introduced into the reference gas chamber 52. In the present embodiment, the reference gas chamber 52 is open to the atmosphere, and thus the atmosphere is introduced into the reference gas chamber 52 as the reference gas.
  • the heater section 64 is provided with a plurality of heaters 65, and the heaters 65 can control the temperature of the air-fuel ratio sensors 40 and 41, particularly the temperature of the solid electrolyte layers 53 and 54.
  • the heater 65 has a heat generation capacity sufficient to heat the solid electrolyte layers 53 and 54 until they are activated.
  • a protective layer 66 is provided on the side surface of the first solid electrolyte layer 53 on the exhaust gas side.
  • the protective layer 66 is formed of a porous material so that the exhaust gas reaches the exhaust side electrode 56 while preventing liquid or the like in the exhaust gas from directly adhering to the exhaust side electrode 56.
  • the solid electrolyte layers 53 and 54 are oxygen ion conductive materials obtained by distributing CaO, MgO, Y 2 O 3 , Yb 2 O 3 or the like as stabilizers to ZrO 2 (zirconia), HfO 2 , ThO 2 , Bi 2 O 3 or the like. It is formed of an oxide sintered body. Further, the diffusion control layer 63 is formed of a porous sintered body of a heat resistant inorganic material such as alumina, magnesia, silica, spinel, mullite or the like. Further, the electrodes 55 to 58 are made of a noble metal having high catalytic activity such as platinum.
  • a sensor application voltage Vr is applied between the gas chamber side electrode 57 and the reference side electrode 58 of the reference cell 61 by a reference cell voltage application device 70 mounted on the ECU 31.
  • the ECU 31 has a reference cell for detecting a reference cell output current Ir flowing between the electrodes 57 and 58 via the second solid electrolyte layer 54 when the sensor application voltage Vr is applied by the reference cell voltage application device 70.
  • An output current detection device 71 is provided.
  • a pump voltage Vp is applied between the gas chamber side electrode 55 and the exhaust side electrode 56 of the pump cell 60 by a pump voltage application device 72 mounted on the ECU 31.
  • the pump voltage Vp applied by the pump voltage application device 72 is set according to the reference cell output current Ir detected by the reference cell output current detection device 71.
  • the pump voltage Vp is set according to the difference between the reference cell output current Ir detected by the reference cell output current detection device 71 and a preset target current (for example, zero).
  • the ECU 31 includes a pump current detection device 73 that detects a pump current Ip flowing between the electrodes 55 and 56 via the first solid electrolyte layer 53 when the pump voltage Vp is applied by the pump voltage application device 72. Provided.
  • the pump voltage application device 72 changes the pump voltage Vp
  • the pump current Ip flowing between the electrodes 85 and 86 changes.
  • the pump voltage application device 72 controls the pump current Ip. Therefore, the pump voltage application device 72 functions as a pump current control device that controls the pump current Ip.
  • the pump current Ip can also be changed by, for example, arranging a variable resistor in series with the pump voltage applying device 72 and changing the variable resistor. Therefore, means other than the pump voltage applying device 72 such as a variable resistor can be used as the pump current control device.
  • FIG. 4 is a diagram schematically showing the operation of the air-fuel ratio sensors 40 and 41.
  • the air-fuel ratio sensors 40 and 41 are arranged so that the outer peripheral surfaces of the protective layer 66 and the diffusion-controlling layer 63 are exposed to the exhaust gas. Air is introduced into the reference gas chamber 52 of the air-fuel ratio sensors 40 and 41.
  • the solid electrolyte layers 53 and 54 are formed of a sintered body of an oxygen ion conductive oxide. For this reason, when a difference in oxygen concentration occurs between both side surfaces of the solid electrolyte layers 53 and 54 in a state activated by high temperature, the oxygen ions try to move from the side surface having a high concentration to the side surface having a low concentration.
  • the electromotive force E is generated (oxygen battery characteristics).
  • oxygen ion movement will be caused so that an oxygen concentration ratio is generated between both side surfaces of the solid electrolyte layer in accordance with the potential difference. It has the characteristic (oxygen pump characteristic). Specifically, when a potential difference is applied between both side surfaces, the oxygen concentration on the side surface provided with positive polarity is a ratio corresponding to the potential difference with respect to the oxygen concentration on the side surface provided with negative polarity. The movement of oxygen ions is caused to increase.
  • the reference cell 61 of the present embodiment has a predetermined air-fuel ratio in which the air-fuel ratio of the exhaust gas in the measured gas chamber 51 is slightly richer than the stoichiometric air-fuel ratio by a mechanism described later. For example, in the case of 14.55), the reference cell output current flowing between the electrodes 57 and 58 becomes zero. On the other hand, when the air-fuel ratio of the exhaust gas in the measured gas chamber 51 is richer than the rich determination air-fuel ratio, the reference cell output current flowing between the electrodes 57 and 58 becomes a negative current, and the magnitude is determined from the rich determination air-fuel ratio. Is proportional to the difference.
  • the pump voltage application device 72 applies the pump voltage to the electrodes 55 and 56 of the pump cell 60 based on this.
  • a pump voltage is applied using the exhaust side electrode 56 as a positive electrode and the gas chamber side electrode 55 as a negative electrode.
  • the pump voltage application device 72 applies the pump voltage to the electrodes 55 and 56 of the pump cell 60, in the first solid electrolyte layer 53 of the pump cell 60, from the negative electrode to the positive electrode, that is, from the gas chamber side electrode 55 to the exhaust side electrode 56.
  • the movement of oxygen ions occurs. For this reason, oxygen in the measured gas chamber 51 is pumped into the exhaust gas around the air-fuel ratio sensors 40 and 41.
  • the flow rate of oxygen pumped from the measured gas chamber 51 into the exhaust gas around the air-fuel ratio sensors 40 and 41 is proportional to the pump voltage, and the pump voltage is detected by the reference cell output current detector 71. Is proportional to the magnitude of the reference cell output current. Therefore, the greater the degree of leanness of the exhaust air / fuel ratio in the measured gas chamber 51, that is, the higher the oxygen concentration in the measured gas chamber 51, the more the exhaust around the air / fuel ratio sensors 40 and 41 from the measured gas chamber 51. The flow rate of oxygen pumped into the gas increases.
  • the flow rate of oxygen flowing into the measured gas chamber 51 via the diffusion rate controlling layer 63 and the flow rate of oxygen pumped out by the pump cell 60 basically coincide with each other, and the measured gas chamber 51 is basically almost rich.
  • the determination air-fuel ratio is maintained.
  • the oxygen flow rate pumped out by the pump cell 60 is equal to the flow rate of oxygen ions that have moved through the first solid electrolyte layer 53 of the pump cell 60.
  • the flow rate of this oxygen ion is equal to the current flowing between the electrodes 55 and 56 of the pump cell 60. Therefore, the pump current flowing between the electrodes 55 and 56 is detected by the pump current detection device 73 as the output current (hereinafter referred to as “sensor output current”) of the air-fuel ratio sensors 40 and 41, so that the The flow rate of oxygen flowing into the measured gas chamber 51 and, therefore, the lean air-fuel ratio of the exhaust gas around the measured gas chamber 51 can be detected.
  • Rich air-fuel ratio exhaust gas flows in.
  • rich air-fuel ratio exhaust gas containing a large amount of unburned gas HC, CO, etc.
  • a negative reference cell output current flows in proportion, and the reference cell output current is detected by the reference cell output current detector 71.
  • the pump voltage application device 72 applies a pump voltage between the electrodes 55 and 56 of the pump cell 60 based on this.
  • a pump voltage is applied using the gas chamber side electrode 55 as a positive electrode and the exhaust side electrode 56 as a negative electrode.
  • the flow rate of oxygen pumped from the exhaust gas around the air-fuel ratio sensors 40 and 41 into the measured gas chamber 51 is proportional to the pump voltage, and the pump voltage is a negative voltage detected by the reference cell output current detector 71. Is proportional to the magnitude of the reference cell output current. Therefore, the greater the richness of the exhaust air / fuel ratio in the measured gas chamber 51, that is, the higher the concentration of unburned gas in the measured gas chamber 51, the more the exhaust gas around the air / fuel ratio sensors 40 and 41 is covered. The flow rate of oxygen pumped into the gas measuring chamber 51 increases.
  • the flow rate of the unburned gas flowing into the measured gas chamber 51 via the diffusion rate controlling layer 63 and the oxygen flow rate pumped by the pump cell 60 become a chemical equivalence ratio. Therefore, the rich determination air-fuel ratio is maintained.
  • the flow rate of oxygen pumped by the pump cell 60 is equal to the flow rate of oxygen ions that have moved through the first solid electrolyte layer 53 in the pump cell 60.
  • the flow rate of this oxygen ion is equal to the current flowing between the electrodes 55 and 56 of the pump cell 60. Therefore, by detecting the pump current flowing between the electrodes 55 and 56 as the sensor output current by the pump current detecting device 73, the flow rate of the unburned gas flowing into the measured gas chamber 51 via the diffusion rate controlling layer 63 is determined accordingly.
  • the rich air-fuel ratio of the exhaust gas around the measured gas chamber 51 can be detected.
  • the rich determination air-fuel ratio is provided in the measured gas chamber 51 via the diffusion rate limiting layer 63.
  • Exhaust gas flows in.
  • the reference cell output current flowing between the electrodes 57 and 58 of the reference cell 61 becomes zero by a mechanism described later, and the reference cell output current is the reference cell output current. It is detected by the detection device 71.
  • the pump voltage applied by the pump voltage application device 72 is also zero. For this reason, oxygen ions do not move in the first solid electrolyte layer 53 of the pump cell 60, so that the measured gas chamber 51 is basically maintained at a substantially rich judgment air-fuel ratio. And since the movement of oxygen ion has not arisen in the 1st solid electrolyte layer 53 of the pump cell 60, the pump current (namely, sensor output current) detected by the pump current detection apparatus 73 also becomes zero. Therefore, when the pump current detected by the pump current detection device 73 is zero, it can be seen that the air-fuel ratio of the exhaust gas around the measured gas chamber 51 is equal to the rich determination air-fuel ratio.
  • the air-fuel ratio sensors 40 and 41 configured in this way have the output characteristics shown in FIG. That is, in the air-fuel ratio sensors 40 and 41, the pump current (sensor output current) Ip increases as the exhaust air-fuel ratio increases (that is, the leaner the exhaust air-fuel ratio). In addition, in the present embodiment, the air-fuel ratio sensors 40 and 41 are configured such that the pump current (sensor output current) Ip becomes zero when the exhaust air-fuel ratio matches the rich determination air-fuel ratio.
  • FIG. 6 is a diagram schematically showing the operation of the reference cell 61.
  • the reference side electrode 58 is fixed between the electrodes 57 and 58 so that the reference side electrode 58 is positive and the gas chamber side electrode 57 is negative.
  • the sensor applied voltage Vr is applied.
  • the ratio of the oxygen concentration between both side surfaces of the second solid electrolyte layer 54 is not so large.
  • the sensor applied voltage Vr is set to an appropriate value, the actual oxygen concentration ratio becomes smaller between the two side surfaces of the second solid electrolyte layer 54 than the oxygen concentration ratio corresponding to the sensor applied voltage Vr. Therefore, as shown in FIG. 6A, the gas chamber side electrode is set so that the oxygen concentration ratio between both side surfaces of the second solid electrolyte layer 54 increases toward the oxygen concentration ratio corresponding to the sensor applied voltage Vr. Oxygen ions move from 57 to the reference electrode 58.
  • the magnitude of the current (reference cell output current) Ir flowing at this time flows into the measured gas chamber 51 from the exhaust gas through the diffusion rate controlling layer 63 if the sensor applied voltage Vr is set to an appropriate value. Proportional to oxygen flow rate. Therefore, by detecting the magnitude of the current Ir by the reference cell output current detector 71, the oxygen concentration in the measured gas chamber 51 can be known, and as a result, the air-fuel ratio in the lean region can be known.
  • the unburned gas flows into the measured gas chamber 51 from the exhaust gas through the diffusion rate controlling layer 63. Even if oxygen is present on the side electrode 57, it reacts with the unburned gas and is removed. For this reason, the oxygen concentration in the measured gas chamber 51 becomes extremely low, and as a result, the ratio of the oxygen concentration between both side surfaces of the second solid electrolyte layer 54 becomes large. For this reason, if the sensor applied voltage Vr is set to an appropriate value, the actual oxygen concentration ratio becomes larger between the two side surfaces of the second solid electrolyte layer 54 than the oxygen concentration ratio corresponding to the sensor applied voltage Vr.
  • the reference-side electrode 58 is formed so that the oxygen concentration ratio between both side surfaces of the second solid electrolyte layer 54 decreases toward the oxygen concentration ratio corresponding to the sensor applied voltage Vr.
  • the oxygen ions move from the gas toward the gas chamber side electrode 57.
  • a current flows from the reference side electrode 58 to the gas chamber side electrode 57 through the reference cell voltage application device 70 that applies the sensor application voltage Vr.
  • the magnitude of the current flowing at this time (reference cell output current) Ir moves in the second solid electrolyte layer 54 from the reference side electrode 58 to the gas chamber side electrode 57 if the sensor applied voltage Vr is set to an appropriate value. It depends on the flow rate of oxygen ions.
  • the oxygen ions react (combust) on the gas chamber side electrode 57 with the unburned gas that flows into the measured gas chamber 51 through the diffusion rate-determining layer 63 from the exhaust gas. Therefore, the moving flow rate of oxygen ions corresponds to the concentration of unburned gas in the exhaust gas flowing into the measured gas chamber 51. Therefore, by detecting the magnitude of the current Ir by the reference cell output current detection device 71, it is possible to know the unburned gas concentration in the measured gas chamber 51, and thus the air-fuel ratio in the rich region. .
  • the exhaust air-fuel ratio in the measured gas chamber 51 matches the rich determination air-fuel ratio
  • the amounts of oxygen and unburned gas in the measured gas chamber 51 are the chemical equivalent ratio.
  • both of them are completely burned by the catalytic action of the gas chamber side electrode 57, and the concentration of oxygen and unburned gas in the measured gas chamber 51 does not change.
  • the oxygen concentration ratio between both side surfaces of the second solid electrolyte layer 54 is not changed and is maintained as the oxygen concentration ratio corresponding to the sensor applied voltage Vr.
  • the movement of oxygen ions due to the oxygen pump characteristics does not occur, and as a result, no current flows through the circuit.
  • FIG. 7 is a diagram showing the relationship between the sensor applied voltage Vr and the reference cell output current Ir in the reference cell.
  • the reference cell has a limit current region in which the reference cell output current Ir hardly increases even when the sensor applied voltage Vr is increased.
  • the reference cell output current Ir also increases slightly as the sensor applied voltage Vr increases. For example, taking the case where the exhaust air-fuel ratio is the stoichiometric air-fuel ratio (14.6) as an example, when the sensor applied voltage Vr is about 0.45 V, the reference cell output current Ir becomes zero.
  • the reference cell output current Ir when the sensor applied voltage Vr is somewhat lower than 0.45 V (for example, 0.2 V), the reference cell output current Ir becomes a value lower than 0. On the other hand, when the sensor applied voltage Vr is higher than 0.45V (for example, 0.7V), the reference cell output current Ir has a value higher than 0.
  • FIG. 8 is a diagram showing the relationship between the exhaust air-fuel ratio and the reference cell output current Ir.
  • FIG. 8 shows that the reference cell output current Ir for the same exhaust air-fuel ratio is slightly different for each sensor applied voltage Vr in the region near the theoretical air-fuel ratio.
  • the reference cell output current Ir becomes 0 when the sensor applied voltage Vr is 0.45 V.
  • the reference cell output current Ir is also increased.
  • the sensor applied voltage Vr is smaller than 0.45V, the reference cell output current Ir is also decreased.
  • FIG. 8 shows that the exhaust air / fuel ratio when the reference cell output current Ir becomes 0 (hereinafter referred to as “exhaust air / fuel ratio at zero current”) differs for each sensor applied voltage Vr.
  • the reference cell output current Ir when the sensor applied voltage Vr is 0.45 V, the reference cell output current Ir becomes 0 when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio.
  • the sensor applied voltage Vr is larger than 0.45 V, the reference cell output current Ir becomes 0 when the exhaust air-fuel ratio is richer than the stoichiometric air-fuel ratio, and the sensor applied voltage Vr becomes large.
  • the exhaust air-fuel ratio at zero current becomes smaller.
  • the reference cell output current Ir becomes 0 when the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio, and the current decreases as the sensor applied voltage Vr decreases.
  • the exhaust air-fuel ratio at zero becomes large. That is, by changing the sensor applied voltage Vr, the exhaust air-fuel ratio at the time of zero current can be changed.
  • the output current change rate varies among the individual air-fuel ratio sensors, and even in the same air-fuel ratio sensor, it varies due to deterioration over time. Such a tendency also applies to the reference cell 61.
  • the ratio of the increase amount of the reference cell output current to the increase amount of the exhaust air-fuel ratio (hereinafter referred to as “reference cell output current change rate”) does not necessarily become the same even after the same production process. In other words, even if the same type of air-fuel ratio sensor is used, variations occur between individuals. In addition, even in the same air-fuel ratio sensor, the reference cell output current change rate changes due to deterioration over time.
  • the exhaust air-fuel ratio at zero current (FIG. 2).
  • the stoichiometric air-fuel ratio hardly changes. That is, when the reference cell output current Ir takes a value other than zero, the absolute value of the exhaust air-fuel ratio at that time is not necessarily constant, but when the reference cell output current Ir becomes zero, the exhaust air-fuel ratio at that time The absolute value (the theoretical air fuel ratio in the example of FIG. 17) is constant.
  • the air-fuel ratio sensors 40 and 41 can change the exhaust air-fuel ratio at zero current by changing the sensor applied voltage Vr.
  • the reference cell output current detected by the reference cell output current detection device 71 is zero
  • the pump voltage applied by the pump voltage application device 72 is also zero
  • the pump current (sensor output current) Ip is also zero. Become. Therefore, according to the air-fuel ratio sensors 40 and 41, the absolute value of the exhaust air-fuel ratio other than the stoichiometric air-fuel ratio can be accurately detected by changing the sensor applied voltage Vr.
  • the exhaust air / fuel ratio at zero current is only slightly (for example, ⁇ 1) with respect to the theoretical air / fuel ratio (14.6).
  • % Range (within about 14.45 to about 14.75) can be adjusted. Therefore, by appropriately setting the sensor applied voltage Vr, it becomes possible to accurately detect the absolute value of the air-fuel ratio slightly different from the theoretical air-fuel ratio.
  • the exhaust air-fuel ratio at the time of zero current can be changed by changing the sensor applied voltage Vr.
  • the sensor applied voltage Vr is made larger than a certain upper limit voltage or made smaller than a certain lower limit voltage, the amount of change in the exhaust air / fuel ratio at zero current with respect to the amount of change in the sensor applied voltage Vr becomes larger. Therefore, in such a voltage region, if the sensor applied voltage Vr slightly shifts, the exhaust air-fuel ratio at the time of zero current changes greatly. Therefore, in such a voltage region, in order to accurately detect the absolute value of the exhaust air / fuel ratio, it is necessary to precisely control the sensor applied voltage Vr, which is not practical. For this reason, from the viewpoint of accurately detecting the absolute value of the exhaust air-fuel ratio, the sensor applied voltage Vr needs to be a value within a “specific voltage region” between a certain upper limit voltage and a certain lower limit voltage. Become.
  • Such a specific voltage region can be defined in various ways. Hereinafter, some examples of definitions will be described with reference to FIGS.
  • the reference cell 61 is a voltage region where the reference cell output current Ir increases as the sensor applied voltage Vr increases for each exhaust air-fuel ratio.
  • a current increasing region and a current slightly increasing region which is a voltage region in which the increase amount of the reference cell output current Ir with respect to the increasing amount of the sensor applied voltage Vr is smaller than the current increasing region due to the provision of the diffusion rate limiting layer (FIG. 9).
  • (A) shows the current increasing region and the current slightly increasing region only when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio).
  • the current slightly increasing region when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio is set as the “specific voltage region”.
  • the reference cell 61 has a limit current region that is a voltage region in which the reference cell output current Ir becomes a limit current for each exhaust air-fuel ratio (FIG. 9).
  • 9 (B) shows the limit current region only when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio).
  • the limit current region when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio is set as the “specific voltage region”.
  • the reference cell 61 is a proportional voltage region in which the reference cell output current Ir increases in proportion to an increase in applied voltage for each exhaust air-fuel ratio.
  • An area, a water decomposition area that is a voltage area in which the reference cell output current Ir changes according to a change in applied voltage due to the occurrence of decomposition of water and the solid electrolyte layers 53 and 54, and a proportional area and a water decomposition area, (FIG. 9C shows the proportional region, the water splitting region, and the intermediate region only when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio).
  • the intermediate region when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio is set as the “specific voltage region”.
  • the exhaust air / fuel ratio at zero current changes according to the sensor applied voltage Vr.
  • the exhaust air / fuel ratio at the time of zero current is, for example, 0.5% to 2% of the theoretical air / fuel ratio AFst.
  • the air-fuel ratio becomes low (preferably about 1%).
  • the exhaust air-fuel ratio at the time of zero current becomes an air-fuel ratio that is, for example, about 0.5 to 2% (preferably about 1%) higher than the theoretical air-fuel ratio AFst.
  • the upper limit voltage value the voltage value at which the exhaust air-fuel ratio at zero current is 1% lower than the stoichiometric air-fuel ratio AFst, for example
  • the lower limit voltage value exhaust air-fuel ratio at zero current. Is a voltage range between the stoichiometric air-fuel ratio AFst, for example, a voltage value that is 1% higher than the stoichiometric air-fuel ratio AFst).
  • FIG. 11 shows the change of current with respect to voltage.
  • the reference cell output current Ir increases to the first inflection point B 1 as the sensor applied voltage Vr increases from the negative state.
  • the reference cell output current Ir increases from the first bending point B 1 to the second bending point B 2 as the sensor application voltage Vr increases, and the reference cell output increases as the sensor application voltage Vr increases from the second bending point B 2.
  • the current Ir increases.
  • the increase amount of the applied current Ir with respect to the increase amount of the sensor applied voltage Vr is smaller than in the other voltage regions.
  • the voltage between the first inflection point and the second inflection point when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio is set as the “specific voltage region”.
  • the upper limit voltage value and the lower limit voltage value of the “specific voltage region” are specified by specific numerical values.
  • the “specific voltage region” is 0.05 V or more and 0.95 V or less, preferably 0.1 V or more and 0.9 V or less, more preferably 0.15 V or more and 0.8 V or less.
  • FIG. 12 is a diagram showing the relationship between the exhaust air-fuel ratio and the reference cell output current Ir at each sensor applied voltage Vr, as in FIG. FIG. 8 microscopically shows the relationship only in the vicinity of the theoretical air-fuel ratio, whereas FIG. 12 macroscopically shows the relationship for a wider range of air-fuel ratio.
  • the reference cell output current Ir hardly changes even if the exhaust air-fuel ratio changes.
  • This constant exhaust air-fuel ratio changes according to the sensor applied voltage Vr, and is higher as the sensor applied voltage Vr is higher.
  • the sensor applied voltage Vr is increased to a certain value (maximum voltage) or more
  • the reference cell output current Ir becomes equal to whatever value the exhaust air / fuel ratio is, as shown by the one-dot chain line in the figure. It will not become zero.
  • the reference cell output current Ir hardly changes even if the exhaust air / fuel ratio changes.
  • This constant exhaust air-fuel ratio also changes according to the sensor applied voltage Vr, and is lower as the sensor applied voltage Vr is lower. For this reason, when the sensor applied voltage Vr is lowered below a certain value (minimum voltage), the reference cell output current Ir becomes whatever the exhaust air / fuel ratio is, as indicated by a two-dot chain line in the figure. (For example, when the sensor applied voltage Vr is set to 0 V, the reference cell output current Ir does not become 0 regardless of the exhaust air-fuel ratio).
  • the sensor applied voltage Vr is a voltage between the maximum voltage and the minimum voltage, there exists an exhaust air / fuel ratio at which the reference cell output current becomes zero. Conversely, if the sensor applied voltage Vr is higher than the maximum voltage or lower than the minimum voltage, there is no exhaust air / fuel ratio at which the reference cell output current becomes zero. Therefore, the sensor applied voltage Vr is at least a voltage at which the reference cell output current becomes zero when the exhaust air-fuel ratio is any air-fuel ratio, that is, a voltage between the maximum voltage and the minimum voltage. It will be necessary.
  • the above-described “specific voltage region” is a voltage region between the maximum voltage and the minimum voltage.
  • the sensor applied voltage Vrupp in the upstream air-fuel ratio sensor 40 is theoretically the exhaust air-fuel ratio.
  • the reference cell output current (and sensor output current) is fixed at a constant voltage (for example, 0.45 V) so that the air-fuel ratio (14.6 in the present embodiment) is zero.
  • the sensor applied voltage Vrup is set so that the exhaust air-fuel ratio at zero current becomes the stoichiometric air-fuel ratio.
  • the sensor applied voltage Vr in the downstream air-fuel ratio sensor 41 is determined in advance so that the exhaust air-fuel ratio is slightly richer than the stoichiometric air-fuel ratio.
  • the reference cell output current (and sensor output current) is fixed at a constant voltage (for example, 0.7 V) so that the rich determination air-fuel ratio (for example, 14.55) is zero.
  • the sensor applied voltage Vrdwn is set so that the exhaust air-fuel ratio at the time of zero current becomes a rich determination air-fuel ratio that is slightly richer than the theoretical air-fuel ratio.
  • the sensor applied voltage Vrdwn in the downstream air-fuel ratio sensor 41 is set to a voltage higher than the sensor applied voltage Vrup in the upstream air-fuel ratio sensor 40.
  • the ECU 31 connected to both the air-fuel ratio sensors 40, 41 has the stoichiometric air-fuel ratio around the upstream air-fuel ratio sensor 40 when the sensor output current Iupp of the upstream air-fuel ratio sensor 40 becomes zero. Judge that there is. On the other hand, the ECU 31 determines that the exhaust air-fuel ratio around the downstream air-fuel ratio sensor 41 is different from the rich determination air-fuel ratio, that is, the stoichiometric air-fuel ratio, when the sensor output current Ipdwn of the downstream air-fuel ratio sensor 41 becomes zero. It is determined that the air / fuel ratio is high.
  • the air-fuel ratio of the exhaust gas is detected by the air-fuel ratio sensor, for example, when fuel cut control described later is not executed, or the air-fuel ratio detected by the air-fuel ratio sensor becomes a high value of 18 or more. When not.
  • FIG. 13 shows an example of a specific circuit constituting the reference cell voltage application device 70 and the reference cell output current detection device 71.
  • E is an electromotive force generated by oxygen battery characteristics
  • Ri is an internal resistance of the second solid electrolyte layer 54
  • Vs is a potential difference between both electrodes 57 and 58.
  • the reference cell voltage application device 70 basically performs negative feedback control so that the electromotive force E generated by the oxygen battery characteristics matches the sensor applied voltage Vr.
  • the reference cell voltage application device 70 applies the potential difference Vs to the sensor. Negative feedback control is performed so that the voltage Vr is obtained.
  • the second solid electrolyte layer 54 The oxygen concentration ratio between the two side surfaces is an oxygen concentration ratio corresponding to the sensor applied voltage Vr.
  • the electromotive force E coincides with the sensor applied voltage Vr, and the potential difference Vs between the electrodes 57 and 58 is also the sensor applied voltage Vr. As a result, the current Ir does not flow.
  • the reference cell voltage application device 70 substantially applies the sensor application voltage Vr between the electrodes 57 and 58.
  • the electric circuit of the reference cell voltage application device 70 does not necessarily have to be as shown in FIG. 13, and any mode can be used as long as the sensor application voltage Vr can be substantially applied between the electrodes 57 and 58.
  • the apparatus may be used.
  • the reference cell output current detector 71 is actually a current rather than detecting, and calculates the current from the voltage E 0 by detecting the voltage E 0.
  • E 0 can be expressed as the following formula (1).
  • E 0 Vr + V 0 + IrR (1)
  • V 0 is an offset voltage (a voltage to be applied so that E 0 does not become a negative value, for example, 3 V)
  • R is a resistance value shown in FIG.
  • the sensor applied voltage Vr, the offset voltage V 0 and the resistance value R are constant, so that the voltage E 0 changes according to the current Ir. Therefore, if the voltage E 0 is detected, the current Ir can be calculated from the voltage E 0 .
  • the reference cell output current detection device 71 substantially detects the current Ir flowing between the electrodes 57 and 58.
  • the electric circuit of the reference cell output current detection device 71 does not necessarily have to be as shown in FIG. 13. Any device can be used as long as the current Ir flowing between the electrodes 57 and 58 can be detected. There may be.
  • the upstream side exhaust purification catalyst 20 is a three-way catalyst having an oxygen storage capacity. Specifically, the upstream side exhaust purification catalyst 20 supports a noble metal having a catalytic action (for example, platinum (Pt)) and a substance having an oxygen storage capacity (for example, ceria (CeO 2 )) on a carrier made of ceramic. It has been made. When the upstream exhaust purification catalyst 20 reaches a predetermined activation temperature, the upstream exhaust purification catalyst 20 exhibits oxygen storage capacity in addition to the catalytic action of simultaneously purifying unburned gas (HC, CO, etc.) and nitrogen oxides (NOx).
  • HC, CO, etc. hydrogen oxides
  • the upstream side exhaust purification catalyst 20 is such that the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is leaner than the stoichiometric air-fuel ratio (lean air-fuel ratio). Sometimes it stores oxygen in the exhaust gas. On the other hand, the upstream side exhaust purification catalyst 20 releases oxygen stored in the upstream side exhaust purification catalyst 20 when the air-fuel ratio of the inflowing exhaust gas is richer than the stoichiometric air-fuel ratio (rich air-fuel ratio).
  • the “air-fuel ratio of exhaust gas” means the ratio of the mass of fuel to the mass of air supplied until the exhaust gas is generated. Normally, combustion is performed when the exhaust gas is generated. It means the ratio of the mass of fuel to the mass of air supplied into the chamber 5.
  • the upstream side exhaust purification catalyst 20 has a catalytic action and an oxygen storage capacity, and thus has a NOx and unburned gas purification action according to the oxygen storage amount.
  • FIG. 14 shows the relationship between the oxygen storage amount of the upstream side exhaust purification catalyst 20 and the concentrations of NOx and unburned gas (HC, CO, etc.) in the exhaust gas flowing out from the upstream side exhaust purification catalyst 20.
  • FIG. 14A shows the oxygen storage amount and the NOx concentration in the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio. The relationship is shown.
  • FIG. 14 shows the relationship between the oxygen storage amount of the upstream side exhaust purification catalyst 20 and the concentrations of NOx and unburned gas (HC, CO, etc.) in the exhaust gas flowing out from the upstream side exhaust purification catalyst 20.
  • FIG. 14A shows the oxygen storage amount and the NOx concentration in the exhaust
  • 14B shows the oxygen occlusion amount and the exhaust gas in the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio. The relationship with the concentration of fuel gas is shown.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio (that is, the exhaust gas includes unburned gas).
  • the oxygen stored in the upstream side exhaust purification catalyst 20 is released.
  • the unburned gas in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is oxidized and purified.
  • the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 contains almost no unburned gas.
  • the exhaust purification catalysts 20 and 24 used in the present embodiment NOx and unburned gas in the exhaust gas according to the air-fuel ratio and oxygen storage amount of the exhaust gas flowing into the exhaust purification catalysts 20 and 24.
  • the exhaust purification catalysts 20 and 24 may be different from the three-way catalyst as long as they have a catalytic action and an oxygen storage capacity.
  • the sensor output current of the upstream air-fuel ratio sensor 40 (that is, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20) Iupp is set based on the sensor output current Iupup of the upstream air-fuel ratio sensor 40. Feedback control is performed so that the value corresponds to the air-fuel ratio.
  • the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is set based on the sensor output current Ipdwn of the downstream side air-fuel ratio sensor 41. Specifically, when the sensor output current Ipdwn of the downstream air-fuel ratio sensor 41 becomes zero or less, the target air-fuel ratio is set to the lean set air-fuel ratio and is maintained at that air-fuel ratio. When the sensor output current Ipdwn becomes equal to or less than zero, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is slightly richer than the stoichiometric air-fuel ratio. .55) It means that it became below.
  • the lean set air-fuel ratio is a predetermined air-fuel ratio that is somewhat leaner than the stoichiometric air-fuel ratio, and is, for example, 14.65 to 20, preferably 14.68 to 18, and more preferably 14.7. About 16 or so.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated.
  • the oxygen storage amount OSAsc is estimated by estimating the intake air amount into the combustion chamber 5 calculated based on the sensor output current Iupup of the upstream air-fuel ratio sensor 40 and the air flow meter 39 or the like, or the fuel from the fuel injection valve 11. This is performed based on the injection amount.
  • the estimated value of the oxygen storage amount OSAsc becomes equal to or larger than a predetermined determination reference storage amount Cref, the target air-fuel ratio that has been the lean set air-fuel ratio until then becomes the weak rich set air-fuel ratio, and is maintained at that air-fuel ratio.
  • the The weak rich set air-fuel ratio is a predetermined air-fuel ratio that is slightly richer than the stoichiometric air-fuel ratio, and is, for example, 13.5 to 14.58, preferably 14 to 14.57, more preferably 14.3. About 14.55. Thereafter, when the sensor output current Ipdwn of the downstream side air-fuel ratio sensor 41 becomes equal to or less than zero again, the target air-fuel ratio is made the lean set air-fuel ratio again, and thereafter the same operation is repeated.
  • the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is alternately set to the lean set air-fuel ratio and the weak rich set air-fuel ratio.
  • the difference between the lean set air-fuel ratio and the stoichiometric air-fuel ratio is larger than the difference between the weak rich set air-fuel ratio and the stoichiometric air-fuel ratio. Therefore, in this embodiment, the target air-fuel ratio is alternately set to a short-term lean set air-fuel ratio and a long-term weak rich set air-fuel ratio.
  • FIG. 15 shows the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20, the sensor output current Ipdwn of the downstream side air-fuel ratio sensor 41, and the air-fuel ratio correction amount when air-fuel ratio control is performed in the control apparatus for an internal combustion engine of the present invention.
  • 4 is a time chart of AFC, sensor output current Iupup of an upstream air-fuel ratio sensor 40, and NOx concentration in exhaust gas flowing out from an upstream side exhaust purification catalyst 20.
  • the sensor output current Iupup of the upstream side air-fuel ratio sensor 40 becomes zero when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the stoichiometric air-fuel ratio, and the exhaust gas of the exhaust gas A negative value is obtained when the air-fuel ratio is a rich air-fuel ratio, and a positive value is obtained when the air-fuel ratio of the exhaust gas is a lean air-fuel ratio.
  • the sensor output current Iupp of the upstream air-fuel ratio sensor 40 increases as the difference from the stoichiometric air-fuel ratio increases. The absolute value increases.
  • the sensor output current Ipdwn of the downstream side air-fuel ratio sensor 41 becomes zero when the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is a rich determination air-fuel ratio (slightly richer than the theoretical air-fuel ratio). Therefore, a negative value is obtained when the air-fuel ratio of the exhaust gas is richer than the rich determination air-fuel ratio, and a positive value is obtained when the air-fuel ratio of the exhaust gas is leaner than the rich determination air-fuel ratio.
  • the sensor output of the downstream-side air-fuel ratio sensor 41 increases as the difference from the rich determination air-fuel ratio increases.
  • the absolute value of the current Ipdwn increases.
  • the air / fuel ratio correction amount AFC is a correction amount related to the target air / fuel ratio.
  • the target air-fuel ratio is the stoichiometric air-fuel ratio.
  • the air-fuel ratio correction amount AFC is a positive value
  • the target air-fuel ratio is a lean air-fuel ratio
  • the air-fuel ratio correction amount AFC is a negative value. In some cases, the target air-fuel ratio becomes a rich air-fuel ratio.
  • the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich before the time t 1 .
  • the weak rich set correction amount AFCrich is a value corresponding to the weak rich set air-fuel ratio, and is a value smaller than zero. Accordingly, the target air-fuel ratio is set to a rich air-fuel ratio, and accordingly, the sensor output current Iupp of the upstream air-fuel ratio sensor 40 becomes a negative value. Since the exhaust gas flowing into the upstream side exhaust purification catalyst 20 contains unburned gas, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually decreases.
  • the unburned gas contained in the exhaust gas is purified by the upstream side exhaust purification catalyst 20, and the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 becomes substantially the stoichiometric air-fuel ratio.
  • the sensor output current Ipdwn of the downstream air-fuel ratio sensor has a positive value (corresponding to the theoretical air-fuel ratio).
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually decreases, the oxygen storage amount OSAsc decreases beyond the lower limit storage amount (see Crowlim in FIG. 14) at time t 1 .
  • the oxygen storage amount OSAsc decreases below the lower limit storage amount, a part of the unburned gas that has flowed into the upstream side exhaust purification catalyst 20 flows out without being purified by the upstream side exhaust purification catalyst 20. Therefore, after time t 1 , the sensor output current Ipdwn of the downstream air-fuel ratio sensor 41 gradually decreases as the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases. Also at this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
  • the air-fuel ratio correction amount AFC is set to the lean set correction amount AFClean so as to suppress the decrease in the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20.
  • the lean set correction amount AFClean is a value corresponding to the lean set air-fuel ratio, and is a value larger than zero. Therefore, the target air-fuel ratio is a lean air-fuel ratio.
  • the air-fuel ratio correction amount AFC is switched. This is because even if the oxygen storage amount of the upstream side exhaust purification catalyst 20 is sufficient, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 may slightly deviate from the stoichiometric air-fuel ratio. is there.
  • the oxygen storage amount has decreased beyond the lower limit storage amount only after the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 reaches the rich determination air-fuel ratio.
  • the rich determination air-fuel ratio is such that the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 does not reach when the oxygen storage amount of the upstream side exhaust purification catalyst 20 is sufficient. It is said.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 increases. Accordingly, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 changes to the stoichiometric air-fuel ratio, and the sensor output current Ipdwn of the downstream side air-fuel ratio sensor 41 is also a positive value corresponding to the stoichiometric air-fuel ratio. Converges to a value. At this time, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio.
  • the oxygen storage capacity of the upstream side exhaust purification catalyst 20 has a sufficient margin, the inflowing exhaust gas The oxygen therein is stored in the upstream side exhaust purification catalyst 20, and NOx is reduced and purified. For this reason, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
  • the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 is increased, the oxygen storage amount OSAsc at time t 4 reaches the determination reference storage amount Cref.
  • the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich (less than 0) in order to stop storing oxygen in the upstream side exhaust purification catalyst 20. (Small value). Therefore, the target air-fuel ratio is set to a rich air-fuel ratio.
  • the criterion storage amount Cref is the maximum oxygen storage amount Cmax and upper storage amount since it is set sufficiently lower than (see Cuplim in FIG. 14), the oxygen storage amount OSAsc even at time t 5 is the maximum oxygen storage amount Cmax And the upper limit occlusion amount is not reached.
  • the determination reference storage amount Cref is equal to the oxygen storage amount OSAsc. The amount is sufficiently small so as not to reach the maximum oxygen storage amount Cmax or the upper limit storage amount.
  • the criterion storage amount Cref is 3/4 or less, preferably 1/2 or less, more preferably 1/5 or less of the maximum oxygen storage amount Cmax. Therefore, the NOx emission amount from the upstream side exhaust purification catalyst 20 is also suppressed from time t 4 to t 5 .
  • the air-fuel ratio correction amount AFC there is a weak rich set correction amount AFCrich. Accordingly, the target air-fuel ratio is set to a rich air-fuel ratio, and accordingly, the sensor output current Iupp of the upstream air-fuel ratio sensor 40 becomes a negative value. Since the exhaust gas flowing into the upstream exhaust purification catalyst 20 will include unburned gas, the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 is gradually decreased at time t 6, the time Similar to t 1 , the oxygen storage amount OSAsc decreases beyond the lower limit storage amount. Also at this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
  • the control of the air-fuel ratio correction amount AFC is performed by the ECU 31. Therefore, the ECU 31 determines that the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is equal to the determination reference storage amount Cref when the air-fuel ratio of the exhaust gas detected by the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination air-fuel ratio.
  • the oxygen storage amount increasing means for continuously setting the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 to the lean set air-fuel ratio and the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 are determined as the reference storage. When the amount Cref is equal to or greater than the amount Cref, the oxygen storage amount decreases continuously so that the target air-fuel ratio decreases toward zero without exceeding the maximum oxygen storage amount Cmax. Means.
  • the NOx emission amount from the upstream side exhaust purification catalyst 20 can always be suppressed. That is, as long as the above-described control is performed, the NOx emission amount from the upstream side exhaust purification catalyst 20 can be basically reduced.
  • the oxygen storage amount OSAsc when the oxygen storage amount OSAsc is estimated based on the sensor output current Iupup of the upstream air-fuel ratio sensor 40 and the estimated value of the intake air amount, an error may occur. Also in this embodiment, since the oxygen storage amount OSAsc is estimated from time t 3 to t 4 , the estimated value of the oxygen storage amount OSAsc includes some errors. However, even if such an error is included, if the reference storage amount Cref is set sufficiently lower than the maximum oxygen storage amount Cmax or the upper limit storage amount, the actual oxygen storage amount OSAsc will be the maximum oxygen storage amount. The amount Cmax and the upper limit storage amount are hardly reached. Therefore, the NOx emission amount from the upstream side exhaust purification catalyst 20 can be suppressed also from such a viewpoint.
  • the oxygen storage amount of the exhaust purification catalyst is kept constant, the oxygen storage capacity of the exhaust purification catalyst will be reduced.
  • the oxygen storage amount OSAsc constantly fluctuates up and down, it is possible to suppress a decrease in the oxygen storage capacity.
  • the downstream air-fuel ratio sensor 41 can accurately detect the absolute value at the rich determination air-fuel ratio.
  • the conventional air-fuel ratio sensor it is difficult for the conventional air-fuel ratio sensor to accurately detect the absolute value of the air-fuel ratio other than the stoichiometric air-fuel ratio. For this reason, if an error occurs in the sensor output current due to deterioration over time or individual differences in the conventional air-fuel ratio sensor, even if the actual air-fuel ratio of the exhaust gas is different from the rich judgment air-fuel ratio, the sensor output of the air-fuel ratio sensor The current becomes a value corresponding to the rich determination air-fuel ratio.
  • the switching timing of the air-fuel ratio correction amount AFC from the weak rich setting correction amount AFCrich to the lean setting correction amount AFClean is delayed, or such switching is performed at a timing that does not require switching.
  • the downstream air-fuel ratio sensor 41 can accurately detect the absolute value at the rich determination air-fuel ratio. For this reason, it is possible to suppress a delay in the switching timing of the air-fuel ratio correction amount AFC from the weak rich setting correction amount AFCrich to the lean setting correction amount AFClean or switching at a timing that does not require switching.
  • the air-fuel ratio correction amount AFC is maintained at the lean set correction amount AFClean from time t 2 to t 4 .
  • the air-fuel ratio correction amount AFC does not necessarily have to be kept constant, and may be set so as to fluctuate, for example, gradually decrease.
  • the air-fuel ratio correction amount AFC is maintained at the weak rich set correction amount AFrich.
  • the air-fuel ratio correction amount AFC does not necessarily have to be kept constant, and may be set so as to fluctuate, for example, gradually decrease.
  • the air-fuel ratio correction amount AFC is at time t 2 ⁇ t 4, the difference between the average value and the stoichiometric air-fuel ratio the target air-fuel ratio in the period, the target air at time t 4 ⁇ t 7 It is set to be larger than the difference between the average value of the fuel ratio and the stoichiometric air-fuel ratio.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated based on the sensor output current Iupup of the upstream side air-fuel ratio sensor 40 and the estimated value of the intake air amount into the combustion chamber 5. ing.
  • the oxygen storage amount OSAsc may be calculated based on other parameters in addition to these parameters, or may be estimated based on parameters different from these parameters.
  • the target air-fuel ratio is switched from the lean set air-fuel ratio to the slightly rich set air-fuel ratio.
  • the timing at which the target air-fuel ratio is switched from the lean set air-fuel ratio to the weakly rich set air-fuel ratio is determined by other parameters such as the engine operation time after the target air-fuel ratio is switched from the weak rich set air-fuel ratio to the lean set air-fuel ratio. May be used as a reference.
  • the target air-fuel ratio is changed from the lean set air-fuel ratio to the slightly rich set air-fuel ratio while the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated to be smaller than the maximum oxygen storage amount. It is necessary to switch.
  • a downstream side exhaust purification catalyst 24 is also provided.
  • the oxygen storage amount OSAvemc of the downstream side exhaust purification catalyst 24 is set to a value in the vicinity of the maximum storage amount Cmax by fuel cut control performed every certain period. For this reason, even if exhaust gas containing unburned gas flows out from the upstream side exhaust purification catalyst 20, these unburned gas is oxidized and purified in the downstream side exhaust purification catalyst 24.
  • the fuel cut control is a control that does not inject fuel from the fuel injection valve 11 even when the crankshaft or the piston 3 is moving, for example, during deceleration of a vehicle equipped with an internal combustion engine. .
  • This control is performed, a large amount of air flows into both exhaust purification catalysts 20, 24.
  • FIG. 16 is a diagram similar to FIG. 15, and instead of the transition of the NOx concentration in FIG. 15, the oxygen storage amount OSAvemc of the downstream side exhaust purification catalyst 24 and the exhaust gas in the exhaust gas flowing out from the downstream side exhaust purification catalyst 24 are not shown. It shows the transition of the concentration of fuel gas (HC, CO, etc.). In the example shown in FIG. 16, the same control as in the example shown in FIG. 15 is performed.
  • fuel cut control is performed before time t 1 .
  • the oxygen storage amount OSAvemc the downstream exhaust purifying catalyst 24 has a value of the maximum oxygen storage amount Cmax vicinity.
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is maintained substantially at the stoichiometric air-fuel ratio. For this reason, the oxygen storage amount OSAvemc of the downstream side exhaust purification catalyst 24 is kept constant.
  • unburned gas flows out from the upstream side exhaust purification catalyst 20 at a certain time interval as in the case of time t 1 to t 4 .
  • the unburned gas flowing out in this manner is basically reduced and purified by oxygen stored in the downstream side exhaust purification catalyst 24. Therefore, the unburned gas hardly flows out from the downstream side exhaust purification catalyst 24.
  • the amount of unburned gas and NOx discharged from the downstream side exhaust purification catalyst 24 is reduced. Always less.
  • FIG. 17 which is a functional block diagram
  • the control device in the present embodiment is configured to include the functional blocks A1 to A9.
  • each functional block will be described with reference to FIG.
  • the in-cylinder intake air amount calculation means A1 includes an intake air flow rate Ga measured by the air flow meter 39, an engine speed NE calculated based on the output of the crank angle sensor 44, and a map stored in the ROM 34 of the ECU 31 or Based on the calculation formula, the intake air amount Mc to each cylinder is calculated.
  • the basic fuel injection amount calculation means A2 divides the in-cylinder intake air amount Mc calculated by the in-cylinder intake air amount calculation means A1 by the target air-fuel ratio AFT calculated by the target air-fuel ratio setting means A6 described later.
  • An injection instruction is issued to the fuel injection valve 11 so that the fuel of the fuel injection amount Qi calculated in this way is injected from the fuel injection valve 11.
  • the oxygen storage amount calculation means A4 is an estimated value of the oxygen storage amount of the upstream side exhaust purification catalyst 20 based on the fuel injection amount Qi calculated by the fuel injection amount calculation means A3 and the sensor output current Iupp of the upstream side air-fuel ratio sensor 40. OSAest is calculated. For example, the oxygen storage amount calculation means A4 multiplies the difference between the air-fuel ratio corresponding to the sensor output current Iupup of the upstream air-fuel ratio sensor 40 and the theoretical air-fuel ratio by the fuel injection amount Qi and integrates the obtained value. Is used to calculate an estimated value OSAest of the oxygen storage amount. The estimation of the oxygen storage amount of the upstream side exhaust purification catalyst 20 by the oxygen storage amount calculation means A4 may not always be performed.
  • the oxygen storage amount estimated value OSAest reaches the determination reference storage amount Cref (in FIG. 15).
  • the oxygen storage amount may be estimated only until the time t 4 ).
  • the target air-fuel ratio air- A fuel ratio correction amount AFC is calculated. Specifically, the air-fuel ratio correction amount AFC is set to the lean set correction amount AFClean when the sensor output current Ipdwn of the downstream air-fuel ratio sensor 41 becomes zero (a value corresponding to the rich determination air-fuel ratio) or less. . Thereafter, the air-fuel ratio correction amount AFC is maintained at the lean set correction amount AFClean until the estimated value OSAest of the oxygen storage amount reaches the determination reference storage amount Cref.
  • the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich. Thereafter, the air-fuel ratio correction amount AFC is maintained at the weak rich set correction amount AFCrich until the sensor output current Ipdwn of the downstream air-fuel ratio sensor 41 becomes zero or less.
  • the target air-fuel ratio setting means A6 adds the air-fuel ratio correction amount AFC calculated by the target air-fuel ratio correction amount calculation means A5 to the reference air-fuel ratio, in this embodiment, the theoretical air-fuel ratio AFR, so that the target air-fuel ratio is set. AFT is calculated. Therefore, the target air-fuel ratio AFT is a slightly rich set air-fuel ratio that is slightly richer than the stoichiometric air-fuel ratio AFR (when the air-fuel ratio correction amount AFC is the weak rich set correction amount AFCrich) or is somewhat higher than the stoichiometric air-fuel ratio AFR. One of the lean set air-fuel ratios (when the air-fuel ratio correction amount AFC is the lean set correction amount AFClean). The target air-fuel ratio AFT calculated in this way is input to the basic fuel injection amount calculating means A2 and an air-fuel ratio difference calculating means A8 described later.
  • FIG. 18 is a flowchart showing a control routine for calculation control of the air-fuel ratio correction amount AFC.
  • the illustrated control routine is performed by interruption at regular time intervals.
  • step S11 it is determined whether or not a calculation condition for the air-fuel ratio correction amount AFC is satisfied.
  • the case where the calculation condition of the air-fuel ratio correction amount is satisfied includes, for example, that fuel cut control is not being performed. If it is determined in step S11 that the target air-fuel ratio calculation condition is satisfied, the process proceeds to step S12.
  • step S12 the sensor output current Iupup of the upstream air-fuel ratio sensor 40, the sensor output current Ipdwn of the downstream air-fuel ratio sensor 41, and the fuel injection amount Qi are acquired.
  • step S13 an estimated value OSAest of the oxygen storage amount is calculated based on the sensor output current Iupup and the fuel injection amount Qi of the upstream air-fuel ratio sensor 40 acquired in step S12.
  • step S14 it is determined whether or not the lean setting flag Fr is set to zero.
  • the lean setting flag Fr is set to 1 when the air-fuel ratio correction amount AFC is set to the lean setting correction amount AFClean, and is set to 0 otherwise. If the lean setting flag Fr is set to 0 in step S14, the process proceeds to step S15.
  • step S15 it is determined whether or not the sensor output current Ipdwn of the downstream air-fuel ratio sensor 41 is equal to or less than zero. If it is determined that the sensor output current Ipdwn of the downstream air-fuel ratio sensor 41 is greater than zero, the control routine is terminated.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases and the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 decreases
  • the sensor output current of the downstream side air-fuel ratio sensor 41 in step S15 It is determined that Ipdwn is less than or equal to zero. In this case, the process proceeds to step S16, and the air-fuel ratio correction amount AFC is set to the lean set correction amount AFClean.
  • the lean setting flag Fr is set to 1, and the control routine is ended.
  • step S14 it is determined in step S14 that the lean setting flag Fr is not set to 0, and the process proceeds to step S18.
  • step S18 it is determined whether or not the estimated value OSAest of the oxygen storage amount calculated in step S13 is smaller than the determination reference storage amount Cref.
  • the routine proceeds to step S19, where the air-fuel ratio correction amount AFC is continuously set to the lean set correction amount AFClean.
  • step S18 when the oxygen storage amount of the upstream side exhaust purification catalyst 20 increases, it is determined in step S18 that the estimated value OSAest of the oxygen storage amount is equal to or greater than the determination reference storage amount Cref, and the process proceeds to step S20.
  • step S20 the air-fuel ratio correction amount AFC is set to the weak rich setting correction amount AFCrich.
  • step S21 the lean setting flag Fr is reset to 0, and the control routine is ended.
  • the numerical value conversion means A7 is based on the sensor output current Iupup of the upstream air-fuel ratio sensor 40 and a map or calculation formula that defines the relationship between the sensor output current Iupup of the air-fuel ratio sensor 40 and the air-fuel ratio.
  • An upstream exhaust air-fuel ratio AFup corresponding to is calculated. Therefore, the upstream side exhaust air-fuel ratio AFup corresponds to the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20.
  • This air-fuel ratio difference DAF is a value that represents the excess or deficiency of the fuel supply amount with respect to the target air-fuel ratio AFT.
  • the F / B correction amount calculation means A9 supplies fuel based on the following equation (1) by subjecting the air-fuel ratio difference DAF calculated by the air-fuel ratio difference calculation means A8 to proportional / integral / differential processing (PID processing). An F / B correction amount DFi for compensating for the excess or deficiency of the amount is calculated. The F / B correction amount DFi calculated in this way is input to the fuel injection amount calculation means A3.
  • DFi Kp / DAF + Ki / SDAF + Kd / DDAF (1)
  • Kp is a preset proportional gain (proportional constant)
  • Ki is a preset integral gain (integral constant)
  • Kd is a preset differential gain (differential constant).
  • DDAF is a time differential value of the air-fuel ratio difference DAF, and is calculated by dividing the difference between the air-fuel ratio difference DAF updated this time and the air-fuel ratio difference DAF updated last time by the time corresponding to the update interval. Is done.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is detected by the upstream side air-fuel ratio sensor 40.
  • this exhaust gas is based on the fuel injection amount from the fuel injection valve 11 and the output of the air flow meter 39. You may make it estimate the air fuel ratio of gas.
  • a control device for an internal combustion engine according to a second embodiment of the present invention will be described with reference to FIG.
  • the configuration and control of the internal combustion engine control device according to the second embodiment are basically the same as the configuration and control of the internal combustion engine control device according to the first embodiment.
  • the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich, the air-fuel ratio correction amount AFC is over a short time at certain time intervals.
  • the value temporarily corresponds to the lean air-fuel ratio (for example, a lean set correction amount AFClean). That is, in the control device of the present embodiment, even when the target air-fuel ratio is the weak rich set air-fuel ratio, the lean air-fuel ratio is temporarily reduced over a short period of time at a certain time interval.
  • the fuel ratio is set.
  • FIG. 19 is a diagram similar to FIG. 15, and times t 1 to t 7 in FIG. 19 show the same control timing as times t 1 to t 7 in FIG. Therefore, also in the control shown in FIG. 19, the same control as the control shown in FIG. 15 is performed at each timing from time t 1 to time t 7 .
  • the control shown in FIG. 19 during the time t 4 to t 7 , that is, while the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich, the control is temporarily performed for a plurality of times.
  • the fuel ratio correction amount AFC is set to the lean set correction amount AFClean.
  • the air-fuel ratio correction amount AFC is a lean set correction amount AFClean over a short time from the time t 8. Since the delays in the change in the air-fuel ratio as described above, the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 is a lean air-fuel ratio over a short time from the time t 9. Thus, when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes the lean air-fuel ratio, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 temporarily increases during that time.
  • the air-fuel ratio correction amount AFC is a lean set correction amount AFClean even over a short period of time at time t 10. Accordingly, the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 is a lean air-fuel ratio over the time t 11 in a short time, during which, the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 Increases temporarily.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is temporarily increased or the oxygen storage amount OSAsc. Can be temporarily reduced. Therefore, according to this embodiment, switch the air-fuel ratio correction quantity AFC weak rich set correction amount AFCrich at time t 4, the sensor output current Ipdwn of the downstream air-fuel ratio sensor 41 is zero at time t 7 (rich It is possible to lengthen the time until it reaches a value corresponding to the determination air-fuel ratio.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 becomes near zero, and the timing at which unburned gas flows out of the upstream side exhaust purification catalyst 20 can be delayed. Thereby, the outflow amount of unburned gas from the upstream side exhaust purification catalyst 20 can be reduced.
  • the air-fuel ratio correction amount AFC is basically set to the weak rich set correction amount AFCrich (time t 4 to t 7 )
  • the air-fuel ratio correction amount AFC is temporarily changed to the lean set correction amount.
  • AFClean When the air-fuel ratio correction amount AFC is temporarily changed in this way, it is not always necessary to change the air-fuel ratio correction amount AFC to the lean set correction amount AFClean, and any value that is leaner than the weak rich set correction amount AFCrich is used. You may change to an air fuel ratio.
  • the air-fuel ratio correction amount AFC is basically set to the lean set correction amount AFClean (time t 2 to t 4 )
  • the air-fuel ratio correction amount AFC may be temporarily set to the weak rich set correction amount AFCrich.
  • the air-fuel ratio correction amount AFC may be changed to any air-fuel ratio as long as it is richer than the lean set correction amount AFClean.
  • the air-fuel ratio correction amount AFC at times t 2 to t 4 is such that the difference between the average value of the target air-fuel ratio and the theoretical air-fuel ratio in the period is the target air-fuel ratio at times t 4 to t 7 . Is set so as to be larger than the difference between the average value and the theoretical air-fuel ratio.
  • the ECU 31 detects that the upstream side when the air-fuel ratio of the exhaust gas detected by the downstream side air-fuel ratio sensor 41 becomes equal to or lower than the rich determination air-fuel ratio.
  • the oxygen storage is performed to make the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 continuously or intermittently the lean set air-fuel ratio.
  • the oxygen storage amount OSAsc of the amount increasing means and the upstream side exhaust purification catalyst 20 becomes equal to or larger than the determination reference storage amount Cref
  • the oxygen storage amount OSAsc decreases toward zero without reaching the maximum oxygen storage amount Cmax.
  • an oxygen storage amount reducing means for continuously or intermittently setting the target air-fuel ratio to a slightly rich set air-fuel ratio.
  • control device for an internal combustion engine according to a third embodiment of the present invention will be described with reference to FIG.
  • the configuration of the control device for the internal combustion engine according to the third embodiment is basically the same as the configuration and control of the control device for the internal combustion engine according to the above embodiment.
  • a diffusion rate limiting layer is provided around the gas chamber side electrode of the reference cell of the air-fuel ratio sensor.
  • FIG. 20 is a cross-sectional view similar to FIG. 3, schematically showing the configuration of the upstream air-fuel ratio sensor 80 and the downstream sensor 81 of the third embodiment.
  • the air-fuel ratio sensors 80, 81 have a reference cell diffusion rate limiting layer 82 provided in the measured gas chamber 51.
  • the reference cell diffusion control layer 82 is disposed so as to surround the gas chamber side electrode 57 of the reference cell 61. Therefore, the gas chamber side electrode 57 is exposed to the gas chamber 51 to be measured via the diffusion limiting layer 82 for the reference cell.
  • the exhaust gas flowing around the gas chamber side electrode 57 can be diffusion controlled.
  • the relationship among the exhaust air-fuel ratio, the sensor applied voltage Vr, and the reference cell output current Ir is as shown in FIGS.
  • the absolute value of the air-fuel ratio different from the stoichiometric air-fuel ratio may not be detected properly.
  • the absolute value of the air-fuel ratio different from the stoichiometric air-fuel ratio is more reliably detected by sufficiently diffusion-limiting the exhaust gas flowing around the reference cell diffusion-controlling layer 82 gas chamber side electrode 57. be able to.
  • the diffusion limiting layer 82 for the reference cell when the diffusion limiting layer 82 for the reference cell is provided around the gas chamber side electrode 57, the diffusion limiting layer 63 that defines the gas chamber 51 to be measured is not necessarily provided. Therefore, instead of the diffusion-controlling layer 63, a layer or a small hole that restricts the inflow of exhaust gas into the measured gas chamber 51 may be provided. In any case, the diffusion rate-limiting layer may be arranged at any position as long as the exhaust gas reaches the gas chamber side electrode 57 via the diffusion rate-limiting layer.
  • the oxygen storage amount of the exhaust purification catalyst is described as changing between the maximum oxygen storage amount and zero. This means that the amount of oxygen that can be further stored by the exhaust purification catalyst varies between zero (when the oxygen storage amount is the maximum oxygen storage amount) and the maximum value (when the oxygen storage amount is zero). Means.

Abstract

 内燃機関の制御装置は、内燃機関の排気通路に設けられた空燃比センサ(41)と、空燃比センサのセンサ出力電流に基づいて内燃機関を制御する機関制御装置とを具備する。空燃比センサは、排気ガスが流入せしめられる被測ガス室(51)と、被測ガス室内の排気ガスの空燃比に応じて基準セル出力電流が変化する基準セル(61)と、ポンプ電流に応じて被測ガス室内の排気ガスに対して酸素の汲み入れ及び汲み出しを行うポンプセル(60)とを具備する。基準セルは、前記被測ガス室内の排気ガスの空燃比に応じて基準セル出力電流が零となる印加電圧が変化するように構成される。基準セルにおける印加電圧は一定電圧に固定され、該一定電圧は、前記被測ガス室内の排気ガスの空燃比が理論空燃比であるときに基準セル出力電流が零となる電圧とは異なる電圧とされる。

Description

内燃機関の制御装置
 本発明は、空燃比センサの出力に応じて内燃機関を制御する内燃機関の制御装置に関する。
 従来から、内燃機関の排気通路に空燃比センサを設け、この空燃比センサの出力に基づいて内燃機関に供給する燃料量を制御する内燃機関の制御装置が広く知られている(例えば、特許文献1~6を参照)。また、斯かる制御装置で用いられる空燃比センサも広く知られている。
 斯かる空燃比センサは、大別すると、1セル型の空燃比センサ(例えば、特許文献2、4)と2セル型の空燃比センサ(例えば、特許文献1、3、5)とに分けられる。1セル型の空燃比センサでは、酸素イオンを通すことができる固体電解質層とその両側面上に設けられた二つの電極からなるセルが一つのみ設けられている。このうち一方の電極が大気に曝され、他方の電極が拡散律速層を介して排気ガスに曝される。このように構成された1セル型の空燃比センサでは、固体電解質層の両側面上に配置された二つ電極間に電圧が印加されると共に、これに伴って固体電解質層の両側面間ではこれら側面間の酸素濃度比に応じて酸素イオンの移動が生じる。この酸素イオンの移動によって生じる電流を検出することによって、排気ガスの空燃比(以下、「排気空燃比」ともいう)が検出される(例えば、特許文献2)。
 一方、2セル型の空燃比センサでは、酸素イオンを通すことができる固体電解質層とその両側面上に設けられた二つの電極からなるセルが二つ設けられている。このうち一方のセル(基準セル)は、被測ガス室内の排気ガス中の酸素濃度に応じて検出電圧(起電力)が変化するように構成される。また、他方のセル(ポンプセル)は、ポンプ電流に応じて被測ガス室内の排気ガスに対して酸素の汲み入れ及び汲み出しを行う。特に、ポンプセルのポンプ電流は、基準セルにおいて検出された検出電圧を目標電圧値に一致させるべく酸素の汲み入れ及び汲み出しが行われるように設定され、このポンプ電流を検出することによって排気空燃比が検出される。
特開2002-357589号公報 特開2005-351096号公報 特開2004-258043号公報 特開2000-356618号公報 特開2003-329637号公報 特開平8-232723号公報 特開2009-162139号公報 特開2001-234787号公報
 ところで、特許文献1~5に記載されたような空燃比センサは、一般に、図2に実線Aで示した出力特性を有するように構成されている。すなわち、斯かる空燃比センサでは、排気空燃比が大きくなるほど(すなわち、リーンになるほど)、空燃比センサからの出力電流が大きくなる。加えて、斯かる空燃比センサは、排気空燃比が理論空燃比であるときに出力電流が零になるように構成される。
 ところが、図2における傾き、すなわち排気空燃比の増加量に対する出力電流の増加量の比率(以下、「出力電流変化率」という)は、同様な生産工程を経ても必ずしも同一にはならず、同一型式の空燃比センサであっても個体間でバラツキが生じてしまう。加えて、同一の空燃比センサにおいても、経年劣化等により出力電流変化率は変化する。この結果、たとえ同一型式のセンサを用いても、使用したセンサや使用期間等によって、図2に破線Bで示したように出力電流変化率が小さくなったり、一点鎖線Cで示したように出力電流変化率が大きくなったりする。
 このため、同一型式の空燃比センサを用いて同一の空燃比の排気ガスの計測を行っても、使用したセンサや使用期間等によって、空燃比センサの出力電流は異なるものとなってしまう。例えば、空燃比センサが実線Aで示したような出力特性を有する場合には、空燃比がaf1である排気ガスの計測を行ったときの出力電流は、I2になる。しかしながら、空燃比センサが破線Bや一点鎖線Cで示したような出力特性を有する場合には、空燃比がaf1である排気ガスの計測を行ったときの出力電流は、それぞれI1及びI3となり、上述したI2とは異なる出力電流となってしまう。
 したがって、斯かる空燃比センサでは、理論空燃比及び理論空燃比に対してリッチ及びリーンであることについては正確に検出することができるが、排気ガスの空燃比が理論空燃比でないときにその絶対値(すなわち、リッチ度合いやリーン度合い)を正確に検出することはできなかった。
 そこで、上記課題に鑑みて、本発明の目的は、排気ガスの空燃比が理論空燃比でないときであっても排気ガスの空燃比の絶対値を検出することができる空燃比センサを用いた内燃機関の制御装置を提供することにある。
 上記課題を解決するために、第1の発明では、内燃機関の排気通路に設けられた空燃比センサと、該空燃比センサのセンサ出力電流に基づいて内燃機関を制御する機関制御装置とを具備する、内燃機関の制御装置において、前記空燃比センサは、空燃比の検出対象である排気ガスが流入せしめられる被測ガス室と、該被測ガス室内の排気ガスの空燃比に応じて基準セル出力電流が変化する基準セルと、ポンプ電流に応じて前記被測ガス室内の排気ガスに対して酸素の汲み入れ及び汲み出しを行うポンプセルとを具備し、前記基準セルは、前記被測ガス室内の排気ガスの空燃比に応じて基準セル出力電流が零となる印加電圧が変化すると共に、前記被測ガス室内の排気ガスの空燃比が理論空燃比であるときに当該基準セルにおける印加電圧を増大させるとこれに伴って基準セル出力電流が増大するように構成されており、前記空燃比センサによって排気空燃比を検出するときには、前記基準セルにおける印加電圧は一定電圧に固定され、該一定電圧は、前記被測ガス室内の排気ガスの空燃比が理論空燃比であるときに基準セル出力電流が零となる電圧とは異なる電圧であって且つ前記被測ガス室内の排気ガスの空燃比が理論空燃比とは異なる空燃比であるときに基準セル出力電流が零となる電圧であり、前記空燃比センサは、前記基準セル出力電流が零になるようにポンプ電流を制御するポンプ電流制御装置と、該ポンプ電流を前記センサ出力電流として検出するポンプ電流検出装置とを更に具備する、内燃機関の制御装置が提供される。
 第2の発明では、第1の発明において、前記基準セルは、前記被測ガス室内の排気ガスに曝される第一電極と、基準雰囲気に曝される第二電極と、前記第一電極と前記第二電極との間に配置された固体電解質層とを具備し、前記空燃比センサは、拡散律速層を更に具備し、該拡散律速層は排気ガスが当該拡散律速層を介して前記第一電極に到達するように配置される。
 第3の発明では、第2の発明において、前記拡散律速層は、前記被測ガス室内の排気ガスが当該拡散律速層を介して前記第一電極に到達するように配置される。
 第4の発明では、第1~第3のいずれか一つの発明において、前記基準セルは、各排気空燃比毎に前記基準セル出力電流が限界電流となる電圧領域である限界電流領域を有するように構成されており、前記一定電圧は、排気空燃比が理論空燃比であるときの前記限界電流領域内の電圧である。
 第5の発明では、第1~第3のいずれか一つの発明において、前記基準セルは、各排気空燃比毎に、前記印加電圧と基準セル出力電流との関係について、印加電圧の増大に比例して基準セル出力電流が増大する電圧領域である比例領域と、水の分解が発生したことによって印加電圧の変化に応じて基準セル出力電流が変化する電圧領域である水分解領域と、これら比例領域と水分解領域との間の電圧領域である中間領域とを有するように構成されており、前記一定電圧は、排気空燃比が理論空燃比であるときの前記中間領域内の電圧である。
 第6の発明では、第1~第3のいずれか一つの発明において、前記一定電圧は、排気空燃比が理論空燃比よりも1%高いときに基準セル出力電流が零となる電圧と、前記被測ガス室内の排気ガスの空燃比が理論空燃比よりも1%低いときに基準セル出力電流が零となる電圧との間の電圧とされる。
 第7の発明では、第1~第3のいずれか一つの発明において、前記基準セルは、各排気空燃比毎に、前記印加電圧と基準セル出力電流との関係について、印加電圧が増大するにつれて第一の屈曲点まで基準セル出力電流が増大し、第一の屈曲点から印加電圧が増大するにつれて第二の屈曲点まで基準セル出力電流が増大し、第二の屈曲点から印加電圧が増大するにつれて基準セル出力電流が増大すると共に、第一の屈曲点と第二の屈曲点の間における電圧領域においては他の電圧領域よりも印加電圧の増加量に対する基準セル出力電流の増加量が小さくなるように構成されており、前記一定電圧は、排気空燃比が理論空燃比であるときの前記第一の屈曲点及び第二の屈曲点との間の電圧とされる。
 第8の発明では、第2又は第3の発明において、前記基準セルは、各排気空燃比毎に、印加電圧の増大に伴って基準セル出力電流が増大する電圧領域である電流増大領域と、前記拡散律速層を設けたことにより印加電圧の増加量に対する基準セル出力電流の増加量が前記電流増大領域よりも小さくなる電圧領域である電流微増領域とを有し、前記一定電圧は、排気空燃比が理論空燃比であるときの前記電流微増領域内の電圧である。
 第9の発明では、第2又は第3の発明において、前記拡散律速層はアルミナで形成され、前記一定電圧が、0.1V以上0.9V以下とされる。
 第10の発明では、第1~第9のいずれか一つ発明において、前記機関制御装置は、前記空燃比センサのセンサ出力電流が零になったときに排気空燃比が理論空燃比とは異なる予め定められた空燃比であると判断する。
 第11の発明では、第1~第10のいずれか一つの発明において、前記内燃機関は、前記空燃比センサよりも排気流れ方向上流側において前記排気通路に設けられた酸素を吸蔵可能な排気浄化触媒を具備し、前記一定電圧は、排気空燃比が理論空燃比よりもリッチである所定のリッチ判定空燃比であるときに前記基準セル出力電流が零になるような電圧とされる。
 第12の発明では、第11の発明において、前記機関制御装置は、前記排気浄化触媒に流入する排気ガスの空燃比を制御可能であり、前記空燃比センサのセンサ出力電流が零以下になったときには前記排気浄化触媒に流入する排気ガスの目標空燃比が理論空燃比よりもリーンとされる。
 第13の発明では、第12の発明において、前記機関制御装置は、前記空燃比センサのセンサ出力電流が零以下となったときに、前記排気浄化触媒の酸素吸蔵量が最大酸素吸蔵量よりも少ない所定の吸蔵量となるまで、前記排気浄化触媒に流入する排気ガスの目標空燃比を継続的又は断続的に理論空燃比よりもリーンにする酸素吸蔵量増加手段と、前記排気浄化触媒の酸素吸蔵量が前記所定の吸蔵量以上になったときに、該酸素吸蔵量が最大酸素吸蔵量に達することなく零に向けて減少するように、前記目標空燃比を継続的又は断続的に理論空燃比よりもリッチにする酸素吸蔵量減少手段とを具備する。
 第14の発明では、第13の発明において、前記酸素吸蔵量増加手段によって継続的又は断続的に理論空燃比よりもリーンにされている期間における前記目標空燃比の平均値と理論空燃比との差は、前記酸素吸蔵量減少手段によって継続的又は断続的に理論空燃比よりもリッチにされている期間における前記目標空燃比と理論空燃比との差よりも大きい。
 第15の発明では、第11~第14のいずれか一つの発明において、当該内燃機関の制御装置は、前記排気浄化触媒よりも排気流れ方向上流側において機関排気通路に設けられた上流側空燃比センサを具備し、前記機関制御装置は上流側空燃比センサの出力に基づいて前記排気浄化触媒に流入する排気ガスの空燃比が目標空燃比となるように排気空燃比を制御する。
 第16の発明では、第15の発明において、前記上流側空燃比センサは、排気空燃比に応じてセンサ出力電流が零となる印加電圧が変化すると共に、排気空燃比が理論空燃比であるときに当該上流側空燃比センサにおける印加電圧を増大させるとこれに伴ってセンサ出力電流が増大するように構成されており、前記上流側空燃比センサにおける印加電圧は、前記空燃比センサの印加電圧よりも低い。
 第17の発明では、第16の発明において、前記上流側空燃比センサによって排気空燃比を検出するときには、前記上流側空燃比センサにおける印加電圧は一定電圧に固定され、該一定電圧は、前記被測ガス室内の排気ガスの空燃比が理論空燃比であるときにセンサ出力電流が零となる電圧とされる。
 本発明によれば、排気ガスの空燃比が理論空燃比でないときであっても排気ガスの空燃比の絶対値を検出することができる空燃比センサを用いた内燃機関の制御装置が提供される。
図1は、本発明の第一実施形態に係る制御装置が用いられる内燃機関を概略的に示す図である。 図2は、空燃比センサの出力特性を示す図である。 図3は、空燃比センサの概略的な断面図である。 図4は、空燃比センサの動作を概略的に示した図である。 図5は、空燃比センサの出力特性を示す図である。 図6は、基準セルの動作を概略的に示した図である。 図7は、各排気空燃比におけるセンサ印加電圧と基準セル出力電流との関係を示す図である。 図8は、各センサ印加電圧における排気空燃比と基準セル出力電流との関係を示す図である。 図9は、空燃比センサにおけるセンサ印加電圧と基準セル出力電流との関係を示す図である。 図10は、空燃比センサにおける排気空燃比と基準セル出力電流との関係を示す図である。 図11は、センサ印加電圧と基準セル出力電流との関係を示す図である。 図12は、各センサ印加電圧における排気空燃比と基準セル出力電流との関係を示す、図8と同様な図であり、図8よりも広い範囲を示している。 図13は、電圧印加装置及び基準セル出力電流検出装置を構成する具体的な回路の一例を示す図である。 図14は、排気浄化触媒の酸素吸蔵量と排気浄化触媒から流出する排気ガス中のNOx及び未燃ガスの濃度との関係を示す。 図15は、排気浄化触媒の酸素吸蔵量等のタイムチャートである。 図16は、排気浄化触媒の酸素吸蔵量等のタイムチャートである。 図17は、制御装置の機能ブロック図である。 図18は、空燃比補正量の算出制御の制御ルーチンを示すフローチャートである。 図19は、排気浄化触媒の酸素吸蔵量等のタイムチャートである。 図20は、第三実施形態の空燃比センサの構成を概略的に示す、図3と同様な断面図である。
 以下、図面を参照して本発明の内燃機関の制御装置について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。図1は、本発明の第一実施形態に係る制御装置が用いられる内燃機関を概略的に示す図である。
<内燃機関全体の説明>
 図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。吸気弁6は吸気ポート7を開閉し、排気弁8は排気ポート9を開閉する。
 図1に示したようにシリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4の内壁面周辺部には燃料噴射弁11が配置される。点火プラグ10は、点火信号に応じて火花を発生させるように構成される。また、燃料噴射弁11は、噴射信号に応じて、所定量の燃料を燃焼室5内に噴射する。なお、燃料噴射弁11は、吸気ポート7内に燃料を噴射するように配置されてもよい。また、本実施形態では、燃料として排気浄化触媒における理論空燃比が14.6であるガソリンが用いられる。しかしながら、本発明の内燃機関は他の燃料を用いても良い。
 各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。吸気ポート7、吸気枝管13、サージタンク14、吸気管15は吸気通路を形成する。また、吸気管15内にはスロットル弁駆動アクチュエータ17によって駆動されるスロットル弁18が配置される。スロットル弁18は、スロットル弁駆動アクチュエータ17によって回動せしめられることで、吸気通路の開口面積を変更することができる。
 一方、各気筒の排気ポート9は排気マニホルド19に連結される。排気マニホルド19は、各排気ポート9に連結される複数の枝部とこれら枝部が集合した集合部とを有する。排気マニホルド19の集合部は上流側排気浄化触媒20を内蔵した上流側ケーシング21に連結される。上流側ケーシング21は、排気管22を介して下流側排気浄化触媒24を内蔵した下流側ケーシング23に連結される。排気ポート9、排気マニホルド19、上流側ケーシング21、排気管22及び下流側ケーシング23は、排気通路を形成する。
 電子制御ユニット(ECU)31はデジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を具備する。吸気管15には、吸気管15内を流れる空気流量を検出するためのエアフロメータ39が配置され、このエアフロメータ39の出力は対応するAD変換器38を介して入力ポート36に入力される。また、排気マニホルド19の集合部には排気マニホルド19内を流れる排気ガス(すなわち、上流側排気浄化触媒20に流入する排気ガス)の空燃比を検出する上流側空燃比センサ40が配置される。加えて、排気管22内には排気管22内を流れる排気ガス(すなわち、上流側排気浄化触媒20から流出して下流側排気浄化触媒24に流入する排気ガス)の空燃比を検出する下流側空燃比センサ41が配置される。これら空燃比センサ40、41の出力も対応するAD変換器38を介して入力ポート36に入力される。なお、これら空燃比センサ40、41の構成については後述する。
 また、アクセルペダル42にはアクセルペダル42の踏込み量に比例した出力電圧を発生する負荷センサ43が接続され、負荷センサ43の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ44は例えばクランクシャフトが15度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ44の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路45を介して点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続される。なお、ECU31は、各種センサ等の出力に基づいて内燃機関を制御する機関制御装置として機能する。
<空燃比センサの構成>
 次に、図3を参照して、本実施形態における空燃比センサ40、41の構成について説明する。図3は、空燃比センサ40、41の概略的な断面図である。図3から分かるように、本実施形態における空燃比センサ40、41は、固体電解質層及び一対の電極から成るセルが2つである2セル型の空燃比センサである。
 図3に示したように、空燃比センサ40、41は、被測ガス室51と、基準ガス室52と、被測ガス室51の両側に配置された二つの固体電解質層53、54とを具備する。基準ガス室52は、第二固体電解質層54を挟んで被測ガス室51の反対側に設けられる。第一固体電解質層53の被測ガス室51側の側面上にはガス室側電極(第三電極)55が配置され、第一固体電解質層53の排気ガス側の側面上には排気側電極(第四電極)56が配置される。これら第一固体電解質層53、ガス室側電極55及び排気側電極56は、ポンプセル60を構成する。
 一方、第二固体電解質層54の被測ガス室51側の側面上にはガス室側電極(第一電極)57が配置され、第二固体電解質層54の基準ガス室52側の側面上には基準側電極(第二電極)58が配置される。これら第二固体電解質層54、ガス室側電極57及び基準側電極58は、基準セル61を構成する。
 二つの固体電解質層53、54の間には、ポンプセル60のガス室側電極55及び基準セル61のガス室側電極57を囲うように拡散律速層63が設けられる。したがって、被測ガス室51は、第一固体電解質層53、第二固体電解質層54及び拡散律速層63によって画成される。被測ガス室51には、拡散律速層63を介して排気ガスが流入せしめられる。よって、被測ガス室51内に配置された電極、すなわちポンプセル60のガス室側電極55及び基準セル61のガス室側電極57は、拡散律速層63を介して排気ガスに曝されることになる。なお、拡散律速層63は、必ずしも被測ガス室51に流入する排気ガスが通過するように設けられる必要はない。基準セル61のガス室側電極57に到達する排気ガスが拡散律速層を通過した排気ガスになれば、拡散律速層は如何なる態様で配置されてもよい。
 また、第二固体電解質層54の基準ガス室52側の側面上には、基準ガス室52を囲うようにヒータ部64が設けられる。したがって、基準ガス室52は、第二固体電解質層54及びヒータ部64によって画成される。この基準ガス室52内には基準ガスが導入される。本実施形態では、基準ガス室52は大気に開放されており、よって基準ガス室52内には基準ガスとして大気が導入される。
 また、ヒータ部64には複数のヒータ65が設けられており、これらヒータ65によって空燃比センサ40、41の温度、特に固体電解質層53、54の温度を制御することができる。ヒータ65は、固体電解質層53、54を活性化するまで加熱するのに十分な発熱容量を有している。加えて、第一固体電解質層53の排気ガス側の側面上には、保護層66が設けられる。保護層66は、排気ガス中の液体等が排気側電極56に直接付着するのを防止しつつ排気ガスが排気側電極56に到達するように多孔質材料で形成される。
 固体電解質層53、54は、ZrO2(ジルコニア)、HfO2、ThO2、Bi23等にCaO、MgO、Y23、Yb23等を安定剤として配当した酸素イオン伝導性酸化物の焼結体により形成されている。また、拡散律速層63は、アルミナ、マグネシア、けい石質、スピネル、ムライト等の耐熱性無機物質の多孔質焼結体により形成されている。さらに、電極55~58は、白金等の触媒活性の高い貴金属により形成されている。
 基準セル61のガス室側電極57と基準側電極58との間には、ECU31に搭載された基準セル電圧印加装置70によりセンサ印加電圧Vrが印加される。加えて、ECU31には、基準セル電圧印加装置70によってセンサ印加電圧Vrを印加したときに第二固体電解質層54を介してこれら電極57、58間に流れる基準セル出力電流Irを検出する基準セル出力電流検出装置71が設けられる。
 また、ポンプセル60のガス室側電極55と排気側電極56との間には、ECU31に搭載されたポンプ電圧印加装置72によりポンプ電圧Vpが印加される。ポンプ電圧印加装置72によって印加されるポンプ電圧Vpは、基準セル出力電流検出装置71によって検出された基準セル出力電流Irに応じて設定される。具体的には、基準セル出力電流検出装置71によって検出された基準セル出力電流Irと予め設定されたその目標電流(例えば、零)との差に応じて、ポンプ電圧Vpが設定される。加えて、ECU31には、ポンプ電圧印加装置72によってポンプ電圧Vpを印加したときに第一固体電解質層53を介してこれら電極55、56間に流れるポンプ電流Ipを検出するポンプ電流検出装置73が設けられる。
 なお、ポンプ電圧印加装置72によってポンプ電圧Vpを変化させると、電極85、86間に流れるポンプ電流Ipが変化する。換言すると、ポンプ電圧印加装置72はポンプ電流Ipを制御していると言える。したがって、ポンプ電圧印加装置72は、ポンプ電流Ipを制御するポンプ電流制御装置として作用する。なお、ポンプ電流Ipは例えばポンプ電圧印加装置72と直列に可変抵抗を配置し、この可変抵抗を変更することによっても変化する。したがって、ポンプ電流制御装置としては可変抵抗等、ポンプ電圧印加装置72以外の手段を用いることも可能である。
<空燃比センサの動作>
 次に、図4を参照して、このように構成された空燃比センサ40、41の動作の基本的な概念について説明する。図4は、空燃比センサ40、41の動作を概略的に示した図である。使用時において、空燃比センサ40、41は、保護層66及び拡散律速層63の外周面が排気ガスに曝されるように配置される。また、空燃比センサ40、41の基準ガス室52には大気が導入される。
 上述したように、固体電解質層53、54は、酸素イオン伝導性酸化物の焼結体で形成される。このため、高温により活性化した状態で固体電解質層53、54の両側面間に酸素濃度の差が生じると、濃度の高い側面側から濃度の低い側面側へと酸素イオンを移動させようとする起電力Eが発生する性質(酸素電池特性)を有している。
 逆に、固体電解質層53、54は、両側面間に電位差が与えられると、この電位差に応じて固体電解質層の両側面間で酸素濃度比が生じるように、酸素イオンの移動を引き起こそうとする特性(酸素ポンプ特性)を有する。具体的には、両側面間に電位差が与えられた場合には、正極性を与えられた側面における酸素濃度が、負極性を与えられた側面における酸素濃度に対して、電位差に応じた比率で高くなるように、酸素イオンの移動が引き起こされる。
 したがって、ポンプセル60では、ポンプ電圧印加装置72によってガス室側電極55と排気側電極56との間にポンプ電圧Vpが印加されると、これに応じて酸素イオンの移動が生じる。このような酸素イオンの移動に伴って、排気ガス中から被測ガス室51内に酸素が汲み入れられたり汲み出されたりする。
 一方、本実施形態の基準セル61は、後述するメカニズムにより、被測ガス室51内の排気ガスの空燃比がリッチ判定空燃比(理論空燃比よりも僅かにリッチである予め定められた空燃比。例えば、14.55)であるときに電極57、58間に流れる基準セル出力電流が零になる。一方、被測ガス室51内の排気ガスの空燃比がリッチ判定空燃比よりもリッチであるときには電極57、58間に流れる基準セル出力電流が負電流となり、その大きさはリッチ判定空燃比からの差に比例する。逆に、被測ガス室内の排気空燃比がリッチ判定空燃比よりもリーンであるときには電極57、58間に流れる基準セル出力電流が正電流となり、その大きさはリッチ判定空燃比からの差に比例する。
 空燃比センサ40、41周りにおける排気空燃比がリッチ判定空燃比よりもリーンのときには、図4(A)に示したように、被測ガス室51内には拡散律速層63を介してリーン空燃比の排気ガスが流入する。このように多量の酸素を含むリーン空燃比の排気ガスが流入すると、後述するメカニズムにより、基準セル61の電極57、58間にはリッチ判定空燃比からの差に比例して正の基準セル出力電流が流れ、斯かる基準セル出力電流は、基準セル出力電流検出装置71によって検出される。
 基準セル出力電流検出装置71によって基準セル出力電流が検出されると、これに基づいてポンプ電圧印加装置72によりポンプセル60の電極55、56にポンプ電圧が印加される。特に、基準セル出力電流検出装置71によって正の基準セル出力電流が検出されると、排気側電極56を正電極、ガス室側電極55を負電極として、ポンプ電圧が印加される。このようにポンプセル60の電極55、56にポンプ電圧を印加することにより、ポンプセル60の第一固体電解質層53では負電極から正電極に向かって、すなわちガス室側電極55から排気側電極56に向かって酸素イオンの移動が生じる。このため、被測ガス室51内の酸素が空燃比センサ40、41周りの排気ガス中に汲み出される。
 被測ガス室51内から空燃比センサ40、41周りの排気ガス中へ汲み出される酸素の流量は、ポンプ電圧に比例し、また、ポンプ電圧は基準セル出力電流検出装置71によって検出された正の基準セル出力電流の大きさに比例する。したがって、被測ガス室51内の排気空燃比のリーン度合いが大きいほど、すなわち、被測ガス室51内の酸素濃度が高いほど、被測ガス室51内から空燃比センサ40、41周りの排気ガス中へ汲み出される酸素の流量が多くなる。この結果、拡散律速層63を介して被測ガス室51に流入する酸素流量と、ポンプセル60によって汲み出される酸素流量とは基本的に一致し、被測ガス室51内は基本的にほぼリッチ判定空燃比に保たれることになる。
 ポンプセル60によって汲み出される酸素流量は、ポンプセル60の第一固体電解質層53内を移動した酸素イオンの流量に等しい。そして、この酸素イオンの流量は、ポンプセル60の電極55、56間で流れた電流に等しい。よって電極55、56間で流れたポンプ電流を空燃比センサ40、41の出力電流(以下、「センサ出力電流」という)としてポンプ電流検出装置73により検出することで、拡散律速層63を介して被測ガス室51に流入する酸素流量を、したがって、被測ガス室51周りの排気ガスのリーン空燃比を検出することができる。
 一方、空燃比センサ40、41周りにおける排気空燃比がリッチ判定空燃比よりもリッチのときには、図4(B)に示したように、被測ガス室51内には拡散律速層63を介してリッチ空燃比の排気ガスが流入する。このように多量の未燃ガス(HCやCO等)を含むリッチ空燃比の排気ガスが流入すると、後述するメカニズムにより、基準セル61の電極57、58間にはリッチ判定空燃比からの差に比例して負の基準セル出力電流が流れ、斯かる基準セル出力電流は、基準セル出力電流検出装置71によって検出される。
 基準セル出力電流検出装置71によって基準セル出力電流が検出されると、これに基づいてポンプ電圧印加装置72によりポンプセル60の電極55、56間にポンプ電圧が印加される。特に、基準セル出力電流検出装置71によって負の基準セル出力電流が検出されると、ガス室側電極55を正電極、排気側電極56を負電極として、ポンプ電圧が印加される。このようにポンプ電圧を印加することにより、ポンプセル60の第一固体電解質層53では負電極から正電極に向かって、すなわち排気側電極56からガス室側電極55に向かって酸素イオンの移動が生じる。このため、空燃比センサ40、41周りの排気ガス中の酸素が被測ガス室51内に汲み入れられる。
 空燃比センサ40、41周りの排気ガス中から被測ガス室51内へ汲み入れられる酸素の流量は、ポンプ電圧に比例し、また、ポンプ電圧は基準セル出力電流検出装置71によって検出された負の基準セル出力電流の大きさに比例する。したがって、被測ガス室51内の排気空燃比のリッチ度合いが大きいほど、すなわち、被測ガス室51内の未燃ガスの濃度が高いほど、空燃比センサ40、41周りの排気ガス中から被測ガス室51内へ汲み入れられる酸素の流量が多くなる。この結果、拡散律速層63を介して被測ガス室51に流入する未燃ガスの流量と、ポンプセル60によって汲み入れられる酸素流量とは化学当量比となり、よって被測ガス室51内は基本的にほぼリッチ判定空燃比に保たれることになる。
 ポンプセル60によって汲み入れられる酸素流量は、ポンプセル60内の第一固体電解質層53内を移動した酸素イオンの流量に等しい。そして、この酸素イオンの流量は、ポンプセル60の電極55、56間で流れた電流に等しい。よって電極55、56間で流れたポンプ電流をセンサ出力電流としてポンプ電流検出装置73により検出することで、拡散律速層63を介して被測ガス室51に流入する未燃ガスの流量を、したがって、被測ガス室51周りの排気ガスのリッチ空燃比を検出することができる。
 また、空燃比センサ40、41周りにおける排気空燃比がリッチ判定空燃比のときには、図4(C)に示したように、被測ガス室51内に拡散律速層63を介してリッチ判定空燃比の排気ガスが流入する。このようにリッチ判定空燃比の排気ガスが流入すると、後述するメカニズムにより、基準セル61の電極57、58間に流れる基準セル出力電流は零となり、斯かる基準セル出力電流は、基準セル出力電流検出装置71によって検出される。
 基準セル出力電流検出装置71によって検出された基準セル出力電流が零であると、これに伴ってポンプ電圧印加装置72により印加されるポンプ電圧も零とされる。このためポンプセル60の第一固体電解質層53では酸素イオンの移動は生じず、よって被測ガス室51内は基本的にほぼリッチ判定空燃比に保たれることになる。そして、ポンプセル60の第一固体電解質層53において酸素イオンの移動が生じていないため、ポンプ電流検出装置73によって検出されるポンプ電流(すなわち、センサ出力電流)も零となる。したがって、ポンプ電流検出装置73によって検出されるポンプ電流が零であるときには、被測ガス室51周りの排気ガスの空燃比がリッチ判定空燃比に等しいことがわかる。
 このように構成された空燃比センサ40、41は、図5に示した出力特性を有する。すなわち、空燃比センサ40、41では、排気空燃比が大きくなるほど(すなわち、リーンになるほど)、ポンプ電流(センサ出力電流)Ipが大きくなる。加えて、本実施形態では、空燃比センサ40、41は、排気空燃比がリッチ判定空燃比に一致するときにポンプ電流(センサ出力電流)Ipが零になるように構成される。
<基準セルの動作>
 上述したように、基準セル61では、被測ガス室51内の排気空燃比がリッチ判定空燃比であるときには電極57、58間に流れる基準セル出力電流が零になり、被測ガス室51内の排気空燃比がリッチ判定空燃比とは異なる空燃比となったときにはその排気空燃比に応じて基準セル出力電流が変化する。以下では、図6を参照して基準セル61の動作の基本的な概念について説明する。図6は、基準セル61の動作を概略的に示した図である。使用時においては、上述したように、被測ガス室51には拡散律速層63を介して排気ガスが導入され、基準ガス室52には大気が導入される。また、図3及び図6に示したように、空燃比センサ40、41では、基準側電極58が正極性、ガス室側電極57が負極性となるように、これら電極57、58間に一定のセンサ印加電圧Vrが印加されている。
 被測ガス室51内の排気空燃比がリッチ判定空燃比よりもリーンのときには、第二固体電解質層54の両側面間での酸素濃度の比はそれほど大きくない。このため、センサ印加電圧Vrを適切な値に設定すれば、第二固体電解質層54の両側面間ではセンサ印加電圧Vrに対応した酸素濃度比よりも実際の酸素濃度比の方が小さくなる。このため、第二固体電解質層54の両側面間の酸素濃度比がセンサ印加電圧Vrに対応した酸素濃度比に向けて大きくなるように、図6(A)に示した如く、ガス室側電極57から基準側電極58に向けて酸素イオンの移動が起こる。その結果、センサ印加電圧Vrを印加する基準セル電圧印加装置70の正極から、基準側電極58、第二固体電解質層54、及びガス室側電極57を介して基準セル電圧印加装置70の負極へと電流が流れる。
 このとき流れる電流(基準セル出力電流)Irの大きさは、センサ印加電圧Vrを適切な値に設定すれば、排気中から拡散律速層63を通って被測ガス室51へと拡散によって流入する酸素流量に比例する。したがって、この電流Irの大きさを基準セル出力電流検出装置71によって検出することにより、被測ガス室51内の酸素濃度を知ることができ、ひいてはリーン領域における空燃比を知ることができる。
 一方、被測ガス室51内の排気空燃比がリッチ判定空燃比よりもリッチのときには、排気中から拡散律速層63を通って未燃ガスが被測ガス室51内に流入するため、ガス室側電極57上に酸素が存在しても、未燃ガスと反応して除去される。このため、被測ガス室51内では酸素濃度が極めて低くなり、その結果、第二固体電解質層54の両側面間での酸素濃度の比は大きなものとなる。このため、センサ印加電圧Vrを適切な値に設定すれば、第二固体電解質層54の両側面間ではセンサ印加電圧Vr対応した酸素濃度比よりも実際の酸素濃度比の方が大きくなる。このため、第二固体電解質層54の両側面間の酸素濃度比がセンサ印加電圧Vrに対応した酸素濃度比に向けて小さくなるように、図6(B)に示した如く、基準側電極58からガス室側電極57に向けて酸素イオンの移動が起こる。その結果、基準側電極58から、センサ印加電圧Vrを印加する基準セル電圧印加装置70を通ってガス室側電極57へと電流が流れる。
 このとき流れる電流(基準セル出力電流)Irの大きさは、センサ印加電圧Vrを適切な値に設定すれば、第二固体電解質層54中を基準側電極58からガス室側電極57へと移動せしめられる酸素イオンの流量によって決まる。その酸素イオンは、排気中から拡散律速層63を通って被測ガス室51内へと拡散によって流入する未燃ガスとガス室側電極57上で反応(燃焼)する。よって、酸素イオンの移動流量は被測ガス室51内に流入した排気ガス中の未燃ガスの濃度に対応する。したがって、この電流Irの大きさを基準セル出力電流検出装置71によって検出することにより、被測ガス室51内の未燃ガス濃度を知ることができ、ひいてはリッチ領域における空燃比を知ることができる。
 また、被測ガス室51内の排気空燃比がリッチ判定空燃比に一致するときには、被測ガス室51内の酸素及び未燃ガスの量が化学当量比となっている。このため、ガス室側電極57の触媒作用によって両者は完全に燃焼し、被測ガス室51内の酸素及び未燃ガスの濃度に変動は生じない。この結果、第二固体電解質層54の両側面間の酸素濃度比は、変動せずに、センサ印加電圧Vrに対応した酸素濃度比のまま維持される。このため、図6(C)に示したように、酸素ポンプ特性による酸素イオンの移動は起こらず、その結果、回路を流れる電流は生じない。
<基準セルの理論空燃比近傍における微視的特性>
 ところで、本発明者らが鋭意研究を行ったところ、基準セル61におけるセンサ印加電圧Vrと基準セル出力電流Irとの関係や、排気空燃比と基準セル出力電流Irとの関係を理論空燃比近傍で微視的に見ると図7及び図8のようになることを見出した。
 図7は、基準セルにおけるセンサ印加電圧Vrと基準セル出力電流Irとの関係を示した図である。図7からわかるように、基準セルは、センサ印可電圧Vrを増大させても基準セル出力電流Irがほとんど増加しない限界電流領域を有する。しかしながら、この限界電流領域においても、排気空燃比を一定としたときに、センサ印加電圧Vrが増大するのに伴って基準セル出力電流Irもごく僅かながら増大する。例えば、排気空燃比が理論空燃比(14.6)である場合を例にとってみると、センサ印加電圧Vrが0.45V程度のときには基準セル出力電流Irは0となる。これに対して、センサ印加電圧Vrを0.45Vよりも或る程度低く(例えば、0.2V)すると、基準セル出力電流Irは0よりも低い値となる。一方、センサ印加電圧Vrを0.45Vよりも或る程度高く(例えば、0.7V)すると、基準セル出力電流Irは0よりも高い値となる。
 図8は、排気空燃比と基準セル出力電流Irとの関係を示した図である。図8からは、理論空燃比近傍の領域においては、同一の排気空燃比に対する基準セル出力電流Irがセンサ印加電圧Vr毎に僅かに異なることがわかる。例えば、図示した例では、排気空燃比が理論空燃比である場合、センサ印加電圧Vrを0.45Vとしたときに基準セル出力電流Irが0になる。そして、センサ印加電圧Vrを0.45Vよりも大きくすると基準セル出力電流Irも大きくなり、センサ印加電圧Vrを0.45Vよりも小さくすると基準セル出力電流Irも小さくなる。
 加えて、図8からは、センサ印加電圧Vr毎に、基準セル出力電流Irが0となるときの排気空燃比(以下、「電流零時の排気空燃比」という)が異なることがわかる。図示した例では、センサ印加電圧Vrが0.45Vである場合には排気空燃比が理論空燃比であるときに基準セル出力電流Irが0になる。これに対して、センサ印加電圧Vrが0.45Vよりも大きい場合には、排気空燃比が理論空燃比よりもリッチであるときに基準セル出力電流Irが0になり、センサ印加電圧Vrが大きくなるほど電流零時の排気空燃比は小さくなる。逆に、センサ印加電圧Vrが0.45Vよりも小さい場合には、排気空燃比が理論空燃比よりもリーンであるときに基準セル出力電流Irが0になり、センサ印加電圧Vrが小さくなるほど電流零時の排気空燃比は大きくなる。すなわち、センサ印加電圧Vrを変化させることにより、電流零時の排気空燃比を変化させることができる。
 ここで、図2を用いて説明したように、出力電流変化率には空燃比センサの個体間でバラツキが生じたり、同一の空燃比センサにおいても経年劣化等によってバラツキが生じたりする。そして、このような傾向は、基準セル61にも当てはまる。
 したがって、基準セル61において、排気空燃比の増加量に対する基準セル出力電流の増加量の比率(以下、「基準セル出力電流変化率」という)は、同様な生産工程を経ても必ずしも同一にはならず、同一型式の空燃比センサであっても個体間でバラツキが生じてしまう。加えて、同一の空燃比センサにおいても、経年劣化等により基準セル出力電流変化率は変化する。
 しかしながら、図2からも分かるように、空燃比センサの個体間でバラツキが生じたり、同一の空燃比センサにおいて経年劣化等によってバラツキが生じたりしたとしても、電流零時の排気空燃比(図2の例では理論空燃比)はほとんど変化しない。すなわち、基準セル出力電流Irが零以外の値をとるときには、そのときの排気空燃比の絶対値は必ずしも一定ではないが、基準セル出力電流Irが零となるときには、そのときの排気空燃比の絶対値(図17の例では理論空燃比)は一定である。
 そして、図8を用いて説明したように、空燃比センサ40、41では、センサ印加電圧Vrを変化させることにより、電流零時の排気空燃比を変化させることができる。そして、基準セル出力電流検出装置71によって検出された基準セル出力電流が零であると、ポンプ電圧印加装置72により印加されるポンプ電圧も零とされ、ポンプ電流(センサ出力電流)Ipも零となる。したがって、空燃比センサ40、41によれば、センサ印加電圧Vrを変化させることにより、理論空燃比以外の排気空燃比の絶対値を正確に検出することができる。
 特に、センサ印加電圧Vrを後述する「特定電圧領域」内で変化させた場合には、電流零時の排気空燃比を理論空燃比(14.6)に対して僅かにのみ(例えば、±1%の範囲(約14.45~約14.75)内)調整することができる。したがって、センサ印加電圧Vrを適切に設定することにより、理論空燃比とは僅かに異なる空燃比の絶対値を正確に検出することができるようになる。
<特定電圧領域の説明>
 ところで、上述したように、センサ印加電圧Vrを変化させることにより、電流零時の排気空燃比を変化させることができる。しかしながら、センサ印加電圧Vrを或る上限電圧よりも大きくするか又は或る下限電圧よりも小さくすると、センサ印加電圧Vrの変化量に対する電流零時の排気空燃比の変化量が大きくなる。したがって、斯かる電圧領域では、センサ印加電圧Vrが僅かにずれると、電流零時の排気空燃比が大きく変化してしまう。したがって、斯かる電圧領域では、排気空燃比の絶対値を正確に検出するためには、センサ印加電圧Vrを精密に制御することが必要になり、あまり実用的ではない。このため、排気空燃比の絶対値を正確に検出する観点からは、センサ印加電圧Vrは或る上限電圧と或る下限電圧との間の「特定電圧領域」内の値とすることが必要になる。
 斯かる特定電圧領域は、様々な方法で定義することができる。以下では、図9~図12を用いて、幾つかの定義の例について説明する。
 まず、一つ目の例について説明する。図9(A)の電圧-電流線図に示したように、基準セル61は、各排気空燃比毎に、センサ印加電圧Vrの増大に伴って基準セル出力電流Irが増大する電圧領域である電流増大領域と、拡散律速層を設けたことによりセンサ印加電圧Vrの増加量に対する基準セル出力電流Irの増加量が電流増大領域よりも小さくなる電圧領域である電流微増領域とを有する(図9(A)では排気空燃比が理論空燃比であるときについてのみ電流増大領域及び電流微増領域を示している)。一つ目の例では、排気空燃比が理論空燃比であるときの電流微増領域が「特定電圧領域」とされる。
 次に、二つ目の例について説明する。図9(B)の電圧-電流線図に示したように、基準セル61は、各排気空燃比毎に、基準セル出力電流Irが限界電流となる電圧領域である限界電流領域を有する(図9(B)では排気空燃比が理論空燃比であるときについてのみ限界電流領域を示している)。二つ目の例では、排気空燃比が理論空燃比であるときの限界電流領域が「特定電圧領域」とされる。
 次に、三つ目の例について説明する。図9(C)の電圧-電流線図に示したように、基準セル61は、各排気空燃比毎に、印加電圧の増大に比例して基準セル出力電流Irが増大する電圧領域である比例領域と、水や固体電解質層53、54の分解が発生したことによって印加電圧の変化に応じて基準セル出力電流Irが変化する電圧領域である水分解領域と、これら比例領域と水分解領域との間の電圧領域である中間領域とを有する(図9(C)では排気空燃比が理論空燃比であるときについてのみ比例領域、水分解領域及び中間領域を示している)。三つ目の例では、排気空燃比が理論空燃比であるときの中間領域が「特定電圧領域」とされる。
 次に、四つ目の例について説明する。図8に示したように、電流零時の排気空燃比は、センサ印加電圧Vrに応じて変化し、センサ印加電圧Vrが高いほど電流零時の排気空燃比が低くなる。図10に示したように、本実施形態の基準セル61では、センサ印加電圧Vrを上限電圧値としたときに電流零時の排気空燃比が理論空燃比AFstよりも例えば0.5~2%程度(好ましくは、1%程度)低い空燃比となる。一方、センサ印加電圧Vrを下限電圧値としたときに電流零時の排気空燃比が理論空燃比AFstよりも例えば0.5~2%程度(好ましくは、1%程度)高い空燃比となる。四つ目の例では、上記上限電圧値(電流零時の排気空燃比が理論空燃比AFstよりも例えば1%低い空燃比となる電圧値)と上記下限電圧値(電流零時の排気空燃比が理論空燃比AFstよりも例えば1%高い空燃比となる電圧値)との間の電圧領域が、「特定電圧領域」とされる。
 次に、図11を参照して、五つ目の例について説明する。図11は、電圧に対する電流の変化を示している。図11に示したように、基準セル61では、各排気空燃比毎に、センサ印加電圧Vrが負である状態から増大するにつれて第一の屈曲点B1まで基準セル出力電流Irが増大し、第一の屈曲点B1からセンサ印加電圧Vrが増大するにつれて第二の屈曲点B2まで基準セル出力電流Irが増大し、第二の屈曲点からセンサ印加電圧Vrが増大するにつれて基準セル出力電流Irが増大する。第一の屈曲点B1と第二の屈曲点B2の間における電圧領域においては他の電圧領域よりもセンサ印加電圧Vrの増加量に対する印加電流Irの増加量が小さい。五つ目の例では、排気空燃比が理論空燃比であるときの前記第一の屈曲点及び第二の屈曲点との間の電圧が、「特定電圧領域」とされる。
 次に、六つ目の例について説明する。六つ目の例では、「特定電圧領域」の上限電圧値と下限電圧値は具体的な数値で特定される。具体的には、「特定電圧領域」は、0.05V以上、0.95V以下、好ましくは0.1V以上、0.9V以下、より好ましくは0.15V以上、0.8V以下とされる。
 図12は、図8と同様に、各センサ印加電圧Vrにおける排気空燃比と基準セル出力電流Irとの関係を示す図である。図8は理論空燃比近傍のみの関係を微視的に示しているのに対して、図12は、より広範囲の空燃比についての関係を巨視的に示している。
 図12からわかるように、或る一定の排気空燃比以下に排気空燃比が低くなると、排気空燃比が変化しても基準セル出力電流Irがほとんど変化しなくなる。この一定の排気空燃比はセンサ印加電圧Vrに応じて変化し、センサ印加電圧Vrが高いほど高い。このため、センサ印加電圧Vrを或る特定の値(最大電圧)以上に増大させると、図中に一点鎖線で示したように、排気空燃比が如何なる値であっても基準セル出力電流Irが0にならなくなる。
 一方、或る一定の排気空燃比以上に排気空燃比が高くなると、排気空燃比が変化しても基準セル出力電流Irがほとんど変化しなくなる。この一定の排気空燃比もセンサ印加電圧Vrに応じて変化し、センサ印加電圧Vrが低いほど低い。このため、センサ印加電圧Vrを或る特定の値(最小電圧)以下に低下させると、図中に二点鎖線で示したように、排気空燃比が如何なる値であっても基準セル出力電流Irが0にならなくなる(例えば、センサ印加電圧Vrを0Vとした場合には排気空燃比に関わらず基準セル出力電流Irは0にならない)。
 したがって、センサ印加電圧Vrが最大電圧と最小電圧との間の電圧であれば、基準セル出力電流が零となる排気空燃比が存在する。逆に、センサ印加電圧Vrが最大電圧よりも高い電圧或いは最小電圧よりも低い電圧であれば、基準セル出力電流が零となる排気空燃比が存在しない。したがって、センサ印加電圧Vrは、少なくとも、排気空燃比がいずれかの空燃比であるときに基準セル出力電流が零となる電圧であること、すなわち、最大電圧と最小電圧との間の電圧であることが必要になる。上述した「特定電圧領域」は、最大電圧と最小電圧との間の電圧領域である。
<各空燃比センサにおけるセンサ印加電圧>
 本実施形態では、上述した微視的特性に鑑みて、上流側空燃比センサ40によって排気ガスの空燃比を検出するときには、上流側空燃比センサ40におけるセンサ印加電圧Vrupは、排気空燃比が理論空燃比(本実施形態では14.6)であるときに基準セル出力電流(及びセンサ出力電流)が零となるような一定電圧(例えば、0.45V)に固定される。換言すると、上流側空燃比センサ40では電流零時の排気空燃比が理論空燃比となるようにセンサ印加電圧Vrupが設定される。
 一方、下流側空燃比センサ41によって排気ガスの空燃比を検出するときには、下流側空燃比センサ41におけるセンサ印加電圧Vrは、排気空燃比が理論空燃比よりも僅かにリッチである予め定められたリッチ判定空燃比(例えば、14.55)であるときに基準セル出力電流(及びセンサ出力電流)が零となるような一定電圧(例えば、0.7V)に固定される。換言すると、下流側空燃比センサ41では、電流零時の排気空燃比が理論空燃比よりも僅かにリッチであるリッチ判定空燃比となるようにセンサ印加電圧Vrdwnが設定される。このように、本実施形態では、下流側空燃比センサ41におけるセンサ印加電圧Vrdwnが上流側空燃比センサ40におけるセンサ印加電圧Vrupよりも高い電圧とされる。
 したがって、両空燃比センサ40、41に接続されたECU31は、上流側空燃比センサ40のセンサ出力電流Ipupが零になったときに上流側空燃比センサ40周りの排気空燃比は理論空燃比であると判断する。一方、ECU31は、下流側空燃比センサ41のセンサ出力電流Ipdwnが零になったときには下流側空燃比センサ41周りの排気空燃比はリッチ判定空燃比、すなわち、理論空燃比とは異なる予め定められた空燃比であると判断する。
 なお、空燃比センサによって排気ガスの空燃比を検出するときとは、たとえば、後述する燃料カット制御を実行していないときや、空燃比センサによって検出される空燃比が18以上の高い値となっていないとき等が挙げられる。
<電圧印加装置及び電流検出装置の回路>
 図13に、基準セル電圧印加装置70及び基準セル出力電流検出装置71を構成する具体的な回路の一例を示す。図示した例では、酸素電池特性により生じる起電力をE、第二固体電解質層54の内部抵抗をRi、両電極57、58間の電位差をVsと表している。
 図13からわかるように、基準セル電圧印加装置70は、基本的に、酸素電池特性により生じる起電力Eがセンサ印加電圧Vrに一致するように、負帰還制御を行っている。換言すると、基準セル電圧印加装置70は、第二固体電解質層54の両側面間の酸素濃度比の変化によって両電極57、58間の電位差Vsが変化した際にも、この電位差Vsがセンサ印加電圧Vrとなるように負帰還制御を行っている。
 したがって、被測ガス室51内の排気空燃比が理論空燃比となっていて、第二固体電解質層54の両側面間に酸素濃度比の変化が生じない場合には、第二固体電解質層54の両側面間の酸素濃度比はセンサ印加電圧Vrに対応した酸素濃度比となっている。この場合、起電力Eはセンサ印加電圧Vrに一致し、両電極57、58間の電位差Vsもセンサ印加電圧Vrとなっており、その結果、電流Irは流れない。
 一方、排気空燃比が理論空燃比とは異なる空燃比となっていて、第二固体電解質層54の両側面間に酸素濃度比の変化が生じる場合には、第二固体電解質層54の両側面間の酸素濃度比がセンサ印加電圧Vrに対応した酸素濃度比とはなっていない。この場合、起電力Eはセンサ印加電圧Vrとは異なる値となる。このため、負帰還制御により、起電力Eがセンサ印加電圧Vrと一致するように第二固体電解質層54の両側面間で酸素イオンの移動をさせるべく、両電極57、58間に電位差Vsが付与される。そして、このときの酸素イオンの移動に伴って電流Irが流れる。この結果、起電力Eはセンサ印加電圧Vrに収束し、起電力Eがセンサ印加電圧Vrに収束すると、やがて電位差Vsもセンサ印加電圧Vrに収束することになる。
 したがって、基準セル電圧印加装置70は、実質的に、両電極57、58間にセンサ印加電圧Vrを印加しているということができる。なお、基準セル電圧印加装置70の電気回路は必ずしも図13に示したようなものである必要はなく、両電極57、58間にセンサ印加電圧Vrを実質的に印加することができれば、如何なる態様の装置であってもよい。
 また、基準セル出力電流検出装置71は、実際に電流を検出するのではなく、電圧E0を検出してこの電圧E0から電流を算出している。ここで、E0は、下記式(1)のように表せる。
  E0=Vr+V0+IrR   …(1)
 ここで、V0はオフセット電圧(E0が負値とならないように印加しておく電圧であり、例えば3V)、Rは図13に示した抵抗の値である。
 式(1)において、センサ印加電圧Vr、オフセット電圧V0及び抵抗値Rは一定であるから、電圧E0は電流Irに応じて変化する。このため、電圧E0を検出すれば、その電圧E0から電流Irを算出することが可能である。
 したがって、基準セル出力電流検出装置71は、実質的に、両電極57、58間に流れる電流Irを検出しているということができる。なお、基準セル出力電流検出装置71の電気回路は必ずしも図13に示したようなものである必要はなく、両電極57、58間を流れる電流Irを検出することができれば、如何なる態様の装置であってもよい。
<排気浄化触媒の説明>
 次に、本実施形態で用いられる排気浄化触媒20、24について説明する。上流側排気浄化触媒20及び下流側排気浄化触媒24は、いずれも同様な構成を有する。以下では、上流側排気浄化触媒20についてのみ説明するが、下流側排気浄化触媒24も同様な構成及び作用を有する。
 上流側排気浄化触媒20は、酸素吸蔵能力を有する三元触媒である。具体的には、上流側排気浄化触媒20は、セラミックから成る担体に、触媒作用を有する貴金属(例えば、白金(Pt))及び酸素吸蔵能力を有する物質(例えば、セリア(CeO2))を担持させたものである。上流側排気浄化触媒20は、所定の活性温度に達すると、未燃ガス(HCやCO等)と窒素酸化物(NOx)とを同時に浄化する触媒作用に加えて、酸素吸蔵能力を発揮する。
 上流側排気浄化触媒20の酸素吸蔵能力によれば、上流側排気浄化触媒20は、上流側排気浄化触媒20に流入する排気ガスの空燃比が理論空燃比よりもリーン(リーン空燃比)であるときには排気ガス中の酸素を吸蔵する。一方、上流側排気浄化触媒20は、流入する排気ガスの空燃比が理論空燃比よりもリッチ(リッチ空燃比)であるときには、上流側排気浄化触媒20に吸蔵されている酸素を放出する。なお、「排気ガスの空燃比」は、その排気ガスが生成されるまでに供給された空気の質量に対する燃料の質量の比率を意味するものであり、通常はその排気ガスが生成されるにあたって燃焼室5内に供給された空気の質量に対する燃料の質量の比率を意味する。
 上流側排気浄化触媒20は、触媒作用及び酸素吸蔵能力を有することにより、酸素吸蔵量に応じてNOx及び未燃ガスの浄化作用を有する。図14に、上流側排気浄化触媒20の酸素吸蔵量と上流側排気浄化触媒20から流出する排気ガス中のNOx及び未燃ガス(HC、CO等)の濃度との関係を示す。図14(A)は、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比であるときの、酸素吸蔵量と上流側排気浄化触媒20から流出する排気ガス中のNOx濃度との関係を示す。一方、図14(B)は、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比であるときの、酸素吸蔵量と上流側排気浄化触媒20から流出する排気ガス中の未燃ガスの濃度との関係を示す。
 図14(A)からわかるように、上流側排気浄化触媒20の酸素吸蔵量が少ないときには、最大酸素吸蔵量まで余裕がある。このため、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比(すなわち、この排気ガスがNOx及び酸素を含む)であっても、排気ガス中の酸素は排気浄化触媒に吸蔵され、これに伴ってNOxも還元浄化される。この結果、上流側排気浄化触媒20から流出する排気ガス中にはほとんどNOxは含まれない。
 しかしながら、上流側排気浄化触媒20の酸素吸蔵量が多くなると、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比である場合、上流側排気浄化触媒20において排気ガス中の酸素を吸蔵しにくくなり、これに伴って排気ガス中のNOxも還元浄化されにくくなる。このため、図14(A)からわかるように、酸素吸蔵量が或る上限吸蔵量Cuplimを超えて増大すると上流側排気浄化触媒20から流出する排気ガス中のNOx濃度が急激に上昇する。
 一方、上流側排気浄化触媒20の酸素吸蔵量が多いときには、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比(すなわち、この排気ガスが未燃ガスを含む)であると、上流側排気浄化触媒20に吸蔵されている酸素が放出される。このため、上流側排気浄化触媒20に流入する排気ガス中の未燃ガスは酸化浄化される。この結果、図14(B)からわかるように、上流側排気浄化触媒20から流出する排気ガス中にはほとんど未燃ガスは含まれない。
 しかしながら、上流側排気浄化触媒20の酸素吸蔵量が少なくなると、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比である場合、上流側排気浄化触媒20から放出される酸素が少なくなり、これに伴って上流側排気浄化触媒20に流入する排気ガス中の未燃ガスも酸化浄化されにくくなる。このため、図14(B)からわかるように、酸素吸蔵量が或る下限吸蔵量Clowlimを超えて減少すると上流側排気浄化触媒20から流出する排気ガス中の未燃ガスの濃度が急激に上昇する。
 このように、本実施形態において用いられる排気浄化触媒20、24によれば、排気浄化触媒20、24に流入する排気ガスの空燃比及び酸素吸蔵量に応じて排気ガス中のNOx及び未燃ガスの浄化特性が変化する。なお、触媒作用及び酸素吸蔵能力を有していれば、排気浄化触媒20、24は三元触媒とは異なる触媒であってもよい。
<空燃比制御の概要>
 次に、本発明の内燃機関の制御装置における空燃比制御の概要を説明する。本実施形態では、上流側空燃比センサ40のセンサ出力電流Ipupに基づいて上流側空燃比センサ40のセンサ出力電流(すなわち、上流側排気浄化触媒20に流入する排気ガスの空燃比)Ipupが目標空燃比に相当する値となるようにフィードバック制御が行われる。
 上流側排気浄化触媒20に流入する排気ガスの目標空燃比は、下流側空燃比センサ41のセンサ出力電流Ipdwnに基づいて設定される。具体的には、下流側空燃比センサ41のセンサ出力電流Ipdwnが零以下となったときに、目標空燃比はリーン設定空燃比とされ、その空燃比に維持される。センサ出力電流Ipdwnが零以下になるときとは、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比よりも僅かにリッチである予め定められたリッチ判定空燃比(例えば、14.55)以下となったことを意味する。また、リーン設定空燃比は、理論空燃比よりも或る程度リーンである予め定められた空燃比であり、例えば、14.65~20、好ましくは14.68~18、より好ましくは14.7~16程度とされる。
 目標空燃比がリーン設定空燃比に変更されると、上流側排気浄化触媒20の酸素吸蔵量OSAscが推定される。酸素吸蔵量OSAscの推定は、上流側空燃比センサ40のセンサ出力電流Ipup及びエアフロメータ39等に基づいて算出される燃焼室5内への吸入空気量の推定値又は燃料噴射弁11からの燃料噴射量等に基づいて行われる。そして、酸素吸蔵量OSAscの推定値が予め定められた判定基準吸蔵量Cref以上になると、それまでリーン設定空燃比だった目標空燃比が、弱リッチ設定空燃比とされ、その空燃比に維持される。弱リッチ設定空燃比は、理論空燃比よりも僅かにリッチである予め定められた空燃比であり、例えば、13.5~14.58、好ましくは14~14.57、より好ましくは14.3~14.55程度とされる。その後、下流側空燃比センサ41のセンサ出力電流Ipdwnが再び零以下となったときに再び目標空燃比がリーン設定空燃比とされ、その後、同様な操作が繰り返される。
 このように本実施形態では、上流側排気浄化触媒20に流入する排気ガスの目標空燃比がリーン設定空燃比と弱リッチ設定空燃比とに交互に設定される。特に、本実施形態では、リーン設定空燃比の理論空燃比からの差は、弱リッチ設定空燃比の理論空燃比からの差よりも大きい。したがって、本実施形態では、目標空燃比は、短期間のリーン設定空燃比と、長期間の弱リッチ設定空燃比とに交互に設定されることになる。
<タイムチャートを用いた制御の説明>
 図15を参照して、上述したような操作について具体的に説明する。図15は、本発明の内燃機関の制御装置における空燃比制御を行った場合における、上流側排気浄化触媒20の酸素吸蔵量OSAsc、下流側空燃比センサ41のセンサ出力電流Ipdwn、空燃比補正量AFC、上流側空燃比センサ40のセンサ出力電流Ipup、及び上流側排気浄化触媒20から流出する排気ガス中のNOx濃度のタイムチャートである。
 なお、上述したように、上流側空燃比センサ40のセンサ出力電流Ipupは、上流側排気浄化触媒20に流入する排気ガスの空燃比が理論空燃比であるときに零になり、当該排気ガスの空燃比がリッチ空燃比であるときに負の値となり、当該排気ガスの空燃比がリーン空燃比であるときに正の値となる。また、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比又はリーン空燃比であるときには、理論空燃比からの差が大きくなるほど、上流側空燃比センサ40のセンサ出力電流Ipupの絶対値が大きくなる。
 一方、下流側空燃比センサ41のセンサ出力電流Ipdwnは、上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ判定空燃比(理論空燃比よりも僅かにリッチ)であるときに零になり、この排気ガスの空燃比がリッチ判定空燃比よりもリッチであるときに負の値となり、この排気ガスの空燃比がリッチ判定空燃比よりもリーンであるときに正の値となる。また、上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ判定空燃比よりもリッチ又はリーンであるときには、リッチ判定空燃比からの差が大きくなるほど、下流側空燃比センサ41のセンサ出力電流Ipdwnの絶対値が大きくなる。
 また、空燃比補正量AFCは、目標空燃比に関する補正量である。空燃比補正量AFCが0のときには目標空燃比は理論空燃比とされ、空燃比補正量AFCが正の値であるときには目標空燃比はリーン空燃比となり、空燃比補正量AFCが負の値であるときには目標空燃比はリッチ空燃比となる。
 図示した例では、時刻t1以前の状態では、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされている。弱リッチ設定補正量AFCrichは、弱リッチ設定空燃比に相当する値であり、0よりも小さな値である。したがって、目標空燃比はリッチ空燃比とされ、これに伴って上流側空燃比センサ40のセンサ出力電流Ipupが負の値となる。上流側排気浄化触媒20に流入する排気ガス中には未燃ガスが含まれることになるため、上流側排気浄化触媒20の酸素吸蔵量OSAscは徐々に減少していく。しかしながら、排気ガス中に含まれている未燃ガスは、上流側排気浄化触媒20で浄化され、上流側排気浄化触媒20から流出する排気ガスの空燃比はほぼ理論空燃比となる。このため、下流側空燃比センサのセンサ出力電流Ipdwnは正の値(理論空燃比に相当)となる。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっているため、上流側排気浄化触媒20からのNOx排出量は抑制される。
 上流側排気浄化触媒20の酸素吸蔵量OSAscが徐々に減少すると、酸素吸蔵量OSAscは時刻t1において下限吸蔵量(図14のClowlim参照)を超えて減少する。酸素吸蔵量OSAscが下限吸蔵量よりも減少すると、上流側排気浄化触媒20に流入した未燃ガスの一部は上流側排気浄化触媒20で浄化されずに流出する。このため、時刻t1以降、上流側排気浄化触媒20の酸素吸蔵量OSAscが減少するのに伴って、下流側空燃比センサ41のセンサ出力電流Ipdwnが徐々に低下する。このときも、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっているため、上流側排気浄化触媒20からのNOx排出量は抑制される。
 その後、時刻t2において、下流側空燃比センサ41のセンサ出力電流Ipdwnがリッチ判定空燃比に相当する零に到達する。本実施形態では、下流側空燃比センサ41のセンサ出力電流Ipdwnが零になると、上流側排気浄化触媒20の酸素吸蔵量OSAscの減少を抑制すべく、空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられる。リーン設定補正量AFCleanは、リーン設定空燃比に相当する値であり、0よりも大きな値である。したがって、目標空燃比はリーン空燃比とされる。
 なお、本実施形態では、下流側空燃比センサ41のセンサ出力電流Ipdwnが零に到達してから、すなわち上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ判定空燃比に到達してから、空燃比補正量AFCの切替を行っている。これは、上流側排気浄化触媒20の酸素吸蔵量が十分であっても、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比から極わずかにずれてしまう場合があるためである。すなわち、仮にセンサ出力電流Ipdwnが理論空燃比に相当する値から僅かにずれた場合にも酸素吸蔵量が下限吸蔵量を超えて減少していると判断してしまうと、実際には十分な酸素吸蔵量があっても酸素吸蔵量が下限吸蔵量を超えて減少したと判断される可能性がある。そこで、本実施形態では、上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ判定空燃比に到達して始めて酸素吸蔵量が下限吸蔵量を超えて減少したと判断することとしている。逆に言うと、リッチ判定空燃比は、上流側排気浄化触媒20の酸素吸蔵量が十分であるときには上流側排気浄化触媒20から流出する排気ガスの空燃比が到達することのないような空燃比とされる。
 時刻t2において、目標空燃比をリーン空燃比に切り替えても、上流側排気浄化触媒20に流入する排気ガスの空燃比はすぐにはリーン空燃比にならず、或る程度の遅れが生じる。その結果、上流側排気浄化触媒20に流入する排気ガスの空燃比は時刻t3においてリッチ空燃比からリーン空燃比に変化する。なお、時刻t2~t3においては、上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ空燃比となっているため、この排気ガス中には未燃ガスが含まれることになる。しかしながら、上流側排気浄化触媒20からのNOx排出量は抑制される。
 時刻t3において、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比に変化すると、上流側排気浄化触媒20の酸素吸蔵量OSAscは増大する。また、これに伴って、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比へと変化し、下流側空燃比センサ41のセンサ出力電流Ipdwnも理論空燃比に相当する正の値に収束する。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比となっているが、上流側排気浄化触媒20の酸素吸蔵能力には十分な余裕があるため、流入する排気ガス中の酸素は上流側排気浄化触媒20に吸蔵され、NOxは還元浄化される。このため、上流側排気浄化触媒20からのNOx排出量は抑制される。
 その後、上流側排気浄化触媒20の酸素吸蔵量OSAscが増大すると、時刻t4において酸素吸蔵量OSAscは判定基準吸蔵量Crefに到達する。本実施形態では、酸素吸蔵量OSAscが判定基準吸蔵量Crefになると、上流側排気浄化触媒20への酸素の吸蔵を中止すべく、空燃比補正量AFCが弱リッチ設定補正量AFCrich(0よりも小さな値)に切り替えられる。したがって、目標空燃比はリッチ空燃比とされる。
 ただし、上述したように、目標空燃比を切り替えてから上流側排気浄化触媒20に流入する排気ガスの空燃比が実際に変化するまでには遅れが生じる。このため、時刻t4にて切替を行っても、上流側排気浄化触媒20に流入する排気ガスの空燃比は或る程度時間が経過した時刻t5においてリーン空燃比からリッチ空燃比に変化する。時刻t4~t5においては、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比であるため、上流側排気浄化触媒20の酸素吸蔵量OSAscは増大していく。
 しかしながら、判定基準吸蔵量Crefは最大酸素吸蔵量Cmaxや上限吸蔵量(図14のCuplim参照)よりも十分に低く設定されているため、時刻t5においても酸素吸蔵量OSAscは最大酸素吸蔵量Cmaxや上限吸蔵量には到達しない。逆に言うと、判定基準吸蔵量Crefは、目標空燃比を切り替えてから上流側排気浄化触媒20に流入する排気ガスの空燃比が実際に変化するまで遅延が生じても、酸素吸蔵量OSAscが最大酸素吸蔵量Cmaxや上限吸蔵量に到達しないように十分少ない量とされる。例えば、判定基準吸蔵量Crefは、最大酸素吸蔵量Cmaxの3/4以下、好ましくは1/2以下、より好ましくは1/5以下とされる。したがって、時刻t4~t5においても、上流側排気浄化触媒20からのNOx排出量は抑制される。
 時刻t5以降においては、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされている。したがって、目標空燃比はリッチ空燃比とされ、これに伴って上流側空燃比センサ40のセンサ出力電流Ipupが負の値となる。上流側排気浄化触媒20に流入する排気ガス中には未燃ガスが含まれることになるため、上流側排気浄化触媒20の酸素吸蔵量OSAscは徐々に減少していき、時刻t6において、時刻t1と同様に、酸素吸蔵量OSAscが下限吸蔵量を超えて減少する。このときも、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっているため、上流側排気浄化触媒20からのNOx排出量は抑制される。
 次いで、時刻t7において、時刻t2と同様に、下流側空燃比センサ41のセンサ出力電流Ipdwnがリッチ判定空燃比に相当する零に到達する。これにより、空燃比補正量AFCがリーン設定空燃比に相当する値AFCleanに切り替えられる。その後、上述した時刻t1~t6のサイクルが繰り返される。
 なお、このような空燃比補正量AFCの制御は、ECU31によって行われる。したがって、ECU31は、下流側空燃比センサ41によって検出された排気ガスの空燃比がリッチ判定空燃比以下となったときに、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Crefとなるまで、上流側排気浄化触媒20に流入する排気ガスの目標空燃比を継続的にリーン設定空燃比にする酸素吸蔵量増加手段と、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Cref以上となったときに、酸素吸蔵量OSAscが最大酸素吸蔵量Cmaxを超えることなく零に向けて減少するように、目標空燃比を継続的に弱リッチ設定空燃比にする酸素吸蔵量減少手段とを具備するといえる。
 以上の説明から分かるように上記実施形態によれば、上流側排気浄化触媒20からのNOx排出量を常に抑制することができる。すなわち、上述した制御を行っている限り、基本的には上流側排気浄化触媒20からのNOx排出量を少ないものとすることができる。
 また、一般に、上流側空燃比センサ40のセンサ出力電流Ipup及び吸入空気量の推定値等に基づいて酸素吸蔵量OSAscを推定した場合には誤差が生じる可能性がある。本実施形態においても、時刻t3~t4に亘って酸素吸蔵量OSAscを推定しているため、酸素吸蔵量OSAscの推定値には多少の誤差が含まれる。しかしながら、このような誤差が含まれていたとしても、判定基準吸蔵量Crefを最大酸素吸蔵量Cmaxや上限吸蔵量よりも十分に低く設定しておけば、実際の酸素吸蔵量OSAscが最大酸素吸蔵量Cmaxや上限吸蔵量にまで到達することはほとんどない。したがって、斯かる観点からも上流側排気浄化触媒20からのNOx排出量を抑制することができる。
 また、排気浄化触媒の酸素吸蔵量が一定に維持されると、その排気浄化触媒の酸素吸蔵能力が低下する。これに対して、本実施形態によれば、酸素吸蔵量OSAscは常に上下に変動しているため、酸素吸蔵能力が低下することが抑制される。
 さらに、本実施形態では、上述したように、下流側空燃比センサ41によってリッチ判定空燃比における絶対値を正確に検出することができる。図2を用いて説明したように、従来の空燃比センサでは、理論空燃比以外の空燃比についてその絶対値を正確に検出することは困難であった。このため、従来の空燃比センサにおいて経年劣化や個体差等によりそのセンサ出力電流に誤差が生じると、排気ガスの実際の空燃比はリッチ判定空燃比とは異なる場合でも、空燃比センサのセンサ出力電流がリッチ判定空燃比に相当する値となってしまう。この結果、空燃比補正量AFCの弱リッチ設定補正量AFCrichからリーン設定補正量AFCleanへの切替タイミングが遅れたり、或いは切替不要なタイミングで斯かる切替が行われたりする。これに対して、本実施形態では、下流側空燃比センサ41によってリッチ判定空燃比における絶対値を正確に検出することができる。このため、空燃比補正量AFCの弱リッチ設定補正量AFCrichからリーン設定補正量AFCleanへの切替タイミングにおける遅れや、切替不要なタイミングでの切替を抑制することができる。
 なお、上記実施形態では、時刻t2~t4において、空燃比補正量AFCはリーン設定補正量AFCleanに維持される。しかしながら、斯かる期間において、空燃比補正量AFCは必ずしも一定に維持されている必要はなく、徐々に減少させる等、変動するように設定されてもよい。同様に、時刻t4~t7において、空燃比補正量AFCは弱リッチ設定補正量AFrichに維持される。しかしながら、斯かる期間において、空燃比補正量AFCは必ずしも一定に維持されている必要はなく、徐々に減少させる等、変動するように設定されてもよい。
 ただし、この場合であっても、時刻t2~t4における空燃比補正量AFCは、当該期間における目標空燃比の平均値と理論空燃比との差が、時刻t4~t7における目標空燃比の平均値と理論空燃比との差よりも大きくなるように設定される。
 また、上記実施形態では、上流側空燃比センサ40のセンサ出力電流Ipup及び燃焼室5内への吸入空気量の推定値等に基づいて、上流側排気浄化触媒20の酸素吸蔵量OSAscが推定されている。しかしながら、酸素吸蔵量OSAscはこれらパラメータに加えて他のパラメータに基づいて算出されてもよいし、これらパラメータとは異なるパラメータに基づいて推定されてもよい。また、上記実施形態では、酸素吸蔵量OSAscの推定値が判定基準吸蔵量Cref以上になると、目標空燃比がリーン設定空燃比から弱リッチ設定空燃比へと切り替えられる。しかしながら、目標空燃比をリーン設定空燃比から弱リッチ設定空燃比へと切り替えるタイミングは、例えば目標空燃比を弱リッチ設定空燃比からリーン設定空燃比へ切り替えてからの機関運転時間等、他のパラメータを基準としてもよい。ただし、この場合であっても、上流側排気浄化触媒20の酸素吸蔵量OSAscが最大酸素吸蔵量よりも少ないと推定される間に、目標空燃比をリーン設定空燃比から弱リッチ設定空燃比へと切り替えることが必要となる。
<下流側触媒も用いた制御の説明>
 また、本実施形態では、上流側排気浄化触媒20に加えて下流側排気浄化触媒24も設けられている。下流側排気浄化触媒24の酸素吸蔵量OSAufcは或る程度の期間毎に行われる燃料カット制御によって最大吸蔵量Cmax近傍の値とされる。このため、たとえ上流側排気浄化触媒20から未燃ガスを含んだ排気ガスが流出したとしても、これら未燃ガスは下流側排気浄化触媒24において酸化浄化される。
 なお、燃料カット制御とは、内燃機関を搭載する車両の減速時等において、クランクシャフトやピストン3が運動している状態であっても、燃料噴射弁11から燃料の噴射を行わない制御である。この制御を行うと、両排気浄化触媒20、24には多量の空気が流入することになる。
 以下、図16を参照して、下流側排気浄化触媒24における酸素吸蔵量OSAufcの推移について説明する。図16は、図15と同様な図であり、図15のNOx濃度の推移に換えて、下流側排気浄化触媒24の酸素吸蔵量OSAufc及び下流側排気浄化触媒24から流出する排気ガス中の未燃ガス(HCやCO等)の濃度の推移を示している。また、図16に示した例では、図15に示した例と同一の制御を行っている。
 図16に示した例では、時刻t1以前に燃料カット制御が行われている。このため、時刻t1以前において、下流側排気浄化触媒24の酸素吸蔵量OSAufcは最大酸素吸蔵量Cmax近傍の値となっている。また、時刻t1以前においては、上流側排気浄化触媒20から流出する排気ガスの空燃比はほぼ理論空燃比に保たれる。このため、下流側排気浄化触媒24の酸素吸蔵量OSAufcは一定に維持される。
 その後、時刻t1~t4において、上流側排気浄化触媒20から流出する排気ガスの空燃比はリッチ空燃比となっている。このため、下流側排気浄化触媒24には、未燃ガスを含む排気ガスが流入する。
 上述したように、下流側排気浄化触媒24には多量の酸素が吸蔵されているため、下流側排気浄化触媒24に流入する排気ガス中に未燃ガスが含まれていると、吸蔵されている酸素により未燃ガスが酸化浄化される。また、これに伴って、下流側排気浄化触媒24の酸素吸蔵量OSAufcは減少する。ただし、時刻t1~t4において上流側排気浄化触媒20から流出する未燃ガスはそれほど多くないため、この間の酸素吸蔵量OSAufcの減少量はわずかである。このため、時刻t1~t4において上流側排気浄化触媒20から流出する未燃ガスは全て下流側排気浄化触媒24において還元浄化される。
 時刻t6以降についても、或る程度の時間間隔毎に時刻t1~t4における場合と同様に、上流側排気浄化触媒20から未燃ガスが流出する。このようにして流出した未燃ガスは基本的に下流側排気浄化触媒24に吸蔵されている酸素により還元浄化される。したがって、下流側排気浄化触媒24からは未燃ガスが流出することはほとんどない。上述したように、上流側排気浄化触媒20からNOxが流出することが抑制されることを考えると、本実施形態によれば、下流側排気浄化触媒24からの未燃ガス及びNOxの排出量が常に少ないものとされる。
<具体的な制御の説明>
 次に、図17及び図18を参照して、上記実施形態における制御装置について具体的に説明する。本実施形態における制御装置は、機能ブロック図である図17に示したように、A1~A9の各機能ブロックを含んで構成されている。以下、図17を参照しながら各機能ブロックについて説明する。
<燃料噴射量の算出>
 まず、燃料噴射量の算出について説明する。燃料噴射量の算出に当たっては、筒内吸入空気量算出手段A1、基本燃料噴射量算出手段A2、及び燃料噴射量算出手段A3が用いられる。
 筒内吸入空気量算出手段A1は、エアフロメータ39によって計測される吸入空気流量Gaと、クランク角センサ44の出力に基づいて算出される機関回転数NEと、ECU31のROM34に記憶されたマップ又は計算式とに基づいて、各気筒への吸入空気量Mcを算出する。
 基本燃料噴射量算出手段A2は、筒内吸入空気量算出手段A1によって算出された筒内吸入空気量Mcを、後述する目標空燃比設定手段A6によって算出された目標空燃比AFTで除算することにより、基本燃料噴射量Qbaseを算出する(Qbase=Mc/AFT)。
 燃料噴射量算出手段A3は、基本燃料噴射量算出手段A2によって算出された基本燃料噴射量Qbaseに、後述するF/B補正量DQiを加えることで燃料噴射量Qiを算出する(Qi=Qbase+DQi)。このようにして算出された燃料噴射量Qiの燃料が燃料噴射弁11から噴射されるように、燃料噴射弁11に対して噴射指示が行われる。
<目標空燃比の算出>
 次に、目標空燃比の算出について説明する。目標空燃比の算出に当たっては、酸素吸蔵量算出手段A4、目標空燃比補正量算出手段A5、及び目標空燃比設定手段A6が用いられる。
 酸素吸蔵量算出手段A4は、燃料噴射量算出手段A3によって算出された燃料噴射量Qi及び上流側空燃比センサ40のセンサ出力電流Ipupに基づいて上流側排気浄化触媒20の酸素吸蔵量の推定値OSAestを算出する。例えば、酸素吸蔵量算出手段A4は、上流側空燃比センサ40のセンサ出力電流Ipupに対応する空燃比と理論空燃比との差分に燃料噴射量Qiを乗算すると共に、求めた値を積算することによって酸素吸蔵量の推定値OSAestを算出する。なお、酸素吸蔵量算出手段A4による上流側排気浄化触媒20の酸素吸蔵量の推定は、常時行われていなくてもよい。例えば、目標空燃比がリッチ空燃比からリーン空燃比へ実際に切り替えられたとき(図15における時刻t3)から、酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefに到達する(図15における時刻t4)までの間のみ酸素吸蔵量を推定してもよい。
 目標空燃比補正量算出手段A5では、酸素吸蔵量算出手段A4によって算出された酸素吸蔵量の推定値OSAestと、下流側空燃比センサ41のセンサ出力電流Ipdwnとに基づいて、目標空燃比の空燃比補正量AFCが算出される。具体的には、空燃比補正量AFCは、下流側空燃比センサ41のセンサ出力電流Ipdwnが零(リッチ判定空燃比に相当する値)以下となったときに、リーン設定補正量AFCleanとされる。その後、空燃比補正量AFCは、酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefに到達するまで、リーン設定補正量AFCleanに維持される。酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefに到達すると、空燃比補正量AFCは弱リッチ設定補正量AFCrichとされる。その後、空燃比補正量AFCは、下流側空燃比センサ41のセンサ出力電流Ipdwnが零以下となるまで、弱リッチ設定補正量AFCrichに維持される。
 目標空燃比設定手段A6は、基準となる空燃比、本実施形態では理論空燃比AFRに、目標空燃比補正量算出手段A5で算出された空燃比補正量AFCを加算することで、目標空燃比AFTを算出する。したがって、目標空燃比AFTは、理論空燃比AFRよりも僅かにリッチである弱リッチ設定空燃比(空燃比補正量AFCが弱リッチ設定補正量AFCrichの場合)か、又は理論空燃比AFRよりある程度りリーンであるリーン設定空燃比(空燃比補正量AFCがリーン設定補正量AFCleanの場合)のいずれかとされる。このようにして算出された目標空燃比AFTは、基本燃料噴射量算出手段A2及び後述する空燃比差算出手段A8に入力される。
 図18は、空燃比補正量AFCの算出制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。
 図18に示したように、まず、ステップS11において空燃比補正量AFCの算出条件が成立しているか否かが判定される。空燃比補正量の算出条件が成立している場合とは、例えば燃料カット制御中ではないこと等が挙げられる。ステップS11において目標空燃比の算出条件が成立していると判定された場合には、ステップS12へと進む。S12では、上流側空燃比センサ40のセンサ出力電流Ipup、下流側空燃比センサ41のセンサ出力電流Ipdwn、燃料噴射量Qiが取得せしめられる。次いでステップS13では、ステップS12で取得された上流側空燃比センサ40のセンサ出力電流Ipup及び燃料噴射量Qiに基づいて酸素吸蔵量の推定値OSAestが算出される。
 次いでステップS14において、リーン設定フラグFrが0に設定されているか否かが判定される。リーン設定フラグFrは、空燃比補正量AFCがリーン設定補正量AFCleanに設定されると1とされ、それ以外の場合には0とされる。ステップS14においてリーン設定フラグFrが0に設定されている場合には、ステップS15へと進む。ステップS15では、下流側空燃比センサ41のセンサ出力電流Ipdwnが零以下であるか否かが判定される。下流側空燃比センサ41のセンサ出力電流Ipdwnが零よりも大きいと判定された場合には制御ルーチンが終了せしめられる。
 一方、上流側排気浄化触媒20の酸素吸蔵量OSAscが減少して、上流側排気浄化触媒20から流出する排気ガスの空燃比が低下すると、ステップS15にて下流側空燃比センサ41のセンサ出力電流Ipdwnが零以下であると判定される。この場合には、ステップS16へと進み、空燃比補正量AFCがリーン設定補正量AFCleanとされる。次いで、ステップS17では、リーン設定フラグFrが1に設定され、制御ルーチンが終了せしめられる。
 次の制御ルーチンにおいては、ステップS14において、リーン設定フラグFrが0に設定されていないと判定されて、ステップS18へと進む。ステップS18では、ステップS13で算出された酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefよりも少ないか否かが判定される。酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefよりも少ないと判定された場合にはステップS19へと進み、空燃比補正量AFCが引き続きリーン設定補正量AFCleanとされる。一方、上流側排気浄化触媒20の酸素吸蔵量が増大すると、やがてステップS18において酸素吸蔵量の推定値OSAestが判定基準吸蔵量Cref以上であると判定されてステップS20へと進む。ステップS20では、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされ、次いで、ステップS21では、リーン設定フラグFrが0にリセットされ、制御ルーチンが終了せしめられる。
<F/B補正量の算出>
 再び図17に戻って、上流側空燃比センサ40のセンサ出力電流Ipupに基づいたF/B補正量の算出について説明する。F/B補正量の算出に当たっては、数値変換手段A7、空燃比差算出手段A8、F/B補正量算出手段A9が用いられる。
 数値変換手段A7は、上流側空燃比センサ40のセンサ出力電流Ipupと、空燃比センサ40のセンサ出力電流Ipupと空燃比との関係を規定したマップ又は計算式とに基づいて、センサ出力電流Ipupに相当する上流側排気空燃比AFupを算出する。したがって、上流側排気空燃比AFupは、上流側排気浄化触媒20に流入する排気ガスの空燃比に相当する。
 空燃比差算出手段A8は、数値変換手段A7によって求められた上流側排気空燃比AFupから目標空燃比設定手段A6によって算出された目標空燃比AFTを減算することによって空燃比差DAFを算出する(DAF=AFup-AFT)。この空燃比差DAFは、目標空燃比AFTに対する燃料供給量の過不足を表す値である。
 F/B補正量算出手段A9は、空燃比差算出手段A8によって算出された空燃比差DAFを、比例・積分・微分処理(PID処理)することで、下記式(1)に基づいて燃料供給量の過不足を補償するためのF/B補正量DFiを算出する。このようにして算出されたF/B補正量DFiは、燃料噴射量算出手段A3に入力される。
 DFi=Kp・DAF+Ki・SDAF+Kd・DDAF   …(1)
 なお、上記式(1)において、Kpは予め設定された比例ゲイン(比例定数)、Kiは予め設定された積分ゲイン(積分定数)、Kdは予め設定された微分ゲイン(微分定数)である。また、DDAFは、空燃比差DAFの時間微分値であり、今回更新された空燃比差DAFと前回更新されていた空燃比差DAFとの差を更新間隔に対応する時間で除算することで算出される。また、SDAFは、空燃比差DAFの時間積分値であり、この時間積分値DDAFは前回更新された時間積分値DDAFに今回更新された空燃比差DAFを加算することで算出される(SDAF=DDAF+DAF)。
 なお、上記実施形態では、上流側排気浄化触媒20に流入する排気ガスの空燃比を上流側空燃比センサ40によって検出している。しかしながら、上流側排気浄化触媒20に流入する排気ガスの空燃比の検出精度は必ずしも高い必要はないことから、例えば、燃料噴射弁11からの燃料噴射量及びエアフロメータ39の出力に基づいてこの排気ガスの空燃比を推定するようにしてもよい。
 <第二実施形態>
 次に、図19を参照して、本発明の第二実施形態に係る内燃機関の制御装置について説明する。第二実施形態に係る内燃機関の制御装置の構成及び制御は、基本的に、第一実施形態に係る内燃機関の制御装置の構成及び制御と同様である。しかしながら、本実施形態の制御装置では、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされている間においても、或る程度の時間間隔毎に、空燃比補正量AFCが短い時間に亘って一時的にリーン空燃比に相当する値(例えば、リーン設定補正量AFClean)とされる。すなわち、本実施形態の制御装置では、目標空燃比が弱リッチ設定空燃比とされている間においても、或る程度の時間間隔毎に、目標空燃比が短い時間に亘って一時的にリーン空燃比とされる。
 図19は、図15と同様な図であり、図19における時刻t1~t7は図15における時刻t1~t7と同様な制御タイミングを示している。したがって、図19に示した制御においても、時刻t1~t7の各タイミングにおいては、図15に示した制御と同様な制御が行われている。加えて、図19に示した制御では、時刻t4~t7の間、すなわち、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされている間に、複数回に亘って一時的に空燃比補正量AFCがリーン設定補正量AFCleanとされている。
 図19に示した例では、時刻t8から短い時間に亘って空燃比補正量AFCがリーン設定補正量AFCleanとされる。上述したように空燃比の変化には遅れが生じることから、上流側排気浄化触媒20に流入する排気ガスの空燃比は時刻t9から短い時間に亘ってリーン空燃比とされる。このように、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比になると、その間は、上流側排気浄化触媒20の酸素吸蔵量OSAscが一時的に増大する。
 図19に示した例では、同様に、時刻t10においても短い時間に亘って空燃比補正量AFCがリーン設定補正量AFCleanとされる。これに伴って、上流側排気浄化触媒20に流入する排気ガスの空燃比は時刻t11から短い時間に亘ってリーン空燃比とされ、この間は、上流側排気浄化触媒20の酸素吸蔵量OSAscが一時的に増大する。
 このように、上流側排気浄化触媒20に流入する排気ガスの空燃比を一時的に増大させることによって、上流側排気浄化触媒20の酸素吸蔵量OSAscを一時的に増大させるか或いは酸素吸蔵量OSAscの減少を一時的に低減することができる。このため、本実施形態によれば、時刻t4において空燃比補正量AFCを弱リッチ設定補正量AFCrichに切り替えてから、時刻t7において下流側空燃比センサ41のセンサ出力電流Ipdwnが零(リッチ判定空燃比に相当する値)に到達するまでの時間を長くすることができる。すなわち、上流側排気浄化触媒20の酸素吸蔵量OSAscが零近傍となって上流側排気浄化触媒20から未燃ガスが流出するタイミングを遅らせることができる。これにより、上流側排気浄化触媒20からの未燃ガスの流出量を減少させることができる。
 なお、上記実施形態では、空燃比補正量AFCが基本的に弱リッチ設定補正量AFCrichとされている間(時刻t4~t7)において、一時的に空燃比補正量AFCをリーン設定補正量AFCleanとしている。このように一時的に空燃比補正量AFCを変更する場合には、必ずしも空燃比補正量AFCをリーン設定補正量AFCleanに変更する必要はなく、弱リッチ設定補正量AFCrichよりもリーンであれば如何なる空燃比に変更してもよい。
 また、空燃比補正量AFCが基本的にリーン設定補正量AFCleanとされている間(時刻t2~t4)においても、一時的に空燃比補正量AFCを弱リッチ設定補正量AFCrichとしてもよい。この場合も同様に、一時的に空燃比補正量AFCを変更する場合には、リーン設定補正量AFCleanよりもリッチであれば如何なる空燃比に空燃比補正量AFCを変更してもよい。
 ただし、本実施形態においても、時刻t2~t4における空燃比補正量AFCは、当該期間における目標空燃比の平均値と理論空燃比との差が、時刻t4~t7における目標空燃比の平均値と理論空燃比との差よりも大きくなるように設定される。
 いずれにせよ、第一実施形態及び第二実施形態をまとめて表現すると、ECU31は、下流側空燃比センサ41によって検出された排気ガスの空燃比がリッチ判定空燃比以下となったときに、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Crefとなるまで、上流側排気浄化触媒20に流入する排気ガスの目標空燃比を継続的又は断続的にリーン設定空燃比にする酸素吸蔵量増加手段と、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Cref以上となったときに、酸素吸蔵量OSAscが最大酸素吸蔵量Cmaxに達することなく零に向けて減少するように、目標空燃比を継続的又は断続的に弱リッチ設定空燃比にする酸素吸蔵量減少手段とを具備するといえる。
 <第三実施形態>
 次に、図20を参照して、本発明の第三実施形態に係る内燃機関の制御装置について説明する。第三実施形態に係る内燃機関の制御装置の構成は、基本的に、上記実施形態に係る内燃機関の制御装置の構成及び制御と同様である。ただし、本実施形態の制御装置では、空燃比センサの基準セルのガス室側電極周りに拡散律速層が設けられる。
 図20は、第三実施形態の上流空燃比センサ80及び下流側センサ81の構成を概略的に示す、図3と同様な断面図である。図20から分かるように、空燃比センサ80、81は、被測ガス室51内に設けられた基準セル用拡散律速層82を有する。基準セル用拡散律速層82は、基準セル61のガス室側電極57を囲うように配置される。したがって、ガス室側電極57は基準セル用拡散律速層82を介して被測ガス室51に曝される。
 このように、ガス室側電極57の周りに基準セル用拡散律速層82を設けることにより、ガス室側電極57周りに流入する排気ガスを拡散律速させることができる。ここで、ガス室側電極57周りに流入する排気ガスを十分に拡散律速させていないと、排気空燃比、センサ印加電圧Vr及び基準セル出力電流Irの関係が図7及び図8に示したような傾向になりにくく、その結果、理論空燃比とは異なる空燃比の絶対値を適切に検出することができない場合がある。本実施形態では、基準セル用拡散律速層82ガス室側電極57周りに流入する排気ガスを十分に拡散律速させることで、より確実に、理論空燃比とは異なる空燃比の絶対値を検出することができる。
 なお、このように、ガス室側電極57の周りに基準セル用拡散律速層82を設けた場合には、被測ガス室51を画成する拡散律速層63を必ずしも設けなくてもよい。したがって、拡散律速層63の替わりに、被測ガス室51内への排気ガスの流入を制限する層や小孔等を設けてもよい。いずれにせよ、拡散律速層は、排気ガスがその拡散律速層を介してガス室側電極57に到達するように配置されれば如何なる位置に配置されてもよい。
 なお、本明細書において、排気浄化触媒の酸素吸蔵量は、最大酸素吸蔵量と零との間で変化するものとして説明している。このことは、排気浄化触媒によって更に吸蔵可能な酸素の量が、零(酸素吸蔵量が最大酸素吸蔵量である場合)と最大値(酸素吸蔵量が零である場合)の間で変化することを意味するものである。
 5  燃焼室
 6  吸気弁
 8  排気弁
 10  点火プラグ
 11  燃料噴射弁
 13  吸気枝管
 15  吸気管
 18  スロットル弁
 19  排気マニホルド
 20  上流側排気浄化触媒
 21  上流側ケーシング
 22  排気管
 23  下流側ケーシング
 24  下流側排気浄化触媒
 31  ECU
 39  エアフロメータ
 40  上流側空燃比センサ
 41  下流側空燃比センサ

Claims (17)

  1.  内燃機関の排気通路に設けられた空燃比センサと、該空燃比センサのセンサ出力電流に基づいて内燃機関を制御する機関制御装置とを具備する、内燃機関の制御装置において、
     前記空燃比センサは、空燃比の検出対象である排気ガスが流入せしめられる被測ガス室と、該被測ガス室内の排気ガスの空燃比に応じて基準セル出力電流が変化する基準セルと、ポンプ電流に応じて前記被測ガス室内の排気ガスに対して酸素の汲み入れ及び汲み出しを行うポンプセルとを具備し、
     前記基準セルは、前記被測ガス室内の排気ガスの空燃比に応じて基準セル出力電流が零となる印加電圧が変化すると共に、前記被測ガス室内の排気ガスの空燃比が理論空燃比であるときに当該基準セルにおける印加電圧を増大させるとこれに伴って基準セル出力電流が増大するように構成されており、
     前記空燃比センサによって排気空燃比を検出するときには、前記基準セルにおける印加電圧は一定電圧に固定され、該一定電圧は、前記被測ガス室内の排気ガスの空燃比が理論空燃比であるときに基準セル出力電流が零となる電圧とは異なる電圧であって且つ前記被測ガス室内の排気ガスの空燃比が理論空燃比とは異なる空燃比であるときに基準セル出力電流が零となる電圧であり、
     前記空燃比センサは、前記基準セル出力電流が零になるようにポンプ電流を制御するポンプ電流制御装置と、該ポンプ電流を前記センサ出力電流として検出するポンプ電流検出装置とを更に具備する、内燃機関の制御装置。
  2.  前記基準セルは、前記被測ガス室内の排気ガスに曝される第一電極と、基準雰囲気に曝される第二電極と、前記第一電極と前記第二電極との間に配置された固体電解質層とを具備し、
     前記空燃比センサは、拡散律速層を更に具備し、該拡散律速層は排気ガスが当該拡散律速層を介して前記第一電極に到達するように配置される、請求項1に記載の内燃機関の制御装置。
  3.  前記拡散律速層は、前記被測ガス室内の排気ガスが当該拡散律速層を介して前記第一電極に到達するように配置される、請求項2に記載の内燃機関の制御装置。
  4.  前記基準セルは、各排気空燃比毎に前記基準セル出力電流が限界電流となる電圧領域である限界電流領域を有するように構成されており、
     前記一定電圧は、排気空燃比が理論空燃比であるときの前記限界電流領域内の電圧である、請求項1~3のいずれか1項に記載の内燃機関の制御装置。
  5.  前記基準セルは、各排気空燃比毎に、前記印加電圧と基準セル出力電流との関係について、印加電圧の増大に比例して基準セル出力電流が増大する電圧領域である比例領域と、水の分解が発生したことによって印加電圧の変化に応じて基準セル出力電流が変化する電圧領域である水分解領域と、これら比例領域と水分解領域との間の電圧領域である中間領域とを有するように構成されており、
     前記一定電圧は、排気空燃比が理論空燃比であるときの前記中間領域内の電圧である、請求項1~3のいずれか1項に記載の内燃機関の制御装置。
  6.  前記一定電圧は、排気空燃比が理論空燃比よりも1%高いときに基準セル出力電流が零となる電圧と、前記被測ガス室内の排気ガスの空燃比が理論空燃比よりも1%低いときに基準セル出力電流が零となる電圧との間の電圧とされる、請求項1~3のいずれか1項に記載の内燃機関の制御装置。
  7.  前記基準セルは、各排気空燃比毎に、前記印加電圧と基準セル出力電流との関係について、印加電圧が増大するにつれて第一の屈曲点まで基準セル出力電流が増大し、第一の屈曲点から印加電圧が増大するにつれて第二の屈曲点まで基準セル出力電流が増大し、第二の屈曲点から印加電圧が増大するにつれて基準セル出力電流が増大すると共に、第一の屈曲点と第二の屈曲点の間における電圧領域においては他の電圧領域よりも印加電圧の増加量に対する基準セル出力電流の増加量が小さくなるように構成されており、
     前記一定電圧は、排気空燃比が理論空燃比であるときの前記第一の屈曲点及び第二の屈曲点との間の電圧とされる、請求項1~3のいずれか1項に記載の内燃機関の制御装置。
  8.  前記基準セルは、各排気空燃比毎に、印加電圧の増大に伴って基準セル出力電流が増大する電圧領域である電流増大領域と、前記拡散律速層を設けたことにより印加電圧の増加量に対する基準セル出力電流の増加量が前記電流増大領域よりも小さくなる電圧領域である電流微増領域とを有し、
     前記一定電圧は、排気空燃比が理論空燃比であるときの前記電流微増領域内の電圧である、請求項2又は3に記載の内燃機関の制御装置。
  9.  前記拡散律速層はアルミナで形成され、
     前記一定電圧が、0.1V以上0.9V以下とされる、請求項2又は3に記載の内燃機関の制御装置。
  10.  前記機関制御装置は、前記空燃比センサのセンサ出力電流が零になったときに排気空燃比が理論空燃比とは異なる予め定められた空燃比であると判断する、請求項1~9のいずれか1項に記載の内燃機関の制御装置。
  11.  前記内燃機関は、前記空燃比センサよりも排気流れ方向上流側において前記排気通路に設けられた酸素を吸蔵可能な排気浄化触媒を具備し、
     前記一定電圧は、排気空燃比が理論空燃比よりもリッチである所定のリッチ判定空燃比であるときに前記基準セル出力電流が零になるような電圧とされる、請求項1~10のいずれか1項に記載の内燃機関の制御装置。
  12.  前記機関制御装置は、前記排気浄化触媒に流入する排気ガスの空燃比を制御可能であり、前記空燃比センサのセンサ出力電流が零以下になったときには前記排気浄化触媒に流入する排気ガスの目標空燃比が理論空燃比よりもリーンとされる、請求項11に記載の内燃機関の制御装置。
  13.  前記機関制御装置は、前記空燃比センサのセンサ出力電流が零以下となったときに、前記排気浄化触媒の酸素吸蔵量が最大酸素吸蔵量よりも少ない所定の吸蔵量となるまで、前記排気浄化触媒に流入する排気ガスの目標空燃比を継続的又は断続的に理論空燃比よりもリーンにする酸素吸蔵量増加手段と、前記排気浄化触媒の酸素吸蔵量が前記所定の吸蔵量以上になったときに、該酸素吸蔵量が最大酸素吸蔵量に達することなく零に向けて減少するように、前記目標空燃比を継続的又は断続的に理論空燃比よりもリッチにする酸素吸蔵量減少手段とを具備する、請求項12に記載の内燃機関の制御装置。
  14.  前記酸素吸蔵量増加手段によって継続的又は断続的に理論空燃比よりもリーンにされている期間における前記目標空燃比の平均値と理論空燃比との差は、前記酸素吸蔵量減少手段によって継続的又は断続的に理論空燃比よりもリッチにされている期間における前記目標空燃比と理論空燃比との差よりも大きい、請求項13に記載の内燃機関の制御装置。
  15.  当該内燃機関の制御装置は、前記排気浄化触媒よりも排気流れ方向上流側において機関排気通路に設けられた上流側空燃比センサを具備し、
     前記機関制御装置は上流側空燃比センサの出力に基づいて前記排気浄化触媒に流入する排気ガスの空燃比が目標空燃比となるように排気空燃比を制御する、請求項11~14のいずれか1項に記載の内燃機関の制御装置。
  16.  前記上流側空燃比センサは、排気空燃比に応じてセンサ出力電流が零となる印加電圧が変化すると共に、排気空燃比が理論空燃比であるときに当該上流側空燃比センサにおける印加電圧を増大させるとこれに伴ってセンサ出力電流が増大するように構成されており、
     前記上流側空燃比センサにおける印加電圧は、前記空燃比センサの印加電圧よりも低い、請求項15に記載の内燃機関の制御装置。
  17.  前記上流側空燃比センサによって排気空燃比を検出するときには、前記上流側空燃比センサにおける印加電圧は一定電圧に固定され、該一定電圧は、前記被測ガス室内の排気ガスの空燃比が理論空燃比であるときにセンサ出力電流が零となる電圧とされる、請求項16に記載の内燃機関の制御装置。
PCT/JP2013/051912 2013-01-29 2013-01-29 内燃機関の制御装置 WO2014118893A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201380071606.8A CN104956058B (zh) 2013-01-29 2013-01-29 内燃机的控制装置
EP13873938.8A EP2952721B1 (en) 2013-01-29 2013-01-29 Control device for internal combustion engine
JP2014559392A JP5949959B2 (ja) 2013-01-29 2013-01-29 内燃機関の制御装置
RU2015131027A RU2617423C2 (ru) 2013-01-29 2013-01-29 Система управления двигателем внутреннего сгорания
AU2013376227A AU2013376227B2 (en) 2013-01-29 2013-01-29 Control device for internal combustion engine
US14/763,022 US10001076B2 (en) 2013-01-29 2013-01-29 Control system of internal combustion engine
BR112015017838-3A BR112015017838B1 (pt) 2013-01-29 2013-01-29 Sistema de controle de motor de combustão interna
PCT/JP2013/051912 WO2014118893A1 (ja) 2013-01-29 2013-01-29 内燃機関の制御装置
KR1020157011658A KR20150063555A (ko) 2013-01-29 2013-01-29 내연 기관의 제어 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051912 WO2014118893A1 (ja) 2013-01-29 2013-01-29 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2014118893A1 true WO2014118893A1 (ja) 2014-08-07

Family

ID=51261642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051912 WO2014118893A1 (ja) 2013-01-29 2013-01-29 内燃機関の制御装置

Country Status (9)

Country Link
US (1) US10001076B2 (ja)
EP (1) EP2952721B1 (ja)
JP (1) JP5949959B2 (ja)
KR (1) KR20150063555A (ja)
CN (1) CN104956058B (ja)
AU (1) AU2013376227B2 (ja)
BR (1) BR112015017838B1 (ja)
RU (1) RU2617423C2 (ja)
WO (1) WO2014118893A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015017838B1 (pt) 2013-01-29 2021-10-19 Toyota Jidosha Kabushiki Kaisha Sistema de controle de motor de combustão interna
CA2899221C (en) * 2013-01-29 2018-05-15 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
WO2014118894A1 (ja) * 2013-01-29 2014-08-07 トヨタ自動車株式会社 内燃機関の制御装置
JP6627396B2 (ja) * 2015-10-09 2020-01-08 トヨタ自動車株式会社 硫黄成分検出方法
JP6536341B2 (ja) * 2015-10-09 2019-07-03 トヨタ自動車株式会社 硫黄酸化物検出装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024445A (ja) * 1983-07-20 1985-02-07 Toyota Motor Corp 空燃比検出器
JPH08232723A (ja) 1994-12-30 1996-09-10 Honda Motor Co Ltd 内燃機関の燃料噴射制御装置
JPH1082760A (ja) * 1996-07-19 1998-03-31 Denso Corp 空燃比制御方法
JP2000356618A (ja) 1999-06-14 2000-12-26 Denso Corp ガス濃度センサの特性計測方法
JP2001234787A (ja) 2000-02-23 2001-08-31 Nissan Motor Co Ltd エンジンの排気浄化装置
JP2002357589A (ja) 2001-03-30 2002-12-13 Ngk Spark Plug Co Ltd ガスセンサ素子及びガスセンサ
JP2003329637A (ja) 2002-05-09 2003-11-19 Denso Corp ガスセンサの電流検出装置
JP2004258043A (ja) 1996-11-06 2004-09-16 Ngk Spark Plug Co Ltd 全領域空燃比センサの劣化状態検出方法及び装置
JP2005351096A (ja) 2004-06-08 2005-12-22 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2009162139A (ja) 2008-01-08 2009-07-23 Toyota Motor Corp 内燃機関の空燃比制御装置

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3768259A (en) 1971-07-06 1973-10-30 Universal Oil Prod Co Control for an engine system
JPS562548A (en) * 1979-06-22 1981-01-12 Nissan Motor Co Ltd Controller for air fuel ratio of internal combustion engine
JPS58153155A (ja) 1982-03-09 1983-09-12 Ngk Spark Plug Co Ltd 酸素センサ
DE3378698D1 (en) 1982-04-12 1989-01-19 Hitachi Ltd Oxygen concentration control system
JPS59208451A (ja) * 1983-05-11 1984-11-26 Mitsubishi Electric Corp 機関の空燃比センサ
US4566419A (en) * 1983-08-20 1986-01-28 Nippondenso Co., Ltd. Apparatus and method for controlling air-to-fuel ratio for an internal combustion engine
US4658790A (en) * 1984-05-01 1987-04-21 Nissan Motor Co., Ltd. Air/fuel ratio detecting device and control system using same
JPS61138156A (ja) 1984-12-11 1986-06-25 Ngk Spark Plug Co Ltd 空燃比検出装置
JP2929038B2 (ja) 1990-11-30 1999-08-03 日本特殊陶業株式会社 空燃比センサーの駆動回路
US5473889A (en) * 1993-09-24 1995-12-12 Honda Giken Kogyo K.K. (Honda Motor Co., Ltd. In English) Air-fuel ratio control system for internal combustion engines
DE4447033C2 (de) 1994-12-28 1998-04-30 Bosch Gmbh Robert Meßfühler zur Bestimmung des Sauerstoffgehaltes in Gasgemischen
US5758490A (en) 1994-12-30 1998-06-02 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
JP2812247B2 (ja) 1995-06-01 1998-10-22 トヨタ自動車株式会社 空燃比センサの活性状態判定装置
KR100331440B1 (ko) * 1995-10-31 2002-11-27 삼성전기주식회사 평판형공연비감지센서및그구동회로
JPH09196889A (ja) 1996-01-16 1997-07-31 Toyota Motor Corp 空燃比検出装置
US6055972A (en) * 1996-07-04 2000-05-02 Denso Corporation Air fuel ratio control apparatus having air-fuel ratio control point switching function
EP0841478B1 (en) 1996-11-06 2003-04-09 NGK Spark Plug Co. Ltd. Method of and apparatus for detecting a deteriorated condition of a wide range air-fuel ratio sensor
JP3757507B2 (ja) 1996-12-24 2006-03-22 株式会社デンソー 空燃比検出装置
JP3487159B2 (ja) 1997-05-21 2004-01-13 株式会社デンソー ガス濃度検出装置及びその製造方法
JP2000046791A (ja) 1998-05-29 2000-02-18 Denso Corp ガス濃度検出装置
DE19838466A1 (de) 1998-08-25 2000-03-02 Bosch Gmbh Robert Verfahren zum Ansteuern eines Meßfühlers zum Bestimmen einer Sauerstoffkonzentration in einem Gasgemisch
JP2001271679A (ja) * 2000-03-27 2001-10-05 Ngk Spark Plug Co Ltd 空燃比制御方法
JP4682465B2 (ja) 2000-10-31 2011-05-11 株式会社デンソー ガス濃度検出装置
US6936148B2 (en) 2002-03-29 2005-08-30 Ngk Spark Plug Co., Ltd. Gas sensor element having at least two cells
JP3782031B2 (ja) * 2002-03-29 2006-06-07 株式会社日立製作所 空燃比検出装置
JP2004205488A (ja) 2002-11-08 2004-07-22 Denso Corp ガス濃度検出装置
US6978655B2 (en) * 2003-01-30 2005-12-27 Innovate! Technology, Inc. System, apparatus, and method for measuring an oxygen concentration of a gas
JP2004316553A (ja) 2003-04-16 2004-11-11 Toyota Motor Corp 空燃比センサの制御装置
CN100501138C (zh) * 2003-07-07 2009-06-17 北京科技大学 一种电流型汽车尾气传感器的制造方法
JP3849678B2 (ja) * 2003-09-19 2006-11-22 トヨタ自動車株式会社 ガス濃度測定装置
US7449092B2 (en) 2003-12-17 2008-11-11 Ford Global Technologies, Llc Dual mode oxygen sensor
JP4662207B2 (ja) * 2005-11-28 2011-03-30 日本特殊陶業株式会社 空燃比検出装置
EP1961942B1 (en) 2007-02-21 2018-10-24 NGK Spark Plug Co., Ltd. Diagnostic method and control apparatus for gas sensor
JP4379820B2 (ja) 2007-02-21 2009-12-09 株式会社デンソー センサ制御装置
US7802463B2 (en) 2007-10-11 2010-09-28 Ngk Spark Plug Co., Ltd. Sensor control device and air fuel ratio detecting apparatus
RU2443886C2 (ru) * 2007-11-07 2012-02-27 Тойота Дзидося Кабусики Кайся Устройство управления
JP4954185B2 (ja) 2008-11-17 2012-06-13 日本特殊陶業株式会社 ガスセンサシステムと、ガスセンサの制御方法
JP5310444B2 (ja) 2009-09-28 2013-10-09 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP5326969B2 (ja) 2009-09-28 2013-10-30 トヨタ自動車株式会社 内燃機関の燃料供給量制御装置
WO2011042994A1 (ja) 2009-10-06 2011-04-14 トヨタ自動車株式会社 内燃機関の空燃比気筒間インバランス判定装置
JP2011163229A (ja) 2010-02-10 2011-08-25 Toyota Motor Corp 多気筒内燃機関の気筒間空燃比インバランス判定装置
JP2012007496A (ja) 2010-06-22 2012-01-12 Toyota Motor Corp 内燃機関の制御装置
JP5494317B2 (ja) 2010-07-20 2014-05-14 トヨタ自動車株式会社 多気筒内燃機関の異常判定装置
JP5126388B2 (ja) 2010-08-19 2013-01-23 株式会社デンソー ガスセンサ制御装置
CN202661439U (zh) * 2012-06-27 2013-01-09 苏州工业园区职业技术学院 氧传感器性能检测装置
CA2899221C (en) 2013-01-29 2018-05-15 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
BR112015017838B1 (pt) 2013-01-29 2021-10-19 Toyota Jidosha Kabushiki Kaisha Sistema de controle de motor de combustão interna

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024445A (ja) * 1983-07-20 1985-02-07 Toyota Motor Corp 空燃比検出器
JPH08232723A (ja) 1994-12-30 1996-09-10 Honda Motor Co Ltd 内燃機関の燃料噴射制御装置
JPH1082760A (ja) * 1996-07-19 1998-03-31 Denso Corp 空燃比制御方法
JP2004258043A (ja) 1996-11-06 2004-09-16 Ngk Spark Plug Co Ltd 全領域空燃比センサの劣化状態検出方法及び装置
JP2000356618A (ja) 1999-06-14 2000-12-26 Denso Corp ガス濃度センサの特性計測方法
JP2001234787A (ja) 2000-02-23 2001-08-31 Nissan Motor Co Ltd エンジンの排気浄化装置
JP2002357589A (ja) 2001-03-30 2002-12-13 Ngk Spark Plug Co Ltd ガスセンサ素子及びガスセンサ
JP2003329637A (ja) 2002-05-09 2003-11-19 Denso Corp ガスセンサの電流検出装置
JP2005351096A (ja) 2004-06-08 2005-12-22 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2009162139A (ja) 2008-01-08 2009-07-23 Toyota Motor Corp 内燃機関の空燃比制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2952721A4

Also Published As

Publication number Publication date
AU2013376227A1 (en) 2015-07-23
US10001076B2 (en) 2018-06-19
BR112015017838B1 (pt) 2021-10-19
US20150369156A1 (en) 2015-12-24
EP2952721B1 (en) 2018-03-21
CN104956058A (zh) 2015-09-30
RU2015131027A (ru) 2017-03-06
BR112015017838A2 (pt) 2017-07-11
AU2013376227B2 (en) 2016-05-12
CN104956058B (zh) 2017-11-03
JPWO2014118893A1 (ja) 2017-01-26
EP2952721A1 (en) 2015-12-09
EP2952721A4 (en) 2016-01-27
KR20150063555A (ko) 2015-06-09
JP5949959B2 (ja) 2016-07-13
RU2617423C2 (ru) 2017-04-25

Similar Documents

Publication Publication Date Title
JP6075394B2 (ja) 内燃機関の制御装置
JP5949957B2 (ja) 内燃機関の制御装置
JP5958561B2 (ja) 内燃機関の制御装置
JP6036853B2 (ja) 内燃機関の制御装置
JP5360312B1 (ja) 内燃機関の制御装置
JP5949958B2 (ja) 内燃機関の制御装置
JP5915779B2 (ja) 内燃機関の制御装置
JP5949959B2 (ja) 内燃機関の制御装置
WO2014118888A1 (ja) 内燃機関の制御装置
AU2013376230B9 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011658

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014559392

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013376227

Country of ref document: AU

Date of ref document: 20130129

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14763022

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013873938

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015017838

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015131027

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015017838

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150727