WO2014118892A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2014118892A1
WO2014118892A1 PCT/JP2013/051911 JP2013051911W WO2014118892A1 WO 2014118892 A1 WO2014118892 A1 WO 2014118892A1 JP 2013051911 W JP2013051911 W JP 2013051911W WO 2014118892 A1 WO2014118892 A1 WO 2014118892A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
air
exhaust
storage amount
purification catalyst
Prior art date
Application number
PCT/JP2013/051911
Other languages
English (en)
French (fr)
Inventor
岡崎 俊太郎
中川 徳久
雄士 山口
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP13873617.8A priority Critical patent/EP2952715B1/en
Priority to US14/763,370 priority patent/US9765672B2/en
Priority to JP2014559391A priority patent/JP6075394B2/ja
Priority to CN201380071609.1A priority patent/CN104956053B/zh
Priority to PCT/JP2013/051911 priority patent/WO2014118892A1/ja
Priority to BR112015018145-7A priority patent/BR112015018145B1/pt
Priority to AU2013376226A priority patent/AU2013376226B2/en
Priority to RU2015131026A priority patent/RU2609604C1/ru
Priority to KR1020157019950A priority patent/KR101822564B1/ko
Publication of WO2014118892A1 publication Critical patent/WO2014118892A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1624Catalyst oxygen storage capacity

Definitions

  • the present invention relates to a control device for an internal combustion engine that controls the internal combustion engine in accordance with the output of an air-fuel ratio sensor.
  • Patent Document 1 to 4 a control device for an internal combustion engine in which an air-fuel ratio sensor is provided in an exhaust passage of the internal combustion engine and the amount of fuel supplied to the internal combustion engine based on the output of the air-fuel ratio sensor is widely known (for example, Patent Document 1 to 4).
  • an exhaust purification catalyst having an oxygen storage capacity provided in the exhaust passage is used.
  • the oxygen storage amount is an appropriate amount between the upper limit storage amount and the lower limit storage amount
  • the exhaust purification catalyst having an oxygen storage capacity is an unburned gas (HC, CO, etc.) in the exhaust gas flowing into the exhaust purification catalyst.
  • NOx can be purified. That is, when an exhaust gas having an air-fuel ratio richer than the stoichiometric air-fuel ratio (hereinafter also referred to as “rich air-fuel ratio”) flows into the exhaust purification catalyst, unburned oxygen in the exhaust gas is absorbed by oxygen stored in the exhaust purification catalyst. The gas is oxidized and purified.
  • an exhaust gas having an air-fuel ratio leaner than the stoichiometric air-fuel ratio (hereinafter also referred to as “lean air-fuel ratio”) flows into the exhaust purification catalyst, oxygen in the exhaust gas is stored in the exhaust purification catalyst. As a result, an oxygen-deficient state occurs on the exhaust purification catalyst surface, and NOx in the exhaust gas is reduced and purified accordingly. As a result, the exhaust purification catalyst can purify the exhaust gas regardless of the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst as long as the oxygen storage amount is an appropriate amount.
  • an air-fuel ratio sensor is provided upstream of the exhaust purification catalyst in the exhaust flow direction and an oxygen sensor is provided downstream of the exhaust flow direction in order to maintain an appropriate amount of oxygen stored in the exhaust purification catalyst. I am doing so.
  • the control device uses these sensors to perform feedback control based on the output of the upstream air-fuel ratio sensor so that the output of the air-fuel ratio sensor becomes a target value corresponding to the target air-fuel ratio.
  • the target value of the upstream air-fuel ratio sensor is corrected based on the output of the downstream oxygen sensor.
  • the upstream side in the exhaust flow direction may be simply referred to as “upstream side”
  • the downstream side in the exhaust flow direction may be simply referred to as “downstream side”.
  • the target air-fuel ratio becomes the lean air-fuel ratio when the output voltage of the oxygen sensor tends to increase. Is done. Conversely, when the output voltage of the oxygen sensor tends to decrease, the target air-fuel ratio is made rich. According to Patent Document 1, it is possible to prevent the exhaust purification catalyst from being in an oxygen-deficient state or an oxygen-excess state.
  • the oxygen storage amount of the exhaust purification catalyst is calculated based on the outputs of the air flow meter and the air-fuel ratio sensor upstream of the exhaust purification catalyst.
  • the target air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is set to a rich air-fuel ratio, and the calculated oxygen storage amount is larger than the target oxygen storage amount.
  • the target air-fuel ratio is set to the lean air-fuel ratio. According to Patent Document 2, this makes it possible to keep the oxygen storage amount of the exhaust purification catalyst constant at the target oxygen storage amount.
  • JP 2011-069337 A JP 2001-234787 A JP-A-8-232723 JP 2009-162139 A
  • FIG. 2 shows the relationship between the oxygen storage amount of the exhaust purification catalyst and the concentrations of NOx and unburned gas (HC, CO, etc.) in the exhaust gas flowing out from the exhaust purification catalyst.
  • FIG. 2A shows the relationship between the oxygen storage amount and the NOx concentration in the exhaust gas flowing out from the exhaust purification catalyst when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is a lean air-fuel ratio.
  • FIG. 2B shows the oxygen storage amount and the concentration of unburned gas in the exhaust gas flowing out from the exhaust purification catalyst when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is a rich air-fuel ratio. Show the relationship.
  • the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is a rich air-fuel ratio (that is, the exhaust gas includes unburned gas such as HC and CO). Oxygen stored in the exhaust purification catalyst is released. For this reason, the unburned gas in the exhaust gas flowing into the exhaust purification catalyst is oxidized and purified. As a result, as can be seen from FIG. 2B, the exhaust gas flowing out from the exhaust purification catalyst contains almost no unburned gas.
  • the oxygen storage amount of the exhaust purification catalyst and the NOx concentration in the outflowing exhaust gas have the relationship as described above. Therefore, when the control described in Patent Document 1 is performed, that is, when the control is performed to set the target air-fuel ratio to the rich air-fuel ratio when the output voltage of the downstream oxygen sensor becomes equal to or lower than the low-side threshold. Some amount of NOx flows out from the exhaust purification catalyst. This is shown in FIG.
  • FIG. 20 shows the oxygen storage amount of the exhaust purification catalyst, the air-fuel ratio of the exhaust gas detected by the downstream oxygen sensor, the target air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst, and the upstream air-fuel ratio sensor.
  • 3 is a time chart of the air-fuel ratio of exhaust gas and the NOx concentration in exhaust gas flowing out from the exhaust purification catalyst.
  • the target air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is set to the lean air-fuel ratio before the time t 1 .
  • the oxygen storage amount of the exhaust purification catalyst gradually increases.
  • the exhaust gas flowing out from the exhaust purification catalyst contains almost no oxygen.
  • the air-fuel ratio of the exhaust gas detected by the downstream oxygen sensor is substantially the stoichiometric air-fuel ratio.
  • all NOx in the exhaust gas flowing into the exhaust purification catalyst is reduced and purified by the exhaust purification catalyst, almost no NOx is contained in the exhaust gas flowing out from the exhaust purification catalyst.
  • the oxygen storage amount of the exhaust purification catalyst gradually increases and approaches the maximum oxygen storage amount Cmax, as shown in FIG. 2, part of the oxygen in the exhaust gas flowing into the exhaust purification catalyst is stored in the exhaust purification catalyst. As a result, oxygen is contained in the exhaust gas flowing out from the exhaust purification catalyst from time t 1 . For this reason, the air-fuel ratio of the exhaust gas detected by the downstream oxygen sensor becomes a lean air-fuel ratio. Thereafter, when the oxygen storage amount of the exhaust purification catalyst further increases, the air-fuel ratio of the exhaust gas flowing out from the exhaust purification catalyst reaches a predetermined upper limit air-fuel ratio AFhighref (corresponding to a low threshold), and the target air-fuel ratio is rich. Switch to air-fuel ratio.
  • AFhighref corresponding to a low threshold
  • the fuel injection amount in the internal combustion engine is increased in accordance with the switched target air-fuel ratio. Even if the fuel injection amount is increased in this way, since there is a certain distance from the internal combustion engine body to the exhaust purification catalyst, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is immediately changed to the rich air-fuel ratio. Without delay. Therefore, even if the target air-fuel ratio is switched to the rich air-fuel ratio at time t 2 Note that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst to a time t 3 will remain in the lean air-fuel ratio.
  • the oxygen storage amount of the exhaust purification catalyst reaches the maximum oxygen storage amount Cmax or becomes a value near the maximum oxygen storage amount Cmax.
  • the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst becomes a rich air-fuel ratio, and the air-fuel ratio of the exhaust gas flowing out from the exhaust purification catalyst converges to the stoichiometric air-fuel ratio.
  • the estimated value of the oxygen storage amount of the exhaust purification catalyst is calculated based on the outputs of the air flow meter and the upstream air-fuel ratio sensor, as in the control device described in Patent Document 2, the estimated value includes An error occurs. Such an error is small if it is short-term, but it becomes large when the estimated value of the oxygen storage amount is calculated by integrating this over a long period of time. End up. As a result, even if the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is controlled so that the actual oxygen storage amount becomes the target oxygen storage amount, the oxygen storage amount of the exhaust purification catalyst eventually becomes the maximum oxygen storage amount. The amount or zero is reached.
  • an object of the present invention is to provide an internal combustion engine having an exhaust purification catalyst having an oxygen storage capacity, in which the oxygen storage amount of the exhaust purification catalyst reaches the maximum oxygen storage amount and flows out of the exhaust purification catalyst.
  • An object of the present invention is to provide a control device for an internal combustion engine that suppresses NOx from remaining in exhaust gas.
  • an exhaust purification catalyst that is disposed in an exhaust passage of an internal combustion engine and that can store oxygen, a downstream of the exhaust purification catalyst in the exhaust flow direction, and the above-described
  • a downstream air-fuel ratio detecting means for detecting the air-fuel ratio of the exhaust gas flowing out from the exhaust purification catalyst; and an inflow air-fuel ratio control means for controlling the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
  • Oxygen storage amount increasing means for continuously or intermittently making the target air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst leaner than the stoichiometric air-fuel ratio until a predetermined storage amount less than the amount is obtained; When the oxygen storage amount of the purification catalyst exceeds the predetermined storage amount, the target air-fuel ratio is continuously or intermittently reduced so that the oxygen storage amount decreases toward zero without reaching the maximum oxygen storage amount.
  • a control apparatus for an internal combustion engine comprising oxygen storage amount reducing means that makes the air / fuel ratio richer than the stoichiometric air-fuel ratio.
  • the difference is larger than the difference between the average value of the target air-fuel ratio and the stoichiometric air-fuel ratio during a period in which the oxygen storage amount reducing means is continuously or intermittently made richer than the stoichiometric air-fuel ratio.
  • the oxygen storage amount increasing means continuously maintains the target air-fuel ratio leaner than the stoichiometric air-fuel ratio.
  • the oxygen storage amount reducing means maintains the target air-fuel ratio continuously richer than the stoichiometric air-fuel ratio.
  • the oxygen storage amount reducing means intermittently makes the target air-fuel ratio richer than the stoichiometric air-fuel ratio, and the target air-fuel ratio is less than the stoichiometric air-fuel ratio.
  • the target air-fuel ratio is made leaner than the stoichiometric air-fuel ratio during at least a part of the periods that are not rich.
  • any one of the first to fifth inventions further comprising upstream air-fuel ratio detection / estimation means for detecting or estimating an air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst
  • the inflow air-fuel ratio control means controls the amount of fuel supplied to the combustion chamber of the internal combustion engine so that the air-fuel ratio of the exhaust gas detected or estimated by the upstream air-fuel ratio detection / estimation means becomes the target air-fuel ratio. Control.
  • the oxygen storage amount estimation for estimating the oxygen storage amount of the exhaust purification catalyst based on the air-fuel ratio of the exhaust gas detected or estimated by the upstream air-fuel ratio detection / estimation means. And means for increasing the oxygen storage amount to make the target air-fuel ratio leaner than the stoichiometric air-fuel ratio until the oxygen storage amount estimated by the oxygen storage amount estimation means reaches the predetermined storage amount.
  • the downstream side exhaust purification device that is disposed in the exhaust passage downstream of the downstream side air-fuel ratio detecting means and that is capable of storing oxygen.
  • a catalyst is further provided.
  • the downstream air-fuel ratio detecting means is an air-fuel ratio sensor in which an applied voltage at which an output current becomes zero is changed according to an exhaust air-fuel ratio.
  • the downstream air-fuel ratio detection means is an air-fuel ratio sensor in which the applied voltage at which the output current becomes zero changes according to the exhaust air-fuel ratio.
  • the output current becomes equal to or lower than the corresponding output current, it is determined that the exhaust air-fuel ratio becomes lower than the rich determination air-fuel ratio.
  • the air-fuel ratio sensor is exposed to a reference electrode and a first electrode that is exposed to an exhaust gas that is an air-fuel ratio detection target through a diffusion rate-limiting layer.
  • the air-fuel ratio sensor includes a measured gas chamber into which exhaust gas, which is an air-fuel ratio detection target, flows, and the measured gas chamber according to a pump current.
  • the air-fuel ratio sensor comprising: a reference voltage applying device that applies a voltage between the first electrode and the second electrode of the reference cell; and the first electrode of the reference cell; The current flowing between the second electrode is the reference current.
  • a reference current detection device for detecting a pump current control device for controlling a pump current supplied to the pump cell so that a reference current detected by the reference current detection device becomes zero, and a pump current detection for detecting the pump current
  • the applied voltage is a reference voltage applied by the reference voltage applying device
  • the output current is a pump current detected by the pump current detecting device.
  • the oxygen storage amount of the exhaust purification catalyst reaches the maximum oxygen storage amount, and NOx remains in the exhaust gas flowing out of the exhaust purification catalyst. This is suppressed.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which a control device of the present invention is used.
  • FIG. 2 is a graph showing the relationship between the oxygen storage amount of the exhaust purification catalyst and the concentrations of NOx and unburned gas in the exhaust gas flowing out from the exhaust purification catalyst.
  • FIG. 3 is a schematic cross-sectional view of the air-fuel ratio sensor.
  • FIG. 4 is a diagram schematically showing the operation of the air-fuel ratio sensor.
  • FIG. 5 is a diagram showing the relationship between the exhaust air-fuel ratio and the output current in the air-fuel ratio sensor.
  • FIG. 6 is a diagram illustrating an example of a specific circuit constituting the voltage application device and the current detection device.
  • FIG. 7 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 8 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 9 is a functional block diagram of the control device.
  • FIG. 10 is a flowchart showing a control routine of calculation control of the air-fuel ratio correction amount.
  • FIG. 11 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 12 is a diagram showing the relationship between the sensor applied voltage and the output current at each exhaust air-fuel ratio.
  • FIG. 13 is a diagram showing the relationship between the exhaust air-fuel ratio and the output current at each sensor applied voltage.
  • FIG. 14 is an enlarged view of the area indicated by XX in FIG.
  • FIG. 15 is an enlarged view of the area indicated by Y in FIG. FIG.
  • FIG. 16 is a diagram showing the relationship between the exhaust air-fuel ratio and the output current in the air-fuel ratio sensor.
  • FIG. 17 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 18 is a schematic cross-sectional view of the air-fuel ratio sensor of the third embodiment.
  • FIG. 19 is a diagram schematically showing the operation of the air-fuel ratio sensor of the third embodiment.
  • FIG. 20 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which a control device according to a first embodiment of the present invention is used.
  • 1 is an engine body
  • 2 is a cylinder block
  • 3 is a piston that reciprocates in the cylinder block
  • 4 is a cylinder head fixed on the cylinder block
  • 5 is a piston 3 and a cylinder head 4.
  • a combustion chamber formed therebetween 6 is an intake valve
  • 7 is an intake port
  • 8 is an exhaust valve
  • 9 is an exhaust port.
  • the intake valve 6 opens and closes the intake port 7, and the exhaust valve 8 opens and closes the exhaust port 9.
  • a spark plug 10 is disposed at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is disposed around the inner wall surface of the cylinder head 4.
  • the spark plug 10 is configured to generate a spark in response to the ignition signal.
  • the fuel injection valve 11 injects a predetermined amount of fuel into the combustion chamber 5 according to the injection signal.
  • the fuel injection valve 11 may be arranged so as to inject fuel into the intake port 7.
  • gasoline having a theoretical air-fuel ratio of 14.6 in the exhaust purification catalyst is used as the fuel.
  • the internal combustion engine of the present invention may use other fuels.
  • the intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13, and the surge tank 14 is connected to an air cleaner 16 via an intake pipe 15.
  • the intake port 7, the intake branch pipe 13, the surge tank 14, and the intake pipe 15 form an intake passage.
  • a throttle valve 18 driven by a throttle valve drive actuator 17 is disposed in the intake pipe 15. The throttle valve 18 is rotated by a throttle valve drive actuator 17 so that the opening area of the intake passage can be changed.
  • the exhaust port 9 of each cylinder is connected to an exhaust manifold 19.
  • the exhaust manifold 19 has a plurality of branches connected to the exhaust ports 9 and a collective part in which these branches are assembled.
  • a collecting portion of the exhaust manifold 19 is connected to an upstream casing 21 containing an upstream exhaust purification catalyst 20.
  • the upstream casing 21 is connected to a downstream casing 23 containing a downstream exhaust purification catalyst 24 via an exhaust pipe 22.
  • the exhaust port 9, the exhaust manifold 19, the upstream casing 21, the exhaust pipe 22, and the downstream casing 23 form an exhaust passage.
  • An electronic control unit (ECU) 31 comprises a digital computer, and is connected to each other via a bidirectional bus 32, a RAM (Random Access Memory) 33, a ROM (Read Only Memory) 34, a CPU (Microprocessor) 35, and an input.
  • a port 36 and an output port 37 are provided.
  • An air flow meter 39 for detecting the flow rate of air flowing through the intake pipe 15 is disposed in the intake pipe 15, and the output of the air flow meter 39 is input to the input port 36 via the corresponding AD converter 38.
  • an upstream air-fuel ratio sensor (upstream air-fuel ratio detection) that detects an air-fuel ratio of exhaust gas flowing through the exhaust manifold 19 (that is, exhaust gas flowing into the upstream-side exhaust purification catalyst 20) is provided at a collecting portion of the exhaust manifold 19.
  • Means 40 is arranged.
  • the downstream side that detects the air-fuel ratio of the exhaust gas that flows in the exhaust pipe 22 (that is, the exhaust gas that flows out of the upstream side exhaust purification catalyst 20 and flows into the downstream side exhaust purification catalyst 24).
  • An air-fuel ratio sensor (downstream air-fuel ratio detection means) 41 is disposed. The outputs of these air-fuel ratio sensors 40 and 41 are also input to the input port 36 via the corresponding AD converter 38. The configuration of these air-fuel ratio sensors 40 and 41 will be described later.
  • a load sensor 43 that generates an output voltage proportional to the amount of depression of the accelerator pedal 42 is connected to the accelerator pedal 42, and the output voltage of the load sensor 43 is input to the input port 36 via the corresponding AD converter 38.
  • the crank angle sensor 44 generates an output pulse every time the crankshaft rotates 15 degrees, and this output pulse is input to the input port 36.
  • the CPU 35 calculates the engine speed from the output pulse of the crank angle sensor 44.
  • the output port 37 is connected to the spark plug 10, the fuel injection valve 11, and the throttle valve drive actuator 17 via the corresponding drive circuit 45.
  • the ECU 31 functions as a control unit that controls the internal combustion engine based on outputs from various sensors and the like.
  • the upstream side exhaust purification catalyst 20 is a three-way catalyst having an oxygen storage capacity. Specifically, the upstream side exhaust purification catalyst 20 supports a noble metal having a catalytic action (for example, platinum (Pt)) and a substance having an oxygen storage capacity (for example, ceria (CeO 2 )) on a carrier made of ceramic. It has been made. When the upstream exhaust purification catalyst 20 reaches a predetermined activation temperature, the upstream exhaust purification catalyst 20 exhibits an oxygen storage capability in addition to the catalytic action of simultaneously purifying unburned gas (HC, CO, etc.) and nitrogen oxides (NOx).
  • HC, CO, etc. hydrogen oxides
  • the upstream side exhaust purification catalyst 20 is such that the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is leaner than the stoichiometric air-fuel ratio (lean air-fuel ratio). Sometimes it stores oxygen in the exhaust gas. On the other hand, the upstream side exhaust purification catalyst 20 releases oxygen stored in the upstream side exhaust purification catalyst 20 when the air-fuel ratio of the inflowing exhaust gas is richer than the stoichiometric air-fuel ratio (rich air-fuel ratio).
  • the “air-fuel ratio of exhaust gas” means the ratio of the mass of fuel to the mass of air supplied until the exhaust gas is generated. Normally, combustion is performed when the exhaust gas is generated. It means the ratio of the mass of fuel to the mass of air supplied into the chamber 5. In the present specification, the air-fuel ratio of the exhaust gas may be referred to as “exhaust air-fuel ratio”.
  • the upstream side exhaust purification catalyst 20 has a catalytic action and an oxygen storage capacity, and thus has a NOx and unburned gas purification action according to the oxygen storage amount. That is, as shown in FIG. 2A, when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio, the exhaust gas is exhausted by the upstream side exhaust purification catalyst 20 when the oxygen storage amount is small. The oxygen inside is occluded and NOx is reduced and purified. Further, when the oxygen storage amount increases, the concentrations of oxygen and NOx in the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 abruptly increase with the upper limit storage amount Cuprim as a boundary.
  • the upstream side exhaust purification catalyst 20 stores the oxygen when the oxygen storage amount is large.
  • the released oxygen is released and the unburned gas in the exhaust gas is oxidized and purified.
  • the concentration of unburned gas in the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 sharply increases with the lower limit storage amount Clowlim as a boundary.
  • exhaust purification catalysts 20 and 24 used in the present embodiment, NOx and unburned in the exhaust gas according to the air-fuel ratio and oxygen storage amount of the exhaust gas flowing into the exhaust purification catalysts 20 and 24. Gas purification characteristics change.
  • the exhaust purification catalysts 20 and 24 may be different from the three-way catalyst as long as they have a catalytic action and an oxygen storage capacity.
  • FIG. 3 is a schematic cross-sectional view of the air-fuel ratio sensors 40 and 41.
  • the air-fuel ratio sensors 40 and 41 in this embodiment are one-cell type air-fuel ratio sensors each having one cell composed of a solid electrolyte layer and a pair of electrodes.
  • the air-fuel ratio sensors 40 and 41 include a solid electrolyte layer 51, an exhaust-side electrode (first electrode) 52 disposed on one side surface of the solid electrolyte layer 51, and the solid electrolyte layer 51.
  • An atmosphere-side electrode (second electrode) 53 disposed on the other side surface, a diffusion-controlling layer 54 that controls the diffusion of exhaust gas that passes through, a protective layer 55 that protects the diffusion-controlling layer 54, and an air-fuel ratio sensor And a heater unit 56 for heating 40 and 41.
  • a diffusion-controlling layer 54 is provided on one side surface of the solid electrolyte layer 51, and a protective layer 55 is provided on the side surface of the diffusion-controlling layer 54 opposite to the side surface on the solid electrolyte layer 51 side.
  • a measured gas chamber 57 is formed between the solid electrolyte layer 51 and the diffusion-controlling layer 54.
  • a gas to be detected by the air-fuel ratio sensors 40, 41, that is, exhaust gas, is introduced into the measured gas chamber 57 through the diffusion rate controlling layer 54.
  • the exhaust side electrode 52 is disposed in the measured gas chamber 57, and therefore, the exhaust side electrode 52 is exposed to the exhaust gas through the diffusion rate controlling layer 54.
  • the gas chamber 57 to be measured is not necessarily provided, and may be configured such that the diffusion-controlling layer 54 is in direct contact with the surface of the exhaust-side electrode 52.
  • a heater portion 56 is provided on the other side surface of the solid electrolyte layer 51.
  • a reference gas chamber 58 is formed between the solid electrolyte layer 51 and the heater portion 56, and the reference gas is introduced into the reference gas chamber 58.
  • the reference gas chamber 58 is open to the atmosphere, and therefore the atmosphere is introduced into the reference gas chamber 58 as the reference gas.
  • the atmosphere side electrode 53 is disposed in the reference gas chamber 58, and therefore, the atmosphere side electrode 53 is exposed to the reference gas (reference atmosphere). In the present embodiment, since the atmosphere is used as the reference gas, the atmosphere side electrode 53 is exposed to the atmosphere.
  • the heater unit 56 is provided with a plurality of heaters 59, and the heaters 59 can control the temperature of the air-fuel ratio sensors 40 and 41, particularly the temperature of the solid electrolyte layer 51.
  • the heater unit 56 has a heat generation capacity sufficient to heat the solid electrolyte layer 51 until it is activated.
  • the solid electrolyte layer 51 is an oxygen ion conductive oxide in which ZrO 2 (zirconia), HfO 2 , ThO 2 , Bi 2 O 3, etc. are distributed with CaO, MgO, Y 2 O 3 , Yb 2 O 3, etc. as stabilizers.
  • the sintered body is formed.
  • the diffusion control layer 54 is formed of a porous sintered body of a heat-resistant inorganic substance such as alumina, magnesia, silica, spinel, mullite or the like.
  • the exhaust-side electrode 52 and the atmosphere-side electrode 53 are formed of a noble metal having high catalytic activity such as platinum.
  • a sensor application voltage Vr is applied between the exhaust side electrode 52 and the atmosphere side electrode 53 by the voltage application device 60 mounted on the ECU 31.
  • the ECU 31 is provided with a current detection device 61 that detects a current flowing between the electrodes 52 and 53 via the solid electrolyte layer 51 when the sensor application voltage Vr is applied by the voltage application device 60.
  • the current detected by the current detector 61 is the output current of the air-fuel ratio sensors 40 and 41.
  • FIG. 4 is a diagram schematically showing the operation of the air-fuel ratio sensors 40 and 41.
  • the air-fuel ratio sensors 40 and 41 are arranged so that the outer peripheral surfaces of the protective layer 55 and the diffusion-controlling layer 54 are exposed to the exhaust gas. Air is introduced into the reference gas chamber 58 of the air-fuel ratio sensors 40 and 41.
  • the solid electrolyte layer 51 is formed of a sintered body of an oxygen ion conductive oxide. Therefore, when a difference in oxygen concentration occurs between both side surfaces of the solid electrolyte layer 51 in a state activated by high temperature, an electromotive force E that attempts to move oxygen ions from the high concentration side surface to the low concentration side surface. Has a property (oxygen battery characteristics).
  • oxygen ions move so that an oxygen concentration ratio is generated between both side surfaces of the solid electrolyte layer according to the potential difference.
  • Characteristics oxygen pump characteristics. Specifically, when a potential difference is applied between both side surfaces, the oxygen concentration on the side surface provided with positive polarity is a ratio corresponding to the potential difference with respect to the oxygen concentration on the side surface provided with negative polarity. The movement of oxygen ions is caused to increase. Further, as shown in FIGS. 3 and 4, in the air-fuel ratio sensors 40 and 41, there is a constant gap between these electrodes 52 and 53 so that the atmosphere side electrode 53 is positive and the exhaust side electrode 52 is negative. A sensor applied voltage Vr is applied. In the present embodiment, the sensor applied voltage Vr in the air-fuel ratio sensors 40 and 41 is the same voltage.
  • the ratio of oxygen concentration between both side surfaces of the solid electrolyte layer 51 is not so large.
  • the sensor applied voltage Vr is set to an appropriate value, the actual oxygen concentration ratio becomes smaller between the both side surfaces of the solid electrolyte layer 51 than the oxygen concentration ratio corresponding to the sensor applied voltage Vr. Therefore, as shown in FIG. 4A, the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 increases from the exhaust side electrode 52 to the atmosphere so as to increase toward the oxygen concentration ratio corresponding to the sensor applied voltage Vr. Oxygen ions move toward the side electrode 53. As a result, a current flows from the positive electrode of the voltage application device 60 that applies the sensor application voltage Vr to the negative electrode of the voltage application device 60 via the atmosphere side electrode 53, the solid electrolyte layer 51, and the exhaust side electrode 52.
  • the magnitude of the current (output current) Ir flowing at this time is the amount of oxygen flowing into the measured gas chamber 57 from the exhaust gas through the diffusion rate controlling layer 54 if the sensor applied voltage Vr is set to an appropriate value. Is proportional to Therefore, by detecting the magnitude of the current Ir by the current detector 61, it is possible to know the oxygen concentration and thus the air-fuel ratio in the lean region.
  • the exhaust gas is exhausted from the atmosphere side electrode 53 so that the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 decreases toward the oxygen concentration ratio corresponding to the sensor applied voltage Vr.
  • Oxygen ions move toward the side electrode 52.
  • a current flows from the atmosphere side electrode 53 to the exhaust side electrode 52 through the voltage application device 60 that applies the sensor application voltage Vr.
  • the magnitude of the current (output current) Ir flowing at this time is that of oxygen ions that can be moved from the atmosphere side electrode 53 to the exhaust side electrode 52 in the solid electrolyte layer 51 if the sensor applied voltage Vr is set to an appropriate value. It depends on the flow rate.
  • the oxygen ions react (combust) on the exhaust-side electrode 52 with the unburned gas that flows into the measured gas chamber 57 from the exhaust gas through the diffusion-controlling layer 54 by diffusion. Therefore, the moving flow rate of oxygen ions corresponds to the concentration of unburned gas in the exhaust gas flowing into the measured gas chamber 57. Therefore, by detecting the magnitude of the current Ir by the current detection device 61, it is possible to know the unburned gas concentration and thus the air-fuel ratio in the rich region.
  • the exhaust air-fuel ratio around the air-fuel ratio sensors 40, 41 is the stoichiometric air-fuel ratio
  • the amount of oxygen and unburned gas flowing into the measured gas chamber 57 is the chemical equivalent ratio.
  • both of them are completely combusted by the catalytic action of the exhaust side electrode 52, and the concentration of oxygen and unburned gas in the measured gas chamber 57 does not change.
  • the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 is not changed and is maintained as the oxygen concentration ratio corresponding to the sensor applied voltage Vr.
  • FIG. 4C oxygen ions do not move due to the oxygen pump characteristics, and as a result, no current flows through the circuit.
  • the air-fuel ratio sensors 40 and 41 configured in this way have the output characteristics shown in FIG. That is, in the air-fuel ratio sensors 40 and 41, the output current Ir of the air-fuel ratio sensors 40 and 41 increases as the exhaust air-fuel ratio increases (that is, as the exhaust air-fuel ratio becomes leaner). In addition, the air-fuel ratio sensors 40 and 41 are configured such that the output current Ir becomes zero when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio.
  • FIG. 6 shows an example of a specific circuit constituting the voltage application device 60 and the current detection device 61.
  • E is an electromotive force generated by oxygen battery characteristics
  • Ri is an internal resistance of the solid electrolyte layer 51
  • Vs is a potential difference between the electrodes 52 and 53.
  • the voltage application device 60 basically performs negative feedback control so that the electromotive force E generated by the oxygen battery characteristics matches the sensor applied voltage Vr.
  • the voltage application device 60 becomes the sensor applied voltage Vr. Negative feedback control is performed.
  • the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 is determined by sensor application.
  • the oxygen concentration ratio corresponds to the voltage Vr.
  • the electromotive force E coincides with the sensor applied voltage Vr, and the potential difference Vs between the electrodes 52 and 53 is also the sensor applied voltage Vr. As a result, the current Ir does not flow.
  • the electromotive force E has a value different from the sensor applied voltage Vr. Therefore, by negative feedback control, a potential difference Vs is applied between the electrodes 52 and 53 in order to move oxygen ions between both side surfaces of the solid electrolyte layer 51 so that the electromotive force E matches the sensor applied voltage Vr. The And current Ir flows with the movement of oxygen ions at this time. As a result, the electromotive force E converges on the sensor applied voltage Vr, and when the electromotive force E converges on the sensor applied voltage Vr, the potential difference Vs eventually converges on the sensor applied voltage Vr.
  • the voltage application device 60 substantially applies the sensor application voltage Vr between the electrodes 52 and 53.
  • the electric circuit of the voltage application device 60 does not necessarily have to be as shown in FIG. 6. Any device can be used as long as the sensor application voltage Vr can be substantially applied between the electrodes 52 and 53. It may be.
  • the current detector 61 is actually a current rather than detecting, and calculates the current from the voltage E 0 by detecting the voltage E 0.
  • E 0 can be expressed as the following formula (1).
  • E 0 Vr + V 0 + IrR (1)
  • V 0 is an offset voltage (a voltage to be applied so that E 0 does not become a negative value, for example, 3 V)
  • R is a resistance value shown in FIG.
  • the sensor applied voltage Vr, the offset voltage V 0 and the resistance value R are constant, so that the voltage E 0 changes according to the current Ir. Therefore, if the voltage E 0 is detected, the current Ir can be calculated from the voltage E 0 .
  • the current detection device 61 substantially detects the current Ir flowing between the electrodes 52 and 53.
  • the electric circuit of the current detection device 61 is not necessarily as shown in FIG. 6, and any device can be used as long as the current Ir flowing between the electrodes 52 and 53 can be detected. Good.
  • the target air-fuel ratio is set based on the output current of the downstream air-fuel ratio sensor 41. Specifically, when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination reference value Iref, the target air-fuel ratio is set to the lean set air-fuel ratio and is maintained at that air-fuel ratio.
  • the rich determination reference value Iref is a value corresponding to a predetermined rich determination air-fuel ratio (for example, 14.55) that is slightly richer than the theoretical air-fuel ratio.
  • the lean set air-fuel ratio is a predetermined air-fuel ratio that is somewhat leaner than the stoichiometric air-fuel ratio, and is, for example, 14.65 to 20, preferably 14.68 to 18, and more preferably 14.7. About 16 or so.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated.
  • the oxygen storage amount OSAsc is estimated by estimating the intake air amount into the combustion chamber 5 calculated based on the output current Irup of the upstream air-fuel ratio sensor 40 and the air flow meter 39 or the like, or the fuel from the fuel injection valve 11. This is performed based on the injection amount.
  • the estimated value of the oxygen storage amount OSAsc becomes equal to or larger than a predetermined determination reference storage amount Cref, the target air-fuel ratio that has been the lean set air-fuel ratio until then becomes the weak rich set air-fuel ratio, and is maintained at that air-fuel ratio.
  • the The weak rich set air-fuel ratio is a predetermined air-fuel ratio that is slightly richer than the stoichiometric air-fuel ratio, and is, for example, 13.5 to 14.58, preferably 14 to 14.57, more preferably 14.3. About 14.55. Thereafter, when the output current Irdwn of the downstream air-fuel ratio sensor 41 again becomes equal to or less than the rich determination reference value Iref, the target air-fuel ratio is again set to the lean set air-fuel ratio, and thereafter the same operation is repeated.
  • the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is alternately set to the lean set air-fuel ratio and the weak rich set air-fuel ratio.
  • the difference between the lean set air-fuel ratio and the stoichiometric air-fuel ratio is larger than the difference between the weak rich set air-fuel ratio and the stoichiometric air-fuel ratio. Therefore, in this embodiment, the target air-fuel ratio is alternately set to a short-term lean set air-fuel ratio and a long-term weak rich set air-fuel ratio.
  • FIG. 7 shows the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20, the output current Irdwn of the downstream side air-fuel ratio sensor 41, and the air-fuel ratio correction amount AFC when air-fuel ratio control is performed in the control apparatus for an internal combustion engine of the present invention.
  • 4 is a time chart of the output current Irup of the upstream air-fuel ratio sensor 40 and the NOx concentration in the exhaust gas flowing out from the upstream side exhaust purification catalyst 20.
  • the output current Irup of the upstream side air-fuel ratio sensor 40 becomes zero when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the stoichiometric air-fuel ratio, and the air-fuel ratio of the exhaust gas becomes the rich air-fuel ratio. Is a negative value, and a positive value when the air-fuel ratio of the exhaust gas is a lean air-fuel ratio.
  • the absolute value of the output current Irup of the upstream air-fuel ratio sensor 40 increases as the difference from the stoichiometric air-fuel ratio increases. The value increases.
  • the output current Irdwn of the downstream air-fuel ratio sensor 41 also changes in the same manner as the output current Irup of the upstream air-fuel ratio sensor 40 according to the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20.
  • the air-fuel ratio correction amount AFC is a correction amount related to the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20.
  • the target air-fuel ratio is the stoichiometric air-fuel ratio.
  • the air-fuel ratio correction amount AFC is a positive value
  • the target air-fuel ratio is a lean air-fuel ratio
  • the air-fuel ratio correction amount AFC is a negative value. In some cases, the target air-fuel ratio becomes a rich air-fuel ratio.
  • the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich.
  • the weak rich set correction amount AFCrich is a value corresponding to the weak rich set air-fuel ratio, and is a value smaller than zero. Accordingly, the target air-fuel ratio is set to a rich air-fuel ratio, and accordingly, the output current Irup of the upstream air-fuel ratio sensor 40 becomes a negative value. Since the exhaust gas flowing into the upstream side exhaust purification catalyst 20 contains unburned gas, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually decreases.
  • the output current Irdwn of the downstream side air-fuel ratio sensor becomes substantially 0 (corresponding to the theoretical air-fuel ratio).
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
  • the oxygen storage amount OSAsc decreases beyond the lower limit storage amount (see Clowlim in FIG. 2) at time t 1.
  • the oxygen storage amount OSAsc decreases below the lower limit storage amount, a part of the unburned gas that has flowed into the upstream side exhaust purification catalyst 20 flows out without being purified by the upstream side exhaust purification catalyst 20. Therefore, after time t 1 , the output current Irdwn of the downstream air-fuel ratio sensor 41 gradually decreases as the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases. Also at this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
  • the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination reference value Iref corresponding to the rich determination air-fuel ratio.
  • the air-fuel ratio correction amount AFC is set to be lean so as to suppress the decrease in the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20.
  • the correction amount is switched to AFClean.
  • the lean set correction amount AFClean is a value corresponding to the lean set air-fuel ratio, and is a value larger than zero. Therefore, the target air-fuel ratio is a lean air-fuel ratio.
  • the air-fuel ratio correction amount AFC is switched. This is because even if the oxygen storage amount of the upstream side exhaust purification catalyst 20 is sufficient, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 may slightly deviate from the stoichiometric air-fuel ratio. is there.
  • the oxygen storage amount has decreased beyond the lower limit storage amount only after the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 reaches the rich determination air-fuel ratio.
  • the rich determination air-fuel ratio is such that the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 does not reach when the oxygen storage amount of the upstream side exhaust purification catalyst 20 is sufficient. It is said.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 increases.
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 changes to the stoichiometric air-fuel ratio, and the output current Irdwn of the downstream side air-fuel ratio sensor 41 converges to zero.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio.
  • the oxygen storage capacity of the upstream side exhaust purification catalyst 20 has a sufficient margin, the inflowing exhaust gas The oxygen therein is stored in the upstream side exhaust purification catalyst 20, and NOx is reduced and purified. For this reason, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
  • the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 is increased, the oxygen storage amount OSAsc at time t 4 reaches the determination reference storage amount Cref.
  • the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich (less than 0) in order to stop storing oxygen in the upstream side exhaust purification catalyst 20. (Small value). Therefore, the target air-fuel ratio is set to a rich air-fuel ratio.
  • the oxygen storage amount OSAsc is also the maximum oxygen storage amount Cmax at time t 5 .
  • the upper limit occlusion amount is not reached.
  • the determination reference storage amount Cref is equal to the oxygen storage amount OSAsc. The amount is sufficiently small so as not to reach the maximum oxygen storage amount Cmax or the upper limit storage amount.
  • the criterion storage amount Cref is 3/4 or less, preferably 1/2 or less, more preferably 1/5 or less of the maximum oxygen storage amount Cmax. Therefore, the NOx emission amount from the upstream side exhaust purification catalyst 20 is also suppressed from time t 4 to t 5 .
  • the air-fuel ratio correction amount AFC there is a weak rich set correction amount AFCrich. Accordingly, the target air-fuel ratio is set to a rich air-fuel ratio, and accordingly, the output current Irup of the upstream air-fuel ratio sensor 40 becomes a negative value. Since the exhaust gas flowing into the upstream exhaust purification catalyst 20 will include unburned gas, the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 is gradually decreased at time t 6, the time Similar to t 1 , the oxygen storage amount OSAsc decreases beyond the lower limit storage amount. Also at this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
  • the control of the air-fuel ratio correction amount AFC is performed by the ECU 31. Therefore, the ECU 31 determines that the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is equal to the determination reference storage amount Cref when the air-fuel ratio of the exhaust gas detected by the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination air-fuel ratio.
  • the oxygen storage amount increasing means for continuously setting the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 to the lean set air-fuel ratio and the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 are determined as the reference storage.
  • the oxygen storage amount decreases continuously to make the target air-fuel ratio a weak rich set air-fuel ratio so that the oxygen storage amount OSAsc decreases toward zero without reaching the maximum oxygen storage amount Cmaxn. Means.
  • the NOx emission amount from the upstream side exhaust purification catalyst 20 can always be suppressed. That is, as long as the above-described control is performed, the NOx emission amount from the upstream side exhaust purification catalyst 20 can be basically reduced.
  • the oxygen storage amount OSAsc when the oxygen storage amount OSAsc is estimated based on the output current Irup of the upstream air-fuel ratio sensor 40, the estimated value of the intake air amount, and the like, an error may occur. Also in this embodiment, since the oxygen storage amount OSAsc is estimated from time t 3 to t 4 , the estimated value of the oxygen storage amount OSAsc includes some errors. However, even if such an error is included, if the reference storage amount Cref is set sufficiently lower than the maximum oxygen storage amount Cmax or the upper limit storage amount, the actual oxygen storage amount OSAsc will be the maximum oxygen storage amount. The amount Cmax and the upper limit storage amount are hardly reached. Therefore, the NOx emission amount from the upstream side exhaust purification catalyst 20 can be suppressed also from such a viewpoint.
  • the oxygen storage amount of the exhaust purification catalyst is kept constant, the oxygen storage capacity of the exhaust purification catalyst will be reduced.
  • the oxygen storage amount OSAsc constantly fluctuates up and down, it is possible to suppress a decrease in the oxygen storage capacity.
  • the air-fuel ratio correction amount AFC is maintained at the lean set correction amount AFClean from time t 2 to t 4 .
  • the air-fuel ratio correction amount AFC does not necessarily have to be kept constant, and may be set so as to fluctuate, for example, gradually decrease.
  • the air-fuel ratio correction amount AFC is maintained at the weak rich set correction amount AFrich.
  • the air-fuel ratio correction amount AFC does not necessarily have to be kept constant, and may be set so as to fluctuate, for example, gradually decrease.
  • the air-fuel ratio correction amount AFC at the times t 2 to t 4 is the difference between the average value of the target air-fuel ratio and the theoretical air-fuel ratio in the period, so that the target air-fuel ratio at the times t 4 to t 7 It is set to be larger than the difference between the average value of the fuel ratio and the stoichiometric air-fuel ratio.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated based on the output current Irup of the upstream side air-fuel ratio sensor 40 and the estimated value of the intake air amount into the combustion chamber 5. Yes.
  • the oxygen storage amount OSAsc may be calculated based on other parameters in addition to these parameters, or may be estimated based on parameters different from these parameters.
  • the target air-fuel ratio is switched from the lean set air-fuel ratio to the slightly rich set air-fuel ratio.
  • the timing at which the target air-fuel ratio is switched from the lean set air-fuel ratio to the weakly rich set air-fuel ratio is determined by other parameters such as the engine operation time after the target air-fuel ratio is switched from the weak rich set air-fuel ratio to the lean set air-fuel ratio. May be used as a reference.
  • the target air-fuel ratio is changed from the lean set air-fuel ratio to the slightly rich set air-fuel ratio while the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated to be smaller than the maximum oxygen storage amount. It is necessary to switch.
  • a downstream side exhaust purification catalyst 24 is also provided.
  • the oxygen storage amount OSAvemc of the downstream side exhaust purification catalyst 24 is set to a value in the vicinity of the maximum storage amount Cmax by fuel cut control performed every certain period. For this reason, even if exhaust gas containing unburned gas flows out from the upstream side exhaust purification catalyst 20, these unburned gas is oxidized and purified in the downstream side exhaust purification catalyst 24.
  • the fuel cut control is a control that does not inject fuel from the fuel injection valve 11 even when the crankshaft or the piston 3 is moving, for example, during deceleration of a vehicle equipped with an internal combustion engine. .
  • This control is performed, a large amount of air flows into both exhaust purification catalysts 20, 24.
  • FIG. 8 is a diagram similar to FIG. 7, and instead of the transition of the NOx concentration in FIG. 7, the oxygen storage amount OSAvemc of the downstream side exhaust purification catalyst 24 and the exhaust gas in the exhaust gas flowing out from the downstream side exhaust purification catalyst 24 are not shown. It shows the transition of the concentration of fuel gas (HC, CO, etc.). Moreover, in the example shown in FIG. 8, the same control as the example shown in FIG. 7 is performed.
  • fuel cut control is performed before time t 1 .
  • the oxygen storage amount OSAvemc the downstream exhaust purifying catalyst 24 has a value of the maximum oxygen storage amount Cmax vicinity.
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is maintained substantially at the stoichiometric air-fuel ratio. For this reason, the oxygen storage amount OSAvemc of the downstream side exhaust purification catalyst 24 is kept constant.
  • unburned gas flows out from the upstream side exhaust purification catalyst 20 at a certain time interval as in the case of time t 1 to t 4 .
  • the unburned gas flowing out in this manner is basically reduced and purified by oxygen stored in the downstream side exhaust purification catalyst 24. Therefore, the unburned gas hardly flows out from the downstream side exhaust purification catalyst 24.
  • the amount of unburned gas and NOx emitted from the downstream side exhaust purification catalyst 24 Will always be less.
  • FIG. 9 which is a functional block diagram
  • the control device in the present embodiment is configured to include functional blocks A1 to A9.
  • each functional block will be described with reference to FIG.
  • the in-cylinder intake air amount calculation means A1 includes an intake air flow rate Ga measured by the air flow meter 39, an engine speed NE calculated based on the output of the crank angle sensor 44, and a map stored in the ROM 34 of the ECU 31 or Based on the calculation formula, the intake air amount Mc to each cylinder is calculated.
  • the basic fuel injection amount calculation means A2 divides the in-cylinder intake air amount Mc calculated by the in-cylinder intake air amount calculation means A1 by the target air-fuel ratio AFT calculated by the target air-fuel ratio setting means A6 described later.
  • An injection instruction is issued to the fuel injection valve 11 so that the fuel of the fuel injection amount Qi calculated in this way is injected from the fuel injection valve 11.
  • the oxygen storage amount calculation means A4 is an estimated value OSAest of the oxygen storage amount of the upstream side exhaust purification catalyst 20 based on the fuel injection amount Qi calculated by the fuel injection amount calculation means A3 and the output current Irup of the upstream side air-fuel ratio sensor 40. Is calculated. For example, the oxygen storage amount calculating means A4 multiplies the difference between the air-fuel ratio corresponding to the output current Irup of the upstream air-fuel ratio sensor 40 and the stoichiometric air-fuel ratio by the fuel injection amount Qi and integrates the obtained value. An estimated value OSAest of the oxygen storage amount is calculated. The estimation of the oxygen storage amount of the upstream side exhaust purification catalyst 20 by the oxygen storage amount calculation means A4 may not always be performed.
  • the oxygen storage amount estimated value OSAest reaches the determination reference storage amount Cref (in FIG. 7).
  • the oxygen storage amount may be estimated only until the time t 4 ).
  • the air-fuel ratio of the target air-fuel ratio is calculated based on the estimated value OSAest of the oxygen storage amount calculated by the oxygen storage amount calculation means A4 and the output current Irdwn of the downstream air-fuel ratio sensor 41.
  • a correction amount AFC is calculated. Specifically, the air-fuel ratio correction amount AFC is the lean set correction amount AFClean when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination reference value Iref (value corresponding to the rich determination air-fuel ratio). It is said.
  • the air-fuel ratio correction amount AFC is maintained at the lean set correction amount AFClean until the estimated value OSAest of the oxygen storage amount reaches the determination reference storage amount Cref.
  • the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich.
  • the air-fuel ratio correction amount AFC is maintained at the weak rich set correction amount AFCrich until the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination reference value Iref (a value corresponding to the rich determination air-fuel ratio).
  • the target air-fuel ratio setting means A6 adds the air-fuel ratio correction amount AFC calculated by the target air-fuel ratio correction amount calculation means A5 to the reference air-fuel ratio, in this embodiment, the theoretical air-fuel ratio AFR, so that the target air-fuel ratio is set. AFT is calculated. Therefore, the target air-fuel ratio AFT is the weak rich set air-fuel ratio (when the air-fuel ratio correction amount AFC is the weak rich set correction amount AFCrich) or the lean set air-fuel ratio (when the air-fuel ratio correction amount AFC is the lean set correction amount AFClean). ) The target air-fuel ratio AFT calculated in this way is input to the basic fuel injection amount calculating means A2 and an air-fuel ratio difference calculating means A8 described later.
  • FIG. 10 is a flowchart showing a control routine for calculation control of the air-fuel ratio correction amount AFC.
  • the illustrated control routine is performed by interruption at regular time intervals.
  • step S11 it is determined whether the calculation condition for the air-fuel ratio correction amount AFC is satisfied.
  • the case where the calculation condition of the air-fuel ratio correction amount is satisfied includes, for example, that fuel cut control is not being performed. If it is determined in step S11 that the target air-fuel ratio calculation condition is satisfied, the process proceeds to step S12.
  • step S12 the output current Irup of the upstream air-fuel ratio sensor 40, the output current Irdwn of the downstream air-fuel ratio sensor 41, and the fuel injection amount Qi are acquired.
  • step S13 the estimated value OSAest of the oxygen storage amount is calculated based on the output current Irup and the fuel injection amount Qi of the upstream air-fuel ratio sensor 40 acquired in step S12.
  • step S14 it is determined whether or not the lean setting flag Fr is set to zero.
  • the lean setting flag Fr is set to 1 when the air-fuel ratio correction amount AFC is set to the lean setting correction amount AFClean, and is set to 0 otherwise. If the lean setting flag Fr is set to 0 in step S14, the process proceeds to step S15.
  • step S15 it is determined whether or not the output current Irdwn of the downstream air-fuel ratio sensor 41 is equal to or less than the rich determination reference value Iref. When it is determined that the output current Irdwn of the downstream air-fuel ratio sensor 41 is larger than the rich determination reference value Iref, the control routine is ended.
  • the output current Irdwn of the downstream side air-fuel ratio sensor 41 in step S15 Is determined to be less than or equal to the rich determination reference value Iref.
  • the process proceeds to step S16, and the air-fuel ratio correction amount AFC is set to the lean set correction amount AFClean.
  • the lean setting flag Fr is set to 1, and the control routine is ended.
  • step S14 it is determined in step S14 that the lean setting flag Fr is not set to 0, and the process proceeds to step S18.
  • step S18 it is determined whether or not the estimated value OSAest of the oxygen storage amount calculated in step S13 is smaller than the determination reference storage amount Cref.
  • the routine proceeds to step S19, where the air-fuel ratio correction amount AFC is continuously set to the lean set correction amount AFClean.
  • step S18 when the oxygen storage amount of the upstream side exhaust purification catalyst 20 increases, it is determined in step S18 that the estimated value OSAest of the oxygen storage amount is equal to or greater than the determination reference storage amount Cref, and the process proceeds to step S20.
  • step S20 the air-fuel ratio correction amount AFC is set to the weak rich setting correction amount AFCrich.
  • step S21 the lean setting flag Fr is reset to 0, and the control routine is ended.
  • the numerical value conversion means A7 is a map or calculation formula that defines the relationship between the output current Irup of the upstream air-fuel ratio sensor 40 and the output current Irup of the air-fuel ratio sensor 40 and the air-fuel ratio (for example, a map as shown in FIG. 5). ) To calculate the upstream exhaust air-fuel ratio AFup corresponding to the output current Irup. Therefore, the upstream side exhaust air-fuel ratio AFup corresponds to the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20.
  • This air-fuel ratio difference DAF is a value that represents the excess or deficiency of the fuel supply amount with respect to the target air-fuel ratio AFT.
  • the F / B correction amount calculation means A9 supplies fuel based on the following equation (1) by subjecting the air-fuel ratio difference DAF calculated by the air-fuel ratio difference calculation means A8 to proportional / integral / differential processing (PID processing). An F / B correction amount DFi for compensating for the excess or deficiency of the amount is calculated. The F / B correction amount DFi calculated in this way is input to the fuel injection amount calculation means A3.
  • DFi Kp / DAF + Ki / SDAF + Kd / DDAF (1)
  • Kp is a preset proportional gain (proportional constant)
  • Ki is a preset integral gain (integral constant)
  • Kd is a preset differential gain (differential constant).
  • DDAF is a time differential value of the air-fuel ratio difference DAF, and is calculated by dividing the difference between the air-fuel ratio difference DAF updated this time and the air-fuel ratio difference DAF updated last time by the time corresponding to the update interval. Is done.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is detected by the upstream side air-fuel ratio sensor 40.
  • this exhaust gas is based on the fuel injection amount from the fuel injection valve 11 and the output of the air flow meter 39. You may make it estimate the air fuel ratio of gas.
  • a control device for an internal combustion engine according to a second embodiment of the present invention will be described with reference to FIG.
  • the configuration and control of the internal combustion engine control device according to the second embodiment are basically the same as the configuration and control of the internal combustion engine control device according to the first embodiment.
  • the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich, the air-fuel ratio correction amount AFC is over a short time at certain time intervals.
  • the value temporarily corresponds to the lean air-fuel ratio (for example, a lean set correction amount AFClean). That is, in the control device of the present embodiment, even when the target air-fuel ratio is the weak rich set air-fuel ratio, the lean air-fuel ratio is temporarily reduced over a short period of time at a certain time interval.
  • the fuel ratio is set.
  • FIG. 11 is a diagram similar to FIG. 7, and the times t 1 to t 7 in FIG. 11 show the same control timing as the times t 1 to t 7 in FIG. Therefore, also in the control shown in FIG. 11, the same control as that shown in FIG. 7 is performed at each timing from time t 1 to time t 7 .
  • the empty is temporarily performed a plurality of times.
  • the fuel ratio correction amount AFC is set to the lean set correction amount AFClean.
  • the air-fuel ratio correction amount AFC is a lean set correction amount AFClean over a short time from the time t 8. Since the delays in the change in the air-fuel ratio as described above, the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 is a lean air-fuel ratio over a short time from the time t 9. Thus, when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes the lean air-fuel ratio, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 temporarily increases during that time.
  • the air-fuel ratio correction amount AFC is a lean set correction amount AFClean even over a short period of time at time t 10. Accordingly, the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 is a lean air-fuel ratio over the time t 11 in a short time, during which, the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 Increases temporarily.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is temporarily increased or the oxygen storage amount OSAsc. Can be temporarily reduced. Therefore, according to this embodiment, switch the air-fuel ratio correction quantity AFC weak rich set correction amount AFCrich at time t 4, the output current Irdwn rich determination reference value of the downstream air-fuel ratio sensor 41 at time t 7 The time required to reach Iref can be increased. That is, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 becomes near zero, and the timing at which unburned gas flows out of the upstream side exhaust purification catalyst 20 can be delayed. Thereby, the outflow amount of unburned gas from the upstream side exhaust purification catalyst 20 can be reduced.
  • the air-fuel ratio correction amount AFC is basically set to the weak rich set correction amount AFCrich (time t 4 to t 7 )
  • the air-fuel ratio correction amount AFC is temporarily changed to the lean set correction amount.
  • AFClean When the air-fuel ratio correction amount AFC is temporarily changed in this way, it is not always necessary to change the air-fuel ratio correction amount AFC to the lean set correction amount AFClean, and any value that is leaner than the weak rich set correction amount AFCrich is used. You may change to an air fuel ratio.
  • the air-fuel ratio correction amount AFC is basically set to the lean set correction amount AFClean (time t 2 to t 4 )
  • the air-fuel ratio correction amount AFC may be temporarily set to the weak rich set correction amount AFCrich.
  • the air-fuel ratio correction amount AFC may be changed to any air-fuel ratio as long as it is richer than the lean set correction amount AFClean.
  • the air-fuel ratio correction amount AFC at times t 2 to t 4 is such that the difference between the average value of the target air-fuel ratio and the theoretical air-fuel ratio in the period is the target air-fuel ratio at times t 4 to t 7 . Is set so as to be larger than the difference between the average value and the theoretical air-fuel ratio.
  • the ECU 31 detects that the upstream side when the air-fuel ratio of the exhaust gas detected by the downstream side air-fuel ratio sensor 41 becomes equal to or lower than the rich determination air-fuel ratio.
  • the oxygen storage is performed to make the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 continuously or intermittently the lean set air-fuel ratio.
  • the oxygen storage amount OSAsc of the amount increasing means and the upstream side exhaust purification catalyst 20 becomes equal to or larger than the determination reference storage amount Cref
  • the oxygen storage amount OSAsc decreases toward zero without reaching the maximum oxygen storage amount Cmax.
  • an oxygen storage amount reducing means for continuously or intermittently setting the target air-fuel ratio to a slightly rich set air-fuel ratio.
  • a control apparatus for an internal combustion engine according to a third embodiment of the present invention will be described with reference to FIGS.
  • the configuration and control of the control device for the internal combustion engine according to the second embodiment are basically the same as the configuration and control of the control device for the internal combustion engine according to the above embodiment.
  • both the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor have the same sensor applied voltage, whereas in this embodiment, the sensor applied voltage that differs between these air-fuel ratio sensors. It has become.
  • the upstream air-fuel ratio sensor 70 and the downstream air-fuel ratio sensor 71 of the present embodiment are configured and operate as described with reference to FIGS. 3 and 4, similarly to the air-fuel ratio sensors 40 and 41 of the first embodiment. .
  • These air-fuel ratio sensors 70 and 71 have voltage-current (VI) characteristics as shown in FIG. As can be seen from FIG. 12, when the sensor applied voltage Vr is gradually increased from a negative value when the exhaust gas air-fuel ratio is constant in the region where the sensor applied voltage Vr is 0 or less and in the vicinity of 0, As a result, the output current Ir increases.
  • the flow rate of oxygen ions that can move through the solid electrolyte layer 51 is small. For this reason, the flow rate of oxygen ions that can move through the solid electrolyte layer 51 is smaller than the inflow rate of the exhaust gas through the diffusion-controlling layer 54, so that the output current Ir can move through the solid electrolyte layer 51. It changes according to the flow rate of oxygen ions. Since the flow rate of oxygen ions that can move through the solid electrolyte layer 51 changes according to the sensor applied voltage Vr, the output current increases as the sensor applied voltage Vr increases. The voltage region in which the output current Ir changes in proportion to the sensor applied voltage Vr is referred to as a proportional region. The reason why the output current Ir takes a negative value when the sensor applied voltage Vr is 0 is that an electromotive force E corresponding to the oxygen concentration ratio between both side surfaces of the solid electrolyte layer 51 is generated due to the oxygen battery characteristics.
  • the output current Ir changes according to the oxygen concentration or the unburned gas concentration in the exhaust gas flowing into the measured gas chamber 57 via the diffusion rate controlling layer 54. Even if the sensor applied voltage Vr is changed with the exhaust air-fuel ratio being constant, the oxygen concentration and the unburned gas concentration in the exhaust gas flowing into the measured gas chamber 57 via the diffusion-controlling layer 54 should basically not change. Therefore, the output voltage Ir does not change.
  • the output current Ir depends on the exhaust air / fuel ratio. Change. As can be seen from FIG. 12, the flow direction of the limit current is reversed between the lean air-fuel ratio and the rich air-fuel ratio, and the air-fuel ratio increases when the air-fuel ratio is lean, and the air-fuel ratio decreases when the air-fuel ratio is rich. The absolute value of the limit current increases.
  • the output current Ir begins to increase again accordingly.
  • the moisture contained in the exhaust gas is decomposed on the exhaust-side electrode 52, and a current flows accordingly.
  • the sensor applied voltage Vr is further increased, the current cannot be provided only by the decomposition of water, and the decomposition of the solid electrolyte layer 51 occurs this time.
  • a voltage region in which water and solid electrolyte layer 51 are decomposed in this way is referred to as a water decomposition region.
  • FIG. 13 is a diagram showing the relationship between the exhaust air-fuel ratio and the output current Ir at each sensor applied voltage Vr.
  • the output current Ir changes according to the exhaust air / fuel ratio at least in the vicinity of the theoretical air / fuel ratio.
  • the sensor applied voltage Vr is about 0.1 V to 0.9 V
  • the relationship between the exhaust air-fuel ratio and the output current Ir is the sensor applied voltage Vr in the vicinity of the theoretical air-fuel ratio. It is almost the same regardless of it.
  • the output current Ir hardly changes even if the exhaust air-fuel ratio changes.
  • This constant exhaust air-fuel ratio also changes according to the sensor applied voltage Vr, and is lower as the sensor applied voltage Vr is lower. For this reason, when the sensor applied voltage Vr is lowered to a certain value or less, the output current Ir does not become zero regardless of the exhaust air / fuel ratio, as indicated by a two-dot chain line in the figure ( For example, when the sensor applied voltage Vr is 0 V, the output current Ir does not become 0 regardless of the exhaust air-fuel ratio).
  • FIG. 14 is an enlarged view of a region where the output current Ir is close to 0 (region indicated by XX in FIG. 12) in the voltage-current diagram of FIG.
  • the output current Ir also increases slightly as the sensor applied voltage Vr increases.
  • the sensor applied voltage Vr is somewhat lower than 0.45 V (for example, 0.2 V)
  • the output current becomes a value lower than 0.
  • the sensor applied voltage Vr is somewhat higher than 0.45 V (for example, 0.7 V)
  • the output current becomes a value higher than 0.
  • FIG. 15 is an enlarged view of the air-fuel ratio-current diagram of FIG. 13 where the exhaust air-fuel ratio is close to the theoretical air-fuel ratio and the output current Ir is close to 0 (the region indicated by Y in FIG. 13).
  • FIG. FIG. 15 shows that in the region near the theoretical air-fuel ratio, the output current Ir for the same exhaust air-fuel ratio is slightly different for each sensor applied voltage Vr.
  • the output current Ir becomes 0 when the sensor applied voltage Vr is 0.45 V.
  • the output current Ir increases.
  • the sensor application voltage Vr is less than 0.45V, the output current Ir also decreases.
  • FIG. 15 shows that the exhaust air / fuel ratio when the output current Ir becomes 0 (hereinafter referred to as “exhaust air / fuel ratio at zero current”) differs for each sensor applied voltage Vr.
  • the output current Ir becomes 0 when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio.
  • the sensor applied voltage Vr is larger than 0.45 V, the output current Ir becomes 0 when the exhaust air-fuel ratio is richer than the stoichiometric air-fuel ratio, and the current increases as the sensor applied voltage Vr increases.
  • the exhaust air-fuel ratio at zero becomes smaller.
  • the output current Ir becomes 0 when the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio, and when the sensor applied voltage Vr becomes smaller, the current becomes zero.
  • the exhaust air / fuel ratio increases. That is, by changing the sensor applied voltage Vr, the exhaust air-fuel ratio at the time of zero current can be changed.
  • the slope in FIG. 5, that is, the ratio of the increase amount of the output current to the increase amount of the exhaust air-fuel ratio (hereinafter referred to as “output current change rate”) is not necessarily the same even through the same production process, Even if the same type of air-fuel ratio sensor is used, there will be variations among individuals. In addition, even in the same air-fuel ratio sensor, the output current change rate changes due to deterioration over time. As a result, even if the same type of sensor configured to have the output characteristics indicated by the solid line A in FIG. 16 is used, as indicated by the broken line B in FIG. The output current change rate decreases, or the output current change rate increases as indicated by the alternate long and short dash line C.
  • the output current of the air-fuel ratio sensor varies depending on the sensor used, the period of use, and the like. For example, when the air-fuel ratio sensor has output characteristics as indicated by the solid line A, the output current when measuring the exhaust gas having an air-fuel ratio of af 1 is I 2 . However, when the air-fuel ratio sensor has output characteristics as indicated by the broken line B or the alternate long and short dash line C, the output currents when measuring the exhaust gas having an air-fuel ratio of af 1 are I 1 and I, respectively. 3 , resulting in an output current different from I 2 described above.
  • the exhaust air-fuel ratio at zero current (FIG. 16).
  • the stoichiometric air-fuel ratio hardly changes. That is, when the output current Ir takes a value other than zero, it is difficult to accurately detect the absolute value of the exhaust air-fuel ratio, whereas when the output current Ir becomes zero, the absolute value of the exhaust air-fuel ratio. (The theoretical air-fuel ratio in the example of FIG. 16) can be accurately detected.
  • the air-fuel ratio sensors 70 and 71 can change the exhaust air-fuel ratio at zero current by changing the sensor applied voltage Vr. That is, if the sensor applied voltage Vr is set appropriately, the absolute value of the exhaust air / fuel ratio other than the stoichiometric air / fuel ratio can be accurately detected. In particular, when the sensor applied voltage Vr is changed within a “specific voltage range” to be described later, the exhaust air / fuel ratio at zero current is only slightly (for example, ⁇ 1) with respect to the theoretical air / fuel ratio (14.6). % Range (within about 14.45 to about 14.75) can be adjusted. Therefore, by appropriately setting the sensor applied voltage Vr, it becomes possible to accurately detect the absolute value of the air-fuel ratio slightly different from the theoretical air-fuel ratio.
  • the exhaust air / fuel ratio at the time of zero current can be changed by changing the sensor applied voltage Vr.
  • the sensor applied voltage Vr is made larger than a certain upper limit voltage or made smaller than a certain lower limit voltage, the amount of change in the exhaust air / fuel ratio at zero current with respect to the amount of change in the sensor applied voltage Vr becomes larger. Therefore, in such a voltage region, if the sensor applied voltage Vr slightly shifts, the exhaust air-fuel ratio at the time of zero current changes greatly. Therefore, in such a voltage region, in order to accurately detect the absolute value of the exhaust air / fuel ratio, it is necessary to precisely control the sensor applied voltage Vr, which is not practical. For this reason, from the viewpoint of accurately detecting the absolute value of the exhaust air-fuel ratio, the sensor applied voltage Vr needs to be a value within a “specific voltage region” between a certain upper limit voltage and a certain lower limit voltage. Become.
  • the air-fuel ratio sensors 70 and 71 have a limit current region that is a voltage region in which the output current Ir becomes a limit current for each exhaust air-fuel ratio.
  • the limit current region when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio is set as the “specific voltage region”.
  • the exhaust air-fuel ratio becomes any value as indicated by a one-dot chain line in the figure. Even if it exists, the output current Ir does not become zero.
  • the sensor applied voltage Vr is lowered below a certain value (minimum voltage)
  • the output current Ir becomes 0 regardless of the exhaust air / fuel ratio, as indicated by the two-dot chain line in the figure. No longer.
  • the sensor applied voltage Vr is a voltage between the maximum voltage and the minimum voltage, an exhaust air-fuel ratio where the output current becomes zero exists. Conversely, if the sensor applied voltage Vr is higher than the maximum voltage or lower than the minimum voltage, there is no exhaust air / fuel ratio at which the output current becomes zero. Therefore, the sensor applied voltage Vr is at least a voltage at which the output current becomes zero when the exhaust air-fuel ratio is any air-fuel ratio, that is, a voltage between the maximum voltage and the minimum voltage. I need it.
  • the above-described “specific voltage region” is a voltage region between the maximum voltage and the minimum voltage.
  • the sensor applied voltage Vrupp in the upstream air-fuel ratio sensor 70 is theoretically the exhaust air-fuel ratio.
  • the voltage is fixed such that the output current becomes zero when the air-fuel ratio is 14.6 in the present embodiment (for example, 0.45 V).
  • the sensor applied voltage Vrup is set so that the exhaust air-fuel ratio at zero current becomes the stoichiometric air-fuel ratio.
  • the sensor applied voltage Vr in the downstream air-fuel ratio sensor 71 is predetermined that the exhaust air-fuel ratio is slightly richer than the stoichiometric air-fuel ratio. It is fixed at a constant voltage (for example, 0.7 V) such that the output current becomes zero when the rich determination air-fuel ratio (for example, 14.55).
  • the sensor applied voltage Vrdwn is set so that the exhaust air-fuel ratio at the time of zero current becomes a rich determination air-fuel ratio that is slightly richer than the theoretical air-fuel ratio.
  • the sensor applied voltage Vrdwn in the downstream air-fuel ratio sensor 71 is higher than the sensor applied voltage Vrupp in the upstream air-fuel ratio sensor 70.
  • the ECU 31 connected to both the air-fuel ratio sensors 70 and 71 has the stoichiometric air-fuel ratio around the upstream air-fuel ratio sensor 70 when the output current Irup of the upstream air-fuel ratio sensor 70 becomes zero.
  • the ECU 31 determines that the exhaust air-fuel ratio around the downstream air-fuel ratio sensor 71 is different from the rich determination air-fuel ratio, that is, the stoichiometric air-fuel ratio. Judge that the air-fuel ratio.
  • the air-fuel ratio control in the third embodiment is basically the same as the air-fuel ratio control in the above embodiment. However, in the first embodiment, it switches the target air-fuel ratio to a lean set air-fuel ratio when at time t 2 the output current Irdwn of the downstream air-fuel ratio sensor 41 is equal to or less than the rich determination reference value Iref. In contrast, in the present embodiment, the target air-fuel ratio is switched to the lean set air-fuel ratio when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes zero or less.
  • FIG. 17 is a diagram similar to FIG. 7 and is a time chart of the oxygen storage amount OSAsc and the like of the upstream side exhaust purification catalyst 20 when the control in the present embodiment is performed. Below, only a different part from the control in FIG. 7 is demonstrated.
  • the output current Irdwn of the downstream side air-fuel ratio sensor 71 is less than zero. It is a big value. Thereafter, a part of the unburned gas in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 from time t 1 starts to flow out without being purified by the upstream side exhaust purification catalyst 20. Accordingly, the output current Irdwn of the downstream air-fuel ratio sensor 71 decreases toward zero, the zero at time t 2.
  • the air-fuel ratio correction amount AFC is set to the lean set air-fuel ratio in order to suppress the decrease in the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20. It is switched to the corresponding value AFClean.
  • the subsequent control is basically the same as the example shown in FIG.
  • the downstream air-fuel ratio sensor 41 can accurately detect the absolute value at the rich determination air-fuel ratio.
  • the switching timing of the air-fuel ratio correction amount AFC from the weak rich setting correction amount AFCrich to the lean setting correction amount AFClean is delayed, or such switching is performed at a timing that does not require switching.
  • the downstream air-fuel ratio sensor 41 can accurately detect the absolute value at the rich determination air-fuel ratio. For this reason, it is possible to suppress a delay in the switching timing of the air-fuel ratio correction amount AFC from the weak rich setting correction amount AFCrich to the lean setting correction amount AFClean or switching at a timing that does not require switching.
  • the configuration and control of the control device for the internal combustion engine according to the fourth embodiment are basically the same as the configuration and control of the control device for the internal combustion engine according to the above embodiment.
  • a one-cell type air-fuel ratio sensor having one cell composed of a solid electrolyte layer and a pair of electrodes is used as the air-fuel ratio sensor, whereas in the fourth embodiment, the air-fuel ratio sensor is used.
  • a two-cell type air-fuel ratio sensor having two such cells is used as a sensor.
  • FIG. 18 is a schematic cross-sectional view of the air-fuel ratio sensors 70 and 71.
  • the air-fuel ratio sensors 70 and 71 in the present embodiment are two-cell type air-fuel ratio sensors having two cells each composed of a solid electrolyte layer and a pair of electrodes.
  • the air-fuel ratio sensors 70 and 71 include a measured gas chamber 81, a reference gas chamber 82, and two solid electrolyte layers 83 and 84 disposed on both sides of the measured gas chamber 81. It has.
  • the reference gas chamber 82 is provided on the opposite side of the measured gas chamber 81 with the second solid electrolyte layer 84 interposed therebetween.
  • a gas chamber side electrode (third electrode) 85 is disposed on the side surface of the first solid electrolyte layer 83 on the measured gas chamber 81 side, and an exhaust side electrode is disposed on the side surface of the first solid electrolyte layer 83 on the exhaust gas side. (Fourth electrode) 86 is arranged.
  • the first solid electrolyte layer 83, the gas chamber side electrode 85, and the exhaust side electrode 86 constitute a pump cell 90.
  • a gas chamber side electrode (first electrode) 87 is disposed on the side surface of the second solid electrolyte layer 84 on the measured gas chamber 81 side, and on the side surface of the second solid electrolyte layer 84 on the reference gas chamber 82 side.
  • a reference side electrode (second electrode) 88 is disposed.
  • the second solid electrolyte layer 84, the gas chamber side electrode 87 and the reference side electrode 88 constitute a reference cell 91.
  • a diffusion control layer 93 is provided so as to surround the gas chamber side electrode 85 of the pump cell 90 and the gas chamber side electrode 87 of the reference cell 91.
  • the measured gas chamber 81 is defined by the first solid electrolyte layer 83, the second solid electrolyte layer 84, and the diffusion-controlling layer 93. Exhaust gas is allowed to flow into the measured gas chamber 81 via the diffusion-controlling layer 93. Therefore, the electrodes arranged in the measured gas chamber 81, that is, the gas chamber side electrode 85 of the pump cell 90 and the gas chamber side electrode 87 of the reference cell 91 are exposed to the exhaust gas through the diffusion control layer 93. Become.
  • the diffusion control layer 93 is not necessarily provided so that the exhaust gas flowing into the measured gas chamber 81 passes therethrough. As long as the exhaust gas reaching the gas chamber side electrode 87 of the reference cell 91 becomes the exhaust gas that has passed through the diffusion control layer, the diffusion control layer may be arranged in any manner.
  • a heater portion 94 is provided on the side surface of the second solid electrolyte layer 84 on the side of the reference gas chamber 82 so as to surround the reference gas chamber 82. Therefore, the reference gas chamber 82 is defined by the second solid electrolyte layer 84 and the heater unit 94.
  • a reference gas is introduced into the reference gas chamber 82.
  • the reference gas chamber 82 is open to the atmosphere, and therefore the atmosphere is introduced into the reference gas chamber 82 as a reference gas.
  • the heater unit 94 is provided with a plurality of heaters 95, and the heaters 95 can control the temperature of the air-fuel ratio sensors 70 and 71, particularly the temperature of the solid electrolyte layers 83 and 84.
  • the heater section 94 has a heat generation capacity sufficient to heat the solid electrolyte layers 83 and 84 until they are activated.
  • a protective layer 96 is provided on the side surface of the first solid electrolyte layer 83 on the exhaust gas side.
  • the protective layer 96 is formed of a porous material so that the exhaust gas reaches the exhaust side electrode 86 while preventing liquid or the like in the exhaust gas from directly attaching to the exhaust side electrode 86.
  • the solid electrolyte layers 83 and 84 are formed of the same material as the solid electrolyte layer 51 of the first embodiment. Further, the diffusion control layer 93 is also formed of the same material as the diffusion control layer 54 of the first embodiment. Further, the electrodes 85 to 88 are also made of the same material as the electrodes 52 and 53 of the first embodiment.
  • a reference voltage (corresponding to a sensor applied voltage in the first embodiment) Vr is applied between the gas chamber side electrode 87 and the reference side electrode 88 of the reference cell 91 by the reference voltage applying device 100 mounted on the ECU 31.
  • the ECU 31 includes a reference current detection device 101 that detects a reference current Ir flowing between the electrodes 87 and 88 via the second solid electrolyte layer 84 when the reference voltage Vr is applied by the reference voltage application device 100.
  • the pump voltage Vp is applied between the gas chamber side electrode 85 and the exhaust side electrode 86 of the pump cell 90 by the pump voltage application device 102 mounted on the ECU 31.
  • the pump voltage Vp applied by the pump voltage application device 102 is set according to the reference current Ir detected by the reference current detection device 101.
  • the pump voltage Vp is set according to the difference between the reference current Ir detected by the reference current detection device 101 and the preset target current (zero in this embodiment).
  • the ECU 31 has a pump current detection device 103 that detects a pump current Ip flowing between the electrodes 85 and 86 via the first solid electrolyte layer 83 when the pump voltage Vp is applied by the pump voltage application device 102. Provided.
  • the pump voltage application device 102 changes the pump voltage Vp
  • the pump current Ip flowing between the electrodes 85 and 86 changes.
  • the pump voltage application device 102 controls the pump current Ip. Therefore, the pump voltage application device 102 functions as a pump current control device that controls the pump current Ip.
  • the pump current Ip can also be changed by, for example, arranging a variable resistor in series with the pump voltage application device 102 and changing the variable resistor. Therefore, means other than the pump voltage application device 102 such as a variable resistor can be used as the pump current control device.
  • FIG. 19 is a diagram schematically showing the operation of the air-fuel ratio sensors 70 and 71.
  • the air-fuel ratio sensors 70 and 71 are arranged so that the outer peripheral surfaces of the protective layer 96 and the diffusion-controlling layer 93 are exposed to the exhaust gas.
  • the atmosphere is introduced into the reference gas chamber 82 of the air-fuel ratio sensors 70 and 71.
  • the solid electrolyte layers 83 and 84 are formed of a sintered body of an oxygen ion conductive oxide. For this reason, when a difference in oxygen concentration occurs between both side surfaces of the solid electrolyte layers 83 and 84 in a state activated by high temperature, the oxygen ions try to move from the side surface side with high concentration to the side surface side with low concentration.
  • the electromotive force E is generated (oxygen battery characteristics).
  • the oxygen ion migration is caused so that an oxygen concentration ratio is generated between both side surfaces of the solid electrolyte layer according to the potential difference. It has the characteristic (oxygen pump characteristic). Specifically, when a potential difference is applied between both side surfaces, the oxygen concentration on the side surface provided with positive polarity is a ratio corresponding to the potential difference with respect to the oxygen concentration on the side surface provided with negative polarity. The movement of oxygen ions is caused to increase.
  • the reference cell 91 of the present embodiment functions in the same manner as the cell constituted by the solid electrolyte layer 51, the exhaust side electrode 52, and the atmosphere side electrode 53 in the first embodiment. Therefore, in the reference cell 91, the exhaust air / fuel ratio in the measured gas chamber 81 applies the air / fuel ratio corresponding to the reference voltage Vr applied between the electrodes 87 and 88 by the reference voltage applying device 100 (that is, the reference voltage Vr is applied). The reference current flowing between the electrodes 87 and 88 becomes zero when the current (exhaust air / fuel ratio at zero current) matches.
  • the reference current flowing between the electrodes 87 and 88 becomes a negative current, and the magnitude corresponds to the reference voltage Vr. It is proportional to the difference from the air / fuel ratio.
  • the reference current flowing between the electrodes 87 and 88 becomes a positive current, and the magnitude thereof becomes the reference voltage Vr. It is proportional to the difference from the corresponding air / fuel ratio.
  • the pump voltage is applied to the electrodes 85 and 86 of the pump cell 90 by the pump voltage application device 102 based on this.
  • a pump voltage is applied using the exhaust side electrode 86 as a positive electrode and the gas chamber side electrode 85 as a negative electrode.
  • the flow rate of oxygen pumped from the measured gas chamber 81 into the exhaust gas around the air-fuel ratio sensors 70 and 71 is proportional to the pump voltage, and the pump voltage is a positive reference detected by the reference current detector 101. Proportional to current magnitude. Therefore, the more the exhaust air / fuel ratio in the measured gas chamber 81 deviates from the air / fuel ratio corresponding to the reference voltage Vr to a leaner level, that is, the higher the oxygen concentration in the measured gas chamber 81, the more the measured air from the measured gas chamber 81.
  • the flow rate of oxygen pumped into the exhaust gas around the air-fuel ratio sensors 70 and 71 increases.
  • the flow rate of oxygen flowing into the measured gas chamber 81 via the diffusion rate controlling layer 93 and the flow rate of oxygen pumped out by the pump cell 90 are basically the same, and the measured gas chamber 81 is basically substantially the reference.
  • the air-fuel ratio corresponding to the voltage Vr is maintained.
  • the flow rate of oxygen pumped out by the pump cell 90 is equal to the flow rate of oxygen ions that have moved through the first solid electrolyte layer 83 of the pump cell 90.
  • the flow rate of this oxygen ion is equal to the current flowing between the electrodes 85 and 86 of the pump cell 90. Therefore, the current flowing between the electrodes 85 and 86 is detected by the pump current detection device 103, so that the flow rate of oxygen flowing into the measured gas chamber 81 through the diffusion rate controlling layer 93, and accordingly, around the measured gas chamber 81.
  • the lean air-fuel ratio of the exhaust gas can be detected.
  • a pump voltage is applied between the electrodes 85 and 86 of the pump cell 90 by the pump voltage application device 102 based on this.
  • a pump voltage is applied using the gas chamber side electrode 85 as a positive electrode and the exhaust side electrode 86 as a negative electrode.
  • the flow rate of oxygen pumped into the measured gas chamber 81 from the exhaust gas around the air-fuel ratio sensors 70 and 71 is proportional to the pump voltage, and the pump voltage is a negative reference detected by the reference current detector 101. Proportional to current magnitude. Therefore, as the exhaust air-fuel ratio in the measured gas chamber 81 is richly deviated from the air-fuel ratio corresponding to the reference voltage Vr, that is, as the unburned gas concentration in the measured gas chamber 81 is higher, the air-fuel ratio sensors 70 and 71 are increased. The flow rate of oxygen pumped into the measured gas chamber 81 from the surrounding exhaust gas increases.
  • the flow rate of the unburned gas flowing into the measured gas chamber 81 via the diffusion rate controlling layer 93 and the oxygen flow rate pumped by the pump cell 90 become a chemical equivalence ratio, and thus the measured gas chamber 81 has a basic structure. Therefore, the air-fuel ratio corresponding to the reference voltage Vr is maintained.
  • the oxygen flow rate pumped by the pump cell 90 is equal to the flow rate of oxygen ions that have moved through the first solid electrolyte layer 83 in the pump cell 90.
  • the flow rate of this oxygen ion is equal to the current flowing between the electrodes 85 and 86 of the pump cell 90. Therefore, the current flowing between the electrodes 85 and 86 is detected by the pump current detection device 103, so that the flow rate of the unburned gas flowing into the measured gas chamber 81 through the diffusion rate controlling layer 93, and therefore the measured gas chamber.
  • the rich air-fuel ratio of the exhaust gas around 81 can be detected.
  • the pump voltage applied by the pump voltage application device 102 is also zero. For this reason, oxygen ions do not move in the first solid electrolyte layer 83 of the pump cell 90, and thus the measured gas chamber 81 is basically maintained at an air-fuel ratio corresponding to the reference voltage Vr. Further, since no movement of oxygen ions occurs in the first solid electrolyte layer 83 of the pump cell 90, the pump current detected by the pump current detection device 103 is also zero. Therefore, when the pump current detected by the pump current detector 103 is zero, it can be seen that the air-fuel ratio of the exhaust gas around the measured gas chamber 81 is the air-fuel ratio corresponding to the reference voltage Vr.
  • the air-fuel ratio sensors 70 and 71 of the present embodiment when the exhaust air-fuel ratio around the air-fuel ratio sensors 70 and 71 coincides with the air-fuel ratio corresponding to the reference voltage Vr, the pump current as the output current is zero. It becomes. Further, when the exhaust air-fuel ratio around the air-fuel ratio sensors 70 and 71 is leaner than the air-fuel ratio corresponding to the reference voltage Vr, the pump current that is the output current becomes positive, and the absolute value of the pump current depends on the degree of lean. growing.
  • the air-fuel ratio corresponding to the reference voltage Vr that is, the exhaust air-fuel ratio at zero current when the reference voltage Vr is applied, has been described in relation to the air-fuel ratio sensors 40 and 41 of the first embodiment.
  • the air-fuel ratio at zero current becomes the stoichiometric air-fuel ratio.
  • the reference voltage Vr is greater than 0.45V
  • the exhaust air / fuel ratio at zero current becomes a rich air / fuel ratio
  • the reference voltage Vr is smaller than 0.45V
  • the exhaust air / fuel ratio at zero current becomes lean. It becomes an air fuel ratio.
  • the reference voltage Vrup in the upstream air-fuel ratio sensor 40 is a voltage (for example, 0) at which the output current becomes zero when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio (14.6 in the present embodiment). .45V).
  • the upstream side air-fuel ratio sensor 40 sets the reference voltage Vrup so that the exhaust air-fuel ratio at zero current becomes the stoichiometric air-fuel ratio.
  • the reference voltage Vrdwn in the downstream air-fuel ratio sensor 41 has an output current when the exhaust air-fuel ratio is a predetermined rich determination air-fuel ratio (for example, 14.55) that is slightly richer than the theoretical air-fuel ratio.
  • the voltage is set to zero (for example, 0.7 V).
  • the reference voltage Vrdwn is set so that the exhaust air-fuel ratio at the time of zero current becomes a rich determination air-fuel ratio that is slightly richer than the theoretical air-fuel ratio.
  • the reference voltage Vrdwn in the downstream air-fuel ratio sensor 41 is set to a voltage higher than the reference voltage Vrup in the upstream air-fuel ratio sensor 40.
  • the ECU 31 connected to both the air-fuel ratio sensors 70 and 71 determines that the exhaust air-fuel ratio around the upstream air-fuel ratio sensor 40 is theoretical when the pump current Iupp that is the output current of the upstream air-fuel ratio sensor 40 becomes zero. Judge that the air-fuel ratio.
  • the ECU 31 determines that the exhaust air-fuel ratio around the downstream air-fuel ratio sensor 41 is different from the rich determination air-fuel ratio, that is, the stoichiometric air-fuel ratio, when the pump current Ipdwn that is the output current of the downstream air-fuel ratio sensor 41 becomes zero. It is determined that the air-fuel ratio is determined in advance.
  • both the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor are 1-cell type air-fuel ratio sensors.
  • the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor All of the air-fuel ratio sensors are two-cell type air-fuel ratio sensors.
  • the upstream air-fuel ratio sensor may be a 2-cell air-fuel ratio sensor
  • the downstream air-fuel ratio sensor may be a 1-cell air-fuel ratio sensor.
  • the upstream air-fuel ratio sensor may be a 1-cell air-fuel ratio sensor
  • the downstream air-fuel ratio sensor may be a 2-cell air-fuel ratio sensor.
  • the sensor applied voltage (reference voltage) Vrupp in the downstream air-fuel ratio sensor 41 is higher than the sensor applied voltage (reference voltage) Vrdwn in the upstream air-fuel ratio sensor 40.
  • both the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor may use the two-cell type air-fuel ratio sensor, and the reference voltage Vr in both air-fuel ratio sensors may be the same as in the first embodiment. In this case, it is determined that the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 has become the rich determination air-fuel ratio when the pump current Ip of the downstream air-fuel ratio sensor becomes a predetermined value other than zero. To do.
  • the oxygen storage amount of the exhaust purification catalyst is described as changing between the maximum oxygen storage amount and zero. This means that the amount of oxygen that can be further stored by the exhaust purification catalyst varies between zero (when the oxygen storage amount is the maximum oxygen storage amount) and the maximum value (when the oxygen storage amount is zero). Means.

Abstract

 内燃機関の排気通路に配置されると共に酸素を吸蔵可能な排気浄化触媒20を備えた内燃機関の制御装置は、排気浄化触媒の排気流れ方向下流側に配置された下流側空燃比検出手段と、前記排気浄化触媒に流入する排気ガスの空燃比を制御する流入空燃比制御手段とを具備する。流入空燃比制御手段は、下流側空燃比検出手段によって検出された流出空燃比が理論空燃比よりもリッチであるリッチ判定空燃比以下になったときに、排気浄化触媒の酸素吸蔵量が所定の吸蔵量となるまで、排気浄化触媒に流入する排気ガスの目標空燃比が継続的又は断続的に理論空燃比よりもリーンにする。また、流入空燃比制御手段は、排気浄化触媒の酸素吸蔵量が所定の吸蔵量以上になったときに、酸素吸蔵量が最大酸素吸蔵量に達することなく零に向けて減少するように、目標空燃比を継続的又は断続的に理論空燃比よりもリッチにする。

Description

内燃機関の制御装置
 本発明は、空燃比センサの出力に応じて内燃機関を制御する内燃機関の制御装置に関する。
 従来から、内燃機関の排気通路に空燃比センサを設け、この空燃比センサの出力に基づいて内燃機関に供給する燃料量を制御する内燃機関の制御装置が広く知られている(例えば、特許文献1~4を参照)。
 斯かる制御装置では、排気通路内に設けられた酸素吸蔵能力を有する排気浄化触媒が用いられる。酸素吸蔵能力を有する排気浄化触媒は、酸素吸蔵量が上限吸蔵量と下限吸蔵量との間の適当な量であるときには、排気浄化触媒に流入する排気ガス中の未燃ガス(HCやCO等)やNOx等を浄化できる。すなわち、排気浄化触媒に理論空燃比よりもリッチ側の空燃比(以下、「リッチ空燃比」ともいう)の排気ガスが流入すると、排気浄化触媒に吸蔵されている酸素により排気ガス中の未燃ガスが酸化浄化される。逆に、排気浄化触媒に理論空燃比よりもリーン側の空燃比(以下、「リーン空燃比」ともいう)の排気ガスが流入すると、排気ガス中の酸素が排気浄化触媒に吸蔵される。これにより、排気浄化触媒表面上で酸素不足状態となり、これに伴って排気ガス中のNOxが還元浄化される。その結果、排気浄化触媒は、酸素吸蔵量が適当な量である限り、排気浄化触媒に流入する排気ガスの空燃比に関わらず、排気ガスを浄化することができる。
 そこで、斯かる制御装置では、排気浄化触媒における酸素吸蔵量を適切な量に維持すべく、排気浄化触媒の排気流れ方向上流側に空燃比センサを設け、排気流れ方向下流側に酸素センサを設けるようにしている。これらセンサを用いて、制御装置は、上流側の空燃比センサの出力に基づいてこの空燃比センサの出力が目標空燃比に相当する目標値となるようにフィードバック制御を行う。加えて、下流側の酸素センサの出力に基づいて上流側の空燃比センサの目標値を補正する。なお、以下の説明では、排気流れ方向上流側を単に「上流側」と称し、排気流れ方向下流側を単に「下流側」と称する場合もある。
 例えば、特許文献1に記載の制御装置では、下流側の酸素センサの出力電圧が高側閾値以上であって、排気浄化触媒の状態が酸素不足状態であるときには、排気浄化触媒に流入する排気ガスの目標空燃比がリーン空燃比とされる。逆に、下流側の酸素センサの出力電圧が低側閾値以下であって、排気浄化触媒の状態が酸素過剰状態であるときには、目標空燃比がリッチ空燃比とされる。特許文献1によれば、これにより、酸素不足状態又は酸素過剰状態にあるときに、排気浄化触媒の状態を速やかにこれら両状態の中間の状態(すなわち、排気浄化触媒に適当な量の酸素が吸蔵されている状態)に戻すことができるとされている。
 加えて、上記制御装置では、下流側の酸素センサの出力電圧が高側閾値と低側閾値との間にある場合、酸素センサの出力電圧が増大傾向にあるときには目標空燃比がリーン空燃比とされる。逆に、酸素センサの出力電圧が減少傾向にあるときには目標空燃比がリッチ空燃比とされる。特許文献1によれば、これにより、排気浄化触媒の状態が酸素不足状態又は酸素過剰状態となることを未然に防止することができるとされている。
 また、特許文献2に記載の制御装置では、エアフロメータ及び排気浄化触媒の上流側の空燃比センサ等の出力に基づいて、排気浄化触媒の酸素吸蔵量を算出している。その上で、算出された酸素吸蔵量が目標酸素吸蔵量よりも多いときには排気浄化触媒に流入する排気ガスの目標空燃比をリッチ空燃比とし、算出された酸素吸蔵量が目標酸素吸蔵量よりも少ないときには目標空燃比をリーン空燃比としている。特許文献2によれば、これにより、排気浄化触媒の酸素吸蔵量を目標酸素吸蔵量に一定に維持することができるとされている。
特開2011-069337号公報 特開2001-234787号公報 特開平8-232723号公報 特開2009-162139号公報
 図2に、排気浄化触媒の酸素吸蔵量と排気浄化触媒から流出する排気ガス中のNOx及び未燃ガス(HC、CO等)の濃度との関係を示す。図2(A)は、排気浄化触媒に流入する排気ガスの空燃比がリーン空燃比であるときの、酸素吸蔵量と排気浄化触媒から流出する排気ガス中のNOx濃度との関係を示す。一方、図2(B)は、排気浄化触媒に流入する排気ガスの空燃比がリッチ空燃比であるときの、酸素吸蔵量と排気浄化触媒から流出する排気ガス中の未燃ガスの濃度との関係を示す。
 図2(A)からわかるように、排気浄化触媒の酸素吸蔵量が少ないときには、最大酸素吸蔵量まで余裕がある。このため、排気浄化触媒に流入する排気ガスの空燃比がリーン空燃比(すなわち、この排気ガスがNOx及び酸素を含む)であっても、排気ガス中の酸素は排気浄化触媒に吸蔵され、これに伴ってNOxも還元浄化される。この結果、排気浄化触媒から流出する排気ガス中にはほとんどNOxは含まれない。
 しかしながら、排気浄化触媒の酸素吸蔵量が多くなると、排気浄化触媒に流入する排気ガスの空燃比がリーン空燃比である場合、排気浄化触媒において排気ガス中の酸素を吸蔵しにくくなり、これに伴って排気ガス中のNOxも還元浄化されにくくなる。このため、図2(A)からわかるように、酸素吸蔵量が或る上限吸蔵量Cuplimを超えて増大すると排気浄化触媒から流出する排気ガス中のNOx濃度が急激に上昇する。
 一方、排気浄化触媒の酸素吸蔵量が多いときには、排気浄化触媒に流入する排気ガスの空燃比がリッチ空燃比(すなわち、この排気ガスがHCやCO等の未燃ガスを含む)であると、排気浄化触媒に吸蔵されている酸素が放出される。このため、排気浄化触媒に流入する排気ガス中の未燃ガスは酸化浄化される。この結果、図2(B)からわかるように、排気浄化触媒から流出する排気ガス中にはほとんど未燃ガスは含まれない。
 しかしながら、排気浄化触媒の酸素吸蔵量が少なくなると、排気浄化触媒に流入する排気ガスの空燃比がリッチ空燃比である場合、排気浄化触媒から放出される酸素が少なくなり、これに伴って排気ガス中の未燃ガスも酸化浄化されにくくなる。このため、図2(B)からわかるように、酸素吸蔵量が或る下限吸蔵量Clowlimを超えて減少すると排気浄化触媒から流出する排気ガス中の未燃ガスの濃度が急激に上昇する。
 排気浄化触媒の酸素吸蔵量と流出排気ガス中のNOx濃度とは上述したような関係を有する。このため、特許文献1に記載された制御を行った場合、すなわち下流側の酸素センサの出力電圧が低側閾値以下になったときに目標空燃比をリッチ空燃比に設定する制御を行った場合には排気浄化触媒からは或る程度のNOxが流出する。この様子を、図20に示す。
 図20は、排気浄化触媒の酸素吸蔵量、下流側の酸素センサによって検出される排気ガスの空燃比、排気浄化触媒に流入する排気ガスの目標空燃比、上流側の空燃比センサによって検出される排気ガスの空燃比、及び排気浄化触媒から流出する排気ガス中のNOx濃度のタイムチャートである。
 図示した例では、時刻t1以前の状態では、排気浄化触媒に流入する排気ガスの目標空燃比がリーン空燃比とされている。このため、排気浄化触媒の酸素吸蔵量は徐々に増加している。一方、排気浄化触媒に流入する排気ガス中の酸素は全て排気浄化触媒において吸蔵されるため、排気浄化触媒から流出する排気ガス中には酸素はほとんど含まれていない。このため、下流側の酸素センサによって検出される排気ガスの空燃比はほぼ理論空燃比となる。同様に、排気浄化触媒に流入する排気ガス中のNOxは全て排気浄化触媒において還元浄化されるため、排気浄化触媒から流出する排気ガス中にはNOxもほとんど含まれていない。
 排気浄化触媒の酸素吸蔵量が徐々に増加して最大酸素吸蔵量Cmaxに近づくと、図2に示したように、排気浄化触媒に流入する排気ガス中の酸素の一部が排気浄化触媒に吸蔵されなくなり、その結果、時刻t1から、排気浄化触媒から流出する排気ガス中に酸素が含まれるようになる。このため、下流側酸素センサによって検出される排気ガスの空燃比はリーン空燃比となる。その後、排気浄化触媒の酸素吸蔵量がさらに増加すると、排気浄化触媒から流出する排気ガスの空燃比が、予め定められた上限空燃比AFhighref(低側閾値に相当)に達し、目標空燃比がリッチ空燃比に切り替えられる。
 目標空燃比がリッチ空燃比に切り替えられると、切り替えられた目標空燃比に合わせて内燃機関における燃料噴射量が増大せしめられる。このように燃料噴射量が増大されても、内燃機関本体から排気浄化触媒までは或る程度の距離があるため、排気浄化触媒に流入する排気ガスの空燃比は直ぐにはリッチ空燃比に変更されずに遅れが生じる。このため、目標空燃比が時刻t2でリッチ空燃比に切り替えられてもなお、時刻t3まで排気浄化触媒に流入する排気ガスの空燃比はリーン空燃比のままになる。このため、時刻t2からt3の間においては、排気浄化触媒の酸素吸蔵量が最大酸素吸蔵量Cmaxに達するか、又は最大酸素吸蔵量Cmax近傍の値となり、その結果、排気浄化触媒からは酸素及びNOxが流出することになる。その後、時刻t3において排気浄化触媒に流入する排気ガスの空燃比がリッチ空燃比となり、排気浄化触媒から流出する排気ガスの空燃比が理論空燃比に収束していく。
 このように、特許文献1に記載の制御を行っていたとしても、目標空燃比を切り替えてから排気浄化触媒に流入する排気ガスの空燃比がリッチ空燃比になるまでには遅れが生じる。その結果、図20中の「流出ガス中のNOx濃度」からわかるように、排気浄化触媒からは一時的にNOxが流出してしまっていた。
 また、特許文献2に記載された制御装置のように、エアフロメータ及び上流側の空燃比センサ等の出力に基づいて、排気浄化触媒の酸素吸蔵量の推定値を算出する場合、推定値には誤差が生じる。このような誤差は、短期的であれば僅かなものであっても、これを長期間に亘って積算して酸素吸蔵量の推定値を算出しているような場合には大きなものとなってしまう。この結果、実際の酸素吸蔵量が目標酸素吸蔵量となるように排気浄化触媒に流入する排気ガスの空燃比を制御したとしても、最終的には、排気浄化触媒の酸素吸蔵量は最大酸素吸蔵量又は零に達してしまう。
 特許文献2に記載された制御装置では、斯かる事態を想定して、下流側の酸素センサによって理論空燃比以外の空燃比が検出された場合には、酸素吸蔵量の推定値を補正して、実際の酸素吸蔵量を適切な量に戻すようにしている。しかしながら、この場合にも、酸素吸蔵量の推定値を補正してからそれが排気浄化触媒に流入する排気ガスの空燃比に反映されるまでには遅れが生じる。この結果、特許文献1に記載された制御装置と同様に、排気浄化触媒からは一次的にNOxが流出することになる。
 そこで、上記課題に鑑みて本発明の目的は、酸素吸蔵能力を有する排気浄化触媒を具備する内燃機関において、排気浄化触媒の酸素吸蔵量が最大酸素吸蔵量に到達して排気浄化触媒から流出する排気ガス中にNOxが残存してしまうことを抑制する、内燃機関の制御装置を提供することにある。
 上記課題を解決するために、第1の発明では、内燃機関の排気通路に配置されると共に酸素を吸蔵可能な排気浄化触媒と、該排気浄化触媒の排気流れ方向下流側に配置されると共に前記排気浄化触媒から流出する排気ガスの空燃比を検出する下流側空燃比検出手段と、前記排気浄化触媒に流入する排気ガスの空燃比を制御する流入空燃比制御手段とを具備し、前記流入空燃比制御手段は、前記下流側空燃比検出手段によって検出された空燃比が理論空燃比よりもリッチであるリッチ判定空燃比以下になったときに、前記排気浄化触媒の酸素吸蔵量が最大酸素吸蔵量よりも少ない所定の吸蔵量となるまで、前記排気浄化触媒に流入する排気ガスの目標空燃比を継続的又は断続的に理論空燃比よりもリーンにする酸素吸蔵量増加手段と、前記排気浄化触媒の酸素吸蔵量が前記所定の吸蔵量以上になったときに、該酸素吸蔵量が最大酸素吸蔵量に達することなく零に向けて減少するように、前記目標空燃比を継続的又は断続的に理論空燃比よりもリッチにする酸素吸蔵量減少手段とを具備する、内燃機関の制御装置が提供される。
 第2の発明では、第1の発明において、前記酸素吸蔵量増加手段によって継続的又は断続的に理論空燃比よりもリーンにされている期間における前記目標空燃比の平均値と理論空燃比との差は、前記酸素吸蔵量減少手段によって継続的又は断続的に理論空燃比よりもリッチにされている期間における前記目標空燃比の平均値と理論空燃比との差よりも大きい。
 第3の発明では、第1又は第2の発明において、前記酸素吸蔵量増加手段は、前記目標空燃比を継続的に理論空燃比よりもリーンに維持する。
 第4の発明では、第1~第3のいずれか一つの発明において、前記酸素吸蔵量減少手段は、前記目標空燃比を継続的に理論空燃比よりもリッチに維持する。
 第5の発明では、第1又は2の発明において、前記酸素吸蔵量減少手段は、前記目標空燃比を断続的に理論空燃比よりもリッチにすると共に、前記目標空燃比が理論空燃比よりもリッチになっていない期間のうち少なくとも一部の期間は前記目標空燃比を理論空燃比よりもリーンにする。
 第6の発明では、第1~第5のいずれか一つの発明において、前記排気浄化触媒に流入する排気ガスの空燃比を検出又は推定する上流側空燃比検出・推定手段を更に具備し、前記流入空燃比制御手段は、前記上流側空燃比検出・推定手段によって検出又は推定される排気ガスの空燃比が前記目標空燃比になるように前記内燃機関の燃焼室に供給される燃料の量を制御する。
 第7の発明では、第6の発明において、前記上流側空燃比検出・推定手段によって検出又は推定された排気ガスの空燃比に基づいて該排気浄化触媒の酸素吸蔵量を推定する酸素吸蔵量推定手段を更に具備し、前記酸素吸蔵量増加手段は、前記酸素吸蔵量推定手段によって推定される酸素吸蔵量が前記所定の吸蔵量となるまで、前記目標空燃比を理論空燃比よりもリーンにする。
 第8の発明では、第1~第7のいずれか一つの発明において、前記下流側空燃比検出手段よりも排気流れ方向下流側において排気通路に配置されると共に酸素を吸蔵可能な下流側排気浄化触媒を更に具備する。
 第9の発明では、第1~第8のいずれか一つの発明において、前記下流側空燃比検出手段は、排気空燃比に応じて出力電流が零となる印加電圧が変化する空燃比センサであり、該空燃比センサには、排気空燃比が前記リッチ判定空燃比であるときに出力電流が零となる印加電圧が印加され、前記酸素吸蔵量増加手段は、前記出力電流が零以下になったときに排気空燃比がリッチ判定空燃比以下になったと判断する。
 第10の発明では、第1~第8のいずれか一つの発明において、前記下流側空燃比検出手段は、排気空燃比に応じて出力電流が零となる印加電圧が変化する空燃比センサであり、該空燃比センサには、排気空燃比が前記理論空燃比であるときに出力電流が零となる印加電圧が印加され、前記酸素吸蔵量増加手段は、前記出力電流が前記リッチ判定空燃比に対応する出力電流以下になったときに排気空燃比がリッチ判定空燃比以下になったと判断する。
 第11の発明では、第9又は第10の発明において、前記空燃比センサは、拡散律速層を介して空燃比の検出対象である排気ガスに曝される第一電極と、基準雰囲気に曝される第二電極と、前記第一電極と前記第二電極との間に配置された固体電解質層と、前記第一電極と前記第二電極との間に電圧を印加する電圧印加装置と、前記第一電極と前記第二電極との間に流れる電流を検出する電流検出装置とを具備し、前記印加電圧は電圧印加装置によって印加された電圧であり、前記出力電流は前記電流検出装置によって検出された電流である。
 第12の発明では、第9又は第10の発明において、前記空燃比センサは、空燃比の検出対象である排気ガスが流入せしめられる被測ガス室と、ポンプ電流に応じて該被測ガス室内の排気ガスに対して酸素の汲み入れ及び汲み出しを行うポンプセルと、前記被測ガス室内の空燃比に応じて、検出される基準電流が変化する基準セルとを具備し、前記基準セルは、前記被測ガス室内の排気ガスに直接的に又は拡散律速層を介して曝される第一電極と、基準雰囲気に曝される第二電極と、前記第一電極と前記第二電極との間に配置された固体電解質層とを具備し、前記空燃比センサは、前記基準セルの第一電極と第二電極との間に電圧を印加する基準電圧印加装置と、前記基準セルの第一電極と第二電極との間に流れる電流を前記基準電流として検出する基準電流検出装置と、前記基準電流検出装置によって検出された基準電流が零になるようにポンプセルへ供給されるポンプ電流を制御するポンプ電流制御装置と、該ポンプ電流を検出するポンプ電流検出装置とを具備し、前記印加電圧は前記基準電圧印加装置によって印加された基準電圧であり、前記出力電流は前記ポンプ電流検出装置によって検出されたポンプ電流である。
 本発明によれば、酸素吸蔵能力を有する排気浄化触媒を具備する内燃機関において、排気浄化触媒の酸素吸蔵量が最大酸素吸蔵量に到達して排気浄化触媒から流出する排気ガス中にNOxが残存してしまうことが抑制される。
図1は、本発明の制御装置が用いられる内燃機関を概略的に示す図である。 図2は、排気浄化触媒の酸素吸蔵量と排気浄化触媒から流出する排気ガス中のNOx及び未燃ガスの濃度との関係を示す図である。 図3は、空燃比センサの概略的な断面図である。 図4は、空燃比センサの動作を概略的に示した図である。 図5は、空燃比センサにおける排気空燃比と出力電流との関係を示す図である。 図6は、電圧印加装置及び電流検出装置を構成する具体的な回路の一例を示す図である。 図7は、排気浄化触媒の酸素吸蔵量等のタイムチャートである。 図8は、排気浄化触媒の酸素吸蔵量等のタイムチャートである。 図9は、制御装置の機能ブロック図である。 図10は、空燃比補正量の算出制御の制御ルーチンを示すフローチャートである。 図11は、排気浄化触媒の酸素吸蔵量等のタイムチャートである。 図12は、各排気空燃比におけるセンサ印加電圧と出力電流との関係を示す図である。 図13は、各センサ印加電圧における排気空燃比と出力電流との関係を示す図である。 図14は、図12にX-Xで示した領域を拡大して示した図である。 図15は、図13にYで示した領域を拡大して示した図である。 図16は、空燃比センサにおける排気空燃比と出力電流との関係を示す図である。 図17は、排気浄化触媒の酸素吸蔵量等のタイムチャートである。 図18は、第三実施形態の空燃比センサの概略的な断面図である。 図19は、第三実施形態の空燃比センサの動作を概略的に示した図である。 図20は、排気浄化触媒の酸素吸蔵量のタイムチャートである。
 以下、図面を参照して本発明の内燃機関の制御装置について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。図1は、本発明の第一実施形態に係る制御装置が用いられる内燃機関を概略的に示す図である。
<内燃機関全体の説明>
 図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。吸気弁6は吸気ポート7を開閉し、排気弁8は排気ポート9を開閉する。
 図1に示したようにシリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4の内壁面周辺部には燃料噴射弁11が配置される。点火プラグ10は、点火信号に応じて火花を発生させるように構成される。また、燃料噴射弁11は、噴射信号に応じて、所定量の燃料を燃焼室5内に噴射する。なお、燃料噴射弁11は、吸気ポート7内に燃料を噴射するように配置されてもよい。また、本実施形態では、燃料として排気浄化触媒における理論空燃比が14.6であるガソリンが用いられる。しかしながら、本発明の内燃機関は他の燃料を用いても良い。
 各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。吸気ポート7、吸気枝管13、サージタンク14、吸気管15は吸気通路を形成する。また、吸気管15内にはスロットル弁駆動アクチュエータ17によって駆動されるスロットル弁18が配置される。スロットル弁18は、スロットル弁駆動アクチュエータ17によって回動せしめられることで、吸気通路の開口面積を変更することができる。
 一方、各気筒の排気ポート9は排気マニホルド19に連結される。排気マニホルド19は、各排気ポート9に連結される複数の枝部とこれら枝部が集合した集合部とを有する。排気マニホルド19の集合部は上流側排気浄化触媒20を内蔵した上流側ケーシング21に連結される。上流側ケーシング21は、排気管22を介して下流側排気浄化触媒24を内蔵した下流側ケーシング23に連結される。排気ポート9、排気マニホルド19、上流側ケーシング21、排気管22及び下流側ケーシング23は、排気通路を形成する。
 電子制御ユニット(ECU)31はデジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を具備する。吸気管15には、吸気管15内を流れる空気流量を検出するためのエアフロメータ39が配置され、このエアフロメータ39の出力は対応するAD変換器38を介して入力ポート36に入力される。また、排気マニホルド19の集合部には排気マニホルド19内を流れる排気ガス(すなわち、上流側排気浄化触媒20に流入する排気ガス)の空燃比を検出する上流側空燃比センサ(上流側空燃比検出手段)40が配置される。加えて、排気管22内には排気管22内を流れる排気ガス(すなわち、上流側排気浄化触媒20から流出して下流側排気浄化触媒24に流入する排気ガス)の空燃比を検出する下流側空燃比センサ(下流側空燃比検出手段)41が配置される。これら空燃比センサ40、41の出力も対応するAD変換器38を介して入力ポート36に入力される。なお、これら空燃比センサ40、41の構成については後述する。
 また、アクセルペダル42にはアクセルペダル42の踏込み量に比例した出力電圧を発生する負荷センサ43が接続され、負荷センサ43の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ44は例えばクランクシャフトが15度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ44の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路45を介して点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続される。なお、ECU31は、各種センサ等の出力に基づいて内燃機関を制御する制御手段として機能する。
<排気浄化触媒の説明>
 上流側排気浄化触媒20及び下流側排気浄化触媒24は、いずれも同様な構成を有する。以下では、上流側排気浄化触媒20についてのみ説明するが、下流側排気浄化触媒24も同様な構成及び作用を有する。
 上流側排気浄化触媒20は、酸素吸蔵能力を有する三元触媒である。具体的には、上流側排気浄化触媒20は、セラミックから成る担体に、触媒作用を有する貴金属(例えば、白金(Pt))及び酸素吸蔵能力を有する物質(例えば、セリア(CeO2))を担持させたものである。上流側排気浄化触媒20は、所定の活性温度に達すると、未燃ガス(HCやCO等)と窒素酸化物(NOx)とを同時に浄化する触媒作用に加えて、酸素吸蔵能力を発揮する。
 上流側排気浄化触媒20の酸素吸蔵能力によれば、上流側排気浄化触媒20は、上流側排気浄化触媒20に流入する排気ガスの空燃比が理論空燃比よりもリーン(リーン空燃比)であるときには排気ガス中の酸素を吸蔵する。一方、上流側排気浄化触媒20は、流入する排気ガスの空燃比が理論空燃比よりもリッチ(リッチ空燃比)であるときには、上流側排気浄化触媒20に吸蔵されている酸素を放出する。なお、「排気ガスの空燃比」は、その排気ガスが生成されるまでに供給された空気の質量に対する燃料の質量の比率を意味するものであり、通常はその排気ガスが生成されるにあたって燃焼室5内に供給された空気の質量に対する燃料の質量の比率を意味する。本明細書では、排気ガスの空燃比を「排気空燃比」という場合もある。
 上流側排気浄化触媒20は、触媒作用及び酸素吸蔵能力を有することにより、酸素吸蔵量に応じてNOx及び未燃ガスの浄化作用を有する。すなわち、図2(A)に示したように、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比である場合、酸素吸蔵量が少ないときには上流側排気浄化触媒20により排気ガス中の酸素が吸蔵され、NOxが還元浄化される。また、酸素吸蔵量が多くなると、上限吸蔵量Cuplimを境に上流側排気浄化触媒20から流出する排気ガス中の酸素及びNOxの濃度が急激に上昇する。
 一方、図2(B)に示したように、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比である場合、酸素吸蔵量が多いときには上流側排気浄化触媒20に吸蔵されている酸素が放出され、排気ガス中の未燃ガスは酸化浄化される。また、酸素吸蔵量が少なくなると、下限吸蔵量Clowlimを境に上流側排気浄化触媒20から流出する排気ガス中の未燃ガスの濃度が急激に上昇する。
 以上のように、本実施形態において用いられる排気浄化触媒20、24によれば、排気浄化触媒20、24に流入する排気ガスの空燃比及び酸素吸蔵量に応じて排気ガス中のNOx及び未燃ガスの浄化特性が変化する。なお、触媒作用及び酸素吸蔵能力を有していれば、排気浄化触媒20、24は三元触媒とは異なる触媒であってもよい。
<空燃比センサの構成>
 次に、図3を参照して、本実施形態における空燃比センサ40、41の構成について説明する。図3は、空燃比センサ40、41の概略的な断面図である。図3から分かるように、本実施形態における空燃比センサ40、41は、固体電解質層及び一対の電極から成るセルが1つである1セル型の空燃比センサである。
 図3に示したように、空燃比センサ40、41は、固体電解質層51と、固体電解質層51の一方の側面上に配置された排気側電極(第一電極)52と、固体電解質層51の他方の側面上に配置された大気側電極(第二電極)53と、通過する排気ガスの拡散律速を行う拡散律速層54と、拡散律速層54を保護する保護層55と、空燃比センサ40、41の加熱を行うヒータ部56とを具備する。
 固体電解質層51の一方の側面上には拡散律速層54が設けられ、拡散律速層54の固体電解質層51側の側面とは反対側の側面上には保護層55が設けられる。本実施形態では、固体電解質層51と拡散律速層54との間には被測ガス室57が形成される。この被測ガス室57には拡散律速層54を介して空燃比センサ40、41による検出対象であるガス、すなわち排気ガスが導入せしめられる。また、排気側電極52は被測ガス室57内に配置され、したがって、排気側電極52は拡散律速層54を介して排気ガスに曝されることになる。なお、被測ガス室57は必ずしも設ける必要はなく、排気側電極52の表面上に拡散律速層54が直接接触するように構成されてもよい。
 固体電解質層51の他方の側面上にはヒータ部56が設けられる。固体電解質層51とヒータ部56との間には基準ガス室58が形成され、この基準ガス室58内には基準ガスが導入される。本実施形態では、基準ガス室58は大気に開放されており、よって基準ガス室58内には基準ガスとして大気が導入される。大気側電極53は、基準ガス室58内に配置され、したがって、大気側電極53は、基準ガス(基準雰囲気)に曝される。本実施形態では、基準ガスとして大気が用いられているため、大気側電極53は大気に曝されることになる。
 ヒータ部56には複数のヒータ59が設けられており、これらヒータ59によって空燃比センサ40、41の温度、特に固体電解質層51の温度を制御することができる。ヒータ部56は、固体電解質層51を活性化するまで加熱するのに十分な発熱容量を有している。
 固体電解質層51は、ZrO2(ジルコニア)、HfO2、ThO2、Bi23等にCaO、MgO、Y23、Yb23等を安定剤として配当した酸素イオン伝導性酸化物の焼結体により形成されている。また、拡散律速層54は、アルミナ、マグネシア、けい石質、スピネル、ムライト等の耐熱性無機物質の多孔質焼結体により形成されている。さらに、排気側電極52及び大気側電極53は、白金等の触媒活性の高い貴金属により形成されている。
 また、排気側電極52と大気側電極53との間には、ECU31に搭載された電圧印加装置60によりセンサ印加電圧Vrが印加される。加えて、ECU31には、電圧印加装置60によってセンサ印加電圧Vrを印加したときに固体電解質層51を介してこれら電極52、53間に流れる電流を検出する電流検出装置61が設けられる。この電流検出装置61によって検出される電流が空燃比センサ40、41の出力電流である。
<空燃比センサの動作>
 次に、図4を参照して、このように構成された空燃比センサ40、41の動作の基本的な概念について説明する。図4は、空燃比センサ40、41の動作を概略的に示した図である。使用時において、空燃比センサ40、41は、保護層55及び拡散律速層54の外周面が排気ガスに曝されるように配置される。また、空燃比センサ40、41の基準ガス室58には大気が導入される。
 上述したように、固体電解質層51は、酸素イオン伝導性酸化物の焼結体で形成される。したがって、高温により活性化した状態で固体電解質層51の両側面間に酸素濃度の差が生じると、濃度の高い側面側から濃度の低い側面側へと酸素イオンを移動させようとする起電力Eが発生する性質(酸素電池特性)を有している。
 逆に、固体電解質層51は、両側面間に電位差が与えられると、この電位差に応じて固体電解質層の両側面間で酸素濃度比が生じるように、酸素イオンの移動を引き起こそうとする特性(酸素ポンプ特性)を有する。具体的には、両側面間に電位差が与えられた場合には、正極性を与えられた側面における酸素濃度が、負極性を与えられた側面における酸素濃度に対して、電位差に応じた比率で高くなるように、酸素イオンの移動が引き起こされる。また、図3及び図4に示したように、空燃比センサ40、41では、大気側電極53が正極性、排気側電極52が負極性となるように、これら電極52、53間に一定のセンサ印加電圧Vrが印加されている。なお、本実施形態では、空燃比センサ40、41におけるセンサ印加電圧Vrは同一の電圧となっている。
 空燃比センサ40、41周りにおける排気空燃比が理論空燃比よりもリーンのときには、固体電解質層51の両側面間での酸素濃度の比はそれほど大きくない。このため、センサ印加電圧Vrを適切な値に設定すれば、固体電解質層51の両側面間ではセンサ印加電圧Vrに対応した酸素濃度比よりも実際の酸素濃度比の方が小さくなる。このため、固体電解質層51の両側面間の酸素濃度比がセンサ印加電圧Vrに対応した酸素濃度比に向けて大きくなるように、図4(A)に示した如く、排気側電極52から大気側電極53に向けて酸素イオンの移動が起こる。その結果、センサ印加電圧Vrを印加する電圧印加装置60の正極から、大気側電極53、固体電解質層51、及び排気側電極52を介して電圧印加装置60の負極へと電流が流れる。
 このとき流れる電流(出力電流)Irの大きさは、センサ印加電圧Vrを適切な値に設定すれば、排気中から拡散律速層54を通って被測ガス室57へと拡散によって流入する酸素量に比例する。したがって、この電流Irの大きさを電流検出装置61によって検出することにより、酸素濃度を知ることができ、ひいてはリーン領域における空燃比を知ることができる。
 一方、空燃比センサ40、41周りにおける排気空燃比が理論空燃比よりもリッチのときには、排気中から拡散律速層54を通って未燃ガスが被測ガス室57内に流入するため、排気側電極52上に酸素が存在しても、未燃ガスと反応して除去される。このため、被測ガス室57内では酸素濃度が極めて低くなり、その結果、固体電解質層51の両側面間での酸素濃度の比は大きなものとなる。このため、センサ印加電圧Vrを適切な値に設定すれば、固体電解質層51の両側面間ではセンサ印加電圧Vrに対応した酸素濃度比よりも実際の酸素濃度比の方が大きくなる。このため、固体電解質層51の両側面間の酸素濃度比がセンサ印加電圧Vrに対応した酸素濃度比に向けて小さくなるように、図4(B)に示した如く、大気側電極53から排気側電極52に向けて酸素イオンの移動が起こる。その結果、大気側電極53から、センサ印加電圧Vrを印加する電圧印加装置60を通って排気側電極52へと電流が流れる。
 このとき流れる電流(出力電流)Irの大きさは、センサ印加電圧Vrを適切な値に設定すれば、固体電解質層51中を大気側電極53から排気側電極52へと移動せしめられる酸素イオンの流量によって決まる。その酸素イオンは、排気中から拡散律速層54を通って被測ガス室57へと拡散によって流入する未燃ガスと排気側電極52上で反応(燃焼)する。よって、酸素イオンの移動流量は被測ガス室57内に流入した排気ガス中の未燃ガスの濃度に対応する。したがって、この電流Irの大きさを電流検出装置61によって検出することで、未燃ガス濃度を知ることができ、ひいてはリッチ領域における空燃比を知ることができる。
 また、空燃比センサ40、41周りにおける排気空燃比が理論空燃比のときには、被測ガス室57へ流入する酸素及び未燃ガスの量が化学当量比となっている。このため、排気側電極52の触媒作用によって両者は完全に燃焼し、被測ガス室57内の酸素及び未燃ガスの濃度に変動は生じない。この結果、固体電解質層51の両側面間の酸素濃度比は、変動せずに、センサ印加電圧Vrに対応した酸素濃度比のまま維持される。このため、図4(C)に示したように、酸素ポンプ特性による酸素イオンの移動は起こらず、その結果、回路を流れる電流は生じない。
 このように構成された空燃比センサ40、41は、図5に示した出力特性を有する。すなわち、空燃比センサ40、41では、排気空燃比が大きくなるほど(すなわち、リーンになるほど)、空燃比センサ40、41の出力電流Irが大きくなる。加えて、空燃比センサ40、41は、排気空燃比が理論空燃比であるときに出力電流Irが零になるように構成される。
<電圧印加装置及び電流検出装置の回路>
 図6に、電圧印加装置60及び電流検出装置61を構成する具体的な回路の一例を示す。図示した例では、酸素電池特性により生じる起電力をE、固体電解質層51の内部抵抗をRi、両電極52、53間の電位差をVsと表している。
 図6からわかるように、電圧印加装置60は、基本的に、酸素電池特性により生じる起電力Eがセンサ印加電圧Vrに一致するように、負帰還制御を行っている。換言すると、電圧印加装置60は、固体電解質層51の両側面間の酸素濃度比の変化によって両電極52、53間の電位差Vsが変化した際にも、この電位差Vsがセンサ印加電圧Vrとなるように負帰還制御を行っている。
 したがって、排気空燃比が理論空燃比となっていて、固体電解質層51の両側面間に酸素濃度比の変化が生じない場合には、固体電解質層51の両側面間の酸素濃度比はセンサ印加電圧Vrに対応した酸素濃度比となっている。この場合、起電力Eはセンサ印加電圧Vrに一致し、両電極52、53間の電位差Vsもセンサ印加電圧Vrとなっており、その結果、電流Irは流れない。
 一方、排気空燃比が理論空燃比とは異なる空燃比となっていて、固体電解質層51の両側面間に酸素濃度比の変化が生じる場合には、固体電解質層51の両側面間の酸素濃度比がセンサ印加電圧Vrに対応した酸素濃度比とはなっていない。この場合、起電力Eはセンサ印加電圧Vrとは異なる値となる。このため、負帰還制御により、起電力Eがセンサ印加電圧Vrと一致するように固体電解質層51の両側面間で酸素イオンの移動をさせるべく、両電極52、53間に電位差Vsが付与される。そして、このときの酸素イオンの移動に伴って電流Irが流れる。この結果、起電力Eはセンサ印加電圧Vrに収束し、起電力Eがセンサ印加電圧Vrに収束すると、やがて、電位差Vsもセンサ印加電圧Vrに収束することになる。
 したがって、電圧印加装置60は、実質的に、両電極52、53間にセンサ印加電圧Vrを印加しているということができる。なお、電圧印加装置60の電気回路は必ずしも図6に示したようなものである必要はなく、両電極52、53間にセンサ印加電圧Vrを実質的に印加することができれば、如何なる態様の装置であってもよい。
 また、電流検出装置61は、実際に電流を検出するのではなく、電圧E0を検出してこの電圧E0から電流を算出している。ここで、E0は、下記式(1)のように表せる。
  E0=Vr+V0+IrR   …(1)
 ここで、V0はオフセット電圧(E0が負値とならないように印加しておく電圧であり例えば3V)、Rは図6に示した抵抗の値である。
 式(1)において、センサ印加電圧Vr、オフセット電圧V0及び抵抗値Rは一定であるから、電圧E0は電流Irに応じて変化する。このため、電圧E0を検出すれば、その電圧E0から電流Irを算出することが可能である。
 したがって、電流検出装置61は、実質的に、両電極52、53間に流れる電流Irを検出しているということができる。なお、電流検出装置61の電気回路は必ずしも図6に示したようなものである必要はなく、両電極52、53間を流れる電流Irを検出することができれば、如何なる態様の装置であってもよい。
<空燃比制御の概要>
 次に、本発明の内燃機関の制御装置における空燃比制御の概要を説明する。本実施形態では、上流側空燃比センサ40の出力電流Irupに基づいて上流側空燃比センサ40の出力電流(すなわち、排気浄化触媒に流入する排気ガスの空燃比)Irupが目標空燃比に相当する値となるようにフィードバック制御が行われる。
 目標空燃比は、下流側空燃比センサ41の出力電流に基づいて設定される。具体的には、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Iref以下となったときに、目標空燃比はリーン設定空燃比とされ、その空燃比に維持される。ここで、リッチ判定基準値Irefは、理論空燃比よりも僅かにリッチである予め定められたリッチ判定空燃比(例えば、14.55)に相当する値である。また、リーン設定空燃比は、理論空燃比よりも或る程度リーンである予め定められた空燃比であり、例えば、14.65~20、好ましくは14.68~18、より好ましくは14.7~16程度とされる。
 目標空燃比がリーン設定空燃比に変更されると、上流側排気浄化触媒20の酸素吸蔵量OSAscが推定される。酸素吸蔵量OSAscの推定は、上流側空燃比センサ40の出力電流Irup、及びエアフロメータ39等に基づいて算出される燃焼室5内への吸入空気量の推定値又は燃料噴射弁11からの燃料噴射量等に基づいて行われる。そして、酸素吸蔵量OSAscの推定値が予め定められた判定基準吸蔵量Cref以上になると、それまでリーン設定空燃比だった目標空燃比が、弱リッチ設定空燃比とされ、その空燃比に維持される。弱リッチ設定空燃比は、理論空燃比よりも僅かにリッチである予め定められた空燃比であり、例えば、13.5~14.58、好ましくは14~14.57、より好ましくは14.3~14.55程度とされる。その後、下流側空燃比センサ41の出力電流Irdwnが再びリッチ判定基準値Iref以下となったときに再び目標空燃比がリーン設定空燃比とされ、その後、同様な操作が繰り返される。
 このように本実施形態では、上流側排気浄化触媒20に流入する排気ガスの目標空燃比がリーン設定空燃比と弱リッチ設定空燃比とに交互に設定される。特に、本実施形態では、リーン設定空燃比の理論空燃比からの差は、弱リッチ設定空燃比の理論空燃比からの差よりも大きい。したがって、本実施形態では、目標空燃比は、短期間のリーン設定空燃比と、長期間の弱リッチ設定空燃比とに交互に設定されることになる。
<タイムチャートを用いた制御の説明>
 図7を参照して、上述したような操作について具体的に説明する。図7は、本発明の内燃機関の制御装置における空燃比制御を行った場合における、上流側排気浄化触媒20の酸素吸蔵量OSAsc、下流側空燃比センサ41の出力電流Irdwn、空燃比補正量AFC、上流側空燃比センサ40の出力電流Irup、及び上流側排気浄化触媒20から流出する排気ガス中のNOx濃度のタイムチャートである。
 なお、上流側空燃比センサ40の出力電流Irupは、上流側排気浄化触媒20に流入する排気ガスの空燃比が理論空燃比であるときに零になり、当該排気ガスの空燃比がリッチ空燃比であるときに負の値となり、当該排気ガスの空燃比がリーン空燃比であるときに正の値となる。また、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比又はリーン空燃比であるときには、理論空燃比からの差が大きくなるほど、上流側空燃比センサ40の出力電流Irupの絶対値が大きくなる。下流側空燃比センサ41の出力電流Irdwnも、上流側排気浄化触媒20から流出する排気ガスの空燃比に応じて、上流側空燃比センサ40の出力電流Irupと同様に変化する。また、空燃比補正量AFCは、上流側排気浄化触媒20に流入する排気ガスの目標空燃比に関する補正量である。空燃比補正量AFCが0のときには目標空燃比は理論空燃比とされ、空燃比補正量AFCが正の値であるときには目標空燃比はリーン空燃比となり、空燃比補正量AFCが負の値であるときには目標空燃比はリッチ空燃比となる。
 図示した例では、時刻t1以前の状態では、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされている。弱リッチ設定補正量AFCrichは、弱リッチ設定空燃比に相当する値であり、0よりも小さな値である。したがって、目標空燃比はリッチ空燃比とされ、これに伴って上流側空燃比センサ40の出力電流Irupが負の値となる。上流側排気浄化触媒20に流入する排気ガス中には未燃ガスが含まれることになるため、上流側排気浄化触媒20の酸素吸蔵量OSAscは徐々に減少していく。しかしながら、排気ガス中に含まれている未燃ガスは、上流側排気浄化触媒20で浄化されるため、下流側空燃比センサの出力電流Irdwnはほぼ0(理論空燃比に相当)となる。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっているため、上流側排気浄化触媒20からのNOx排出量は抑制される。
 上流側排気浄化触媒20の酸素吸蔵量OSAscが徐々に減少すると、酸素吸蔵量OSAscは時刻t1において下限吸蔵量(図2のClowlim参照)を超えて減少する。酸素吸蔵量OSAscが下限吸蔵量よりも減少すると、上流側排気浄化触媒20に流入した未燃ガスの一部は上流側排気浄化触媒20で浄化されずに流出する。このため、時刻t1以降、上流側排気浄化触媒20の酸素吸蔵量OSAscが減少するのに伴って、下流側空燃比センサ41の出力電流Irdwnが徐々に低下する。このときも、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっているため、上流側排気浄化触媒20からのNOx排出量は抑制される。
 その後、時刻t2において、下流側空燃比センサ41の出力電流Irdwnがリッチ判定空燃比に相当するリッチ判定基準値Irefに到達する。本実施形態では、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Irefになると、上流側排気浄化触媒20の酸素吸蔵量OSAscの減少を抑制すべく、空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられる。リーン設定補正量AFCleanは、リーン設定空燃比に相当する値であり、0よりも大きな値である。したがって、目標空燃比はリーン空燃比とされる。
 なお、本実施形態では、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Irefに到達してから、すなわち上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ判定空燃比に到達してから、空燃比補正量AFCの切替を行っている。これは、上流側排気浄化触媒20の酸素吸蔵量が十分であっても、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比から極わずかにずれてしまう場合があるためである。すなわち、仮に出力電流Irdwnが零(理論空燃比に相当)から僅かにずれた場合にも酸素吸蔵量が下限吸蔵量を超えて減少していると判断してしまうと、実際には十分な酸素吸蔵量があっても酸素吸蔵量が下限吸蔵量を超えて減少したと判断される可能性がある。そこで、本実施形態では、上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ判定空燃比に到達して始めて酸素吸蔵量が下限吸蔵量を超えて減少したと判断することとしている。逆に言うと、リッチ判定空燃比は、上流側排気浄化触媒20の酸素吸蔵量が十分であるときには上流側排気浄化触媒20から流出する排気ガスの空燃比が到達することのないような空燃比とされる。
 時刻t2において、目標空燃比をリーン空燃比に切り替えても、上流側排気浄化触媒20に流入する排気ガスの空燃比はすぐにはリーン空燃比にならず、或る程度の遅れが生じる。その結果、上流側排気浄化触媒20に流入する排気ガスの空燃比は時刻t3においてリッチ空燃比からリーン空燃比に変化する。なお、時刻t2~t3においては、上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ空燃比となっているため、この排気ガス中には未燃ガスが含まれることになる。しかしながら、上流側排気浄化触媒20からのNOx排出量は抑制される。
 時刻t3において上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比に変化すると、上流側排気浄化触媒20の酸素吸蔵量OSAscは増大する。また、これに伴って、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比へと変化し、下流側空燃比センサ41の出力電流Irdwnも0に収束する。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比となっているが、上流側排気浄化触媒20の酸素吸蔵能力には十分な余裕があるため、流入する排気ガス中の酸素は上流側排気浄化触媒20に吸蔵され、NOxは還元浄化される。このため、上流側排気浄化触媒20からのNOx排出量は抑制される。
 その後、上流側排気浄化触媒20の酸素吸蔵量OSAscが増大すると、時刻t4において酸素吸蔵量OSAscは判定基準吸蔵量Crefに到達する。本実施形態では、酸素吸蔵量OSAscが判定基準吸蔵量Crefになると、上流側排気浄化触媒20への酸素の吸蔵を中止すべく、空燃比補正量AFCが弱リッチ設定補正量AFCrich(0よりも小さな値)に切り替えられる。したがって、目標空燃比はリッチ空燃比とされる。
 ただし、上述したように、目標空燃比を切り替えてから上流側排気浄化触媒20に流入する排気ガスの空燃比が実際に変化するまでには遅れが生じる。このため、時刻t4にて切替を行っても、上流側排気浄化触媒20に流入する排気ガスの空燃比は或る程度時間が経過した時刻t5においてリーン空燃比からリッチ空燃比に変化する。時刻t4~t5においては、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比であるため、上流側排気浄化触媒20の酸素吸蔵量OSAscは増大していく。
 しかしながら、判定基準吸蔵量Crefは最大酸素吸蔵量Cmaxや上限吸蔵量(図2のCuplim参照)よりも十分に低く設定されているため、時刻t5においても酸素吸蔵量OSAscは最大酸素吸蔵量Cmaxや上限吸蔵量には到達しない。逆に言うと、判定基準吸蔵量Crefは、目標空燃比を切り替えてから上流側排気浄化触媒20に流入する排気ガスの空燃比が実際に変化するまで遅延が生じても、酸素吸蔵量OSAscが最大酸素吸蔵量Cmaxや上限吸蔵量に到達しないように十分少ない量とされる。例えば、判定基準吸蔵量Crefは、最大酸素吸蔵量Cmaxの3/4以下、好ましくは1/2以下、より好ましくは1/5以下とされる。したがって、時刻t4~t5においても、上流側排気浄化触媒20からのNOx排出量は抑制される。
 時刻t5以降においては、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされている。したがって、目標空燃比はリッチ空燃比とされ、これに伴って上流側空燃比センサ40の出力電流Irupが負の値となる。上流側排気浄化触媒20に流入する排気ガス中には未燃ガスが含まれることになるため、上流側排気浄化触媒20の酸素吸蔵量OSAscは徐々に減少していき、時刻t6において、時刻t1と同様に、酸素吸蔵量OSAscが下限吸蔵量を超えて減少する。このときも、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっているため、上流側排気浄化触媒20からのNOx排出量は抑制される。
 次いで、時刻t7において、時刻t2と同様に、下流側空燃比センサ41の出力電流Irdwnがリッチ判定空燃比に相当するリッチ判定基準値Irefに到達する。これにより、空燃比補正量AFCがリーン設定空燃比に相当する値AFCleanに切り替えられる。その後、上述した時刻t1~t6のサイクルが繰り返される。
 なお、このような空燃比補正量AFCの制御は、ECU31によって行われる。したがって、ECU31は、下流側空燃比センサ41によって検出された排気ガスの空燃比がリッチ判定空燃比以下となったときに、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Crefとなるまで、上流側排気浄化触媒20に流入する排気ガスの目標空燃比を継続的にリーン設定空燃比にする酸素吸蔵量増加手段と、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Cref以上となったときに、酸素吸蔵量OSAscが最大酸素吸蔵量Cmaxnに達することなく零に向けて減少するように、目標空燃比を継続的に弱リッチ設定空燃比にする酸素吸蔵量減少手段とを具備するといえる。
 以上の説明から分かるように上記実施形態によれば、上流側排気浄化触媒20からのNOx排出量を常に抑制することができる。すなわち、上述した制御を行っている限り、基本的には上流側排気浄化触媒20からのNOx排出量を少ないものとすることができる。
 また、一般に、上流側空燃比センサ40の出力電流Irup及び吸入空気量の推定値等に基づいて酸素吸蔵量OSAscを推定した場合には誤差が生じる可能性がある。本実施形態においても、時刻t3~t4に亘って酸素吸蔵量OSAscを推定しているため、酸素吸蔵量OSAscの推定値には多少の誤差が含まれる。しかしながら、このような誤差が含まれていたとしても、判定基準吸蔵量Crefを最大酸素吸蔵量Cmaxや上限吸蔵量よりも十分に低く設定しておけば、実際の酸素吸蔵量OSAscが最大酸素吸蔵量Cmaxや上限吸蔵量にまで到達することはほとんどない。したがって、斯かる観点からも上流側排気浄化触媒20からのNOx排出量を抑制することができる。
 また、排気浄化触媒の酸素吸蔵量が一定に維持されると、その排気浄化触媒の酸素吸蔵能力が低下する。これに対して、本実施形態によれば、酸素吸蔵量OSAscは常に上下に変動しているため、酸素吸蔵能力が低下することが抑制される。
 なお、上記実施形態では、時刻t2~t4において、空燃比補正量AFCはリーン設定補正量AFCleanに維持される。しかしながら、斯かる期間において、空燃比補正量AFCは必ずしも一定に維持されている必要はなく、徐々に減少させる等、変動するように設定されてもよい。同様に、時刻t4~t7において、空燃比補正量AFCは弱リッチ設定補正量AFrichに維持される。しかしながら、斯かる期間において、空燃比補正量AFCは必ずしも一定に維持されている必要はなく、徐々に減少させる等、変動するように設定されてもよい。
 ただし、この場合であっても、時刻t2~t4における空燃比補正量AFCは、当該期間における目標空燃比の平均値と理論空燃比との差が、時刻t4~t7における目標空燃比の平均値と理論空燃比との差よりも大きくなるように設定される。
 また、上記実施形態では、上流側空燃比センサ40の出力電流Irup及び燃焼室5内への吸入空気量の推定値等に基づいて、上流側排気浄化触媒20の酸素吸蔵量OSAscが推定されている。しかしながら、酸素吸蔵量OSAscはこれらパラメータに加えて他のパラメータに基づいて算出されてもよいし、これらパラメータとは異なるパラメータに基づいて推定されてもよい。また、上記実施形態では、酸素吸蔵量OSAscの推定値が判定基準吸蔵量Cref以上になると、目標空燃比がリーン設定空燃比から弱リッチ設定空燃比へと切り替えられる。しかしながら、目標空燃比をリーン設定空燃比から弱リッチ設定空燃比へと切り替えるタイミングは、例えば目標空燃比を弱リッチ設定空燃比からリーン設定空燃比へ切り替えてからの機関運転時間等、他のパラメータを基準としてもよい。ただし、この場合であっても、上流側排気浄化触媒20の酸素吸蔵量OSAscが最大酸素吸蔵量よりも少ないと推定される間に、目標空燃比をリーン設定空燃比から弱リッチ設定空燃比へと切り替えることが必要となる。
<下流側触媒も用いた制御の説明>
 また、本実施形態では、上流側排気浄化触媒20に加えて下流側排気浄化触媒24も設けられている。下流側排気浄化触媒24の酸素吸蔵量OSAufcは或る程度の期間毎に行われる燃料カット制御によって最大吸蔵量Cmax近傍の値とされる。このため、たとえ上流側排気浄化触媒20から未燃ガスを含んだ排気ガスが流出したとしても、これら未燃ガスは下流側排気浄化触媒24において酸化浄化される。
 なお、燃料カット制御とは、内燃機関を搭載する車両の減速時等において、クランクシャフトやピストン3が運動している状態であっても、燃料噴射弁11から燃料の噴射を行わない制御である。この制御を行うと、両排気浄化触媒20、24には多量の空気が流入することになる。
 以下、図8を参照して、下流側排気浄化触媒24における酸素吸蔵量OSAufcの推移について説明する。図8は、図7と同様な図であり、図7のNOx濃度の推移に換えて、下流側排気浄化触媒24の酸素吸蔵量OSAufc及び下流側排気浄化触媒24から流出する排気ガス中の未燃ガス(HCやCO等)の濃度の推移を示している。また、図8に示した例では、図7に示した例と同一の制御を行っている。
 図8に示した例では、時刻t1以前に燃料カット制御が行われている。このため、時刻t1以前において、下流側排気浄化触媒24の酸素吸蔵量OSAufcは最大酸素吸蔵量Cmax近傍の値となっている。また、時刻t1以前においては、上流側排気浄化触媒20から流出する排気ガスの空燃比はほぼ理論空燃比に保たれる。このため、下流側排気浄化触媒24の酸素吸蔵量OSAufcは一定に維持される。
 その後、時刻t1~t4において、上流側排気浄化触媒20から流出する排気ガスの空燃比はリッチ空燃比となっている。このため、下流側排気浄化触媒24には、未燃ガスを含む排気ガスが流入する。
 上述したように、下流側排気浄化触媒24には多量の酸素が吸蔵されているため、下流側排気浄化触媒24に流入する排気ガス中に未燃ガスが含まれていると、吸蔵されている酸素により未燃ガスが酸化浄化される。また、これに伴って、下流側排気浄化触媒24の酸素吸蔵量OSAufcは減少する。ただし、時刻t1~t4において上流側排気浄化触媒20から流出する未燃ガスはそれほど多くないため、この間の酸素吸蔵量OSAufcの減少量はわずかである。このため、時刻t1~t4において上流側排気浄化触媒20から流出する未燃ガスは全て下流側排気浄化触媒24において還元浄化される。
 時刻t6以降についても、或る程度の時間間隔毎に時刻t1~t4における場合と同様に、上流側排気浄化触媒20から未燃ガスが流出する。このようにして流出した未燃ガスは基本的に下流側排気浄化触媒24に吸蔵されている酸素により還元浄化される。したがって、下流側排気浄化触媒24からは未燃ガスが流出することはほとんどない。上述したように、上流側排気浄化触媒20からのNOx排出量が少ないものとされることを考えると、本実施形態によれば、下流側排気浄化触媒24からの未燃ガス及びNOxの排出量は常に少ないものとされる。
<具体的な制御の説明>
 次に、図9及び図10を参照して、上記実施形態における制御装置について具体的に説明する。本実施形態における制御装置は、機能ブロック図である図9に示したように、A1~A9の各機能ブロックを含んで構成されている。以下、図9を参照しながら各機能ブロックについて説明する。
<燃料噴射量の算出>
 まず、燃料噴射量の算出について説明する。燃料噴射量の算出に当たっては、筒内吸入空気量算出手段A1、基本燃料噴射量算出手段A2、及び燃料噴射量算出手段A3が用いられる。
 筒内吸入空気量算出手段A1は、エアフロメータ39によって計測される吸入空気流量Gaと、クランク角センサ44の出力に基づいて算出される機関回転数NEと、ECU31のROM34に記憶されたマップ又は計算式とに基づいて、各気筒への吸入空気量Mcを算出する。
 基本燃料噴射量算出手段A2は、筒内吸入空気量算出手段A1によって算出された筒内吸入空気量Mcを、後述する目標空燃比設定手段A6によって算出された目標空燃比AFTで除算することにより、基本燃料噴射量Qbaseを算出する(Qbase=Mc/AFT)。
 燃料噴射量算出手段A3は、基本燃料噴射量算出手段A2によって算出された基本燃料噴射量Qbaseに、後述するF/B補正量DQiを加えることで燃料噴射量Qiを算出する(Qi=Qbase+DQi)。このようにして算出された燃料噴射量Qiの燃料が燃料噴射弁11から噴射されるように、燃料噴射弁11に対して噴射指示が行われる。
<目標空燃比の算出>
 次に、目標空燃比の算出について説明する。目標空燃比の算出に当たっては、酸素吸蔵量算出手段A4、目標空燃比補正量算出手段A5、及び目標空燃比設定手段A6が用いられる。
 酸素吸蔵量算出手段A4は、燃料噴射量算出手段A3によって算出された燃料噴射量Qi及び上流側空燃比センサ40の出力電流Irupに基づいて上流側排気浄化触媒20の酸素吸蔵量の推定値OSAestを算出する。例えば、酸素吸蔵量算出手段A4は、上流側空燃比センサ40の出力電流Irupに対応する空燃比と理論空燃比との差分に燃料噴射量Qiを乗算すると共に、求めた値を積算することによって酸素吸蔵量の推定値OSAestを算出する。なお、酸素吸蔵量算出手段A4による上流側排気浄化触媒20の酸素吸蔵量の推定は、常時行われていなくてもよい。例えば、目標空燃比がリッチ空燃比からリーン空燃比へ実際に切り替えられたとき(図7における時刻t3)から、酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefに到達する(図7における時刻t4)までの間のみ酸素吸蔵量を推定してもよい。
 目標空燃比補正量算出手段A5では、酸素吸蔵量算出手段A4によって算出された酸素吸蔵量の推定値OSAestと、下流側空燃比センサ41の出力電流Irdwnとに基づいて、目標空燃比の空燃比補正量AFCが算出される。具体的には、空燃比補正量AFCは、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Iref(リッチ判定空燃比に相当する値)以下となったときに、リーン設定補正量AFCleanとされる。その後、空燃比補正量AFCは、酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefに到達するまで、リーン設定補正量AFCleanに維持される。酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefに到達すると、空燃比補正量AFCは弱リッチ設定補正量AFCrichとされる。その後、空燃比補正量AFCは、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Iref(リッチ判定空燃比に相当する値)となるまで、弱リッチ設定補正量AFCrichに維持される。
 目標空燃比設定手段A6は、基準となる空燃比、本実施形態では理論空燃比AFRに、目標空燃比補正量算出手段A5で算出された空燃比補正量AFCを加算することで、目標空燃比AFTを算出する。したがって、目標空燃比AFTは、弱リッチ設定空燃比(空燃比補正量AFCが弱リッチ設定補正量AFCrichの場合)か、又はリーン設定空燃比(空燃比補正量AFCがリーン設定補正量AFCleanの場合)のいずれかとされる。このようにして算出された目標空燃比AFTは、基本燃料噴射量算出手段A2及び後述する空燃比差算出手段A8に入力される。
 図10は、空燃比補正量AFCの算出制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。
 図10に示したように、まず、ステップS11において空燃比補正量AFCの算出条件が成立しているか否かが判定される。空燃比補正量の算出条件が成立している場合とは、例えば燃料カット制御中ではないこと等が挙げられる。ステップS11において目標空燃比の算出条件が成立していると判定された場合には、ステップS12へと進む。S12では、上流側空燃比センサ40の出力電流Irup、下流側空燃比センサ41の出力電流Irdwn、燃料噴射量Qiが取得せしめられる。次いでステップS13では、ステップS12で取得された上流側空燃比センサ40の出力電流Irup及び燃料噴射量Qiに基づいて酸素吸蔵量の推定値OSAestが算出される。
 次いでステップS14において、リーン設定フラグFrが0に設定されているか否かが判定される。リーン設定フラグFrは、空燃比補正量AFCがリーン設定補正量AFCleanに設定されると1とされ、それ以外の場合には0とされる。ステップS14においてリーン設定フラグFrが0に設定されている場合には、ステップS15へと進む。ステップS15では、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Iref以下であるか否かが判定される。下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Irefよりも大きいと判定された場合には制御ルーチンが終了せしめられる。
 一方、上流側排気浄化触媒20の酸素吸蔵量OSAscが減少して、上流側排気浄化触媒20から流出する排気ガスの空燃比が低下すると、ステップS15にて下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Iref以下であると判定される。この場合には、ステップS16へと進み、空燃比補正量AFCがリーン設定補正量AFCleanとされる。次いで、ステップS17では、リーン設定フラグFrが1に設定され、制御ルーチンが終了せしめられる。
 次の制御ルーチンにおいては、ステップS14において、リーン設定フラグFrが0に設定されていないと判定されて、ステップS18へと進む。ステップS18では、ステップS13で算出された酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefよりも少ないか否かが判定される。酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefよりも少ないと判定された場合にはステップS19へと進み、空燃比補正量AFCが引き続きリーン設定補正量AFCleanとされる。一方、上流側排気浄化触媒20の酸素吸蔵量が増大すると、やがてステップS18において酸素吸蔵量の推定値OSAestが判定基準吸蔵量Cref以上であると判定されてステップS20へと進む。ステップS20では、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされ、次いで、ステップS21では、リーン設定フラグFrが0にリセットされ、制御ルーチンが終了せしめられる。
<F/B補正量の算出>
 再び図9に戻って、上流側空燃比センサ40の出力電流Irupに基づいたF/B補正量の算出について説明する。F/B補正量の算出に当たっては、数値変換手段A7、空燃比差算出手段A8、F/B補正量算出手段A9が用いられる。
 数値変換手段A7は、上流側空燃比センサ40の出力電流Irupと、空燃比センサ40の出力電流Irupと空燃比との関係を規定したマップ又は計算式(例えば、図5に示したようなマップ)とに基づいて、出力電流Irupに相当する上流側排気空燃比AFupを算出する。したがって、上流側排気空燃比AFupは、上流側排気浄化触媒20に流入する排気ガスの空燃比に相当する。
 空燃比差算出手段A8は、数値変換手段A7によって求められた上流側排気空燃比AFupから目標空燃比設定手段A6によって算出された目標空燃比AFTを減算することによって空燃比差DAFを算出する(DAF=AFup-AFT)。この空燃比差DAFは、目標空燃比AFTに対する燃料供給量の過不足を表す値である。
 F/B補正量算出手段A9は、空燃比差算出手段A8によって算出された空燃比差DAFを、比例・積分・微分処理(PID処理)することで、下記式(1)に基づいて燃料供給量の過不足を補償するためのF/B補正量DFiを算出する。このようにして算出されたF/B補正量DFiは、燃料噴射量算出手段A3に入力される。
 DFi=Kp・DAF+Ki・SDAF+Kd・DDAF   …(1)
 なお、上記式(1)において、Kpは予め設定された比例ゲイン(比例定数)、Kiは予め設定された積分ゲイン(積分定数)、Kdは予め設定された微分ゲイン(微分定数)である。また、DDAFは、空燃比差DAFの時間微分値であり、今回更新された空燃比差DAFと前回更新されていた空燃比差DAFとの差を更新間隔に対応する時間で除算することで算出される。また、SDAFは、空燃比差DAFの時間積分値であり、この時間積分値DDAFは前回更新された時間積分値DDAFに今回更新された空燃比差DAFを加算することで算出される(SDAF=DDAF+DAF)。
 なお、上記実施形態では、上流側排気浄化触媒20に流入する排気ガスの空燃比を上流側空燃比センサ40によって検出している。しかしながら、上流側排気浄化触媒20に流入する排気ガスの空燃比の検出精度は必ずしも高い必要はないことから、例えば、燃料噴射弁11からの燃料噴射量及びエアフロメータ39の出力に基づいてこの排気ガスの空燃比を推定するようにしてもよい。
<第二実施形態>
 次に、図11を参照して、本発明の第二実施形態に係る内燃機関の制御装置について説明する。第二実施形態に係る内燃機関の制御装置の構成及び制御は、基本的に、第一実施形態に係る内燃機関の制御装置の構成及び制御と同様である。しかしながら、本実施形態の制御装置では、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされている間においても、或る程度の時間間隔毎に、空燃比補正量AFCが短い時間に亘って一時的にリーン空燃比に相当する値(例えば、リーン設定補正量AFClean)とされる。すなわち、本実施形態の制御装置では、目標空燃比が弱リッチ設定空燃比とされている間においても、或る程度の時間間隔毎に、目標空燃比が短い時間に亘って一時的にリーン空燃比とされる。
 図11は、図7と同様な図であり、図11における時刻t1~t7は図7における時刻t1~t7と同様な制御タイミングを示している。したがって、図11に示した制御においても、時刻t1~t7の各タイミングにおいては、図7に示した制御と同様な制御が行われている。加えて、図11に示した制御では、時刻t4~t7の間、すなわち、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされている間に、複数回に亘って一時的に空燃比補正量AFCがリーン設定補正量AFCleanとされている。
 図11に示した例では、時刻t8から短い時間に亘って空燃比補正量AFCがリーン設定補正量AFCleanとされる。上述したように空燃比の変化には遅れが生じることから、上流側排気浄化触媒20に流入する排気ガスの空燃比は時刻t9から短い時間に亘ってリーン空燃比とされる。このように、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比になると、その間は、上流側排気浄化触媒20の酸素吸蔵量OSAscが一時的に増大する。
 図11に示した例では、同様に、時刻t10においても短い時間に亘って空燃比補正量AFCがリーン設定補正量AFCleanとされる。これに伴って、上流側排気浄化触媒20に流入する排気ガスの空燃比は時刻t11から短い時間に亘ってリーン空燃比とされ、この間は、上流側排気浄化触媒20の酸素吸蔵量OSAscが一時的に増大する。
 このように、上流側排気浄化触媒20に流入する排気ガスの空燃比を一時的に増大させることによって、上流側排気浄化触媒20の酸素吸蔵量OSAscを一時的に増大させるか或いは酸素吸蔵量OSAscの減少を一時的に低減することができる。このため、本実施形態によれば、時刻t4において空燃比補正量AFCを弱リッチ設定補正量AFCrichに切り替えてから、時刻t7において下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Irefに到達するまでの時間を長くすることができる。すなわち、上流側排気浄化触媒20の酸素吸蔵量OSAscが零近傍となって上流側排気浄化触媒20から未燃ガスが流出するタイミングを遅らせることができる。これにより、上流側排気浄化触媒20からの未燃ガスの流出量を減少させることができる。
 なお、上記実施形態では、空燃比補正量AFCが基本的に弱リッチ設定補正量AFCrichとされている間(時刻t4~t7)において、一時的に空燃比補正量AFCをリーン設定補正量AFCleanとしている。このように一時的に空燃比補正量AFCを変更する場合には、必ずしも空燃比補正量AFCをリーン設定補正量AFCleanに変更する必要はなく、弱リッチ設定補正量AFCrichよりもリーンであれば如何なる空燃比に変更してもよい。
 また、空燃比補正量AFCが基本的にリーン設定補正量AFCleanとされている間(時刻t2~t4)においても、一時的に空燃比補正量AFCを弱リッチ設定補正量AFCrichとしてもよい。この場合も同様に、一時的に空燃比補正量AFCを変更する場合には、リーン設定補正量AFCleanよりもリッチであれば如何なる空燃比に空燃比補正量AFCを変更してもよい。
 ただし、本実施形態においても、時刻t2~t4における空燃比補正量AFCは、当該期間における目標空燃比の平均値と理論空燃比との差が、時刻t4~t7における目標空燃比の平均値と理論空燃比との差よりも大きくなるように設定される。
 いずれにせよ、第一実施形態及び第二実施形態をまとめて表現すると、ECU31は、下流側空燃比センサ41によって検出された排気ガスの空燃比がリッチ判定空燃比以下となったときに、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Crefとなるまで、上流側排気浄化触媒20に流入する排気ガスの目標空燃比を継続的又は断続的にリーン設定空燃比にする酸素吸蔵量増加手段と、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Cref以上となったときに、酸素吸蔵量OSAscが最大酸素吸蔵量Cmaxに達することなく零に向けて減少するように、目標空燃比を継続的又は断続的に弱リッチ設定空燃比にする酸素吸蔵量減少手段とを具備するといえる。
<第三実施形態>
 次に、図12~図17を参照して、本発明の第三実施形態に係る内燃機関の制御装置について説明する。第二実施形態に係る内燃機関の制御装置の構成及び制御は、基本的に、上記実施形態に係る内燃機関の制御装置の構成及び制御と同様である。しかしながら、上記実施形態では、上流側空燃比センサ及び下流側空燃比センサのいずれも同一のセンサ印加電圧であったのに対して、本実施形態では、これら空燃比センサの間で異なるセンサ印加電圧となっている。
<空燃比センサの出力特性>
 本実施形態の上流側空燃比センサ70及び下流側空燃比センサ71は、第一実施形態の空燃比センサ40、41と同様に、図3及び図4を用いて説明したよう構成され且つ動作する。これら空燃比センサ70、71は、図12に示したような電圧-電流(V-I)特性を有する。図12からわかるように、センサ印加電圧Vrが0以下及び0近傍の領域では、排気空燃比が一定である場合には、センサ印加電圧Vrを負の値から徐々に増加していくと、これに伴って出力電流Irが増加していく。
 すなわち、この電圧領域では、センサ印加電圧Vrが低いため、固体電解質層51を介して移動可能な酸素イオンの流量が少ない。このため、拡散律速層54を介した排気ガスの流入速度よりも固体電解質層51を介して移動可能な酸素イオンの流量が少なくなり、よって、出力電流Irは固体電解質層51を介して移動可能な酸素イオンの流量に応じて変化する。固体電解質層51を介して移動可能な酸素イオンの流量はセンサ印加電圧Vrに応じて変化するため、結果的にセンサ印加電圧Vrの増加に伴って出力電流が増加する。なお、このようにセンサ印加電圧Vrに比例して出力電流Irが変化する電圧領域は比例領域と称される。また、センサ印加電圧Vrが0のときに出力電流Irが負値をとるのは、酸素電池特性により固体電解質層51の両側面間の酸素濃度比に応じた起電力Eが生じるためである。
 その後、排気空燃比を一定としたまま、センサ印加電圧Vrを徐々に増加していくと、これに対する出力電流の増加の割合は次第に小さくなり、ついにはほぼ飽和状態となる。その結果、センサ印加電圧Vrを増加しても出力電流はほとんど変化しなくなる。このほぼ飽和した電流は限界電流と称され、以下では、この限界電流が発生する電圧領域を限界電流領域と称する。
 すなわち、この限界電流領域では、センサ印加電圧Vrが或る程度高いため、固体電解質層51を介して移動可能な酸素イオンの流量が多い。このため、拡散律速層54を介した排気ガスの流入速度よりも固体電解質層51を介して移動可能な酸素イオンの流量の方が多くなる。したがって、出力電流Irは拡散律速層54を介して被測ガス室57に流入する排気ガス中の酸素濃度や未燃ガス濃度に応じて変化する。排気空燃比を一定としてセンサ印加電圧Vrを変化させても、基本的には拡散律速層54を介して被測ガス室57に流入する排気ガス中の酸素濃度や未燃ガス濃度は変化しないことから、出力電圧Irは変化しない。
 ただし、排気空燃比が異なれば、拡散律速層54を介して被測ガス室57に流入する排気ガス中の酸素濃度や未燃ガス濃度も異なることから、出力電流Irは排気空燃比に応じて変化する。図12からわかるように、リーン空燃比とリッチ空燃比とでは限界電流の流れる向きが逆になっており、リーン空燃比であるときには空燃比が大きくなるほど、リッチ空燃比であるときには空燃比が小さくなるほど、限界電流の絶対値が大きくなる。
 その後、排気空燃比を一定としたまま、センサ印加電圧Vrをさらに増加していくと、これに伴って再び出力電流Irが増加し始める。このように高いセンサ印加電圧Vrを印加すると、排気側電極52上では排気ガス中に含まれる水分の分解が発生し、これに伴って電流が流れる。また、センサ印加電圧Vrをさらに増加していくと、水の分解だけでは電流をまかなえなくなり、今度は固体電解質層51の分解が発生する。以下では、このように水や固体電解質層51の分解が生じる電圧領域を水分解領域と称する。
 図13は、各センサ印加電圧Vrにおける排気空燃比と出力電流Irとの関係を示す図である。図13からわかるように、センサ印加電圧Vrが0.1Vから0.9V程度であれば、少なくとも理論空燃比の近傍においては、排気空燃比に応じて出力電流Irが変化する。また、図13からわかるように、センサ印加電圧Vrが0.1Vから0.9V程度であれば、理論空燃比の近傍においては、排気空燃比と出力電流Irとの関係はセンサ印加電圧Vrに無関係にほぼ同一である。
 一方、図13からわかるように、或る一定の排気空燃比以下に排気空燃比が低くなると、排気空燃比が変化しても出力電流Irがほとんど変化しなくなる。この一定の排気空燃比はセンサ印加電圧Vrに応じて変化し、センサ印加電圧Vrが高いほど高い。このため、センサ印加電圧Vrを或る特定の値以上に増大させると、図中に一点鎖線で示したように、排気空燃比が如何なる値であっても出力電流Irが0にならなくなる。
 一方、或る一定の排気空燃比以上に排気空燃比が高くなると、排気空燃比が変化しても出力電流Irがほとんど変化しなくなる。この一定の排気空燃比もセンサ印加電圧Vrに応じて変化し、センサ印加電圧Vrが低いほど低い。このため、センサ印加電圧Vrを或る特定の値以下に低下させると、図中に二点鎖線で示したように、排気空燃比が如何なる値であっても出力電流Irが0にならなくなる(例えば、センサ印加電圧Vrを0Vとした場合には排気空燃比に関わらず出力電流Irは0にならない)。
<理論空燃比近傍における微視的特性>
 ところで、本発明者らが鋭意研究を行ったところ、センサ印加電圧Vrと出力電流Irとの関係(図12)や排気空燃比と出力電流Irとの関係(図13)を巨視的に見ると上述したような傾向になるが、これら関係を理論空燃比近傍で微視的に見るとこれとは異なる傾向になることを見出した。以下、これについて説明する。
 図14は、図12の電圧-電流線図について、出力電流Irが0近傍となる領域(図12においてX-Xで示した領域)を拡大して示した図である。図14からわかるように、限界電流領域においても、排気空燃比を一定としたときに、センサ印加電圧Vrが増大するのに伴って出力電流Irもごく僅かながら増大する。例えば、排気空燃比が理論空燃比(14.6)である場合を例にとってみると、センサ印加電圧Vrが0.45V程度のときには出力電流Irは0となる。これに対して、センサ印加電圧Vrを0.45Vよりも或る程度低く(例えば、0.2V)すると、出力電流は0よりも低い値となる。一方、センサ印加電圧Vrを0.45Vよりも或る程度高く(例えば、0.7V)すると、出力電流は0よりも高い値となる。
 図15は、図13の空燃比-電流線図について、排気空燃比が理論空燃比近傍であって且つ出力電流Irが0近傍である領域(図13においてYで示した領域)を拡大して示した図である。図15からは、理論空燃比近傍の領域においては、同一の排気空燃比に対する出力電流Irがセンサ印加電圧Vr毎に僅かに異なることがわかる。例えば、図示した例では、排気空燃比が理論空燃比である場合、センサ印加電圧Vrを0.45Vとしたときに出力電流Irが0になる。そして、センサ印加電圧Vrを0.45Vよりも大きくすると出力電流Irも大きくなり、センサ印加電圧Vrを0.45Vよりも小さくすると出力電流Irも小さくなる。
 加えて、図15からは、センサ印加電圧Vr毎に、出力電流Irが0となるときの排気空燃比(以下、「電流零時の排気空燃比」という)が異なることがわかる。図示した例では、センサ印加電圧Vrが0.45Vである場合には排気空燃比が理論空燃比であるときに出力電流Irが0になる。これに対して、センサ印加電圧Vrが0.45Vよりも大きい場合には、排気空燃比が理論空燃比よりもリッチであるときに出力電流Irが0になり、センサ印加電圧Vrが大きくなるほど電流零時の排気空燃比は小さくなる。逆に、センサ印加電圧Vrが0.45Vよりも小さい場合には、排気空燃比が理論空燃比よりもリーンであるときに出力電流Irが0になり、センサ印加電圧Vrが小さくなるほど電流零時の排気空燃比は大きくなる。すなわち、センサ印加電圧Vrを変化させることにより、電流零時の排気空燃比を変化させることができる。
 ここで、図5における傾き、すなわち排気空燃比の増加量に対する出力電流の増加量の比率(以下、「出力電流変化率」という)は、同様な生産工程を経ても必ずしも同一にはならず、同一型式の空燃比センサであっても個体間でバラツキが生じてしまう。加えて、同一の空燃比センサにおいても、経年劣化等により出力電流変化率は変化する。この結果、たとえ図16に実線Aで示した出力特性を有するように構成されている同一型式のセンサを用いても、使用したセンサや使用期間等によって、図16に破線Bで示したように出力電流変化率が小さくなったり、一点鎖線Cで示したように出力電流変化率が大きくなったりする。
 このため、同一型式の空燃比センサを用いて同一の空燃比の排気ガスの計測を行っても、使用したセンサや使用期間等によって、空燃比センサの出力電流は異なるものとなってしまう。例えば、空燃比センサが実線Aで示したような出力特性を有する場合には、空燃比がaf1である排気ガスの計測を行ったときの出力電流は、I2になる。しかしながら、空燃比センサが破線Bや一点鎖線Cで示したような出力特性を有する場合には、空燃比がaf1である排気ガスの計測を行ったときの出力電流は、それぞれI1及びI3となり、上述したI2とは異なる出力電流となってしまう。
 しかしながら、図16からも分かるように、空燃比センサの個体間でバラツキが生じたり、同一の空燃比センサにおいて経年劣化等によってバラツキが生じたりしたとしても、電流零時の排気空燃比(図16の例では理論空燃比)はほとんど変化しない。すなわち、出力電流Irが零以外の値をとるときには、排気空燃比の絶対値を正確に検出することは困難であるのに対して、出力電流Irが零となるときには、排気空燃比の絶対値(図16の例では理論空燃比)を正確に検出することができる。
 そして、図15を用いて説明したように、空燃比センサ70、71では、センサ印加電圧Vrを変化させることにより、電流零時の排気空燃比を変化させることができる。すなわち、センサ印加電圧Vrを適切に設定すれば、理論空燃比以外の排気空燃比の絶対値を正確に検出することができる。特に、センサ印加電圧Vrを後述する「特定電圧領域」内で変化させた場合には、電流零時の排気空燃比を理論空燃比(14.6)に対して僅かにのみ(例えば、±1%の範囲(約14.45~約14.75)内)調整することができる。したがって、センサ印加電圧Vrを適切に設定することにより、理論空燃比とは僅かに異なる空燃比の絶対値を正確に検出することができるようになる。
 なお、上述したように、センサ印加電圧Vrを変化させることにより、電流零時の排気空燃比を変化させることができる。しかしながら、センサ印加電圧Vrを或る上限電圧よりも大きくするか又は或る下限電圧よりも小さくすると、センサ印加電圧Vrの変化量に対する電流零時の排気空燃比の変化量が大きくなる。したがって、斯かる電圧領域では、センサ印加電圧Vrが僅かにずれると、電流零時の排気空燃比が大きく変化してしまう。したがって、斯かる電圧領域では、排気空燃比の絶対値を正確に検出するためには、センサ印加電圧Vrを精密に制御することが必要になり、あまり実用的ではない。このため、排気空燃比の絶対値を正確に検出する観点からは、センサ印加電圧Vrは或る上限電圧と或る下限電圧との間の「特定電圧領域」内の値とすることが必要になる。
 ここで、図14に示したように、空燃比センサ70、71は、各排気空燃比毎に、出力電流Irが限界電流となる電圧領域である限界電流領域を有する。本実施形態では、排気空燃比が理論空燃比であるときの限界電流領域が「特定電圧領域」とされる。
 なお、図13を用いて説明したように、センサ印加電圧Vrを或る特定の値(最大電圧)以上に増大させると、図中に一点鎖線で示したように、排気空燃比が如何なる値であっても出力電流Irが0にならなくなる。一方、センサ印加電圧Vrを或る特定の値(最小電圧)以下に低下させると、図中に二点鎖線で示したように、排気空燃比が如何なる値であっても出力電流Irが0にならなくなる。
 したがって、センサ印加電圧Vrが最大電圧と最小電圧との間の電圧であれば、出力電流が零となる排気空燃比が存在する。逆に、センサ印加電圧Vrが最大電圧よりも高い電圧或いは最小電圧よりも低い電圧であれば、出力電流が零となる排気空燃比が存在しない。したがって、センサ印加電圧Vrは、少なくとも、排気空燃比がいずれかの空燃比であるときに出力電流が零となる電圧であること、すなわち、最大電圧と最小電圧との間の電圧であることが必要になる。上述した「特定電圧領域」は、最大電圧と最小電圧との間の電圧領域である。
<各空燃比センサにおける印加電圧>
 本実施形態では、上述した微視的特性に鑑みて、上流側空燃比センサ70によって排気ガスの空燃比を検出するときには、上流側空燃比センサ70におけるセンサ印加電圧Vrupは、排気空燃比が理論空燃比(本実施形態では14.6)であるときに出力電流が零となるような電圧(例えば、0.45V)に固定される。換言すると、上流側空燃比センサ70では電流零時の排気空燃比が理論空燃比となるようにセンサ印加電圧Vrupが設定される。一方、下流側空燃比センサ41によって排気ガスの空燃比を検出するときには、下流側空燃比センサ71におけるセンサ印加電圧Vrは、排気空燃比が理論空燃比よりも僅かにリッチである予め定められたリッチ判定空燃比(例えば、14.55)であるときに出力電流が零となるような一定電圧(例えば、0.7V)に固定される。換言すると、下流側空燃比センサ71では、電流零時の排気空燃比が理論空燃比よりも僅かにリッチであるリッチ判定空燃比となるようにセンサ印加電圧Vrdwnが設定される。このように、本実施形態では、下流側空燃比センサ71におけるセンサ印加電圧Vrdwnが上流側空燃比センサ70におけるセンサ印加電圧Vrupよりも高い電圧とされる。
 したがって、両空燃比センサ70、71に接続されたECU31は、上流側空燃比センサ70の出力電流Irupが零になったときに上流側空燃比センサ70周りの排気空燃比は理論空燃比であると判断する。一方、ECU31は、下流側空燃比センサ71の出力電流Irdwnが零になったときには下流側空燃比センサ71周りの排気空燃比はリッチ判定空燃比、すなわち、理論空燃比とは異なる予め定められた空燃比であると判断する。
<第三実施形態における空燃比制御>
 第三実施形態における空燃比制御は、基本的に上記実施形態における空燃比制御と同様である。しかしながら、第一実施形態では、時刻t2において下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Iref以下となったときに目標空燃比をリーン設定空燃比に切り替えている。これに対して、本実施形態では、下流側空燃比センサ41の出力電流Irdwnが零以下となったときに目標空燃比をリーン設定空燃比に切り替えている。
 図17は、図7と同様な図であり、本実施形態における制御を行った場合の上流側排気浄化触媒20の酸素吸蔵量OSAsc等のタイムチャートである。以下では、図7における制御と異なる部分についてのみ説明する。
 図17から分かるように、時刻t1以前、すなわち、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比である場合、下流側空燃比センサ71の出力電流Irdwnは零よりも大きな値となっている。その後、時刻t1から上流側排気浄化触媒20に流入した排気ガス中の未燃ガスの一部は上流側排気浄化触媒20で浄化されずに流出し始める。これに伴って、下流側空燃比センサ71の出力電流Irdwnは零に向かって小さくなり、時刻t2において零となる。本実施形態では、下流側空燃比センサ71の出力電流Irdwnが零以下になると、上流側排気浄化触媒20の酸素吸蔵量OSAscの減少を抑制すべく、空燃比補正量AFCがリーン設定空燃比に相当する値AFCleanに切り替えられる。その後の制御は、基本的に、図7に示した例と同様である。
 本実施形態によれば、上述したように、下流側空燃比センサ41によってリッチ判定空燃比における絶対値を正確に検出することができる。図16を用いて説明したように、従来の空燃比センサでは、理論空燃比以外の空燃比についてその絶対値を正確に検出することは困難であった。このため、従来の空燃比センサにおいて経年劣化や個体差等によりその出力電流に誤差が生じると、排気ガスの実際の空燃比はリッチ判定空燃比とは異なる場合でも、空燃比センサの出力電流がリッチ判定空燃比に相当する値となってしまう。この結果、空燃比補正量AFCの弱リッチ設定補正量AFCrichからリーン設定補正量AFCleanへの切替タイミングが遅れたり、或いは切替不要なタイミングで斯かる切替が行われたりする。これに対して、本実施形態では、下流側空燃比センサ41によってリッチ判定空燃比における絶対値を正確に検出することができる。このため、空燃比補正量AFCの弱リッチ設定補正量AFCrichからリーン設定補正量AFCleanへの切替タイミングにおける遅れや、切替不要なタイミングでの切替を抑制することができる。
<第四実施形態>
 次に、図18及び図19を参照して、本発明の第四実施形態に係る内燃機関の制御装置について説明する。第四実施形態に係る内燃機関の制御装置の構成及び制御は、基本的に、上記実施形態に係る内燃機関の制御装置の構成及び制御と同様である。しかしながら、上記実施形態では、空燃比センサとして固体電解質層及び一対の電極から成るセルが1つである1セル型の空燃比センサを用いているのに対して、第四実施形態では、空燃比センサとして斯かるセルが2つである2セル型の空燃比センサを用いている。
<空燃比センサの構成>
 図18を参照して、本実施形態における空燃比センサ70、71の構成について説明する。図18は、空燃比センサ70、71の概略的な断面図である。図18から分かるように、本実施形態における空燃比センサ70、71は、固体電解質層及び一対の電極から成るセルが2つである2セル型の空燃比センサである。
 図18に示したように、空燃比センサ70、71は、被測ガス室81と、基準ガス室82と、被測ガス室81の両側に配置された二つの固体電解質層83、84とを具備する。基準ガス室82は、第二固体電解質層84を挟んで被測ガス室81の反対側に設けられる。第一固体電解質層83の被測ガス室81側の側面上にはガス室側電極(第三電極)85が配置され、第一固体電解質層83の排気ガス側の側面上には排気側電極(第四電極)86が配置される。これら第一固体電解質層83、ガス室側電極85及び排気側電極86は、ポンプセル90を構成する。
 一方、第二固体電解質層84の被測ガス室81側の側面上にはガス室側電極(第一電極)87が配置され、第二固体電解質層84の基準ガス室82側の側面上には基準側電極(第二電極)88が配置される。これら第二固体電解質層84、ガス室側電極87及び基準側電極88は、基準セル91を構成する。
 二つの固体電解質層83、84の間には、ポンプセル90のガス室側電極85及び基準セル91のガス室側電極87を囲うように拡散律速層93が設けられる。したがって、被測ガス室81は、第一固体電解質層83、第二固体電解質層84及び拡散律速層93によって画成される。被測ガス室81には、拡散律速層93を介して排気ガスが流入せしめられる。よって、被測ガス室81内に配置された電極、すなわちポンプセル90のガス室側電極85及び基準セル91のガス室側電極87は、拡散律速層93を介して排気ガスに曝されることになる。なお、拡散律速層93は、必ずしも被測ガス室81に流入する排気ガスが通過するように設けられる必要はない。基準セル91のガス室側電極87に到達する排気ガスが拡散律速層を通過した排気ガスになれば、拡散律速層は如何なる態様で配置されてもよい。
 また、第二固体電解質層84の基準ガス室82側の側面上には、基準ガス室82を囲うようにヒータ部94が設けられる。したがって、基準ガス室82は、第二固体電解質層84及びヒータ部94によって画成される。この基準ガス室82内には基準ガスが導入される。本実施形態では、基準ガス室82は大気に開放されており、よって基準ガス室82内には基準ガスとして大気が導入される。
 また、ヒータ部94には複数のヒータ95が設けられており、これらヒータ95によって空燃比センサ70、71の温度、特に固体電解質層83、84の温度を制御することができる。ヒータ部94は、固体電解質層83、84を活性化するまで加熱するのに十分な発熱容量を有している。加えて、第一固体電解質層83の排気ガス側の側面上には、保護層96が設けられる。保護層96は、排気ガス中の液体等が排気側電極86に直接付着するのを防止しつつ排気ガスが排気側電極86に到達するように多孔質材料で形成される。
 固体電解質層83、84は、第一実施形態の固体電解質層51と同様な材料により形成されている。また、拡散律速層93も、第一実施形態の拡散律速層54と同様な材料により形成されている。さらに、電極85~88も、第一実施形態の電極52、53と同様な材料により形成されている。
 基準セル91のガス室側電極87と基準側電極88との間には、ECU31に搭載された基準電圧印加装置100により基準電圧(第一実施形態のセンサ印加電圧に相当)Vrが印加される。加えて、ECU31には、基準電圧印加装置100によって基準電圧Vrを印加したときに第二固体電解質層84を介してこれら電極87、88間に流れる基準電流Irを検出する基準電流検出装置101が設けられる。
 また、ポンプセル90のガス室側電極85と排気側電極86との間には、ECU31に搭載されたポンプ電圧印加装置102によりポンプ電圧Vpが印加される。ポンプ電圧印加装置102によって印加されるポンプ電圧Vpは、基準電流検出装置101によって検出された基準電流Irに応じて設定される。具体的には、基準電流検出装置101によって検出された基準電流Irと予め設定されたその目標電流(本実施形態では、零)との差に応じて、ポンプ電圧Vpが設定される。加えて、ECU31には、ポンプ電圧印加装置102によってポンプ電圧Vpを印加したときに第一固体電解質層83を介してこれら電極85、86間に流れるポンプ電流Ipを検出するポンプ電流検出装置103が設けられる。
 なお、ポンプ電圧印加装置102によってポンプ電圧Vpを変化させると、電極85、86間に流れるポンプ電流Ipが変化する。換言すると、ポンプ電圧印加装置102はポンプ電流Ipを制御していると言える。したがって、ポンプ電圧印加装置102は、ポンプ電流Ipを制御するポンプ電流制御装置として作用する。なお、ポンプ電流Ipは例えばポンプ電圧印加装置102と直列に可変抵抗を配置し、この可変抵抗を変更することによっても変化する。したがって、ポンプ電流制御装置としては可変抵抗等、ポンプ電圧印加装置102以外の手段を用いることも可能である。
<空燃比センサの動作>
 次に、図19を参照して、このように構成された空燃比センサ70、71の動作の基本的な概念について説明する。図19は、空燃比センサ70、71の動作を概略的に示した図である。使用時において、空燃比センサ70、71は、保護層96及び拡散律速層93の外周面が排気ガスに曝されるように配置される。また、空燃比センサ70、71の基準ガス室82には大気が導入される。
 上述したように、固体電解質層83、84は、酸素イオン伝導性酸化物の焼結体で形成される。このため、高温により活性化した状態で固体電解質層83、84の両側面間に酸素濃度の差が生じると、濃度の高い側面側から濃度の低い側面側へと酸素イオンを移動させようとする起電力Eが発生する性質(酸素電池特性)を有している。
 逆に、固体電解質層83、84は、両側面間に電位差が与えられると、この電位差に応じて固体電解質層の両側面間で酸素濃度比が生じるように、酸素イオンの移動を引き起こそうとする特性(酸素ポンプ特性)を有する。具体的には、両側面間に電位差が与えられた場合には、正極性を与えられた側面における酸素濃度が、負極性を与えられた側面における酸素濃度に対して、電位差に応じた比率で高くなるように、酸素イオンの移動が引き起こされる。
 したがって、ポンプセル90では、ポンプ電圧印加装置102によってガス室側電極85と排気側電極86との間にポンプ電圧Vpが印加されると、これに応じて酸素イオンの移動が生じる。このような酸素イオンの移動に伴って、排気ガス中から被測ガス室81内に酸素が汲み入れられたり汲み出されたりする。
 一方、本実施形態の基準セル91は、第一実施形態における固体電解質層51、排気側電極52及び大気側電極53から構成されるセルと同様に機能する。したがって、基準セル91では、被測ガス室81内の排気空燃比が、基準電圧印加装置100により電極87、88間に印加された基準電圧Vrに対応する空燃比(すなわち、基準電圧Vrを印加したときの電流零時の排気空燃比)に一致するときには電極87、88間に流れる基準電流が零になる。一方、被測ガス室81内の排気空燃比が基準電圧Vrに対応する空燃比よりもリッチであるときには電極87、88間に流れる基準電流が負電流となり、その大きさは基準電圧Vrに対応する空燃比からの差に比例する。逆に、被測ガス室81内の排気空燃比が基準電圧Vrに対応する空燃比よりもリーンであるときには電極87、88間に流れる基準電流が正電流となり、その大きさは基準電圧Vrに対応する空燃比からの差に比例する。
 空燃比センサ70、71周りにおける排気空燃比が基準電圧Vrに対応する空燃比よりもリーンのときには、図19(A)に示したように、被測ガス室81内には拡散律速層93を介して基準電圧Vrに対応する空燃比よりもリーンの排気ガスが流入する。このように多量の酸素を含むリーン空燃比の排気ガスが流入すると、基準セル91の電極87、88間には基準電圧Vrに対応する空燃比からの差に比例して正の基準電流が流れ、かかる基準電流は、基準電流検出装置101によって検出される。
 基準電流検出装置101によって基準電流が検出されると、これに基づいてポンプ電圧印加装置102によりポンプセル90の電極85、86にポンプ電圧が印加される。特に、基準電流検出装置101によって正の基準電流が検出されると、排気側電極86を正電極、ガス室側電極85を負電極として、ポンプ電圧が印加される。このようにポンプセル90の電極85、86にポンプ電圧を印加することにより、ポンプセル90の第一固体電解質層83では負電極から正電極に向かって、すなわちガス室側電極85から排気側電極86に向かって酸素イオンの移動が生じる。このため、被測ガス室81内の酸素が空燃比センサ70、71周りの排気ガス中に汲み出される。
 被測ガス室81内から空燃比センサ70、71周りの排気ガス中へ汲み出される酸素の流量は、ポンプ電圧に比例し、また、ポンプ電圧は基準電流検出装置101によって検出された正の基準電流の大きさに比例する。したがって、被測ガス室81内の排気空燃比が基準電圧Vrに対応する空燃比からリーンに大きくずれるほど、すなわち、被測ガス室81内の酸素濃度が高いほど、被測ガス室81内から空燃比センサ70、71周りの排気ガス中へ汲み出される酸素の流量が多くなる。この結果、拡散律速層93を介して被測ガス室81に流入する酸素流量と、ポンプセル90によって汲み出される酸素流量とは基本的に一致し、被測ガス室81内は基本的にほぼ基準電圧Vrに対応する空燃比に保たれることになる。
 ポンプセル90によって汲み出される酸素流量は、ポンプセル90の第一固体電解質層83内を移動した酸素イオンの流量に等しい。そして、この酸素イオンの流量は、ポンプセル90の電極85、86間で流れた電流に等しい。よって電極85、86間で流れた電流をポンプ電流検出装置103により検出することで、拡散律速層93を介して被測ガス室81に流入する酸素流量を、したがって、被測ガス室81周りの排気ガスのリーン空燃比を検出することができる。
 一方、空燃比センサ70、71周りにおける排気空燃比が基準電圧Vrに対応する空燃比よりもリッチのときには、図19(B)に示したように、被測ガス室81内には拡散律速層93を介して基準電圧Vrに対応する空燃比よりもリッチの排気ガスが流入する。このように多量の未燃ガスを含むリッチ空燃比の排気ガスが流入すると、基準セル91の電極87、88間には基準電圧Vrに対応する空燃比からの差に比例して負の基準電流が流れ、かかる基準電流は、基準電流検出装置101によって検出される。
 基準電流検出装置101によって基準電流が検出されると、これに基づいてポンプ電圧印加装置102によりポンプセル90の電極85、86間にポンプ電圧が印加される。特に、基準電流検出装置101によって負の基準電流が検出されると、ガス室側電極85を正電極、排気側電極86を負電極として、ポンプ電圧が印加される。このようにポンプ電圧を印加することにより、ポンプセル90の第一固体電解質層83では負電極から正電極に向かって、すなわち排気側電極86からガス室側電極85に向かって酸素イオンの移動が生じる。このため、空燃比センサ70、71周りの排気ガス中の酸素が被測ガス室81内に汲み入れられる。
 空燃比センサ70、71周りの排気ガス中から被測ガス室81内へ汲み入れられる酸素の流量は、ポンプ電圧に比例し、また、ポンプ電圧は基準電流検出装置101によって検出された負の基準電流の大きさに比例する。したがって、被測ガス室81内の排気空燃比が基準電圧Vrに対応する空燃比からリッチ大きくずれるほど、すなわち、被測ガス室81内の未燃ガス濃度が高いほど、空燃比センサ70、71周りの排気ガス中から被測ガス室81内へ汲み入れられる酸素の流量が多くなる。この結果、拡散律速層93を介して被測ガス室81に流入する未燃ガスの流量と、ポンプセル90によって汲み入れられる酸素流量とは化学当量比となり、よって被測ガス室81内は基本的に基準電圧Vrに対応する空燃比に保たれることになる。
 ポンプセル90によって汲み入れられる酸素流量は、ポンプセル90内の第一固体電解質層83内を移動した酸素イオンの流量に等しい。そして、この酸素イオンの流量は、ポンプセル90の電極85、86間で流れた電流に等しい。よって電極85、86間で流れた電流をポンプ電流検出装置103により検出することで、拡散律速層93を介して被測ガス室81に流入する未燃ガスの流量を、したがって、被測ガス室81周りの排気ガスのリッチ空燃比を検出することができる。
 また、空燃比センサ70、71周りにおける排気空燃比が基準電圧Vrに対応する空燃比のときには、図19(C)に示したように、被測ガス室81内に拡散律速層93を介して基準電圧Vrに対応する空燃比の排気ガスが流入する。このように基準電圧Vrに対応する空燃比の排気ガスが流入すると、基準セル91の電極87、88間に流れる基準電流は零となり、かかる基準電流は、基準電流検出装置101によって検出される。
 基準電流検出装置101によって検出された基準電流が零であると、これに伴ってポンプ電圧印加装置102により印加されるポンプ電圧も零とされる。このためポンプセル90の第一固体電解質層83では酸素イオンの移動は生じず、よって被測ガス室81内は基本的に基準電圧Vrに対応する空燃比に保たれることになる。そして、ポンプセル90の第一固体電解質層83において酸素イオンの移動が生じていないため、ポンプ電流検出装置103によって検出されるポンプ電流も零となる。したがって、ポンプ電流検出装置103によって検出されるポンプ電流が零であるときには、被測ガス室81周りの排気ガスの空燃比が基準電圧Vrに対応する空燃比であることがわかる。
 このように、本実施形態の空燃比センサ70、71によれば、空燃比センサ70、71周りにおける排気空燃比が基準電圧Vrに対応する空燃比に一致するときには出力電流であるポンプ電流が零となる。また、空燃比センサ70、71周りにおける排気空燃比が基準電圧Vrに対応する空燃比よりもリーンのときには出力電流であるポンプ電流が正となり、そのリーンの程度に応じてポンプ電流の絶対値が大きくなる。逆に、空燃比センサ70、71周りにおける排気空燃比が基準電圧Vrに対応する空燃比よりもリッチのときには出力電流であるポンプ電流が負となり、そのリッチの程度に応じてポンプ電流の絶対値が大きくなる。
 加えて、基準電圧Vrに対応する空燃比は、すなわち、基準電圧Vrを印加したときの電流零時の排気空燃比は、上記第一実施形態の空燃比センサ40、41に関連して説明したように、基準電圧Vrが増大するにつれて小さくなる。例えば、基準電圧Vrが0.45Vであるときには電流零時の排気空燃比は理論空燃比となる。そして、基準電圧Vrが0.45Vよりも大きい場合には電流零時の排気空燃比はリッチ空燃比となり、基準電圧Vrが0.45Vよりも小さい場合には電流零時の排気空燃比はリーン空燃比となる。
<各空燃比センサにおける印加電圧>
 本実施形態では、上流側空燃比センサ40における基準電圧Vrupは、排気空燃比が理論空燃比(本実施形態では14.6)であるときに出力電流が零となるような電圧(例えば、0.45V)とされる。換言すると、上流側空燃比センサ40では電流零時の排気空燃比が理論空燃比となるように基準電圧Vrupが設定される。一方、下流側空燃比センサ41における基準電圧Vrdwnは、排気空燃比が理論空燃比よりも僅かにリッチである予め定められたリッチ判定空燃比(例えば、14.55)であるときに出力電流が零となるような電圧(例えば、0.7V)とされる。換言すると、下流側空燃比センサ41では、電流零時の排気空燃比が理論空燃比よりも僅かにリッチであるリッチ判定空燃比となるように基準電圧Vrdwnが設定される。このように、本実施形態では、下流側空燃比センサ41における基準電圧Vrdwnが上流側空燃比センサ40における基準電圧Vrupよりも高い電圧とされる。
 したがって、両空燃比センサ70、71に接続されたECU31は、上流側空燃比センサ40の出力電流であるポンプ電流Ipupが零になったときに上流側空燃比センサ40周りの排気空燃比は理論空燃比であると判断する。一方、ECU31は、下流側空燃比センサ41の出力電流であるポンプ電流Ipdwnが零になったときには下流側空燃比センサ41周りの排気空燃比はリッチ判定空燃比、すなわち、理論空燃比とは異なる予め定められた空燃比であると判断する。
 なお、上記第三実施形態では、上流側空燃比センサ及び下流側空燃比センサのいずれもが1セル型の空燃比センサであり、上記第第四施形態では、上流側空燃比センサ及び下流側空燃比センサのいずれもが2セル型の空燃比センサである。しかしながら、上流側空燃比センサを2セル型の空燃比センサとし、下流側空燃比センサを1セル型の空燃比センサとしてもよい。逆に、上流側空燃比センサを1セル型の空燃比センサとし、下流側空燃比センサを2セル型の空燃比センサとしてもよい。この場合であっても、下流側空燃比センサ41におけるセンサ印加電圧(基準電圧)Vrupが上流側空燃比センサ40におけるセンサ印加電圧(基準電圧)Vrdwnよりも高い電圧とされる。
 加えて、上流側空燃比センサ及び下流側空燃比センサ共に2セル型の空燃比センサを用いつつ、上記第一実施形態と同様に、両空燃比センサにおける基準電圧Vrを同一としてもよい。この場合には、下流側空燃比センサのポンプ電流Ipが零以外の所定の値となったときに、上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ判定空燃比となったと判断する。
 なお、本明細書において、排気浄化触媒の酸素吸蔵量は、最大酸素吸蔵量と零との間で変化するものとして説明している。このことは、排気浄化触媒によって更に吸蔵可能な酸素の量が、零(酸素吸蔵量が最大酸素吸蔵量である場合)と最大値(酸素吸蔵量が零である場合)の間で変化することを意味するものである。
 5  燃焼室
 6  吸気弁
 8  排気弁
 10  点火プラグ
 11  燃料噴射弁
 13  吸気枝管
 15  吸気管
 18  スロットル弁
 19  排気マニホルド
 20  上流側排気浄化触媒
 21  上流側ケーシング
 22  排気管
 23  下流側ケーシング
 24  下流側排気浄化触媒
 31  ECU
 39  エアフロメータ
 40  上流側空燃比センサ
 41  下流側空燃比センサ

Claims (12)

  1.  内燃機関の排気通路に配置されると共に酸素を吸蔵可能な排気浄化触媒と、該排気浄化触媒の排気流れ方向下流側に配置されると共に前記排気浄化触媒から流出する排気ガスの空燃比を検出する下流側空燃比検出手段と、前記排気浄化触媒に流入する排気ガスの空燃比を制御する流入空燃比制御手段とを具備し、
     前記流入空燃比制御手段は、前記下流側空燃比検出手段によって検出された空燃比が理論空燃比よりもリッチであるリッチ判定空燃比以下になったときに、前記排気浄化触媒の酸素吸蔵量が最大酸素吸蔵量よりも少ない所定の吸蔵量となるまで、前記排気浄化触媒に流入する排気ガスの目標空燃比を継続的又は断続的に理論空燃比よりもリーンにする酸素吸蔵量増加手段と、前記排気浄化触媒の酸素吸蔵量が前記所定の吸蔵量以上になったときに、該酸素吸蔵量が最大酸素吸蔵量に達することなく零に向けて減少するように、前記目標空燃比を継続的又は断続的に理論空燃比よりもリッチにする酸素吸蔵量減少手段とを具備する、内燃機関の制御装置。
  2.  前記酸素吸蔵量増加手段によって継続的又は断続的に理論空燃比よりもリーンにされている期間における前記目標空燃比の平均値と理論空燃比との差は、前記酸素吸蔵量減少手段によって継続的又は断続的に理論空燃比よりもリッチにされている期間における前記目標空燃比の平均値と理論空燃比との差よりも大きい、請求項1に記載の内燃機関の制御装置。
  3.  前記酸素吸蔵量増加手段は、前記目標空燃比を継続的に理論空燃比よりもリーンに維持する、請求項1又は2に記載の内燃機関の制御装置。
  4.  前記酸素吸蔵量減少手段は、前記目標空燃比を継続的に理論空燃比よりもリッチに維持する、請求項1~3のいずれか1項に記載の内燃機関の制御装置。
  5.  前記酸素吸蔵量減少手段は、前記目標空燃比を断続的に理論空燃比よりもリッチにすると共に、前記目標空燃比が理論空燃比よりもリッチになっていない期間のうち少なくとも一部の期間は前記目標空燃比を理論空燃比よりもリーンにする、請求項1又は2に記載の内燃機関の制御装置。
  6.  前記排気浄化触媒に流入する排気ガスの空燃比を検出又は推定する上流側空燃比検出・推定手段を更に具備し、
     前記流入空燃比制御手段は、前記上流側空燃比検出・推定手段によって検出又は推定される排気ガスの空燃比が前記目標空燃比になるように前記内燃機関の燃焼室に供給される燃料の量を制御する、請求項1~5のいずれか1項に記載の内燃機関の制御装置。
  7.  前記上流側空燃比検出・推定手段によって検出又は推定された排気ガスの空燃比に基づいて該排気浄化触媒の酸素吸蔵量を推定する酸素吸蔵量推定手段を更に具備し、
     前記酸素吸蔵量増加手段は、前記酸素吸蔵量推定手段によって推定される酸素吸蔵量が前記所定の吸蔵量となるまで、前記目標空燃比を理論空燃比よりもリーンにする、請求項6に記載の内燃機関の制御装置。
  8.  前記下流側空燃比検出手段よりも排気流れ方向下流側において排気通路に配置されると共に酸素を吸蔵可能な下流側排気浄化触媒を更に具備する、請求項1~7のいずれか1項に記載の内燃機関の制御装置。
  9.  前記下流側空燃比検出手段は、排気空燃比に応じて出力電流が零となる印加電圧が変化する空燃比センサであり、該空燃比センサには、排気空燃比が前記リッチ判定空燃比であるときに出力電流が零となる印加電圧が印加され、
     前記酸素吸蔵量増加手段は、前記出力電流が零以下になったときに排気空燃比がリッチ判定空燃比以下になったと判断する、請求項1~8のいずれか1項に記載の内燃機関の制御装置。
  10.  前記下流側空燃比検出手段は、排気空燃比に応じて出力電流が零となる印加電圧が変化する空燃比センサであり、該空燃比センサには、排気空燃比が前記理論空燃比であるときに出力電流が零となる印加電圧が印加され、
     前記酸素吸蔵量増加手段は、前記出力電流が前記リッチ判定空燃比に対応する出力電流以下になったときに排気空燃比がリッチ判定空燃比以下になったと判断する、請求項1~8のいずれか1項に記載の内燃機関の制御装置。
  11.  前記空燃比センサは、拡散律速層を介して空燃比の検出対象である排気ガスに曝される第一電極と、基準雰囲気に曝される第二電極と、前記第一電極と前記第二電極との間に配置された固体電解質層と、前記第一電極と前記第二電極との間に電圧を印加する電圧印加装置と、前記第一電極と前記第二電極との間に流れる電流を検出する電流検出装置とを具備し、前記印加電圧は電圧印加装置によって印加された電圧であり、前記出力電流は前記電流検出装置によって検出された電流である、請求項9又は10に記載の内燃機関の制御装置。
  12.  前記空燃比センサは、空燃比の検出対象である排気ガスが流入せしめられる被測ガス室と、ポンプ電流に応じて該被測ガス室内の排気ガスに対して酸素の汲み入れ及び汲み出しを行うポンプセルと、前記被測ガス室内の空燃比に応じて、検出される基準電流が変化する基準セルとを具備し、
     前記基準セルは、前記被測ガス室内の排気ガスに直接的に又は拡散律速層を介して曝される第一電極と、基準雰囲気に曝される第二電極と、前記第一電極と前記第二電極との間に配置された固体電解質層とを具備し、
     前記空燃比センサは、前記基準セルの第一電極と第二電極との間に電圧を印加する基準電圧印加装置と、前記基準セルの第一電極と第二電極との間に流れる電流を前記基準電流として検出する基準電流検出装置と、前記基準電流検出装置によって検出された基準電流が零になるようにポンプセルへ供給されるポンプ電流を制御するポンプ電流制御装置と、該ポンプ電流を検出するポンプ電流検出装置とを具備し、
     前記印加電圧は前記基準電圧印加装置によって印加された基準電圧であり、前記出力電流は前記ポンプ電流検出装置によって検出されたポンプ電流である、請求項9又は10に記載の内燃機関の制御装置。
PCT/JP2013/051911 2013-01-29 2013-01-29 内燃機関の制御装置 WO2014118892A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP13873617.8A EP2952715B1 (en) 2013-01-29 2013-01-29 Control device for internal combustion engine
US14/763,370 US9765672B2 (en) 2013-01-29 2013-01-29 Control system of internal combustion engine
JP2014559391A JP6075394B2 (ja) 2013-01-29 2013-01-29 内燃機関の制御装置
CN201380071609.1A CN104956053B (zh) 2013-01-29 2013-01-29 内燃机的控制装置
PCT/JP2013/051911 WO2014118892A1 (ja) 2013-01-29 2013-01-29 内燃機関の制御装置
BR112015018145-7A BR112015018145B1 (pt) 2013-01-29 2013-01-29 Sistema de controle de motor de combustão interna
AU2013376226A AU2013376226B2 (en) 2013-01-29 2013-01-29 Control device for internal combustion engine
RU2015131026A RU2609604C1 (ru) 2013-01-29 2013-01-29 Система управления двигателем внутреннего сгорания
KR1020157019950A KR101822564B1 (ko) 2013-01-29 2013-01-29 내연 기관의 제어 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051911 WO2014118892A1 (ja) 2013-01-29 2013-01-29 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2014118892A1 true WO2014118892A1 (ja) 2014-08-07

Family

ID=51261641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051911 WO2014118892A1 (ja) 2013-01-29 2013-01-29 内燃機関の制御装置

Country Status (9)

Country Link
US (1) US9765672B2 (ja)
EP (1) EP2952715B1 (ja)
JP (1) JP6075394B2 (ja)
KR (1) KR101822564B1 (ja)
CN (1) CN104956053B (ja)
AU (1) AU2013376226B2 (ja)
BR (1) BR112015018145B1 (ja)
RU (1) RU2609604C1 (ja)
WO (1) WO2014118892A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016105277A1 (de) 2015-03-31 2016-10-06 Toyota Jidosha Kabushiki Kaisha Abgasreinigungssystem einer Verbrennungskraftmaschine
DE102016107199A1 (de) 2015-06-01 2016-12-01 Toyota Jidosha Kabushiki Kaisha Verbrennungsmaschine
JP2017014914A (ja) * 2015-06-26 2017-01-19 トヨタ自動車株式会社 内燃機関の制御装置
JPWO2014118892A1 (ja) * 2013-01-29 2017-01-26 トヨタ自動車株式会社 内燃機関の制御装置
JP2017031946A (ja) * 2015-08-05 2017-02-09 トヨタ自動車株式会社 内燃機関
DE102016116104A1 (de) 2015-09-15 2017-03-16 Toyota Jidosha Kabushiki Kaisha Steuersystem für eine Brennkraftmaschine
US9624811B2 (en) 2013-10-02 2017-04-18 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
EP3168448A1 (en) 2015-03-31 2017-05-17 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9726097B2 (en) 2013-09-27 2017-08-08 Toyota Jidosha Kabushiki Kiasha Control system of internal combustion engine
US9739225B2 (en) 2013-11-01 2017-08-22 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US9903298B2 (en) 2014-01-10 2018-02-27 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US9970345B2 (en) 2015-10-01 2018-05-15 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9982614B2 (en) 2015-07-03 2018-05-29 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10006394B2 (en) 2014-07-23 2018-06-26 Toyota Jidosha Kabushiki Kaisha Method of detecting abnormality of air-fuel ratio sensor
US10012165B2 (en) 2014-05-26 2018-07-03 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10087864B2 (en) 2014-04-25 2018-10-02 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
US10100765B2 (en) 2014-07-28 2018-10-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US10132257B2 (en) 2014-05-23 2018-11-20 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US10167760B2 (en) 2014-01-10 2019-01-01 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US10180109B2 (en) 2015-03-30 2019-01-15 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US10221789B2 (en) 2014-01-10 2019-03-05 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US10302035B2 (en) 2014-07-28 2019-05-28 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016220850B3 (de) * 2016-10-24 2017-10-26 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE102016222418A1 (de) * 2016-11-15 2018-05-17 Robert Bosch Gmbh Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente
DE102018107664A1 (de) * 2017-03-31 2018-10-04 Toyota Jidosha Kabushiki Kaisha Abgasreinigungssystem eines Verbrennungsmotors
JP7115335B2 (ja) * 2019-01-23 2022-08-09 トヨタ自動車株式会社 内燃機関の制御装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204370A (ja) * 1990-11-30 1992-07-24 Ngk Spark Plug Co Ltd 空燃比センサーの駆動回路
JPH08232723A (ja) 1994-12-30 1996-09-10 Honda Motor Co Ltd 内燃機関の燃料噴射制御装置
JPH1082760A (ja) * 1996-07-19 1998-03-31 Denso Corp 空燃比制御方法
JP2000039418A (ja) * 1998-07-21 2000-02-08 Nissan Motor Co Ltd 酸素センサの診断装置
JP2001234787A (ja) 2000-02-23 2001-08-31 Nissan Motor Co Ltd エンジンの排気浄化装置
JP2005127259A (ja) * 2003-10-24 2005-05-19 Hitachi Ltd エンジンの制御装置
JP2008095647A (ja) * 2006-10-16 2008-04-24 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2009162139A (ja) 2008-01-08 2009-07-23 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2010236450A (ja) * 2009-03-31 2010-10-21 Denso Corp 内燃機関の排気浄化装置
JP2011069337A (ja) 2009-09-28 2011-04-07 Toyota Motor Corp 内燃機関の空燃比制御装置
WO2012035622A1 (ja) * 2010-09-15 2012-03-22 トヨタ自動車株式会社 空燃比制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5758490A (en) 1994-12-30 1998-06-02 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US6055972A (en) 1996-07-04 2000-05-02 Denso Corporation Air fuel ratio control apparatus having air-fuel ratio control point switching function
IT1305375B1 (it) * 1998-08-25 2001-05-04 Magneti Marelli Spa Metodo di controllo del titolo della miscela aria / combustibilealimentata ad un motore endotermico
JP3627612B2 (ja) 1999-07-28 2005-03-09 トヨタ自動車株式会社 内燃機関の空燃比制御装置及び触媒劣化判定装置
EP1173665B1 (en) * 2000-02-16 2004-11-17 Nissan Motor Company, Limited Engine exhaust purification device
JP2002364428A (ja) 2001-06-01 2002-12-18 Toyota Motor Corp 触媒劣化判定装置
US7198952B2 (en) * 2001-07-18 2007-04-03 Toyota Jidosha Kabushiki Kaisha Catalyst deterioration detecting apparatus and method
JP2005002867A (ja) 2003-06-11 2005-01-06 Toyota Motor Corp 内燃機関の排気浄化システム
JP4039380B2 (ja) * 2004-03-24 2008-01-30 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2006104970A (ja) 2004-10-01 2006-04-20 Mitsubishi Electric Corp 内燃機関の排気浄化装置
JP4679335B2 (ja) * 2005-11-01 2011-04-27 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP4497132B2 (ja) * 2006-06-16 2010-07-07 トヨタ自動車株式会社 触媒劣化検出装置
JP4877246B2 (ja) * 2008-02-28 2012-02-15 トヨタ自動車株式会社 内燃機関の空燃比制御装置
US8712667B2 (en) * 2009-05-21 2014-04-29 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus for an internal combustion engine
GB2472815B (en) * 2009-08-19 2013-07-31 Gm Global Tech Operations Inc Method of estimating oxygen concentration downstream a diesel oxidation catalyst
JP2011127567A (ja) 2009-12-21 2011-06-30 Toyota Motor Corp 内燃機関の排気浄化装置
JP5348190B2 (ja) * 2011-06-29 2013-11-20 トヨタ自動車株式会社 内燃機関の制御装置
WO2014118892A1 (ja) * 2013-01-29 2014-08-07 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204370A (ja) * 1990-11-30 1992-07-24 Ngk Spark Plug Co Ltd 空燃比センサーの駆動回路
JPH08232723A (ja) 1994-12-30 1996-09-10 Honda Motor Co Ltd 内燃機関の燃料噴射制御装置
JPH1082760A (ja) * 1996-07-19 1998-03-31 Denso Corp 空燃比制御方法
JP2000039418A (ja) * 1998-07-21 2000-02-08 Nissan Motor Co Ltd 酸素センサの診断装置
JP2001234787A (ja) 2000-02-23 2001-08-31 Nissan Motor Co Ltd エンジンの排気浄化装置
JP2005127259A (ja) * 2003-10-24 2005-05-19 Hitachi Ltd エンジンの制御装置
JP2008095647A (ja) * 2006-10-16 2008-04-24 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2009162139A (ja) 2008-01-08 2009-07-23 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2010236450A (ja) * 2009-03-31 2010-10-21 Denso Corp 内燃機関の排気浄化装置
JP2011069337A (ja) 2009-09-28 2011-04-07 Toyota Motor Corp 内燃機関の空燃比制御装置
WO2012035622A1 (ja) * 2010-09-15 2012-03-22 トヨタ自動車株式会社 空燃比制御装置

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014118892A1 (ja) * 2013-01-29 2017-01-26 トヨタ自動車株式会社 内燃機関の制御装置
US9726097B2 (en) 2013-09-27 2017-08-08 Toyota Jidosha Kabushiki Kiasha Control system of internal combustion engine
US9624811B2 (en) 2013-10-02 2017-04-18 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
US9739225B2 (en) 2013-11-01 2017-08-22 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US9903297B2 (en) 2014-01-10 2018-02-27 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US10221789B2 (en) 2014-01-10 2019-03-05 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US10167760B2 (en) 2014-01-10 2019-01-01 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US9903298B2 (en) 2014-01-10 2018-02-27 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US10087864B2 (en) 2014-04-25 2018-10-02 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
US10132257B2 (en) 2014-05-23 2018-11-20 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US10012165B2 (en) 2014-05-26 2018-07-03 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10006394B2 (en) 2014-07-23 2018-06-26 Toyota Jidosha Kabushiki Kaisha Method of detecting abnormality of air-fuel ratio sensor
US10100765B2 (en) 2014-07-28 2018-10-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US10302035B2 (en) 2014-07-28 2019-05-28 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US10180109B2 (en) 2015-03-30 2019-01-15 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
EP3168448A1 (en) 2015-03-31 2017-05-17 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9835104B2 (en) 2015-03-31 2017-12-05 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
DE102016105277B4 (de) * 2015-03-31 2020-03-19 Toyota Jidosha Kabushiki Kaisha Abgasreinigungssystem einer Verbrennungskraftmaschine
KR20160117177A (ko) 2015-03-31 2016-10-10 도요타지도샤가부시키가이샤 내연 기관의 배기 정화 장치
KR101822562B1 (ko) 2015-03-31 2018-01-29 도요타지도샤가부시키가이샤 내연 기관의 배기 정화 장치
US9863354B2 (en) 2015-03-31 2018-01-09 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
DE102016105277A1 (de) 2015-03-31 2016-10-06 Toyota Jidosha Kabushiki Kaisha Abgasreinigungssystem einer Verbrennungskraftmaschine
DE102016107199A1 (de) 2015-06-01 2016-12-01 Toyota Jidosha Kabushiki Kaisha Verbrennungsmaschine
US9856811B2 (en) 2015-06-01 2018-01-02 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
DE102016107199B4 (de) * 2015-06-01 2019-11-21 Toyota Jidosha Kabushiki Kaisha Verbrennungsmaschine
JP2017014914A (ja) * 2015-06-26 2017-01-19 トヨタ自動車株式会社 内燃機関の制御装置
US9932879B2 (en) 2015-06-26 2018-04-03 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
US9982614B2 (en) 2015-07-03 2018-05-29 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10125708B2 (en) 2015-08-05 2018-11-13 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2017031946A (ja) * 2015-08-05 2017-02-09 トヨタ自動車株式会社 内燃機関
DE102016116104A1 (de) 2015-09-15 2017-03-16 Toyota Jidosha Kabushiki Kaisha Steuersystem für eine Brennkraftmaschine
US10378466B2 (en) 2015-09-15 2019-08-13 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
DE102016116104B4 (de) * 2015-09-15 2020-04-16 Toyota Jidosha Kabushiki Kaisha Steuersystem für eine Brennkraftmaschine
US9970345B2 (en) 2015-10-01 2018-05-15 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine

Also Published As

Publication number Publication date
AU2013376226B2 (en) 2016-07-28
BR112015018145B1 (pt) 2021-10-19
JPWO2014118892A1 (ja) 2017-01-26
US20160061084A1 (en) 2016-03-03
US9765672B2 (en) 2017-09-19
EP2952715B1 (en) 2018-12-05
JP6075394B2 (ja) 2017-02-08
EP2952715A4 (en) 2016-04-06
KR101822564B1 (ko) 2018-03-08
EP2952715A1 (en) 2015-12-09
BR112015018145A2 (pt) 2017-07-18
KR20150099837A (ko) 2015-09-01
AU2013376226A1 (en) 2015-07-30
RU2609604C1 (ru) 2017-02-02
CN104956053B (zh) 2020-07-24
CN104956053A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
JP6075394B2 (ja) 内燃機関の制御装置
JP5949957B2 (ja) 内燃機関の制御装置
JP6036853B2 (ja) 内燃機関の制御装置
JP5360312B1 (ja) 内燃機関の制御装置
JP6107586B2 (ja) 内燃機関の制御装置
JP5958561B2 (ja) 内燃機関の制御装置
JP6015629B2 (ja) 内燃機関の制御装置
JP5949958B2 (ja) 内燃機関の制御装置
JP6094438B2 (ja) 内燃機関の制御装置
JP5915779B2 (ja) 内燃機関の制御装置
JP5949959B2 (ja) 内燃機関の制御装置
JP6056726B2 (ja) 内燃機関の制御装置
WO2014118888A1 (ja) 内燃機関の制御装置
JP2015071985A (ja) 内燃機関の制御装置
JP6268933B2 (ja) 内燃機関の制御装置
JP2019105187A (ja) 触媒劣化検出装置
JP6255909B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873617

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014559391

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20157019950

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14763370

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201504598

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013873617

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013376226

Country of ref document: AU

Date of ref document: 20130129

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015018145

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015131026

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015018145

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150729