WO2014115230A1 - ズームレンズおよび撮像装置 - Google Patents
ズームレンズおよび撮像装置 Download PDFInfo
- Publication number
- WO2014115230A1 WO2014115230A1 PCT/JP2013/007643 JP2013007643W WO2014115230A1 WO 2014115230 A1 WO2014115230 A1 WO 2014115230A1 JP 2013007643 W JP2013007643 W JP 2013007643W WO 2014115230 A1 WO2014115230 A1 WO 2014115230A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens group
- lens
- zoom
- group
- focal length
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/146—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
- G02B15/1461—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/145—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
- G02B15/1451—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
- G02B15/145117—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +---+
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
- G02B15/163—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
- G02B15/167—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
- G02B15/17—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +--
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
- G02B15/20—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1006—Beam splitting or combining systems for splitting or combining different wavelengths
- G02B27/1013—Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Definitions
- the present invention relates to a zoom lens and an imaging apparatus, and more particularly to a zoom lens suitable for mounting on a digital camera, a surveillance camera, a movie shooting camera, a broadcast camera, and the like, and an imaging apparatus including the zoom lens. Is.
- zoom lenses particularly zoom cameras suitable for movie shooting cameras and broadcast cameras, consist of four lens groups, and the sign of the refractive power of each lens group in order from the object side is positive, negative, positive or negative.
- the lens group is positive and the two lens groups are relatively moved during zooming.
- a lens having a relatively large number of lens groups that are moved during zooming For example, in Patent Documents 1 to 3 below, the signs of the refractive powers of the respective lens groups are sequentially assigned from the object side. , Positive, negative, positive, positive, positive, positive, positive, and positive zoom lenses are described.
- Patent Documents 4 and 5 below describe the refractive power of each lens group in order from the object side.
- a zoom lens having a six-group configuration that is positive and negative is described.
- the F-number is made smaller for the zoom lenses described in Patent Documents 1 and 2, and the overall length of the lens system is shortened and compacted for the zoom lens described in Patent Document 3.
- the zoom lenses described in Documents 4 and 5 improvement of insufficient brightness on the telephoto side and higher performance are desired.
- the present invention has been made in view of the above circumstances, and provides a zoom lens in which a small F number and high performance are realized while maintaining compactness, and an imaging apparatus including such a zoom lens. It is intended.
- the zoom lens of the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a negative refractive power, and a negative lens power.
- the fourth lens group having a refractive power, the fifth lens group having a positive refractive power, and the sixth lens group having a positive refractive power are substantially composed of six lens groups, and from the wide-angle end to the telephoto end.
- the first lens group and the sixth lens group are fixed with respect to the image plane, the distance between the first lens group and the second lens group is increased, and the second lens group and the third lens group.
- the distance changes, the distance between the third lens group and the fourth lens group changes, the distance between the fourth lens group and the fifth lens group changes, and the distance between the fifth lens group and the sixth lens group changes. It is characterized by.
- any one of the following conditional expressions (1) to (6), (4-1), (5-1), and (6-1) is satisfied.
- any one of conditional expressions (1) to (6), (4-1), (5-1), (6-1) may be satisfied, or any combination You may satisfy.
- D3T ⁇ D3W Air distance on the optical axis between the third lens group and the fourth lens group at the telephoto end
- D3W Air distance on the optical axis between the third lens group and the fourth lens group at the wide angle end
- D5T At the telephoto end Air distance D5W on the optical axis of the fifth lens group and the sixth lens group: Air distance D2W on the optical axis of the fifth lens group and the sixth lens group on the optical axis
- D2W The second lens group on the
- a stop is disposed on the object side from the lens surface closest to the image side of the fifth lens group, and the stop is integrated with the fifth lens group at the time of zooming from the wide angle end to the telephoto end. It is preferable to move it.
- the second lens group is substantially composed of a negative meniscus lens having an aspheric surface on at least one surface and a concave surface facing the image side.
- the fifth lens group is substantially composed of a biconvex lens and a cemented lens in which the biconvex lens and the biconcave lens are cemented in this order from the object side. .
- the third lens group is substantially composed of a negative meniscus lens having a concave surface directed toward the image side and two sets of cemented lenses in order from the object side, or a third lens group. It is preferable that the lens group is substantially composed of a negative meniscus lens having a concave surface directed toward the image side, a pair of cemented lenses, a positive lens, and a negative lens in order from the object side.
- An image pickup apparatus includes the zoom lens according to the present invention described above.
- Each of the “lens groups” is not necessarily composed of a plurality of lenses, but includes those composed of only one lens.
- substantially configured means a lens having substantially no power, an optical element other than a lens such as an aperture, a cover glass, and a filter, a lens flange, and a lens barrel.
- a mechanism portion such as an image pickup device or a camera shake correction mechanism may be included.
- the sign of the refractive power and the surface shape of the lens are considered in the paraxial region if the lens includes an aspherical surface.
- the zoom lens is configured to include six lens groups, the arrangement of the refractive powers of the lens groups is preferably set, and the setting of the fixed group and the change of the distance between the lens groups are changed during zooming. Since it is suitably set, a small F number and high performance can be realized while maintaining compactness.
- the zoom lens of the present invention since the zoom lens of the present invention is provided, a high-quality image can be acquired without increasing the size of the apparatus, and good imaging can be performed even under low illumination conditions. .
- FIGS. 6A to 6L are graphs showing aberrations of the zoom lens according to Example 1 of the present invention.
- FIGS. 7A to 7L are diagrams showing aberrations of the zoom lens according to the second embodiment of the present invention.
- 8A to 8L are graphs showing aberrations of the zoom lens according to Example 3 of the present invention.
- FIGS. 9A to 9L are graphs showing aberrations of the zoom lens according to Example 4 of the present invention.
- 1 is a schematic configuration diagram of an imaging apparatus according to an embodiment of the present invention.
- FIG. 1 is a cross-sectional view at the wide-angle end of a zoom lens according to an embodiment of the present invention.
- the example shown in FIG. 1 corresponds to Example 1 described later.
- the zoom lens according to the present embodiment has, in order from the object side along the optical axis Z, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a negative refractive power.
- FIG. 1 shows an example in which the optical member GP that assumes these is arranged between the lens system and the image plane Sim. It is not an essential component for the zoom lens of the present invention.
- the first lens group G1 and the sixth lens group G6 are fixed with respect to the image plane Sim during zooming from the wide-angle end to the telephoto end, and the first lens group G1 and the second lens group G2
- the distance between the lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 changes, the distance between the third lens group G3 and the fourth lens group G4 changes, and the fourth lens group G4 and the fifth lens group G3 change.
- the interval between the lens groups G5 is changed, and the interval between the fifth lens group G5 and the sixth lens group G6 is changed.
- a first lens group having a positive refractive power fixed at the time of zooming a second lens group having a negative refractive power moving at the time of zooming, A third lens group having negative refracting power that moves during magnification and corrects the movement of the imaging position accompanying magnification, and a fourth lens group having positive refracting power that is fixed during magnification
- a positive / negative / negative positive type four-group zoom lens is known.
- positive, negative, negative, positive and positive lens groups are arranged in order from the object side, and the second lens group and the fourth lens group of the conventional positive, negative, negative, positive type four-group zoom lens are arranged. It can be considered that each is divided into two lens groups and improved.
- the second lens group G2 having negative refractive power of the zoom lens of the present embodiment is divided by dividing the second lens group having negative refractive power of the conventional four-group zoom lens, and negative refractive power.
- the third lens group G3 having the positive refractive power of the zoom lens of the present embodiment is formed by dividing the fourth lens group having the positive refractive power of the conventional four-group zoom lens. It can be considered that the sixth lens group G6 having G5 and positive refractive power is formed.
- the second lens group having negative refractive power of the conventional four-group zoom lens is divided into two lenses, a second lens group having negative refractive power and a third lens group having positive refractive power.
- the second lens group of the conventional four-group zoom lens is divided in this embodiment to form two lens groups, a second lens group G2 and a third lens group G3, and these two lenses are used for zooming.
- By moving the group relatively it is possible to suppress fluctuations in various aberrations during zooming.
- the fourth lens group fixed at the time of zooming of the conventional four-group zoom lens is divided into two lens groups, a fifth lens group G5 and a sixth lens group G6. Further, by configuring the fifth lens group G5 to move at the time of zooming, the light of the second lens group G2, the third lens group G3, and the fourth lens group G4 without increasing the overall length of the lens system.
- the movable range in the axial direction can be made large, the refractive power of each lens unit can be suppressed while maintaining a high zoom magnification, and good correction of various aberrations can be facilitated.
- the zoom lens of the present embodiment configured as described above, while maintaining compactness and high zoom magnification, the F number is small, various aberrations are corrected well, and fluctuations in various aberrations during zooming are also suppressed. High optical performance capable of acquiring high-quality images can be realized.
- the lens group that moves during zooming may be the three lens groups of the second lens group G2, the third lens group G3, and the fifth lens group G5, or the second lens group G2 and the fourth lens group.
- Three lens groups of G4 and fifth lens group G5 may be used, or four lens groups of second lens group G2 to fifth lens group G5 may be used.
- the zoom lens according to the present embodiment preferably satisfies any one of the following conditional expressions (1) to (6) or any combination.
- D3T ⁇ D3W (1) D5T ⁇ D5W (2) D2W ⁇ D2T (3) 0.8 ⁇ f6 / f5 ⁇ 1.3 (4) 1.5 ⁇ ft / f1 ⁇ 3.0 (5) ⁇ 4.0 ⁇ ft / f2 ⁇ 0.5 (6)
- D3T Air distance on the optical axis between the third lens group and the fourth lens group at the telephoto end
- D3W Air distance on the optical axis between the third lens group and the fourth lens group at the wide angle end
- D2W The second lens group on the optical axis of the fifth lens group and the sixth lens group Air distance
- the air space on the optical axis of the third lens group G3 and the fourth lens group G4 can be made narrower at the telephoto end than at the wide-angle end, and the zoom magnification can be increased. it can.
- the air space on the optical axis of the fifth lens group G5 and the sixth lens group G6 can be made narrower at the telephoto end than at the wide-angle end, and the total length of the lens system is increased.
- the movable range in the optical axis direction of the second lens group G2, the third lens group G3, and the fourth lens group G4 can be made large without reducing the refractive power of each lens group while maintaining a high zoom magnification. Good correction of aberration can be facilitated.
- the air space on the optical axis of the second lens group G2 and the third lens group G3 can be made narrower at the wide-angle end than at the telephoto end, and the first lens at the wide-angle end. This is advantageous for reducing the effective diameter of the lens of the group G1 and for favorably correcting spherical aberration at the telephoto end.
- conditional expression (4) If the lower limit of conditional expression (4) is not satisfied, the lens diameter of the sixth lens group G6 will increase. If the upper limit of the conditional expression (4) is not satisfied, it is difficult to secure a back focus having an appropriate length necessary for arranging a prism, a filter, and the like between the lens system and the image plane Sim.
- a focal length conversion optical system may be inserted between the fifth lens group G5 and the sixth lens group G6, a composite optical system that combines the first lens group G1 to the fifth lens group G5. Is preferably a substantially afocal optical system, but if conditional expression (4) is not satisfied, it will be difficult to make this synthetic optical system a substantially afocal optical system.
- conditional expression (4) it is possible to suppress an increase in the lens diameter of the sixth lens group G6, it is possible to ensure a back focus with an appropriate length, and the fifth lens group G5 and the fifth lens group G5. It is possible to convert the focal length by inserting a focal length converting optical system between the six lens groups G6.
- conditional expression (4-1) is satisfied instead of conditional expression (4). 0.9 ⁇ f6 / f5 ⁇ 1.2 (4-1)
- conditional expression (5) If the lower limit of conditional expression (5) is not satisfied, the total length of the lens system increases. If the upper limit of conditional expression (5) is not satisfied, the spherical aberration at the telephoto end is deteriorated. Satisfying the conditional expression (5) facilitates downsizing of the lens system and good correction of spherical aberration at the telephoto end.
- conditional expression (5) 1.8 ⁇ ft / f1 ⁇ 2.5
- conditional expression (6) If the lower limit of conditional expression (6) is not satisfied, distortion at the wide-angle end and curvature of field at the periphery of the imaging region will deteriorate. If the upper limit of conditional expression (6) is not satisfied, the effect of correcting aberration fluctuations during zooming becomes weak. Satisfying conditional expression (6) facilitates good correction of distortion at the wide-angle end and curvature of field at the periphery of the imaging region, and good correction of aberration fluctuations during zooming.
- conditional expression (6-1) ⁇ 3.0 ⁇ ft / f2 ⁇ 0.6 (6-1)
- each lens group constituting the zoom lens of the present embodiment can have the following configuration.
- the first lens group G1 includes, in order from the object side, a first A lens group G1A that is fixed at the time of focusing and has a negative refractive power, and an image from the object side at the time of focusing from an object at infinity to a near object.
- the first B lens group G1B having a positive refractive power that moves to the side and the first C lens group G1C having a positive refractive power that is fixed during focusing can be configured. When such a configuration is adopted, aberration variation and magnification variation during focusing can be suppressed.
- the first lens group G1 is configured to include the above three lens groups, and the first A lens group G1A is a negative meniscus lens having a concave surface facing the image side in order from the object side.
- the first B lens group G1B includes, in order from the object side, a biconvex lens L14, a biconcave lens L15, and a biconvex lens.
- the first C lens group G1C includes, in order from the object side, a lens L17 that is a biconvex lens, and a lens L18 that is a positive meniscus lens having a convex surface facing the object side.
- the first B lens group G1B By configuring the first B lens group G1B to include, in order from the object side, a biconvex lens, a biconcave lens, and a cemented lens in which a biconvex lens is cemented, it is easier to suppress aberration fluctuations during focusing.
- the lens closest to the object side of the first lens group G1 may be an aspherical lens. In such a case, distortion mainly at the wide-angle end can be corrected satisfactorily. Further, the lens closest to the image side of the first lens group G1 may be an aspheric lens. In such a case, spherical aberration at the telephoto end can be suppressed.
- the object side surface of the lens L11 and the object side surface of the lens L18 are aspheric.
- the first lens group G1 includes the lenses L11 to L18 as described above, an anomalous dispersion material may be used for the lenses L16 and L17. In such a case, the chromatic aberration on the telephoto side is corrected particularly well. can do.
- the Abbe number of the material of the lenses L16 and L17 with respect to the d-line may be set to be greater than 80. In such a case, In particular, the chromatic aberration on the telephoto side can be corrected well.
- the second lens group G2 is preferably composed of a single negative meniscus lens having a concave surface facing the image side, and in this case, it is easy to correct spherical aberration on the telephoto side. Further, the second lens group G2 is composed of a single negative meniscus lens having a concave surface facing the image side, and preferably has an aspheric surface on at least one surface. In such a case, distortion on the wide angle side is prevented. Good correction is possible, and good correction of field curvature is facilitated.
- the second lens group G2 in the example shown in FIG. 1 includes only a lens L21 that is a negative meniscus lens having a concave surface facing the image side.
- the third lens group G3 is preferably composed of, in order from the object side, a negative meniscus lens having a concave surface facing the image side, and two sets of cemented lenses.
- the third lens group G3 includes, in order from the object side, a negative meniscus lens having a concave surface facing the image side, a pair of cemented lenses, a positive lens, and a negative lens. Even when any of the above-described preferable configurations of the third lens group G3 is adopted, the aberration fluctuation at the time of zooming can be suppressed.
- the cemented lens in the above-described two preferred configurations of the third lens group G3 includes a positive lens and a negative lens.
- the cemented lens on the object side in the former configuration and the cemented lens in the latter configuration are positive lenses. It is preferable that the negative lens is cemented in this order from the object side. This makes it easier to correct especially spherical aberration and field curvature on the telephoto side.
- the first and second two lenses from the image side are preferably in the order of positive lens and negative lens in order from the object side. This makes it easier to suppress aberration fluctuations during zooming.
- the third lens group G3 in the example shown in FIG. 1 includes, in order from the object side, a lens L31 that is a negative meniscus lens having a concave surface facing the image side, a lens L32 that is a positive meniscus lens having a convex surface facing the image side, and both
- the lens includes a cemented lens in which a lens L33 that is a concave lens is cemented in this order from the object side, a lens that is a biconvex lens L34, and a lens L35 that is a negative meniscus lens having a concave surface facing the object side in this order from the object side.
- the fourth lens group G4 can be configured to include, for example, a pair of cemented lenses including a positive lens and a negative lens.
- the aberration at the time of zooming can be achieved while reducing the size. This can contribute to the suppression of fluctuations.
- the fourth lens group G4 in the example shown in FIG. 1 includes a cemented lens in which a lens L41 that is a biconcave lens and a lens L42 that is a biconvex lens are cemented in this order from the object side.
- the fifth lens group G5 is preferably composed of, in order from the object side, a biconvex lens, and a cemented lens in which a biconvex lens and a biconcave lens are cemented in this order from the object side. Good correction of chromatic aberration becomes possible.
- the fifth lens group G5 in the example illustrated in FIG. 1 includes a cemented lens in which a biconvex lens L51, a biconvex lens L52, and a biconcave lens L53 are cemented in this order from the object side. Become.
- the most object side lens of the fifth lens group G5 may be an aspherical lens.
- the object side surface of the lens L51 is an aspherical surface.
- the sixth lens group G6 can be configured to include, for example, a positive lens, two sets of cemented lenses, and a positive lens in order from the object side.
- the cemented lens in the configuration that can be adopted by the sixth lens group G6 includes a positive lens and a negative lens, and the order of the positive lens and the negative lens from the object side in the cemented lens does not matter.
- the sixth lens group G6 in the example shown in FIG. 1 includes, in order from the object side, a lens L61 that is a biconvex lens, a lens L62 that is a biconvex lens, and a lens L63 that is a biconcave lens. It consists of a lens L64 that is a biconvex lens, a cemented lens in which a lens L65 that is a negative meniscus lens having a concave surface facing the object side is cemented in this order from the object side, and a lens L66 that is a biconvex lens.
- the sixth lens group G6 includes the lenses L61 to L66 as described above, an anomalous dispersion material may be used for the lens L64. In such a case, axial chromatic aberration can be corrected well. .
- the sixth lens group G6 is composed of the lenses L61 to L66 as described above, the Abbe number of the material of the lens L64 with respect to the d-line may be set to be greater than 71. Chromatic aberration can be corrected satisfactorily.
- the aperture stop St is disposed closer to the object side than the lens surface closest to the image side of the fifth lens group G5, and at the time of zooming from the wide angle end to the telephoto end. It is preferable that St moves integrally with the fifth lens group G5. In this case, it is possible to prevent an increase in the effective diameter of the lens on the object side from the aperture stop St and to increase the amount of movement of the lens unit that moves during zooming.
- the aperture stop St in the example shown in FIG. 1 is disposed between the fourth lens group G4 and the fifth lens group G5.
- the aperture stop St and the fifth lens are used during zooming. It is easy to move the group G5 integrally, and it is advantageous in that the increase in the effective diameter of the lens is suppressed.
- the aperture stop St shown in FIG. 1 does not represent the size or shape, but indicates the position on the optical axis.
- FIG. 2 is a cross-sectional view showing the configuration of the zoom lens of Example 1.
- the arrangement and configuration of each lens group at the wide angle end, the intermediate focal length state, and the telephoto end are shown in the upper, middle, and lower stages, respectively, with the symbols W, M, and T on the left side.
- W, M, and T on the left side.
- rough movement trajectories of the lens groups that move during zooming are indicated by arrows.
- a first lens group G1 having a positive refractive power As a group configuration of the zoom lens of Example 1, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a negative refractive power.
- the first lens group G1 and the sixth lens group G6 are fixed with respect to the image plane Sim during zooming from the wide-angle end to the telephoto end, and the distance between the first lens group G1 and the second lens group G2
- the distance between the second lens group G2 and the third lens group G3 changes, the distance between the third lens group G3 and the fourth lens group G4 changes, and the distance between the fourth lens group G4 and the fifth lens group G5.
- the aperture stop St is configured to move integrally with the fifth lens group G5.
- the four lens groups of the second lens group G2 to the fifth lens group G5 move in the optical axis direction.
- FIG. 2 also shows an example in which an optical member GP assuming a prism, various filters, and the like is disposed between the sixth lens group G6 and the image plane Sim.
- Table 1 shows basic lens data of the zoom lens of Example 1
- Table 2 shows specifications and variable surface intervals
- Table 3 shows aspheric coefficients.
- the Ri column shows the radius of curvature of the i-th surface
- the Di column shows the surface spacing on the optical axis Z between the i-th surface and the i + 1-th surface.
- the d-line wavelength: 587.56 nm
- the j-th (j 1, 2, 3,...) Component that increases sequentially toward the image side with the most object-side component as the first.
- the ⁇ dj column indicates the Abbe number of the j-th component with respect to the d-line.
- Table 1 The sign of the radius of curvature in Table 1 is positive for a surface shape with a convex surface facing the object side, and negative for a surface shape with a convex surface facing the image side.
- Table 1 also shows the aperture stop St and the optical member GP.
- the surface number column of the surface corresponding to the aperture stop St the surface number and the word (St) are described.
- the value in the lowest column of Di is the distance between the image side surface of the optical member GP and the image plane Sim.
- DD [15], DD [17], DD [25], DD [28], and DD [34] described in the Di column of Table 1 are variable surface intervals that change the distance upon zooming. Yes, the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, the distance between the third lens group G3 and the fourth lens group G4, and the fourth lens group G4, respectively. And the distance between the aperture stop St and the distance between the fifth lens group G5 and the sixth lens group G6.
- Table 2 shows the specifications for the d-line at the wide-angle end, the intermediate focal length state (abbreviated as intermediate in Table 2), the telephoto end, and the value of the variable plane distance.
- F 'in Table 2 is the focal length of the entire system
- Bf' is the back focus at the air equivalent distance
- 2 ⁇ is the total angle of view (in degrees).
- Table 1 the surface number of the aspheric surface is marked with *, and the numerical value of the paraxial curvature radius is described in the column of the curvature radius of the aspheric surface.
- Table 3 shows the aspheric coefficients of these aspheric surfaces.
- the numerical value “E ⁇ n” (n: integer) of the aspheric coefficient in Table 3 means “ ⁇ 10 ⁇ n ”.
- ⁇ in the following equation means the sum related to the term of m.
- Zd C ⁇ h 2 / ⁇ 1+ (1 ⁇ KA ⁇ C 2 ⁇ h 2 ) 1/2 ⁇ + ⁇ Am ⁇ h m
- Zd Depth of aspheric surface (length of a perpendicular line drawn from a point on the aspherical surface at height h to a plane perpendicular to the optical axis where the aspherical vertex contacts)
- h Height (distance from the optical axis to the lens surface)
- C paraxial curvature KA
- Tables 1 to 3 numerical values rounded by a predetermined digit are shown.
- mm is used as the unit of length.
- the optical system can be used even with proportional enlargement or reduction, other appropriate units can be used.
- FIGS. 6A to 6D show aberration diagrams of spherical aberration, astigmatism, distortion (distortion), and chromatic aberration of magnification (chromatic aberration of magnification) of the zoom lens of Example 1 at the wide-angle end, respectively.
- FIGS. 6E to 6H show aberration diagrams of spherical aberration, astigmatism, distortion (distortion), and chromatic aberration of magnification (chromatic aberration of magnification) of the zoom lens of Example 1 in the intermediate focal length state, respectively. Indicates.
- 6 (I) to 6 (L) show respective aberration diagrams of the spherical aberration, astigmatism, distortion (distortion), and lateral chromatic aberration (chromatic aberration of magnification) of the zoom lens of Example 1 at the telephoto end.
- . 6 (A) to 6 (L) are all when the object at infinity is in focus.
- Symbols W, M, and T on the left side of the upper, middle, and lower stages in FIG. 6 represent the wide-angle end, the intermediate focal length state, and the telephoto end, respectively.
- Each aberration diagram shows the aberration with the d-line as the reference wavelength, while the spherical aberration diagram shows the C-line (wavelength 656.27 nm), F-line (wavelength 486.13 nm), and g-line (wavelength 435.84 nm).
- the chromatic aberration diagram for magnification aberrations for the C line, F line, and g line are shown.
- the aberrations relating to the sagittal direction and the tangential direction are indicated by solid lines and broken lines, and symbols (S) and (T) are entered in the description of the line types.
- FNo. Means F number, and ⁇ in other aberration diagrams means half angle of view.
- FIG. 3 is a lens configuration diagram of the zoom lens according to the second embodiment.
- the group configuration of the zoom lens of Example 2, the schematic configuration of the lenses in each lens group, and the position of the aperture stop are the same as those of Example 1 described above.
- Table 4, Table 5, and Table 6 show the basic lens data, specifications, variable surface interval, and aspheric coefficient of the zoom lens of Example 2, respectively.
- 7A to 7L show aberration diagrams of the zoom lens of Example 2.
- FIG. 4 is a lens configuration diagram of the zoom lens according to the third embodiment.
- the group configuration of the zoom lens of Example 3, the schematic configuration of the lenses in each lens group, and the position of the aperture stop are the same as those of Example 1 described above.
- Tables 7, 8, and 9 show basic lens data, specifications, variable surface intervals, and aspherical coefficients of the zoom lens of Example 3, respectively.
- 8A to 8L show aberration diagrams of the zoom lens according to Example 3.
- FIG. 5 is a lens configuration diagram of the zoom lens of Example 4.
- the group configuration of the zoom lens of Example 4, the schematic configuration of the lenses in each lens group, and the position of the aperture stop are substantially the same as those of Example 1 described above, but the lens L34 and the lens L35 are not joined. This is different from the first embodiment.
- Table 10, Table 11, and Table 12 show the basic lens data, specifications, variable surface interval, and aspheric coefficient of the zoom lens of Example 4, respectively.
- FIGS. 9A to 9L show aberration diagrams of the zoom lens of Example 4.
- Table 13 shows the focal length of each lens group with respect to the d-line of the zoom lenses of Examples 1 to 4, values related to the conditional expressions (1) to (3), and the corresponding values of the conditional expressions (4) to (6).
- F1 in Table 13 is the focal length of the first lens group G1
- f2 is the focal length of the second lens group G2
- f3 is the focal length of the third lens group G3
- f4 is the focal length of the fourth lens group G4
- f5 is the first focal length.
- the focal length of the fifth lens group G5, f6 is the focal length of the sixth lens group G6.
- the zoom lenses of Examples 1 to 4 have a small F number of 1.85 at the wide-angle end, a large total angle of view of about 75 ° at the wide-angle end, and a zoom ratio of 16.2. Although it is 5 times, it is compact and has a high performance with each aberration corrected satisfactorily.
- FIG. 10 shows a schematic configuration diagram of a television camera 10 using the zoom lens 1 according to the embodiment of the present invention as an example of the imaging device of the embodiment of the present invention.
- the first A lens group G1A, the first B lens group G1B, the first C lens group G1C, and the second lens group G2 to the sixth lens group G6 included in the zoom lens 1 are schematically illustrated.
- the television camera 10 includes a zoom lens 1, a filter 2 having functions such as a low-pass filter and an infrared cut filter disposed on the image side of the zoom lens 1, and color separation prisms 3R and 3G disposed on the image side of the filter 2. 3B and imaging elements 4R, 4G, and 4B provided on the end faces of the color separation prisms.
- the image pickup devices 4R, 4G, and 4B convert an optical image formed by the zoom lens 1 into an electric signal, and for example, a CCD or a CMOS can be used.
- the imaging elements 4R, 4G, and 4B are arranged such that their imaging surfaces coincide with the image plane of the zoom lens 1.
- the television camera 10 also includes a signal processing unit 5 that performs arithmetic processing on output signals from the image sensors 4R, 4G, and 4B, a display unit 6 that displays an image formed by the signal processing unit 5, and a zooming magnification of the zoom lens 1.
- the television camera 10 illustrated in FIG. 10 is a so-called 3CCD image pickup apparatus having three image pickup elements, but the image pickup apparatus of the present invention is not limited to this, and the entire wavelength band is picked up by one image pickup element. It may be a thing.
- FIG. 10 shows an example in which the focus is controlled by moving the first B lens group G1B, and the zooming is controlled by moving the second lens group G2 to the fifth lens group G5.
- the lens group used for focusing and zooming is not necessarily limited to that shown in FIG.
- the present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made.
- the values of the radius of curvature, the surface spacing, the refractive index, the Abbe number, and the aspheric coefficient of each lens are not limited to the values shown in the above embodiments, but can take other values.
- the television camera has been described as an example, but the imaging apparatus of the present invention is not limited to this.
- a video camera, a digital camera, a surveillance camera The present invention can also be applied to an imaging apparatus such as a movie camera or a broadcast camera.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Lenses (AREA)
Abstract
【課題】コンパクト性を維持しつつ、小さなFナンバーと高性能化を実現可能なズームレンズおよびこのズームレンズを備えた撮像装置を提供する。 【解決手段】ズームレンズは、物体側から順に、正の第1レンズ群(G1)、負の第2レンズ群(G2)、負の第3レンズ群(G3)、負の第4レンズ群(G4)、正の第5レンズ群(G5)、正の第6レンズ群(G6)からなる。広角端から望遠端への変倍の際に、第1レンズ群(G1)と第6レンズ群(G6)が像面に対して固定され、第1レンズ群(G1)と第2レンズ群(G2)の間隔が広がり、第2レンズ群(G2)と第3レンズ群(G3)の間隔が変化し、第3レンズ群(G3)と第4レンズ群(G4)の間隔が変化し、第4レンズ群(G4)と第5レンズ群(G5)の間隔が変化し、第5レンズ群(G5)と第6レンズ群(G6)の間隔が変化する。
Description
本発明は、ズームレンズおよび撮像装置に関し、より詳しくは、デジタルカメラ、監視用カメラ、映画撮影用カメラ、放送用カメラ等への搭載に好適なズームレンズ、およびこのズームレンズを備えた撮像装置に関するものである。
従来、ズームレンズ、特に映画撮影用カメラ、放送用カメラに適したズームレンズとしては、4つのレンズ群からなり、各レンズ群の屈折力の符号を物体側から順に、正負正正、もしくは正負負正とし、変倍の際にそのうちの2つのレンズ群を相対的に移動させたものが広く知られている。また、変倍の際に相対的に移動させるレンズ群の数を増やしたものも提案されており、例えば、下記特許文献1~3には、各レンズ群の屈折力の符号を物体側から順に、正負負正正、もしくは正負正正正とした5群構成のズームレンズが記載されており、下記特許文献4、5には、各レンズ群の屈折力の符号を物体側から順に、正負正正負正とした6群構成のズームレンズが記載されている。
近年の上記分野のカメラでは、レンズ系とCCD(Charge Coupled Device)等の撮像素子とを組み合わせて使用することが一般的である。年々進化している撮像素子の高画素化に対応可能なように、レンズ系に対しても高画質な画像を取得可能なように高性能化が求められている。また、上記分野のカメラでは屋内等の低照度の条件下でも良好に撮影可能なようにFナンバーが小さいことも求められている。高性能化や小さなFナンバーを実現するためにレンズ枚数を増加させることが考えられるが、映画撮影用カメラ、放送用カメラ等では使用者がカメラを肩に載せて使用したり、携行したりすることが多いことから、安易な装置の大型化は市場では容認されにくく、コンパクト性を維持することが要望される。
近年の上記要望に応えるために、特許文献1、2に記載のズームレンズについてはFナンバーをより小さくすること、特許文献3に記載のズームレンズについてはレンズ系の全長の短縮やコンパクト化、特許文献4、5に記載のズームレンズについては望遠側の明るさ不足の改善やさらなる高性能化が望まれる。
本発明は、上記事情に鑑みなされたものであり、コンパクト性を維持しつつ、小さなFナンバーと高性能化が実現されたズームレンズ、およびこのようなズームレンズを備えた撮像装置を提供することを目的とするものである。
本発明のズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群との6つのレンズ群から実質的に構成され、広角端から望遠端への変倍の際に、第1レンズ群と第6レンズ群が像面に対して固定され、第1レンズ群と第2レンズ群の間隔が広がり、第2レンズ群と第3レンズ群の間隔が変化し、第3レンズ群と第4レンズ群の間隔が変化し、第4レンズ群と第5レンズ群の間隔が変化し、第5レンズ群と第6レンズ群の間隔が変化することを特徴とするものである。
本発明のズームレンズにおいては、以下の条件式(1)~(6)、(4-1)、(5-1)、(6-1)のいずれかを満足することが好ましい。なお、好ましい態様としては、条件式(1)~(6)、(4-1)、(5-1)、(6-1)のいずれか一つを満足するものでもよく、あるいは任意の組合せを満足するものでもよい。
D3T<D3W … (1)
D5T<D5W … (2)
D2W<D2T … (3)
0.8<f6/f5<1.3 … (4)
0.9<f6/f5<1.2 … (4-1)
1.5<ft/f1<3.0 … (5)
1.8<ft/f1<2.5 … (5-1)
-4.0<ft/f2<-0.5 … (6)
-3.0<ft/f2<-0.6 … (6-1)
ただし、
D3T:望遠端での第3レンズ群と第4レンズ群の光軸上の空気間隔
D3W:広角端での第3レンズ群と第4レンズ群の光軸上の空気間隔
D5T:望遠端での第5レンズ群と第6レンズ群の光軸上の空気間隔
D5W:広角端での第5レンズ群と第6レンズ群の光軸上の空気間隔
D2W:広角端での第2レンズ群と第3レンズ群の光軸上の空気間隔
D2T:望遠端での第2レンズ群と第3レンズ群の光軸上の空気間隔
f6:第6レンズ群の焦点距離
f5:第5レンズ群の焦点距離
ft:望遠端での全系の焦点距離
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
D3T<D3W … (1)
D5T<D5W … (2)
D2W<D2T … (3)
0.8<f6/f5<1.3 … (4)
0.9<f6/f5<1.2 … (4-1)
1.5<ft/f1<3.0 … (5)
1.8<ft/f1<2.5 … (5-1)
-4.0<ft/f2<-0.5 … (6)
-3.0<ft/f2<-0.6 … (6-1)
ただし、
D3T:望遠端での第3レンズ群と第4レンズ群の光軸上の空気間隔
D3W:広角端での第3レンズ群と第4レンズ群の光軸上の空気間隔
D5T:望遠端での第5レンズ群と第6レンズ群の光軸上の空気間隔
D5W:広角端での第5レンズ群と第6レンズ群の光軸上の空気間隔
D2W:広角端での第2レンズ群と第3レンズ群の光軸上の空気間隔
D2T:望遠端での第2レンズ群と第3レンズ群の光軸上の空気間隔
f6:第6レンズ群の焦点距離
f5:第5レンズ群の焦点距離
ft:望遠端での全系の焦点距離
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
本発明のズームレンズにおいては、第5レンズ群の最も像側のレンズ面より物体側に絞りが配設され、広角端から望遠端への変倍の際に、絞りが第5レンズ群と一体的に移動することが好ましい。
本発明のズームレンズにおいては、第2レンズ群が、少なくとも1面に非球面を有し、像側に凹面を向けた負メニスカスレンズから実質的に構成されることが好ましい。
本発明のズームレンズにおいては、第5レンズ群が、物体側から順に、両凸レンズと、両凸レンズおよび両凹レンズが物体側からこの順に接合された接合レンズとから実質的に構成されることが好ましい。
本発明のズームレンズにおいては、第3レンズ群が、物体側から順に、像側に凹面を向けた負メニスカスレンズと、2組の接合レンズとから実質的に構成されるか、あるいは、第3レンズ群が、物体側から順に、像側に凹面を向けた負メニスカスレンズと、1組の接合レンズと、正レンズと、負レンズとから実質的に構成されることが好ましい。
本発明の撮像装置は、上記記載の本発明のズームレンズを備えたことを特徴とするものである。
なお、上記各「レンズ群」は、必ずしも複数のレンズから構成されるものだけではなく、1枚のレンズのみで構成されるものも含むものとする。
なお、上記の「実質的に構成され」とは、挙げた構成要素以外に、実質的にパワーを有さないレンズ、絞りやカバーガラスやフィルタ等のレンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手ぶれ補正機構等の機構部分、等を含んでもよいことを意図するものである。
なお、上記の屈折力の符号やレンズの面形状は、非球面が含まれているものについては近軸領域で考えるものとする。
本発明のズームレンズによれば、6つのレンズ群からなるように構成し、レンズ群の屈折力の配列を好適に設定し、変倍の際の固定群の設定および各レンズ群間隔の変化を好適に設定しているため、コンパクト性を維持しつつ、小さなFナンバーと高性能化を実現することができる。
本発明の撮像装置によれば、本発明のズームレンズを備えているため、装置を大型化することなく、高画質の画像を取得可能であり、低照度の条件下でも良好に撮影可能である。
以下、本発明の実施形態について図面を参照して詳細に説明する。図1に、本発明の一実施形態に係るズームレンズの広角端における断面図を示す。図1に示す例は後述の実施例1に対応している。
本実施形態のズームレンズは、光軸Zに沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6との6つのレンズ群から実質的に構成される。
なお、ズームレンズが撮像装置に搭載される際には、撮像素子の撮像面を保護するカバーガラスや、撮像装置の仕様に応じた色分解プリズム等のプリズム、ローパスフィルタや赤外線カットフィルタ等の各種フィルタを備えるように撮像装置を構成することが好ましいため、図1では、これらを想定した光学部材GPをレンズ系と像面Simとの間に配置した例を示しているが、光学部材GPは本発明のズームレンズに必須の構成要素ではない。
本実施形態のズームレンズは、広角端から望遠端への変倍の際に、第1レンズ群G1と第6レンズ群G6が像面Simに対して固定され、第1レンズ群G1と第2レンズ群G2の間隔が広がり、第2レンズ群G2と第3レンズ群G3の間隔が変化し、第3レンズ群G3と第4レンズ群G4の間隔が変化し、第4レンズ群G4と第5レンズ群G5の間隔が変化し、第5レンズ群G5と第6レンズ群G6の間隔が変化するように構成される。
一方、従来、物体側から順に、変倍の際に固定されている正の屈折力を有する第1レンズ群と、変倍の際に移動する負の屈折力を有する第2レンズ群と、変倍の際に移動して変倍に伴う結像位置の移動を補正する負の屈折力を有する第3レンズ群と、変倍の際に固定されている正の屈折力を有する第4レンズ群とからなる、正負負正タイプの4群ズームレンズが知られている。
本実施形態のズームレンズは、物体側から順に、正負負負正正のレンズ群が配列されており、上記従来の正負負正タイプの4群ズームレンズの第2レンズ群と第4レンズ群をそれぞれ2つのレンズ群に分割して改良を加えたものと捉えることができる。概略的には、上記従来の4群ズームレンズの負の屈折力を有する第2レンズ群を分割して本実施形態のズームレンズの負の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3を形成し、上記従来の4群ズームレンズの正の屈折力を有する第4レンズ群を分割して本実施形態のズームレンズの正の屈折力を有する第5レンズ群G5、正の屈折力を有する第6レンズ群G6を形成したと考えることができる。
このように、従来の1つのレンズ群を分割して2つのレンズ群を形成するにあたり、本実施形態では分割前のレンズ群と同符号の屈折力を有する2つのレンズ群を形成するようにしている。これにより、分割後の各レンズ群の屈折力を極端に強くすることなく諸収差を良好に補正することができる。仮に、上記従来の4群ズームレンズの負の屈折力を有する第2レンズ群を分割して、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群の2つのレンズ群を形成した場合は、分割後の第2レンズ群の負の屈折力を強くしなくてはならず、諸収差の良好な補正が困難となる。
上記従来の4群ズームレンズの第2レンズ群を、本実施形態では分割して第2レンズ群G2、第3レンズ群G3という2つのレンズ群を形成し、変倍の際にこれら2つのレンズ群を相対的に移動させることにより、変倍の際の諸収差の変動を抑えることができる。
また、上記従来の4群ズームレンズの変倍の際に固定されている第4レンズ群を、本実施形態では分割して第5レンズ群G5、第6レンズ群G6という2つのレンズ群を形成し、さらに第5レンズ群G5を変倍の際に移動させるよう構成することにより、レンズ系の全長を長くすることなく第2レンズ群G2、第3レンズ群G3、第4レンズ群G4の光軸方向の可動範囲を大きく取ることができ、高いズーム倍率を維持しながら各レンズ群の屈折力を抑え、諸収差の良好な補正を容易とすることができる。また、球面収差や軸上色収差の良好な補正も容易となるため、Fナンバーを小さくすることも容易となる。
上記構成の本実施形態のズームレンズによれば、コンパクト性および高いズーム倍率を維持しつつ、Fナンバーが小さく、諸収差が良好に補正され、変倍の際の諸収差の変動も抑制されて、高画質の画像を取得可能な高い光学性能を実現することができる。
なお、変倍の際に移動するレンズ群としては、第2レンズ群G2、第3レンズ群G3、第5レンズ群G5の3つのレンズ群でもよく、あるいは第2レンズ群G2、第4レンズ群G4、第5レンズ群G5の3つのレンズ群でもよく、または第2レンズ群G2~第5レンズ群G5の4つのレンズ群でもよい。変倍の際に4つのレンズ群が移動する場合は、変倍の際の諸収差の変動をより抑制することができる。
本実施形態のズームレンズは、下記条件式(1)~(6)のいずれか1つ、または任意の組合せを満足することが好ましい。
D3T<D3W … (1)
D5T<D5W … (2)
D2W<D2T … (3)
0.8<f6/f5<1.3 … (4)
1.5<ft/f1<3.0 … (5)
-4.0<ft/f2<-0.5 … (6)
ただし、
D3T:望遠端での第3レンズ群と第4レンズ群の光軸上の空気間隔
D3W:広角端での第3レンズ群と第4レンズ群の光軸上の空気間隔
D5T:望遠端での第5レンズ群と第6レンズ群の光軸上の空気間隔
D5W:広角端での第5レンズ群と第6レンズ群の光軸上の空気間隔
D2W:広角端での第2レンズ群と第3レンズ群の光軸上の空気間隔
D2T:望遠端での第2レンズ群と第3レンズ群の光軸上の空気間隔
f6:第6レンズ群の焦点距離
f5:第5レンズ群の焦点距離
ft:望遠端での全系の焦点距離
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
D3T<D3W … (1)
D5T<D5W … (2)
D2W<D2T … (3)
0.8<f6/f5<1.3 … (4)
1.5<ft/f1<3.0 … (5)
-4.0<ft/f2<-0.5 … (6)
ただし、
D3T:望遠端での第3レンズ群と第4レンズ群の光軸上の空気間隔
D3W:広角端での第3レンズ群と第4レンズ群の光軸上の空気間隔
D5T:望遠端での第5レンズ群と第6レンズ群の光軸上の空気間隔
D5W:広角端での第5レンズ群と第6レンズ群の光軸上の空気間隔
D2W:広角端での第2レンズ群と第3レンズ群の光軸上の空気間隔
D2T:望遠端での第2レンズ群と第3レンズ群の光軸上の空気間隔
f6:第6レンズ群の焦点距離
f5:第5レンズ群の焦点距離
ft:望遠端での全系の焦点距離
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
条件式(1)を満足することにより、第3レンズ群G3と第4レンズ群G4の光軸上の空気間隔を広角端よりも望遠端で狭くすることができ、ズーム倍率を大きくすることができる。
条件式(2)を満足することにより、第5レンズ群G5と第6レンズ群G6の光軸上の空気間隔を広角端よりも望遠端で狭くすることができ、レンズ系の全長を長くすることなく第2レンズ群G2、第3レンズ群G3、第4レンズ群G4の光軸方向の可動範囲を大きく取ることができ、高いズーム倍率を維持しながら各レンズ群の屈折力を抑え、諸収差の良好な補正を容易とすることができる。また、球面収差や軸上色収差の良好な補正も容易となるため、Fナンバーを小さくすることも容易となる。
条件式(3)を満足することにより、第2レンズ群G2と第3レンズ群G3の光軸上の空気間隔を望遠端よりも広角端で狭くすることができ、広角端での第1レンズ群G1のレンズの有効径の小径化、および望遠端での球面収差の良好な補正に有利となる。
条件式(4)の下限を満たさないと、第6レンズ群G6のレンズ径が大きくなってしまう。条件式(4)の上限を満たさないと、レンズ系と像面Simとの間にプリズムやフィルタ等を配置するために必要な適切な長さのバックフォーカスを確保することが困難になる。また、第5レンズ群G5と第6レンズ群G6との間には、焦点距離変換光学系が挿入されることがあるため、第1レンズ群G1~第5レンズ群G5を合成した合成光学系は略アフォーカル光学系とすることが好ましいが、条件式(4)を満足しないと、この合成光学系を略アフォーカル光学系とすることが困難となる。条件式(4)を満足することにより、第6レンズ群G6のレンズ径の大型化を抑制することができ、適切な長さのバックフォーカスを確保することができ、第5レンズ群G5と第6レンズ群G6との間に焦点距離変換光学系を挿入して焦点距離を変換することが可能となる。
上記事情から、条件式(4)に代えて下記条件式(4-1)を満足することがより好ましい。
0.9<f6/f5<1.2 … (4-1)
0.9<f6/f5<1.2 … (4-1)
条件式(5)の下限を満たさないと、レンズ系の全長が増大する。条件式(5)の上限を満たさないと、望遠端での球面収差が悪化する。条件式(5)を満足することにより、レンズ系の小型化と望遠端での球面収差の良好な補正が容易になる。
上記事情から、条件式(5)に代えて下記条件式(5-1)を満足することがより好ましい。
1.8<ft/f1<2.5 … (5-1)
1.8<ft/f1<2.5 … (5-1)
条件式(6)の下限を満たさないと、広角端での歪曲収差と結像領域周辺部の像面湾曲が悪化する。条件式(6)の上限を満たさないと、変倍の際の収差変動を補正する効果が弱くなる。条件式(6)を満足することにより、広角端での歪曲収差と結像領域周辺部の像面湾曲の良好な補正、および変倍の際の収差変動の良好な補正が容易になる。
上記事情から、条件式(6)に代えて下記条件式(6-1)を満足することがより好ましい。
-3.0<ft/f2<-0.6 … (6-1)
-3.0<ft/f2<-0.6 … (6-1)
本実施形態のズームレンズを構成する各レンズ群は例えば、以下に述べるような構成を採ることができる。まず、第1レンズ群G1は、物体側から順に、フォーカスの際に固定され負の屈折力を有する第1Aレンズ群G1Aと、無限遠物体から近距離物体へのフォーカスの際に物体側から像側へ移動する正の屈折力を有する第1Bレンズ群G1Bと、フォーカスの際に固定され正の屈折力を有する第1Cレンズ群G1Cとからなるように構成することができる。このような構成を採った場合は、フォーカスの際の収差変動と倍率変動を抑制することができる。
例えば図1に示す例では、第1レンズ群G1は上記3つのレンズ群からなるように構成されており、第1Aレンズ群G1Aは、物体側から順に、像側に凹面を向けた負メニスカスレンズであるレンズL11、両凹レンズであるレンズL12、両凸レンズであるレンズL13からなり、第1Bレンズ群G1Bは、物体側から順に、両凸レンズであるレンズL14、両凹レンズであるレンズL15および両凸レンズであるレンズL16を物体側からこの順に接合した接合レンズからなり、第1Cレンズ群G1Cは、物体側から順に、両凸レンズであるレンズL17、物体側に凸面を向けた正メニスカスレンズであるレンズL18からなる。第1Bレンズ群G1Bを、物体側から順に、両凸レンズ、両凹レンズおよび両凸レンズを接合した接合レンズからなるように構成することで、フォーカスの際の収差変動の抑制がより容易になる。
第1レンズ群G1の最も物体側のレンズは、非球面レンズとしてもよく、そのようにした場合は、主に広角端での歪曲収差を良好に補正することができる。また、第1レンズ群G1の最も像側のレンズは、非球面レンズとしてもよく、そのようにした場合は、望遠端での球面収差を抑制することができる。例えば、図1に示す例では、レンズL11の物体側の面とレンズL18の物体側の面が非球面である。
第1レンズ群G1が上記のようなレンズL11~L18からなる場合、レンズL16、L17に異常分散材料を用いるようにしてもよく、そのようにした場合は、特に望遠側の色収差を良好に補正することができる。第1レンズ群G1が上記のようなレンズL11~L18からなる場合、レンズL16、L17の材料のd線に対するアッベ数が80より大きくなるように設定してもよく、そのようにした場合は、特に望遠側の色収差を良好に補正することができる。
第2レンズ群G2は、像側に凹面を向けた1枚の負メニスカスレンズからなることが好ましく、このようにした場合は、望遠側で球面収差の良好な補正が容易となる。さらに、第2レンズ群G2は、像側に凹面を向けた1枚の負メニスカスレンズからなり、少なくとも1面に非球面を有することが好ましく、このようにした場合は、広角側で歪曲収差の良好な補正が可能となり、像面湾曲の良好な補正が容易となる。例えば図1に示す例の第2レンズ群G2は、像側に凹面を向けた負メニスカスレンズであるレンズL21のみからなる。
第3レンズ群G3は、物体側から順に、像側に凹面を向けた負メニスカスレンズと、2組の接合レンズとからなることが好ましい。あるいは、第3レンズ群G3は、物体側から順に、像側に凹面を向けた負メニスカスレンズと、1組の接合レンズと、正レンズと、負レンズとからなることが好ましい。第3レンズ群G3の上記いずれの好ましい構成を採った場合も、変倍の際の収差変動を抑制することができる。なお、第3レンズ群G3の上記2つの好ましい構成における接合レンズとは、正レンズおよび負レンズを含むものであり、前者の構成における物体側の接合レンズおよび後者の構成における接合レンズは、正レンズ、負レンズが物体側からこの順に接合されたものであることが好ましい。これにより、特に望遠側の球面収差、像面湾曲が補正しやすくなる。また、前者および後者の構成における像側から1、2番目の2枚のレンズは、物体側から順に、正レンズ、負レンズの順にあることが好ましい。これにより、変倍の際の収差変動を抑制しやすくなる。
例えば図1に示す例の第3レンズ群G3は、物体側から順に、像側に凹面を向けた負メニスカスレンズであるレンズL31、像側に凸面を向けた正メニスカスレンズであるレンズL32および両凹レンズであるレンズL33を物体側からこの順に接合した接合レンズ、両凸レンズであるレンズL34および物体側に凹面を向けた負メニスカスレンズであるレンズL35を物体側からこの順に接合した接合レンズからなる。
第4レンズ群G4は、例えば、正レンズおよび負レンズを含む1組の接合レンズからなるように構成することができ、このようにした場合は、小型化を図りながら、変倍の際の収差変動の抑制に貢献することができる。例えば図1に示す例の第4レンズ群G4は、両凹レンズであるレンズL41および両凸レンズであるレンズL42を物体側からこの順に接合した接合レンズからなる。
第5レンズ群G5は、物体側から順に、両凸レンズと、両凸レンズおよび両凹レンズを物体側からこの順に接合した接合レンズとからなることが好ましく、このようにした場合は、球面収差や軸上色収差の良好な補正が可能となる。
例えば図1に示す例の第5レンズ群G5は、物体側から順に、両凸レンズであるレンズL51、両凸レンズであるレンズL52および両凹レンズであるレンズL53を物体側からこの順に接合した接合レンズからなる。
また、第5レンズ群G5の最も物体側のレンズは、非球面レンズとしてもよく、そのようにした場合は、球面収差を抑制して小さなFナンバーのレンズ系とすることに有利となる。例えば、図1に示す例では、レンズL51の物体側の面が非球面である。
第6レンズ群G6は、例えば、物体側から順に、正レンズと、2組の接合レンズと、正レンズとからなるように構成することができる。なお、上記第6レンズ群G6の採りうる構成における接合レンズとは、正レンズおよび負レンズを含むものであり、これら正レンズと負レンズの接合レンズ内の物体側からの順は問わない。
例えば図1に示す例の第6レンズ群G6は、物体側から順に、両凸レンズであるレンズL61、両凸レンズであるレンズL62および両凹レンズであるレンズL63を物体側からこの順に接合した接合レンズ、両凸レンズであるレンズL64および物体側に凹面を向けた負メニスカスレンズであるレンズL65を物体側からこの順に接合した接合レンズ、両凸レンズであるレンズL66からなる。
第6レンズ群G6が上記のようなレンズL61~L66からなる場合、レンズL64に異常分散材料を用いるようにしてもよく、そのようにした場合は、軸上色収差を良好に補正することができる。第6レンズ群G6が上記のようなレンズL61~L66からなる場合、レンズL64の材料のd線に対するアッベ数が71より大きくなるように設定してもよく、そのようにした場合は、軸上色収差を良好に補正することができる。
また、本実施形態のズームレンズにおいては、開口絞りStは、第5レンズ群G5の最も像側のレンズ面より物体側に配置され、広角端から望遠端への変倍の際に、開口絞りStが第5レンズ群G5と一体的に移動することが好ましい。このようにした場合は、開口絞りStより物体側のレンズの有効径の増大を防ぎ、変倍の際に移動するレンズ群の移動量を大きくとることができる。
例えば図1に示す例の開口絞りStは、第4レンズ群G4と第5レンズ群G5の間に配置されており、このようにした場合は、変倍の際に開口絞りStと第5レンズ群G5を一体的に移動させることが容易になり、また、レンズの有効径の増大を抑制する点で有利となる。なお、図1に示す開口絞りStは大きさや形状を表すものではなく、光軸上での位置を示すものである。
以上、図1に示す例を参照しながら説明したが、本発明のズームレンズの各レンズ群を構成するレンズ枚数やレンズ形状は図1に示す例に限定されず、他の構成のものも採用可能である。また、上述した好ましい構成や可能な構成は、任意の組合せが可能であり、ズームレンズに要求される仕様に応じて適宜選択的に採用されることが好ましい。
次に、本発明のズームレンズの具体的な実施例について説明する。
<実施例1>
実施例1のズームレンズの構成を示す断面図を図2に示す。図2では、左側にそれぞれW、M、Tという記号が付された上段、中段、下段に、それぞれ広角端、中間焦点距離状態、望遠端における各レンズ群の配置と構成を示している。また、上段と中段の間、中段と下段の間には、変倍の際に移動する各レンズ群の概略的な移動軌跡を矢印で示している。
<実施例1>
実施例1のズームレンズの構成を示す断面図を図2に示す。図2では、左側にそれぞれW、M、Tという記号が付された上段、中段、下段に、それぞれ広角端、中間焦点距離状態、望遠端における各レンズ群の配置と構成を示している。また、上段と中段の間、中段と下段の間には、変倍の際に移動する各レンズ群の概略的な移動軌跡を矢印で示している。
実施例1のズームレンズの群構成としては、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6との6つのレンズ群から構成され、広角端から望遠端への変倍の際に、第1レンズ群G1と第6レンズ群G6が像面Simに対して固定され、第1レンズ群G1と第2レンズ群G2の間隔が広がり、第2レンズ群G2と第3レンズ群G3の間隔が変化し、第3レンズ群G3と第4レンズ群G4の間隔が変化し、第4レンズ群G4と第5レンズ群G5の間隔が変化し、第5レンズ群G5と第6レンズ群G6の間隔が変化し、開口絞りStは第5レンズ群G5と一体的に移動するように構成されている。広角端から望遠端への変倍の際に、第2レンズ群G2~第5レンズ群G5の4つのレンズ群が光軸方向に移動する。
実施例1のズームレンズの各レンズ群内のレンズの概略構成および開口絞りStの位置は、実施形態の説明において図1に示す例として説明した通りである。また、図2においても、第6レンズ群G6と像面Simの間に、プリズムや各種フィルタ等を想定した光学部材GPを配置した例を示している。
実施例1のズームレンズの基本レンズデータを表1に、諸元と可変面間隔を表2に、非球面係数を表3に示す。
表1において、Siの欄には最も物体側の構成要素の物体側の面を1番目として像側に向かうに従い順次増加するi番目(i=1、2、3、…)の面番号を示し、Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示している。また、Ndjの欄には最も物体側の構成要素を1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の構成要素のd線(波長587.56nm)に対する屈折率を示し、νdjの欄にはj番目の構成要素のd線に対するアッベ数を示している。
表1の曲率半径の符号は、物体側に凸面を向けた面形状の場合を正とし、像側に凸面を向けた面形状の場合を負としている。表1には、開口絞りStおよび光学部材GPも示しており、開口絞りStに相当する面の面番号の欄には面番号と(St)という語句を記載している。Diの最下欄の値は、光学部材GPの像側の面と像面Simとの間隔である。
表1のDiの欄に記載されている、DD[15]、DD[17]、DD[25]、DD[28]、DD[34]は変倍の際に間隔が変化する可変面間隔であり、それぞれ第1レンズ群G1と第2レンズ群G2の間隔、第2レンズ群G2と第3レンズ群G3の間隔、第3レンズ群G3と第4レンズ群G4の間隔、第4レンズ群G4と開口絞りStの間隔、第5レンズ群G5と第6レンズ群G6の間隔に対応する。
表2に、広角端、中間焦点距離状態(表2では中間と略して記載)、望遠端それぞれにおけるd線に対する諸元と上記可変面間隔の値を示す。表2のf’は全系の焦点距離、Bf’は空気換算距離でのバックフォーカス、FNo.はFナンバー、2ωは全画角(単位は度)である。
なお、表1では、非球面の面番号には*印を付しており、非球面の曲率半径の欄には近軸の曲率半径の数値を記載している。表3に、これら各非球面の非球面係数を示す。表3の非球面係数の数値の「E-n」(n:整数)は「×10-n」を意味する。非球面係数は、下式で表される非球面式における各係数KA、Am(m=3、4、5、…16)の値である。下式におけるΣはmの項に関する和を意味する。
Zd=C・h2/{1+(1-KA・C2・h2)1/2}+ΣAm・hm
ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸に垂直な平面に下ろした垂線の長さ)
h:高さ(光軸からのレンズ面までの距離)
C:近軸曲率
KA、Am:非球面係数(m=3、4、5、…16)
Zd=C・h2/{1+(1-KA・C2・h2)1/2}+ΣAm・hm
ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸に垂直な平面に下ろした垂線の長さ)
h:高さ(光軸からのレンズ面までの距離)
C:近軸曲率
KA、Am:非球面係数(m=3、4、5、…16)
表1~表3では、所定の桁でまるめた数値を記載している。表1~表3において、長さの単位としてmmを用いているが、光学系は比例拡大又は比例縮小しても使用可能なため、他の適当な単位を用いることもできる。
図6(A)~図6(D)にそれぞれ、広角端における実施例1のズームレンズの球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差(倍率の色収差)の各収差図を示す。図6(E)~図6(H)にそれぞれ、中間焦点距離状態における実施例1のズームレンズの球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差(倍率の色収差)の各収差図を示す。図6(I)~図6(L)にそれぞれ、望遠端における実施例1のズームレンズの球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差(倍率の色収差)の各収差図を示す。図6(A)~図6(L)は全て無限遠物体合焦時のものである。図6の上段、中段、下段の左側に付された記号W、M、Tはそれぞれ広角端、中間焦点距離状態、望遠端を意味している。
各収差図には、d線を基準波長とした収差を示すが、球面収差図にはC線(波長656.27nm)、F線(波長486.13nm)、g線(波長435.84nm)についての収差も示し、倍率色収差図ではC線、F線、g線についての収差を示している。非点収差図ではサジタル方向、タンジェンシャル方向それぞれに関する収差を実線、破線で示しており、線種の説明にそれぞれ(S)、(T)という記号を記入している。球面収差図のFNo.はFナンバー、その他の収差図のωは半画角を意味する。
上記の実施例1の説明で述べた各データの記号、意味、記載方法は、特に断りがない限り以下の実施例のものについても同様であるため、以下では重複説明を省略する。
<実施例2>
図3に実施例2のズームレンズのレンズ構成図を示す。実施例2のズームレンズの群構成、各レンズ群内のレンズの概略構成および開口絞りの位置は、上述した実施例1のものと同様である。表4、表5、表6にそれぞれ、実施例2のズームレンズの基本レンズデータ、諸元と可変面間隔、非球面係数を示す。図7(A)~図7(L)に実施例2のズームレンズの各収差図を示す。
図3に実施例2のズームレンズのレンズ構成図を示す。実施例2のズームレンズの群構成、各レンズ群内のレンズの概略構成および開口絞りの位置は、上述した実施例1のものと同様である。表4、表5、表6にそれぞれ、実施例2のズームレンズの基本レンズデータ、諸元と可変面間隔、非球面係数を示す。図7(A)~図7(L)に実施例2のズームレンズの各収差図を示す。
<実施例3>
図4に実施例3のズームレンズのレンズ構成図を示す。実施例3のズームレンズの群構成、各レンズ群内のレンズの概略構成および開口絞りの位置は、上述した実施例1のものと同様である。表7、表8、表9にそれぞれ、実施例3のズームレンズの基本レンズデータ、諸元と可変面間隔、非球面係数を示す。図8(A)~図8(L)に実施例3のズームレンズの各収差図を示す。
図4に実施例3のズームレンズのレンズ構成図を示す。実施例3のズームレンズの群構成、各レンズ群内のレンズの概略構成および開口絞りの位置は、上述した実施例1のものと同様である。表7、表8、表9にそれぞれ、実施例3のズームレンズの基本レンズデータ、諸元と可変面間隔、非球面係数を示す。図8(A)~図8(L)に実施例3のズームレンズの各収差図を示す。
<実施例4>
図5に実施例4のズームレンズのレンズ構成図を示す。実施例4のズームレンズの群構成、各レンズ群内のレンズの概略構成および開口絞りの位置は、上述した実施例1のものと略同様であるが、レンズL34とレンズL35が接合されていない点が実施例1のものと異なる。表10、表11、表12にそれぞれ、実施例4のズームレンズの基本レンズデータ、諸元と可変面間隔、非球面係数を示す。図9(A)~図9(L)に実施例4のズームレンズの各収差図を示す。
図5に実施例4のズームレンズのレンズ構成図を示す。実施例4のズームレンズの群構成、各レンズ群内のレンズの概略構成および開口絞りの位置は、上述した実施例1のものと略同様であるが、レンズL34とレンズL35が接合されていない点が実施例1のものと異なる。表10、表11、表12にそれぞれ、実施例4のズームレンズの基本レンズデータ、諸元と可変面間隔、非球面係数を示す。図9(A)~図9(L)に実施例4のズームレンズの各収差図を示す。
上記実施例1~4のズームレンズのd線に対する各レンズ群の焦点距離と条件式(1)~(3)に関係する値および条件式(4)~(6)の対応値を表13に示す。表13のf1は第1レンズ群G1の焦点距離、f2は第2レンズ群G2の焦点距離、f3は第3レンズ群G3の焦点距離、f4は第4レンズ群G4の焦点距離、f5は第5レンズ群G5の焦点距離、f6は第6レンズ群G6の焦点距離である。
以上のデータからわかるように、実施例1~4のズームレンズは、広角端でのFナンバーが1.85と小さく、広角端での全画角が75°程度と大きく、ズーム比が16.5倍ありながらも、コンパクトに構成され、各収差が良好に補正されて高い性能を有するものである。
次に、図10を参照しながら、本発明の実施形態に係る撮像装置について説明する。図10に、本発明の実施形態の撮像装置の一例として、本発明の実施形態に係るズームレンズ1を用いたテレビカメラ10の概略構成図を示す。なお、図10では、ズームレンズ1が備える第1Aレンズ群G1A、第1Bレンズ群G1B、第1Cレンズ群G1C、第2レンズ群G2~第6レンズ群G6を概略的に図示している。
テレビカメラ10は、ズームレンズ1と、ズームレンズ1の像側に配置されたローパスフィルタおよび赤外線カットフィルタ等の機能を有するフィルタ2と、フィルタ2の像側に配置された色分解プリズム3R、3G、3Bと、各色分解プリズムの端面に設けられた撮像素子4R、4G、4Bとを備えている。撮像素子4R、4G、4Bはズームレンズ1により形成される光学像を電気信号に変換するものであり、例えば、CCDやCMOS等を用いることができる。撮像素子4R、4G、4Bは、その撮像面がズームレンズ1の像面に一致するように配置される。
テレビカメラ10はまた、撮像素子4R、4G、4Bからの出力信号を演算処理する信号処理部5と、信号処理部5により形成された像を表示する表示部6と、ズームレンズ1の変倍を制御するズーム制御部7と、ズームレンズ1のフォーカスを制御するフォーカス制御部8を備えている。なお、図10に示すテレビカメラ10は、3つの撮像素子を有するいわゆる3CCD方式の撮像装置であるが、本発明の撮像装置はこれに限定されず、1つの撮像素子で全波長帯域を撮像するものでもよい。また、図10では、第1Bレンズ群G1Bを移動させてフォーカスを制御し、第2レンズ群G2~第5レンズ群G5を移動させて変倍を制御する例を示しているが、本発明においてフォーカスや変倍に用いられるレンズ群は必ずしも図10に示すものに限定されない。
以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されず、種々の変形が可能である。例えば、各レンズの曲率半径、面間隔、屈折率、アッベ数、非球面係数の値は、上記各実施例で示した値に限定されず、他の値をとり得るものである。
また、撮像装置の実施形態では、テレビカメラを例に挙げ図を示して説明したが、本発明の撮像装置はこれに限定されるものではなく、例えば、ビデオカメラ、デジタルカメラ、監視用カメラ、映画撮影用カメラ、放送用カメラ等の撮像装置に本発明を適用することも可能である。
Claims (15)
- 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群との6つのレンズ群から実質的に構成され、
広角端から望遠端への変倍の際に、前記第1レンズ群と前記第6レンズ群が像面に対して固定され、前記第1レンズ群と前記第2レンズ群の間隔が広がり、前記第2レンズ群と前記第3レンズ群の間隔が変化し、前記第3レンズ群と前記第4レンズ群の間隔が変化し、前記第4レンズ群と前記第5レンズ群の間隔が変化し、前記第5レンズ群と前記第6レンズ群の間隔が変化することを特徴とするズームレンズ。 - 下記条件式(1)を満足することを特徴とする請求項1記載のズームレンズ。
D3T<D3W … (1)
ただし、
D3T:望遠端での前記第3レンズ群と前記第4レンズ群の光軸上の空気間隔
D3W:広角端での前記第3レンズ群と前記第4レンズ群の光軸上の空気間隔 - 下記条件式(2)を満足することを特徴とする請求項1または2記載のズームレンズ。
D5T<D5W … (2)
ただし、
D5T:望遠端での前記第5レンズ群と前記第6レンズ群の光軸上の空気間隔
D5W:広角端での前記第5レンズ群と前記第6レンズ群の光軸上の空気間隔 - 下記条件式(3)を満足することを特徴とする請求項1から3のいずれか1項記載のズームレンズ。
D2W<D2T … (3)
ただし、
D2W:広角端での前記第2レンズ群と前記第3レンズ群の光軸上の空気間隔
D2T:望遠端での前記第2レンズ群と前記第3レンズ群の光軸上の空気間隔 - 下記条件式(4)を満足することを特徴とする請求項1から4のいずれか1項記載のズームレンズ。
0.8<f6/f5<1.3 … (4)
ただし、
f6:前記第6レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離 - 下記条件式(5)を満足することを特徴とする請求項1から5のいずれか1項記載のズームレンズ。
1.5<ft/f1<3.0 … (5)
ただし、
ft:望遠端での全系の焦点距離
f1:前記第1レンズ群の焦点距離 - 下記条件式(6)を満足することを特徴とする請求項1から6のいずれか1項記載のズームレンズ。
-4.0<ft/f2<-0.5 … (6)
ただし、
ft:望遠端での全系の焦点距離
f2:前記第2レンズ群の焦点距離 - 前記第5レンズ群の最も像側のレンズ面より物体側に絞りが配設され、
広角端から望遠端への変倍の際に、前記絞りが前記第5レンズ群と一体的に移動することを特徴とする請求項1から7のいずれか1項記載のズームレンズ。 - 前記第2レンズ群が、少なくとも1面に非球面を有し、像側に凹面を向けた負メニスカスレンズから実質的に構成されることを特徴とする請求項1から8のいずれか1項記載のズームレンズ。
- 前記第5レンズ群が、物体側から順に、両凸レンズと、両凸レンズおよび両凹レンズが物体側からこの順に接合された接合レンズとから実質的に構成されることを特徴とする請求項1から9のいずれか1項記載のズームレンズ。
- 前記第3レンズ群が、物体側から順に、像側に凹面を向けた負メニスカスレンズと、2組の接合レンズとから実質的に構成されるか、あるいは、前記第3レンズ群が、物体側から順に、像側に凹面を向けた負メニスカスレンズと、1組の接合レンズと、正レンズと、負レンズとから実質的に構成されることを特徴とする請求項1から10のいずれか1項記載のズームレンズ。
- 下記条件式(4-1)を満足することを特徴とする請求項1から11のいずれか1項記載のズームレンズ。
0.9<f6/f5<1.2 … (4-1)
ただし、
f6:前記第6レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離 - 下記条件式(5-1)を満足することを特徴とする請求項1から12のいずれか1項記載のズームレンズ。
1.8<ft/f1<2.5 … (5-1)
ただし、
ft:望遠端での全系の焦点距離
f1:前記第1レンズ群の焦点距離 - 下記条件式(6-1)を満足することを特徴とする請求項1から13のいずれか1項記載のズームレンズ。
-3.0<ft/f2<-0.6 … (6-1)
ただし、
ft:望遠端での全系の焦点距離
f2:前記第2レンズ群の焦点距離 - 請求項1から14のいずれか1項記載のズームレンズを備えたことを特徴とする撮像装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380070401.8A CN104919355B (zh) | 2013-01-22 | 2013-12-26 | 变焦透镜及摄像装置 |
JP2014558301A JP5841270B2 (ja) | 2013-01-22 | 2013-12-26 | ズームレンズおよび撮像装置 |
US14/753,790 US9535239B2 (en) | 2013-01-22 | 2015-06-29 | Zoom lens and imaging apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-008848 | 2013-01-22 | ||
JP2013008848 | 2013-01-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/753,790 Continuation US9535239B2 (en) | 2013-01-22 | 2015-06-29 | Zoom lens and imaging apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014115230A1 true WO2014115230A1 (ja) | 2014-07-31 |
Family
ID=51227047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/007643 WO2014115230A1 (ja) | 2013-01-22 | 2013-12-26 | ズームレンズおよび撮像装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9535239B2 (ja) |
JP (1) | JP5841270B2 (ja) |
CN (1) | CN104919355B (ja) |
WO (1) | WO2014115230A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104865684A (zh) * | 2014-02-26 | 2015-08-26 | 富士胶片株式会社 | 变焦透镜和摄像装置 |
JP2016071141A (ja) * | 2014-09-30 | 2016-05-09 | 富士フイルム株式会社 | ズームレンズおよび撮像装置 |
JP2016071140A (ja) * | 2014-09-30 | 2016-05-09 | 富士フイルム株式会社 | ズームレンズおよび撮像装置 |
JP2017078769A (ja) * | 2015-10-20 | 2017-04-27 | キヤノン株式会社 | ズームレンズ及びそれを有する撮像装置 |
JP2017161566A (ja) * | 2016-03-07 | 2017-09-14 | キヤノン株式会社 | ズームレンズ及びそれを有する撮像装置 |
JP2018109709A (ja) * | 2017-01-05 | 2018-07-12 | 富士フイルム株式会社 | ズームレンズおよび撮像装置 |
JP2018128572A (ja) * | 2017-02-08 | 2018-08-16 | キヤノン株式会社 | ズームレンズ及びそれを有する撮像装置 |
JPWO2017130479A1 (ja) * | 2016-01-27 | 2018-10-11 | 富士フイルム株式会社 | ズームレンズおよび撮像装置 |
US10295806B2 (en) | 2015-10-20 | 2019-05-21 | Canon Kabushiki Kaisha | Zoom lens and image pickup apparatus including the same |
US11280987B2 (en) | 2018-08-21 | 2022-03-22 | Fujifilm Corporation | Zoom lens and imaging apparatus |
US11327280B2 (en) | 2018-08-21 | 2022-05-10 | Fujifilm Corporation | Zoom lens and imaging apparatus |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6404199B2 (ja) * | 2015-09-28 | 2018-10-10 | 富士フイルム株式会社 | ズームレンズおよび撮像装置 |
JP2018084668A (ja) * | 2016-11-24 | 2018-05-31 | キヤノン株式会社 | ズームレンズ及びそれを有する撮像装置 |
JP6685950B2 (ja) | 2017-02-17 | 2020-04-22 | 富士フイルム株式会社 | ズームレンズおよび撮像装置 |
JP6830430B2 (ja) * | 2017-12-20 | 2021-02-17 | 富士フイルム株式会社 | ズームレンズ及び撮像装置 |
CN112612129B (zh) * | 2020-12-24 | 2021-11-26 | 西安中科立德红外科技有限公司 | 一种小型化中波红外制冷连续变焦镜头及光学系统 |
JP2023026015A (ja) * | 2021-08-12 | 2023-02-24 | キヤノン株式会社 | ズームレンズおよび撮像装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07253539A (ja) * | 1994-03-15 | 1995-10-03 | Nikon Corp | ズームレンズ |
JPH11160620A (ja) * | 1997-12-01 | 1999-06-18 | Canon Inc | ズームレンズ |
JP2008151846A (ja) * | 2006-12-14 | 2008-07-03 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
JP2011107693A (ja) * | 2009-10-19 | 2011-06-02 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
JP2012058607A (ja) * | 2010-09-10 | 2012-03-22 | Konica Minolta Opto Inc | 変倍機能を有する投影レンズ |
JP2012225988A (ja) * | 2011-04-15 | 2012-11-15 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5666229A (en) | 1993-07-12 | 1997-09-09 | Nikon Corporation | Variable focal length optical system |
JP3827251B2 (ja) | 1996-07-16 | 2006-09-27 | フジノン株式会社 | ズームレンズ |
JP3932062B2 (ja) | 1997-03-26 | 2007-06-20 | 株式会社栃木ニコン | ズームレンズ |
JPH1172705A (ja) | 1997-08-29 | 1999-03-16 | Tochigi Nikon:Kk | 2つ以上の合焦レンズ群を備えたズームレンズ |
JP2000267003A (ja) | 1999-03-12 | 2000-09-29 | Fuji Photo Optical Co Ltd | ズームレンズ |
JP4612824B2 (ja) * | 2004-09-17 | 2011-01-12 | キヤノン株式会社 | 画像投射装置 |
JP5049751B2 (ja) | 2007-11-21 | 2012-10-17 | 富士フイルム株式会社 | 高倍率ズームレンズおよび撮像装置 |
JP5171982B2 (ja) * | 2011-04-15 | 2013-03-27 | キヤノン株式会社 | ズームレンズ及びそれを有する撮像装置 |
-
2013
- 2013-12-26 CN CN201380070401.8A patent/CN104919355B/zh active Active
- 2013-12-26 JP JP2014558301A patent/JP5841270B2/ja active Active
- 2013-12-26 WO PCT/JP2013/007643 patent/WO2014115230A1/ja active Application Filing
-
2015
- 2015-06-29 US US14/753,790 patent/US9535239B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07253539A (ja) * | 1994-03-15 | 1995-10-03 | Nikon Corp | ズームレンズ |
JPH11160620A (ja) * | 1997-12-01 | 1999-06-18 | Canon Inc | ズームレンズ |
JP2008151846A (ja) * | 2006-12-14 | 2008-07-03 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
JP2011107693A (ja) * | 2009-10-19 | 2011-06-02 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
JP2012058607A (ja) * | 2010-09-10 | 2012-03-22 | Konica Minolta Opto Inc | 変倍機能を有する投影レンズ |
JP2012225988A (ja) * | 2011-04-15 | 2012-11-15 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104865684A (zh) * | 2014-02-26 | 2015-08-26 | 富士胶片株式会社 | 变焦透镜和摄像装置 |
US20150241676A1 (en) * | 2014-02-26 | 2015-08-27 | Fujifilm Corporation | Zoom lens and imaging apparatus |
CN104865684B (zh) * | 2014-02-26 | 2019-01-11 | 富士胶片株式会社 | 变焦透镜和摄像装置 |
JP2016071140A (ja) * | 2014-09-30 | 2016-05-09 | 富士フイルム株式会社 | ズームレンズおよび撮像装置 |
JP2016071141A (ja) * | 2014-09-30 | 2016-05-09 | 富士フイルム株式会社 | ズームレンズおよび撮像装置 |
JP2017078769A (ja) * | 2015-10-20 | 2017-04-27 | キヤノン株式会社 | ズームレンズ及びそれを有する撮像装置 |
US10295806B2 (en) | 2015-10-20 | 2019-05-21 | Canon Kabushiki Kaisha | Zoom lens and image pickup apparatus including the same |
JPWO2017130479A1 (ja) * | 2016-01-27 | 2018-10-11 | 富士フイルム株式会社 | ズームレンズおよび撮像装置 |
JP2017161566A (ja) * | 2016-03-07 | 2017-09-14 | キヤノン株式会社 | ズームレンズ及びそれを有する撮像装置 |
US10401600B2 (en) | 2016-03-07 | 2019-09-03 | Canon Kabushiki Kaisha | Zoom lens and image pickup apparatus including same |
JP2018109709A (ja) * | 2017-01-05 | 2018-07-12 | 富士フイルム株式会社 | ズームレンズおよび撮像装置 |
JP2018128572A (ja) * | 2017-02-08 | 2018-08-16 | キヤノン株式会社 | ズームレンズ及びそれを有する撮像装置 |
US11280987B2 (en) | 2018-08-21 | 2022-03-22 | Fujifilm Corporation | Zoom lens and imaging apparatus |
US11327280B2 (en) | 2018-08-21 | 2022-05-10 | Fujifilm Corporation | Zoom lens and imaging apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN104919355A (zh) | 2015-09-16 |
JPWO2014115230A1 (ja) | 2017-01-19 |
JP5841270B2 (ja) | 2016-01-13 |
CN104919355B (zh) | 2017-05-03 |
US20150301319A1 (en) | 2015-10-22 |
US9535239B2 (en) | 2017-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5841270B2 (ja) | ズームレンズおよび撮像装置 | |
CN104865683B (zh) | 变焦透镜以及摄像装置 | |
CN104024912B (zh) | 变焦透镜和摄像装置 | |
JP2018146855A (ja) | ズームレンズおよび撮像装置 | |
WO2014155463A1 (ja) | ズームレンズおよび撮像装置 | |
US9201213B2 (en) | Imaging lens and imaging apparatus | |
JP2016012118A (ja) | ズームレンズおよび撮像装置 | |
KR20140081317A (ko) | 줌 렌즈 및 이를 포함한 촬영 장치 | |
JP5745188B2 (ja) | ズームレンズおよび撮像装置 | |
US20160259155A1 (en) | Zoom lens and imaging apparatus | |
JP2018138948A (ja) | ズームレンズおよび撮像装置 | |
WO2013031188A1 (ja) | ズームレンズおよび撮像装置 | |
CN108279489B (zh) | 变焦镜头及摄像装置 | |
WO2013038610A1 (ja) | 変倍光学系および撮像装置 | |
WO2013031180A1 (ja) | ズームレンズおよび撮像装置 | |
WO2014073187A1 (ja) | ズームレンズおよび撮像装置 | |
CN108279490B (zh) | 变焦镜头及摄像装置 | |
CN104395809B (zh) | 变焦透镜及摄像装置 | |
JP5335373B2 (ja) | ズームレンズおよび撮像装置 | |
JP2010066662A (ja) | ズームレンズおよび撮像装置 | |
JP5785333B2 (ja) | ズームレンズおよび撮像装置 | |
WO2013031187A1 (ja) | ズームレンズおよび撮像装置 | |
WO2013031186A1 (ja) | ズームレンズおよび撮像装置 | |
WO2019082641A1 (ja) | ズームレンズ及び撮像装置 | |
JP2010072377A (ja) | ズームレンズおよび撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13873116 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014558301 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13873116 Country of ref document: EP Kind code of ref document: A1 |