WO2014073187A1 - ズームレンズおよび撮像装置 - Google Patents

ズームレンズおよび撮像装置 Download PDF

Info

Publication number
WO2014073187A1
WO2014073187A1 PCT/JP2013/006454 JP2013006454W WO2014073187A1 WO 2014073187 A1 WO2014073187 A1 WO 2014073187A1 JP 2013006454 W JP2013006454 W JP 2013006454W WO 2014073187 A1 WO2014073187 A1 WO 2014073187A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
positive
zoom
zoom lens
Prior art date
Application number
PCT/JP2013/006454
Other languages
English (en)
French (fr)
Inventor
敏浩 青井
伸吉 池田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201380056466.7A priority Critical patent/CN104769475B/zh
Priority to JP2014545563A priority patent/JP5841675B2/ja
Publication of WO2014073187A1 publication Critical patent/WO2014073187A1/ja
Priority to US14/698,051 priority patent/US9417439B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+

Definitions

  • the present invention relates to a zoom lens and an image pickup apparatus, and more particularly to a zoom lens suitable for mounting on a television camera, a video camera, and the like, and an image pickup apparatus including the zoom lens.
  • a zoom lens mounted on a television camera, a video camera, or the like for example, a four-group type lens described in Patent Document 1 below is known.
  • the configuration consists of, in order from the object side, a first lens group fixed at the time of zooming, a second lens group having a zooming function, and a third lens having a function of correcting image plane variation accompanying zooming.
  • a group and a fourth lens group fixed at the time of zooming are arranged.
  • Patent Document 2 discloses a zoom lens having a five-group configuration, which is obtained by dividing a fourth lens group-type third lens group into two lens groups and relatively moving them. Can think.
  • the zoom lens described in Patent Document 1 achieves high magnification, but the chromatic aberration correction effect of the second lens group is small. Further, the angle of view on the wide angle side is 65 ° or less, which is insufficient for the need for wide angle.
  • the zoom lens described in Patent Document 2 employs a floating system and achieves high performance over the entire zoom range. However, the zoom ratio is about 54 times, and in recent years, higher magnifications may be desired. .
  • the present invention has been made in view of the above circumstances, and provides a zoom lens that simultaneously realizes higher magnification, wider angle, and higher performance in the entire zoom range, and an imaging apparatus including such a zoom lens. It is the purpose.
  • the zoom lens of the present invention includes, in order from the object side, a first lens group having a positive refractive power that is fixed at the time of zooming, and a second lens group having a negative refractive power that moves at the time of zooming.
  • the lens group is substantially composed of four lens groups, and a stop is disposed on the most object side of the fourth lens group.
  • the second lens group and the third lens group Each pass through a point at which the image forming magnification is -1 times simultaneously, the second lens group has at least two positive lenses and at least one negative lens, and one positive lens included in the second lens group
  • the Abbe number for the d-line is ⁇ p
  • the partial dispersion ratio between the g-line and the F-line is Pp
  • conditional expression (1 ′) is satisfied instead of the conditional expression (1). 80.00 ⁇ p (1 ')
  • the second lens group has, on the most image side, a cemented lens in which three lenses of a positive lens, a negative lens, and a positive lens are cemented in this order from the object side.
  • the second lens group has such a cemented lens, it is preferable that one positive lens of the second lens group that satisfies the conditional expressions (1) and (2) constitutes this cemented lens.
  • the second lens group has a cemented lens closest to the image side.
  • the focal length of the cemented lens is f2sem and the focal length of the second lens group is f2
  • the following conditional expression It is preferable to satisfy 3), and it is more preferable to satisfy the following conditional expression (3 ′). 1.00 ⁇
  • the first and second lenses from the object side of the second lens group are both single lenses having negative refractive power, and are located on the object side of the negative lens closest to the object side of the second lens group.
  • the surface is preferably an aspherical surface.
  • the third lens group includes, in order from the object side, a 3a lens group having a positive refractive power and a 3b lens group having a positive refractive power, from the wide angle end to the telephoto end.
  • a 3a lens group having a positive refractive power and a 3b lens group having a positive refractive power, from the wide angle end to the telephoto end.
  • the 3a lens group and the 3b lens group move independently.
  • Each of the “lens groups” is not necessarily composed of a plurality of lenses, but includes those composed of only one lens.
  • substantially in the above “substantially consisting of” means, in addition to the constituent elements mentioned above, lenses other than lenses that do not substantially have power, lenses other than lenses such as a diaphragm, cover glass, and filters. It is intended that an optical element, a lens flange, a lens barrel, an image sensor, a mechanism portion such as a camera shake correction mechanism, and the like may be included.
  • single lens means a single lens that is not joined.
  • An image pickup apparatus includes the zoom lens according to the present invention described above.
  • each configuration is preferably set, and in particular, zooming from the wide angle end to the telephoto end is performed.
  • the second lens group and the third lens group are configured so that the respective image forming magnifications pass through a point of ⁇ 1 times simultaneously, and the positive lens material included in the second lens group is preferably defined. High magnification, wide angle, and high performance over the entire zoom range can be realized at the same time.
  • the zoom lens of the present invention since the zoom lens of the present invention is provided, it is possible to shoot at a high magnification and a wide angle of view, and a good image can be acquired over the entire zoom range.
  • Sectional drawing which shows the lens structure of the zoom lens which concerns on one Embodiment of this invention The figure which shows the lens structure and optical path in each zoom position of the zoom lens of FIG.
  • Sectional drawing which shows the lens structure of the zoom lens of Example 1 of this invention Sectional drawing which shows the lens structure of the zoom lens of Example 2 of this invention.
  • Sectional drawing which shows the lens structure of the zoom lens of Example 3 of this invention Sectional drawing which shows the lens structure of the zoom lens of Example 4 of this invention.
  • 9A to 9L are graphs showing aberrations of the zoom lens according to Example 1 of the present invention.
  • FIGS. 10A to 10L are graphs showing aberrations of the zoom lens according to Example 2 of the present invention.
  • FIGS. 11A to 11L are diagrams showing aberrations of the zoom lens according to the third embodiment of the present invention.
  • FIGS. 12A to 12L are graphs showing aberrations of the zoom lens according to Example 4 of the present invention.
  • FIGS. 13A to 13L are graphs showing aberrations of the zoom lens according to Example 5 of the present invention.
  • 14A to 14L are graphs showing aberrations of the zoom lens according to Example 6 of the present invention.
  • 1 is a schematic configuration diagram of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view at the wide-angle end of a zoom lens according to an embodiment of the present invention.
  • the wide angle end, the intermediate focal length position, the image forming magnification of the second lens group G2 and the third lens group G3 are ⁇ 1 times, and the positional relationship at the telephoto end is changed.
  • a rough movement locus of the lens group that moves at the time of magnification is indicated by an arrow.
  • FIG. 2 shows the arrangement of each lens group at each zoom position of the zoom lens shown in FIG.
  • the upper, middle, and lower stages with symbols W, M, and T on the left side show the wide-angle end, the intermediate focal length position, and the telephoto end, respectively.
  • a light beam tb is also shown.
  • the left side is the object side
  • the right side is the image side.
  • the example shown in FIGS. 1 and 2 corresponds to Example 1 described later.
  • cover glass that protects the imaging surface of the imaging device, prisms such as a color separation prism according to the specifications of the imaging device, and various filters such as a low-pass filter and an infrared cut filter are used. It is preferable to configure the imaging device so as to be provided. 1 and 2 show an example in which the optical member GP that assumes these is arranged between the lens system and the image plane Sim.
  • the zoom lens according to the present embodiment moves in order from the object side along the optical axis Z to the first lens group G1 having a positive refractive power that is fixed during zooming, and moves negative during zooming.
  • the fourth lens group G4 includes substantially four lens groups having a positive refractive power.
  • the second lens group G2 has a zooming function
  • the third lens group G3 has a function of correcting an image plane that varies due to zooming
  • the fourth lens group G4 has an imaging function.
  • the aperture stop St is disposed on the most object side of the fourth lens group G4. Note that the aperture stop St shown in FIGS. 1 and 2 does not indicate the size or shape, but indicates the position on the optical axis.
  • the zoom lens of this embodiment is a four-group type in which positive, negative, positive, and positive lens groups are arranged in order from the object side.
  • a type in which the third lens group has negative refractive power that is, a four-group type in which positive, negative, negative, and positive lens groups are arranged in order from the object side is also conceivable.
  • the third lens group is a positive lens group as in the present embodiment, the third lens group is changed to the third lens group on the telephoto side from the four-group type in which positive, negative, negative, and positive are set in order from the object side.
  • the incident light beam spreads, it becomes easy to correct chromatic aberration that cannot be corrected by the first lens group on the telephoto side, that is, residual chromatic aberration, which becomes a problem when realizing high magnification.
  • the light beam incident on the fourth lens group becomes a divergent light beam, and the fourth lens group often includes an anti-vibration group and an extender unit. This increases the lens diameter and weight, which is not preferable.
  • the zoom lens according to the present embodiment at the time of zooming from the wide angle end to the telephoto end, the second lens group G2 and the third lens group G3 pass through the points where the respective image forming magnifications are ⁇ 1 times simultaneously. It is configured.
  • the second lens group G2 having a negative refractive power and the third lens group G3 having a positive refractive power are simultaneously multiplied by ⁇ 1 ( It is necessary to pass through a point that becomes an inverted magnification.
  • the third lens group G3 having a function as a compensator group not only corrects the image plane but also affects the zooming itself, and the -1x position is used as a reference for the wide angle side.
  • the reduction magnification is used, and the enlargement magnification is used on the telephoto side, so that the zoom ratio can be increased.
  • the second lens group G2 is configured to have at least two positive lenses and at least one negative lens.
  • the second lens group G2 in the example shown in FIG. 1 includes, in order from the object side, a negative lens L21 having a concave surface facing the image side, a negative lens L22, a negative lens L23, and a positive lens L24.
  • the lens includes a positive lens L25 having a convex surface facing the image side, a negative lens L26, and a positive lens L27.
  • the lenses L22, L23, and L26 are biconcave lenses, and the lenses L24 and L27 are biconvex lenses.
  • the lens L23 and the lens L24 are cemented.
  • the lens L25, the lens L26, and the lens L27 are cemented to form a three-lens cemented lens.
  • the Abbe number for the d-line of one positive lens included in the second lens group G2 is ⁇ p and the partial dispersion ratio between the g-line and the F-line is Pp
  • the following conditional expression It is configured to satisfy (1) and (2). 75.00 ⁇ p (1) 0.520 ⁇ Pp ⁇ 0.550 (2)
  • ⁇ p and Pp are the g-line (wavelength 435.84 nm), F-line (wavelength 486.13 nm), d-line (wavelength 587) of the Fraunhofer line of the positive lens related to the conditional expressions (1) and (2).
  • the focal length the higher the magnification, but in general, it becomes difficult to correct the chromatic aberration on the telephoto side as the focal length becomes longer, and it becomes difficult to improve the performance in the entire zoom range due to the influence of the remaining secondary spectrum.
  • the axial chromatic aberration on the telephoto side can be reduced while suppressing the chromatic aberration of magnification on the wide angle side. It becomes possible to correct well, and in particular, it is possible to correct axial chromatic aberration relating to blue, which has a large fluctuation on the telephoto side, and it becomes easy to improve performance in the entire zoom range.
  • conditional expression (1) If the lower limit of conditional expression (1) is not reached, the effect of correcting chromatic aberration of magnification on the wide-angle side becomes weak, and in addition, high-order chromatic aberration occurs in the spherical aberration on the telephoto side, which is not preferable. If the lower limit of conditional expression (2) is not reached, the axial chromatic aberration relating to blue on the telephoto side is overcorrected, which is not preferable. On the other hand, if the upper limit of conditional expression (2) is exceeded, the axial chromatic aberration relating to blue on the telephoto side is insufficiently corrected, which is not preferable.
  • a positive lens that satisfies conditional expressions (1) and (2) is provided as a second lens group having a zooming function.
  • the second lens group G2 has a three-piece cemented lens in which three lenses of a positive lens, a negative lens, and a positive lens are cemented in this order from the object side on the most image side.
  • the first to third lenses from the image side of the second lens group G2 are positive lenses, negative lenses, and positive lenses, which is advantageous for correcting axial chromatic aberration on the telephoto side, and higher-order chromatic aberrations. Can be easily corrected.
  • the first to third positive lenses, the negative lens, and the positive lens from the image side of the second lens group G2 are each a single lens with an air space between them instead of being cemented to improve flexibility.
  • the second lens group G2 is the only negative lens group in the entire system, the power is strong and the sensitivity of each lens tends to be high.
  • the sensitivity to the back focus of the air space between the lenses is large, and there is a high possibility of causing a shift of the focal position during zooming. Therefore, if these three lenses are joined, the error factor can be reduced and the shift of the focal position during zooming can be reduced.
  • the positive lens satisfying the conditional expressions (1) and (2) constitutes the three-piece cemented lens.
  • the three-piece cemented lens includes a positive lens made of a material that satisfies the conditional expressions (1) and (2), the chromatic aberration can be corrected more effectively. It is possible to suppress the longitudinal chromatic aberration.
  • the second lens group G2 has a cemented lens closest to the image side.
  • the focal length of the cemented lens is f2sem and the focal length of the second lens group is f2
  • the following conditional expression (3) is satisfied. It is preferable. 1.00 ⁇
  • conditional expression (3) If the power of the cemented lens closest to the image side in the second lens group G2 becomes less than the lower limit of conditional expression (3), the effect of correcting axial chromatic aberration on the telephoto side becomes too high, which is not preferable.
  • the value is less than or equal to the lower limit of the conditional expression (3), the power of the lenses constituting the cemented lens becomes strong, the thickness of the cemented lens becomes thick, and the zoom stroke cannot be gained.
  • the upper limit of conditional expression (3) is exceeded and the power of the cemented lens becomes weak, the absolute value of the radius of curvature of each cemented surface becomes large and the correction effect of chromatic aberration becomes weak, which is not preferable.
  • conditional expressions (1 ′) to (3 ′) are substituted for the conditional expressions (1) to (3), respectively. It is preferable to satisfy. 80.00 ⁇ p (1 ') 0.530 ⁇ Pp ⁇ 0.540 (2 ′) 3.00 ⁇
  • the first and second lenses from the object side of the second lens group G2 are both single lenses having negative refractive power, and the object side surface of the most negative lens in the second lens group G2 is an aspherical surface. It is preferable that In the example shown in FIG. 1, the lenses L21 and L22 are negative single lenses, and the object side surface of the lens L21 is an aspherical surface.
  • the second lens group G2 is likely to receive lateral chromatic aberration due to incidence of a light beam having a large angle from the first lens group G2.
  • the lenses L21 and L22 shown in FIG. 1 may be substituted with a single negative lens.
  • the power load of the single negative lens that is substituted increases, so that the image side of this lens is increased.
  • the absolute value of the radius of curvature of the surface of the lens becomes small, and the air distance from the lens arranged immediately after the image side of this lens becomes large.
  • the air interval is increased, the difference in the principal point position due to the wavelength is increased, which causes chromatic aberration of magnification. Therefore, in the example shown in FIG.
  • the first and second lenses from the object side of the second lens group G2 are the negative lenses, and the two negative lenses are arranged to divide the power, and the principal point position by wavelength
  • the chromatic aberration of magnification is suppressed by reducing the difference.
  • the third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power and a third b lens group G3b having a positive refractive power, and zooming from the wide angle end to the telephoto end.
  • the third-a lens group G3a and the third-b lens group G3b are configured to move independently.
  • the peripheral light flux incident on the second lens group G2 changes greatly as can be seen from FIG. 2, and an image circle can be secured. It becomes difficult. Therefore, it is possible to secure an image circle by dividing the third lens group G3 into two lens groups and adopting a floating system in which the divided lens groups are moved independently.
  • the focal length (so-called ramping point) at which the on-axis light beam starts vignetting by the most object-side lens in the entire system when zooming from the wide-angle end to the telephoto end is shifted to the long focal point. Easy to do.
  • the third lens group G3 in the example illustrated in FIG. 1 includes, in order from the object side, a positive lens L31, a positive lens L32, a negative lens L33, a positive lens L34, and a positive lens L35.
  • the lens L31 constitutes the third-a lens group G3a
  • the lenses L32 to L35 constitute the third-b lens group G3b.
  • the lenses L31, L32, L34, and L35 are biconvex lenses
  • the lens L33 is a negative meniscus lens.
  • the first lens group G1 in the example shown in FIG. 1 includes, in order from the object side, a negative lens L11 having a concave surface directed toward the image side, a positive lens L12, a positive lens L13, a positive lens L14, and a positive lens L11.
  • the lenses L12 and L13 are biconvex lenses.
  • the lenses L14 and L15 are positive meniscus lenses having a convex surface facing the object side.
  • the fourth lens group G4 in the example shown in FIG. 1 is composed of 14 lenses L41 to L54 in order from the object side.
  • the number of lenses constituting each lens group and the lens shape other than the example shown in FIG. 1 can be adopted.
  • the zoom lens of this embodiment can be suitably applied to a zoom lens with a high magnification of about 100 times, for example.
  • a zoom lens with a high magnification of about 100 times for example.
  • the preferred configurations described above can be arbitrarily combined, and are preferably selectively adopted as appropriate according to the specifications required for the zoom lens.
  • FIG. 3 is a cross-sectional view showing the configuration of the zoom lens of Example 1.
  • FIG. 3 shows the arrangement and configuration of each lens group at the wide-angle end, the intermediate focal length position, and the telephoto end, respectively, in the upper, middle, and lower stages with symbols W, M, and T on the left side.
  • the schematic configuration of the zoom lens of Example 1 is as follows. That is, the zoom lens of Example 1 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. It is composed of a group G3 and a fourth lens group G4 having a positive refractive power.
  • the aperture stop St is disposed on the most object side of the fourth lens group G4. Note that the aperture stop St shown in FIG. 3 does not represent the size or shape, but represents the position on the optical axis.
  • FIG. 3 shows an example in which an optical member GP that assumes various filters, a cover glass, and the like is disposed between the fourth lens group G4 and the image plane Sim.
  • this zoom lens at the time of zooming from the wide angle end to the telephoto end, the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane Sim, and the second lens group G2 and the third lens group G3 are light beams. It is configured to move along the axis Z.
  • this zoom lens is configured such that, when zooming from the wide-angle end to the telephoto end, each of the second lens group G2 and the third lens group G3 passes through a point at which the image forming magnification is ⁇ 1. ing.
  • the first lens group G1 is composed of five single lenses L11 to L15 in order from the object side.
  • the second lens group G2 includes, in order from the object side, a lens L21 having a negative refractive power in the paraxial region, a negative lens L22, a negative lens L23, a positive lens L24, and a positive lens L25.
  • the lens includes seven lenses, a negative lens L26 and a positive lens L27.
  • the lens L23 and the lens L24 are cemented, and the lens L25, the lens L26, and the lens L27 are cemented.
  • the object side surface of the lens L21 is an aspherical surface.
  • the third lens group G3 includes, in order from the object side, a third lens group G3a having a positive refractive power and a third lens group G3b having a positive refractive power.
  • the third lens group G3a is formed from the lens L31.
  • the third lens group G3b is composed of four lenses L32 to L35 in order from the object side.
  • the 3a lens group G3a and the 3b lens group G3b are configured to move independently.
  • the fourth lens group G4 is composed of 14 lenses L41 to L54 in order from the object side.
  • Table 1 shows basic lens data of the zoom lens of Example 1
  • Table 2 shows aspheric coefficients
  • Table 3 shows specifications and variable surface intervals.
  • the Ri column shows the radius of curvature of the i-th surface
  • the Di column shows the surface spacing on the optical axis Z between the i-th surface and the i + 1-th surface.
  • the column of ⁇ dj shows the Abbe number of the j-th lens with respect to the d-line
  • the column of PgFj shows the partial dispersion ratio between the g-line and the F-line of the j-th lens.
  • the sign of the radius of curvature is positive in the case of a shape with a convex surface facing the object side and negative in the case of a shape with a convex surface facing the image side.
  • the value in the lowest column of Di is the distance between the image side surface of the optical member GP and the image plane Sim.
  • the basic lens data includes the aperture stop St and the optical member GP, and the surface number and the phrase (aperture) are described in the surface number column of the surface corresponding to the aperture stop St.
  • the surface number of the aspherical surface is marked with *, and the value of the paraxial curvature radius is described in the column of the curvature radius of the aspherical surface.
  • Table 2 shows the aspheric coefficient of each aspheric surface of Example 1.
  • the numerical value “En” (n: integer) of the aspheric coefficient in Table 2 means “ ⁇ 10 ⁇ n ”.
  • Zd C ⁇ h 2 / ⁇ 1+ (1 ⁇ KA ⁇ C 2 ⁇ h 2 ) 1/2 ⁇ + ⁇ Am ⁇ h m
  • Zd Depth of aspheric surface (length of a perpendicular line drawn from a point on the aspherical surface at height h to a plane perpendicular to the optical axis where the aspherical vertex contacts)
  • h Height (distance from the optical axis to the lens surface)
  • C paraxial curvature KA
  • DD [10] is the distance between the first lens group G1 and the second lens group G2
  • DD [21] is the distance between the second lens group G2 and the third a lens group G3a
  • D [23] is the first distance.
  • the distance between the 3a lens group G3a and the third b lens group G3b, and DD [30] is the distance between the third b lens group G3b and the fourth lens group G4.
  • Table 3 shows the values for the d-line and the variable surface spacing at the wide-angle end, the intermediate focal length position, and the telephoto end.
  • F 'in Table 2 is the focal length of the entire system
  • Bf' is the back focus (air equivalent length)
  • 2 ⁇ is the total angle of view (in degrees).
  • Tables 1 to 3 numerical values rounded by a predetermined digit are shown.
  • mm is used as the unit of length.
  • the optical system can be used even with proportional enlargement or reduction, other appropriate units can be used.
  • FIGS. 9A to 9D show respective aberration diagrams of the spherical aberration, astigmatism, distortion (distortion), and chromatic aberration of magnification (chromatic aberration of magnification) of the zoom lens of Example 1 at the wide-angle end.
  • FIGS. 9E to 9H show spherical aberration, astigmatism, distortion (distortion), and chromatic aberration of magnification (chromatic aberration of magnification) of the zoom lens of Example 1 at the intermediate focal length position, respectively. Indicates.
  • FIGS. 9E to 9H show spherical aberration, astigmatism, distortion (distortion), and chromatic aberration of magnification (chromatic aberration of magnification) of the zoom lens of Example 1 at the intermediate focal length position, respectively. Indicates.
  • FIGS. 9E to 9H show spherical aberration, astigmatism, distortion (distortion), and chromatic aberration of magnification (
  • FIGS. 9I to 9L show respective aberration diagrams of the spherical aberration, astigmatism, distortion (distortion), and chromatic aberration of magnification (chromatic aberration of magnification) of the zoom lens of Example 1 at the telephoto end.
  • FIGS. 9A to 9L are all for focusing on an object at infinity. Symbols W, M, and T on the left side of the upper, middle, and lower stages in FIG. 9 represent the wide-angle end, the intermediate focal length position, and the telephoto end, respectively.
  • Each aberration diagram shows the aberration with the d-line as the reference wavelength
  • the spherical aberration diagram also shows the aberration for the C-line and the F-line
  • the magnification chromatic aberration diagram shows the aberration for the C-line and the F-line.
  • the aberrations relating to the sagittal direction and the tangential direction are indicated by solid lines and broken lines, and symbols (S) and (T) are entered in the description of the line types.
  • FNo. Means F number, and ⁇ in other aberration diagrams means half angle of view.
  • FIG. 4 is a lens configuration diagram of the zoom lens according to the second embodiment.
  • the schematic configuration of the zoom lens of Example 2 is substantially the same as the schematic configuration of the zoom lens of Example 1 described above.
  • Table 4, Table 5, and Table 6 show the basic lens data, aspheric coefficient, specifications, and variable surface spacing of the zoom lens of Example 2, respectively.
  • 10A to 10L show aberration diagrams of the zoom lens according to Example 2.
  • FIG. 5 is a lens configuration diagram of the zoom lens according to the third embodiment.
  • the schematic configuration of the zoom lens of Example 3 is substantially the same as the schematic configuration of the zoom lens of Example 1 described above, but is different in that the fourth lens group G4 is composed of 15 lenses.
  • Tables 7, 8, and 9 show the basic lens data, aspheric coefficient, specifications, and variable surface distance of the zoom lens of Example 3, respectively.
  • 11A to 11L show aberration diagrams of the zoom lens according to Example 3.
  • FIG. 6 is a lens configuration diagram of the zoom lens of Example 4.
  • the schematic configuration of the zoom lens of Example 4 is substantially the same as the schematic configuration of the zoom lens of Example 3 described above.
  • Table 10, Table 11, and Table 12 show the basic lens data, aspheric coefficient, and variable surface interval of the zoom lens of Example 4, respectively.
  • FIGS. 12A to 12L show aberration diagrams of the zoom lens of Example 4.
  • FIGS. 12A to 12L show aberration diagrams of the zoom lens of Example 4.
  • FIG. 7 is a lens configuration diagram of the zoom lens of Example 5.
  • the schematic configuration of the zoom lens of Example 5 is substantially the same as the schematic configuration of the zoom lens of Example 3 described above.
  • Table 13, Table 14, and Table 15 show the basic lens data, aspheric coefficient, and variable surface interval of the zoom lens of Example 5, respectively.
  • FIGS. 13A to 13L show aberration diagrams of the zoom lens of Example 5.
  • FIGS. 13A to 13L show aberration diagrams of the zoom lens of Example 5.
  • FIG. 8 is a lens configuration diagram of the zoom lens of Example 6.
  • the schematic configuration of the zoom lens of Example 6 is substantially the same as the schematic configuration of the zoom lens of Example 3 described above.
  • Table 16, Table 17, and Table 18 show the basic lens data, aspheric coefficient, and variable surface interval of the zoom lens of Example 6, respectively.
  • FIGS. 14A to 14L show aberration diagrams of the zoom lens of Example 6.
  • FIGS. 14A to 14L show aberration diagrams of the zoom lens of Example 6.
  • Table 19 shows values corresponding to the conditional expressions (1) to (3) in the zoom lenses of Examples 1 to 6.
  • values corresponding to conditional expressions (1) and (2) in Table 19 values relating to the lens L27 are described in Examples 1 to 4, and values relating to the lens L25 are described in Examples 5 and 6.
  • the corresponding value of conditional expression (3) in Table 19 is for the d line.
  • the zoom ratio is 106 times, the focal length of the entire system at the telephoto end is around 910, and the total angle of view at the wide-angle end is about 68 °. Aberrations are corrected well, and high magnification, long focus, wide angle, and high performance are realized at the same time.
  • FIG. 15 shows a schematic configuration diagram of a television camera 10 using the zoom lens 1 according to the embodiment of the present invention as an example of the imaging device of the embodiment of the present invention.
  • a positive third lens group including a positive first lens group G1, a negative second lens group G2, a positive third a lens group G3a, and a positive third b lens group G3b included in the zoom lens 1.
  • G3 schematically shows a positive fourth lens group G4 including an aperture stop St.
  • the television camera 10 includes a zoom lens 1, a filter 2 having functions such as a low-pass filter and an infrared cut filter disposed on the image side of the zoom lens 1, and color separation prisms 3R and 3G disposed on the image side of the filter 2. 3B and imaging elements 4R, 4G, and 4B provided on the end faces of the color separation prisms.
  • the image pickup devices 4R, 4G, and 4B convert an optical image formed by the zoom lens 1 into an electric signal, and for example, a CCD or a CMOS can be used.
  • the imaging elements 4R, 4G, and 4B are arranged such that their imaging surfaces coincide with the image plane of the zoom lens 1.
  • the television camera 10 also includes a signal processing unit 5 that performs arithmetic processing on output signals from the image sensors 4R, 4G, and 4B, a display unit 6 that displays an image formed by the signal processing unit 5, and a zooming magnification of the zoom lens 1.
  • a zoom control unit 7 is provided for controlling the zoom. Note that the television camera 10 shown in FIG. 15 is a so-called 3CCD image pickup device having three image pickup devices, but the image pickup device of the present invention is not limited to this, and the entire wavelength band is picked up by one image pickup device. It may be a thing.
  • the present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made.
  • the values of the radius of curvature, the surface spacing, the refractive index, the Abbe number, the partial dispersion ratio, and the aspheric coefficient of each lens are not limited to the values shown in the above embodiments, and can take other values. .
  • the television camera has been described as an example, but the imaging device of the present invention is not limited to this.
  • the imaging device may be used in another imaging device such as a video camera.
  • the invention can also be applied.

Abstract

【課題】ズームレンズにおいて、高倍率化・広角化・ズーム全域における高性能化を同時に実現する。 【解決手段】ズームレンズは、物体側から順に、変倍の際に固定の正の第1レンズ群(G1)、変倍の際に移動する負の第2レンズ群(G2)、変倍の際に移動して変倍に伴う像面の変動を補正する正の第3レンズ群(G3)、変倍の際に固定で最も物体側に絞りを有する正の第4レンズ群(G4)からなる。第2レンズ群(G2)は2枚以上の正レンズと1枚以上の負レンズを有する。第2レンズ群(G2)の1つの正レンズのアッベ数、部分分散比を各々νp、Ppとしたとき、条件式(1):75.00<νp、(2):0.520<Pp<0.550を満足する。

Description

ズームレンズおよび撮像装置
 本発明は、ズームレンズおよび撮像装置に関し、より詳しくは、テレビカメラやビデオカメラ等への搭載に好適なズームレンズ、およびこのズームレンズを備えた撮像装置に関するものである。
 テレビカメラやビデオカメラ等に搭載されるズームレンズとしては、例えば下記特許文献1に記載されているような4群タイプのものが知られている。その構成は、物体側から順に、変倍の際に固定されている第1レンズ群と、変倍機能を持つ第2レンズ群と、変倍に伴う像面変動の補正機能を持つ第3レンズ群と、変倍の際に固定されている第4レンズ群とが配されてなるものである。
 さらに高性能化を実現するため、4群タイプのものの第2レンズ群または第3レンズ群を分割したタイプも提案されている。例えば下記特許文献2には、5群構成のズームレンズが記載されているが、これは4群タイプの第3レンズ群を2つのレンズ群に分割し、これらを相対的に移動させたものと考えることができる。
特開2010-91788号公報 特開2009-128491号公報
 ところで、テレビカメラ等に搭載されるフィールド用ズームレンズでは、近年、高倍率化・広角化、ズーム全域における高性能化へのニーズが高まってきており、これらの要求に同時に満たすズームレンズが要請されている。高倍率化・広角化・高性能化を同時に実現するためには、色収差を良好に補正する必要がある。上記の4群タイプのもので広角化を実現しようとすると、広角側において第2レンズ群へ入射する光線の角度が大きくなり、倍率色収差が大きくなってしまう。高倍率化を実現しようとすると長焦点化が進み、長焦点化を実現しようとすると、望遠側の軸上色収差が増大し、広角端から望遠端に変倍したときの色収差の変動が大きくなる。望遠側の軸上色収差は、第1レンズ群の構成および使用する材料が支配的に影響する。長焦点化を実現しようとすると、補正しきれない軸上色収差が残存2次スペクトルとして残ってしまい、望遠端で拡大され性能を劣化させてしまう。
 特許文献1に記載のズームレンズは、高倍率化を実現しているが、第2レンズ群の色収差補正効果が小さい。また、広角側の画角が65°以下になっており、広角化のニーズに対して不十分である。特許文献2に記載のズームレンズは、フローティング方式を採用し、ズーム全域において高性能を実現しているが、ズーム比が54倍程度であり、近年ではさらなる高倍率化が要望されることがある。
 本発明は、上記事情に鑑みなされたものであり、高倍率化・広角化・ズーム全域における高性能化を同時に実現するズームレンズ、およびこのようなズームレンズを備えた撮像装置を提供することを目的とするものである。
 本発明のズームレンズは、物体側から順に、変倍の際に固定されている正の屈折力を有する第1レンズ群と、変倍の際に移動する負の屈折力を有する第2レンズ群と、変倍の際に移動して変倍に伴う像面の変動を補正する正の屈折力を有する第3レンズ群と、変倍の際に固定されている正の屈折力を有する第4レンズ群との実質的に4つのレンズ群からなり、第4レンズ群の最も物体側に絞りが配置され、広角端から望遠端への変倍の際に、第2レンズ群および第3レンズ群はそれぞれの結像倍率が-1倍の点を同時に通り、第2レンズ群は少なくとも2枚の正レンズと少なくとも1枚の負レンズとを有し、第2レンズ群が有する1枚の正レンズのd線に対するアッベ数をνp、g線とF線間の部分分散比をPpとしたとき、下記条件式(1)、(2)を満足することを特徴とするものである。
   75.00<νp … (1)
   0.520<Pp<0.550 … (2)
ここで、νp、Ppとは、条件式(1)、(2)に関する正レンズのフラウンホーファー線のg線(波長435.84nm)、F線(波長486.13nm)、d線(波長587.56nm)、C線(波長656.27nm)に対する屈折率をそれぞれNg、NF、Nd、NCとしたとき、νp=(Nd-1)/(NF-NC)、Pp=(Ng-NF)/(NF-NC)で定義されるものである。
 上記条件式(1)に代えて、下記条件式(1’)を満足することが好ましい。
   80.00<νp … (1’)
 上記条件式(2)に代えて、下記条件式(2’)を満足することが好ましい。
   0.530<Pp<0.540 … (2’)
 本発明のズームレンズにおいては、第2レンズ群は、最も像側に、正レンズ、負レンズ、正レンズの3枚のレンズが物体側からこの順に接合された接合レンズを有することが好ましい。第2レンズ群がこのような接合レンズを有する場合、条件式(1)、(2)を満足する第2レンズ群の1つの正レンズは、この接合レンズを構成するものであることが好ましい。
 本発明のズームレンズにおいては、第2レンズ群は、最も像側に接合レンズを有し、この接合レンズの焦点距離をf2cem、第2レンズ群の焦点距離をf2としたとき、下記条件式(3)を満足することが好ましく、下記条件式(3’)を満足することがより好ましい。
   1.00<|f2cem/f2|<44.00 … (3)
   3.00<|f2cem/f2|<42.00 … (3’)
 本発明のズームレンズにおいては、第2レンズ群の物体側から1、2番目のレンズがともに負の屈折力を有する単レンズであり、第2レンズ群の最も物体側の負レンズの物体側の面は非球面であることが好ましい。
 本発明のズームレンズにおいては、第3レンズ群は、物体側から順に、正の屈折力を有する第3aレンズ群と、正の屈折力を有する第3bレンズ群とからなり、広角端から望遠端への変倍の際に、第3aレンズ群と第3bレンズ群とは独立に移動することが好ましい。
 なお、上記各「レンズ群」は、必ずしも複数のレンズから構成されるものだけではなく、1枚のレンズのみで構成されるものも含むものとする。
 なお、上記の「~実質的に~からなり」の「実質的に」とは、挙げた構成要素以外に、実質的にパワーを有さないレンズ、絞りやカバーガラスやフィルタ等のレンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手ぶれ補正機構等の機構部分、等を含んでもよいことを意図するものである。
 なお、上記の屈折力の符号は、非球面が含まれているものについては近軸領域で考えるものとする。
 なお、「単レンズ」とは、接合されていない1枚のレンズからなるものを意味する。
 本発明の撮像装置は、上記記載の本発明のズームレンズを備えたことを特徴とするものである。
 本発明のズームレンズによれば、物体側から順に、正、負、正、正の4群からなるズームレンズにおいて、各構成を好適に設定し、特に、広角端から望遠端への変倍の際に第2レンズ群と第3レンズ群がそれぞれの結像倍率が-1倍の点を同時に通るように構成し、第2レンズ群が含む正レンズの材料を好適に規定しているため、高倍率化・広角化・ズーム全域における高性能化を同時に実現することができる。
 本発明の撮像装置によれば、本発明のズームレンズを備えているため、高倍率で広い画角での撮影が可能であり、ズーム全域において良好な画像を取得することができる。
本発明の一実施形態に係るズームレンズのレンズ構成を示す断面図 図1のズームレンズの各ズーム位置におけるレンズ構成と光路を示す図 本発明の実施例1のズームレンズのレンズ構成を示す断面図 本発明の実施例2のズームレンズのレンズ構成を示す断面図 本発明の実施例3のズームレンズのレンズ構成を示す断面図 本発明の実施例4のズームレンズのレンズ構成を示す断面図 本発明の実施例5のズームレンズのレンズ構成を示す断面図 本発明の実施例6のズームレンズのレンズ構成を示す断面図 図9(A)~図9(L)は本発明の実施例1のズームレンズの各収差図 図10(A)~図10(L)は本発明の実施例2のズームレンズの各収差図 図11(A)~図11(L)は本発明の実施例3のズームレンズの各収差図 図12(A)~図12(L)は本発明の実施例4のズームレンズの各収差図 図13(A)~図13(L)は本発明の実施例5のズームレンズの各収差図 図14(A)~図14(L)は本発明の実施例6のズームレンズの各収差図 本発明の実施形態に係る撮像装置の概略構成図
 以下、本発明の実施形態について図面を参照して詳細に説明する。図1に、本発明の一実施形態に係るズームレンズの広角端における断面図を示す。図1では、断面図の下に、広角端、中間焦点距離位置、第2レンズ群G2と第3レンズ群G3の結像倍率が-1倍の位置、望遠端における位置関係と合わせて、変倍時に移動するレンズ群の概略的な移動軌跡を矢印で示している。
 図2に、図1に示すズームレンズの各ズーム位置における各レンズ群の配置を示す。図2では、左側にW、M、Tという記号が付された上段、中段、下段にそれぞれ広角端、中間焦点距離位置、望遠端の状態を示す。また、図2では、広角端における軸上光束waおよび最大画角の光束wb、中間焦点距離位置における軸上光束maおよび最大画角の光束mb、望遠端における軸上光束taおよび最大画角の光束tbも合わせて示している。図1、図2では、左側が物体側、右側が像側である。図1、図2に示す例は、後述の実施例1に対応している。
 ズームレンズが撮像装置に搭載される際には、撮像素子の撮像面を保護するカバーガラスや、撮像装置の仕様に応じた色分解プリズム等のプリズム、ローパスフィルタや赤外線カットフィルタ等の各種フィルタを備えるように撮像装置を構成することが好ましい。図1、図2では、これらを想定した光学部材GPをレンズ系と像面Simとの間に配置した例を示している。
 本実施形態のズームレンズは、光軸Zに沿って物体側から順に、変倍の際に固定されている正の屈折力を有する第1レンズ群G1と、変倍の際に移動して負の屈折力を有する第2レンズ群G2と、変倍の際に移動して変倍に伴う像面の変動を補正する正の屈折力を有する第3レンズ群G3と、変倍の際に固定されている正の屈折力を有する第4レンズ群G4との実質的に4つのレンズ群から構成される。第2レンズ群G2は変倍機能を有し、第3レンズ群G3は変倍により変動する像面の補正機能有し、第4レンズ群G4は結像作用を有する。開口絞りStは、第4レンズ群G4の最も物体側に配置される。なお、図1、図2に示す開口絞りStは大きさや形状を表すものではなく、光軸上での位置を示すものである。
 本実施形態のズームレンズは、物体側から順に、正、負、正、正のレンズ群が配列された4群タイプである。テレビカメラ用のズームレンズにおいては、第3レンズ群が負の屈折力をもつタイプ、すなわち、物体側から順に、正、負、負、正のレンズ群が配列された4群タイプも考えられる。しかし、本実施形態のように第3レンズ群を正レンズ群としたものでは、物体側から順に、正、負、負、正とした4群タイプのものより、望遠側において第3レンズ群に入射する光束が広がるため、高倍率化を実現する際に課題となる、望遠側で第1レンズ群で補正しきれなかった色収差、すなわち、残存色収差を補正することが容易となる。また、物体側から順に、正、負、負、正とした4群タイプでは、第4レンズ群に入射する光束が発散光束となり、防振群やエクステンダー部を備えることが多い第4レンズ群のレンズ径や重量の増大を招き好ましくない。
 また、本実施形態のズームレンズは、広角端から望遠端への変倍の際に、第2レンズ群G2および第3レンズ群G3はそれぞれの結像倍率が-1倍の点を同時に通るように構成されている。
 高倍率、例えば50倍以上の高倍率を実現するためには、変倍中、負の屈折力をもつ第2レンズ群G2と正の屈折力をもつ第3レンズ群G3が同時に-1倍(倒立等倍)となる点を通るようにすることが必要である。なぜならば、このように構成した場合、コンペンセータ群としての機能を持つ第3レンズ群G3が像面補正のみならず、変倍そのものにも作用し、-1倍となる位置を基準として、広角側では、縮小倍率となり、望遠側では拡大倍率となるため、ズーム比を大きくとることが可能となるためである。
 さらにまた、本実施形態のズームレンズは、第2レンズ群G2は少なくとも2枚の正レンズと少なくとも1枚の負レンズとを有するように構成されている。例えば図1に示す例の第2レンズ群G2は、物体側から順に、像側に凹面を向けた負のレンズL21と、負のレンズL22と、負のレンズL23と、正のレンズL24と、像側に凸面を向けた正のレンズL25と、負のレンズL26と、正のレンズL27とから構成されている。レンズL22、L23、L26は両凹レンズであり、レンズL24、L27は両凸レンズである。レンズL23とレンズL24は接合されている。レンズL25とレンズL26とレンズL27は接合されて3枚接合レンズを構成している。
 そして、本実施形態のズームレンズは、第2レンズ群G2が有する1枚の正レンズのd線に対するアッベ数をνp、g線とF線間の部分分散比をPpとしたとき、下記条件式(1)、(2)を満足するように構成されている。
   75.00<νp … (1)
   0.520<Pp<0.550 … (2)
ここで、νp、Ppとは、上記条件式(1)、(2)に関する正レンズのフラウンホーファー線のg線(波長435.84nm)、F線(波長486.13nm)、d線(波長587.56nm)、C線(波長656.27nm)に対する屈折率をそれぞれNg、NF、Nd、NCとしたとき、νp=(Nd-1)/(NF-NC)、Pp=(Ng-NF)/(NF-NC)で定義されるものである。
 高倍率化に伴い長焦点化が進むが、一般に、長焦点化に伴い、望遠側の色収差の補正が困難となり、残存2次スペクトルの影響により、ズーム全域における高性能化が困難となる。本実施形態では、条件式(1)、(2)を満足する材料からなる正レンズを第2レンズ群G2に配置することにより、広角側の倍率色収差を抑えながら、望遠側の軸上色収差を良好に補正することが可能となり、特に、望遠側で変動の大きい青色に関する軸上色収差を良好に補正することが可能となり、ズーム全域における高性能化が容易となる。
 条件式(1)の下限以下になると、広角側の倍率色収差の補正効果が弱くなり、加えて望遠側の球面収差に高次の色収差が発生し好ましくない。条件式(2)の下限以下になると、望遠側の青色に関する軸上色収差が補正過剰となり好ましくない。逆に条件式(2)の上限以上になると、望遠側の青色に関する軸上色収差が補正不足となり好ましくない。
 物体側から順に、正、負、正、正のレンズ群が配されてなるズームレンズ系において、変倍機能を持つ第2レンズ群に条件式(1)、(2)を満足する正レンズを配置することで、高倍率化・長焦点化・広角化を図る上で課題となる色収差を良好に補正することが可能となり、高倍率化・長焦点化・広角化・ズーム全域における高性能化を同時に実現することができる。
 なお、第2レンズ群G2は、最も像側に、正レンズ、負レンズ、正レンズの3枚のレンズが物体側からこの順に接合された3枚接合レンズを有することが好ましい。このように第2レンズ群G2の像側から1~3番目のレンズを正レンズ、負レンズ、正レンズとすることで、望遠側での軸上得色収差の補正に有利となり、高次の色収差を補正することが容易となる。
 なお、上記の第2レンズ群G2の像側から1~3番目の正レンズ、負レンズ、正レンズは、自由度向上のために、接合ではなく間に空気間隔を挟んで各々を単レンズとした構成も考えられるが、第2レンズ群G2は、全系で唯一の負レンズ群であるためパワーが強く、各レンズの感度が高くなる傾向をもっている。特に、各々を単レンズとした場合には、レンズ間の空気間隔のバックフォーカスに対する感度が大きく、ズーミング中の焦点位置のズレの原因となる可能性が大きい。したがって、これら3枚のレンズを接合すれば、エラー要因を減らし、ズーミング中の焦点位置のズレを小さくすることができる。
 第2レンズ群G2の最も像側に上記3枚接合レンズを配置する場合、条件式(1)、(2)を満足する正レンズは、この3枚接合レンズを構成するものであることが好ましい。上記3枚接合レンズが条件式(1)、(2)を満足する材料の正レンズを含むことにより、色収差をより効果的に補正することができ、ズームによる倍率色収差の変動と、望遠側での軸上色収差を抑制することができる。
 また、第2レンズ群G2は、最も像側に接合レンズを有し、この接合レンズの焦点距離をf2cem、第2レンズ群の焦点距離をf2としたとき、下記条件式(3)を満足することが好ましい。
   1.00<|f2cem/f2|<44.00 … (3)
 条件式(3)の下限以下になり、第2レンズ群G2の最も像側の接合レンズのパワーが強くなると、望遠側における軸上色収差への補正効果が高くなりすぎるので好ましくない。また、条件式(3)の下限以下になると、この接合レンズを構成するレンズのパワーが強くなり、接合レンズの厚みが厚くなり、ズームストロークを稼ぐことができなくなるため好ましくない。条件式(3)の上限以上になり、接合レンズのパワーが弱くなると、各接合面の曲率半径の絶対値が大きくなり、色収差の補正効果が弱くなるため好ましくない。条件式(3)を満足することで、全系の収差バランスを良好に保ちながら、高倍率化を図ることができる。
 上記条件式(1)~(3)それぞれを満たした場合の効果をさらに向上させるには、条件式(1)~(3)それぞれに代わり、下記条件式(1’)~(3’)それぞれを満たすことが好ましい。
   80.00<νp … (1’)
   0.530<Pp<0.540 … (2’)
   3.00<|f2cem/f2|<42.00 … (3’)
 また、第2レンズ群G2の物体側から1、2番目のレンズはともに負の屈折力を有する単レンズであり、第2レンズ群G2の最も物体側の負レンズの物体側の面は非球面であることが好ましい。図1に示す例では、レンズL21、L22が負の単レンズであり、レンズL21の物体側の面は非球面である。
 広角側において、第2レンズ群G2は、第1レンズ群G2からの大きな角度をもった光線が入射し、倍率色収差が発生しやすい傾向がある。例えば図1に示すレンズL21、L22を1枚の負レンズで代用することも考えられるが、そのようした場合は、代用した1枚の負レンズのパワー負担が大きくなるため、このレンズの像側の面の曲率半径の絶対値が小さくなり、このレンズの像側直後に配置されるレンズとの空気間隔が大きくなる。空気間隔が大きくなると、波長による主点位置の差が大きくなり、倍率色収差の原因となる。そこで、図1に示す例では、第2レンズ群G2の物体側から1、2番目のレンズを負レンズとして、2枚の負レンズを配置することで、パワーを分割し、波長による主点位置の差を小さくなるようにし、倍率色収差を抑制している。また、第2レンズ群G2の最も物体側の負レンズの物体側の面に非球面を導入することにより、歪曲収差を良好に補正することができる。
 第3レンズ群G3については、物体側から順に、正の屈折力を有する第3aレンズ群G3aと、正の屈折力を有する第3bレンズ群G3bとからなり、広角端から望遠端への変倍の際に、第3aレンズ群G3aと第3bレンズ群G3bとは独立に移動するように構成されていることが好ましい。
 広角化を実現しようとする場合、広角端から望遠端へ変倍していくと、図2からわかるように第2レンズ群G2に入射する周辺光束が大きく変化し、イメージサークルを確保することが困難となる。そこで、第3レンズ群G3を2つのレンズ群に分割し、分割後の各レンズ群を独立に移動させるフローティング方式を採用することにより、イメージサークルを確保することが可能となる。加えて、ディストーションの補正、および広角端から望遠端へ変倍していった場合に軸上光束が全系の最も物体側のレンズによりケラレ始める焦点距離(いわゆるランピングポイント)を長焦点側にシフトすることが容易となる。
 例えば、図1に示す例の第3レンズ群G3は、物体側から順に、正のレンズL31と、正のレンズL32と、負のレンズL33と、正のレンズL34と、正のレンズL35とから構成されており、レンズL31が第3aレンズ群G3aを構成し、レンズL32~レンズL35が第3bレンズ群G3bを構成している。レンズL31、L32、L34、L35は両凸レンズであり、レンズL33は負メニスカスレンズである。
 図1に示す例の第1レンズ群G1は、物体側から順に、像側に凹面を向けた負のレンズL11と、正のレンズL12と、正のレンズL13と、正のレンズL14と、正のレンズL15とから構成されている。レンズL12、L13は両凸レンズである。レンズL14、L15は物体側に凸面を向けた正メニスカスレンズである。
 図1に示す例の第4レンズ群G4は、物体側から順に、レンズL41~レンズL54の14枚のレンズから構成されている。ただし、本発明のズームレンズは、各レンズ群を構成するレンズ枚数やレンズ形状は図1に示す例以外のものも採用可能である。
 本実施形態のズームレンズは、例えば100倍程度の高倍率のズームレンズに好適に適用可能である。また、上述した好ましい構成を適宜採用することにより、より高倍率化、より長焦点化、より広角化、より高性能化を図ることが可能である。なお、上述した好ましい構成は、任意の組合せが可能であり、ズームレンズに要求される仕様に応じて適宜選択的に採用されることが好ましい。
 次に、本発明のズームレンズの具体的な実施例について説明する。
 <実施例1>
 実施例1のズームレンズの構成を示す断面図を図3に示す。図3では、左側にそれぞれW、M、Tという記号が付された上段、中段、下段に、それぞれ広角端、中間焦点距離位置、望遠端における各レンズ群の配置と構成を示している。
 実施例1のズームレンズの概略構成は以下のようになっている。すなわち、実施例1のズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成される。開口絞りStは、第4レンズ群G4の最も物体側に配置される。なお、図3に示す開口絞りStは大きさや形状を表すものではなく、光軸上での位置を示すものである。また、図3では第4レンズ群G4と像面Simの間に、各種フィルタやカバーガラス等を想定した光学部材GPを配置した例を示している。
 このズームレンズでは、広角端から望遠端への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Simに対して固定され、第2レンズ群G2と第3レンズ群G3は光軸Zに沿って移動するように構成されている。また、このズームレンズは、広角端から望遠端への変倍の際に、第2レンズ群G2および第3レンズ群G3はそれぞれの結像倍率が-1倍の点を同時に通るように構成されている。
 第1レンズ群G1は、物体側から順に、レンズL11~L15の5枚の単レンズから構成されている。第2レンズ群G2は、物体側から順に、近軸領域で負の屈折力を有するレンズL21と、負のレンズL22と、負のレンズL23と、正のレンズL24と、正のレンズL25と、負のレンズL26と、正のレンズL27の7枚のレンズから構成されている。レンズL23とレンズL24は接合されており、レンズL25とレンズL26とレンズL27は接合されている。レンズL21の物体側の面は非球面である。
 第3レンズ群G3は、物体側から順に、正の屈折力を有する第3aレンズ群G3aと、正の屈折力を有する第3bレンズ群G3bとから構成され、第3aレンズ群G3aはレンズL31から構成され、第3bレンズ群G3bは物体側から順に、レンズL32~L35の4枚のレンズから構成されている。広角端から望遠端への変倍の際に、第3aレンズ群G3aと第3bレンズ群G3bとは独立に移動するように構成されている。第4レンズ群G4は、物体側から順に、レンズL41~L54の14枚のレンズから構成されている。
 実施例1のズームレンズの基本レンズデータを表1に、非球面係数を表2に、諸元と可変面間隔を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1において、Siの欄には最も物体側の構成要素の物体側の面を1番目として像側に向かうに従い順次増加するi番目(i=1、2、3、…)の面番号を示し、Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示している。また、Ndjの欄には最も物体側のレンズを1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)のレンズのd線(波長587.6nm)に対する屈折率を示し、νdjの欄にはj番目のレンズのd線に対するアッベ数を示し、PgFjの欄にはj番目のレンズのg線とF線間の部分分散比を示している。
 なお、曲率半径の符号は、物体側に凸面を向けた形状の場合を正とし、像側に凸面を向けた形状の場合を負としている。Diの最下欄の値は、光学部材GPの像側の面と像面Simとの間隔である。基本レンズデータには、開口絞りStおよび光学部材GPも含めて示しており、開口絞りStに相当する面の面番号の欄には面番号と(絞り)という語句を記載している。非球面の面番号には*印を付しており、非球面の曲率半径の欄には近軸の曲率半径の数値を記載している。
 表2は、実施例1の各非球面の非球面係数を示すものである。表2の非球面係数の数値の「E-n」(n:整数)は「×10-n」を意味する。非球面係数は、下式で表される非球面式における各係数KA、Am(m=3、4、5、…)の値である。
Zd=C・h/{1+(1-KA・C・h1/2}+ΣAm・h
ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸に垂直な平面に下ろした垂線の長さ)
h:高さ(光軸からのレンズ面までの距離)
C:近軸曲率
KA、Am:非球面係数(m=3、4、5、…)
 表1において、面間隔の欄にDD[10]、DD[21]、DD[23]、DD[30]と記載されているものは変倍時に間隔が変化する可変面間隔である。DD[10]は第1レンズ群G1と第2レンズ群G2との間隔であり、DD[21]は第2レンズ群G2と第3aレンズ群G3aとの間隔であり、D[23]は第3aレンズ群G3aと第3bレンズ群G3bとの間隔であり、DD[30]は第3bレンズ群G3bと第4レンズ群G4との間隔である。
 表3に、広角端、中間焦点距離位置、望遠端それぞれにおけるd線に対する諸元と可変面間隔の値を示す。表2のf’は全系の焦点距離、Bf’はバックフォーカス(空気換算長)、FNo.はFナンバー、2ωは全画角(単位は度)である。
 表1~表3では、所定の桁でまるめた数値を記載している。表1~表3において、長さの単位としてmmを用いているが、光学系は比例拡大又は比例縮小しても使用可能なため、他の適当な単位を用いることもできる。
 図9(A)~図9(D)にそれぞれ、広角端における実施例1のズームレンズの球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差(倍率の色収差)の各収差図を示す。図9(E)~図9(H)にそれぞれ、中間焦点距離位置における実施例1のズームレンズの球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差(倍率の色収差)の各収差図を示す。図9(I)~図9(L)にそれぞれ、望遠端における実施例1のズームレンズの球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差(倍率の色収差)の各収差図を示す。図9(A)~図9(L)は全て無限遠物体合焦時のものである。図9の上段、中段、下段の左側に付された記号W、M、Tはそれぞれ広角端、中間焦点距離位置、望遠端を意味している。
 各収差図には、d線を基準波長とした収差を示すが、球面収差図にはC線、F線についての収差も示し、倍率色収差図ではC線、F線についての収差を示している。非点収差図ではサジタル方向、タンジェンシャル方向それぞれに関する収差を実線、破線で示しており、線種の説明にそれぞれ(S)、(T)という記号を記入している。球面収差図のFNo.はFナンバー、その他の収差図のωは半画角を意味する。
 上記の実施例1の説明で述べた各データの記号、意味、記載方法は、特に断りがない限り以下の実施例のものについても同様であるため、以下では重複説明を省略する。
 <実施例2>
 図4に実施例2のズームレンズのレンズ構成図を示す。実施例2のズームレンズの概略構成は、上述した実施例1のズームレンズの概略構成と略同様である。表4、表5、表6にそれぞれ実施例2のズームレンズの基本レンズデータ、非球面係数、諸元と可変面間隔を示す。図10(A)~図10(L)に実施例2のズームレンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 <実施例3>
 図5に実施例3のズームレンズのレンズ構成図を示す。実施例3のズームレンズの概略構成は、上述した実施例1のズームレンズの概略構成と略同様であるが、第4レンズ群G4が15枚のレンズから構成されている点において相違している。表7、表8、表9にそれぞれ実施例3のズームレンズの基本レンズデータ、非球面係数、諸元と可変面間隔を示す。図11(A)~図11(L)に実施例3のズームレンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 <実施例4>
 図6に実施例4のズームレンズのレンズ構成図を示す。実施例4のズームレンズの概略構成は、上述した実施例3のズームレンズの概略構成と略同様である。表10、表11、表12にそれぞれ実施例4のズームレンズの基本レンズデータ、非球面係数、可変面間隔を示す。図12(A)~図12(L)に実施例4のズームレンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 <実施例5>
 図7に実施例5のズームレンズのレンズ構成図を示す。実施例5のズームレンズの概略構成は、上述した実施例3のズームレンズの概略構成と略同様である。表13、表14、表15にそれぞれ実施例5のズームレンズの基本レンズデータ、非球面係数、可変面間隔を示す。図13(A)~図13(L)に実施例5のズームレンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 <実施例6>
 図8に実施例6のズームレンズのレンズ構成図を示す。実施例6のズームレンズの概略構成は、上述した実施例3のズームレンズの概略構成と略同様である。表16、表17、表18にそれぞれ実施例6のズームレンズの基本レンズデータ、非球面係数、可変面間隔を示す。図14(A)~図14(L)に実施例6のズームレンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 上記実施例1~6のズームレンズにおける条件式(1)~(3)に対応する値を表19に示す。表19の条件式(1)、(2)の対応値として、実施例1~4ではレンズL27に関する値を記載し、実施例5、6ではレンズL25に関する値を記載している。表19の条件式(3)の対応値はd線に対するものである。
Figure JPOXMLDOC01-appb-T000019
 以上のデータからわかるように、実施例1~6のズームレンズは、ズーム比が106倍、望遠端における全系の焦点距離が910前後、広角端における全画角が約68°であり、各収差が良好に補正されており、高倍率化・長焦点化・広角化・高性能化を同時に実現したものとなっている。
 次に、図15を参照しながら、本発明の実施形態に係る撮像装置について説明する。図15に、本発明の実施形態の撮像装置の一例として、本発明の実施形態に係るズームレンズ1を用いたテレビカメラ10の概略構成図を示す。なお、図15では、ズームレンズ1が備える正の第1レンズ群G1、負の第2レンズ群G2、正の第3aレンズ群G3aと正の第3bレンズ群G3bからなる正の第3レンズ群G3、開口絞りStを含む正の第4レンズ群G4を概略的に示している。
 テレビカメラ10は、ズームレンズ1と、ズームレンズ1の像側に配置されたローパスフィルタおよび赤外線カットフィルタ等の機能を有するフィルタ2と、フィルタ2の像側に配置された色分解プリズム3R、3G、3Bと、各色分解プリズムの端面に設けられた撮像素子4R、4G、4Bとを備えている。撮像素子4R、4G、4Bはズームレンズ1により形成される光学像を電気信号に変換するものであり、例えば、CCDやCMOS等を用いることができる。撮像素子4R、4G、4Bは、その撮像面がズームレンズ1の像面に一致するように配置される。
 テレビカメラ10はまた、撮像素子4R、4G、4Bからの出力信号を演算処理する信号処理部5と、信号処理部5により形成された像を表示する表示部6と、ズームレンズ1の変倍を制御するズーム制御部7を備えている。なお、図15に示すテレビカメラ10は、3つの撮像素子を有するいわゆる3CCD方式の撮像装置であるが、本発明の撮像装置はこれに限定されず、1つの撮像素子で全波長帯域を撮像するものでもよい。
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されず、種々の変形が可能である。例えば、各レンズの曲率半径、面間隔、屈折率、アッベ数、部分分散比、非球面係数の値は、上記各実施例で示した値に限定されず、他の値をとり得るものである。
 また、撮像装置の実施形態では、テレビカメラを例に挙げ図を示して説明したが、本発明の撮像装置はこれに限定されるものではなく、例えば、ビデオカメラ等の別の撮像装置に本発明を適用することも可能である。

Claims (10)

  1.  物体側から順に、変倍の際に固定されている正の屈折力を有する第1レンズ群と、変倍の際に移動する負の屈折力を有する第2レンズ群と、変倍の際に移動して変倍に伴う像面の変動を補正する正の屈折力を有する第3レンズ群と、変倍の際に固定されている正の屈折力を有する第4レンズ群との実質的に4つのレンズ群からなり、
     前記第4レンズ群の最も物体側に絞りが配置され、
     広角端から望遠端への変倍の際に、前記第2レンズ群および前記第3レンズ群はそれぞれの結像倍率が-1倍の点を同時に通り、
     前記第2レンズ群は少なくとも2枚の正レンズと少なくとも1枚の負レンズとを有し、前記第2レンズ群が有する1枚の正レンズのd線に対するアッベ数をνp、g線とF線間の部分分散比をPpとしたとき、下記条件式(1)、(2)を満足することを特徴とするズームレンズ。
       75.00<νp … (1)
       0.520<Pp<0.550 … (2)
    ここで、νp、Ppとは、前記条件式(1)、(2)に関する前記正レンズのフラウンホーファー線のg線、F線、d線、C線に対する屈折率をそれぞれNg、NF、Nd、NCとしたとき、νp=(Nd-1)/(NF-NC)、Pp=(Ng-NF)/(NF-NC)で定義されるものである。
  2.  前記第2レンズ群は、最も像側に、正レンズ、負レンズ、正レンズの3枚のレンズが物体側からこの順に接合された接合レンズを有することを特徴とする請求項1記載のズームレンズ。
  3.  前記条件式(1)、(2)を満足する前記第2レンズ群の1つの正レンズは、前記接合レンズを構成するものであることを特徴とする請求項2記載のズームレンズ。
  4.  前記第2レンズ群は、最も像側に接合レンズを有し、該接合レンズの焦点距離をf2cem、前記第2レンズ群の焦点距離をf2としたとき、下記条件式(3)を満足することを特徴とする請求項1から3のいずれか1項記載のズームレンズ。
       1.00<|f2cem/f2|<44.00 … (3)
  5.  前記第2レンズ群の物体側から1、2番目のレンズがともに負の屈折力を有する単レンズであり、前記第2レンズ群の最も物体側の負レンズの物体側の面は非球面であることを特徴とする請求項1から4のいずれか1項記載のズームレンズ。
  6.  前記第3レンズ群は、物体側から順に、正の屈折力を有する第3aレンズ群と、正の屈折力を有する第3bレンズ群とからなり、
     広角端から望遠端への変倍の際に、前記第3aレンズ群と前記第3bレンズ群とは独立に移動することを特徴とする請求項1から5のいずれか1項記載のズームレンズ。
  7.  下記条件式(1’)を満足することを特徴とする請求項1から6のいずれか1項記載のズームレンズ。
       80.00<νp … (1’)
  8.  下記条件式(2’)を満足することを特徴とする請求項1から7のいずれか1項記載のズームレンズ。
       0.530<Pp<0.540 … (2’)
  9.  前記第2レンズ群は、最も像側に接合レンズを有し、該接合レンズの焦点距離をf2cem、前記第2レンズ群の焦点距離をf2としたとき、下記条件式(3’)を満足することを特徴とする請求項1から8のいずれか1項記載のズームレンズ。
       3.00<|f2cem/f2|<42.00 … (3’)
  10.  請求項1から9のいずれか1項記載のズームレンズを備えたことを特徴とする撮像装置。
PCT/JP2013/006454 2012-11-08 2013-10-31 ズームレンズおよび撮像装置 WO2014073187A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380056466.7A CN104769475B (zh) 2012-11-08 2013-10-31 变焦透镜和摄像装置
JP2014545563A JP5841675B2 (ja) 2012-11-08 2013-10-31 ズームレンズおよび撮像装置
US14/698,051 US9417439B2 (en) 2012-11-08 2015-04-28 Zoom lens and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012246210 2012-11-08
JP2012-246210 2012-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/698,051 Continuation US9417439B2 (en) 2012-11-08 2015-04-28 Zoom lens and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2014073187A1 true WO2014073187A1 (ja) 2014-05-15

Family

ID=50684313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006454 WO2014073187A1 (ja) 2012-11-08 2013-10-31 ズームレンズおよび撮像装置

Country Status (4)

Country Link
US (1) US9417439B2 (ja)
JP (1) JP5841675B2 (ja)
CN (1) CN104769475B (ja)
WO (1) WO2014073187A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164629A (ja) * 2015-03-06 2016-09-08 富士フイルム株式会社 ズームレンズおよび撮像装置
JP2021047380A (ja) * 2019-09-20 2021-03-25 富士フイルム株式会社 ズームレンズおよび撮像装置
JP2021051160A (ja) * 2019-09-24 2021-04-01 富士フイルム株式会社 ズームレンズおよび撮像装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6723868B2 (ja) * 2016-08-09 2020-07-15 キヤノン株式会社 ズームレンズおよびそれを有する撮像装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186477A (ja) * 1992-12-18 1994-07-08 Canon Inc フレアー絞りを有したズームレンズ
JP2007310179A (ja) * 2006-05-19 2007-11-29 Nidec Copal Corp ズームレンズ
JP2008003535A (ja) * 2006-05-24 2008-01-10 Casio Comput Co Ltd ズームレンズ及びプロジェクタ装置
JP2009217121A (ja) * 2008-03-12 2009-09-24 Fujinon Corp 広角ズームレンズおよび撮像装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5049752B2 (ja) * 2007-11-21 2012-10-17 富士フイルム株式会社 高倍率ズームレンズおよび撮像装置
JP5049751B2 (ja) 2007-11-21 2012-10-17 富士フイルム株式会社 高倍率ズームレンズおよび撮像装置
JP5328284B2 (ja) 2008-10-08 2013-10-30 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5393259B2 (ja) * 2009-05-27 2014-01-22 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5264674B2 (ja) * 2009-10-16 2013-08-14 キヤノン株式会社 光学系及びそれを有する光学機器
JP5438620B2 (ja) * 2010-07-29 2014-03-12 富士フイルム株式会社 ズームレンズおよび撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186477A (ja) * 1992-12-18 1994-07-08 Canon Inc フレアー絞りを有したズームレンズ
JP2007310179A (ja) * 2006-05-19 2007-11-29 Nidec Copal Corp ズームレンズ
JP2008003535A (ja) * 2006-05-24 2008-01-10 Casio Comput Co Ltd ズームレンズ及びプロジェクタ装置
JP2009217121A (ja) * 2008-03-12 2009-09-24 Fujinon Corp 広角ズームレンズおよび撮像装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164629A (ja) * 2015-03-06 2016-09-08 富士フイルム株式会社 ズームレンズおよび撮像装置
JP2021047380A (ja) * 2019-09-20 2021-03-25 富士フイルム株式会社 ズームレンズおよび撮像装置
JP7146715B2 (ja) 2019-09-20 2022-10-04 富士フイルム株式会社 ズームレンズおよび撮像装置
US11604339B2 (en) 2019-09-20 2023-03-14 Fujifilm Corporation Zoom lens and imaging apparatus
JP2021051160A (ja) * 2019-09-24 2021-04-01 富士フイルム株式会社 ズームレンズおよび撮像装置
JP7144383B2 (ja) 2019-09-24 2022-09-29 富士フイルム株式会社 ズームレンズおよび撮像装置
US11650401B2 (en) 2019-09-24 2023-05-16 Fujifilm Corporation Zoom lens and imaging apparatus

Also Published As

Publication number Publication date
CN104769475A (zh) 2015-07-08
US20150309292A1 (en) 2015-10-29
JPWO2014073187A1 (ja) 2016-09-08
CN104769475B (zh) 2017-04-05
JP5841675B2 (ja) 2016-01-13
US9417439B2 (en) 2016-08-16

Similar Documents

Publication Publication Date Title
JP5777225B2 (ja) ズームレンズおよび撮像装置
JP6045443B2 (ja) ズームレンズおよび撮像装置
JP5680673B2 (ja) ズームレンズおよび撮像装置
WO2014041776A1 (ja) ズームレンズおよび撮像装置
JP5745188B2 (ja) ズームレンズおよび撮像装置
JP6219329B2 (ja) ズームレンズおよび撮像装置
JP5767335B2 (ja) ズームレンズおよび撮像装置
JP2016164629A (ja) ズームレンズおよび撮像装置
WO2017130478A1 (ja) ズームレンズおよび撮像装置
WO2013031180A1 (ja) ズームレンズおよび撮像装置
WO2017130479A1 (ja) ズームレンズおよび撮像装置
JP5841675B2 (ja) ズームレンズおよび撮像装置
WO2013031110A1 (ja) ズームレンズおよび撮像装置
JP2021047381A (ja) ズームレンズおよび撮像装置
WO2013031184A1 (ja) ズームレンズおよび撮像装置
WO2013031185A1 (ja) ズームレンズおよび撮像装置
WO2013031182A1 (ja) ズームレンズおよび撮像装置
JP2010066661A (ja) ズームレンズおよび撮像装置
WO2013031179A1 (ja) ズームレンズおよび撮像装置
WO2013031181A1 (ja) ズームレンズおよび撮像装置
WO2013031178A1 (ja) ズームレンズおよび撮像装置
WO2013031183A1 (ja) ズームレンズおよび撮像装置
WO2013031108A1 (ja) ズームレンズおよび撮像装置
WO2013031186A1 (ja) ズームレンズおよび撮像装置
WO2013031177A1 (ja) ズームレンズおよび撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545563

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852730

Country of ref document: EP

Kind code of ref document: A1