WO2017130478A1 - ズームレンズおよび撮像装置 - Google Patents

ズームレンズおよび撮像装置 Download PDF

Info

Publication number
WO2017130478A1
WO2017130478A1 PCT/JP2016/080923 JP2016080923W WO2017130478A1 WO 2017130478 A1 WO2017130478 A1 WO 2017130478A1 JP 2016080923 W JP2016080923 W JP 2016080923W WO 2017130478 A1 WO2017130478 A1 WO 2017130478A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
group
negative
zoom
Prior art date
Application number
PCT/JP2016/080923
Other languages
English (en)
French (fr)
Inventor
賢 米澤
伸吉 池田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201680080102.6A priority Critical patent/CN108604002B/zh
Priority to JP2017563683A priority patent/JP6493896B2/ja
Publication of WO2017130478A1 publication Critical patent/WO2017130478A1/ja
Priority to US16/012,916 priority patent/US10642008B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144109Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +--+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145119Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged ++--+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to a zoom lens suitable for a movie shooting camera, a broadcast camera, a digital camera, a video camera, a surveillance camera, and the like, and an imaging apparatus including the zoom lens.
  • zoom lenses having a four-group configuration or a five-group configuration have been proposed as lens systems that can be used in cameras in the above-described fields.
  • changes in the overall length of the lens system due to zooming and changes in the angle of view due to focusing are disliked. Therefore, when zooming, the first lens that is the lens group closest to the object side of the zoom lens
  • focusing is performed by using the lens in the first lens group when the group is fixed and in focus.
  • a zoom lens having a four-group structure or a five-group structure in which the first lens group, in order from the object side, is a negative lens group that does not move during focusing;
  • a lens system is described that includes a positive lens group that moves during focusing and a positive lens group that does not move during focusing.
  • the first lens group tends to be enlarged due to the focusing method.
  • the zoom ratio In order to obtain a high-resolution image, the chromatic aberration of the mounted lens system needs to be corrected satisfactorily.
  • the number of lenses in the first lens group tends to increase, and the first lens This will increase the size of the group.
  • the lens system described in Patent Document 1 has a large number of lenses in the first lens group and has not been downsized, or has an insufficient zoom ratio. Further, the lens system described in Patent Document 1 has a large axial chromatic aberration at the telephoto end when the aperture diameter of the aperture stop is constant over the entire zoom range. For this reason, this lens system has a disadvantage that the axial marginal ray must be shielded by using a member other than the aperture stop in a part of the zoom range so as not to cause a large axial chromatic aberration.
  • the lens system described in Patent Document 2 is desired to have a higher zoom ratio in order to meet recent demands.
  • the present invention has been made in view of the above circumstances, and includes a zoom lens that can be configured in a small size while ensuring a high zoom ratio, has excellent optical performance with good correction of chromatic aberration, and the zoom lens.
  • An object of the present invention is to provide an image pickup apparatus.
  • the zoom lens according to the present invention includes, in order from the object side, an optical axis of a first lens group having a positive refractive power that is fixed with respect to an image plane at the time of zooming and a group adjacent to the zoom lens when zooming.
  • a plurality of moving lens groups that move by changing the interval in the direction, and a final lens group that has a positive refractive power that is fixed with respect to the image plane at the time of zooming, At least one moving lens group has a negative refractive power, and the first lens group has a negative refractive power that is fixed with respect to the image plane during focusing in order from the object side.
  • a first lens group rear group having positive refractive power, and the first lens group front group is sequentially continuous from the object side to the image side. It has a first negative lens that is a negative meniscus lens with its surface facing and a second negative lens that is a negative lens with its concave surface facing the object side, and all of the following conditional expressions (1) to (3) are satisfied It is characterized by.
  • DD12 Distance on the optical axis between the first negative lens and the second negative lens f1a: Focal length ⁇ n2 of the front group of the first lens group: Abbe number ⁇ gFn2 of d-line reference of the second negative lens: g-line of the second negative lens And partial dispersion ratio between F line
  • the most image side lens in the first lens group front group is a positive meniscus lens having a concave surface facing the image side.
  • the first lens unit front group has one or more positive lenses and satisfies the following conditional expression (8). 15 ⁇ p ⁇ 30 (8) Where ⁇ p: Abbe number on the d-line basis of the most image-side positive lens in the first lens group front group
  • the front group of the first lens group includes three lenses including a first negative lens, a second negative lens, and a positive meniscus lens, all of these three lenses.
  • a single lens is preferable.
  • the moving lens group closest to the image side has a negative refractive power among the plurality of moving lens groups.
  • the plurality of moving lens groups may include a lens group having negative refractive power and a lens group having negative refractive power, or the plurality of moving lenses described above.
  • the lens group may include a lens group having a positive refractive power, a lens group having a negative refractive power, and a lens group having a negative refractive power in order from the object side.
  • the moving lens group may include, in order from the object side, a lens group having a negative refractive power, a lens group having a positive refractive power, and a lens group having a negative refractive power.
  • the image pickup apparatus of the present invention includes the zoom lens of the present invention.
  • substantially consisting of and “substantially consisting of” described above are lenses, diaphragms, and / or cover glasses that have substantially no power other than those listed as components. It is intended that an optical element other than this lens, a lens flange, a lens barrel, and / or a mechanism portion such as a camera shake correction mechanism may be included.
  • ⁇ lens group does not necessarily include a plurality of lenses but also includes a single lens.
  • the above “having positive refractive power—lens group” and “having negative refractive power—lens group” respectively represent the signs of the refractive power of the corresponding lens group as a whole.
  • the sign of the refractive power of the lens group the sign of the refractive power of the lens, the surface shape of the lens, and the radius of curvature of the lens surface, those including an aspheric surface are considered in the paraxial region.
  • the above-mentioned “negative meniscus lens” is a meniscus lens having negative refractive power.
  • the sign of “DDrp” is positive when the image-side principal point of the first lens group is closer to the image side than the most image-side lens surface of the first lens group, and negative when it is on the object side. All of the above conditional expressions relate to the d-line (wavelength 587.6 nm, nm: nanometer) unless otherwise noted.
  • the positive first lens group fixed during zooming the plurality of moving lens groups that move during zooming, and fixed during zooming.
  • the zoom lens composed of the positive final lens group one or more moving lens groups are set as negative lens groups, the configuration of the first lens group is suitably set, and the predetermined conditional expression is satisfied.
  • FIG. 2 is a cross-sectional view showing the configuration and light flux of the zoom lens shown in FIG. 1, wherein the upper stage is in the wide-angle end state, the middle stage is in the intermediate focal length state, and the lower stage is in the telephoto end state.
  • FIG. 2 shows the structure of the zoom lens of Example 1 of this invention.
  • FIG. 2 is a cross-sectional view showing the configuration and light flux of the zoom lens shown in FIG. 1, wherein the upper stage is in the wide-angle end state, the middle stage is in the intermediate focal length state, and the lower stage is in the telephoto end state.
  • FIG. 4 is aberration diagrams of the zoom lens according to Example 1 of the present invention, in which the upper stage is in the wide-angle end state, the middle stage is in the intermediate focal length state, and the lower stage is in the telephoto end state. All of the aberration diagrams are a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a lateral chromatic aberration diagram in order from the left.
  • FIG. 9 is aberration diagrams of the zoom lens according to Example 2 of the present invention, in which the upper stage is in the wide-angle end state, the middle stage is in the intermediate focal length state, and the lower stage is in the telephoto end state.
  • All of the aberration diagrams are a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a lateral chromatic aberration diagram in order from the left.
  • FIG. 6 is aberration diagrams of the zoom lens according to Example 3 of the present invention, in which the upper stage is in the wide-angle end state, the middle stage is in the intermediate focal length state, and the lower stage is in the telephoto end state. All of the aberration diagrams are a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a lateral chromatic aberration diagram in order from the left.
  • FIG. 6 is aberration diagrams of the zoom lens according to Example 3 of the present invention, in which the upper stage is in the wide-angle end state, the middle stage is in the intermediate focal length state, and the lower stage is in the telephoto end state. All of the aberration diagrams are a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a lateral
  • FIG. 9A is an aberration diagram of the zoom lens according to Example 4 of the present invention, in which the upper row is in the wide-angle end state, the middle row is in the intermediate focal length state, and the lower row is in the telephoto end state. All of the aberration diagrams are a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a lateral chromatic aberration diagram in order from the left.
  • FIG. 10 is aberration diagrams of the zoom lens according to Example 5 of the present invention, in which the upper stage is in the wide-angle end state, the middle stage is in the intermediate focal length state, and the lower stage is in the telephoto end state.
  • All of the aberration diagrams are a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a lateral chromatic aberration diagram in order from the left.
  • 1 is a schematic configuration diagram of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 1 is a sectional view of a lens configuration at the wide-angle end of a zoom lens according to an embodiment of the present invention.
  • FIG. 2 shows the lens configuration of the zoom lens shown in FIG.
  • the wide-angle end state is shown in the upper stage labeled “WIDE”
  • the axial luminous flux wa and the luminous flux wb of the maximum angle of view are entered as the luminous flux
  • the intermediate focal length state is depicted in the middle stage labeled “MIDDLE”.
  • the on-axis light beam ma and the maximum field angle light beam mb are shown as the light beam, the telephoto end state is shown at the bottom labeled “TELE”, and the on-axis light beam ta and the maximum field angle light beam tb are entered as the light beam. is doing.
  • the examples shown in FIGS. 1 and 2 correspond to a zoom lens of Example 1 described later.
  • the left side of the drawing is the object side
  • the right side of the drawing is the image side, which shows a state in which an object at infinity is in focus.
  • description will be made mainly with reference to FIG.
  • the zoom lens When the zoom lens is mounted on the image pickup apparatus, it is preferable to include various filters and / or a cover glass for protection according to the specifications of the image pickup apparatus.
  • FIG. An example in which the optical member PP having parallel surfaces is disposed between the lens system and the image plane Sim is shown.
  • the position of the optical member PP is not limited to that shown in FIG. 1, and a configuration in which the optical member PP is omitted is also possible.
  • the zoom lens according to the present embodiment includes, in order from the object side along the optical axis Z, a first lens group G1 having a positive refractive power that is fixed with respect to the image plane Sim at the time of zooming, A plurality of moving lens groups that move while changing the distance between adjacent groups in the optical axis direction, and a final lens group Ge having a positive refractive power that is fixed with respect to the image plane Sim at the time of zooming And essentially consists of
  • the zoom lens of the example shown in FIG. 1 substantially includes a first lens group G1, a second lens group G2, a third lens group G3, and a fourth lens group G4 in order from the object side along the optical axis Z. .
  • the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane Sim, and the second lens group G2 and the third lens group G3 change the mutual distance in the optical axis direction.
  • each of the second lens group G2 and the third lens group G3 corresponds to a moving lens group
  • the fourth lens group G4 corresponds to a final lens group Ge.
  • an arrow schematically showing the moving direction of each lens group when zooming from the wide-angle end to the telephoto end is written below the second lens group G2 and the third lens group G3.
  • the first lens group G1 is composed of a total of eight lenses, a first negative lens L11, a second negative lens L12, and lenses L13 to L18 in order from the object side.
  • G2 includes four lenses L21 to L24 in order from the object side, and the third lens group G3 includes two lenses L31 to L32 in order from the object side.
  • G4 includes nine lenses L41 to L49 in order from the object side.
  • the number of lenses constituting each lens group is not necessarily limited to the example shown in FIG.
  • FIG. 1 shows an example in which the aperture stop St is arranged between the third lens group G3 and the fourth lens group G4, the aperture stop St can also be arranged at another position.
  • the aperture stop St shown in FIG. 1 does not necessarily indicate the size and / or shape, but indicates the position on the optical axis Z.
  • the zoom lens according to the present embodiment when the first lens group G1 closest to the object side is a positive lens group, the overall length of the lens system can be shortened, which is advantageous for downsizing.
  • the final lens group Ge closest to the image side a positive lens group, it is possible to suppress an increase in an incident angle at which a principal ray of off-axis rays enters the image plane Sim, and shading can be suppressed.
  • the entire length of the lens system can be made unchanged during zooming.
  • At least one moving lens group is configured to have negative refractive power. This can contribute to the realization of a high zoom ratio.
  • the first lens group G1 includes, in order from the object side, a first lens group front group G1a having a negative refractive power that is fixed with respect to the image plane Sim at the time of focusing, and an optical axis direction at the time of focusing.
  • the first lens group G1b having positive refractive power that moves to the first lens group and the first lens group having positive refractive power that changes the distance in the optical axis direction between the first lens group middle group G1b and the first lens group G1b during focusing. It consists essentially of the rear group G1c. With such a configuration, it becomes easy to suppress a change in the angle of view due to focusing.
  • a double-headed arrow below the first lens group middle group G1b in FIG. 1 indicates that the first lens group middle group G1b moves in the optical axis direction during focusing.
  • the first lens group rear group G1c may be fixed with respect to the image plane Sim at the time of focusing.
  • the lens group that moves at the time of focusing is the first lens group. Since only the group G1b in the group can be used and the focusing mechanism can be simplified, the increase in size of the apparatus can be suppressed.
  • the first lens group rear group G1c may move in the optical axis direction along a locus different from that of the first lens group middle group G1b at the time of focusing, and in this case, at the time of focusing. Aberration variation can be suppressed.
  • the first lens group front group G1a is a first negative lens L11 which is a negative meniscus lens having a concave surface directed toward the image side, and a negative lens having a concave surface directed toward the object side.
  • the most image-side lens in the first lens group front group G1a is preferably a positive meniscus lens having a concave surface facing the image side.
  • the higher order means the fifth or higher order, and this is the same in the following description of this specification.
  • the first lens group front group G1a is composed of, in order from the object side, three lenses including a first negative lens L11, a second negative lens L12, and a positive meniscus lens. All the lenses may be configured as a single lens that is not cemented. In this case, it is possible to obtain a negative refractive power necessary for widening the angle while suppressing the generation of astigmatism while reducing the size.
  • This zoom lens is configured to satisfy all of the following conditional expressions (1) to (3) regarding the first negative lens L11 and the second negative lens L12.
  • spherical aberration and chromatic aberration can be satisfactorily corrected, and aberrations of the first lens group middle group G1b and the first lens group rear group G1c are reduced by reducing aberrations generated by the first lens group front group G1a. Therefore, the number of lenses in the first lens group middle group G1b and the first lens group rear group G1c can be reduced, and the size and weight can be reduced.
  • the axial marginal ray is shielded by using a member other than the aperture stop on the telephoto side so as not to cause large axial chromatic aberration on the telephoto side.
  • the F number becomes large.
  • the zoom lens of the present embodiment spherical aberration and chromatic aberration can be satisfactorily corrected, so that the inconvenience can be prevented.
  • DD12 Distance on the optical axis between the first negative lens and the second negative lens f1a: Focal length ⁇ n2 of the front group of the first lens group: Abbe number ⁇ gFn2 of d-line reference of the second negative lens: g-line of the second negative lens And partial dispersion ratio between F line
  • conditional expression (1) By making it not below the lower limit of conditional expression (1), it is possible to prevent the spherical aberration at the telephoto end from becoming an under tendency. If the spherical aberration at the telephoto end tends to be under, if it is attempted to correct with other lens groups, higher-order spherical aberration will occur and correction will be difficult, but it will not be below the lower limit of conditional expression (1). By doing so, such a situation can be prevented. By avoiding exceeding the upper limit of conditional expression (1), it is possible to prevent the spherical aberration at the telephoto end from becoming excessive.
  • conditional expression (1) If the spherical aberration at the telephoto end tends to be over, correction by other lens groups causes higher-order spherical aberration and becomes difficult to correct, but does not exceed the upper limit of conditional expression (1). By doing so, such a situation can be prevented.
  • conditional expression (1-1) it is preferable that the following conditional expression (1-1) is satisfied. ⁇ 0.4 ⁇ DD12 / f1a ⁇ 0.25 (1-1)
  • conditional expression (2) By avoiding the lower limit of conditional expression (2) from being exceeded, it is possible to prevent overcorrection of lateral chromatic aberration on the wide-angle side and overcorrection of axial chromatic aberration on the telephoto side. By not exceeding the upper limit of conditional expression (2), it is possible to prevent insufficient correction of lateral chromatic aberration on the wide-angle side and insufficient correction of axial chromatic aberration on the telephoto side. In order to further enhance the effect relating to the conditional expression (2), it is preferable that the following conditional expression (2-1) is satisfied. 56 ⁇ n2 ⁇ 65 (2-1)
  • conditional expression (2) and not falling below the lower limit of conditional expression (3) By satisfying conditional expression (2) and not exceeding the upper limit of conditional expression (3), it is possible to prevent overcorrection of the secondary spectrum.
  • the first lens group rear group G1c includes a cemented lens in which a negative lens and a positive lens are cemented in order from the object side, and a positive lens in order from the object side. In this case, it becomes easy to correct the chromatic aberration of the first lens group G1 and the spherical aberration on the telephoto side.
  • the first lens group rear group G1c is configured to include a cemented lens in which a negative lens and a positive lens are cemented in order from the object side and a positive lens in order from the object side, the size can be reduced. The correction of the chromatic aberration of the first lens group G1 and the spherical aberration on the telephoto side can be facilitated.
  • the zoom lens preferably satisfies at least one of the following conditional expressions (4) to (7), or any combination thereof.
  • DDG1 / ft ⁇ 1 (6) 1 ⁇ (R1 + R2) / (R1-R2) ⁇ 3 (7)
  • DDG1 Distance on the optical axis from the lens surface closest to the object side of the first lens group to the lens surface closest to the image side of the first lens group in a state of focusing on the object at infinity
  • DDrp of the first lens group in the state Distance ft on the optical axis from the most image-side lens surface of the first lens group to the image-side principal point of the first lens group in the state of focusing on an object at infinity:
  • conditional expression (4) By avoiding being less than or equal to the lower limit of conditional expression (4), an air space for focusing can be ensured, and the distance to the subject on the closest distance side that can be focused can be shortened.
  • the lens thickness of the first lens group G1 is reduced.
  • the increase in the lens diameter and the increase in the lens thickness can prevent an increase in the lens diameter and the weight of the first lens group G1, and an increase in the number of lenses in the first lens group G1 can be suppressed. It will be advantageous.
  • conditional expression (4) by preventing the conditional expression (4) from exceeding the upper limit, it is possible to prevent the first lens group G1 from increasing in size, particularly the first lens group rear group G1c from increasing in size. In order to further enhance the effect relating to the conditional expression (4), it is more preferable to satisfy the following conditional expression (4-1). 1.2 ⁇ DDG1 / f1 ⁇ 1.5 (4-1)
  • the distance from the most image-side lens surface of the first lens group G1 to the image-side principal point position of the first lens group G1 will not be too short. Therefore, a movable region of the moving lens group can be secured, and high magnification can be easily achieved.
  • the refractive power of the first lens group G1 can be secured, and the increase in the diameter of the lens of the first lens group G1 can be prevented, A reduction in size and weight can be achieved.
  • conditional expression (5) By making sure that the upper limit of conditional expression (5) is not exceeded, the distance from the most image-side lens surface of the first lens group G1 to the image-side principal point position of the first lens group G1 does not become too long. Even when the aperture diameter of the aperture stop is constant over the entire zoom range, it is possible to prevent the on-axis marginal rays from being blocked at locations other than the aperture stop on the telephoto side. Or by making it not become more than the upper limit of conditional expression (5), the diameter increase of the lens of the 1st lens group G1 can be prevented, and size reduction and weight reduction can be achieved. In order to further enhance the effect relating to the conditional expression (5), it is more preferable to satisfy the following conditional expression (5-1). 0.4 ⁇ DDrp / f1 ⁇ 0.58 (5-1)
  • conditional expression (6-1) By avoiding exceeding the upper limit of conditional expression (6), it is possible to prevent the length of the first lens group G1 in the optical axis direction from being increased, and thus preventing the first lens group G1 from becoming large. In addition, the focal length on the telephoto side can be increased. Furthermore, it is more preferable that the following conditional expression (6-1) is satisfied. By avoiding the upper limit of conditional expression (6-1) from being exceeded, the effect related to conditional expression (6) can be further enhanced. By avoiding being less than or equal to the lower limit of conditional expression (6-1), it is possible to secure an air space for focusing and to prevent an increase in the distance to the shortest subject that can be focused. it can. 0.5 ⁇ DDG1 / ft ⁇ 0.9 (6-1)
  • conditional expression (7) By avoiding being less than the lower limit of conditional expression (7), it is possible to prevent the spherical aberration from becoming excessive. If the spherical aberration tends to be over, correction by another lens group causes higher-order spherical aberration and becomes difficult to correct, but it should not be less than the lower limit of conditional expression (7). Therefore, this situation can be prevented. By preventing the upper limit of conditional expression (7) from being exceeded, it is possible to prevent the spherical aberration from becoming an under tendency. If the spherical aberration tends to be under, high-order spherical aberration occurs when correction is attempted by another lens group, but it is difficult to correct it, but it should not be less than the lower limit of conditional expression (7).
  • conditional expression (7) it is more preferable to satisfy the following conditional expression (7-1). 1.1 ⁇ (R1 + R2) / (R1-R2) ⁇ 2.5 (7-1)
  • the first lens unit front group G1a has one or more positive lenses and satisfy the following conditional expression (8). 15 ⁇ p ⁇ 30 (8) However, ⁇ p: d-line reference Abbe number of the most image-side positive lens in the first lens group front group
  • conditional expression (8) By avoiding being less than the lower limit of conditional expression (8), it is possible to prevent insufficient correction of lateral chromatic aberration on the wide-angle side and insufficient correction of axial chromatic aberration on the telephoto side. By not exceeding the upper limit of conditional expression (8), it is possible to prevent overcorrection of lateral chromatic aberration on the wide-angle side and overcorrection of axial chromatic aberration on the telephoto side. In order to further enhance the effect relating to the conditional expression (8), it is more preferable to satisfy the following conditional expression (8-1). 17 ⁇ p ⁇ 25 (8-1)
  • the moving lens group closest to the image side preferably has a negative refractive power.
  • the moving lens group positioned closer to the object side than the moving lens group closest to the image side can be made longer while suppressing the overall length of the lens system, thereby realizing a reduction in size and a high zoom ratio. Is advantageous.
  • the number of the plurality of moving lens groups arranged between the first lens group G1 and the final lens group Ge is two, and these two moving lens groups have negative refractive power. It is a lens group. In such a case, a zoom lens having a small size and a high zoom ratio can be realized while simplifying the mechanism.
  • the number of the plurality of moving lens groups arranged between the first lens group G1 and the final lens group Ge may be three or more.
  • the plurality of moving lens groups are configured by, in order from the object side, a lens group having a positive refractive power, a lens group having a negative refractive power, and a lens group having a negative refractive power.
  • a zoom lens having a small size and a high zoom ratio can be realized while suppressing occurrence of distortion on the wide angle side and / or spherical aberration on the telephoto side.
  • the plurality of moving lens groups are configured by, in order from the object side, a lens group having a negative refractive power, a lens group having a positive refractive power, and a lens group having a negative refractive power. In this case, aberration correction can be facilitated, and a small zoom lens with a high zoom ratio can be realized.
  • the preferred configurations and / or possible configurations described above can be arbitrarily combined, and are preferably selectively adopted as appropriate according to the items required for the zoom lens.
  • a better optical system can be realized.
  • the high zoom ratio means 5.5 times or more.
  • the lens configuration of the zoom lens of Example 1 is as shown in FIG. 1 and FIG. 2, and the method of illustration thereof is as described above.
  • the zoom lens of Embodiment 1 includes, in order from the object side, a first lens group G1, a second lens group G2, a third lens group G3, an aperture stop St, and a fourth lens group G4. These four lens groups change the distance in the optical axis direction with the adjacent groups during zooming.
  • the second lens group G2 and the third lens group G3 are both moving lens groups having negative refractive power.
  • the first lens group G1 includes, in order from the object side, a first lens group front group G1a that includes three lenses and has negative refractive power, and a first lens group that includes two lenses and has positive refractive power.
  • the lens unit includes a group G1b and a first lens group rear group G1c that includes three lenses and has positive refractive power.
  • Table 1 shows the basic lens data of the zoom lens of Example 1
  • Table 2 shows the specifications and values of the variable surface spacing
  • Table 3 shows the aspheric coefficient.
  • the object-side surface of the most object-side component is the first, and the surface number of the component surface is assigned so as to increase sequentially toward the image side. 1, 2, 3,...)
  • the Ri column indicates the radius of curvature of the i-th surface
  • the Di column indicates the optical axis Z between the i-th surface and the i + 1-th surface. Indicates the surface spacing.
  • the d-line (wavelength 587.6 nm) of the j-th (j 1, 2, 3,...) Component that increases sequentially toward the image side with the most object-side component as the first. )
  • the ⁇ dj column indicates the d-line reference Abbe number of the j-th component
  • the ⁇ gFj column indicates the partial dispersion ratio between the g-line and the F-line of the j-th component. .
  • Table 1 also includes the aperture stop St and the optical member PP.
  • the surface number and the phrase (St) are described in the surface number column of the surface corresponding to the aperture stop St.
  • the value in the lowermost column of Di is the distance between the most image side surface in the table and the image surface Sim.
  • the variable surface interval that changes during zooming is indicated by the symbol DD [], and the surface number on the object side of this interval is given in [] and entered in the Di column.
  • Table 2 shows the zoom ratio Zr, the focal length f of the entire system, the back focus Bf at the air equivalent distance, the F number FNo.
  • the maximum total field angle 2 ⁇ and the value of the variable surface interval are shown on a d-line basis. (°) in the column of 2 ⁇ means that the unit is degree.
  • the values of the wide-angle end state, the intermediate focal length state, and the telephoto end state are shown in columns labeled WIDE, MIDDLE, and TELE, respectively.
  • the values in Tables 1 and 2 are for a state in which an object at infinity is in focus.
  • Table 1 the surface number of the aspheric surface is marked with *, and the numerical value of the paraxial curvature radius is described in the column of curvature radius of the aspheric surface.
  • Table 3 shows the aspheric coefficients of the aspheric surface of Example 1.
  • the numerical value “E ⁇ n” (n: integer) of the aspheric coefficient in Table 3 means “ ⁇ 10 ⁇ n ”.
  • Zd Depth of aspheric surface (length of a perpendicular line drawn from a point on the aspherical surface at height h to a plane perpendicular to the optical axis where the aspherical vertex contacts)
  • h Height (in the plane perpendicular to the optical axis in contact with the aspherical vertex, the length of the perpendicular line drawn from the point on the aspherical surface to the optical axis)
  • C Paraxial curvature KA
  • Am Aspheric coefficient
  • FIG. 8 shows aberration diagrams in a state where the zoom lens of Example 1 is focused on an object at infinity.
  • spherical aberration, astigmatism, distortion (distortion), and chromatic aberration of magnification are shown.
  • the wide-angle end state is shown in the upper stage labeled WIDE
  • the intermediate focal length state is shown in the middle stage labeled MIDDLE
  • the telephoto end state is shown in the lower stage labeled TELE.
  • the aberrations relating to the d-line are shown as a black solid line and a long line, respectively. Indicated by a dashed line, a dashed line, and a gray solid line.
  • the aberration related to the d-line in the sagittal direction is indicated by a solid line
  • the aberration related to the d-line in the tangential direction is indicated by a short broken line.
  • the aberration regarding the d-line is shown by a solid line.
  • aberrations relating to the C-line, F-line, and g-line are indicated by a long broken line, an alternate long and short dash line, and a gray solid line, respectively.
  • FNo. Means F number, and ⁇ in other aberration diagrams means half angle of view.
  • Example 2 A sectional view of the zoom lens of Example 2 is shown in FIG.
  • the zoom lens of Example 2 includes, in order from the object side, a first lens group G1, a second lens group G2, a third lens group G3, an aperture stop St, and a fourth lens group G4.
  • the first lens group G1 includes, in order from the object side, a first lens group front group G1a composed of three lenses, a first lens group middle group G1b composed of two lenses, and a first lens composed of three lenses. It consists of a lens group rear group G1c.
  • the sign of the refractive power of each lens group, the lens group that moves upon zooming, and the lens group that moves upon focusing are the same as those in the first embodiment.
  • Table 4 shows the basic lens data of the zoom lens of Example 2
  • Table 5 shows the specifications and values of the distance between the variable surfaces
  • Table 6 shows the aspheric coefficients
  • FIG. 9 shows.
  • Example 3 A cross-sectional view of the zoom lens of Example 3 is shown in FIG.
  • the zoom lens according to the third exemplary embodiment includes, in order from the object side, the first lens group G1, the second lens group G2, the third lens group G3, the fourth lens group G4, the aperture stop St, and the fifth lens group. It consists of G5. These five lens groups change the distance in the optical axis direction with the adjacent groups during zooming.
  • the second lens group G2 has a positive refractive power
  • the third lens group G3 has a negative refractive power
  • the fourth lens group G4 has a negative refractive power.
  • the three lens groups of the second lens group G2 to the fourth lens group G4 are moving lens groups.
  • the first lens group G1 includes, in order from the object side, a first lens group front group G1a composed of three lenses, a first lens group middle group G1b composed of two lenses, and a first lens composed of three lenses. It consists of a lens group rear group G1c.
  • the signs of the refractive powers of the three lens groups constituting the first lens group G1 and the lens group that moves during focusing are the same as those in the first embodiment.
  • Table 7 shows the basic lens data of the zoom lens of Example 3
  • Table 8 shows the values of the specifications and the distance between the variable surfaces
  • FIG. 10 shows aberration diagrams in a state in which the object is focused on an object at infinity.
  • Example 4 A cross-sectional view of the zoom lens of Example 4 is shown in FIG.
  • the zoom lens of Example 4 includes, in order from the object side, a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, an aperture stop St, and a fifth lens group. It consists of G5.
  • the first lens group G1 includes, in order from the object side, a first lens group front group G1a composed of three lenses, a first lens group middle group G1b composed of two lenses, and a first lens composed of three lenses. It consists of a lens group rear group G1c.
  • the sign of the refractive power of each lens group, the lens group that moves upon zooming, and the lens group that moves upon focusing are the same as those in the third embodiment.
  • Table 9 shows the basic lens data of the zoom lens of Example 4
  • Table 10 shows the values of the specifications and the distance between the variable surfaces
  • FIG. 11 shows aberration diagrams in a state where the object is focused on an object at infinity.
  • Example 5 A sectional view of the zoom lens of Example 5 is shown in FIG.
  • the zoom lens according to the fifth exemplary embodiment includes, in order from the object side, the first lens group G1, the second lens group G2, the third lens group G3, the fourth lens group G4, the aperture stop St, and the fifth lens group. It consists of G5. These five lens groups change the distance in the optical axis direction with the adjacent groups during zooming.
  • the second lens group G2 has a negative refractive power
  • the third lens group G3 has a positive refractive power
  • the fourth lens group G4 has a negative refractive power.
  • the three lens groups of the second lens group G2 to the fourth lens group G4 are moving lens groups.
  • the first lens group G1 includes, in order from the object side, a first lens group front group G1a composed of three lenses, a first lens group middle group G1b composed of two lenses, and a first lens composed of three lenses. It consists of a lens group rear group G1c.
  • the signs of the refractive powers of the three lens groups constituting the first lens group G1 and the lens group that moves during focusing are the same as those in the first embodiment.
  • Table 11 shows the basic lens data of the zoom lens of Example 5
  • Table 12 shows the values of the specifications and the distance between the variable surfaces
  • Table 13 shows the aspheric coefficient
  • FIG. 12 shows.
  • Table 14 shows corresponding values of conditional expressions (1) to (8) of the zoom lenses of Examples 1 to 5. The values shown in Table 14 relate to the d line.
  • the zoom lenses of Examples 1 to 5 can be made compact because the number of lenses in the first lens group G1 is limited to a relatively small number of 8, and the zoom ratio is 5 79, which ensures a high zoom ratio, and various aberrations including chromatic aberration are well corrected to achieve high optical performance.
  • FIG. 13 shows a schematic configuration diagram of an imaging apparatus 10 using the zoom lens 1 according to the embodiment of the present invention as an example of the imaging apparatus of the embodiment of the present invention.
  • the imaging device 10 include a movie camera, a broadcast camera, a digital camera, a video camera, and a surveillance camera.
  • the imaging device 10 includes a zoom lens 1, a filter 2 disposed on the image side of the zoom lens 1, and an imaging element 3 disposed on the image side of the filter 2.
  • the first lens group front group G1a, the first lens group middle group G1b, the first lens group rear group G1c, and the second lens group G2 to the fourth lens group G4 included in the zoom lens 1 are schematically shown. It is shown.
  • the imaging device 3 converts an optical image formed by the zoom lens 1 into an electrical signal, and for example, a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) can be used.
  • the image sensor 3 is arranged such that its image plane coincides with the image plane of the zoom lens 1.
  • the imaging device 10 also includes a signal processing unit 5 that performs arithmetic processing on an output signal from the imaging device 3, a display unit 6 that displays an image formed by the signal processing unit 5, and a zoom that controls zooming of the zoom lens 1.
  • a control unit 7 and a focus control unit 8 that controls focusing of the zoom lens 1 are provided.
  • the image pickup apparatus of the present invention is not limited to this, and may be a so-called three-plate type image pickup apparatus having three image pickup elements.
  • the present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made.
  • the radius of curvature, the surface spacing, the refractive index, the Abbe number, the aspherical coefficient, and the like of each lens are not limited to the values shown in the above numerical examples, and can take other values.

Abstract

高ズーム比を確保しつつ、小型に構成可能で、色収差が良好に補正されて高い光学性能を有するズームレンズ、およびこのズームレンズを備えた撮像装置を提供する。ズームレンズは、物体側から順に、変倍の際に固定されている正の第1レンズ群G1と、変倍の際に移動する複数の移動レンズ群と、変倍の際に固定されている正の最終レンズ群Geとからなる。第1レンズ群G1は、物体側から順に、負の第1レンズ群前群G1aと、合焦の際に移動する正の第1レンズ群中群G1bと、正の第1レンズ群後群G1cとからなる。第1レンズ群前群G1aは、最も物体側から順に連続して、像側に凹面を向けた負メニスカスレンズと、物体側に凹面を向けた負レンズとを有する。ズームレンズの構成要素は、所定の条件式を満足する。

Description

ズームレンズおよび撮像装置
 本発明は、映画撮影用カメラ、放送用カメラ、デジタルカメラ、ビデオカメラ、監視用カメラ等に好適なズームレンズ、およびこのズームレンズを備えた撮像装置に関するものである。
 従来、上記分野のカメラに使用可能なレンズ系として4群構成または5群構成のズームレンズが提案されている。映画撮影用カメラおよび放送用カメラでは、変倍によるレンズ系全長の変化および合焦による画角の変化が嫌われるため、変倍の際にズームレンズの最も物体側のレンズ群である第1レンズ群を不動とし、合焦の際に第1レンズ群内のレンズを用いて合焦を行うことが多い。例えば、下記特許文献1および下記特許文献2には、4群構成または5群構成のズームレンズであって、第1レンズ群が物体側から順に、合焦の際に不動の負レンズ群と、合焦の際に移動する正レンズ群と、合焦の際に不動の正レンズ群とから構成されるレンズ系が記載されている。
特開2015-94866号公報 特許第5777225号公報
 元々、上記のように第1レンズ群を用いて合焦を行うレンズ系では、その合焦方法のために第1レンズ群が大型化してしまう傾向がある。ところで、上記分野のカメラにおいては、より高いズーム比を有し、より高解像の画像を取得可能なことが望まれている。高解像の画像を得るためには搭載されるレンズ系の色収差が良好に補正されている必要があるが、そうしようとすると第1レンズ群のレンズ枚数が多くなりやすく、さらに、第1レンズ群の大型化を招いてしまう。第1レンズ群のレンズ枚数が抑えられて小型に構成可能であり、かつ高ズーム比と高性能が実現されたレンズ系が要望されている。
 しかしながら、特許文献1に記載のレンズ系は、第1レンズ群のレンズ枚数が多く小型化が図られていない、あるいはズーム比が不十分である。また、特許文献1に記載のレンズ系は、ズーム全域において開口絞りの開口径を一定とした場合は望遠端での軸上色収差が大きい。そのため、このレンズ系では、大きな軸上色収差を発現させないようにズーム域の一部において開口絞り以外の部材を用いて軸上マージナル光線を遮光しなくてはならないという不都合がある。特許文献2に記載のレンズ系は、近年の要望に応えるためにはさらに高いズーム比を有することが望まれる。
 本発明は、上記事情に鑑みなされたものであり、高ズーム比を確保しつつ、小型に構成可能であり、色収差が良好に補正されて高い光学性能を有するズームレンズ、およびこのズームレンズを備えた撮像装置を提供することを目的とする。
 本発明のズームレンズは、物体側から順に、変倍の際に像面に対して固定されている正の屈折力を有する第1レンズ群と、変倍の際に隣り合う群との光軸方向の間隔を変化させて移動する複数の移動レンズ群と、変倍の際に像面に対して固定されている正の屈折力を有する最終レンズ群とを備え、複数の移動レンズ群において、少なくとも1つの移動レンズ群は負の屈折力を有し、第1レンズ群は、物体側から順に、合焦の際に像面に対して固定されている負の屈折力を有する第1レンズ群前群と、合焦の際に光軸方向に移動する正の屈折力を有する第1レンズ群中群と、合焦の際に第1レンズ群中群との光軸方向の間隔が変化する正の屈折力を有する第1レンズ群後群とを備え、第1レンズ群前群は、最も物体側から順に連続して、像側に凹面を向けた負メニスカスレンズである第1負レンズと、物体側に凹面を向けた負レンズである第2負レンズとを有し、下記条件式(1)~(3)全てを満足することを特徴とする。
  -0.5<DD12/f1a<-0.2  (1)
  50<νn2<68  (2)
  0.634<θgFn2+0.001625×νn2<0.675  (3)
ただし、
DD12:第1負レンズと第2負レンズの光軸上の間隔
f1a:第1レンズ群前群の焦点距離
νn2:第2負レンズのd線基準のアッベ数
θgFn2:第2負レンズのg線とF線間の部分分散比
 本発明のズームレンズにおいては、下記条件式(4)~(7)、(1-1)~(7-1)のうちの少なくとも1つを満足することが好ましい。
  1<DDG1/f1<1.8  (4)
  0.3<DDrp/f1<0.63  (5)
  DDG1/ft<1  (6)
  1<(R1+R2)/(R1-R2)<3  (7)
  -0.4<DD12/f1a<-0.25  (1-1)
  56<νn2<65  (2-1)
  0.635<θgFn2+0.001625×νn2<0.665  (3-1)
  1.2<DDG1/f1<1.5  (4-1)
  0.4<DDrp/f1<0.58  (5-1)
  0.5<DDG1/ft<0.9  (6-1)
  1.1<(R1+R2)/(R1-R2)<2.5  (7-1)
ただし、
DDG1:無限遠物体に合焦した状態において第1レンズ群の最も物体側のレンズ面から第1レンズ群の最も像側のレンズ面までの光軸上の距離
f1:無限遠物体に合焦した状態において第1レンズ群の焦点距離
DDrp:無限遠物体に合焦した状態において第1レンズ群の最も像側のレンズ面から第1レンズ群の像側主点までの光軸上の距離
ft:無限遠物体に合焦した状態において望遠端での全系の焦点距離
R1:第1負レンズの物体側の面の曲率半径
R2:第1負レンズの像側の面の曲率半径
DD12:第1負レンズと第2負レンズの光軸上の間隔
f1a:第1レンズ群前群の焦点距離
νn2:第2負レンズのd線基準のアッベ数
θgFn2:第2負レンズのg線とF線間の部分分散比
 本発明のズームレンズにおいては、第1レンズ群前群の最も像側のレンズは、像側に凹面を向けた正メニスカスレンズであることが好ましい。
 本発明のズームレンズにおいては、第1レンズ群前群は1枚以上の正レンズを有し、下記条件式(8)を満足することが好ましい。
  15<νp<30  (8)
ただし、νp:第1レンズ群前群の最も像側の正レンズのd線基準のアッベ数
 本発明のズームレンズにおいては、第1レンズ群前群は、第1負レンズと、第2負レンズと、正メニスカスレンズとから構成される3枚のレンズを備え、これら3枚のレンズは全て単レンズであることが好ましい。
 本発明のズームレンズにおいては、複数の移動レンズ群において、最も像側の移動レンズ群は負の屈折力を有することが好ましい。
 本発明のズームレンズにおいては、上記の複数の移動レンズ群は、負の屈折力を有するレンズ群と、負の屈折力を有するレンズ群とを備える構成としてもよく、あるいは、上記の複数の移動レンズ群は、物体側から順に、正の屈折力を有するレンズ群と、負の屈折力を有するレンズ群と、負の屈折力を有するレンズ群とを備える構成としてもよく、あるいは、上記の複数の移動レンズ群は、物体側から順に、負の屈折力を有するレンズ群と、正の屈折力を有するレンズ群と、負の屈折力を有するレンズ群とを備える構成としてもよい。
 本発明の撮像装置は、本発明のズームレンズを備えたものである。
 なお、上記の「~から実質的になり」および「~から実質的になる」とは、構成要素として挙げたもの以外に、実質的にパワーを有さないレンズ、絞りおよび/またはカバーガラス等のレンズ以外の光学要素、レンズフランジ、レンズバレル、および/または手振れ補正機構等の機構部分等を含んでもよいことを意図するものである。
 なお、上記の「~レンズ群」は、必ずしも複数のレンズから構成されるものだけでなく、1枚のレンズのみで構成されるものも含まれる。上記の「正の屈折力を有する~レンズ群」および「負の屈折力を有する~レンズ群」は、対応するレンズ群全体としての屈折力の符号をそれぞれ表すものである。上記のレンズ群の屈折力の符号、レンズの屈折力の符号、レンズの面形状、およびレンズの面の曲率半径は、非球面が含まれているものは近軸領域で考えることとする。
 なお、上記の「負メニスカスレンズ」は負の屈折力を有するメニスカス形状のレンズである。上記の「DDrp」の符号は、第1レンズ群の像側主点が第1レンズ群の最も像側のレンズ面より像側にある場合を正とし、物体側にある場合を負とする。上記条件式は全て断りがない限り、d線(波長587.6nm、nm:ナノメートル)に関するものである。
 なお、あるレンズのg線とF線間の部分分散比θgFとは、g線、F線、C線におけるそのレンズの屈折率をそれぞれNg、NF、NCとしたとき、θgF=(Ng-NF)/(NF-NC)によって定義される。
 本発明によれば、物体側から順に、変倍の際に固定されている正の第1レンズ群と、変倍の際に移動する複数の移動レンズ群と、変倍の際に固定されている正の最終レンズ群とからなるズームレンズにおいて、1つ以上の移動レンズ群を負レンズ群とし、第1レンズ群の構成を好適に設定し、所定の条件式を満足するよう設定することにより、高ズーム比を確保しつつ、小型に構成可能であり、色収差が良好に補正されて高い光学性能を有するズームレンズ、およびこのズームレンズを備えた撮像装置を提供することができる。
本発明の実施例1のズームレンズの構成を示す断面図である。 図1に示すズームレンズの構成と光束を示す断面図であり、上段が広角端状態のものであり、中段が中間焦点距離状態のものであり、下段が望遠端状態のものである。 図1に示すズームレンズの第1レンズ群の主点位置を示す図である。 本発明の実施例2のズームレンズの構成を示す断面図である。 本発明の実施例3のズームレンズの構成を示す断面図である。 本発明の実施例4のズームレンズの構成を示す断面図である。 本発明の実施例5のズームレンズの構成を示す断面図である。 本発明の実施例1のズームレンズの各収差図であり、上段が広角端状態のものであり、中段が中間焦点距離状態のものであり、下段が望遠端状態のものであり、各状態の収差図はいずれも左から順に、球面収差図、非点収差図、歪曲収差図、倍率色収差図である。 本発明の実施例2のズームレンズの各収差図であり、上段が広角端状態のものであり、中段が中間焦点距離状態のものであり、下段が望遠端状態のものであり、各状態の収差図はいずれも左から順に、球面収差図、非点収差図、歪曲収差図、倍率色収差図である。 本発明の実施例3のズームレンズの各収差図であり、上段が広角端状態のものであり、中段が中間焦点距離状態のものであり、下段が望遠端状態のものであり、各状態の収差図はいずれも左から順に、球面収差図、非点収差図、歪曲収差図、倍率色収差図である。 本発明の実施例4のズームレンズの各収差図であり、上段が広角端状態のものであり、中段が中間焦点距離状態のものであり、下段が望遠端状態のものであり、各状態の収差図はいずれも左から順に、球面収差図、非点収差図、歪曲収差図、倍率色収差図である。 本発明の実施例5のズームレンズの各収差図であり、上段が広角端状態のものであり、中段が中間焦点距離状態のものであり、下段が望遠端状態のものであり、各状態の収差図はいずれも左から順に、球面収差図、非点収差図、歪曲収差図、倍率色収差図である。 本発明の一実施形態に係る撮像装置の概略的な構成図である。
 以下、本発明の実施形態について図面を参照して詳細に説明する。図1に、本発明の一実施形態に係るズームレンズの広角端におけるレンズ構成の断面図を示す。図2に、図1に示すズームレンズのレンズ構成と各光束を示す。図2では、「WIDE」と付した上段に広角端状態を示し、光束として軸上光束waおよび最大画角の光束wbを記入しており、「MIDDLE」と付した中段に中間焦点距離状態を示し、光束として軸上光束maおよび最大画角の光束mbを記入しており、「TELE」と付した下段に望遠端状態を示し、光束として軸上光束taおよび最大画角の光束tbを記入している。なお、図1および図2に示す例は後述の実施例1のズームレンズに対応している。図1および図2では紙面左側が物体側、紙面右側が像側であり、無限遠物体に合焦した状態を示している。以下では主に図1を参照しながら説明する。
 なお、ズームレンズが撮像装置に搭載される際には、撮像装置の仕様に応じた各種フィルタおよび/または保護用のカバーガラスを備えることが好ましく、図1では、これらを想定した入射面と出射面が平行の光学部材PPをレンズ系と像面Simとの間に配置した例を示している。しかし、光学部材PPの位置は図1に示すものに限定されないし、光学部材PPを省略した構成も可能である。
 本実施形態のズームレンズは、光軸Zに沿って物体側から順に、変倍の際に像面Simに対して固定されている正の屈折力を有する第1レンズ群G1と、変倍の際に隣り合う群との光軸方向の間隔を変化させて移動する複数の移動レンズ群と、変倍の際に像面Simに対して固定されている正の屈折力を有する最終レンズ群Geとから実質的になる。
 図1に示す例のズームレンズは、光軸Zに沿って物体側から順に、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3、および第4レンズ群G4から実質的になる。変倍の際に、第1レンズ群G1と第4レンズ群G4は像面Simに対して固定されており、第2レンズ群G2と第3レンズ群G3は光軸方向の相互間隔を変化させて移動する。図1に示す例では、第2レンズ群G2と第3レンズ群G3それぞれが移動レンズ群に対応し、第4レンズ群G4が最終レンズ群Geに対応する。図1では、第2レンズ群G2と第3レンズ群G3それぞれの下に、広角端から望遠端へ変倍する際の各レンズ群の移動方向を模式的に示す矢印を記入している。
 図1に示す例では、第1レンズ群G1は、物体側から順に、第1負レンズL11、第2負レンズL12、およびレンズL13~レンズL18の計8枚のレンズからなり、第2レンズ群G2は、物体側から順に、レンズL21~レンズL24の4枚のレンズからなり、第3レンズ群G3は、物体側から順に、レンズL31~レンズL32の2枚のレンズからなり、第4レンズ群G4は、物体側から順に、レンズL41~レンズL49の9枚のレンズからなる。ただし、本発明のズームレンズにおいては、各レンズ群を構成するレンズの枚数は図1に示す例に必ずしも限定されない。
 なお、図1では第3レンズ群G3と第4レンズ群G4の間に開口絞りStを配置した例を示すが、開口絞りStは別の位置に配置することも可能である。図1に示す開口絞りStは必ずしも大きさおよび/または形状を表すものではなく、光軸Z上の位置を示すものである。
 本実施形態のズームレンズでは、最も物体側の第1レンズ群G1を正レンズ群とすることにより、レンズ系全長の短縮が可能となり、小型化に有利となる。最も像側の最終レンズ群Geを正レンズ群とすることにより、軸外光線の主光線が像面Simへ入射する入射角が大きくなるのを抑制することができ、シェーディングを抑制できる。そして、最も物体側のレンズ群と最も像側のレンズ群が変倍の際に固定されている構成をとることにより、変倍の際にレンズ系全長を不変とすることができる。
 このズームレンズでは、少なくとも1つの移動レンズ群は負の屈折力を有するように構成されている。これにより、高ズーム比の実現に寄与することができる。
 第1レンズ群G1は、物体側から順に、合焦の際に像面Simに対して固定されている負の屈折力を有する第1レンズ群前群G1aと、合焦の際に光軸方向に移動する正の屈折力を有する第1レンズ群中群G1bと、合焦の際に第1レンズ群中群G1bとの光軸方向の間隔が変化する正の屈折力を有する第1レンズ群後群G1cとから実質的になる。このような構成とすることで、合焦による画角の変化を抑えることが容易となる。図1の第1レンズ群中群G1bの下の両矢印は、合焦の際に、第1レンズ群中群G1bが光軸方向に移動することを示している。
 なお、第1レンズ群後群G1cは、合焦の際に、像面Simに対して固定されていてもよく、このようにした場合は、合焦の際に移動するレンズ群は第1レンズ群中群G1bのみとすることができ、合焦機構を簡略化できるため、装置の大型化を抑制できる。あるいは、第1レンズ群後群G1cは、合焦の際に、第1レンズ群中群G1bとは異なる軌跡で光軸方向に移動してもよく、このようにした場合は、合焦の際の収差変動を抑えることができる。
 第1レンズ群前群G1aは、最も物体側から順に連続して、像側に凹面を向けた負メニスカスレンズである第1負レンズL11と、物体側に凹面を向けた負レンズである第2負レンズL12とを有する。この構成により、非点収差の発生を抑えつつ、広角化に必要な負の屈折力を得ることができる。
 第1レンズ群前群G1aの最も像側のレンズは、像側に凹面を向けた正メニスカスレンズとすることが好ましい。このようにした場合は、広角側の非点収差の発生を抑えることができ、また、第1レンズ群前群G1aにより発生する望遠側のオーバー傾向の球面収差を補正することができ、特に高次の球面収差を良好に補正できる。なお、高次とは5次以上を意味し、この点は本明細書の以下の説明においても同様である。
 第1レンズ群前群G1aは、物体側から順に、第1負レンズL11と、第2負レンズL12と、正メニスカスレンズとから構成される3枚のレンズから実質的になり、これら3枚のレンズは全て接合されていない単レンズであるように構成してもよい。このようにした場合は、小型化を図りながら、非点収差の発生を抑えつつ、広角化に必要な負の屈折力を得ることができる。
 このズームレンズは第1負レンズL11と第2負レンズL12に関する下記条件式(1)~(3)全てを満足するように構成されている。この構成により、球面収差および色収差を良好に補正でき、また、第1レンズ群前群G1aにより発生する収差を低減することによって第1レンズ群中群G1bと第1レンズ群後群G1cの収差補正の分担が減り、第1レンズ群中群G1bと第1レンズ群後群G1cのレンズ枚数の削減が可能となり、小型化および軽量化が可能となる。上述した特許文献1に記載のレンズ系では、望遠側の大きな軸上色収差を発現させないように望遠側で開口絞り以外の部材を用いて軸上マージナル光線を遮光しており、そのために望遠側のFナンバーが大きくなってしまうという不都合がある。これに対して、本実施形態のズームレンズによれば、球面収差および色収差を良好に補正できるため、上記不都合の発生を防止することができる。
  -0.5<DD12/f1a<-0.2  (1)
  50<νn2<68  (2)
  0.634<θgFn2+0.001625×νn2<0.675  (3)
ただし、
DD12:第1負レンズと第2負レンズの光軸上の間隔
f1a:第1レンズ群前群の焦点距離
νn2:第2負レンズのd線基準のアッベ数
θgFn2:第2負レンズのg線とF線間の部分分散比
 条件式(1)の下限以下とならないようにすることによって、望遠端の球面収差がアンダー傾向となるのを防ぐことができる。仮に、望遠端の球面収差がアンダー傾向となった場合、他のレンズ群により補正しようとすると高次の球面収差が発生して補正が困難になるが、条件式(1)の下限以下とならないようにすることによって、このような事態も防止可能となる。条件式(1)の上限以上とならないようにすることによって、望遠端の球面収差がオーバー傾向となるのを防ぐことができる。仮に、望遠端の球面収差がオーバー傾向となった場合、他のレンズ群により補正しようとすると高次の球面収差が発生して補正が困難になるが、条件式(1)の上限以上とならないようにすることによって、このような事態も防止可能となる。条件式(1)に関する効果をより高めるために、下記条件式(1-1)を満足することが好ましい。
  -0.4<DD12/f1a<-0.25  (1-1)
 条件式(2)の下限以下とならないようにすることによって、広角側の倍率色収差の補正過剰および望遠側の軸上色収差の補正過剰を防ぐことが可能となる。条件式(2)の上限以上とならないようにすることによって、広角側の倍率色収差の補正不足および望遠側の軸上色収差の補正不足を防ぐことが可能となる。条件式(2)に関する効果をより高めるためには、下記条件式(2-1)を満足することが好ましい。
  56<νn2<65  (2-1)
 条件式(2)を満足し、かつ条件式(3)の下限以下とならないようにすることによって、2次スペクトルの補正不足を防ぐことが可能となる。条件式(2)を満足し、かつ条件式(3)の上限以上とならないようにすることによって、2次スペクトルの補正過剰を防ぐことが可能となる。
 第1レンズ群後群G1cは、物体側から順に連続して、負レンズおよび正レンズが物体側から順に接合された接合レンズと、正レンズとを有することが好ましい。このようにした場合は、第1レンズ群G1の色収差および望遠側の球面収差の補正が容易となる。なお、第1レンズ群後群G1cが、物体側から順に、負レンズおよび正レンズが物体側から順に接合された接合レンズと、正レンズとからなるように構成した場合は、小型化を図りながら、第1レンズ群G1の色収差および望遠側の球面収差の補正を容易にすることができる。
 また、このズームレンズは、下記条件式(4)~(7)の少なくとも1つ、または任意の組合せを満足することが好ましい。
  1<DDG1/f1<1.8  (4)
  0.3<DDrp/f1<0.63  (5)
  DDG1/ft<1  (6)
  1<(R1+R2)/(R1-R2)<3  (7)
ただし、
DDG1:無限遠物体に合焦した状態において第1レンズ群の最も物体側のレンズ面から第1レンズ群の最も像側のレンズ面までの光軸上の距離
f1:無限遠物体に合焦した状態において第1レンズ群の焦点距離
DDrp:無限遠物体に合焦した状態において第1レンズ群の最も像側のレンズ面から第1レンズ群の像側主点までの光軸上の距離
ft:無限遠物体に合焦した状態において望遠端における全系の焦点距離
R1:第1負レンズの物体側の面の曲率半径
R2:第1負レンズの像側の面の曲率半径
 なお、図3に、図1に示すズームレンズの第1レンズ群G1の像側主点P、DDG1、およびDDrpを示す。図3では理解を容易にするために、レンズは第1レンズ群G1のもののみ図示している。
 条件式(4)の下限以下とならないようにすることによって、合焦のための空気間隔を確保することができ、合焦可能な至近距離側の被写体までの距離を短くすることができる。条件式(4)の上限以上とならないようにすることによって、第1レンズ群G1の光軸方向の長さが長くなるのを抑えることができ、これにより、第1レンズ群G1のレンズ厚の増加、およびレンズ厚の増加に伴うレンズの大径化と第1レンズ群G1の重量化を防ぐことができ、また、第1レンズ群G1のレンズ枚数の増加を抑止できるため、コスト的にも有利となる。すなわち、条件式(4)の上限以上とならないようにすることによって、第1レンズ群G1の大型化、特に第1レンズ群後群G1cの大型化を防ぐことができる。条件式(4)に関する効果をより高めるためには、下記条件式(4-1)を満足することがより好ましい。
  1.2<DDG1/f1<1.5  (4-1)
 条件式(5)の下限以下とならないようにすることによって、第1レンズ群G1の最も像側のレンズ面から第1レンズ群G1の像側主点位置までの距離が短くなりすぎないようにすることができ、移動レンズ群の可動領域を確保することができ、高倍率化が容易となる。または、条件式(5)の下限以下とならないようにすることによって、第1レンズ群G1の屈折力を確保することができ、第1レンズ群G1のレンズの大径化を防ぐことができ、小型化および軽量化を図ることができる。条件式(5)の上限以上とならないようにすることで、第1レンズ群G1の最も像側のレンズ面から第1レンズ群G1の像側主点位置までの距離が長くなりすぎないようにすることができ、ズーム全域において開口絞りの開口径を一定とした場合でも、望遠側で開口絞り以外の場所における軸上マージナル光線が遮光されるのを防ぐことができる。または、条件式(5)の上限以上とならないようにすることで、第1レンズ群G1のレンズの大径化を防ぐことができ、小型化および軽量化を図ることができる。条件式(5)に関する効果をより高めるためには、下記条件式(5-1)を満足することがより好ましい。
  0.4<DDrp/f1<0.58  (5-1)
 条件式(6)の上限以上とならないようにすることによって、第1レンズ群G1の光軸方向の長さが長くなるのを抑えることができるため第1レンズ群G1の大型化を防ぐことができ、また、望遠側の焦点距離を長くすることができる。さらに下記条件式(6-1)を満足することがより好ましい。条件式(6-1)の上限以上とならないようにすることによって、条件式(6)に関する効果をより高めることが可能となる。条件式(6-1)の下限以下とならないようにすることによって、合焦のための空気間隔を確保することができ、合焦可能な最短の被写体までの距離が長くなるのを防ぐことができる。
  0.5<DDG1/ft<0.9  (6-1)
 条件式(7)の下限以下とならないようにすることによって、球面収差がオーバー傾向となるのを防ぐことができる。仮に、球面収差がオーバー傾向となった場合、他のレンズ群により補正しようとすると高次の球面収差が発生して補正が困難になるが、条件式(7)の下限以下とならないようにすることによって、このような事態も防止可能となる。条件式(7)の上限以上とならないようにすることによって、球面収差がアンダー傾向となるのを防ぐことができる。仮に、球面収差がアンダー傾向となった場合、他のレンズ群により補正しようとすると高次の球面収差が発生して補正が困難になるが、条件式(7)の下限以下とならないようにすることによって、このような事態も防止可能となる。条件式(7)に関する効果をより高めるためには、下記条件式(7-1)を満足することがより好ましい。
  1.1<(R1+R2)/(R1-R2)<2.5  (7-1)
 また、このズームレンズでは、第1レンズ群前群G1aが1枚以上の正レンズを有し、下記条件式(8)を満足することが好ましい。
  15<νp<30  (8)
ただし、
νp:第1レンズ群前群の最も像側の正レンズのd線基準のアッベ数
 条件式(8)の下限以下とならないようにすることによって、広角側の倍率色収差の補正不足および望遠側の軸上色収差の補正不足を防ぐことが可能となる。条件式(8)の上限以上とならないようにすることによって、広角側の倍率色収差の補正過剰および望遠側の軸上色収差の補正過剰を防ぐことが可能となる。条件式(8)に関する効果をより高めるためには、下記条件式(8-1)を満足することがより好ましい。
  17<νp<25  (8-1)
 次に、複数の移動レンズ群について説明する。この複数の移動レンズ群は、最も像側の移動レンズ群は負の屈折力を有することが好ましい。このようにした場合は、レンズ系全長を抑えつつ、最も像側の移動レンズ群より物体側に位置する移動レンズ群の移動ストロークをより長くとることができるため、小型化および高ズーム比の実現に有利となる。
 図1に示す例では、第1レンズ群G1と最終レンズ群Geとの間に配置される複数の移動レンズ群の数は2つであり、これら2つの移動レンズ群とも負の屈折力を有するレンズ群である。このようにした場合は、機構を簡素化しつつ、小型かつ高ズーム比のズームレンズが実現可能となる。なお、第1レンズ群G1と最終レンズ群Geとの間に配置される複数の移動レンズ群の数は3つ以上としてもよい。例えば、上記複数の移動レンズ群は、物体側から順に、正の屈折力を有するレンズ群と、負の屈折力を有するレンズ群と、負の屈折力を有するレンズ群とから実質的になる構成としてもよく、このようにした場合は、広角側の歪曲収差および/または望遠側の球面収差の発生を抑制しつつ、小型かつ高ズーム比のズームレンズが実現可能となる。あるいは、上記複数の移動レンズ群は、物体側から順に、負の屈折力を有するレンズ群と、正の屈折力を有するレンズ群と、負の屈折力を有するレンズ群とから実質的になる構成としてもよく、このようにした場合は、収差補正が容易になるとともに、小型で高ズーム比のズームレンズが実現可能となる。
 なお、上述した好ましい構成および/または可能な構成は、任意の組合せが可能であり、ズームレンズに要望される事項に応じて適宜選択的に採用されることが好ましい。上記構成を適宜採用することによって、より良好な光学系を実現することができる。本実施形態によれば、高ズーム比を確保しつつ、小型化が達成され、色収差が良好に補正されて高い光学性能を有するズームレンズを実現することが可能である。なお、ここでいう高ズーム比とは5.5倍以上を意味する。
 次に、本発明のズームレンズの数値実施例について説明する。
[実施例1]
 実施例1のズームレンズのレンズ構成は図1、図2に示したものであり、その図示方法は上述したとおりであるので、ここでは重複説明を一部省略する。実施例1のズームレンズは、物体側から順に、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3と、開口絞りStと、第4レンズ群G4とからなる。これら4つのレンズ群は変倍の際に隣り合う群との光軸方向の間隔が変化する。第2レンズ群G2と第3レンズ群G3はいずれも負の屈折力を有する移動レンズ群である。第1レンズ群G1は、物体側から順に、3枚のレンズからなり負の屈折力を有する第1レンズ群前群G1aと、2枚のレンズからなり正の屈折力を有する第1レンズ群中群G1bと、3枚のレンズからなり正の屈折力を有する第1レンズ群後群G1cとからなる。合焦の際に、第1レンズ群前群G1aは像面Simに対して固定されており、第1レンズ群中群G1bは移動し、第1レンズ群中群G1bと第1レンズ群後群G1cとの光軸方向の間隔が変化する。
 実施例1のズームレンズの基本レンズデータを表1に、諸元と可変面間隔の値を表2に、非球面係数を表3に示す。表1のSiの欄には最も物体側の構成要素の物体側の面を1番目として像側に向かうに従い順次増加するように構成要素の面に面番号を付した場合のi番目(i=1、2、3、…)の面番号を示し、Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示す。表1のNdjの欄には最も物体側の構成要素を1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の構成要素のd線(波長587.6nm)に関する屈折率を示し、νdjの欄にはj番目の構成要素のd線基準のアッベ数を示し、θgFjの欄にはj番目の構成要素のg線とF線間の部分分散比を示す。
 ここで、曲率半径の符号は、物体側に凸面を向けた面形状のものを正とし、像側に凸面を向けた面形状のものを負としている。表1には開口絞りStおよび光学部材PPも含めて示している。表1では、開口絞りStに相当する面の面番号の欄には面番号と(St)という語句を記載している。Diの最下欄の値は表中の最も像側の面と像面Simとの間隔である。表1では変倍の際に変化する可変面間隔については、DD[ ]という記号を用い、[ ]の中にこの間隔の物体側の面番号を付してDiの欄に記入している。
 表2に、ズーム比Zr、全系の焦点距離f、空気換算距離でのバックフォーカスBf、FナンバーFNo.、最大全画角2ω、および可変面間隔の値をd線基準で示す。2ωの欄の(°)は単位が度であることを意味する。表2では、広角端状態、中間焦点距離状態、および望遠端状態の各値をそれぞれWIDE、MIDDLE、およびTELEと表記した欄に示している。表1と表2の値は無限遠物体に合焦した状態のものである。
 表1では、非球面の面番号には*印を付しており、非球面の曲率半径の欄には近軸の曲率半径の数値を記載している。表3に、実施例1の非球面の非球面係数を示す。表3の非球面係数の数値の「E-n」(n:整数)は「×10-n」を意味する。非球面係数は、下式で表される非球面式における各係数KA、Am(m=3、4、5、…20)の値である。
Figure JPOXMLDOC01-appb-M000001
ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸に垂直な平面に下ろした垂線の長さ)
h:高さ(非球面頂点が接する光軸に垂直な平面において、非球面上の点から光軸に下ろした垂線の長さ)
C:近軸曲率
KA、Am:非球面係数
 各表のデータにおいて、角度の単位としては度を用い、長さの単位としてはミリメートル(mm)を用いているが、光学系は比例拡大または比例縮小しても使用可能なため他の適当な単位を用いることもできる。また、以下に示す各表では所定の桁でまるめた数値を記載している。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 図8に実施例1のズームレンズの無限遠物体に合焦した状態において各収差図を示す。図8では左から順に、球面収差、非点収差、歪曲収差(ディストーション)、および倍率色収差(倍率の色収差)を示す。図8では、WIDEと付した上段に広角端状態のものを示し、MIDDLEと付した中段に中間焦点距離状態のものを示し、TELEと付した下段に望遠端状態のものを示す。球面収差図では、d線(波長587.6nm)、C線(波長656.3nm)、F線(波長486.1nm)、およびg線(波長435.8nm)に関する収差をそれぞれ黒の実線、長破線、一点鎖線、および灰色の実線で示す。非点収差図では、サジタル方向のd線に関する収差を実線で示し、タンジェンシャル方向のd線に関する収差を短破線で示す。歪曲収差図ではd線に関する収差を実線で示す。倍率色収差図では、C線、F線、およびg線に関する収差をそれぞれ長破線、一点鎖線、および灰色の実線で示す。球面収差図のFNo.はFナンバーを意味し、その他の収差図のωは半画角を意味する。
 上記の実施例1の説明で述べた各データの記号、意味、および記載方法は、特に断りがない限り以下の実施例のものについても同様であるため、以下では重複説明を省略する。
 [実施例2]
 実施例2のズームレンズの断面図を図4に示す。実施例2のズームレンズは、物体側から順に、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3と、開口絞りStと、第4レンズ群G4とからなる。第1レンズ群G1は、物体側から順に、3枚のレンズからなる第1レンズ群前群G1aと、2枚のレンズからなる第1レンズ群中群G1bと、3枚のレンズからなる第1レンズ群後群G1cとからなる。各レンズ群の屈折力の符号、変倍の際に移動するレンズ群、および合焦の際に移動するレンズ群は実施例1のものと同様である。
 実施例2のズームレンズの基本レンズデータを表4に、諸元と可変面間隔の値を表5に、非球面係数を表6に、無限遠物体に合焦した状態において各収差図を図9に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 [実施例3]
 実施例3のズームレンズの断面図を図5に示す。実施例3のズームレンズは、物体側から順に、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4と、開口絞りStと、第5レンズ群G5とからなる。これら5つのレンズ群は変倍の際に隣り合う群との光軸方向の間隔が変化する。第2レンズ群G2は正の屈折力を有し、第3レンズ群G3は負の屈折力を有し、第4レンズ群G4は負の屈折力を有する。第2レンズ群G2~第4レンズ群G4の3つのレンズ群はそれぞれ移動レンズ群である。第1レンズ群G1は、物体側から順に、3枚のレンズからなる第1レンズ群前群G1aと、2枚のレンズからなる第1レンズ群中群G1bと、3枚のレンズからなる第1レンズ群後群G1cとからなる。第1レンズ群G1を構成する上記3つのレンズ群の屈折力の符号、および合焦の際に移動するレンズ群は実施例1のものと同様である。
 実施例3のズームレンズの基本レンズデータを表7に、諸元と可変面間隔の値を表8に、無限遠物体に合焦した状態において各収差図を図10に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 [実施例4]
 実施例4のズームレンズの断面図を図6に示す。実施例4のズームレンズは、物体側から順に、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4と、開口絞りStと、第5レンズ群G5とからなる。第1レンズ群G1は、物体側から順に、3枚のレンズからなる第1レンズ群前群G1aと、2枚のレンズからなる第1レンズ群中群G1bと、3枚のレンズからなる第1レンズ群後群G1cとからなる。各レンズ群の屈折力の符号、変倍の際に移動するレンズ群、および合焦の際に移動するレンズ群は実施例3のものと同様である。
 実施例4のズームレンズの基本レンズデータを表9に、諸元と可変面間隔の値を表10に、無限遠物体に合焦した状態において各収差図を図11に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 [実施例5]
 実施例5のズームレンズの断面図を図7に示す。実施例5のズームレンズは、物体側から順に、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4と、開口絞りStと、第5レンズ群G5とからなる。これら5つのレンズ群は変倍の際に隣り合う群との光軸方向の間隔が変化する。第2レンズ群G2は負の屈折力を有し、第3レンズ群G3は正の屈折力を有し、第4レンズ群G4は負の屈折力を有する。第2レンズ群G2~第4レンズ群G4の3つのレンズ群はそれぞれ移動レンズ群である。第1レンズ群G1は、物体側から順に、3枚のレンズからなる第1レンズ群前群G1aと、2枚のレンズからなる第1レンズ群中群G1bと、3枚のレンズからなる第1レンズ群後群G1cとからなる。第1レンズ群G1を構成する上記3つのレンズ群の屈折力の符号、および合焦の際に移動するレンズ群は実施例1のものと同様である。
 実施例5のズームレンズの基本レンズデータを表11に、諸元と可変面間隔の値を表12に、非球面係数を表13に、無限遠物体に合焦した状態において各収差図を図12に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表14に実施例1~5のズームレンズの条件式(1)~(8)の対応値を示す。表14に示す値はd線に関するものである。
Figure JPOXMLDOC01-appb-T000015

 
 以上のデータからわかるように、実施例1~5のズームレンズは、第1レンズ群G1のレンズ枚数が8枚と比較的少ない枚数に抑えられているため小型に構成可能で、ズーム比が5.79であり高ズーム比を確保しており、色収差を含む諸収差が良好に補正されて高い光学性能を実現している。
 次に、本発明の実施形態に係る撮像装置について説明する。図13に、本発明の実施形態の撮像装置の一例として、本発明の実施形態に係るズームレンズ1を用いた撮像装置10の概略構成図を示す。撮像装置10としては、例えば、映画撮影用カメラ、放送用カメラ、デジタルカメラ、ビデオカメラ、または監視用カメラ等を挙げることができる。
 撮像装置10は、ズームレンズ1と、ズームレンズ1の像側に配置されたフィルタ2と、フィルタ2の像側に配置された撮像素子3とを備えている。なお、図13では、ズームレンズ1が備える第1レンズ群前群G1a、第1レンズ群中群G1b、第1レンズ群後群G1c、第2レンズ群G2~第4レンズ群G4を概略的に図示している。撮像素子3はズームレンズ1により形成される光学像を電気信号に変換するものであり、例えば、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)等を用いることができる。撮像素子3は、その撮像面がズームレンズ1の像面に一致するように配置される。
 撮像装置10はまた、撮像素子3からの出力信号を演算処理する信号処理部5と、信号処理部5により形成された像を表示する表示部6と、ズームレンズ1の変倍を制御するズーム制御部7と、ズームレンズ1の合焦を制御するフォーカス制御部8とを備えている。なお、図13では1つの撮像素子3のみ図示しているが、本発明の撮像装置はこれに限定されず、3つの撮像素子を有するいわゆる3板方式の撮像装置であってもよい。
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されず、種々の変形が可能である。例えば、各レンズの曲率半径、面間隔、屈折率、アッベ数、および非球面係数等は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。
  1  ズームレンズ
  2  フィルタ
  3  撮像素子
  5  信号処理部
  6  表示部
  7  ズーム制御部
  8  フォーカス制御部
  10  撮像装置
  G1  第1レンズ群
  G1a  第1レンズ群前群
  G1b  第1レンズ群中群
  G1c  第1レンズ群後群
  G2  第2レンズ群
  G3  第3レンズ群
  G4  第4レンズ群
  G5  第5レンズ群
  Ge  最終レンズ群
  L11  第1負レンズ
  L12  第2負レンズ
  L13~L18、L21~L24、L31~L32、L41~L49  レンズ
  P  像側主点
  PP  光学部材
  Sim  像面
  St  開口絞り
  ma、ta、wa  軸上光束
  mb、tb、wb  最大画角の光束
  Z  光軸

Claims (20)

  1.  物体側から順に、変倍の際に像面に対して固定されている正の屈折力を有する第1レンズ群と、変倍の際に隣り合う群との光軸方向の間隔を変化させて移動する複数の移動レンズ群と、変倍の際に像面に対して固定されている正の屈折力を有する最終レンズ群とを備え、
     前記複数の移動レンズ群において、少なくとも1つの移動レンズ群は負の屈折力を有し、
     前記第1レンズ群は、物体側から順に、合焦の際に像面に対して固定されている負の屈折力を有する第1レンズ群前群と、合焦の際に光軸方向に移動する正の屈折力を有する第1レンズ群中群と、合焦の際に該第1レンズ群中群との光軸方向の間隔が変化する正の屈折力を有する第1レンズ群後群とを備え、
     前記第1レンズ群前群は、最も物体側から順に連続して、像側に凹面を向けた負メニスカスレンズである第1負レンズと、物体側に凹面を向けた負レンズである第2負レンズとを有し、
     下記条件式(1)~(3)全てを満足することを特徴とするズームレンズ。
      -0.5<DD12/f1a<-0.2  (1)
      50<νn2<68  (2)
      0.634<θgFn2+0.001625×νn2<0.675  (3)
    ただし、
    DD12:前記第1負レンズと前記第2負レンズの光軸上の間隔
    f1a:前記第1レンズ群前群の焦点距離
    νn2:前記第2負レンズのd線基準のアッベ数
    θgFn2:前記第2負レンズのg線とF線間の部分分散比
  2.  下記条件式(4)を満足する請求項1記載のズームレンズ。
      1<DDG1/f1<1.8  (4)
    ただし、
    DDG1:無限遠物体に合焦した状態において前記第1レンズ群の最も物体側のレンズ面から前記第1レンズ群の最も像側のレンズ面までの光軸上の距離
    f1:無限遠物体に合焦した状態において前記第1レンズ群の焦点距離
  3.  下記条件式(5)を満足する請求項1または2記載のズームレンズ。
      0.3<DDrp/f1<0.63  (5)
    ただし、
    DDrp:無限遠物体に合焦した状態において前記第1レンズ群の最も像側のレンズ面から前記第1レンズ群の像側主点までの光軸上の距離
    f1:無限遠物体に合焦した状態において前記第1レンズ群の焦点距離
  4.  下記条件式(6)を満足する請求項1から3のいずれか1項記載のズームレンズ。
      DDG1/ft<1  (6)
    ただし、
    DDG1:無限遠物体に合焦した状態において前記第1レンズ群の最も物体側のレンズ面から前記第1レンズ群の最も像側のレンズ面までの光軸上の距離
    ft:無限遠物体に合焦した状態において望遠端における全系の焦点距離
  5.  下記条件式(7)を満足する請求項1から4のいずれか1項記載のズームレンズ。
      1<(R1+R2)/(R1-R2)<3  (7)
    ただし、
    R1:前記第1負レンズの物体側の面の曲率半径
    R2:前記第1負レンズの像側の面の曲率半径
  6.  前記第1レンズ群前群の最も像側のレンズは、像側に凹面を向けた正メニスカスレンズである請求項1から5のいずれか1項記載のズームレンズ。
  7.  前記第1レンズ群前群は1枚以上の正レンズを有し、下記条件式(8)を満足する請求項1から6のいずれか1項記載のズームレンズ。
      15<νp<30  (8)
    ただし、
    νp:前記第1レンズ群前群の最も像側の前記正レンズのd線基準のアッベ数
  8.  前記第1レンズ群前群は、前記第1負レンズと、前記第2負レンズと、正メニスカスレンズとから構成される3枚のレンズを備え、該3枚のレンズは全て単レンズである請求項1から7のいずれか1項記載のズームレンズ。
  9.  前記複数の移動レンズ群において、最も像側の移動レンズ群は負の屈折力を有する請求項1から8のいずれか1項記載のズームレンズ。
  10.  下記条件式(1-1)を満足する請求項1から9のいずれか1項記載のズームレンズ。
      -0.4<DD12/f1a<-0.25  (1-1)
  11.  下記条件式(2-1)を満足する請求項1から10のいずれか1項記載のズームレンズ。
      56<νn2<65  (2-1)
  12.  下記条件式(3-1)を満足する請求項1から11のいずれか1項記載のズームレンズ。
      0.635<θgFn2+0.001625×νn2<0.665  (3-1)
  13.  下記条件式(4-1)を満足する請求項1から12のいずれか1項記載のズームレンズ。
      1.2<DDG1/f1<1.5  (4-1)
    ただし、
    DDG1:無限遠物体に合焦した状態において前記第1レンズ群の最も物体側のレンズ面から前記第1レンズ群の最も像側のレンズ面までの光軸上の距離
    f1:無限遠物体に合焦した状態において前記第1レンズ群の焦点距離
  14.  下記条件式(5-1)を満足する請求項1から13のいずれか1項記載のズームレンズ。
      0.4<DDrp/f1<0.58  (5-1)
    ただし、
    DDrp:無限遠物体に合焦した状態において前記第1レンズ群の最も像側のレンズ面から前記第1レンズ群の像側主点までの光軸上の距離
    f1:無限遠物体に合焦した状態において前記第1レンズ群の焦点距離
  15.  下記条件式(6-1)を満足する請求項1から14のいずれか1項記載のズームレンズ。
      0.5<DDG1/ft<0.9  (6-1)
    ただし、
    DDG1:無限遠物体に合焦した状態において前記第1レンズ群の最も物体側のレンズ面から前記第1レンズ群の最も像側のレンズ面までの光軸上の距離
    ft:無限遠物体に合焦した状態において望遠端での全系の焦点距離
  16.  下記条件式(7-1)を満足する請求項1から15のいずれか1項記載のズームレンズ。
      1.1<(R1+R2)/(R1-R2)<2.5  (7-1)
    ただし、
    R1:前記第1負レンズの物体側の面の曲率半径
    R2:前記第1負レンズの像側の面の曲率半径
  17.  前記複数の移動レンズ群は、負の屈折力を有するレンズ群と、負の屈折力を有するレンズ群とを備える請求項1から16のいずれか1項記載のズームレンズ。
  18.  前記複数の移動レンズ群は、物体側から順に、正の屈折力を有するレンズ群と、負の屈折力を有するレンズ群と、負の屈折力を有するレンズ群とを備える請求項1から16のいずれか1項記載のズームレンズ。
  19.  前記複数の移動レンズ群は、物体側から順に、負の屈折力を有するレンズ群と、正の屈折力を有するレンズ群と、負の屈折力を有するレンズ群とを備える請求項1から16のいずれか1項記載のズームレンズ。
  20.  請求項1から19のいずれか1項記載のズームレンズを備えた撮像装置。
PCT/JP2016/080923 2016-01-27 2016-10-19 ズームレンズおよび撮像装置 WO2017130478A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680080102.6A CN108604002B (zh) 2016-01-27 2016-10-19 变焦透镜及摄像装置
JP2017563683A JP6493896B2 (ja) 2016-01-27 2016-10-19 ズームレンズおよび撮像装置
US16/012,916 US10642008B2 (en) 2016-01-27 2018-06-20 Zoom lens and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-013135 2016-01-27
JP2016013135 2016-01-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/012,916 Continuation US10642008B2 (en) 2016-01-27 2018-06-20 Zoom lens and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2017130478A1 true WO2017130478A1 (ja) 2017-08-03

Family

ID=59397800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080923 WO2017130478A1 (ja) 2016-01-27 2016-10-19 ズームレンズおよび撮像装置

Country Status (4)

Country Link
US (1) US10642008B2 (ja)
JP (1) JP6493896B2 (ja)
CN (1) CN108604002B (ja)
WO (1) WO2017130478A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022121372A1 (de) 2021-08-27 2023-03-23 Fujifilm Corporation Zoomobjektiv und bildgebungsvorrichtung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6548590B2 (ja) * 2016-02-18 2019-07-24 富士フイルム株式会社 撮像レンズおよび撮像装置
JP6820878B2 (ja) 2018-03-29 2021-01-27 富士フイルム株式会社 ズームレンズ及び撮像装置
JP6942100B2 (ja) * 2018-08-21 2021-09-29 富士フイルム株式会社 ズームレンズ及び撮像装置
CN111221114B (zh) * 2020-01-18 2021-12-10 东莞锐星视觉技术有限公司 一种高倍率高分辨率的变倍镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113139A (ja) * 2010-11-25 2012-06-14 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2013221999A (ja) * 2012-04-13 2013-10-28 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2014232313A (ja) * 2013-04-30 2014-12-11 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2015094868A (ja) * 2013-11-12 2015-05-18 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2015176129A (ja) * 2014-03-18 2015-10-05 キヤノン株式会社 ズームレンズ及びそれを有する撮影システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321496A (ja) * 1999-05-10 2000-11-24 Canon Inc ズームレンズ
WO2010018727A1 (ja) * 2008-08-12 2010-02-18 株式会社ニコン ズームレンズ、このズームレンズを備えた光学機器、及び、ズームレンズの製造方法
JP2012133230A (ja) * 2010-12-22 2012-07-12 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム
WO2013038614A1 (ja) 2011-09-16 2013-03-21 富士フイルム株式会社 ズームレンズおよび撮像装置
CN104220918B (zh) * 2012-04-09 2016-06-22 富士胶片株式会社 变焦透镜和摄像装置
JP5882817B2 (ja) * 2012-04-13 2016-03-09 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5901401B2 (ja) * 2012-04-13 2016-04-06 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
WO2014104083A1 (ja) * 2012-12-27 2014-07-03 コニカミノルタ株式会社 変倍機能を有する投射レンズ及びプロジェクター
JP6223026B2 (ja) 2013-07-10 2017-11-01 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6418732B2 (ja) * 2013-08-08 2018-11-07 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6254828B2 (ja) 2013-11-12 2017-12-27 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6251009B2 (ja) * 2013-11-12 2017-12-20 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
CN108474927B (zh) * 2016-01-27 2019-07-09 富士胶片株式会社 变焦透镜及摄像装置
CN108700729B (zh) * 2016-01-27 2020-10-02 富士胶片株式会社 变焦透镜及摄像装置
JP6678604B2 (ja) * 2017-01-05 2020-04-08 富士フイルム株式会社 ズームレンズおよび撮像装置
JP6683634B2 (ja) * 2017-01-05 2020-04-22 富士フイルム株式会社 ズームレンズおよび撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113139A (ja) * 2010-11-25 2012-06-14 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2013221999A (ja) * 2012-04-13 2013-10-28 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2014232313A (ja) * 2013-04-30 2014-12-11 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2015094868A (ja) * 2013-11-12 2015-05-18 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2015176129A (ja) * 2014-03-18 2015-10-05 キヤノン株式会社 ズームレンズ及びそれを有する撮影システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022121372A1 (de) 2021-08-27 2023-03-23 Fujifilm Corporation Zoomobjektiv und bildgebungsvorrichtung

Also Published As

Publication number Publication date
CN108604002B (zh) 2019-07-19
US10642008B2 (en) 2020-05-05
JP6493896B2 (ja) 2019-04-10
CN108604002A (zh) 2018-09-28
US20180299656A1 (en) 2018-10-18
JPWO2017130478A1 (ja) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6128607B2 (ja) ズームレンズおよび撮像装置
JP7061980B2 (ja) ズームレンズおよび撮像装置
JP6685944B2 (ja) ズームレンズおよび撮像装置
JP6768608B2 (ja) ズームレンズ及び撮像装置
JP6411679B2 (ja) ズームレンズおよび撮像装置
JP6683634B2 (ja) ズームレンズおよび撮像装置
JP6389812B2 (ja) 変倍光学系および撮像装置
JP6685950B2 (ja) ズームレンズおよび撮像装置
JP6493896B2 (ja) ズームレンズおよび撮像装置
JP5745188B2 (ja) ズームレンズおよび撮像装置
JP6678604B2 (ja) ズームレンズおよび撮像装置
CN106405805B (zh) 变倍光学系统以及摄像装置
JP6411678B2 (ja) ズームレンズおよび撮像装置
JP2017146519A (ja) 撮像レンズおよび撮像装置
WO2017158899A1 (ja) ズームレンズおよび撮像装置
JP2016173482A (ja) ズームレンズおよび撮像装置
JP6715806B2 (ja) ズームレンズ及び撮像装置
CN108279489B (zh) 变焦镜头及摄像装置
JP2020160263A (ja) ズームレンズおよび撮像装置
JP2018109711A (ja) ズームレンズおよび撮像装置
JP6938448B2 (ja) ズームレンズ及び撮像装置
JP2022021087A (ja) ズームレンズおよび撮像装置
JP6656196B2 (ja) ズームレンズおよび撮像装置
JP2020160264A (ja) ズームレンズおよび撮像装置
WO2019082641A1 (ja) ズームレンズ及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888063

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017563683

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888063

Country of ref document: EP

Kind code of ref document: A1