WO2014112336A1 - プリント回路基板及びノイズ抑制構造 - Google Patents

プリント回路基板及びノイズ抑制構造 Download PDF

Info

Publication number
WO2014112336A1
WO2014112336A1 PCT/JP2014/000059 JP2014000059W WO2014112336A1 WO 2014112336 A1 WO2014112336 A1 WO 2014112336A1 JP 2014000059 W JP2014000059 W JP 2014000059W WO 2014112336 A1 WO2014112336 A1 WO 2014112336A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
layer
printed circuit
circuit board
conductor pattern
Prior art date
Application number
PCT/JP2014/000059
Other languages
English (en)
French (fr)
Inventor
尚登 新川
茂 吹抜
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2014557386A priority Critical patent/JP6028812B2/ja
Priority to EP14741098.9A priority patent/EP2947974B1/en
Priority to CN201480004798.5A priority patent/CN104919905B/zh
Priority to BR112015016946-5A priority patent/BR112015016946B1/pt
Priority to US14/760,900 priority patent/US9402304B2/en
Publication of WO2014112336A1 publication Critical patent/WO2014112336A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0231Capacitors or dielectric substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0233Filters, inductors or a magnetic substance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • H01L2224/4101Structure
    • H01L2224/4103Connectors having different sizes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/042Stacked spaced PCBs; Planar parts of folded flexible circuits having mounted components in between or spaced from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/097Alternating conductors, e.g. alternating different shaped pads, twisted pairs; Alternating components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1006Non-printed filter

Definitions

  • the present invention relates to a printed circuit board for suppressing noise of an electronic device used in an electric power steering apparatus and the like, and a noise suppressing structure including the printed circuit board.
  • FIG. 14 is a perspective view of a conventional noise suppression structure.
  • the noise suppression structure 201 shown in FIG. 14 forms a capacitance with the two metal surfaces 202 and 203, and the noise suppression frequency can be varied.
  • the noise suppression structure 201 is configured to block the electromagnetic coupling between a radio circuit unit (not shown) and a digital circuit unit (not shown), and to prevent both noise currents from being mixed. Between the parts.
  • the noise suppression structure 201 is formed on the ground layer 210 through which noise propagates, and the first metal surface 202 and the second metal surface 203 are located on the same plane.
  • a short-circuit plate 204 is provided at the end of the first metal surface 202, and a ground pin 205 is provided on the second metal surface 203.
  • the short-circuit plate 204 and the ground pin 205 are connected to the ground layer 210.
  • both the first metal surface 202 and the second metal surface 203 form a comb-shaped pattern in a rectangular metal pattern, and both the metal surfaces 202 and 203 are located in the same layer, and each comb-shaped portion is It is configured to be inserted alternately so as not to contact each other.
  • the capacitor formed between the comb shape portion of the first metal surface 202 and the comb shape portion of the second metal surface 203 is folded in a zigzag manner along the comb shape. It is formed. This capacitor allows the resonance frequency to be varied to suppress noise.
  • the conventional noise suppression structure shown in FIG. 14 has the following problems. That is, in the case of the noise suppression structure shown in FIG. 14, a capacitor can be formed between the comb-shaped portion of the first metal surface 202 and the comb-shaped portion of the second metal surface 203 to suppress noise.
  • the first metal surface 202 and the second metal surface 203 are also located on the same plane. For this reason, in order to form a capacitor
  • a printed circuit board constitutes a multilayer board in which odd-numbered conductor patterns and even-numbered conductor patterns are alternately arranged in the vertical direction across an insulating layer.
  • the odd-numbered conductor pattern is connected by a first through hole communicating in the vertical direction
  • the even-layer conductive pattern is connected by a second through hole communicating in the vertical direction
  • the predetermined region for connecting the second through hole and the portion excluding the predetermined region for insulating from the first through hole have the same shape. Rutotomoni, it is characterized by being overlapped in the same position in the vertical direction.
  • a multilayer substrate in which odd-numbered conductor patterns and even-numbered conductor patterns are alternately arranged in the vertical direction with an insulating layer interposed therebetween is formed, and the first through-hole among the odd-numbered conductor patterns is formed.
  • the conductor pattern of the odd layer and the conductor pattern of the even layer are alternately arranged in the vertical direction across the insulating layer, the area of the conductor pattern for forming the capacitor in the plane on the substrate can be small, Restrictions on component layout on the board can be minimized.
  • the installation location of the first through hole and the second through hole it is possible to arrange components at any location on the board.
  • the wiring impedance can be further reduced, and noise can be further suppressed.
  • a first land connected to the second through hole is provided in a predetermined region for insulating from the second through hole in the uppermost layer of the odd layer, and the even number is provided. It is preferable that a second land connected to the first through hole is provided in a predetermined region for insulation from the first through hole in the lowermost layer of the layer.
  • a conductor having a predetermined polarity is solder-connected to a first land provided in a predetermined region for insulation from the second through hole in the uppermost layer of the odd layer, and the uppermost layer of the even layer is connected.
  • a conductor having a reverse polarity can be solder-connected to a second land provided in a predetermined region for insulation from the first through hole in the lower layer.
  • the predetermined region for insulation from the second through hole is a notch formed in the odd-numbered conductor pattern, and is insulated from the first through hole.
  • the predetermined region may be a notch formed in the conductor pattern of the even layer.
  • the odd-numbered conductor patterns may be connected to a ground line, and the even-numbered conductor patterns may be connected to a power supply line.
  • a noise suppression structure according to another aspect of the present invention includes the above-described printed circuit board and a common mode filter connected to the printed circuit board.
  • the printed circuit board according to still another aspect of the present invention is characterized in that it is possible to suppress noise that can minimize restrictions on component layout on the board.
  • a multilayer substrate in which odd-numbered conductor patterns and even-numbered conductor patterns are alternately arranged in the vertical direction across an insulating layer is formed.
  • a portion of the conductor pattern excluding the predetermined region for connecting the first through hole and the predetermined region for insulating from the second through hole is connected to the second through hole of the even layer conductor pattern. Since the predetermined region for excluding the predetermined region for insulating from the first through hole has the same shape and is overlapped with the same position in the vertical direction, the odd layer A capacitor is generated by the conductor pattern and the conductor pattern of the even layer, thereby reducing the wiring impedance and suppressing noise.
  • the conductor pattern of the odd layer and the conductor pattern of the even layer are alternately arranged in the vertical direction across the insulating layer, the area of the conductor pattern for forming the capacitor in the plane on the substrate can be small, Restrictions on component layout on the board can be reduced.
  • the installation location of the first through hole and the second through hole it is possible to arrange components at any location on the board.
  • the wiring impedance can be further reduced, and noise can be further suppressed.
  • FIG. 1 is a diagram illustrating a basic structure of an electric power steering apparatus in which a printed circuit board and a noise suppression structure according to the present invention are employed. It is a block diagram which shows the control system of the controller of the electric power steering apparatus shown in FIG.
  • FIG. 2 is an exploded perspective view of a controller including a semiconductor module and a noise suppression structure of the electric power steering device shown in FIG. 1.
  • FIG. 4 is a plan view of the semiconductor module shown in FIG. 3. It is a perspective view which shows schematic structure of a noise suppression structure.
  • the printed circuit board constituting the noise suppression structure shows only a plurality of layers of conductor patterns. It is a top view of the noise suppression structure shown in FIG. FIG.
  • FIG. 5 shows a plurality of layers of conductor patterns on the printed circuit board constituting the noise suppression structure shown in FIG. 5,
  • A is a plan view of the first layer conductor pattern
  • B is a plan view of the second layer conductor pattern
  • C is a plan view of the conductor pattern of the third layer
  • D is a plan view of the conductor pattern of the fourth layer
  • E is a plan view of the conductor pattern of the fifth layer
  • (F) is a plan view of the sixth layer.
  • It is a top view of a conductor pattern.
  • It is a cross-sectional schematic diagram of the printed circuit board which comprises the noise suppression structure shown in FIG.
  • FIG. 1 is a diagram illustrating a basic structure of an electric power steering apparatus in which a printed circuit board and a noise suppression structure according to the present invention are employed.
  • FIG. 2 is a block diagram showing a control system of the controller of the electric power steering apparatus shown in FIG.
  • FIG. 3 is an exploded perspective view of a controller including the semiconductor module and the noise suppression structure of the electric power steering apparatus shown in FIG.
  • FIG. 4 is a plan view of the semiconductor module shown in FIG.
  • FIG. 1 shows a basic structure of an electric power steering apparatus employing a printed circuit board and a noise suppression structure according to the present invention.
  • the column shaft 2 of the steering handle 1 is decelerated.
  • the gear 3, the universal joints 4 ⁇ / b> A and 4 ⁇ / b> B, and the pinion rack mechanism 5 are connected to the steering rod tight rod 6.
  • the column shaft 2 is provided with a torque sensor 7 that detects the steering torque of the steering handle 1, and an electric motor 8 that assists the steering force of the steering handle 1 is connected to the column shaft 2 via the reduction gear 3.
  • Electric power is supplied from a battery (not shown) to the controller 10 that controls the electric power steering device, and an ignition key signal IGN (see FIG. 2) is input via an ignition key (not shown).
  • the controller 10 calculates a steering assist command value serving as an assist (steering assist) command based on the steering torque Ts detected by the torque sensor 7 and the vehicle speed V detected by the vehicle speed sensor 9, and the calculated steering is performed.
  • the current supplied to the electric motor 8 is controlled based on the auxiliary command value.
  • the controller 10 is mainly composed of a microcomputer, and the mechanism and configuration of the control device are as shown in FIG.
  • the steering torque Ts detected by the torque sensor 7 and the vehicle speed V detected by the vehicle speed sensor 9 are input to the control arithmetic unit 11 as a control arithmetic unit, and the current command value calculated by the control arithmetic unit 11 is used as the gate drive circuit 12.
  • a gate drive signal formed based on a current command value or the like is input to a motor drive unit 13 having a FET bridge configuration, and the motor drive unit 13 passes through an emergency stop interrupting device 14 for three phases.
  • An electric motor 8 composed of a brushless motor is driven.
  • Each phase current of the three-phase brushless motor is detected by the current detection circuit 15, and the detected three-phase motor currents ia to ic are input to the control arithmetic unit 11 as feedback currents.
  • the electric motor 8 is provided with a rotation sensor 16 such as a hall sensor.
  • a rotation signal RT from the rotation sensor 16 is input to the rotor position detection circuit 17, and the detected rotation position ⁇ is the control arithmetic unit 11. Is input.
  • the ignition signal IGN from the ignition key is input to the ignition voltage monitor unit 18 and the power supply circuit unit 19, and the power supply voltage Vdd is input from the power supply circuit unit 19 to the control arithmetic unit 11 and a reset signal for stopping the apparatus.
  • Rs is input to the control arithmetic unit 11.
  • blocking apparatus 14 is comprised by the relay contacts 141 and 142 which interrupt
  • the FETTr1 and Tr2, the FETTr3 and Tr4, and the FETTr5 and Tr6 connected in series to the power supply line 81 are connected in parallel.
  • the FETTr1 and Tr2, FETTr3 and Tr4, and FETTr5 and Tr6 connected in parallel to the power supply line 81 are connected to the ground line 82.
  • the FETTr1 and Tr2 are configured such that the source electrode S of the FETTr1 and the drain electrode D of the FETTr2 are connected in series to form a c-phase arm of a three-phase motor, and a current is output from the c-phase output line 91c.
  • the FETTr3 and Tr4 are configured such that the source electrode S of the FETTr3 and the drain electrode D of the FETTr4 are connected in series to form an a-phase arm of a three-phase motor, and a current is output from the a-phase output line 91a.
  • the FETTr5 and Tr6 are configured such that the source electrode S of the FETTr5 and the drain electrode D of the FETTr6 are connected in series to form a b-phase arm of a three-phase motor, and a current is output from the b-phase output line 91b.
  • FIG. 3 is an exploded perspective view of the controller 10 including the semiconductor module and the noise suppression structure of the electric power steering apparatus shown in FIG. 1.
  • the controller 10 is a power module including a case 20 and a motor drive unit 13.
  • the case 20 is formed in a substantially rectangular shape, and is provided on the flat-plate-shaped semiconductor module mounting portion 21 for mounting the semiconductor module 30 and the longitudinal end portion of the semiconductor module mounting portion 21.
  • the semiconductor module mounting portion 21 is formed with a plurality of screw holes 21a into which mounting screws 38 for mounting the semiconductor module 30 are screwed.
  • a plurality of mounting posts 24 for mounting the control circuit board 40 are erected on the semiconductor module mounting portion 21 and the power and signal connector mounting portion 22, and the control circuit board 40 is mounted on each mounting post 24.
  • a screw hole 24a into which a mounting screw 41 for mounting is screwed is formed.
  • the three-phase output connector mounting portion 23 is formed with a plurality of screw holes 23a into which mounting screws 61 for attaching the three-phase output connector 60 are screwed.
  • the semiconductor module 30 has the circuit configuration of the motor drive unit 13 described above, and is connected to a substrate 31 on FETs Tr1 to Tr6 composed of six bare chip FETs 35 and a power supply line 81 as shown in FIG.
  • a positive electrode terminal 81 a and a negative electrode terminal 82 a connected to the ground line 82 are mounted.
  • the substrate 31 has a phase output terminal 92a connected to the phase a output line 91a, phase b output terminal 92b connected to the phase b output line 91b, and phase c output connected to the phase c output line 91c.
  • a three-phase output unit 90 including a terminal 92c is mounted.
  • other surface mount components 37 including a capacitor are mounted.
  • the substrate 31 of the semiconductor module 30 is provided with a plurality of through holes 31a through which mounting screws 38 for mounting the semiconductor module 30 are inserted.
  • the control circuit board 40 constitutes a control circuit including the control arithmetic device 11 and the gate drive circuit 12 by mounting a plurality of electronic components on the printed circuit board 110.
  • the noise suppression structure 100 is configured by the printed circuit board 110 of the control circuit board 40 and the common mode filter 120 mounted on the printed circuit board 110. The noise suppression structure 100 suppresses noise of the electronic device in the electric power steering device by the common mode filter 120 and also suppresses noise by the printed circuit board 110 to reduce the noise of the electronic device.
  • FIG. 5 is a perspective view showing a schematic configuration of the noise suppression structure.
  • FIG. 6 is a plan view of the noise suppression structure shown in FIG. 7 shows a plurality of layers of conductor patterns in the printed circuit board constituting the noise suppression structure shown in FIG. 5, wherein (A) is a plan view of the first layer conductor patterns, and (B) is a second layer conductor pattern. (C) is a plan view of the third layer conductor pattern, (D) is a plan view of the fourth layer conductor pattern, (E) is a plan view of the fifth layer conductor pattern, (F) is It is a top view of the conductor pattern of the 6th layer.
  • FIG. 8 is a schematic cross-sectional view of a printed circuit board constituting the noise suppression structure shown in FIG.
  • the noise suppression structure 100 includes a printed circuit board 110 (only a plurality of conductor patterns are shown) and a common mode filter 120 mounted on the printed circuit board 110.
  • the printed circuit board 110 is composed of a six-layer board having a first-layer conductor pattern 111 to a sixth-layer conductor pattern 116.
  • the printed circuit board 110 includes a flat insulating first base 131 and a flat insulating second base disposed below the first base 131. 132.
  • a first prepreg 133 that is an insulating layer is disposed on the upper side of the first base material 131, and a second prepreg that is an insulating layer between the lower side of the first base material 131 and the second base material 132. 134 is disposed, and a third prepreg 135 is disposed below the second base material 132.
  • the first layer conductor pattern 111 is disposed on the top surface of the first prepreg 133
  • the second layer conductor pattern 112 is disposed on the top surface of the first substrate 131
  • the third layer conductor pattern 113 is disposed on the first substrate 131.
  • the fourth layer conductor pattern 114 is disposed on the top surface of the second base material 132
  • the fifth layer conductor pattern 115 is disposed on the bottom surface of the second base material 132
  • the sixth layer conductor pattern 116 is disposed on the bottom surface.
  • the three prepregs 135 are arranged on the lower surface.
  • the odd-numbered conductor patterns 111, 113, and 115 are ground patterns and are connected to the ground line.
  • the even-numbered conductor patterns 112, 114, and 116 are power supply patterns and are connected to power supply lines. As shown in FIGS. 6 to 8, the odd-numbered conductor patterns 111, 113, and 115 are interconnected by a plurality of first through holes 117 communicating in the vertical direction.
  • the even-layer conductor patterns 112, 114, 116 are interconnected by a plurality of second through holes 118 communicating in the vertical direction.
  • Each first through hole 117 has a through-hole 117a penetrating between the upper surface and the lower surface of the printed circuit board 110, and extends vertically in the inner peripheral surface of the through-hole 117a so as to extend upward and downward of the printed circuit board 110. And a conductive portion 117b that connects between the two.
  • Each of the second through holes 118 has a through hole 118a penetrating between the upper surface and the lower surface of the printed circuit board 110 and an annular upper and lower direction on the inner peripheral surface of the through hole 118a. And a conductive portion 118b that connects the lower surface and the lower surface.
  • the first layer conductor pattern 111 includes a substantially parallelogram-shaped pattern main body 111a at the center, and connects the first through hole 117 from the upper right end of the pattern main body 111a.
  • a first connection portion 111b that forms a region for the projection is formed to protrude.
  • a first notch 111d that forms a region for insulation from the second through hole 118 is formed.
  • a second connection portion 111c for forming a region for connecting the first through hole 117 is formed inside the lower portion of the pattern body 111a, and a region for insulating from the second through hole 118 is formed.
  • a second notch 111e to be formed is formed.
  • the first notch 111d of the first layer is connected to the first through hole 118 connected to the conductor pattern 112, 114, 116 of the even layer opposite to the conductor pattern 111 of the first layer.
  • a land 119a is provided.
  • the first notch 111e in the first layer is also connected to the second through-hole 118 connected to the conductor patterns 112, 114, and 116 in the even layer opposite to the conductor pattern 111 in the first layer.
  • a land 119a is provided.
  • the second layer conductor pattern 112 includes a substantially parallelogram-shaped pattern main body 112a at the center, and connects the second through-hole 118 from the upper left end of the pattern main body 112a.
  • a first connection portion 112b that forms a region for the projection is formed to protrude.
  • a first notch 112d that forms a region for insulation from the first through hole 117 is formed on the right side of the first connection portion 112b.
  • a second connection portion 112c that forms a region for connecting the second through hole 118 is formed inside the lower portion of the pattern body 112a, and a region for insulation from the first through hole 117 is formed.
  • a second notch 112e to be formed is formed.
  • the third-layer conductor pattern 113 has the same shape as the first-layer conductor pattern 111, and includes a pattern body 113a having a substantially parallelogram shape at the center, as shown in FIG. 7C.
  • a first connection portion 113b that forms a region for connecting the first through hole 117 from the upper right end of the upper portion 113a is formed to protrude.
  • On the left side of the first connection portion 113b a first notch 113d that forms a region for insulation from the second through hole 118 is formed.
  • a second connection portion 113c that forms a region for connecting the first through hole 117 is formed inside the lower portion of the pattern body 113a, and a region for insulation from the second through hole 118 is formed.
  • a second notch 113e to be formed is formed.
  • the fourth-layer conductor pattern 114 has the same shape as the second-layer conductor pattern 112, and includes a pattern body 114a having a substantially parallelogram shape at the center, as shown in FIG.
  • a first connection portion 114b that forms a region for connecting the second through hole 118 from the upper left end of 114a is formed to protrude.
  • On the right side of the first connection portion 114b a first notch 114d that forms a region for insulation from the first through hole 117 is formed.
  • a second connection portion 114c that forms a region for connecting the second through hole 118 is formed inside the lower portion of the pattern body 114a, and a region for insulation from the first through hole 117 is formed.
  • a second notch 114e to be formed is formed.
  • the fifth-layer conductor pattern 115 has the same shape as the first-layer and third-layer conductor patterns 111 and 113, and as shown in FIG. 7E, a pattern body 115a having a substantially parallelogram shape at the center. And a first connection portion 115b that forms a region for connecting the first through hole 117 from the upper right end of the pattern body 115a. On the left side of the first connection portion 115b, a first notch 115d that forms a region for insulation from the second through hole 118 is formed. In addition, a second connection portion 115c that forms a region for connecting the first through hole 117 is formed inside the lower portion of the pattern main body 115a, and a region for insulation from the second through hole 118 is formed. A second notch 115e to be formed is formed.
  • the sixth-layer conductor pattern 116 has the same shape as the second-layer and fourth-layer conductor patterns 112 and 114, and as shown in FIG. 7F, a pattern body 116a having a substantially parallelogram shape at the center. And a first connecting portion 116b that forms a region for connecting the second through hole 118 from the upper left end of the pattern body 116a. On the right side of the first connection portion 116b, a first notch 116d that forms a region for insulation from the first through hole 117 is formed. In addition, a second connection portion 116c that forms a region for connecting the second through hole 118 is formed inside the lower portion of the pattern body 116a, and a region for insulation from the first through hole 117 is formed.
  • a second notch 116e to be formed is formed.
  • the sixth notch 116d in the sixth layer is connected to the first through hole 117 connected to the conductor pattern 111, 113, 115 in the odd layer opposite to the conductor pattern 116 in the sixth layer.
  • a land 119b is provided.
  • the second notch 116e of the sixth layer is also connected to the first through hole 117 connected to the conductor pattern 111, 113, 115 of the odd layer opposite to the conductor pattern 116 of the sixth layer.
  • a land 119b is provided.
  • a first region for forming a predetermined region for connecting the first through hole 117 among the odd layer conductive patterns 111, 113, and 115 is formed.
  • First notches 111d, 113d, 115d and second notches 111e that form predetermined regions for insulation from the first connecting portions 111b, 113b, 115b, the second connecting portions 111c, 113c, 115c, and the second through hole 118.
  • 113e, 115e (the portion surrounded by the alternate long and short dash line in FIGS. 7A, 7C, and 7E) and the second through holes 118 among the even-layer conductor patterns 112, 114, 116.
  • the portion surrounded by the alternate long and short dash line has the same shape and is overlapped at the same position in the vertical direction.
  • the printed circuit board 110 has first to sixth conductor patterns 111G to 116G, which are different from the conductor patterns 111 to 116, as viewed from above.
  • the patterns 111 to 116 are arranged at a predetermined distance.
  • the first to sixth conductor patterns 111G to 116G are formed to extend in the left-right direction.
  • the first layer conductor pattern 111G is disposed on the top surface of the first prepreg 133
  • the second layer conductor pattern 112G is disposed on the top surface of the first substrate 131
  • the third layer conductor pattern 113G is the first layer conductor pattern 113G.
  • the first substrate 131 is disposed on the lower surface
  • the fourth layer conductor pattern 114G is disposed on the second substrate 132 upper surface
  • the fifth layer conductor pattern 115G is disposed on the second substrate 132 lower surface
  • the sixth layer conductor is disposed.
  • the pattern 116G is disposed on the lower surface of the third prepreg 135.
  • the first to sixth layer conductor patterns 111G to 116G are interconnected by a plurality of through holes TH1 communicating in the vertical direction.
  • the first to sixth layers of conductor patterns 111G to 116G are ground patterns and are connected to the ground line.
  • the printed circuit board 110 has first to sixth conductor patterns 111P to 116P that are further separate from the conductor patterns 111 to 116, as viewed from above. .. To 116 at a predetermined distance and to face the conductor patterns 111G to 116G in the left-right direction. As shown in FIG. 6, the first to sixth conductor patterns 111P to 116P are formed to extend in the left-right direction.
  • the first layer conductor pattern 111P is disposed on the upper surface of the first prepreg 133
  • the second layer conductor pattern 112P is disposed on the upper surface of the first base member 131
  • the third layer conductor pattern 113P is The first conductor 131 is disposed on the lower surface
  • the fourth layer conductor pattern 114P is disposed on the second substrate 132 upper surface
  • the fifth layer conductor pattern 115P is disposed on the second substrate 132 lower surface
  • the sixth layer conductor is disposed.
  • the pattern 116P is disposed on the lower surface of the third prepreg 135.
  • the first to sixth layer conductor patterns 111P to 116P are interconnected by a plurality of through holes TH2 communicating in the vertical direction.
  • the first to sixth layers of conductor patterns 111P to 116P are power supply patterns and are connected to power supply lines.
  • the first to sixth layer conductor patterns 111 to 116, 111G to 111G, and 111P to 116P are all conductors made of copper. Also, the thickness of the first layer conductor patterns 111, 111G, 111P is about 0.018 mm, the thickness of the second layer conductor patterns 112, 112G, 112P is about 0.035 mm, the third layer conductor pattern 113, The thickness of 113G, 113P is about 0.035 mm, the thickness of the fourth layer conductor patterns 114, 114G, 114P is about 0.035 mm, and the thickness of the fifth layer conductor patterns 115, 115G, 115P is 0.035 mm.
  • the thickness of the sixth-layer conductor patterns 116, 116G, and 116P is about 0.018 mm. Furthermore, the thicknesses of the first base material 131 and the second base material are each about 0.2 mm. The thickness of the first prepreg 133 is about 0.2 mm, the thickness of the second prepreg 134 is about 0.4 mm, and the thickness of the third prepreg 135 is about 0.2 mm. Then, as shown in FIG. 8, a solder resist 136 is formed on the upper surface of the first layer conductor pattern 111, and a solder resist is formed on the lower surface of the sixth layer conductor pattern 116. The total thickness of the printed circuit board 110 including it is about 1.4 mm.
  • the common mode filter 120 is provided with the filter core 121 and the two coils 122 and 123 wound around the filter core 121 as shown in FIG.
  • one end of one coil 122 is connected to a through hole TH1 interconnecting the first to sixth layer conductor patterns 111G to 116G, and the other end of one coil 122 is connected to the first coil 122.
  • the layer through sixth layer conductor patterns 111P through 116P are connected to a through hole TH2.
  • One end of the other coil 123 is connected to a second through hole 118 that interconnects even-layer conductor patterns 112, 114, and 116, and the other end of the other coil 123 is connected to odd-layer conductor patterns 111, 113. , 115 are connected to first through holes 117 that interconnect each other.
  • the through-hole TH2 and the second through-hole 118 connected to the power supply line have a straight arrangement in the vertical direction in FIG. 5, and the through-hole TH1 and the first through-hole connected to the ground line
  • the through hole 117 is also straightly arranged, the positions of the first through hole 117 and the second through hole 118 are changed, and the through hole TH2 and the second through hole 118 connected to the power supply line are arranged in a cross manner, and the ground line
  • the through-hole TH1 and the first through-hole 117 connected to can also be arranged in a cross arrangement.
  • control circuit board 40 including the noise suppression structure 110 configured as described above is configured so that the semiconductor module 30 is mounted on the semiconductor module mounting portion 21 and then the semiconductor module 30 from above the semiconductor module 30 as shown in FIG.
  • a plurality of mounting screws 41 are mounted on the module mounting portion 21 and the plurality of mounting posts 24 erected on the power and signal connector mounting portion 22.
  • the printed circuit board 110 of the control circuit board 40 is formed with a plurality of through holes 40a through which the mounting screws 41 are inserted.
  • the power and signal connector 50 is used to input a DC power source from a battery (not shown) to the semiconductor module 30 and various signals including signals from the torque sensor 12 and the vehicle speed sensor 9 to the control circuit board 40. Used. As shown in FIG. 3, the power and signal connector 50 is attached to the power and signal connector mounting portion 22 provided in the semiconductor module mounting portion 21 by a plurality of mounting screws 51.
  • the three-phase output connector 60 is used to output current from the a-phase output terminal 92a, the b-phase output terminal 92b, and the c-phase output terminal 92c. As shown in FIG.
  • the three-phase output connector 60 is attached to the three-phase output connector mounting portion 23 provided at the end in the width direction of the semiconductor module mounting portion 21 by a plurality of mounting screws 61.
  • the three-phase output connector 60 is formed with a plurality of through holes 60a through which the mounting screws 61 are inserted.
  • the cover 70 covers the case 20 to which the semiconductor module 30, the control circuit board 40, the power and signal connector 50, and the three-phase output connector 60 are attached. It is attached so as to cover the control circuit board 40 from above.
  • Capacitors are generated by alternately laminating wiring. At that time, the capacitance of the capacitor is obtained by the following equation (1).
  • C is the capacitance value of the capacitor
  • k is the conversion coefficient
  • ⁇ r is the dielectric constant of the substrate material
  • A is the area of the alternately stacked wiring
  • d is the distance between the layers
  • n is the number of layers.
  • R dif is the ratio of the impedance of the increased wiring width to the reference wiring width
  • ⁇ r is the dielectric constant of the substrate material
  • W 1 is the reference wiring width
  • W 2 is the increased wiring width
  • T I is the thickness of the wiring
  • H is the thickness of the dielectric material.
  • the odd-numbered conductor patterns 111, 113, and 115 and the even-numbered conductor patterns 112, 114, and 116 include the prepreg (insulating layer) 133, the first layer.
  • the substrate (insulating layer) 131, the second prepreg (insulating layer) 134, the second substrate (insulating layer) 132, and the third prepreg (insulating layer) 135 are alternately arranged in the vertical direction.
  • first connection portions 111b, 113b, 115b and the second connection portions 111c, 113c, 115c which form predetermined regions for connecting the first through holes 117 among the odd-numbered conductor patterns 111, 113, 115, Except for the first cutouts 111d, 113d, 115d and the second cutouts 111e, 113e, 115e that form a predetermined region for insulation from the second through hole 118 (FIGS. 7A, 7C, 7C) E) and the first connecting portions 112b, 114b, and 116b that form a predetermined region for connecting the second through-hole 118 among the even-layered conductor patterns 112, 114, and 116).
  • a first notch that forms a predetermined region for insulation with respect to the second connection portions 112c, 114c, 116c, and the first through hole 117.
  • the portion excluding 12d, 114d, 116d and the second notches 112e, 114e, 116e (the portion surrounded by the alternate long and short dash line in FIGS. 7B, 7D, and 7F) has the same shape, They are stacked with the same position in the vertical direction. Therefore, a capacitor can be generated by the odd-numbered conductor patterns 111, 113, and 115 and the even-numbered conductor patterns 112, 114, and 116, thereby reducing the wiring impedance and suppressing noise.
  • the odd-numbered conductor patterns 111, 113, 115 and the even-numbered conductor patterns 112, 114, 116 are a prepreg (insulating layer) 133, a first base material (insulating layer) 131, and a second prepreg (insulating layer) 134. Since the second base material (insulating layer) 132 and the third prepreg (insulating layer) 135 are alternately arranged in the vertical direction, the area of the conductor pattern for forming the capacitor in the plane on the substrate is small. In other words, restrictions on the component layout on the board can be reduced. In addition, by changing the installation location of the first through hole 117 and the second through hole 118, it is possible to arrange components at any location on the board.
  • the wiring impedance can be further reduced by increasing the wiring width of the odd-numbered conductive patterns 111, 113, 115 and the even-numbered conductive patterns 112, 114, 116 that are stacked in the vertical direction, further suppressing noise. can do.
  • the conductors are directly under the common mode filter 120. It is not necessary to wire a pattern, and a space for mounting other components can be secured immediately below the common mode filter 120.
  • the uppermost layer of the odd layer that is, the second through hole 118 in the first layer is insulated.
  • a first land 119a connected to the second through hole 118 is provided in the first notch 111d and the second notch 111e forming a predetermined region. Further, as shown in FIG.
  • the first notch 116d and the second notch 116e that form predetermined regions for insulation from the first through-hole 117 in the lowermost layer of the even layer, that is, the sixth layer.
  • the second land 119b connected to the first through hole 117 is provided.
  • a conductor having a predetermined polarity is provided on the first land 119a provided in a predetermined region for insulation from the second through hole 118 in the uppermost layer of the odd layer.
  • a reverse polarity conductor can be solder-connected to the second land 119b provided in a predetermined region for soldering and insulating from the first through-hole 117 in the lowest layer of the even layer.
  • the odd-numbered conductor patterns 111, 113, and 115 and the even-numbered conductor patterns 112, 114, and 115 have the same shape and overlap in the vertical direction (indicated by the one-dot chain line in FIGS. 7A to 7F).
  • a through hole is provided in a portion between the first connection portions 112b, 114b, and 116b and the second connection portions 112c, 114c, and 116c in the even-layer conductor patterns 112, 114, and 116 in order to prevent a decrease in conductivity. Is preferably not provided.
  • FIG. 11 is a schematic cross-sectional view of a first modification of the printed circuit board.
  • FIG. 12 is a schematic cross-sectional view of a second modification of the printed circuit board.
  • FIG. 13 is a schematic cross-sectional view of a third modification of the printed circuit board.
  • a printed circuit board 110 shown in FIG. 11 is a 16-layer board having conductor patterns 151 to 166 of the first to 16th layers. The first to sixteenth layer conductive patterns 151 to 166 are sequentially arranged with the insulating layers 171 to 185 interposed therebetween.
  • the odd-numbered conductor patterns 151, 153, 155, and 157 in the upper eight layers are interconnected by the first through holes (not shown), and the even-layer conductor patterns 152, 154, 156, and 158 are the second through holes. (Not shown).
  • the printed circuit board 110 shown in FIG. 12 is a 16-layer board having conductor patterns 151 to 166 of the first to 16th layers.
  • the first to sixteenth layer conductive patterns 151 to 166 are sequentially arranged with the insulating layers 171 to 185 interposed therebetween.
  • a configuration similar to that of the printed circuit board 110 shown in FIG. 8 is applied to the middle eight conductor patterns 155 to 162 of the first to sixteenth layer conductor patterns 151 to 166. That is, the middle eight odd layer conductor patterns 155, 153, 155, and 157 are interconnected by first through holes (not shown), and the even layer conductor patterns 152, 154, 156, and 158 are second through holes. (Not shown).
  • the portions excluding the predetermined region for connecting the second through hole and the predetermined region for insulating from the first through hole in the conductor patterns 156, 158, 160, 162 of the even layers are the same. And are stacked with the same position in the vertical direction. For this reason, capacitors can be generated by the conductive patterns 155, 157, 159, 161 of the odd layers and the conductive patterns 156, 158, 160, 162 of the even layers, thereby reducing the wiring impedance and suppressing noise.
  • the printed circuit board 110 shown in FIG. 13 is a 16-layer board having conductor patterns 151 to 166 of the first to 16th layers.
  • the first to sixteenth layer conductive patterns 151 to 166 are sequentially arranged with the insulating layers 171 to 185 interposed therebetween.
  • the same configuration as that of the printed circuit board 110 shown in FIG. 8 is applied to the lower six-layer conductor patterns 161 to 166 among the first to sixteenth layer conductor patterns 151 to 166. That is, the lower six odd-layer conductor patterns 161, 163, and 165 are interconnected by a first through hole (not shown), and the even-layer conductor patterns 162, 164, and 166 are second through-holes (not shown). Z).
  • a predetermined region for connecting the first through hole and a predetermined region for insulating from the second through hole are excluded from the conductive patterns 161, 163, 165, and 166 of the odd-numbered lower six layers.
  • the portions and the portions excluding the predetermined region for connecting the second through hole and the predetermined region for insulating from the first through hole in the even-layer conductor patterns 162, 164, and 166 are the same. It has a shape and is stacked with the same position in the vertical direction. For this reason, it is possible to generate capacitors by the odd-numbered conductor patterns 161, 163, and 165 and the even-numbered conductor patterns 162, 164, and 166, thereby reducing the wiring impedance and suppressing noise.
  • the printed circuit board 110 is composed of a 6-layer board in the examples shown in FIGS. 5 to 8 and a 16-layer board in the examples shown in FIGS. 11 to 13, but may be composed of two or more layers.
  • the total number of the odd-numbered conductor patterns and the even-numbered conductor patterns that have the same shape and are stacked at the same position in the vertical direction is not limited to six or eight layers, and may be any number.
  • the wiring impedance can be adjusted by changing the total number of odd-numbered and even-numbered conductor patterns that have the same shape and are stacked at the same position in the vertical direction, so according to the target noise adjustment value What is necessary is just to determine the number of the conductor patterns to be overlaid.
  • predetermined regions for insulation from the second through holes 118 are notches 111d, 111e, 113d, 113e, 115d, and the like formed in the odd-numbered conductor patterns 111, 113, 115.
  • the hole 115e may be a hole formed in the odd-numbered conductor patterns 111, 113, and 115.
  • predetermined regions for insulation from the first through holes 117 are notches 112d, 112e, 114d, 114e, 116d, formed in the even-layer conductor patterns 112, 114, 116.
  • 116e is a hole formed in the even number of conductor patterns 112, 114, and 116.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 基板上の部品レイアウトの制約を極力小さくすることができるノイズを抑制することが可能なプリント回路基板及びノイズ抑制構造を提供する。プリント回路基板(110)は、奇数層の導体パターン(111)、(113)、(115)と偶数層の導体パターン(112)、(114)、(116)とが絶縁層を挟んで上下方向に交互に配置される。奇数層の導体パターン(111),(113),(115)のうち第1スルーホール(117)を接続するための所定の領域及び第2スルーホール(118)に対して絶縁するための所定の領域を除く部分と、偶数層の導体パターン(112)、(114)、(116)のうち第2スルーホール(118)を接続するための所定の領域及び第1スルーホール(117)に対して絶縁するための所定の領域を除く部分とは、同一の形状を有し、且つ、上下方向において位置を同じにして重ねられる。

Description

プリント回路基板及びノイズ抑制構造
 本発明は、電動パワーステアリング装置などに用いられる電子装置のノイズを抑制するためのプリント回路基板及びそのプリント回路基板を備えたノイズ抑制構造に関する。
 近年では、高速・大容量ネットワークのCAN(Controll Area Network)通信や、より良い操舵安定性や機能安全性を達成する電動パワーステアリング装置が要求されている。
 この電動パワーステアリング装置における電子装置においては、信号の信頼性を確保するために、ノイズを低減することが厳格化されている。
 従来のノイズを抑制するノイズ抑制構造として、例えば、図14に示すものが知られている(特許文献1参照)。図14は、従来例のノイズ抑制構造の斜視図である。
 図14に示すノイズ抑制構造201は、2枚の金属面202と金属面203とでキャパシタンスを形成し、ノイズ抑制周波数を可変できるようになっている。このノイズ抑制構造201は、無線回路部(図示せず)とディジタル回路部(図示せず)との電磁的な結合を遮断し、双方のノイズ電流の混入を防ぐために、無線回路部とディジタル回路部の間に配置される。
 ノイズ抑制構造201は、ノイズが伝搬するグランド層210上に形成され、第1の金属面202及び第2の金属面203は、同じ平面上に位置している。第1の金属面202の端部には短絡板204が、第2の金属面203には接地ピン205が設けられ、短絡板204及び接地ピン205はグランド層210に接続されている。
 ここで、第1の金属面202及び第2の金属面203とも矩形状の金属パターンに櫛形形状のパターンを形成し、両金属面202,203とも同じ層に位置し、それぞれの櫛形の部分が互いに接触しないように、互い違いに入れ込ませた構成となっている。このように、櫛形形状を互い違いに実装することにより、第1の金属面202の櫛形部分と、第2の金属面203の櫛形部分との間で形成されるコンデンサが櫛形に沿うようにつづら折りに形成される。そして、このコンデンサにより、ノイズ抑制を可能とする共振周波数の可変ができるようになる。
特開2012-129271号公報
 しかしながら、この従来の図14に示すノイズ抑制構造にあっては、以下の問題点があった。
 即ち、図14に示すノイズ抑制構造の場合には、第1の金属面202の櫛形部分と、第2の金属面203の櫛形部分との間でコンデンサを形成し、ノイズを抑制することができるものの、第1の金属面202と第2の金属面203とも同一平面上に位置している。このため、コンデンサを形成するために基板上の平面における第1の金属面202及び第2の金属面203の面積が大きくなり、基板上の部品レイアウトに制約が生じるという問題があった。
 従って、本発明はこの従来の問題点を解決するためになされたものであり、その目的は、基板上の部品レイアウトの制約を極力小さくすることができるノイズを抑制することが可能なプリント回路基板及びそのプリント回路基板を備えたノイズ抑制構造を提供することにある。
 上記課題を解決するため、本発明のある態様に係るプリント回路基板は、奇数層の導体パターンと偶数層の導体パターンとが絶縁層を挟んで上下方向に交互に配置される多層基板を構成するプリント回路基板であって、前記奇数層の導体パターンは、上下方向に連通する第1スルーホールによって接続され、前記偶数層の導体パターンは、上下方向に連通する第2スルーホールによって接続され、前記奇数層の導体パターンのうち前記第1スルーホールを接続するための所定の領域及び前記第2スルーホールに対して絶縁するための所定の領域を除く部分と、前記偶数層の導体パターンのうち前記第2スルーホールを接続するための所定の領域及び前記第1スルーホールに対して絶縁するための所定の領域を除く部分とは、同一の形状を有するとともに、上下方向において位置を同じにして重ねられていることを特徴としている。
 このプリント回路基板によれば、奇数層の導体パターンと偶数層の導体パターンとが絶縁層を挟んで上下方向に交互に配置される多層基板を構成し、奇数層の導体パターンのうち第1スルーホールを接続するための所定の領域及び第2スルーホールに対して絶縁するための所定の領域を除く部分と、偶数層の導体パターンのうち第2スルーホールを接続するための所定の領域及び第1スルーホールに対して絶縁するための所定の領域を除く部分とは、同一の形状を有するとともに、上下方向において位置を同じにして重ねられているので、奇数層の導体パターンと偶数層の導体パターンとによってコンデンサを生成し、これによって配線インピーダンス減少させてノイズを抑制することができる。そして、奇数層の導体パターンと偶数層の導体パターンとが絶縁層を挟んで上下方向に交互に配置されるので、基板上の平面におけるコンデンサを形成するための導体パターンの面積は小さくて済み、基板上の部品レイアウトの制約を極力小さくすることができる。また、第1スルーホール及び第2スルーホールの設置場所を変えることにより、基板上の自由な場所に部品を配置することが可能となる。また、上下方向に重ねられる奇数層の導体パターンと偶数層の導体パターンの配線幅を増加させることにより配線インピーダンスをより減少させることができ、一層ノイズを抑制することができる。
 また、このプリント回路基板において、前記奇数層の最上層における前記第2スルーホールに対して絶縁するための所定の領域には、前記第2スルーホールに接続される第1ランドを設け、前記偶数層の最下層における前記第1スルーホールに対して絶縁するための所定の領域には、前記第1スルーホールに接続される第2ランドを設けることが好ましい。
 このプリント回路基板によれば、奇数層の最上層における第2スルーホールに対して絶縁するための所定の領域に設けられた第1ランドに所定の極性の導体を半田接続し、偶数層の最下層における第1スルーホールに対して絶縁するための所定の領域に設けられた第2ランドに逆極性の導体を半田接続することができる。
 更に、このプリント回路基板において、前記第2スルーホールに対して絶縁するための所定の領域は、前記奇数層の導体パターンに形成される切欠であり、前記第1スルーホールに対して絶縁するための所定の領域は、前記偶数層の導体パターンに形成される切欠であるとよい。
 また、このプリント回路基板において、前記奇数層の導体パターンはグランドラインに接続され、前記偶数層の導体パターンは電源ラインに接続されるとよい。
 本発明の別の態様に係るノイズ抑制構造は、前述したプリント回路基板と、該プリント回路基板に接続されたコモンモードフィルタとを備えていることを特徴としている。
 また、本発明の更に別の態様に係るプリント回路基板は、基板上の部品レイアウトの制約を極力小さくすることができるノイズを抑制することが可能であることを特徴とする。
 本発明に係るプリント回路基板及びノイズ抑制構造によれば、奇数層の導体パターンと偶数層の導体パターンとが絶縁層を挟んで上下方向に交互に配置される多層基板を構成し、奇数層の導体パターンのうち第1スルーホールを接続するための所定の領域及び第2スルーホールに対して絶縁するための所定の領域を除く部分と、偶数層の導体パターンのうち第2スルーホールを接続するための所定の領域及び第1スルーホールに対して絶縁するための所定の領域を除く部分とは、同一の形状を有するとともに、上下方向において位置を同じにして重ねられているので、奇数層の導体パターンと偶数層の導体パターンとによってコンデンサを生成し、これによって配線インピーダンスを減少させてノイズを抑制することができる。そして、奇数層の導体パターンと偶数層の導体パターンとが絶縁層を挟んで上下方向に交互に配置されるので、基板上の平面におけるコンデンサを形成するための導体パターンの面積は小さくて済み、基板上の部品レイアウトの制約を小さくすることができる。また、第1スルーホール及び第2スルーホールの設置場所を変えることにより、基板上の自由な場所に部品を配置することが可能となる。また、上下方向に重ねられる奇数層の導体パターンと偶数層の導体パターンの配線幅を増加させることにより配線インピーダンスをより減少させることができ、一層ノイズを抑制することができる。
本発明に係るプリント回路基板及びノイズ抑制構造が採用される電動パワーステアリング装置の基本構造を示す図である。 図1に示す電動パワーステアリング装置のコントローラの制御系を示すブロック図である。 図1に示す電動パワーステアリング装置の半導体モジュール及びノイズ抑制構造を含むコントローラの分解斜視図である。 図3に示す半導体モジュールの平面図である。 ノイズ抑制構造の概略構成を示す斜視図である。図5において、ノイズ抑制構造を構成するプリント回路基板は、複数層の導体パターンのみが図示されている。 図5に示すノイズ抑制構造の平面図である。 図5に示すノイズ抑制構造を構成するプリント回路基板における複数層の導体パターンを示し、(A)は第1層の導体パターンの平面図、(B)は第2層の導体パターンの平面図、(C)は第3層の導体パターンの平面図、(D)は第4層の導体パターンの平面図、(E)は第5層の導体パターンの平面図、(F)は第6層の導体パターンの平面図である。 図5に示すノイズ抑制構造を構成するプリント回路基板の断面模式図である。 配線を交互に積層することにより生成されるコンデンサにおける配線の面積と容量との関係を示すグラフである。 配線を交互に積層した際において、基準となる配線幅に対する配線幅の増加具合と配線インピーダンスの低下率との関係を示すグラフである。 プリント回路基板の第1変形例の断面模式図である。 プリント回路基板の第2変形例の断面模式図である。 プリント回路基板の第3変形例の断面模式図である。 従来例のノイズ抑制構造の斜視図である。
 以下、本発明の実施の形態を図面を参照して説明する。図1は、本発明に係るプリント回路基板及びノイズ抑制構造が採用される電動パワーステアリング装置の基本構造を示す図である。図2は、図1に示す電動パワーステアリング装置のコントローラの制御系を示すブロック図である。図3は、図1に示す電動パワーステアリング装置の半導体モジュール及びノイズ抑制構造を含むコントローラの分解斜視図である。図4は、図3に示す半導体モジュールの平面図である。
 図1には、本発明に係るプリント回路基板及びノイズ抑制構造が採用される電動パワーステアリング装置の基本構造が示されており、電動パワーステアリング装置において、操向ハンドル1のコラム軸2は、減速ギア3、ユニバーサルジョイント4A及び4B、ピニオンラック機構5を経て操向車輪のタイトロッド6に連結されている。コラム軸2には、操向ハンドル1の操舵トルクを検出するトルクセンサ7が設けられており、操向ハンドル1の操舵力を補助する電動モータ8が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントローラ10には、バッテリー(図示せず)から電力が供給されるとともに、イグニションキー(図示せず)を経てイグニションキー信号IGN(図2参照)が入力される。コントローラ10は、トルクセンサ7で検出された操舵トルクTsと車速センサ9で検出された車速Vとに基づいて、アシスト(操舵補助)指令となる操舵補助指令値の演算を行い、演算された操舵補助指令値に基づいて電動モータ8に供給する電流を制御する。
 コントローラ10は、主としてマイクロコンピュータで構成されるが、その制御装置の機構及び構成を示すと図2に示すようになる。
 トルクセンサ7で検出された操舵トルクTs及び車速センサ9で検出された車速Vは制御演算部としての制御演算装置11に入力され、制御演算装置11で演算された電流指令値をゲート駆動回路12に入力する。ゲート駆動回路12で、電流指令値等に基づいて形成されたゲート駆動信号はFETのブリッジ構成で成るモータ駆動部13に入力され、モータ駆動部13は非常停止用の遮断装置14を経て3相ブラシレスモータで構成される電動モータ8を駆動する。3相ブラシレスモータの各相電流は電流検出回路15で検出され、検出された3相のモータ電流ia~icは制御演算装置11にフィードバック電流として入力される。また、電動モータ8には、ホールセンサ等の回転センサ16が取り付けられており、回転センサ16からの回転信号RTがロータ位置検出回路17に入力され、検出された回転位置θが制御演算装置11に入力される。
 また、イグニションキーからのイグニション信号IGNはイグニション電圧モニタ部18及び電源回路部19に入力され、電源回路部19から電源電圧Vddが制御演算装置11に入力されるとともに、装置停止用となるリセット信号Rsが制御演算装置11に入力される。そして、遮断装置14は、2相を遮断するリレー接点141及び142で構成されている。
 また、モータ駆動部13の回路構成について説明すると、電源ライン81に対し、直列に接続されたFETTr1及びTr2、FETTr3及びTr4、及びFETTr5及びTr6が並列に接続されている。そして、電源ライン81に対して、並列に接続されたFETTr1及びTr2、FETTr3及びTr4、及びFETTr5及びTr6が接地ライン82に接続されている。これにより、インバータを構成する。ここで、FETTr1及びTr2は、FETTr1のソース電極SとFETTr2のドレイン電極Dとが直列に接続され、3相モータのc相アームを構成し、c相出力ライン91cにて電流が出力される。また、FETTr3及びTr4は、FETTr3のソース電極SとFETTr4のドレイン電極Dとが直列に接続され、3相モータのa相アームを構成し、a相出力ライン91aにて電流が出力される。更に、FETTr5及びTr6は、FETTr5のソース電極SとFETTr6のドレイン電極Dとが直列に接続され、3相モータのb相アームを構成し、b相出力ライン91bにて電流が出力される。
 次に、図3は、図1に示す電動パワーステアリング装置の半導体モジュール及びノイズ抑制構造を含むコントローラ10の分解斜視図であり、コントローラ10は、ケース20と、モータ駆動部13を含むパワーモジュールとしての半導体モジュール30と、放熱用シート39と、制御演算装置11、ゲート駆動回路12及びノイズ抑制構造100を含む制御回路基板40と、電力及び信号用コネクタ50と、3相出力用コネクタ60と、カバー70とを備えている。
 ここで、ケース20は、略矩形状に形成され、半導体モジュール30を載置するための平板状の半導体モジュール載置部21と、半導体モジュール載置部21の長手方向端部に設けられた、電力及び信号用コネクタ50を実装するための電力及び信号用コネクタ実装部22と、半導体モジュール載置部21の幅方向端部に設けられた、3相出力用コネクタ60を実装するための3相出力用コネクタ実装部23とを備えている。
 そして、半導体モジュール載置部21には、半導体モジュール30を取り付けるための取付けねじ38がねじ込まれる複数のねじ孔21aが形成されている。また、半導体モジュール載置部21及び電力及び信号用コネクタ実装部22には、制御回路基板40を取り付けるための複数の取付けポスト24が立設され、各取付けポスト24には、制御回路基板40を取り付けるための取付けねじ41がねじ込まれるねじ孔24aが形成されている。更に、3相出力用コネクタ実装部23には、3相出力用コネクタ60を取り付けるための取付けねじ61がねじ込まれる複数のねじ孔23aが形成されている。
 また、半導体モジュール30は、前述したモータ駆動部13の回路構成を有し、図4に示すように、基板31に、6個のベアチップFET35で構成されるFETTr1~Tr6、電源ライン81に接続された正極端子81a、及び接地ライン82に接続された負極端子82aが実装されている。また、基板31には、a相出力ライン91aに接続されたa相出力端子92a、b相出力ライン91bに接続されたb相出力端子92b、及びc相出力ライン91cに接続されたc相出力端子92cを含む3相出力部90が実装されている。また、基板31上には、コンデンサを含むその他の表面実装部品37が実装されている。更に、半導体モジュール30の基板31には、半導体モジュール30を取り付けるための取付けねじ38が挿通する複数の貫通孔31aが設けられている。
 半導体モジュール30を半導体モジュール載置部21上に取り付けるに際しては、放熱用シート39を半導体モジュール載置部21上に取付け、その放熱用シート39の上から半導体モジュール30を取り付ける。この放熱用シート39により、半導体モジュール30で発生した熱が放熱用シート39を介してケース20に放熱される。
 また、制御回路基板40は、プリント回路基板110上に複数の電子部品を実装して制御演算装置11及びゲート駆動回路12を含む制御回路を構成するものである。
 ここで、図3に示すように、制御回路基板40のプリント回路基板110と、このプリント回路基板110に実装されたコモンモードフィルタ120とによりノイズ抑制構造100を構成している。ノイズ抑制構造100は、コモンモードフィルタ120によって電動パワーステアリング装置における電子装置のノイズを抑制すると共に、プリント回路基板110によってもノイズ抑制を行い、電子装置のノイズを低減するようにしている。
 図5は、ノイズ抑制構造の概略構成を示す斜視図である。図6は、図5に示すノイズ抑制構造の平面図である。図7は、図5に示すノイズ抑制構造を構成するプリント回路基板における複数層の導体パターンを示し、(A)は第1層の導体パターンの平面図、(B)は第2層の導体パターンの平面図、(C)は第3層の導体パターンの平面図、(D)は第4層の導体パターンの平面図、(E)は第5層の導体パターンの平面図、(F)は第6層の導体パターンの平面図である。図8は、図5に示すノイズ抑制構造を構成するプリント回路基板の断面模式図である。
 図5において、ノイズ抑制構造100は、プリント回路基板110(複数層の導体パターンのみ図示)と、このプリント回路基板110に実装されたコモンモードフィルタ120とにより構成される。
 ここで、プリント回路基板110は、図5および図8に示すように、第1層の導体パターン111~第6層の導体パターン116を有する6層基板で構成されている。プリント回路基板110は、図8に示すように、平板状の絶縁性の第1基材131と、この第1基材131に対して下方に配置された平板状の絶縁性の第2基材132とを備えている。そして、第1基材131の上側に絶縁層である第1プリプレグ133が配置され、第1基材131の下側であって第2基材132との間には絶縁層である第2プリプレグ134が配置され、第2基材132の下側には第3プリプレグ135が配置されている。
 そして、第1層の導体パターン111は第1プリプレグ133上面に配置され、第2層の導体パターン112は第1基材131上面に配置され、第3層の導体パターン113は第1基材131下面に配置され、第4層の導体パターン114は第2基材132上面に配置され、第5層の導体パターン115は第2基材132下面に配置され、第6層の導体パターン116は第3プリプレグ135下面に配置されている。結果的に、奇数層(1、3、5層)の導体パターン111、113、115と偶数層(2、4、6層)の導体パターン112、114、116とがプリプレグ(絶縁層)133、第1基材(絶縁層)131、第2プリプレグ(絶縁層)134、第2基材(絶縁層)132、第3プリプレグ(絶縁層)135を挟んで上下方向に交互に配置されている。
 ここで、奇数層の導体パタ-ン111、113、115は、グランドパターンであり、グランドラインに接続される。また、偶数層の導体パターン112、114、116は、電源パターンであり、電源ラインに接続される。
 そして、奇数層の導体パターン111、113、115は、図6乃至図8に示すように、上下方向に連通する複数の第1スルーホール117によって相互接続されている。また、偶数層の導体パターン112、114、116は、上下方向に連通する複数の第2スルーホール118によって相互接続されている。各第1スルーホール117は、プリント回路基板110の上面と下面との間を貫通する貫通孔117aと、貫通孔117aの内周面において環状に上下方向に延びてプリント回路基板110の上面と下面との間を接続する導電部117bとで構成されている。また、各第2スルーホール118は、プリント回路基板110の上面と下面との間を貫通する貫通孔118aと、貫通孔118aの内周面において環状に上下方向に延びてプリント回路基板110の上面と下面との間を接続する導電部118bとで構成されている。
 次に、第1層~第6層の導体パターン111~116の構成につき、図7を参照して説明する。
 先ず、第1層の導体パターン111は、図7(A)に示すように、中央に略平行四辺形状のパターン本体111aを備え、このパターン本体111aの上部右端から第1スルーホール117を接続するための領域を形成する第1接続部111bが突出形成されている。この第1接続部111bの左側には、第2スルーホール118に対して絶縁するための領域を形成する第1切欠111dが形成されている。また、パターン本体111aの下部内側には、第1スルーホール117を接続するための領域を形成する第2接続部111cが形成されるとともに、第2スルーホール118に対して絶縁するための領域を形成する第2切欠111eが形成されている。
 そして、第1層の第1切欠111dには、当該第1層の導体パターン111と逆層の偶数層の導体パターン112,114,116に接続される第2スルーホール118に接続される第1ランド119aが設けられている。また、第1層の第2切欠111eにも、当該第1層の導体パターン111と逆層の偶数層の導体パターン112,114,116に接続される第2スルーホール118に接続される第1ランド119aが設けられている。
 また、第2層の導体パターン112は、図7(B)に示すように、中央に略平行四辺形状のパターン本体112aを備え、このパターン本体112aの上部左端から第2スルーホール118を接続するための領域を形成する第1接続部112bが突出形成されている。この第1接続部112bの右側には、第1スルーホール117に対して絶縁するための領域を形成する第1切欠112dが形成されている。また、パターン本体112aの下部内側には、第2スルーホール118を接続するための領域を形成する第2接続部112cが形成されるとともに、第1スルーホール117に対して絶縁するための領域を形成する第2切欠112eが形成されている。
 また、第3層の導体パターン113は、第1層の導体パターン111と同一形状であり、図7(C)に示すように、中央に略平行四辺形状のパターン本体113aを備え、このパターン本体113aの上部右端から第1スルーホール117を接続するための領域を形成する第1接続部113bが突出形成されている。この第1接続部113bの左側には、第2スルーホール118に対して絶縁するための領域を形成する第1切欠113dが形成されている。また、パターン本体113aの下部内側には、第1スルーホール117を接続するための領域を形成する第2接続部113cが形成されるとともに、第2スルーホール118に対して絶縁するための領域を形成する第2切欠113eが形成されている。
 更に、第4層の導体パターン114は、第2層の導体パターン112と同一形状であり、図7(D)に示すように、中央に略平行四辺形状のパターン本体114aを備え、このパターン本体114aの上部左端から第2スルーホール118を接続するための領域を形成する第1接続部114bが突出形成されている。この第1接続部114bの右側には、第1スルーホール117に対して絶縁するための領域を形成する第1切欠114dが形成されている。また、パターン本体114aの下部内側には、第2スルーホール118を接続するための領域を形成する第2接続部114cが形成されるとともに、第1スルーホール117に対して絶縁するための領域を形成する第2切欠114eが形成されている。
 また、第5層の導体パターン115は、第1層、第3層の導体パターン111、113と同一形状であり、図7(E)に示すように、中央に略平行四辺形状のパターン本体115aを備え、このパターン本体115aの上部右端から第1スルーホール117を接続するための領域を形成する第1接続部115bが突出形成されている。この第1接続部115bの左側には、第2スルーホール118に対して絶縁するための領域を形成する第1切欠115dが形成されている。また、パターン本体115aの下部内側には、第1スルーホール117を接続するための領域を形成する第2接続部115cが形成されるとともに、第2スルーホール118に対して絶縁するための領域を形成する第2切欠115eが形成されている。
 また、第6層の導体パターン116は、第2層、第4層の導体パターン112、114と同一形状であり、図7(F)に示すように、中央に略平行四辺形状のパターン本体116aを備え、このパターン本体116aの上部左端から第2スルーホール118を接続するための領域を形成する第1接続部116bが突出形成されている。この第1接続部116bの右側には、第1スルーホール117に対して絶縁するための領域を形成する第1切欠116dが形成されている。また、パターン本体116aの下部内側には、第2スルーホール118を接続するための領域を形成する第2接続部116cが形成されるとともに、第1スルーホール117に対して絶縁するための領域を形成する第2切欠116eが形成されている。
 そして、第6層の第1切欠116dには、当該第6層の導体パターン116と逆層の奇数層の導体パターン111,113,115に接続される第1スルーホール117に接続される第2ランド119bが設けられている。また、第6層の第2切欠116eにも、当該第6層の導体パターン116と逆層の奇数層の導体パターン111,113,115に接続される第1スルーホール117に接続される第2ランド119bが設けられている。
 このように形成された第1層~第6層の導体パターン111~116において、奇数層の導体パターン111、113、115のうち第1スルーホール117を接続するための所定の領域を形成する第1接続部111b、113b、115b及び第2接続部111c、113c、115c、第2スルーホール118に対して絶縁するための所定の領域を形成する第1切欠111d、113d、115d及び第2切欠111e、113e、115eを除く部分(図7(A),(C),(E)における一点鎖線で囲まれた部分)と、偶数層の導体パターン112、114、116のうち第2スルーホール118を接続するための所定の領域を形成する第1接続部112b、114b、116b及び第2接続部112c、114c、116c、第1スルーホール117に対して絶縁するための所定の領域を形成する第1切欠112d、114d、116d及び第2切欠112e、114e、116eを除く部分(図7(B),(D),(F)における一点鎖線で囲まれた部分)とは、同一の形状を有するとともに、上下方向において位置を同じにして重ねられている。
 また、プリント回路基板110には、図5及び図6に示すように、上記導体パターン111~116とは別個の第1層~第6層の導体パターン111G~116Gが、平面から見て上記導体パターン111~116に対して所定の距離を隔てて配置されている。第1層~第6層の導体パターン111G~116Gは、図6に示すように、左右方向に延びるように形成される。第1層の導体パターン111Gは、図示はしないが、第1プリプレグ133上面に配置され、第2層の導体パターン112Gは第1基材131上面に配置され、第3層の導体パターン113Gは第1基材131下面に配置され、第4層の導体パターン114Gは第2基材132上面に配置され、第5層の導体パターン115Gは第2基材132下面に配置され、第6層の導体パターン116Gは第3プリプレグ135下面に配置されている。この第1層~第6層の導体パターン111G~116Gは、図6に示すように、上下方向に連通する複数のスルーホールTH1によって相互接続されている。また、第1層から第6層の導体パターン111G~116Gは、グランドパターンであり、グランドラインに接続される。
 更に、プリント回路基板110には、図5に示すように、上記導体パターン111~116とは更に別個の第1層から第6層の導体パターン111P~116Pが、平面から見て上記導体パターン111~116と所定の距離を隔ててかつ導体パターン111G~116Gと左右方向で対向するように配置されている。第1層~第6層の導体パターン111P~116Pは、図6に示すように、左右方向に延びるように形成される。第1層の導体パターン111Pは、図示はしないが、第1プリプレグ133上面に配置され、第2層の導体パターン112Pは第1基材131上面に配置され、第3層の導体パターン113Pは第1基材131下面に配置され、第4層の導体パターン114Pは第2基材132上面に配置され、第5層の導体パターン115Pは第2基材132下面に配置され、第6層の導体パターン116Pは第3プリプレグ135下面に配置されている。この第1層~第6層の導体パターン111P~116Pは、図6に示すように、上下方向に連通する複数のスルーホールTH2によって相互接続されている。また、第1層から第6層の導体パターン111P~116Pは、電源パターンであり、電源ラインに接続される。
 なお、前述した第1層~第6層の導体パターン111~116、111G~111G、111P~116Pは、全て銅からなる導体である。また、第1層の導体パターン111、111G、111Pの厚さは0.018mm程度、第2層の導体パターン112、112G、112Pの厚さは0.035mm程度、第3層の導体パターン113、113G、113Pの厚さは0.035mm程度、第4層の導体パターン114、114G、114Pの厚さは0.035mm程度、第5層の導体パターン115、115G、115Pの厚さは0.035mm程度、第6層の導体パターン116、116G、116Pの厚さは0.018mm程度である。更に、第1基材131及び第2基材の厚さは、それぞれ0.2mm程度である。また、第1プレプレグ133の厚さは、0.2mm程度、第2プレプレグ134の厚さは0.4mm程度、第3プレプレグ135の厚さは0.2mm程度である。そして、図8に示すように、第1層の導体パターン111の上面にはソルダレジスト136が形成され、第6層の導体パターン116の下面にもソルダレジストが形成され、ソルダレジスト136,137を含めたプリント回路基板110全体の厚さは、1.4mm程度となっている。
 そして、コモンモードフィルタ120は、図5に示すように、フィルタコア121と、フィルタコア121に巻回された2本のコイル122,123とを備えている。図6に示すように、一方のコイル122の一端は、第1層~第6層の導体パターン111G~116Gを相互接続するスルーホールTH1に接続され、一方のコイル122の他端は、第1層~第6層の導体パターン111P~116Pを相互接続するスルーホールTH2に接続される。また、他方のコイル123の一端は、偶数層の導体パターン112、114、116を相互接続する第2スルーホール118に接続され、他方のコイル123の他端は、奇数層の導体パターン111、113、115を相互接続する第1スルーホール117に接続される。
 なお、図6において、電源ラインに接続されるスルーホールTH2及び第2スルーホール118は、図5における上下方向のストレート配置となっており、また、グランドラインに接続されるスルーホールTH1及び第1スルーホール117もストレート配置となっているが、第1スルーホール117及び第2スルーホール118の位置を入れ替えて、電源ラインに接続されるスルーホールTH2及び第2スルーホール118をクロス配置、グランドラインに接続されるスルーホールTH1及び第1スルーホール117もクロス配置とすることができる。
 そして、このように構成されたノイズ抑制構造110を含む制御回路基板40は、半導体モジュール30を半導体モジュール載置部21上に取り付けた後、図3に示すように、半導体モジュール30の上方から半導体モジュール載置部21及び電力及び信号用コネクタ実装部22に立設された複数の取付けポスト24上に複数の取付けねじ41により取り付けられる。制御回路基板40のプリント回路基板110には、取付けねじ41が挿通する複数の貫通孔40aが形成されている。
 また、電力及び信号用コネクタ50は、バッテリー(図示せず)からの直流電源を半導体モジュール30に、トルクセンサ12や車速センサ9からの信号を含む各種信号を制御回路基板40に入力するために用いられる。電力及び信号用コネクタ50は、図3に示すように、半導体モジュール載置部21に設けられた電力及び信号用コネクタ実装部22に複数の取付けねじ51により取り付けられる。
 そして、3相出力用コネクタ60は、a相出力端子92a、b相出力端子92b、及びc相出力端子92cからの電流を出力するために用いられる。3相出用コネクタ60は、図3に示すように、半導体モジュール載置部21の幅方向端部に設けられた3相出力用コネクタ実装部23に複数の取付けねじ61により取り付けられる。3相出力コネクタ60には、取付けねじ61が挿通する複数の貫通孔60aが形成されている。
 更に、カバー70は、半導体モジュール30、制御回路基板40、電力及び信号用コネクタ50、及び3相出力用コネクタ60が取り付けられたケース20に対し、図3に示すように、制御回路基板40の上方から当該制御回路基板40を覆うように取り付けられる。
 次に、図9を参照して、配線を交互に積層することにより生成されるコンデンサにおける配線の面積と容量との関係を説明する。
 配線を交互に積層することによりコンデンサが生成される。その際に、コンデンサの容量は次の(1)式で求められる。
Figure JPOXMLDOC01-appb-M000001
 ここで、 Cはコンデンサの容量値、kは変換係数、εは基板材料の誘電率、Aは交互に積層される配線の面積、dは層間の距離、nは層の数である。
 この(1)式において、層の数nが増加すると容量値Cが増加するので、図9に示すように、層の積層数を増加させると、容量値が増加する。
 また、(1)式において、交互に積層される配線の面積Aが増加すると容量値Cが増加するので、図9に示すように配線面積が増加するほど容量も増加する。
 また、図10を参照して、配線を交互に積層した際において、基準となる配線幅に対する配線幅の増加具合と配線インピーダンスの低下率との関係を説明する。
 基準となる配線幅に対して配線幅を増加させた際の、基準となる配線幅に対して増加した配線幅のインピーダンスの割合は、次の(2)式により求められる。
Figure JPOXMLDOC01-appb-M000002
 ここで、Rdifは基準となる配線幅に対して増加した配線幅のインピーダンスの割合、εは基板材料の誘電率、Wは基準となる配線幅、Wは増加した配線幅、Tは配線の厚み、Hは誘電体材料の厚みである。
 図10に示すように、基準となる配線幅に対する増加した配線幅の比が大きくなると、基準となる配線幅に対する増加した配線幅のインピーダンスの割合が低下する。従って、配線幅を増加させればさせるほど、配線のインピーダンスは減少する。
 ここで、本実施形態におけるプリント回路基板110ノイズ抑制構造100においては、奇数層の導体パターン111,113,115と偶数層の導体パターン112、114、116とがプリプレグ(絶縁層)133、第1基材(絶縁層)131、第2プリプレグ(絶縁層)134、第2基材(絶縁層)132、第3プリプレグ(絶縁層)135を挟んで上下方向に交互に配置される。そして、奇数層の導体パターン111、113、115のうち第1スルーホール117を接続するための所定の領域を形成する第1接続部111b、113b、115b及び第2接続部111c、113c、115c、第2スルーホール118に対して絶縁するための所定の領域を形成する第1切欠111d、113d、115d及び第2切欠111e、113e、115eを除く部分(図7(A),(C),(E)における一点鎖線で囲まれた部分)と、偶数層の導体パターン112、114、116のうち第2スルーホール118を接続するための所定の領域を形成する第1接続部112b、114b、116b及び第2接続部112c、114c、116c、第1スルーホール117に対して絶縁するための所定の領域を形成する第1切欠112d、114d、116d及び第2切欠112e、114e、116eを除く部分(図7(B),(D),(F)における一点鎖線で囲まれた部分)とは、同一の形状を有するとともに、上下方向において位置を同じにして重ねられている。このため、奇数層の導体パターン111,113,115と偶数層の導体パターン112、114、116とによってコンデンサを生成し、これによって配線インピーダンス減少させてノイズを抑制することができる。
 そして、奇数層の導体パターン111,113,115と偶数層の導体パターン112、114、116とがプリプレグ(絶縁層)133、第1基材(絶縁層)131、第2プリプレグ(絶縁層)134、第2基材(絶縁層)132、第3プリプレグ(絶縁層)135を挟んで上下方向に交互に配置されるので、基板上の平面におけるコンデンサを形成するための導体パターンの面積は小さくて済み、基板上の部品レイアウトの制約を小さくすることができる。また、第1スルーホール117及び第2スルーホール118の設置場所を変えることにより、基板上の自由な場所に部品を配置することが可能となる。また、上下方向に重ねられる奇数層の導体パターン111、113、115と偶数層の導体パターン112、114、116の配線幅を増加させることにより配線インピーダンスをより減少させることができ、一層ノイズを抑制することができる。
 また、奇数層の導体パターン111,113,115と偶数層の導体パターン112、114、116とを上下方向に交互に配置することにより、図6に示すように、コモンモードフィルタ120の直下に導体パターンを配線する必要がなくなり、コモンモードフィルタ120の直下に他の部品を実装するスペースを確保することができる。
 また、本実施形態におけるプリント回路基板110ノイズ抑制構造100においては、図7(A)に示すように、奇数層の最上層、即ち第1層における第2スルーホール118に対して絶縁するための所定の領域を形成する第1切欠111d及び第2切欠111eには、第2スルーホール118に接続される第1ランド119aが設けられている。また、図7(F)に示すように、偶数層の最下層、即ち第6層における第1スルーホール117に対して絶縁するための所定の領域を形成する第1切欠116d及び第2切欠116eには、第1スルーホール117に接続される第2ランド119bが設けられている。
 このプリント回路基板110及びノイズ抑制構造100によれば、奇数層の最上層における第2スルーホール118に対して絶縁するための所定の領域に設けられた第1ランド119aに所定の極性の導体を半田接続し、偶数層の最下層における第1スルーホール117に対して絶縁するための所定の領域に設けられた第2ランド119bに逆極性の導体を半田接続することができる。
 なお、奇数層の導体パターン111、113、115と偶数層の導体パターン112、114、115とにおいて形状が同一で上下方向に重なる部分(図7(A)~(F)において一点鎖線で囲まれた部分)の幅X及び長さYは、広ければ広いほど配線面積が増加し、配線インピーダンスを低下させるのに効果的である。
 また、奇数層の導体パターン111、113、115における第1接続部111b、113b、115bと第2接続部111c、113c、115cとの間の部分(図7(A)においてY1で示す部分)、偶数層の導体パターン112、114、116における第1接続部112b、114b、116bと第2接続部112c、114c、116cとの間の部分には、伝導率が下がるのを防止するためにスルーホールを設けないことが好ましい。
 次に、プリント回路基板の第1変形例乃至第3変形例を、図11乃至図13を参照してそれぞれ説明する。図11は、プリント回路基板の第1変形例の断面模式図である。図12は、プリント回路基板の第2変形例の断面模式図である。図13は、プリント回路基板の第3変形例の断面模式図である。
 図11に示すプリント回路基板110は、第1層~第16層の導体パターン151~166を有する16層基板である。第1層~第16層の導体パターン151~166は、絶縁層171~185を挟んで順次配置されている。
 そして、この第1層~第16層の導体パターン151~166のうち上側8層の導体パターン151~158につき、図8に示すプリント回路基板110と同様の構成を適用するものである。
 即ち、上側8層における奇数層の導体パターン151、153、155、157が第1スルーホール(図示せず)によって相互接続され、偶数層の導体パターン152、154、156、158が第2スルーホール(図示せず)によって相互接続されている。
 また、上側8層における奇数層の導体パターン151、153、155、157のうち第1スルーホールを接続するための所定の領域及び第2スルーホールに対して絶縁するための所定の領域を除く部分と、偶数層の導体パターン152、154、156、158のうち第2スルーホールを接続するための所定の領域及び第1スルーホールに対して絶縁するための所定の領域を除く部分とは、同一の形状を有するとともに、上下方向において位置を同じにして重ねられている。このため、奇数層の導体パターン151、153、155、157と偶数層の導体パターン152、154、156、158とによってコンデンサを生成し、これによって配線インピーダンス減少させてノイズを抑制することができる。
 次に、図12に示すプリント回路基板110は、第1層~第16層の導体パターン151~166を有する16層基板である。第1層~第16層の導体パターン151~166は、絶縁層171~185を挟んで順次配置されている。
 そして、この第1層~第16層の導体パターン151~166のうち中間の8層の導体パターン155~162につき、図8に示すプリント回路基板110と同様の構成を適用するものである。
 即ち、中間8層の奇数層の導体パターン155、153、155、157が第1スルーホール(図示せず)によって相互接続され、偶数層の導体パターン152、154、156、158が第2スルーホール(図示せず)によって相互接続されている。
 また、中間8層の奇数層の導体パターン155、157、159、161のうち第1スルーホールを接続するための所定の領域及び第2スルーホールに対して絶縁するための所定の領域を除く部分と、偶数層の導体パターン156、158、160、162のうち第2スルーホールを接続するための所定の領域及び第1スルーホールに対して絶縁するための所定の領域を除く部分とは、同一の形状を有するとともに、上下方向において位置を同じにして重ねられている。このため、奇数層の導体パターン155、157、159、161と偶数層の導体パターン156、158、160、162とによってコンデンサを生成し、これによって配線インピーダンス減少させてノイズを抑制することができる。
 更に、図13に示すプリント回路基板110は、第1層~第16層の導体パターン151~166を有する16層基板である。第1層~第16層の導体パターン151~166は、絶縁層171~185を挟んで順次配置されている。
 そして、この第1層~第16層の導体パターン151~166のうち下側6層の導体パターン161~166につき、図8に示すプリント回路基板110と同様の構成を適用するものである。
 即ち、下側6層の奇数層の導体パターン161、163、165が第1スルーホール(図示せず)によって相互接続され、偶数層の導体パターン162、164、166が第2スルーホール(図示せず)によって相互接続されている。
 また、下側6層の奇数層の導体パターン161、163、165、166のうち第1スルーホールを接続するための所定の領域及び第2スルーホールに対して絶縁するための所定の領域を除く部分と、偶数層の導体パターン162、164、166のうち第2スルーホールを接続するための所定の領域及び第1スルーホールに対して絶縁するための所定の領域を除く部分とは、同一の形状を有するとともに、上下方向において位置を同じにして重ねられている。このため、奇数層の導体パターン161、163、165と偶数層の導体パターン162、164、166とによってコンデンサを生成し、これによって配線インピーダンス減少させてノイズを抑制することができる。
 以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
 例えば、プリント回路基板110は、図5乃至図8に示す例では6層基板、図11乃至図13に示す例では16層基板で構成されているが、2層以上で構成されていればよい。
 また、同一の形状を有し上下方向において位置を同じにして重ねられる奇数層の導体パターン及び偶数層の導体パターンの合計数は、6層や8層に限らず、任意の数でよい。同一の形状を有し上下方向において位置を同じにして重ねられる奇数層の導体パターン及び偶数層の導体パターンの合計数を変えることにより、配線インピーダンスを調整できるので、目的のノイズ調整値に応じて当該重ねられる導体パターンの数を決定すればよい。
 また、プリント回路基板110において、第2スルーホール118に対して絶縁するための所定の領域は、奇数層の導体パターン111、113、115に形成される切欠111d,111e、113d,113e、115d,115eとしてあるが、奇数層の導体パターン111、113、115に形成される穴としてもよい。
 更に、プリント回路基板110において、第1スルーホール117に対して絶縁するための所定の領域は、偶数層の導体パターン112、114、116に形成される切欠112d,112e、114d,114e、116d,116eとしてあるが、偶数層の導体パターン112、114、116に形成される穴としてもよい。
 1 操向ハンドル1
 2 コラム軸
 3 減速ギア3
 4A,4B ユニバーサルジョイント
 5 ピニオンラック機構
 6 タイトロッド
 7 トルクセンサ
 8 電動モータ
 9 車速センサ
 10 コントローラ
 11 制御演算装置
 12 ゲート駆動回路
 13 モータ駆動部
 14 非常停止用の遮断装置
 15 電流検出回路
 16 回転センサ
 17 ロータ位置検出回路
 18 IGN電圧モニタ部
 19 電源回路部
 20 ケース
 21 半導体モジュール載置部
 21a ねじ孔
 22 電力及び信号用コネクタ実装部
 23 3相出力用コネクタ実装部
 23a ねじ孔
 24 取付けポスト
 24a ねじ孔
 30 半導体モジュール
 31 基板
 31a 貫通孔
 32 絶縁層
 35 ベアチップFET(ベアチップトランジスタ)
 37 表面実装部品
 38 取付けねじ
 39 放熱用シート
 40 制御回路基板
 40a 貫通孔
 41 取付けねじ
 50 電力及び信号用コネクタ
 51 取付けねじ
 60 3相出力用コネクタ
 60a 貫通孔
 61 取付けねじ
 70 カバー
 81電源ライン
 81a 正極端子
 82 接地ライン
 82a 負極端子
 90 3相出力部
 91a a相出力ライン
 91b b相出力ライン
 91c c相出力ライン
 100 ノイズ抑制構造
 110 プリント回路基板
 111 第1層の導体パターン
 111a パターン本体
 111b 第1接続部
 111c 第2接続部
 111d 第1切欠
 111e 第2切欠
 111G 第1層の導体パターン
 111P 第1層の導体パターン
 112 第2層の導体パターン
 112a パターン本体
 112b 第1接続部
 112c 第2接続部
 112d 第1切欠
 112e 第2切欠
 112G 第2層の導体パターン
 112P 第2層の導体オアターン
 113 第3層の導体パターン
 113a パターン本体
 113b 第1接続部
 113c 第2接続部
 113d 第2切欠
 113e 第2切欠
 113G 第3層の導体パターン
 113P 第3層の導体パターン
 114 第4層の導体パターン
 114a パターン本体
 114b 第1接続部
 114c 第2接続部
 114d 第1切欠
 114e 第2切欠
 114G 第4層の導体パターン
 114P 第4層の導体パターン
 115 第5層の導体パターン
 115a パターン本体
 115b 第1接続部
 115c 第2接続部
 115d 第1切欠
 115e 第2切欠
 115G 第5層の導体パターン
 115P 第6層の導体パターン
 116 第6層の導体パターン
 116a パターン本体
 116b 第1接続部
 116c 第2接続部
 116d 第1切欠
 116e 第2切欠
 116G 第6層の導体パターン
 116P 第6層の導体パターン
 117 第1スルーホール
 117a 貫通孔
 117b 導電部
 118 第2スルーホール
 118a 貫通孔
 118b 導電部
 119a 第1ランド
 119b 第2ランド
 120 コモンモードフィルタ
 121 フィルタコア
 122 コイル
 123 コイル
 131 第1基材
 132 第2基材
 133 第1プリプレグ
 134 第2プリプレグ
 135 第3プリプレグ
 136 ソルダレジスト
 137 ソルダレジスト
 TH1 スルーホール
 TH2 スルーホール

Claims (5)

  1.  奇数層の導体パターンと偶数層の導体パターンとが絶縁層を挟んで上下方向に交互に配置される多層基板を構成するプリント回路基板であって、
     前記奇数層の導体パターンは、上下方向に連通する第1スルーホールによって接続され、前記偶数層の導体パターンは、上下方向に連通する第2スルーホールによって接続され、
     前記奇数層の導体パターンのうち前記第1スルーホールを接続するための所定の領域及び前記第2スルーホールに対して絶縁するための所定の領域を除く部分と、前記偶数層の導体パターンのうち前記第2スルーホールを接続するための所定の領域及び前記第1スルーホールに対して絶縁するための所定の領域を除く部分とは、同一の形状を有するとともに、上下方向において位置を同じにして重ねられていることを特徴とするプリント回路基板。
  2.  前記奇数層の最上層における前記第2スルーホールに対して絶縁するための所定の領域に、前記第2スルーホールに接続される第1ランドを設け、前記偶数層の最下層における前記第1スルーホールに対して絶縁するための所定の領域に、前記第1スルーホールに接続される第2ランドを設けることを特徴とする請求項1記載のプリント回路基板。
  3.  前記第2スルーホールに対して絶縁するための所定の領域は、前記奇数層の導体パターンに形成される切欠であり、前記第1スルーホールに対して絶縁するための所定の領域は、前記偶数層の導体パターンに形成される切欠であることを特徴とする請求項1又は2記載のプリント回路基板。
  4.  前記奇数層の導体パターンはグランドラインに接続され、前記偶数層の導体パターンは電源ラインに接続されることを特徴とする請求項1乃至3のうち何れか一項に記載のプリント回路基板。
  5.  請求項1乃至4のうち何れか一項に記載のプリント回路基板と、該プリント回路基板に接続されたコモンモードフィルタとを備えていることを特徴とするノイズ抑制構造。
PCT/JP2014/000059 2013-01-15 2014-01-09 プリント回路基板及びノイズ抑制構造 WO2014112336A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014557386A JP6028812B2 (ja) 2013-01-15 2014-01-09 電動パワーステアリング装置用制御装置
EP14741098.9A EP2947974B1 (en) 2013-01-15 2014-01-09 A controlling apparatus for an electric power steering apparatus
CN201480004798.5A CN104919905B (zh) 2013-01-15 2014-01-09 电动助力转向装置用控制装置
BR112015016946-5A BR112015016946B1 (pt) 2013-01-15 2014-01-09 Placa de circuito impresso e estrutura de supressão de ruído
US14/760,900 US9402304B2 (en) 2013-01-15 2014-01-09 Controlling apparatus for electric power steering apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-004673 2013-01-15
JP2013004673 2013-01-15

Publications (1)

Publication Number Publication Date
WO2014112336A1 true WO2014112336A1 (ja) 2014-07-24

Family

ID=51209434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000059 WO2014112336A1 (ja) 2013-01-15 2014-01-09 プリント回路基板及びノイズ抑制構造

Country Status (6)

Country Link
US (1) US9402304B2 (ja)
EP (1) EP2947974B1 (ja)
JP (1) JP6028812B2 (ja)
CN (1) CN104919905B (ja)
BR (1) BR112015016946B1 (ja)
WO (1) WO2014112336A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015190424A1 (ja) * 2014-06-13 2017-04-20 日本精工株式会社 ノイズ抑制機能を有する多層プリント基板及びそれを用いた電動パワーステアリング装置用ecu基板
JPWO2019220482A1 (ja) * 2018-05-14 2021-04-08 三菱電機株式会社 電子装置および電子装置が搭載された電動パワーステアリング装置
TWI725750B (zh) * 2020-02-21 2021-04-21 達方電子股份有限公司 薄膜電路板

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017094062A1 (ja) * 2015-11-30 2018-06-14 ルネサスエレクトロニクス株式会社 電子装置
CN107404806B (zh) * 2016-05-18 2020-12-01 德昌电机(深圳)有限公司 印刷电路板及电机
JP2018063989A (ja) 2016-10-11 2018-04-19 Tdk株式会社 薄膜キャパシタ
JP6737118B2 (ja) 2016-10-11 2020-08-05 Tdk株式会社 薄膜コンデンサ
JP6805702B2 (ja) 2016-10-11 2020-12-23 Tdk株式会社 薄膜コンデンサ
TWI651919B (zh) * 2017-07-10 2019-02-21 建準電機工業股份有限公司 用於馬達之驅動組件及用於馬達激磁之半導體封裝結構
JP2019080471A (ja) * 2017-10-27 2019-05-23 オムロンオートモーティブエレクトロニクス株式会社 負荷駆動装置
EP4046230A4 (en) * 2019-10-16 2024-04-10 Relectrify Holdings Pty ELECTRONIC ASSEMBLY
US20210384657A1 (en) * 2020-06-03 2021-12-09 Rosemount Aerospace Inc. Circuit card assembly stack with stand-offs
CN112420084A (zh) * 2020-11-17 2021-02-26 温州职业技术学院 一种可移动式信息存储装置
CN113301734B (zh) * 2021-05-06 2022-10-18 深圳崇达多层线路板有限公司 一种提升高多层线路板背钻能力的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189153A (ja) * 1975-02-03 1976-08-04
JPH0555721A (ja) * 1991-08-23 1993-03-05 Matsushita Electric Ind Co Ltd トリマーコンデンサ
JP2000182886A (ja) * 1998-12-14 2000-06-30 Daewoo Electronics Co Ltd キャパシタインキ、誘電体グリ―ンテ―プ、多層グリ―ンテ―プスタック、埋込み型キャパシタ及びその製造方法
JP2000244129A (ja) * 1998-12-25 2000-09-08 Ngk Spark Plug Co Ltd 配線基板、コア基板及びその製造方法
JP2001237507A (ja) * 2000-02-24 2001-08-31 Ngk Spark Plug Co Ltd 高誘電率複合材料及びそれを用いたプリント配線板並びに多層プリント配線板
JP2004165631A (ja) * 2002-10-08 2004-06-10 Ngk Spark Plug Co Ltd 積層コンデンサ及びその製造方法
JP2012129271A (ja) 2010-12-14 2012-07-05 Nec Corp ノイズ抑制構造

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182210A (ja) * 1985-02-07 1986-08-14 松下電器産業株式会社 コンデンサ
JPS61182309A (ja) * 1985-02-07 1986-08-15 Matsushita Electric Ind Co Ltd ノイズフイルタ
JP2784555B2 (ja) * 1990-10-30 1998-08-06 京セラ株式会社 コンデンサー内蔵複合回路基板
US6191934B1 (en) 1998-10-02 2001-02-20 Sarnoff Corporation & Co., Ltd. High dielectric constant embedded capacitors
US6333857B1 (en) * 1998-12-25 2001-12-25 Ngk Spark Plug Co., Ltd. Printing wiring board, core substrate, and method for fabricating the core substrate
US6214445B1 (en) * 1998-12-25 2001-04-10 Ngk Spark Plug Co., Ltd. Printed wiring board, core substrate, and method for fabricating the core substrate
US6981878B1 (en) * 2004-02-07 2006-01-03 Edward Herbert Connection system for fast power supplies
JP4353951B2 (ja) * 2006-03-06 2009-10-28 三菱電機株式会社 電動式パワーステアリング装置
US8158892B2 (en) * 2007-08-13 2012-04-17 Force10 Networks, Inc. High-speed router with backplane using muli-diameter drilled thru-holes and vias
EP2280589A1 (en) * 2009-07-31 2011-02-02 Telefonaktiebolaget L M Ericsson (Publ) Electronic circuit
WO2011018938A1 (ja) * 2009-08-12 2011-02-17 日本電気株式会社 多層プリント配線板
US9107300B2 (en) * 2009-12-14 2015-08-11 Nec Corporation Resonant via structures in multilayer substrates and filters based on these via structures
JP5407935B2 (ja) * 2010-02-26 2014-02-05 日本精工株式会社 電動パワーステアリング装置
FR2971666B1 (fr) * 2011-02-10 2014-11-14 Hager Controls Bloc electrique de controle utilisant la technologie des circuits imprimes pour le conducteur des lignes de puissance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189153A (ja) * 1975-02-03 1976-08-04
JPH0555721A (ja) * 1991-08-23 1993-03-05 Matsushita Electric Ind Co Ltd トリマーコンデンサ
JP2000182886A (ja) * 1998-12-14 2000-06-30 Daewoo Electronics Co Ltd キャパシタインキ、誘電体グリ―ンテ―プ、多層グリ―ンテ―プスタック、埋込み型キャパシタ及びその製造方法
JP2000244129A (ja) * 1998-12-25 2000-09-08 Ngk Spark Plug Co Ltd 配線基板、コア基板及びその製造方法
JP2001237507A (ja) * 2000-02-24 2001-08-31 Ngk Spark Plug Co Ltd 高誘電率複合材料及びそれを用いたプリント配線板並びに多層プリント配線板
JP2004165631A (ja) * 2002-10-08 2004-06-10 Ngk Spark Plug Co Ltd 積層コンデンサ及びその製造方法
JP2012129271A (ja) 2010-12-14 2012-07-05 Nec Corp ノイズ抑制構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2947974A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015190424A1 (ja) * 2014-06-13 2017-04-20 日本精工株式会社 ノイズ抑制機能を有する多層プリント基板及びそれを用いた電動パワーステアリング装置用ecu基板
JPWO2019220482A1 (ja) * 2018-05-14 2021-04-08 三菱電機株式会社 電子装置および電子装置が搭載された電動パワーステアリング装置
JP7308821B2 (ja) 2018-05-14 2023-07-14 三菱電機株式会社 電子装置および電子装置が搭載された電動パワーステアリング装置
TWI725750B (zh) * 2020-02-21 2021-04-21 達方電子股份有限公司 薄膜電路板

Also Published As

Publication number Publication date
EP2947974A4 (en) 2016-09-21
CN104919905B (zh) 2017-09-01
JP6028812B2 (ja) 2016-11-24
EP2947974B1 (en) 2019-09-25
JPWO2014112336A1 (ja) 2017-01-19
US20150334822A1 (en) 2015-11-19
EP2947974A1 (en) 2015-11-25
BR112015016946B1 (pt) 2021-10-13
CN104919905A (zh) 2015-09-16
BR112015016946A2 (pt) 2017-07-11
US9402304B2 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
JP6028812B2 (ja) 電動パワーステアリング装置用制御装置
JP6407446B2 (ja) 一体型電動パワーステアリング装置
US8288658B2 (en) Multilayer circuit board and motor drive circuit board
JP6179670B2 (ja) ノイズ抑制機能を有する多層プリント基板及びそれを用いた電動パワーステアリング装置用ecu基板
WO2016143534A1 (ja) モータの駆動制御ユニット
JP2013103535A (ja) 電動パワーステアリング用電子制御ユニット
CN112039408B (zh) 电力转换装置
US11757336B2 (en) Electronic control device
JP2010063242A (ja) 電動パワーステアリング用制御装置
US10800444B2 (en) Electric driving device and electric power steering device
JP2012244637A (ja) モータ駆動装置
JP2021009967A (ja) 電子装置
JP2013103534A (ja) 電動パワーステアリング用電子制御ユニット
US20140116798A1 (en) Control device and vehicle steering system including control device
JP4209904B2 (ja) 多層基板
JP7357710B2 (ja) 電力変換装置
JP6683020B2 (ja) 電力変換装置、及び、これを用いた電動パワーステアリング装置
JP7196770B2 (ja) 半導体装置
JP7387064B2 (ja) 多層回路基板、駆動制御装置および電動パワーステアリング用モータユニット
JP7169458B2 (ja) 電子制御装置
JP2012244639A (ja) モータ駆動装置
JP2020108237A (ja) 電子制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14741098

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014557386

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014741098

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14760900

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015016946

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015016946

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150715