WO2014112217A1 - 空気調和装置の熱交換器 - Google Patents
空気調和装置の熱交換器 Download PDFInfo
- Publication number
- WO2014112217A1 WO2014112217A1 PCT/JP2013/081917 JP2013081917W WO2014112217A1 WO 2014112217 A1 WO2014112217 A1 WO 2014112217A1 JP 2013081917 W JP2013081917 W JP 2013081917W WO 2014112217 A1 WO2014112217 A1 WO 2014112217A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microchannel
- heat exchanger
- fin
- portions
- air
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05383—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/126—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
- F28F1/128—Fins with openings, e.g. louvered fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F17/00—Removing ice or water from heat-exchange apparatus
- F28F17/005—Means for draining condensates from heat exchangers, e.g. from evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D2001/0253—Particular components
- F28D2001/026—Cores
- F28D2001/0266—Particular core assemblies, e.g. having different orientations or having different geometric features
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
- F28D2021/0071—Evaporators
Definitions
- Embodiment of this invention is related with the heat exchanger of an air conditioning apparatus.
- microchannel type heat exchanger as a heat exchanger of an air conditioner.
- the microchannel heat exchanger includes a microchannel portion having a plurality of flow paths through which a refrigerant flows, and a fin portion provided in contact with the microchannel portion.
- the microchannel portion in order to remove the dew condensation water generated by the heat exchange, the microchannel portion may be inclined. According to this, the dew condensation water can be dropped along the inclination of the microchannel portion by gravity, and as a result, the dew condensation water can be efficiently removed.
- microchannel type heat exchanger is performed by arranging a plurality of microchannel parts and fin parts manufactured separately so as to have a predetermined form, and then brazing or the like. It is done by joining with. Therefore, in the case where the microchannel portion is inclined, it is difficult to dispose the fin portion along the inclined microchannel portion, and the manufacturability is not good.
- the heat exchanger of the air conditioner according to the present embodiment has a plurality of flow paths that are configured in a plate shape and through which a refrigerant flows.
- the upstream side of the heat exchanger that is separated from each other and that flows from the outside supplied air flows.
- a plurality of microchannel portions that are inclined so as to be higher on the downstream side, and a plurality of fin portions that are provided between two adjacent microchannel portions and are in contact with the microchannel portions, Prepare.
- the end of the fin portion is located on a line connecting the ends of the microchannel portions.
- FIG. 4 equivalent view shows the heat exchanger by 1st embodiment.
- Front view of heat exchanger Longitudinal side view of heat exchanger
- the figure which shows the positional relationship of a micro channel part and a fin part Cross-sectional view of the fin portion showing the peripheral portion of the cut and raised portion
- the heat exchanger 10 is a microchannel type, and is configured as a rectangular plate as a whole as shown in FIGS. 1 and 2.
- the heat exchanger 10 includes a refrigerant inflow portion 20, a refrigerant outflow portion 30, a plurality of microchannel portions 40, and a plurality of fin portions 50.
- the longitudinal direction of the refrigerant inflow portion 20 and the refrigerant outflow portion 30 is the longitudinal direction of the heat exchanger, and the direction orthogonal to this, that is, the longitudinal direction of the microchannel portion 40 is the lateral direction of the heat exchanger 10. To do.
- the direction orthogonal to the vertical direction and the horizontal direction of the heat exchanger 10 is defined as the thickness direction of the heat exchanger 10.
- the vertical direction of the heat exchanger 10 is indicated by an arrow X
- the horizontal direction is indicated by an arrow Y
- the thickness direction is indicated by an arrow Z.
- the heat exchanger 10 exchanges heat between the air and the refrigerant flowing in the heat exchanger 10 by passing air supplied from the outside in the thickness direction of the heat exchanger 10.
- the arrow A shown in the figure has shown the direction through which the air supplied from the outside flows.
- the left rear side of the paper with respect to the heat exchanger 10 is the upstream side in the direction of air flow
- the right front side of the paper is the downstream side.
- the left side of the paper with respect to the heat exchanger 10 is the upstream side in the air flow direction
- the right side of the paper is the downstream side.
- the refrigerant inflow portion 20 and the refrigerant outflow portion 30 are configured in a tubular shape extending in the longitudinal direction of the heat exchanger 10.
- the plurality of microchannel portions 40 and the plurality of fin portions 50 are provided between the refrigerant inflow portion 20 and the refrigerant outflow portion 30.
- Refrigerant pipelines 60 of the refrigeration cycle are connected to the refrigerant inflow portion 20 and the refrigerant outflow portion 30, respectively.
- the refrigerant flowing through the refrigerant pipe 60 is distributed to each microchannel portion 40 by the refrigerant inflow portion 20 as indicated by an arrow B in FIGS. 1 and 2, and then passes through each microchannel portion 40 and passes through the refrigerant outflow portion 30. And flow out to the refrigerant pipe 60.
- the microchannel part 40 is a flat plate-like member that extends in the lateral direction of the heat exchanger 10, and is composed of a member having a relatively large thermal conductivity, such as aluminum.
- the microchannel portions 40 are provided apart from each other along the longitudinal direction of the heat exchanger 10. As shown in FIGS. 1 and 3, the microchannel portion 40 is provided so as to be inclined so that the upstream side is high and the downstream side is low with respect to the direction in which air supplied from the outside flows. That is, the microchannel portion 40 is inclined downward so as to become lower toward the downstream side in the direction in which air flows. In this case, as shown in FIG. 3, the inclination angle of the microchannel portion 40 with respect to the thickness direction of the heat exchanger 10 is ⁇ °.
- the microchannel part 40 has a certain thickness, and has a plurality of refrigerant channels 41 extending in the longitudinal direction of the microchannel part 40, that is, in the lateral direction of the heat exchanger 10.
- the refrigerant flow path 41 connects the refrigerant inflow portion 20 and the refrigerant outflow portion 30.
- the refrigerant on the refrigerant inflow portion 20 side flows through the refrigerant flow paths 41 to the refrigerant outflow portion 30 side.
- the fin part 50 is comprised with the member with comparatively large thermal conductivity, such as aluminum, for example.
- the fin portion 50 is configured, for example, by bending thin strip-shaped aluminum plates alternately in a bellows shape.
- the fin portion 50 is configured to extend in the longitudinal direction of the microchannel portion 40, that is, in the lateral direction of the heat exchanger 10 as a whole.
- the fin portion 50 is provided between the two microchannel portions 40 adjacent to each other in the vertical direction of the heat exchanger 10, and is inclined along the microchannel portion 40.
- the upper portion 51 of the fin portion 50 having a mountain fold shape and the lower portion 52 having a valley fold shape are in contact with the microchannel portion 40.
- a line connecting downstream end portions 43 of the microchannel portions 40 is virtually shown as a front end line C of the microchannel portion 40.
- a line connecting the upstream end portions 44 of the microchannel portions 40 is virtually shown as a rear end line D of the microchannel portions 40.
- the fin portion 50 at least one of the upstream side and the downstream side with respect to the direction in which air flows, that is, the thickness direction of the heat exchanger 10, It is located on a line connecting the end portions 43 and 44.
- the end portion 53 on the downstream side of the fin portion 50 is located on the front end line C connecting the end portions 43 on the downstream side of the microchannel portions 40.
- the positions of the end portion 43 on the most leeward side of the microchannel portion 40 and the end portion 53 on the leeward side of the fin portion 50 are located at the front end line C. It is aligned on the top.
- the fin portion 50 has a plurality of cut and raised portions 55.
- the cut-and-raised portion 55 is formed by cutting and raising a part of the plate member constituting the fin portion 50. Therefore, the cut-and-raised portion 55 protrudes in a direction orthogonal to the direction in which air supplied from the outside flows, that is, the direction indicated by the arrow A. In this case, the cut-and-raised portion 55 is formed so that the upstream side opens with respect to the air flow passing through the heat exchanger 10.
- the slit part 56 is formed with the formation of the cut-and-raised part 55.
- the cut-and-raised part 55 and the slit part 56 extend in the longitudinal direction of the heat exchanger 10, in this case, in a substantially vertical direction, as shown in FIG.
- the cut-and-raised part 55 partially disturbs the flow of air passing through the heat exchanger 10, thereby generating a turbulent flow around the cut-and-raised part 55. Thereby, the heat exchange performance in the fin part 50 improves.
- the heat exchanger 10 is arrange
- the heat exchanger 10 is assembled using, for example, a jig 110 shown in FIG. 7 and 8, the vertical direction on the paper surface is the thickness direction of the heat exchanger 10.
- the lower side of the paper is the upstream side of the air flow
- the upper side of the paper is the downstream side of the air flow.
- the jig 110 includes a base part 111 and a side wall part 112.
- the base 111 is configured in a rectangular plate shape.
- the side wall portions 112 are provided on both ends of the base portion 111 in the lateral direction of the heat exchanger 10 so as to extend in the longitudinal direction of the heat exchanger 10.
- the side wall part 112 is provided so as to be perpendicular to the base part 111.
- the surface on which the side wall part 112 is provided is the front surface of the base part 111, and the surface opposite to the side wall part 112 is the back surface of the base part 111.
- a plurality of groove portions 113 are formed in the side wall portion 112 by cutting the side wall portion 112 into a groove shape.
- the groove 113 is inclined by ⁇ ° with respect to the direction perpendicular to the surface of the base 111, that is, the thickness direction of the heat exchanger 10.
- the inclination angle of the microchannel portion 40 is determined by the inclination angle ⁇ ° of the groove 113.
- the bottom portion 114 of the groove 113 is flush with the front surface of the base portion 111, or is located on the back side of the base portion 111 than the front surface of the base portion 111.
- the heat exchanger 10 is assembled as follows. First, as shown in FIG. 8A, a plurality of microchannel portions 40 configured separately are arranged on the jig 110. In this case, first, both end portions in the longitudinal direction of the microchannel portion 40 are fitted into the groove portions 113 of the jig 110. The microchannel portion 40 is pushed in until the downstream end portion 43 of the microchannel portion 40 abuts against the front surface of the base portion 111. Thereby, each microchannel part 40 is the attitude
- a plurality of fin portions 50 configured separately are inserted between the two adjacent microchannel portions 40, respectively.
- the fin portion 50 is pushed in until the downstream end portion 53 of the fin portion 50 abuts against the front surface of the base portion 111.
- the downstream end portion 43 of the microchannel portion 40 and the downstream end portion 53 of the fin portion 50 coincide with each other in the thickness direction of the heat exchanger 10. That is, the microchannel portion 40 and the fin portion 50 are arranged so that the downstream end portion 43 of the microchannel portion 40 and the downstream end portion 53 of the fin portion 50 are aligned in the longitudinal direction of the heat exchanger 10. Is done.
- each microchannel portion 40 is provided with a refrigerant inflow portion 20 and a refrigerant outflow portion 30 at both ends in the longitudinal direction.
- each member is joined by brazing the assembly of the refrigerant inflow portion 20, the refrigerant outflow portion 30, the microchannel portion 40, and the fin portion 50 in a furnace (not shown). In this way, the heat exchanger 10 is assembled.
- the microchannel part 40 is provided so as to be inclined so that the upstream side is high and the downstream side is low with respect to the direction in which air supplied from the outside flows. Therefore, the condensed water generated in the microchannel part 40 not only falls due to gravity but also falls along the flow of air supplied from the outside. Therefore, the dew condensation water generated in the microchannel part 40 can be efficiently removed.
- the microchannel portion 40 is configured such that the end portions 53 and 54 of the fin portions 50 are at the ends of the microchannel portions 40 at least on either the upstream side or the downstream side in the direction in which the air supplied from the outside flows. It is located on the line connecting the parts 43 and 44.
- the end portion 53 on the downstream side of each fin portion 50 is located on the front end line C that connects the end portion 43 on the downstream side of each microchannel portion 40. That is, the downstream end portion 43 of the microchannel portion 40 and the downstream end portion 53 of the fin portion 50 are aligned in the longitudinal direction of the heat exchanger 10.
- the heat exchanger 10 can easily move the fin portion 50 along the inclined microchannel portion 40 by using the jig 110 having the simple configuration described above, for example. As a result, the manufacturability of the heat exchanger 10 can be improved.
- FIG. 9 Similar to the first embodiment described above, a line connecting the downstream end portions 43 of the microchannel portions 40 is virtually shown as a front end line C of the microchannel portions 40. Further, a line connecting the upstream end portions 44 of the microchannel portions 40 is virtually shown as a rear end line D of the microchannel portion 40.
- the end portion 53 on the downstream side of the fin portion 50 is located on the downstream side of the front end line C. That is, the fin portion 50 extends further downstream than the downstream end portion 43 of the microchannel portion 40.
- the upstream end portion 54 of the fin portion 50 is located on the rear end line D. That is, in the heat exchanger 10, in the thickness direction of the heat exchanger 10, the positions of the most windward end portion 44 of the microchannel portion 40 and the windward end portion 54 of the fin portion 50 are located at the rear end line It is aligned on D. In other words, the upstream end portion 44 of the microchannel portion 40 and the upstream end portion 54 of the fin portion 50 are aligned in the longitudinal direction of the heat exchanger 10. In this case, in assembling the heat exchanger 10, the upstream end 44 of the microchannel portion 40 and the upstream end 54 of the fin portion 50 are respectively on the base portion 111 side of the jig 110. The jig 110 is arranged.
- the end portion 53 on the downstream side of the fin portion 50 protrudes more downstream than the end portion 43 on the downstream side of the microchannel portion 40. Therefore, the condensed water generated in the microchannel portion 40 flows through the fin portion 50 to the downstream side of the fin portion 50 and then falls from the vicinity of the end portion 53 on the downstream side. And the dew condensation water which fell from the edge part 53 vicinity of the downstream of the fin part 50 falls below, without falling on the other microchannel part 40 below. Therefore, it is possible to prevent the condensed water falling from the fin portion 50 from adhering to the other microchannel portion 40 below, and as a result, the condensed water generated in the microchannel portion 40 can be more efficiently removed. .
- the upstream end portion 44 of the microchannel portion 40 and the upstream end portion 54 of the fin portion 50 are aligned in the longitudinal direction of the heat exchanger 10, that is, on the rear end line D. According to this, even if the microchannel portion 40 is inclined, the fin portion 50 can be easily arranged along the inclined microchannel portion 40, as in the first embodiment described above. As a result, the manufacturability of the heat exchanger 10 can be improved.
- FIG. 10 shows only the cut-and-raised portion 55 below the end portion 43 on the downstream side of the microchannel portion 40 among the plurality of cut-and-raised portions 55 formed in the fin portion 50.
- the upper end portion 57 with respect to the direction of gravity is located on the front end line C or upstream of the front end line C.
- the upper end portion 57 of the cut-and-raised portion 55 is located upstream of the front end line C.
- the lower end portion 58 with respect to the direction of gravity is located on the front end line C or on the downstream side of the front end line C.
- the lower end portion 58 of the cut and raised portion 55 is located on the downstream side of the front end line C. That is, below the end portion 43 on the downstream side of the microchannel portion 40, a cut-and-raised portion 55 that is in the fin portion 50 and is inclined downward toward the leeward side across the front end line C is provided. .
- dew condensation water is generated in the microchannel portion 40, and the dew condensation water is pushed to the downstream end portion 43 of the microchannel portion 40 by the air flow, and then from the end portion 43 to the fin portion 50.
- the condensed water is received by the cut-and-raised portion 55 below the end portion 43.
- the condensed water is guided to the downstream side of the downstream end portion 43 of the other microchannel portion 40 below along the cut and raised portion 55, and then falls from the fin portion 50. Therefore, it is possible to more effectively avoid the condensed water that has fallen from the fin portion 50 through the cut and raised portion 55 and adheres to the other microchannel portion 40 below.
- the condensed water generated in the microchannel part 40 can be removed more efficiently.
- the upstream end portion 44 of the microchannel portion 40 and the upstream end portion 54 of the fin portion 50 are aligned in the longitudinal direction of the heat exchanger 10, that is, the rear end line D. It has been. According to this, when the heat exchanger 10 is assembled, the relative positional relationship between the plurality of microchannel portions 40 and the plurality of fin portions 50 can be easily determined by using the jig 110 described above. it can. That is, the cut-and-raised portion 55 provided in the fin portion 50 can be accurately positioned below the downstream end portion 43 of the microchannel portion 40, and as a result, the manufacturability of the heat exchanger 10 is improved. Can do.
- the plurality of microchannel portions are spaced apart from each other and inclined so that the upstream side is high and the downstream side is low with respect to the direction in which air supplied from the outside flows.
- the plurality of fin portions are provided between two adjacent microchannel portions and in contact with the microchannel portions. Then, at least one of the upstream side and the downstream side in the direction in which the air supplied from the outside flows, the end portion of the fin portion is positioned on a line connecting the end portions of the microchannel portions.
- the fin portion can be easily disposed along the inclined microchannel portion, thereby heat exchange.
- the productivity of the vessel can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
空気調和装置の熱交換器は、複数のマイクロチャネル部と複数のフィン部とを備える。各マイクロチャネル部は、板状に構成され内部に冷媒が流れる複数の流路を有し、相互に離間するとともに外部から供給される空気が流れる方向に対して上流側が高く下流側が低くなるように傾斜して設けられている。各フィン部は、隣り合う二つのマイクロチャネル部の間にあって各マイクロチャネル部に接触して設けられている。空気が流れる方向における上流側又は下流側の少なくともいずれか一方において、フィン部の端部が、各マイクロチャネル部の端部を繋いだ線上に位置している。
Description
本発明の実施形態は、空気調和装置の熱交換器に関する。
空気調和装置の熱交換器として、いわゆるマイクロチャネル型の熱交換器がある。マイクロチャネル型の熱交換器は、冷媒が流れる複数の流路を内部に有するマイクロチャネル部と、そのマイクロチャネル部に接触して設けられたフィン部とを備えている。このような熱交換器においては、熱交換によって生じた結露水を除去するために、マイクロチャネル部を傾斜させることがある。これによれば、結露水を重力によりマイクロチャネル部の傾斜に沿って落下させることができ、その結果、結露水を効率よく除去することができる。
このようなマイクロチャネル型の熱交換器の組立は、別体に製造された複数のマイクロチャネル部及びフィン部を所定の形態となるように配置した後、ろう付けなどによりマイクロチャネル部とフィン部と接合することで行われる。そのため、マイクロチャネル部を傾斜させるものでは、傾斜したマイクロチャネル部に沿ってフィン部を配置することは難しく、製造性が良くないという事情がある。
そこで、マイクロチャネル部を傾斜させたものにおいて、マイクロチャネル部とフィン部との組立を容易にして製造性の向上を図った空気調和装置の熱交換器を提供する。
本実施形態による空気調和装置の熱交換器は、板状に構成され内部に冷媒が流れる複数の流路を有し、相互に離間するとともに外部から供給される空気が流れる方向に対して上流側が高く下流側が低くなるように傾斜して設けられた複数のマイクロチャネル部と、隣り合う二つの前記マイクロチャネル部の間にあって前記各マイクロチャネル部に接触して設けられた複数のフィン部と、を備える。前記空気が流れる方向における上流側又は下流側の少なくともいずれか一方において、前記フィン部の端部が、前記各マイクロチャネル部の端部を繋いだ線上に位置している。
以下、複数の実施形態による空気調和装置の熱交換器について、図面を参照して説明する。なお、各実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。
(第一実施形態)
まず、第一実施形態について、図1から図8を参照して説明する。
本実施形態による熱交換器10は、マイクロチャネル型であって、図1及び図2に示すように全体として矩形板状に構成されている。熱交換器10は、冷媒流入部20、冷媒流出部30、複数のマイクロチャネル部40、及び複数のフィン部50を備えている。なお、本実施形態では、冷媒流入部20及び冷媒流出部30の長手方向を熱交換器の縦方向とし、これに直交する方向すなわちマイクロチャネル部40の長手方向を熱交換器10の横方向とする。また、熱交換器10の縦方向及び横方向に直交する方向を、熱交換器10の厚み方向とする。図1では、熱交換器10の縦方向を矢印X、横方向を矢印Y、厚み方向を矢印Zで示している。
まず、第一実施形態について、図1から図8を参照して説明する。
本実施形態による熱交換器10は、マイクロチャネル型であって、図1及び図2に示すように全体として矩形板状に構成されている。熱交換器10は、冷媒流入部20、冷媒流出部30、複数のマイクロチャネル部40、及び複数のフィン部50を備えている。なお、本実施形態では、冷媒流入部20及び冷媒流出部30の長手方向を熱交換器の縦方向とし、これに直交する方向すなわちマイクロチャネル部40の長手方向を熱交換器10の横方向とする。また、熱交換器10の縦方向及び横方向に直交する方向を、熱交換器10の厚み方向とする。図1では、熱交換器10の縦方向を矢印X、横方向を矢印Y、厚み方向を矢印Zで示している。
熱交換器10は、外部から供給される空気を該熱交換器10の厚み方向へ通過させることにより、その空気と該熱交換器10内に流れる冷媒との熱交換を行う。なお、図中において示す矢印Aは、外部から供給される空気が流れる方向を示している。この場合、図1では、熱交換器10に対して紙面左奥側を空気が流れる方向の上流側とし、紙面右手前側を下流側としている。また、図3~図6では、熱交換器10に対して紙面左側を空気が流れる方向の上流側とし、紙面右側を下流側としている。
図1及び図2に示すように、冷媒流入部20及び冷媒流出部30は、熱交換器10の縦方向へ延びる管状に構成されている。複数のマイクロチャネル部40及び複数のフィン部50は、冷媒流入部20と冷媒流出部30との間に挟まれて設けられている。冷媒流入部20及び冷媒流出部30には、それぞれ冷凍サイクルの冷媒管路60が接続される。冷媒管路60を流れる冷媒は、図1及び図2に矢印Bに示すように、冷媒流入部20によって各マイクロチャネル部40へ分配され、その後、各マイクロチャネル部40を通り、冷媒流出部30で収集されて冷媒管路60へ流出する。
マイクロチャネル部40は、熱交換器10の横方向へ延びる扁平な板状の部材であって、例えばアルミニウムなど熱伝導率が比較的大きい部材で構成されている。各マイクロチャネル部40は、熱交換器10の縦方向に沿って相互に離間して設けられている。マイクロチャネル部40は、図1及び図3に示すように、外部から供給される空気が流れる方向に対して上流側が高く下流側が低くなるように傾斜して設けられている。すなわち、マイクロチャネル部40は、空気が流れる方向へ向って下流側へ行くに従って低くなるように下降傾斜している。この場合、図3に示すように、マイクロチャネル部40の熱交換器10の厚み方向に対する傾斜角度をα°としている。
マイクロチャネル部40は、ある程度の厚さを有しており、その内部に、マイクロチャネル部40の長手方向すなわち熱交換器10の横方向へ延びる複数の冷媒流路41を有している。冷媒流路41は、冷媒流入部20と冷媒流出部30とを繋いでいる。冷媒流入部20側の冷媒は、各冷媒流路41を通って冷媒流出部30側へ流れる。
フィン部50は、例えばアルミニウムなど熱伝導率が比較的大きい部材で構成されている。フィン部50は、図1及び図2に示すように、例えば薄い帯状のアルミニウム板を蛇腹状に交互に折り曲げて構成されている。フィン部50は、全体としてマイクロチャネル部40の長手方向つまり熱交換器10の横方向へ延びるように構成されている。フィン部50は、熱交換器10の縦方向へ隣り合う二つのマイクロチャネル部40の間にあって、該マイクロチャネル部40に沿って傾斜して設けられている。フィン部50の山折り形状となった上部51及び谷折り形状となった下部52は、それぞれマイクロチャネル部40に接触している。
図4では、各マイクロチャネル部40の下流側の端部43を繋いだ線を、マイクロチャネル部40の前端線Cとして仮想的に示している。また、各マイクロチャネル部40の上流側の端部44を繋いだ線を、マイクロチャネル部40の後端線Dとして仮想的に示している。フィン部50は、空気が流れる方向つまり熱交換器10の厚み方向に対し、上流側又は下流側の少なくともいずれか一方において、該フィン部50の端部53、54が、各マイクロチャネル部40の端部43、44を繋いだ線上に位置している。この場合、フィン部50の下流側の端部53が、各マイクロチャネル部40の下流側の端部43を繋いだ前端線C上に位置している。つまり、熱交換器10は、該熱交換器10の厚み方向において、マイクロチャネル部40の最も風下側の端部43とフィン部50の最も風下側の端部53との位置が、前端線C上に揃えられている。
フィン部50は、複数の切り起こし部55を有している。切り起こし部55は、図5に示すように、フィン部50を構成する板部材の一部を切り起こすことにより形成されている。そのため、切り起こし部55は、外部から供給される空気が流れる方向つまり矢印Aに示す方向に対して直交する方向へ突出している。この場合、切り起こし部55は、熱交換器10を通過する空気の流れに対して上流側が開口するように形成されている。
また、切り起こし部55の形成に伴ってスリット部56が形成されている。切り起こし部55及びスリット部56は、図4などに示すように、熱交換器10の縦方向この場合略垂直方向へ延びている。切り起こし部55は、熱交換器10を通過する空気の流れを部分的に阻害することで、該切り起こし部55周辺に乱流を生じさせる。これにより、フィン部50における熱交換性能が向上する。
熱交換器10は、例えば図6に示すように、空気調和装置の室内機100の内部に配置される。そして、熱交換器10は、図6に矢印Aで示すように送風機101の送風作用により外部から供給される空気を熱交換する。なお詳細は図示しないが、熱交換器10を空気調和装置の室外機の内部に配置することもできる。
次に、熱交換器10の組み立て手順について図7及び図8を参照して説明する。熱交換器10の組み立ては、例えば図7に示す治具110を用いて行われる。なお、図7及び図8において紙面上下方向が熱交換器10の厚み方向となる。この場合、図7及び図8において紙面下側が空気の流れの上流側となり、紙面上側が空気の流れの下流側となる。
治具110は、基台部111と側壁部112とを有して構成されている。基台部111は、矩形の板状に構成されている。側壁部112は、基台部111において熱交換器10の横方向における両端側にあって、熱交換器10の縦方向へ延びるように設けられている。側壁部112は、基台部111に対して直角となるように設けられている。なお、基台部111において、側壁部112が設けられている側の面を該基台部111の前面とし、側壁部112と反対側の面を該基台部111の背面とする。
側壁部112には、該側壁部112を溝状に切り欠いて複数の溝部113が形成されている。溝部113は、基台部111の面に直角な方向すなわち熱交換器10の厚み方向に対してα°傾斜している。マイクロチャネル部40の傾斜角度は、この溝部113の傾斜角度α°によって決定される。溝部113の底部114は、基台部111の前面と同一面であるか、又は基台部111の前面によりも該基台部111の背面側に位置している。
熱交換器10は、次のようにして組み立てられる。まず、図8の(a)に示すように、別体に構成された複数のマイクロチャネル部40が、それぞれ治具110に配置される。この場合、まず、マイクロチャネル部40の長手方向における両端部が、治具110の溝部113に嵌め込まれる。そして、マイクロチャネル部40は、その下流側の端部43が基台部111の前面に突き当たるまで押し込まれる。これにより、各マイクロチャネル部40は、熱交換器10の厚み方向に対してα°傾斜する姿勢であって、相互に離間した形態で配置される。
その後、図8の(b)に示すように、別体に構成された複数のフィン部50が、隣り合う二個のマイクロチャネル部40の間にそれぞれ挿入される。フィン部50は、その下流側の端部53が基台部111の前面に突き当たるまで押し込まれる。これにより、マイクロチャネル部40の下流側の端部43と、フィン部50の下流側の端部53とは、熱交換器10の厚み方向において一致する。すなわち、マイクロチャネル部40及びフィン部50は、該マイクロチャネル部40の下流側の端部43と該フィン部50の下流側の端部53とが熱交換器10の縦方向に揃うように配置される。
その後、図8の(c)に示すように、マイクロチャネル部40とフィン部50との組立体から治具110が取り外される。そして、この組立体は、熱交換器10の縦方向へ圧縮され、フィン部50の上部51と下部52とがそれぞれマイクロチャネル部40に強固に接触される。次に、図8の(d)に示すように、各マイクロチャネル部40には、その長手方向の両端部にそれぞれ冷媒流入部20と冷媒流出部30とが取り付けられる。その後、詳細は図示しないが、これら冷媒流入部20と冷媒流出部30とマイクロチャネル部40とフィン部50との組立体を、図示しない炉内でろう付けすることにより各部材を接合する。このようにして熱交換器10が組み立てられる。
これによれば、マイクロチャネル部40は、外部から供給される空気が流れる方向に対して上流側が高く下流側が低くなるように傾斜して設けられている。そのため、マイクロチャネル部40に発生した結露水は、重力によって落下するのみならず、外部から供給される空気の流れに沿っても落下する。したがって、マイクロチャネル部40に発生した結露水を効率よく除去することができる。
そして、マイクロチャネル部40は、外部から供給される空気が流れる方向に対し少なくとも上流側又は下流側のいずれか一方において、各フィン部50の端部53、54が、各マイクロチャネル部40の端部43、44を繋いだ線上に位置している。本実施形態の場合、各フィン部50の下流側の端部53は、各マイクロチャネル部40の下流側の端部43を繋いだ前端線C上に位置している。すなわち、マイクロチャネル部40の下流側の端部43と、フィン部50の下流側の端部53とは、熱交換器10の縦方向において揃っている。そのため、熱交換器10は、マイクロチャネル部40が傾斜したものであっても、例えば上述の簡単な構成の治具110を用いることで、傾斜したマイクロチャネル部40に沿ってフィン部50を容易に配置することができ、その結果、熱交換器10の製造性を向上させることができる。
(第二実施形態)
次に、第二実施形態について、図9を参照して説明する。図9では、上述した第一実施形態と同様に、各マイクロチャネル部40の下流側の端部43を繋いだ線をマイクロチャネル部40の前端線Cとして仮想的に示している。また、各マイクロチャネル部40の上流側の端部44を繋いだ線をマイクロチャネル部40の後端線Dとして仮想的に示している。
次に、第二実施形態について、図9を参照して説明する。図9では、上述した第一実施形態と同様に、各マイクロチャネル部40の下流側の端部43を繋いだ線をマイクロチャネル部40の前端線Cとして仮想的に示している。また、各マイクロチャネル部40の上流側の端部44を繋いだ線をマイクロチャネル部40の後端線Dとして仮想的に示している。
この第二実施形態において、フィン部50の下流側の端部53は、前端線Cよりも下流側に位置している。すなわち、フィン部50は、マイクロチャネル部40の下流側の端部43よりも下流側へ延び出ている。一方、フィン部50の上流側の端部54は、後端線D上に位置している。つまり、熱交換器10は、該熱交換器10の厚み方向において、マイクロチャネル部40の最も風上側の端部44とフィン部50の最も風上側の端部54との位置が、後端線D上に揃えられている。換言すれば、マイクロチャネル部40の上流側の端部44とフィン部50の上流側の端部54とは、熱交換器10の縦方向に揃えられている。この場合、熱交換器10の組み立てにおいては、マイクロチャネル部40の上流側の端部44及びフィン部50の上流側の端部54が、それぞれ治具110の基台部111側となるように該治具110に配置する。
これによれば、フィン部50の下流側の端部53は、マイクロチャネル部40の下流側の端部43よりも下流側へ突出している。したがって、マイクロチャネル部40に発生した結露水は、フィン部50を伝って該フィン部50の下流側へ流れた後、下流側の端部53近傍から落下する。そして、フィン部50の下流側の端部53近傍から落下した結露水は、下方にある他のマイクロチャネル部40上に落下することなく下方へ落下する。そのため、フィン部50から落下した結露水が、下方にある他のマイクロチャネル部40に付着することを回避でき、その結果、マイクロチャネル部40に発生した結露水をより効率よく除去することができる。
そして、マイクロチャネル部40の上流側の端部44とフィン部50の上流側の端部54とは、熱交換器10の縦方向すなわち後端線D上に揃えられている。これによれば、マイクロチャネル部40が傾斜したものであっても、上述した第一実施形態と同様に、その傾斜したマイクロチャネル部40に沿ってフィン部50を容易に配置することができ、その結果、熱交換器10の製造性を向上させることができる。
(第三実施形態)
次に、第三実施形態について、図10を参照して説明する。この第三実施形態では、切り起こし部55の構成が、上述した第二実施形態と異なる。図10には、フィン部50に形成された複数の切り起こし部55のうち、マイクロチャネル部40の下流側の端部43の下方にある切り起こし部55のみを示している。このマイクロチャネル部40の下流側の端部43の下方にある切り起こし部55において、重力方向に対する上側の端部57は、前端線C上又は前端線Cよりも上流側に位置している。この場合、この切り起こし部55の上端部57は、前端線Cよりも上流側に位置している。一方、重力方向に対する下側の端部58は、前端線C上又は前端線Cよりも下流側に位置している。この場合、この切り起こし部55の下端部58は、前端線Cよりも下流側に位置している。すなわち、マイクロチャネル部40の下流側の端部43の下方には、フィン部50にあって、前端線Cを跨ぐようにして風下側へ向って下降傾斜した切り起こし部55が設けられている。
次に、第三実施形態について、図10を参照して説明する。この第三実施形態では、切り起こし部55の構成が、上述した第二実施形態と異なる。図10には、フィン部50に形成された複数の切り起こし部55のうち、マイクロチャネル部40の下流側の端部43の下方にある切り起こし部55のみを示している。このマイクロチャネル部40の下流側の端部43の下方にある切り起こし部55において、重力方向に対する上側の端部57は、前端線C上又は前端線Cよりも上流側に位置している。この場合、この切り起こし部55の上端部57は、前端線Cよりも上流側に位置している。一方、重力方向に対する下側の端部58は、前端線C上又は前端線Cよりも下流側に位置している。この場合、この切り起こし部55の下端部58は、前端線Cよりも下流側に位置している。すなわち、マイクロチャネル部40の下流側の端部43の下方には、フィン部50にあって、前端線Cを跨ぐようにして風下側へ向って下降傾斜した切り起こし部55が設けられている。
これによれば、マイクロチャネル部40に結露水が発生し、その結露水が、空気の流れによってマイクロチャネル部40の下流側の端部43へ押しやられ、その後該端部43からフィン部50へ移動した際、その結露水は該端部43の下方にある切り起こし部55によって受けられる。そして、その結露水は、切り起こし部55を伝って、下方にある他のマイクロチャネル部40の下流側の端部43よりもさらに下流側へ導かれ、その後フィン部50から落下する。したがって、切り起こし部55を伝ってフィン部50から落下した結露水が、下方にある他のマイクロチャネル部40に付着することをより効果的に回避できる。その結果、マイクロチャネル部40に発生した結露水をさらに効率よく除去することができる。
そして、第二実施形態と同様に、マイクロチャネル部40の上流側の端部44とフィン部50の上流側の端部54とは、熱交換器10の縦方向すなわち後端線D上に揃えられている。これによれば、熱交換器10を組み立てる際、上述の治具110などを用いることによって、複数のマイクロチャネル部40と複数のフィン部50との相対的な位置関係を容易に決定することができる。すなわち、フィン部50に設けた切り起こし部55を、精度よくマイクロチャネル部40の下流側の端部43の下方に位置させることができ、その結果、熱交換器10の製造性を向上させることができる。
以上説明した実施形態によれば、複数のマイクロチャネル部は、相互に離間し、外部から供給される空気が流れる方向に対して上流側が高く下流側が低くなるように傾斜している。複数のフィン部は、隣り合う二つのマイクロチャネル部の間にあってマイクロチャネル部に接触して設けられている。そして、外部から供給される空気が流れる方向における上流側又は下流側の少なくともいずれか一方において、フィン部の端部が、各マイクロチャネル部の端部を繋いだ線上に位置している。
これによれば、マイクロチャネル部を傾斜させて結露水の除去性能を向上させたものであっても、傾斜したマイクロチャネル部に沿ってフィン部を容易に配置することができ、これにより熱交換器の製造性を向上させることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変更は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。
Claims (3)
- 板状に構成され内部に冷媒が流れる複数の流路を有し、相互に離間するとともに外部から供給される空気が流れる方向に対して上流側が高く下流側が低くなるように傾斜して設けられた複数のマイクロチャネル部と、
隣り合う二つの前記マイクロチャネル部の間にあって前記各マイクロチャネル部に接触して設けられた複数のフィン部と、を備え、
前記空気が流れる方向における上流側又は下流側の少なくともいずれか一方において、前記フィン部の端部が、前記各マイクロチャネル部の端部を繋いだ線上に位置している空気調和装置の熱交換器。 - 前記フィン部の下流側の端部は、前記各マイクロチャネル部の下流側の端部を繋いだ前端線よりも下流側にあって、
前記フィン部の上流側の端部は、前記各マイクロチャネル部の上流側の端部を繋いだ後端線上に位置している請求項1に記載の空気調和装置の熱交換器。 - 前記フィン部は、前記空気が流れる方向に対して直交する方向へ突出した切り起こし部を有し、
前記切り起こし部の重力方向に対する上側の端部は、前記前端線上又は前記前端線よりも上流側に位置し、前記切り起こし部の重力方向に対する下側の端部は、前記前端線上又は前記前端線よりも下流側に位置している請求項2に記載の空気調和装置の熱交換器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380070611.7A CN104919266A (zh) | 2013-01-21 | 2013-11-27 | 空调装置的热交换器 |
EP13872232.7A EP2947411A4 (en) | 2013-01-21 | 2013-11-27 | HEAT EXCHANGER FOR AIR CONDITIONING DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-008347 | 2013-01-21 | ||
JP2013008347A JP2014139493A (ja) | 2013-01-21 | 2013-01-21 | 空気調和装置の熱交換器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014112217A1 true WO2014112217A1 (ja) | 2014-07-24 |
Family
ID=51209327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/081917 WO2014112217A1 (ja) | 2013-01-21 | 2013-11-27 | 空気調和装置の熱交換器 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2947411A4 (ja) |
JP (1) | JP2014139493A (ja) |
CN (1) | CN104919266A (ja) |
WO (1) | WO2014112217A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3534103B1 (en) * | 2016-10-28 | 2020-12-23 | Mitsubishi Electric Corporation | Heat exchanger and refrigeration cycle device |
CN110758044B (zh) * | 2018-07-25 | 2022-05-27 | 三花控股集团有限公司 | 换热器、前端模块及新能源汽车 |
BR112023018455A2 (pt) | 2021-03-19 | 2023-10-10 | Brazeway Inc | Trocador de calor de microcanais para condensador de aparelho |
DE102022113854A1 (de) | 2022-06-01 | 2023-12-07 | Ford Global Technologies, Llc | Wärmeübertrager für ein Fahrzeug |
DE102022002110A1 (de) * | 2022-06-13 | 2023-12-14 | Mercedes-Benz Group AG | Kühler für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, sowie Kraftfahrzeug |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6015917U (ja) * | 1983-07-12 | 1985-02-02 | カルソニックカンセイ株式会社 | 自動車用エンジンの冷却装置 |
JPH02309193A (ja) * | 1989-05-23 | 1990-12-25 | Matsushita Refrig Co Ltd | フィン付熱交換器 |
JPH0379060U (ja) * | 1989-12-04 | 1991-08-12 | ||
JPH04186070A (ja) * | 1990-11-16 | 1992-07-02 | Showa Alum Corp | 熱交換装置 |
JPH04187992A (ja) * | 1990-11-22 | 1992-07-06 | Showa Alum Corp | 熱交換器 |
WO2008042368A1 (en) * | 2006-09-28 | 2008-04-10 | Johnson Controls Technology Company | Microchannel heat exchanger |
JP2010025476A (ja) * | 2008-07-22 | 2010-02-04 | Daikin Ind Ltd | 熱交換器 |
JP2011237062A (ja) | 2010-05-07 | 2011-11-24 | Mitsubishi Electric Corp | 冷媒分配器、蒸発器及び冷媒分配方法 |
JP2012093009A (ja) * | 2010-10-25 | 2012-05-17 | Sharp Corp | 熱交換器及びそれを搭載した空気調和機 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1914499A1 (en) * | 2006-10-16 | 2008-04-23 | Irsap Spa | Heat exchanger with inclined tubes |
CN101600932B (zh) * | 2006-12-26 | 2013-05-08 | 开利公司 | 改善冷凝水排出的多通道热交换器 |
JP2010014329A (ja) * | 2008-07-03 | 2010-01-21 | Daikin Ind Ltd | 熱交換器 |
CN202002518U (zh) * | 2010-12-29 | 2011-10-05 | 萨帕铝热传输(上海)有限公司 | 一种换热器 |
CN202106191U (zh) * | 2011-05-31 | 2012-01-11 | 浙江松信汽车空调有限公司 | 一种冷凝器芯体旋转组装台 |
CN102494443B (zh) * | 2011-12-02 | 2014-04-16 | 四川长虹电器股份有限公司 | 一种有利于冷凝水排水的微通道换热器 |
-
2013
- 2013-01-21 JP JP2013008347A patent/JP2014139493A/ja active Pending
- 2013-11-27 EP EP13872232.7A patent/EP2947411A4/en not_active Withdrawn
- 2013-11-27 WO PCT/JP2013/081917 patent/WO2014112217A1/ja active Application Filing
- 2013-11-27 CN CN201380070611.7A patent/CN104919266A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6015917U (ja) * | 1983-07-12 | 1985-02-02 | カルソニックカンセイ株式会社 | 自動車用エンジンの冷却装置 |
JPH02309193A (ja) * | 1989-05-23 | 1990-12-25 | Matsushita Refrig Co Ltd | フィン付熱交換器 |
JPH0379060U (ja) * | 1989-12-04 | 1991-08-12 | ||
JPH04186070A (ja) * | 1990-11-16 | 1992-07-02 | Showa Alum Corp | 熱交換装置 |
JPH04187992A (ja) * | 1990-11-22 | 1992-07-06 | Showa Alum Corp | 熱交換器 |
WO2008042368A1 (en) * | 2006-09-28 | 2008-04-10 | Johnson Controls Technology Company | Microchannel heat exchanger |
JP2010025476A (ja) * | 2008-07-22 | 2010-02-04 | Daikin Ind Ltd | 熱交換器 |
JP2011237062A (ja) | 2010-05-07 | 2011-11-24 | Mitsubishi Electric Corp | 冷媒分配器、蒸発器及び冷媒分配方法 |
JP2012093009A (ja) * | 2010-10-25 | 2012-05-17 | Sharp Corp | 熱交換器及びそれを搭載した空気調和機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2947411A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP2947411A4 (en) | 2016-11-23 |
CN104919266A (zh) | 2015-09-16 |
JP2014139493A (ja) | 2014-07-31 |
EP2947411A1 (en) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9441890B2 (en) | Heat exchanger fin with corrugated portion and louvers | |
WO2014112217A1 (ja) | 空気調和装置の熱交換器 | |
US20200011607A1 (en) | Heat exchanger including heat-transfer-tube unit | |
JP6330577B2 (ja) | フィン・アンド・チューブ型熱交換器 | |
JP2014142138A (ja) | 空気調和装置 | |
JPWO2016071953A1 (ja) | 空気調和装置の室内機 | |
JP2011089710A (ja) | 冷媒熱交換器 | |
JP2006105415A (ja) | 熱交換器 | |
JP6370399B2 (ja) | 空気調和装置の室内機 | |
JP2014035122A (ja) | 熱交換器 | |
JP2015183860A (ja) | 空気調和機用の熱交換器および空気調和機 | |
JP6349550B2 (ja) | 除湿装置 | |
CN108369076A (zh) | 包括改进的百叶片的翅片热交换器 | |
JP6413760B2 (ja) | 熱交換器及びそれを用いた熱交換器ユニット | |
JP2016121838A (ja) | 熱交換器 | |
JP2006200760A (ja) | 空気調和機用熱交換器 | |
EP3550247A1 (en) | Heat exchanger and air conditioner | |
JP5963958B2 (ja) | 空気調和機の室外機、及び空気調和機の室外機の製造方法 | |
JP6379352B2 (ja) | フィンチューブ熱交換器 | |
JP2018004090A (ja) | 空気調和機の室内機 | |
JP2018071860A (ja) | 熱交換器 | |
JP2010025480A (ja) | 熱交換器および熱交換器の製造方法 | |
JP2004271116A (ja) | 熱交換器のフィン構造 | |
CN102679793A (zh) | 换热器翅片 | |
JP6739001B2 (ja) | 空気調和機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13872232 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013872232 Country of ref document: EP |