WO2014112018A1 - 燃料電池装置 - Google Patents

燃料電池装置 Download PDF

Info

Publication number
WO2014112018A1
WO2014112018A1 PCT/JP2013/007528 JP2013007528W WO2014112018A1 WO 2014112018 A1 WO2014112018 A1 WO 2014112018A1 JP 2013007528 W JP2013007528 W JP 2013007528W WO 2014112018 A1 WO2014112018 A1 WO 2014112018A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fuel
gas
heat exchange
heat
Prior art date
Application number
PCT/JP2013/007528
Other languages
English (en)
French (fr)
Inventor
厚 早坂
上原 昌徳
康俊 土肥
康弘 長田
佑輝 向原
晴彦 渡邊
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014112018A1 publication Critical patent/WO2014112018A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a fuel cell device.
  • SOFC Solid oxide fuel cells
  • MCFC Molten Carbonate Fuel Cell
  • This type of high-temperature fuel cell has an exothermic reaction during power generation, and the higher the operating temperature during power generation, the higher the conductivity of oxygen ions and the more advantageous from the viewpoint of power generation efficiency.
  • the operating temperature at a predetermined temperature (for example, 1000 ° C.) from the viewpoint of heat resistance of the constituent materials constituting the fuel cell, and unnecessary heat is generated so that the fuel cell does not generate more heat than necessary. Need to be removed.
  • a predetermined temperature for example, 1000 ° C.
  • the fuel cell device is provided with a fuel reformer that reforms a fuel gas (raw fuel gas) such as city gas into a hydrogen-rich fuel gas.
  • a fuel gas raw fuel gas
  • reforming reaction steam reforming
  • water vapor and hydrocarbons of raw fuel gas is performed in a high-temperature atmosphere, and hydrogen rich. Some of them generate fuel gas. Since the reforming reaction between the steam and the hydrocarbon of the raw fuel gas is an endothermic reaction, the fuel reformer needs to be heated to a high temperature.
  • a fuel reformer, a fuel preheater, etc., through which fuel gas before being supplied to a fuel cell flows are used as a heat exchanging part for recovering heat generated in the fuel cell.
  • the configuration is arranged.
  • a fuel reformer and a fuel preheater are provided around the fuel cell so that the temperature of the fuel gas increases from the upstream side toward the downstream side. It is configured to connect alternately and in series. Furthermore, an air preheater that preheats air (oxidant gas) is placed at a position facing the fuel reformer (the reformer with the highest temperature) located on the most downstream side of the fuel gas flow with the fuel cell in between. In addition, a fuel reformer (the reformer having the lowest temperature) located on the most upstream side of the fuel gas flow is arranged between the air preheater and the fuel cell.
  • a fuel cell device includes a fuel cell that outputs electrical energy by an electrochemical reaction between a fuel gas and an oxidant gas, and a first fluid that is lower in temperature than the temperature of the fuel cell during power generation. Then, a first heat exchanging part that exchanges radiant heat from the fuel cell with the first fluid and a second fluid having a temperature equivalent to that of the first fluid flow in, and radiant heat from the fuel cell is exchanged with the second fluid.
  • the first fluid is either fuel gas or oxidant gas before being supplied to the fuel cell, and the second fluid is either fuel gas or oxidant gas before being supplied to the fuel cell.
  • the first heat exchanging part and the second heat exchanging part are spaced apart from each other and are arranged opposite to each other around the fuel cell so that the other heat exchanging part is not interposed between the one heat exchanging part and the fuel cell. .
  • the two heat exchanging parts into which the fuel gas or the oxidant gas of the same temperature flows are arranged opposite to each other around the fuel cell, the fuel cell is suppressed while suppressing the temperature variation of the fuel cell. Excess heat in can be recovered.
  • the heat exchange units are separated from each other, and the other heat exchange unit is not interposed between the one heat exchange unit and the fuel cell. Necessary heat exchange can be suppressed and excess heat in the fuel cell can be efficiently recovered.
  • “Equivalent temperature” is not limited to a state in which the temperatures completely match, but includes, for example, a state in which the temperature difference in the transient state is 300 ° C. or less and the temperature difference in the steady state is 100 ° C. or less.
  • the first heat exchange unit is a fuel reformer that reforms the fuel gas using at least radiant heat from the fuel cell
  • the second heat exchange unit is at least from the fuel cell. It is an oxidant gas preheater which heats oxidant gas using the radiation heat of this.
  • the fuel reformer and the oxidant gas preheater which are components having relatively close operating temperatures, are arranged around the fuel cell, the fuel gas is modified from the radiant heat emitted by the fuel cell.
  • the heat required for the quality and the heat required for raising the temperature of the oxidant gas supplied to the fuel cell can be obtained.
  • the second heat exchange unit is disposed away from the fuel cell, and the interval between the second heat exchange unit and the fuel cell is larger than the interval between the first heat exchange unit and the fuel cell. wide.
  • the oxidant gas preheater (second heat exchanging part), in which the internal temperature gradient is likely to be larger than that of the fuel reformer (first heat exchanging part), is more from the fuel cell than the fuel reformer. Since it is set as the structure spaced apart, the radiant heat from a fuel cell to the oxidant gas preheater side can be diffused. Thereby, it can suppress that a fuel cell is locally cooled by the temperature gradient inside an oxidizing agent gas preheater, and can suppress the temperature dispersion
  • FIG. 1 is an overall configuration diagram of a fuel cell system according to a first embodiment.
  • 1 is a schematic configuration diagram of a fuel cell device according to a first embodiment.
  • FIG. 3 is a schematic diagram of a III-III cross section of FIG. 2. It is a block diagram which shows the modification of the fuel cell apparatus which concerns on 1st Embodiment. It is a block diagram which shows the modification of the fuel cell apparatus which concerns on 1st Embodiment. It is a block diagram which shows the modification of the fuel cell apparatus which concerns on 1st Embodiment. It is a typical block diagram of the fuel cell apparatus which concerns on 2nd Embodiment. It is a typical block diagram of the fuel cell apparatus which concerns on 3rd Embodiment.
  • FIG. 13 is a schematic view of a section XIII-XIII in FIG. 12. It is a typical block diagram of the fuel cell apparatus which concerns on 6th Embodiment. It is a typical block diagram of the fuel cell apparatus which concerns on 7th Embodiment.
  • FIG. 16 is a schematic view of a section XVI-XVI in FIG. 15. It is a typical block diagram of the fuel cell apparatus which concerns on 8th Embodiment.
  • the fuel cell device 1 of the present embodiment includes a heat-insulating housing 2, a fuel cell 10 accommodated in the housing 2, a second air preheater 34 and a fuel reformer 44 described later. A specific arrangement form inside the fuel cell device 1 will be described later.
  • the fuel cell 10 is configured by a stacked body (stacked structure) in which a plurality of flat plate-type power generation cells 10a that output electrical energy by an electrochemical reaction between a fuel gas and an oxidant gas (air in the present embodiment) are stacked. .
  • the fuel cell 10 is formed on the four stacked surfaces 10b extending along the stacking direction of the power generation cells 10a and both ends of the power generation cell 10a in the stacking direction as surfaces exposed to the outside.
  • the pair of stacked end faces 10c and 10d are end faces extending in a direction perpendicular to the stacking direction of the power generation cells 10a in the fuel cell 10.
  • the fuel cell 10 of the present embodiment is composed of a solid oxide fuel cell (SOFC) whose operating temperature is high (eg, 500 ° C. to 1000 ° C.).
  • SOFC solid oxide fuel cell
  • FIG. 1 the fuel cell 10 is illustrated as a single power generation cell 10a.
  • the power generation cell 10a of the present embodiment includes a solid electrolyte body 11, an air electrode (cathode) 12, a fuel electrode (anode) 13, and separators 14 and 15 in which flow paths for fuel gas and oxidant gas are formed.
  • the power generation cell 10a of the present embodiment uses a reformed gas (H2, CO) obtained by reforming methane gas (CH4), which is a hydrocarbon-based material, as fuel.
  • the separators 14 and 15 have functions of electrically connecting the power generation cells 10a and supplying a reaction gas such as a fuel gas and an oxidant gas to the power generation cells 10a.
  • the separators 14 and 15 are formed with a fuel gas passage (not shown) for supplying fuel gas to each power generation cell 10 a and an air passage (not shown) for supplying air to the air electrode 12 and the fuel electrode 13. Yes.
  • the fuel cell 10 of the present embodiment has a seal structure in which a gas leakage prevention seal (not shown) is provided on the outer peripheral portion of the power generation cell 10a, and off-gas from each power generation cell 10a passes through a manifold (not shown). The air is discharged to an air discharge path 6a and a fuel discharge path 6b, which will be described later.
  • a gas leakage prevention seal (not shown) is provided on the outer peripheral portion of the power generation cell 10a, and off-gas from each power generation cell 10a passes through a manifold (not shown).
  • the air is discharged to an air discharge path 6a and a fuel discharge path 6b, which will be described later.
  • each power generation cell 10a electric energy is output by the electrochemical reaction of hydrogen and oxygen shown in the following reaction formulas F1 and F2.
  • F1 Air electrode
  • F2 Electric energy is output by an electrochemical reaction of carbon monoxide (CO) and oxygen shown in the following reaction formulas F3 and F4.
  • CO carbon monoxide
  • F3 Air electrode
  • current collectors that collect current output from each power generation cell 10a are provided at both ends of the fuel cell 10 in the cell stacking direction. Is pulled out via a bus bar or the like.
  • An air supply path 3 that is an air supply path is connected to the air inlet side of the fuel cell 10.
  • an air filter 31 that removes dust and the like
  • an air blower 32 that pumps air to the fuel cell 10
  • a first air preheater 33 and a second air flow path are provided in this order from the upstream side of the air flow.
  • An air preheater 34 is provided.
  • Each of the air preheaters 33 and 34 reduces the temperature difference between the air supplied to the air electrode 12 of the fuel cell 10 and the high-temperature fuel gas supplied to the fuel electrode 13 to improve the power generation efficiency in each power generation cell 10a. It is provided to plan.
  • the first air preheater 33 heats the air pumped from the air blower 32 by exchanging heat with combustion gas generated by an off-gas combustor (CMB: Combustor) 61 described later.
  • the first air preheater 33 exchanges heat between the air pumped from the air blower 32 and the combustion gas having a temperature lower than the temperature of the fuel cell 10 during power generation (for example, 700 ° C. to 800 ° C.). It is a preheater.
  • the first air preheater 33 of the present embodiment is configured so that the temperature of the air inside thereof rises to a temperature equivalent to fuel gas flowing into a fuel reformer 44 described later. As a result, air having the same temperature as the fuel gas flowing into the fuel reformer 44 flows into the second air preheater 34 on the downstream side of the air flow of the first air preheater 33.
  • the second air preheater 34 is a high-temperature preheater (oxidant) that exchanges heat between the air heated by the first air preheater 33 and combustion gas that is higher in temperature than the combustion gas flowing through the first air preheater 33. Gas preheater).
  • the second air preheater 34 of the present embodiment is housed inside the housing 2 together with the fuel cell 10, and absorbs the radiant heat generated during power generation of the fuel cell 10 to radiate heat that heats the air flowing inside. It consists of a mold heat exchanger.
  • the second air preheater 34 uses the air heated by the first air preheater 33 as the second fluid, and the second heat exchanging unit exchanges heat with the radiant heat generated during power generation of the fuel cell 10. It is composed. Air that is lower than the temperature of the fuel cell 10 during power generation flows into the second air preheater 34.
  • the second air preheater 34 there is a tendency that a part on the upstream side of the air flow in the inside tends to be low temperature and a part on the downstream side of the air flow tends to be high temperature, and a temperature distribution tends to occur on the facing surface facing the fuel cell 10. .
  • the air flow path inside the second air preheater 34 is set so that the upstream side and the downstream side of the air flow are adjacent so that the temperature distribution on the facing surface facing the fuel cell 10 is uniform. It is desirable to do.
  • a fuel supply path 4 that is a fuel gas supply path is connected to the fuel gas inlet side of the fuel cell 10.
  • a desulfurizer 41 that removes sulfur components contained in the fuel gas
  • a fuel blower 42 that pumps the fuel gas to the fuel cell 10
  • a fuel preheater 43 that pumps the fuel gas to the fuel cell 10
  • a fuel reformer 44 is provided.
  • the fuel preheater 43 heats the fuel gas pumped from the fuel blower 42 by exchanging heat with a combustion gas generated by an off-gas combustor 61 described later.
  • the fuel preheater 43 is also connected to the water supply path 5 and functions as a water vapor generator that evaporates water supplied from the water pump 52 via the pure water device 51 by heat exchange with the combustion gas. Plays.
  • the fuel preheater 43 is a low-temperature preheater that exchanges heat between the fuel gas pumped from the fuel blower 42 and the combustion gas having a temperature lower than that of the fuel cell 10.
  • the fuel reformer 44 heats the mixed gas obtained by mixing the fuel gas heated by the fuel preheater 43 and the steam with the combustion gas and heats it, and also contains hydrogen and carbon monoxide by steam reforming. It is a fuel gas generator that generates gas.
  • the fuel reformer 44 of the present embodiment is housed in the housing 2 together with the fuel cell 10 and the second air preheater 34, absorbs the radiant heat generated when the fuel cell 10 generates power, and circulates in the interior. It consists of a radiant heat type heat exchanger that heats the fuel gas.
  • the fuel reformer 44 constitutes a first heat exchanging unit that exchanges heat with the radiant heat generated during power generation of the fuel cell 10 using the fuel gas heated by the fuel preheater 43 as the first fluid. ing.
  • a fuel gas lower than the temperature of the fuel cell 10 during power generation flows into the fuel reformer 44.
  • the steam reforming is an endothermic reaction, and, as in this embodiment, the reforming reaction with a higher conversion rate can be performed by performing the radiant heat generated at the time of power generation of the fuel cell 10 under a high temperature condition that can absorb the heat. Can be realized.
  • partial oxidation reforming may be performed by the fuel reformer 44 when the fuel cell 10 is started.
  • the portion upstream of the fuel gas flow inside tends to be low temperature and the portion downstream of the fuel gas flow tends to be high temperature, and temperature distribution tends to occur on the facing surface facing the fuel cell 10. .
  • the flow path of the fuel gas inside the fuel reformer 44 is such that the upstream side and the downstream side of the fuel gas flow are adjacent so that the temperature distribution on the facing surface facing the fuel cell 10 is uniform. It is desirable to set.
  • the air supply path 3 and the fuel supply path 4 are each provided with an adjustment valve that adjusts the amount of fuel gas supplied to the fuel cell 10 and the amount of air supplied to the fuel cell 10.
  • a regulating valve or the like is provided.
  • An air discharge path 6 a through which exhaust air (oxidant gas off-gas) from the fuel cell 10 flows is connected to the air outlet side of the fuel cell 10, and discharged fuel ( A fuel discharge path 6b through which fuel gas (off gas) flows is connected.
  • Each discharge path 6 a, 6 b is connected to an off-gas combustor 61.
  • the off-gas combustor 61 is a high temperature (for example, 900 ° C. to 1000 ° C.) used as a heat source for preheating the air and fuel gas supplied to the fuel cell 10 by mixing and burning the exhaust fuel and the exhaust air. It is a combustor which produces the combustion gas of. Note that the exhaust fuel and exhaust air discharged from the fuel cell 10 include unreacted gas that was not used for power generation. For this reason, in order to effectively utilize the unreacted gas, an off-gas combustor is provided.
  • the off-gas combustor 61 is connected to a combustion gas path 6 for discharging high-temperature combustion gas.
  • the combustion gas path 6 is a device such as a fuel reformer 44, a second air preheater 34, a fuel preheater 43, and a first air preheater 33 in order from the upstream side in order to effectively use the heat of the combustion gas flowing inside. It is connected to the.
  • a heat exchanger for heating hot water is provided on the downstream side of the first air preheater 33 in the combustion gas path 6 so that the hot water is heated by the heat of the fuel gas. It is supposed to be.
  • the fuel cell 10 of the present embodiment has a rectangular parallelepiped stack structure, and is disposed at the center of the housing 2 so that the top-to-bottom direction coincides with the stacking direction of the power generation cells 10 a. ing. This also applies to the following embodiments.
  • the air introduction part 14a for introducing air into the interior is connected to the air outlet part 34b of the second air preheater 34, and the air exhaust part 14b for exhausting air from the inside is an air exhaust. It is connected to the path 6a.
  • the fuel introduction part 15a for introducing the fuel gas into the inside is connected to the fuel outlet part 44b of the fuel reformer 44, and the fuel discharge part 15b for discharging the fuel gas from the inside to the fuel discharge path 6b. It is connected.
  • the air introduction part 14 a of the fuel cell 10 is provided at a position corresponding to the air outlet part 34 b of the second air preheater 34 on the facing surface facing the second air preheater 34. Further, the fuel introduction part 15 a of the fuel cell 10 is provided at a position corresponding to the fuel outlet part 44 b of the fuel reformer 44 on the facing surface facing the fuel reformer 44.
  • the fuel cell 10 of the present embodiment has an air flow path so that the air introduced from the second air preheater 34 flows through the power generation site from the second air preheater 34 side to the fuel reformer 44 side. Is set.
  • the second air preheater 34 and the fuel reformer 44 are arranged apart from each other in order to avoid unnecessary heat exchange between the devices 34, 44. Further, the second air preheater 34 and the fuel reformer 44 are arranged opposite to each other around the fuel cell 10 so that the other heat exchange unit is not interposed between the one heat exchange unit and the fuel cell 10. ing.
  • the second air preheater 34 of the present embodiment is disposed on the opposite side of the fuel reformer 44 with the fuel cell 10 interposed therebetween so as not to be interposed between the fuel reformer 44 and the fuel cell 10. Has been.
  • the fuel reformer 44 of this embodiment is disposed on the opposite side of the second air preheater 34 with the fuel cell 10 interposed therebetween so as not to be interposed between the second air preheater 34 and the fuel cell 10. Has been.
  • the second air preheater 34 and the fuel reformer 44 receive heat radiated from the fuel cell 10 directly without interposing any other heat exchange part between the fuel cell 10 and the second air preheater 34 and the fuel reformer 44, respectively.
  • the other heat exchanging unit is assumed to be a heat exchanger that actively receives the radiant heat of the fuel cell 10, and receives the radiant heat of the fuel cell 10, but has a small amount of heat received, such as the air supply path 3 and the fuel.
  • Various pipes such as the supply path 4 and various wirings connected to the fuel cell 10 are not included. That is, various pipes and wirings may be interposed between the devices 34 and 44 and the fuel cell 10.
  • the second air preheater 34 and the fuel reformer 44 of the present embodiment face the stacked surface 10b of the fuel cell 10 so that sufficient heat transfer from the fuel cell 10 and radiant heat (radiant heat) can be obtained.
  • the fuel cell 10 is appropriately spaced from the fuel cell 10. Note that the second air preheater 34 and the fuel reformer 44 of the present embodiment are arranged such that the distances from the fuel cell 10 are equal to each other.
  • the second air preheater 34 and the fuel reformer 44 of the present embodiment overlaps with the fuel cell 10 in the opposing direction X (opposing plane X), and is orthogonal to the opposing direction X.
  • the fuel cell 10 is disposed so as not to be polymerized in the orthogonal direction Y.
  • Polymerization means a state in which the second air preheater 34 and the fuel reformer 44 at least partially overlap the fuel cell 10.
  • Non-polymerization means a state in which the second air preheater 34 and the fuel reformer 44 do not overlap the fuel cell 10.
  • the facing surface facing the fuel cell 10 is equivalent to the size of one stacked surface 10b of the fuel cell 10.
  • the facing direction X is a direction orthogonal to the plane in which the facing areas of the air preheater 34 and the fuel reformer 44 are the largest.
  • the air inlet 34a is connected to the air supply path 3, and the air outlet 34b is connected to the air inlet 14a of the fuel cell 10.
  • the fuel inlet portion 44 a is connected to the fuel supply path 4, and the fuel outlet portion 44 b is connected to the fuel introduction portion 15 a of the fuel cell 10.
  • the air pressure-fed by the air blower 32 is heated to a desired temperature by the first air preheater 33, and further heated by the second air preheater 34 to be a fuel cell. 10 is supplied.
  • the fuel gas pumped by the fuel blower 42 and the water pumped by the water pump 52 are heated to a desired temperature by the fuel preheater 43 and then fuel reformed.
  • the fuel is reformed into a rich fuel gas by the vessel 44 and supplied to the fuel cell 10.
  • the fuel cell 10 When fuel gas and air are supplied, the fuel cell 10 outputs electric energy by the electrochemical reaction shown in the above reaction formulas F1 to F4 using hydrogen and carbon monoxide as fuel.
  • Each off gas discharged from the fuel cell 10 is burned in the off gas combustor 61.
  • the high-temperature combustion gas generated in the off-gas combustor 61 flows in the order of the fuel reformer 44, the second air preheater 34, the fuel preheater 43, and the first air preheater 33 via the combustion gas path 6. After being used as a heat source in each device, it is discharged outside.
  • the second air preheater 34 and the fuel reformer 44 into which fuel gas and air of the same temperature flow are arranged so as to face the periphery of the fuel cell 10. .
  • the fuel cell 10 since the radiant heat generated at the time of power generation of the fuel cell 10 can be absorbed evenly by the second air preheater 34 and the fuel reformer 44, the fuel cell 10 can be controlled while suppressing temperature variations. Excess heat in the battery 10 can be recovered.
  • the second air preheater 34 and the fuel reformer 44 are arranged to be non-polymerized with the fuel cell when viewed from the orthogonal direction Y orthogonal to the opposing direction X of each other. According to this, it is possible to effectively suppress unnecessary heat exchange between the fluids flowing through the heat exchange units, and it is possible to more efficiently recover the excess heat in the fuel cell.
  • the second air preheater 34 and the fuel reformer 44 which are components having relatively close operating temperatures, are arranged around the fuel cell. According to this, the radiant heat from the fuel cell 10 can be effectively used for reforming the fuel gas and heating the air that is the oxidant gas.
  • the size of the facing surface facing the fuel cell 10 in each of the second air preheater 34 and the fuel reformer 44 is equal to the size of one stacked surface 10 b of the fuel cell 10.
  • the present invention is not limited to this.
  • the opposing surface facing the fuel cell 10 in each of the second air preheater 34 and the fuel reformer 44 may be made larger than the size of one stacked surface 10 b of the fuel cell 10. desirable. The same applies to the following embodiments.
  • the radiant heat radiated from both ends of the fuel cell 10 in the stacking direction of the power generation cells 10a can be sufficiently received by the second air preheater 34 and the fuel reformer 44.
  • the heat flux of the radiant heat from the laminated surface 10b in the fuel cell 10 can be made uniform, and temperature variations in the fuel cell 10 can be effectively suppressed.
  • the opposing surfaces of the second air preheater 34 and the fuel reformer 44 that oppose the fuel cell 10 may be smaller than the size of one stacked surface 10 b of the fuel cell 10. Good.
  • one of the second air preheater 34 and the fuel reformer 44 that faces the fuel cell 10 is larger than the size of one stacked surface 10 b of the fuel cell 10.
  • the opposing surface facing the fuel cell 10 on the other of the second air preheater 34 and the fuel reformer 44 may be made smaller than the size of one stacked surface 10 b of the fuel cell 10.
  • the present invention is not limited to this.
  • the second air preheater 34 and the fuel reformer 44 may be L-shaped or U-shaped as long as the second air preheater 34 and the fuel reformer 44 are arranged so as not to be polymerized with the fuel cell 10 when viewed from the orthogonal direction Y orthogonal to the facing direction X It is good also as an external shape.
  • the steam reforming in the fuel reformer 44 is an endothermic reaction, and the temperature gradient in the range from the upstream side to the downstream side of the gas flow tends to decrease due to the endothermic effect during the reforming reaction. There is.
  • the endothermic effect due to steam reforming does not occur unlike the fuel reformer 44, so the gas flow upstream side compared to the inside of the fuel reformer 44. There is a tendency that the temperature gradient in the range from the center to the downstream side tends to be large.
  • the temperature gradient in the gas flow path inside the second air preheater 34 is large, it may be a factor that promotes temperature variation in the fuel cell 10, which is not preferable.
  • the fuel cell device 1 of the present embodiment has an interval (distance ⁇ 1) between the second air preheater 34 and the fuel cell 10 such that the fuel reformer 44 and the fuel.
  • the second air preheater 34 is arranged so as to be wider than the distance (distance ⁇ 2) from the battery 10 ( ⁇ 1> ⁇ 2).
  • the second air preheater 34 whose internal temperature gradient is likely to be larger than that of the fuel reformer 44, is separated from the fuel cell 10 rather than the fuel reformer 44. .
  • the radiant heat from the fuel cell 10 to the second air preheater 34 side can be diffused. Thereby, it can suppress that the fuel cell 10 is locally cooled by the temperature gradient inside the 2nd air preheater 34, and can suppress the temperature variation in the fuel cell 10 effectively.
  • the fuel cell 10 of the present embodiment has a sealless structure in which a gas leakage prevention seal (not shown) is not provided on the outer periphery of the power generation cell 10a on the air discharge side. Exhaust air from the cell 10a is freely discharged from an air discharge part (off-gas discharge part) 14c of the fuel cell 10.
  • the fuel reformer 44 of the present embodiment is disposed at a position facing the air discharge portion 14c so as to be exposed to the exhaust air from the air discharge portion 14c of the fuel cell 10.
  • the second air preheater 34 is disposed on the opposite side of the fuel reformer 44 with the fuel cell 10 interposed therebetween so as not to be interposed between the fuel reformer 44 and the fuel cell 10.
  • the air in the housing 2 is supplied to the off-gas combustor 61 of the present embodiment, and the off-gas combustor 61 is supplied from the off-gas of the fuel gas and the inside of the housing 2. The air is mixed and burned.
  • the fuel reformer 44 is exposed to high-temperature exhaust air discharged from the fuel cell 10. For this reason, the fuel reformer 44 can sufficiently obtain the heat required for reforming the fuel gas, and the reforming reaction in the fuel reformer 44 can be promoted.
  • the air discharge side of the power generation cell 10a has a sealless structure, the structure of the fuel cell 10 can be simplified.
  • the present invention is not limited to this.
  • the air introduction side of the power generation cell 10 a has a sealless structure, and air from the air outlet part 34 b on the second air preheater 34 side is used as the air introduction part (off-gas introduction part) of the fuel cell 10. It is good also as a structure introduced from 14d.
  • the fuel gas discharge side of the power generation cell 10a has a sealless structure, and the fuel discharged from each power generation cell 10a is freely released from the fuel discharge portion (off-gas discharge portion) of the fuel cell 10. It is good.
  • the second air preheater 34 is disposed at a position facing the fuel discharge portion so as to be exposed to the fuel discharged from the fuel discharge portion of the fuel cell 10. It is possible to sufficiently obtain the heat required for heating.
  • each of the air discharge side and the fuel gas discharge side of the power generation cell 10a may have a sealless structure.
  • each of the second air preheater 34 and the fuel reformer 44 is configured in a U shape so as to cover the entire stacked surface 10b of the fuel cell 10 as shown in FIG.
  • the second air preheater 34 and the fuel reformer 44 of the present embodiment have a symmetrical shape with the fuel cell 10 in between.
  • the second air preheater 34 and the fuel reformer 44 of the present embodiment are arranged so as to be superposed on the fuel cell 10 when viewed from the orthogonal direction Y orthogonal to the opposing direction X of each other. Become.
  • the second air preheater 34 and the fuel reformer 44 are U-shaped so as to cover the entire stack surface 10 b of the fuel cell 10.
  • the present invention is not limited to this.
  • the second air preheater 34 and the fuel reformer 44 may be symmetrical with respect to the fuel cell 10.
  • the second air preheater 34 and the fuel reformer 44 are U-shaped, but the present invention is not limited to this.
  • the second air preheater 34 and the fuel reformer 44 may be asymmetric with respect to the fuel cell 10.
  • the second air preheater 34 and the fuel reformer 44 may have, for example, an L shape as long as the entire stacked surface 10b of the fuel cell 10 can be covered.
  • the first and second gas paths 62 and 63 that are the combustion gas paths 6 inside the fuel cell device 1 are replaced with the second air preheater 34 and the fuel reformer. It arrange
  • thermally contacting means not only a state in which the members are in direct contact with each other so that heat can be transferred, but even if the members are separated from each other, This means that the heat transfer between members is possible.
  • the first gas path 62 constituting the combustion gas path 6 is a gas path through which the combustion gas generated by the off-gas combustor 61 flows. Specifically, the first gas path 62 is disposed in direct contact with the entire back surface of the fuel reformer 44 opposite to the facing surface facing the fuel cell 10. The first gas path 62 may be disposed in a state of being separated from the back surface of the fuel reformer 44 as long as heat transfer can be performed between the first gas path 62 and the fuel reformer 44.
  • the second gas path 63 constituting the combustion gas path 6 is a gas path through which the combustion gas that has passed through the first gas path 62 flows. Specifically, the second gas path 63 is arranged in a state of being in direct contact with the entire back surface of the second air preheater 34 opposite to the facing surface facing the fuel cell 10. Note that the second gas path 63 may be arranged in a state of being separated from the back surface of the second air preheater 34 as long as heat transfer with the second air preheater 34 is possible.
  • the first and second gas paths 62 and 63 constituting the combustion gas path 6 are opposed to the fuel cell 10 in the second air preheater 34 and the fuel reformer 44.
  • positions so that it may contact thermally on the other side may be employ
  • the second gas path 63 may be located downstream of the first gas path 62 in the fuel gas flow, but the present invention is not limited to this.
  • the second gas path 63 may be positioned upstream of the first gas path 62 in the fuel gas flow.
  • the combustion gas path 6 may be branched into two inside the fuel cell device 1, and the branched gas paths may be used as the first and second gas paths 62 and 63.
  • the first gas path 62 and the second gas path 63 are connected by a pipe (not shown).
  • the pipe is thermally connected to the second air preheater 34 and the fuel reformer 44. Needless to say, it is not necessary to contact the This applies not only to the piping between the first gas path 62 and the second gas path 63 but also to the piping for connecting to the off-gas combustor 61 and the like inside the fuel cell device 1.
  • the parts B and C located on the end side in the stacking direction of the power generation cells 10a are the cell stacking direction.
  • the area exposed to the outside is larger than that of the middle step A.
  • the temperatures of the portions B and C located on the end side in the cell stacking direction are lower than the temperature of the middle stage A in the cell stacking direction.
  • the portions B and C located on the end side in the cell stacking direction in the fuel cell 10 are regions constituted by the power generation cells 10a positioned on the end side in the cell stacking direction including the pair of stacking end faces 10c and 10d. is there.
  • the middle stage A in the cell stacking direction of the fuel cell 10 is a region constituted by the power generation cells 10a excluding the power generation cells 10a located on the end side in the cell stacking direction among the plurality of power generation cells 10a.
  • the temperature of the part B located on the end side in the cell stacking direction of the fuel cell 10 is raised using the heat of the combustion gas flowing through the combustion gas path 6.
  • a third gas path 64 that connects the first and second gas paths 62 and 63 that constitute the combustion gas path 6 is provided as a pair of fuel cells 10.
  • the stacked end faces 10c and 10d are arranged so as to face one of the stacked end faces 10c.
  • the third gas path 64 of the present embodiment is provided from the stacking end face 10c of the fuel cell 10 so that heat is sufficiently radiated to the portion B located on the end side in the cell stacking direction of the fuel cell 10. They are spaced apart.
  • the first and second gas paths 62 and 63 constituting the combustion gas path 6 are brought into thermal contact with the second air preheater 34 and the fuel reformer 44, and the first The three gas paths 64 are arranged so as to face the stacked end face 10 c of the fuel cell 10.
  • the temperature in the cell stacking direction of the fuel cell 10 is increased by raising the temperature of the portion B located on the end side in the cell stacking direction that tends to be low in the fuel cell 10. Distribution can be reduced.
  • the third gas path 64 is disposed so as to face one of the stacked end faces 10c of the pair of stacked end faces 10c and 10d of the fuel cell 10 has been described, but the present invention is not limited thereto.
  • the third gas path 64 is disposed so as to face the other stacked end face 10d of the pair of stacked end faces 10c and 10d of the fuel cell 10, or both of the pair of stacked end faces 10c and 10d of the fuel cell 10 are used. Or may be arranged so as to face each other.
  • the gas paths 62, 63, 64 are connected by pipes (not shown).
  • the pipes are brought into thermal contact with the devices 34, 44, or the stacked end faces of the fuel cell 10. Needless to say, it is not necessary to dispose 10c and 10d. This applies not only to the piping between the gas paths 62, 63, 64 but also to the piping for connecting to the off-gas combustor 61 and the like inside the fuel cell device 1.
  • the temperature of the portion B located on the end side in the cell stacking direction of the fuel cell 10 is raised using the heat of the combustion gas flowing through the combustion gas path 6. An example to be performed will be described.
  • the third gas path 64 that connects the first and second gas paths 62 and 63 constituting the combustion gas path 6 is provided as a fuel cell. It arrange
  • the second gas preheater 34 and the fuel reformer 44 are arranged on the third gas path 64 in the layered surface 10b of the portion B located on the end side in the cell stacking direction of the fuel cell 10. It arrange
  • the third gas path 64 of the present embodiment is provided from the stacking surface 10b of the fuel cell 10 so that heat is sufficiently radiated to the portion B located on the end side in the cell stacking direction of the fuel cell 10. They are spaced apart.
  • the first and second gas paths 62 and 63 constituting the combustion gas path 6 are brought into thermal contact with the second air preheater 34 and the fuel reformer 44, and the first The three gas paths 64 are arranged so as to face the part B located on the end side in the cell stacking direction of the fuel cell 10.
  • the temperature in the cell stacking direction of the fuel cell 10 is increased by raising the temperature of the portion B located on the end side in the cell stacking direction that tends to be low in the fuel cell 10. Distribution can be reduced.
  • the configuration in which the third gas path 64 is disposed so as to face the portion B located on the end side in the cell stacking direction of the fuel cell 10 is illustrated, but the present invention is not limited to this.
  • the third gas path 64 is disposed so as to face the part C located on the end side of the fuel cell 10 in the cell stacking direction, or the part B located on the end side of the fuel cell 10 in the cell stacking direction.
  • C may be arranged so as to face both sides.
  • the third gas path 64 is excluded from the stacked surface 10b facing each device 34, 44 in the stacked surface 10b of the portion B located on the end side in the cell stacking direction of the fuel cell 10.
  • the structure which arranges facing the lamination surface 10b was illustrated, it is not limited to this.
  • the third gas path 64 may be disposed to face each stacked surface 10b so as to surround the entire circumference of each stacked surface 10b of the portion B located on the end side in the cell stacking direction of the fuel cell 10.
  • the third gas path 64 is also interposed between the second air preheater 34 and the fuel reformer 44 and the fuel cell 10.
  • the fuel cell 10 configured by the stacked body of the power generation cells 10a has the temperatures of the portions B and C located on the end side in the cell stacking direction in the cell stacking direction. It tends to be lower than the temperature of the middle section A.
  • the heat cell 10 is configured to suppress heat transfer from the portion located on the end side in the cell stacking direction of the fuel cell 10 to the second air preheater 34 or the fuel reformer 44.
  • the output current is drawn from the fuel cell 10 between the second air preheater 34 and the portion C located on the end side in the cell stacking direction of the fuel cell 10.
  • a bus bar 16 is arranged.
  • the bus bar 16 of the present embodiment functions as a member for drawing the output current from the fuel cell 10 and also serves as a heat shut-off unit that prevents heat transfer between the second air preheater 34 and the fuel cell 10. Function.
  • the vicinity of the air inlet 34a in the second air preheater 34 tends to be lower in temperature than the vicinity of the air outlet 34b through which air heated by the radiant heat of the fuel cell 10 flows.
  • the temperature variation of the fuel cell 10 occurs. That is, in the fuel cell 10, the temperature of the portion facing the vicinity of the air inlet portion 34 a that is low in the second air preheater 34 is likely to be lower than the temperature of the portion facing the vicinity of the air outlet portion 34 b that is high. There is a risk.
  • the bus bar 16 is provided between the portion near the air inlet 34a of the second air preheater 34 and the portion C located on the end side in the cell stacking direction in the fuel cell 10. Is arranged.
  • bus bar 16 that functions as a heat blocking unit is disposed between the second air preheater 34 and the portion C located on the end side in the cell stacking direction of the fuel cell 10.
  • the movement of heat from the portion C located on the end side in the cell stacking direction in the fuel cell 10 to the second air preheater 34 is suppressed, so that the position is located on the end side in the cell stacking direction.
  • the temperature drop of the part C to be performed can be suppressed.
  • the temperature distribution in the cell stacking direction in the fuel cell 10 can be reduced.
  • the fuel cell has a configuration in which a portion in the vicinity of the air inlet portion 34a of the second air preheater 34 and a portion C located on the end side in the cell stacking direction of the fuel cell 10 face each other. 10 can reduce the temperature distribution in the cell stacking direction more effectively.
  • the bus bar 16 for drawing the output current from the fuel cell 10 is used as a heat shut-off unit, so that the temperature distribution in the cell stacking direction of the fuel cell 10 is reduced without adding a separate member. can do.
  • bus bar 16 that functions as a heat blocking unit is disposed between the second air preheater 34 and the portion C located on the end side in the cell stacking direction of the fuel cell 10.
  • the bus bar 16 that functions as a heat blocking unit is disposed between the second air preheater 34 and the portion C located on the end side in the cell stacking direction of the fuel cell 10.
  • it is not limited to this.
  • the heat shut-off portion is disposed between at least one of the second air preheater 34 and the fuel reformer 44 and a portion located on the end side in the cell stacking direction in the fuel cell 10.
  • the bus bar 16 that functions as a heat blocking unit may be disposed between the second air preheater 34 and the portion B located on the end side in the cell stacking direction of the fuel cell 10.
  • the bus bar 16 that functions as a heat blocking unit may be disposed between the fuel reformer 44 and the portion C located on the end side in the cell stacking direction of the fuel cell 10.
  • bus bar 16 functions as the heat shut-off unit
  • members other than the bus bar 16 among the members constituting the fuel cell device 1 may be caused to function as the heat blocking portion.
  • a dedicated heat shielding plate may be used as the heat shielding portion.
  • first air preheater 33 and the second air preheater 34 are independent constituent devices and the fuel preheater 43 and the fuel reformer 44 are independent constituent devices.
  • first air preheater 33 and the second air preheater 34 may be integrated, the fuel preheater 43 and the fuel reformer 44 may be integrated, and these may be disposed around the fuel cell 10. .
  • the second air preheater 34 is composed of two or more preheaters in which the temperatures of the air flowing into each other are equal, and the fuel cell 10 is not interposed between the preheaters. You may arrange
  • the fuel reformer 44 is composed of two or more reformers in which the temperatures of the fuel gas flowing into each other are equal, and the fuel reformer 44 is configured so that the reformers are not interposed between the fuel cells 10. You may arrange
  • the example in which the fuel cell 10, the second air preheater 34, and the fuel reformer 44 are accommodated in the housing 2 has been described.
  • the housing 2 may be omitted.
  • the fuel cell 10 has a rectangular parallelepiped stack structure.
  • the present invention is not limited thereto, and the fuel cell 10 may have a columnar stack structure.
  • the fuel cell 10 is configured with a stack structure in which a plurality of flat-plate power generation cells 10a are stacked has been described.
  • the present invention is not limited thereto, and the fuel cell 10 is configured with a stack in which a plurality of cylindrical power generation cells 10a are stacked. May be.
  • the first gas path 62 is disposed so as to be in thermal contact with the entire rear surface of the fuel reformer 44, and the second gas path 63 is disposed on the second air preheater 34.
  • positioned so that it may contact thermally with the whole back surface was demonstrated, it is not limited to this.
  • the first gas path 62 is disposed in thermal contact with a part of the back surface of the fuel reformer 44, and the second gas path 63 is thermally applied to a part of the back surface of the second air preheater 34. You may make it arrange
  • the fuel cell 10 in which the stacking direction of the power generation cells 10a (cell stacking direction) coincides with the top-and-bottom direction is illustrated, but the present invention is not limited to this.
  • the cell stacking direction of the fuel cell 10 may be a direction (for example, a horizontal direction) that intersects the vertical direction.
  • the fuel cell 10 is a solid oxide fuel cell that operates at a high temperature.
  • the present invention is not limited to this.
  • a molten carbonate fuel that operates the fuel cell 10 at a high temperature.
  • a battery may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池装置は、燃料ガスおよび酸化剤ガスの電気化学反応により電気エネルギを出力する燃料電池(10)と、発電時の前記燃料電池の温度よりも温度の低い第1流体が流入し、前記燃料電池からの放射熱を前記第1流体と熱交換させる第1熱交換部(44)と、前記第1流体と同等の温度となる第2流体が流入し、前記燃料電池からの放射熱を前記第2流体と熱交換させる第2熱交換部(34)と、を備える。前記第1流体は、前記燃料電池に供給される前の前記燃料ガスおよび前記酸化剤ガスのいずれかであり、前記第2流体は、前記燃料電池に供給される前の前記燃料ガスおよび前記酸化剤ガスのいずれかである。前記第1熱交換部および前記第2熱交換部は、互いに離間すると共に、一方の熱交換部と前記燃料電池との間に他方の熱交換部が介在しないように前記燃料電池の周囲に対向配置されている。

Description

燃料電池装置 関連出願の相互参照
 本開示は、2013年1月18日に出願された日本出願番号2013-7463号と2013年10月25日に出願された日本出願番号2013-222120号に基づくもので、ここにその記載内容を援用する。
 本開示は、燃料電池装置に関する。
 従来、高温(例えば、500℃以上)で作動する高温型の燃料電池として、固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)や溶融炭酸塩型燃料電池(MCFC:Molten Carbonate Fuel Cell)が存在する。
 この種の高温型の燃料電池は、発電時に発熱反応を伴い、発電時の作動温度が高い程、酸素イオンの導電性が高く発電効率の観点から有利となる。
 しかし、燃料電池を構成する構成材料等の耐熱性の面から作動温度を所定温度(例えば、1000℃)に維持することが要求されており、燃料電池が必要以上に発熱しないように不要な熱を除去する必要がある。
 また、燃料電池装置には、都市ガス等の燃料ガス(原燃料ガス)を水素リッチな燃料ガスに改質する燃料改質器が設けられている。この燃料改質器としては、水蒸気と原燃料ガスとを混合させた後、高温の雰囲気下にて、水蒸気と原燃料ガスの炭化水素とを改質反応(水蒸気改質)させて、水素リッチな燃料ガスを生成するものがある。水蒸気と原燃料ガスの炭化水素との改質反応は、吸熱反応であるため、燃料改質器を高温にする必要がある。
 そこで、高温型の燃料電池にて生ずる不要な熱を回収して、燃料改質器等の昇温に利用する構成が提案されている(例えば、特許文献1参照)。
 この特許文献1では、燃料電池に供給される前の燃料ガスが流通する燃料改質器や燃料予熱器等を、燃料電池にて発生する熱を回収する熱交換部として、燃料電池の周囲に配置する構成としている。
 より具体的には、特許文献1に記載の燃料電池装置では、燃料ガスの温度が上流側から下流側に向かって高くなるように、燃料電池の周囲に燃料改質器および燃料予熱器をそれぞれ交互に、且つ、直列的に接続する構成としている。さらに、燃料電池を挟んで、燃料ガス流れ最下流側に位置する燃料改質器(最も温度の高い改質器)と対向する位置に、空気(酸化剤ガス)を予熱する空気予熱器を配置すると共に、当該空気予熱器と燃料電池との間に、燃料ガス流れ最上流側に位置する燃料改質器(最も温度の低い改質器)を配置する構成としている。
特開2007-80760号公報
 しかしながら、特許文献1に記載の燃料電池装置では、燃料電池の周囲に温度帯が大きく異なる機器が配置されることとなり、燃料電池の温度に大きなばらつきが生じてしまう。燃料電池の温度にばらつきが生ずると、燃料電池の低温となる部位の発電効率が低下したり、燃料電池の高温となる部位に生ずる熱応力に起因して破損したりする虞がある。
 本開示は上記点に鑑みて、燃料電池における温度ばらつきを抑制しつつ燃料電池からの熱回収を実現可能な燃料電池装置を提供することを目的とする。
 本開示の一例によれば、燃料電池装置は、燃料ガスおよび酸化剤ガスの電気化学反応により電気エネルギを出力する燃料電池と、発電時の燃料電池の温度よりも温度の低い第1流体が流入し、燃料電池からの放射熱を第1流体と熱交換させる第1熱交換部と、第1流体と同等の温度となる第2流体が流入し、燃料電池からの放射熱を第2流体と熱交換させる第2熱交換部と、を備える。第1流体は、燃料電池に供給される前の燃料ガスおよび酸化剤ガスのいずれかであり、第2流体は、燃料電池に供給される前の燃料ガスおよび酸化剤ガスのいずれかである。第1熱交換部および第2熱交換部は、互いに離間すると共に、一方の熱交換部と燃料電池との間に他方の熱交換部が介在しないように燃料電池の周囲に対向配置されている。
 これによれば、同等の温度の燃料ガスまたは酸化剤ガスが流入する2つの熱交換部を、燃料電池の周囲に対向配置する構成としているので、燃料電池の温度ばらつきを抑制しつつ、燃料電池における余剰の熱を回収することができる。
 この際、各熱交換部を互いに離間させると共に、一方の熱交換部と燃料電池との間に他方の熱交換部が介在しない配置構成としているので、各熱交換部を流通する流体同士の不必要な熱交換を抑制して、燃料電池における余剰の熱を効率よく回収することができる。
 「同等の温度」とは、温度が完全に一致する状態に限らず、例えば、過渡状態における温度差が300℃以下、定常状態における温度差が100℃以下となる状態を包含する。
 また、上記燃料電池装置において、第1熱交換部は、少なくとも燃料電池からの放射熱を利用して燃料ガスを改質する燃料改質器であり、第2熱交換部は、少なくとも燃料電池からの放射熱を利用して酸化剤ガスを加熱する酸化剤ガス予熱器である。
 このように、比較的作動温度の近い構成機器である燃料改質器および酸化剤ガス予熱器を燃料電池の周囲に配置する構成とすれば、燃料電池が放出する放射熱から、燃料ガスの改質に必要とされる熱、および燃料電池に供給する酸化剤ガスの昇温に要する熱を得ることができる。
 また、上記燃料電池装置において、第2熱交換部は、燃料電池から離間して配置され、第2熱交換部と燃料電池との間隔は、第1熱交換部と燃料電池との間隔よりも広い。
 これによれば、燃料改質器(第1熱交換部)に比べて内部の温度勾配が大きくなり易い酸化剤ガス予熱器(第2熱交換部)を、燃料改質器よりも燃料電池から離間させる構成としているので、燃料電池から酸化剤ガス予熱器側への放射熱を拡散させることができる。これにより、酸化剤ガス予熱器内部の温度勾配によって燃料電池が局所的に冷却されてしまうことを抑制することができ、燃料電池における温度ばらつきを効果的に抑制することができる。
第1実施形態に係る燃料電池システムの全体構成図である。 第1実施形態に係る燃料電池装置の模式的な構成図である。 図2のIII-III断面の模式図である。 第1実施形態に係る燃料電池装置の変形例を示す構成図である。 第1実施形態に係る燃料電池装置の変形例を示す構成図である。 第1実施形態に係る燃料電池装置の変形例を示す構成図である。 第2実施形態に係る燃料電池装置の模式的な構成図である。 第3実施形態に係る燃料電池装置の模式的な構成図である。 第3実施形態に係る燃料電池装置の変形例を示す構成図である。 第4実施形態に係る燃料電池装置の模式的な構成図である。 第4実施形態に係る燃料電池装置の変形例を示す構成図である。 第5実施形態に係る燃料電池装置の模式的な構成図である。 図12のXIII-XIII断面の模式図である。 第6実施形態に係る燃料電池装置の模式的な構成図である。 第7実施形態に係る燃料電池装置の模式的な構成図である。 図15のXVI-XVI断面の模式図である。 第8実施形態に係る燃料電池装置の模式的な構成図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 (第1実施形態)
 まず、第1実施形態について説明する。本実施形態では、図1に示す燃料電池システムに本開示の燃料電池装置1を適用している。
 本実施形態の燃料電池装置1は、断熱性を有するハウジング2、ハウジング2の内部に収容された燃料電池10、後述する第2空気予熱器34および燃料改質器44にて構成されている。なお、燃料電池装置1の内部における具体的な配置形態については後述する。
 燃料電池10は、燃料ガスと酸化剤ガス(本実施形態では空気)との電気化学反応により電気エネルギを出力する平板型の発電セル10aを複数積層した積層体(スタック構造)で構成されている。
 また、燃料電池10は、図2に示すように、外部に露出する面として、発電セル10aの積層方向に沿って延びる4つの積層面10b、および発電セル10aの積層方向の両端部に形成される一対の積層端面10c、10dを有している。なお、一対の積層端面10c、10dは、燃料電池10における発電セル10aの積層方向に直交する方向に延びる端面である。
 本実施形態の燃料電池10は、作動温度が高温(例えば、500℃~1000℃)となる固体酸化物型燃料電池(SOFC)で構成されている。なお、説明の便宜上、図1では、燃料電池10を単一の発電セル10aとして図示している。
 本実施形態の発電セル10aは、固体電解質体11、空気極(カソード)12、燃料極(アノード)13、燃料ガスおよび酸化剤ガスの流路が形成されたセパレータ14、15で構成されている。なお、本実施形態の発電セル10aは、炭化水素系の原料であるメタンガス(CH4)を改質した改質ガス(H2、CO)を燃料としている。
 セパレータ14、15は、各発電セル10aを電気的に接続すると共に、燃料ガスおよび酸化剤ガスといった反応ガスを各発電セル10aへ供給する機能を有する。なお、セパレータ14、15には、燃料ガスを各発電セル10aへ供給する燃料ガス通路(図示略)、および空気を空気極12および燃料極13へ供給する空気通路(図示略)が形成されている。
 本実施形態の燃料電池10は、発電セル10aの外周部にガス漏れ防止シール(図示略)が設けられたシール構造となっており、各発電セル10aからのオフガスが、図示しないマニホールドを介して、後述する空気排出経路6a、燃料排出経路6bに排出される。
 各発電セル10aでは、以下の反応式F1、F2に示す水素および酸素の電気化学反応により、電気エネルギが出力される。
(燃料極)2H+2O2-→2HO+4e…F1
(空気極)O+4e→2O2-…F2
 また、各発電セル10aでは、以下の反応式F3、F4に示す一酸化炭素(CO)および酸素の電気化学反応により、電気エネルギが出力される。
(燃料極)2CO+2O-→2CO+4e…F3
(空気極)O+4e→2O2-…F4
 なお、図示しないが燃料電池10のセル積層方向の両端には、各発電セル10aから出力される電流を集電する集電板が設けられており、当該集電板にて集電された電流が、バスバー等を介して外部へ引き出される。
 燃料電池10の空気の入口側には、空気の供給経路である空気供給経路3が接続されている。この空気供給経路3には、空気流れ上流側から順に、塵や埃等を除去する空気フィルタ31、燃料電池10へと空気を圧送する空気用ブロワ32、第1空気予熱器33、および第2空気予熱器34が設けられている。
 各空気予熱器33、34それぞれは、燃料電池10の空気極12に供給する空気と燃料極13に供給する高温の燃料ガスとの温度差を縮小して、各発電セル10aにおける発電効率の向上を図るために設けられている。
 第1空気予熱器33は、空気用ブロワ32から圧送された空気を、後述するオフガス燃焼器(CMB:Combustor)61で生成した燃焼ガスと熱交換させて加熱するものである。第1空気予熱器33では、空気用ブロワ32から圧送された空気と、発電時における燃料電池10の温度(例えば、700℃~800℃)よりも低い温度の燃焼ガスとを熱交換させる低温の予熱器である。本実施形態の第1空気予熱器33は、その内部における空気が、後述する燃料改質器44に流入する燃料ガスと同等の温度に昇温するように構成されている。これにより、第1空気予熱器33の空気流れ下流側の第2空気予熱器34には、燃料改質器44に流入する燃料ガスと同等の温度の空気が流入する。
 第2空気予熱器34は、第1空気予熱器33にて昇温した空気を、第1空気予熱器33を流通する燃焼ガスよりも高温の燃焼ガスと熱交換させる高温の予熱器(酸化剤ガス予熱器)である。
 本実施形態の第2空気予熱器34は、燃料電池10と共にハウジング2の内部に収容されており、燃料電池10の発電時に生ずる放射熱を吸熱して、内部を流通する空気を加熱する放射熱型の熱交換器で構成されている。本実施形態では、第2空気予熱器34が、第1空気予熱器33にて昇温した空気を第2流体として、燃料電池10の発電時に生ずる放射熱と熱交換させる第2熱交換部を構成している。なお、第2空気予熱器34には、発電時における燃料電池10の温度よりも低い空気が流入する。
 ここで、第2空気予熱器34では、内部における空気流れ上流側の部位が低温、空気流れ下流側の部位が高温となる傾向があり、燃料電池10に対向する対向面に温度分布が生じ易い。
 このため、第2空気予熱器34の内部における空気の流路は、燃料電池10に対向する対向面の温度分布が均一となるように、空気流れ上流側と下流側とが隣り合うように設定することが望ましい。
 一方、燃料電池10の燃料ガスの入口側には、燃料ガスの供給経路である燃料供給経路4が接続されている。この燃料供給経路4には、燃料ガス流れ上流側から順に、燃料ガスに含まれる硫黄成分を除去する脱硫器41、燃料電池10へと燃料ガスを圧送する燃料用ブロワ42、燃料予熱器43、燃料改質器44が設けられている。
 燃料予熱器43は、燃料用ブロワ42から圧送された燃料ガスを後述するオフガス燃焼器61で生成した燃焼ガスと熱交換させて加熱するものである。この燃料予熱器43は、水供給経路5にも接続されており、純水器51を介して水ポンプ52から供給される水を燃焼ガスと熱交換させて蒸発させる水蒸気生成器としての機能も果たしている。なお、燃料予熱器43では、燃料用ブロワ42から圧送された燃料ガスと燃料電池10よりも低い温度の燃焼ガスとを熱交換させる低温の予熱器である。
 燃料改質器44は、燃料予熱器43にて加熱された燃料ガス、および水蒸気を混合した混合ガスを燃焼ガスと熱交換させて加熱すると共に、水蒸気改質により水素および一酸化炭素を含む燃料ガスを生成する燃料ガス生成器である。
 本実施形態の燃料改質器44は、燃料電池10や第2空気予熱器34と共にハウジング2の内部に収容されており、燃料電池10の発電時に生ずる放射熱を吸熱して、内部を流通する燃料ガスを加熱する放射熱型の熱交換器で構成されている。本実施形態では、燃料改質器44が、燃料予熱器43にて昇温した燃料ガスを第1流体として、燃料電池10の発電時に生ずる放射熱と熱交換させる第1熱交換部を構成している。なお、燃料改質器44には、発電時における燃料電池10の温度(例えば、700℃~800℃)よりも低い燃料ガスが流入する。
 ここで、水蒸気改質は、吸熱反応であり、本実施形態の如く、燃料電池10の発電時に生ずる放射熱を吸熱可能な高温の条件下で行うことで、より高転化率の改質反応を実現することができる。但し、燃料電池10の起動時等には、燃料改質器44にて部分酸化改質を行うようにしてもよい。
 また、燃料改質器44では、内部における燃料ガス流れ上流側の部位が低温、燃料ガス流れ下流側の部位が高温となる傾向があり、燃料電池10に対向する対向面に温度分布が生じ易い。
 このため、燃料改質器44の内部における燃料ガスの流路は、燃料電池10に対向する対向面の温度分布が均一となるように、燃料ガス流れ上流側と下流側とが隣り合うように設定することが望ましい。
 なお、図示しないが、空気供給経路3および燃料供給経路4それぞれには、燃料電池10に供給する燃料ガスの供給量を調整する調整弁や、燃料電池10に供給する空気の供給量を調整する調整弁等が設けられている。
 燃料電池10の空気の出口側には、燃料電池10からの排出空気(酸化剤ガスのオフガス)が流れる空気排出経路6aが接続され、燃料電池10の燃料ガスの出口側には、排出燃料(燃料ガスのオフガス)が流れる燃料排出経路6bが接続されている。各排出経路6a、6bは、オフガス燃焼器61に接続されている。
 オフガス燃焼器61は、排出燃料と排出空気とを混合して燃焼させることで、燃料電池10に供給する空気や燃料ガスの予熱等の熱源として利用される高温(例えば、900℃~1000℃)の燃焼ガスを生成する燃焼器である。なお、燃料電池10から排出される排出燃料および排出空気には、発電に利用されなかった未反応ガスが含まれている。このため、当該未反応ガスを有効活用するために、オフガス燃焼器が設けられている。
 このオフガス燃焼器61には、高温の燃焼ガスを排出する燃焼ガス経路6が接続されている。この燃焼ガス経路6は、内部を流れる燃焼ガスの熱を有効利用すべく、上流側から順に燃料改質器44、第2空気予熱器34、燃料予熱器43、第1空気予熱器33といった機器に接続されている。なお、図示しないが、燃焼ガス経路6における第1空気予熱器33の下流側には、給湯水を加熱する熱交換器を設けられており、燃料ガスが有する熱にて、給湯水等を加熱するようになっている。
 続いて、本実施形態の燃料電池装置1の内部における具体的な配置形態について、図2に示す模式図、図3に示す模式的な断面図を用いて説明する。
 図2、図3に示すように、本実施形態の燃料電池10は、直方体型のスタック構造であり、天地方向が発電セル10aの積層方向と一致するように、ハウジング2の中央部に配置されている。この点については、以降の実施形態においても同様である。
 また、本実施形態の燃料電池10は、内部に空気を導入する空気導入部14aが第2空気予熱器34の空気出口部34bに接続され、内部から空気を排出する空気排出部14bが空気排出経路6aに接続されている。また、燃料電池10は、内部に燃料ガスを導入する燃料導入部15aが燃料改質器44の燃料出口部44bに接続され、内部から燃料ガスを排出する燃料排出部15bが燃料排出経路6bに接続されている。
 燃料電池10の空気導入部14aは、第2空気予熱器34に対向する対向面における第2空気予熱器34の空気出口部34bに対応する位置に設けられている。また、燃料電池10の燃料導入部15aは、燃料改質器44に対向する対向面における燃料改質器44の燃料出口部44bに対応する位置に設けられている。なお、本実施形態の燃料電池10は、第2空気予熱器34から導入された空気が、第2空気予熱器34側から燃料改質器44側へ発電部位を流通するように空気流路が設定されている。
 第2空気予熱器34および燃料改質器44は、各機器34、44間における不必要な熱交換を避けるために、互いに離間して配置されている。また、第2空気予熱器34および燃料改質器44は、一方の熱交換部と燃料電池10との間に、他方の熱交換部が介在しないように、燃料電池10の周囲に対向配置されている。換言すれば、本実施形態の第2空気予熱器34は、燃料改質器44と燃料電池10との間に介在しないように、燃料電池10を挟んで燃料改質器44の反対側に配置されている。同様に、本実施形態の燃料改質器44は、第2空気予熱器34と燃料電池10との間に介在しないように、燃料電池10を挟んで第2空気予熱器34の反対側に配置されている。
 また、第2空気予熱器34および燃料改質器44は、それぞれ燃料電池10との間に、他の熱交換部が介在せず、燃料電池10からの放射熱を直接的に受熱するように配置されている。なお、他の熱交換部は、燃料電池10の放射熱を積極的に受熱する熱交換器を想定しており、燃料電池10の放射熱を受熱するものの受熱量が少ない空気供給経路3や燃料供給経路4等の各種配管、燃料電池10に接続される各種配線は含まれない。つまり、各種配管や配線については、各機器34、44と燃料電池10との間に介在していてもよい。
 本実施形態の第2空気予熱器34および燃料改質器44は、燃料電池10からの充分な熱伝達、および放射熱(輻射熱)が得られるように、燃料電池10における積層面10bに対向する位置に燃料電池10から適切に離間して配置されている。なお、本実施形態の第2空気予熱器34および燃料改質器44それぞれは、燃料電池10からの距離が互いに等しくなるように配置されている。
 また、本実施形態の第2空気予熱器34および燃料改質器44は、少なくとも一部が、互いの対向方向X(対向平面X)において燃料電池10と重合し、且つ、対向方向Xに直交する直交方向Yにおいて燃料電池10と非重合となるように配置されている。「重合」とは、第2空気予熱器34および燃料改質器44が燃料電池10と、少なくとも一部が重なり合う状態を意味している。「非重合」とは、第2空気予熱器34および燃料改質器44が燃料電池10と重なり合わない状態を意味している。
 本実施形態の第2空気予熱器34および燃料改質器44は、燃料電池10に対向する対向面が、燃料電池10の1つの積層面10bの大きさと同等となっている。なお、対向方向Xは、空気予熱器34および燃料改質器44における互いの対向面積が最も大きくなる面に対して直交する方向である。
 なお、本実施形態の第2空気予熱器34は、空気入口部34aが空気供給経路3に接続され、空気出口部34bが燃料電池10の空気導入部14aに接続されている。また、本実施形態の燃料改質器44は、燃料入口部44aが燃料供給経路4に接続され、燃料出口部44bが燃料電池10の燃料導入部15aに接続されている。
 次に、上記構成に係る燃料電池システムの作動について説明する。図示しないコントローラからの制御指令により、燃料電池システムの運転が開始されると、空気用ブロワ32、燃料用ブロワ42、水ポンプ52等が作動する。
 空気供給経路3では、空気用ブロワ32にて圧送された空気が第1空気予熱器33にて所望の温度となるまで加熱された後、さらに第2空気予熱器34にて加熱されて燃料電池10に供給される。
 一方、燃料供給経路4では、燃料用ブロワ42にて圧送された燃料ガス、および水ポンプ52にて圧送された水が、燃料予熱器43にて所望の温度まで加熱された後、燃料改質器44にてリッチな燃料ガスに改質されて燃料電池10に供給される。
 燃料電池10は、燃料ガスおよび空気が供給されると、水素および一酸化炭素を燃料として前述の反応式F1~F4に示す電気化学反応により、電気エネルギを出力する。
 燃料電池10から排出された各オフガスは、オフガス燃焼器61にて燃焼される。そして、オフガス燃焼器61にて生ずる高温の燃焼ガスは、燃焼ガス経路6を介して燃料改質器44、第2空気予熱器34、燃料予熱器43、第1空気予熱器33の順に流れ、各機器における熱源として利用された後に外部へ排出される。
 以上説明した本実施形態の燃料電池装置1では、同等の温度の燃料ガスおよび空気が流入する第2空気予熱器34および燃料改質器44を、燃料電池10の周囲に対向配置する構成としている。
 これによれば、燃料電池10の発電時に生ずる放射熱を第2空気予熱器34および燃料改質器44にて均等に吸熱することができるので、燃料電池10の温度ばらつきを抑制しつつ、燃料電池10における余剰の熱を回収することができる。
 この際、第2空気予熱器34および燃料改質器44が、互いに離間すると共に、一方の熱交換部と燃料電池10との間に他方の熱交換部が介在しない配置構成としているので、第2空気予熱器34を流通する空気および燃料改質器44を流通する燃料ガス同士の不必要な熱交換を抑制することができる。この結果、燃料電池10における余剰の熱を効率よく回収することができる。
 特に、本実施形態では、第2空気予熱器34および燃料改質器44を互いの対向方向Xに直交する直交方向Yから見たときに燃料電池と非重合となる配置構成としている。これによれば、各熱交換部を流通する流体同士の不必要な熱交換を効果的に抑制することができ、燃料電池における余剰の熱をより効率よく回収することができる。
 また、本実施形態の燃料電池装置1では、比較的作動温度の近い構成機器である第2空気予熱器34および燃料改質器44を燃料電池の周囲に配置する構成としている。これによれば、燃料電池10からの放射熱を燃料ガスの改質、および酸化剤ガスである空気の加熱に有効利用することができる。
 ここで、本実施形態では、第2空気予熱器34および燃料改質器44それぞれにおける燃料電池10に対向する対向面の大きさが、燃料電池10の1つの積層面10bの大きさと同等となっている例について説明したが、これに限定されない。
 例えば、図4に示すように、第2空気予熱器34および燃料改質器44それぞれにおける燃料電池10に対向する対向面を、燃料電池10の1つの積層面10bの大きさよりも大きくすることが望ましい。このことは、以降の実施形態においても同様である。
 これによれば、燃料電池10における発電セル10aの積層方向の両端部より放射される放射熱についても、第2空気予熱器34および燃料改質器44で充分受けることができる。これにより、燃料電池10における積層面10bからの放射熱の熱流束を均一化させることができ、燃料電池10における温度ばらつきを効果的に抑制することができる。
 勿論、図5に示すように、第2空気予熱器34および燃料改質器44それぞれにおける燃料電池10に対向する対向面を、燃料電池10の1つの積層面10bの大きさよりも小さくしてもよい。
 また、図6に示すように、第2空気予熱器34および燃料改質器44のうち、一方における燃料電池10に対向する対向面を、燃料電池10の1つの積層面10bの大きさよりも大きくする。さらに、第2空気予熱器34および燃料改質器44のうち、他方における燃料電池10に対向する対向面を、燃料電池10の1つの積層面10bの大きさよりも小さくしてもよい。
 また、本実施形態では、第2空気予熱器34および燃料改質器44それぞれの外形状を直方体型とする例について説明したが、これに限定されない。第2空気予熱器34および燃料改質器44は、対向方向Xに直交する直交方向Yから見たときに燃料電池10と非重合となる配置形態であれば、L字型やU字型の外形状としてもよい。
 (第2実施形態)
 次に、第2実施形態について説明する。本実施形態では、第1実施形態に対して、燃料電池装置1における第2空気予熱器34および燃料改質器44の配置形態を変更した例について説明する。本実施形態では、第1実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
 燃料改質器44における水蒸気改質は、吸熱反応であり、燃料改質器44の内部では、改質反応時の吸熱効果によりガス流れ上流側から下流側に至る範囲の温度勾配が小さくなる傾向がある。
 これに対して、第2空気予熱器34の内部では、燃料改質器44のように水蒸気改質による吸熱効果が生じないことから、燃料改質器44の内部に比べて、ガス流れ上流側から下流側に至る範囲の温度勾配が大きくなり易い傾向がある。
 このように、第2空気予熱器34内部のガス流路における温度勾配が大きいと、燃料電池10における温度ばらつきを助長する要因となり得ることから、好ましくない。
 そこで、本実施形態の燃料電池装置1は、図7の構成図に示すように、第2空気予熱器34と燃料電池10との間の間隔(距離δ1)が、燃料改質器44と燃料電池10との間の間隔(距離δ2)よりも広くなるように、第2空気予熱器34を配置している(δ1>δ2)。
 その他の構成および作動は、第1実施形態と同様である。本実施形態の燃料電池装置1では、燃料改質器44に比べて内部の温度勾配が大きくなり易い第2空気予熱器34を、燃料改質器44よりも燃料電池10から離間させる構成としている。
 これによれば、燃料電池10から第2空気予熱器34側への放射熱を拡散させることができる。これにより、第2空気予熱器34内部の温度勾配によって燃料電池10が局所的に冷却されてしまうことを抑制することができ、燃料電池10における温度ばらつきを効果的に抑制することができる。
 (第3実施形態)
 次に、第3実施形態について説明する。本実施形態では、第1実施形態に対して、燃料電池10の構造を変更した例について説明する。本実施形態では、第1、第2実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
 本実施形態の燃料電池10は、図8に示すように、発電セル10aにおける空気排出側の外周部にガス漏れ防止シール(図示略)が設けられていないシールレス構造となっており、各発電セル10aからの排出空気が、燃料電池10の空気排出部(オフガス排出部)14cから自由に放出されるようになっている。
 また、本実施形態の燃料改質器44は、燃料電池10の空気排出部14cからの排出空気に晒されるように、空気排出部14cに対向する位置に配置されている。なお、第2空気予熱器34は、燃料改質器44と燃料電池10との間に介在しないように、燃料電池10を挟んで燃料改質器44の反対側に配置されている。
 なお、図示しないが、本実施形態のオフガス燃焼器61には、ハウジング2内の空気が供給されるようになっており、オフガス燃焼器61は、燃料ガスのオフガスとハウジング2内から供給された空気を混合して燃焼させる構成となっている。
 その他の構成および作動は、第1実施形態と同様である。本実施形態の燃料電池装置1では、燃料改質器44が燃料電池10から排出される高温の排出空気に晒される構成となっている。このため、燃料改質器44にて燃料ガスの改質に必要とされる熱を充分に得ることができ、燃料改質器44における改質反応を促進することができる。
 また、発電セル10aの空気排出側をシールレス構造としているので、燃料電池10の構造の簡素化を図ることができる。
 なお、本実施形態では、発電セル10aの空気排出側をシールレス構造とする例について説明したが、これに限定されない。
 例えば、図9に示すように、発電セル10aの空気導入側をシールレス構造とし、第2空気予熱器34側の空気出口部34bからの空気を燃料電池10の空気導入部(オフガス導入部)14dから導入する構成としてもよい。
 また、図示しないが、発電セル10aの燃料ガスの排出側をシールレス構造とし、各発電セル10aからの排出燃料が、燃料電池10の燃料排出部(オフガス排出部)から自由に放出される構成としてもよい。この場合、第2空気予熱器34を、燃料電池10の燃料排出部からの排出燃料に晒されるように、燃料排出部に対向する位置に配置することで、第2空気予熱器34にて空気の加熱に必要とされる熱を充分に得ることができる。勿論、発電セル10aの空気の排出側および燃料ガスの排出側それぞれをシールレス構造としてもよい。
 (第4実施形態)
 次に、第4実施形態について説明する。本実施形態では、第1実施形態に対して、第2空気予熱器34および燃料改質器44の形状を変更した例について説明する。本実施形態では、第1実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
 本実施形態では、第2空気予熱器34および燃料改質器44それぞれが、図10に示すように、燃料電池10の積層面10bの全体を覆うようにU字形状で構成されている。本実施形態の第2空気予熱器34および燃料改質器44は、燃料電池10を挟んで対称となる形状としている。なお、本実施形態の第2空気予熱器34および燃料改質器44は、互いの対向方向Xに直交する直交方向Yから見たときに燃料電池10に重合するように配置されていることになる。
 その他の構成および作動は、第1実施形態と同様である。本実施形態の燃料電池装置1では、第2空気予熱器34および燃料改質器44を燃料電池10の積層面10bの全体を覆うU字形状としている。これにより、第2空気予熱器34および燃料改質器44における燃料電池10からの放射熱の受熱面(対向面)を拡大することができるので、燃料電池10における温度ばらつきを効果的に抑制しつつ、燃料電池10における余剰の熱を回収することができる。
 なお、本実施形態では、第2空気予熱器34および燃料改質器44を、燃料電池10を挟んで対称となる形状とする例について説明したが、これに限定されない。例えば、図11に示すように、第2空気予熱器34および燃料改質器44を、燃料電池10を挟んで対称となる形状としてもよい。
 また、本実施形態では、第2空気予熱器34および燃料改質器44をU字形状とする例について説明したが、これに限定されない。例えば、図11に示すように、第2空気予熱器34および燃料改質器44を、燃料電池10を挟んで非対称となる形状としてもよい。また、第2空気予熱器34および燃料改質器44は、燃料電池10の積層面10bの全体を覆うことが可能であれば、例えば、L字形状としてもよい。
 (第5実施形態)
 次に、第5実施形態について説明する。本実施形態では、燃料電池装置1内部における燃焼ガス経路6の具体的な配置形態について説明する。本実施形態では、第1実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
 本実施形態では、図12、図13に示すように、燃料電池装置1内部における燃焼ガス経路6である第1、第2ガス経路62、63を、第2空気予熱器34および燃料改質器44における燃料電池10に対向する対向面の反対側に熱的に接触するように配置している。なお、「熱的に接触する」とは、伝熱が可能なように部材同士が直接的に接触している状態だけでなく、仮に部材間が離間したとしても、部材間の空間を介して部材同士の伝熱が可能となっている状態を含む意味である。
 燃焼ガス経路6を構成する第1ガス経路62は、オフガス燃焼器61にて生成された燃焼ガスが流通するガス経路である。具体的には、第1ガス経路62は、燃料改質器44における燃料電池10に対向する対向面の反対側の背面全域に直接的に接触した状態で配置されている。なお、第1ガス経路62は、燃料改質器44との間で伝熱が可能であれば、燃料改質器44の背面から離間した状態で配置されていてもよい。
 燃焼ガス経路6を構成する第2ガス経路63は、第1ガス経路62を通過した燃焼ガスが流通するガス経路である。具体的には、第2ガス経路63は、第2空気予熱器34における燃料電池10に対向する対向面の反対側の背面全域に直接的に接触した状態で配置されている。なお、第2ガス経路63は、第2空気予熱器34との間で伝熱が可能であれば、第2空気予熱器34の背面から離間した状態で配置されていてもよい。
 その他の構成および作動は、第1実施形態と同様である。本実施形態の燃料電池装置1では、燃焼ガス経路6を構成する第1、第2ガス経路62、63を、第2空気予熱器34および燃料改質器44における燃料電池10に対向する対向面の反対側に熱的に接触するように配置する構成を採用している。
 このように、燃焼ガスの熱を利用して、第2空気予熱器34および燃料改質器44それぞれを昇温させる構成とすれば、第2空気予熱器34および燃料改質器44と燃料電池10との温度差を縮小することができる。これにより、燃料電池10の積層面10bからの放射熱の熱流束のばらつきが縮小されるので、燃料電池10における温度ばらつきを効果的に抑制することができる。
 なお、本実施形態では、第2ガス経路63が第1ガス経路62の燃料ガス流れ下流側に位置する例について説明したが、これに限定されない。例えば、第2ガス経路63が第1ガス経路62の燃料ガス流れ上流側に位置するようにしてもよい。また、燃焼ガス経路6を燃料電池装置1内部で2つに分岐し、分岐したガス経路を第1、第2ガス経路62、63として用いてもよい。
 また、第1ガス経路62と第2ガス経路63とは、図示しない配管により接続されることになるが、当該配管については、第2空気予熱器34および燃料改質器44に対して熱的に接触させる必要がないことは言うまでもない。このことは、第1ガス経路62と第2ガス経路63との間の配管に限らず、燃料電池装置1内部におけるオフガス燃焼器61等と接続するための配管についても同様である。
 (第6実施形態)
 次に、第6実施形態について説明する。本実施形態では、第5実施形態に対して、燃料電池装置1内部における燃焼ガス経路6の具体的な配置形態を変更した例について説明する。本実施形態では、第5実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
 燃料電池10を複数の発電セル10aを積層した積層体で構成する場合、発電セル10aの積層方向(以下、セル積層方向と呼ぶ)における端部側に位置する部位B、Cは、セル積層方向の中段部Aに比べて、外部に露出する面積(放熱面積)が大きい。
 このため、発電セル10aの積層体で構成される燃料電池10では、セル積層方向における端部側に位置する部位B、Cの温度が、セル積層方向の中段部Aの温度に比べて低くなる傾向がある。なお、燃料電池10におけるセル積層方向における端部側に位置する部位B、Cは、一対の積層端面10c、10dを含むセル積層方向における端部側に位置する発電セル10aで構成される領域である。また、燃料電池10におけるセル積層方向の中段部Aは、複数の発電セル10aのうち、セル積層方向における端部側に位置する発電セル10aを除く発電セル10aで構成される領域である。
 そこで、本実施形態では、燃焼ガス経路6を流通する燃焼ガスの熱を利用して、燃料電池10のセル積層方向の端部側に位置する部位Bの温度を昇温させる構成としている。
 具体的には、本実施形態では、図14に示すように、燃焼ガス経路6を構成する第1、第2ガス経路62、63同士を接続する第3ガス経路64を、燃料電池10の一対の積層端面10c、10dの一方の積層端面10cに対向するように配置している。なお、本実施形態の第3ガス経路64は、燃料電池10のセル積層方向の端部側に位置する部位Bに対して充分に熱が放射されるように、燃料電池10の積層端面10cから離間して配置されている。
 その他の構成および作動は、第1、第5実施形態と同様である。本実施形態の燃料電池装置1では、燃焼ガス経路6を構成する第1、第2ガス経路62、63を、第2空気予熱器34および燃料改質器44に熱的に接触させると共に、第3ガス経路64を燃料電池10の積層端面10cに対向するように配置している。
 このように、燃焼ガスの熱を利用して、燃料電池10における低温となり易いセル積層方向の端部側に位置する部位Bを昇温させる構成とすれば、燃料電池10におけるセル積層方向の温度分布を縮小することができる。
 なお、本実施形態では、第3ガス経路64を、燃料電池10の一対の積層端面10c、10dのうち、一方の積層端面10cに対向するように配置する例について説明したが、これに限定されない。例えば、第3ガス経路64を、燃料電池10の一対の積層端面10c、10dのうち、他方の積層端面10dに対向するように配置したり、燃料電池10の一対の積層端面10c、10dの双方に対向するように配置したりしてもよい。
 また、各ガス経路62、63、64は、図示しない配管により接続されることになるが、当該配管については、各機器34、44に対して熱的に接触させたり、燃料電池10の積層端面10c、10dに対向配置させたりする必要がないことは言うまでもない。このことは、各ガス経路62、63、64間の配管に限らず、燃料電池装置1内部におけるオフガス燃焼器61等と接続するための配管についても同様である。
 (第7実施形態)
 次に、第7実施形態について説明する。本実施形態では、第5実施形態に対して、燃料電池装置1内部における燃焼ガス経路6の具体的な配置形態を変更した例について説明する。本実施形態では、第5実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
 本実施形態では、第6実施形態と同様に、燃焼ガス経路6を流通する燃焼ガスの熱を利用して、燃料電池10のセル積層方向の端部側に位置する部位Bの温度を昇温させる例について説明する。
 具体的には、本実施形態では、図15、図16に示すように、燃焼ガス経路6を構成する第1、第2ガス経路62、63同士を接続する第3ガス経路64を、燃料電池10のセル積層方向の端部側に位置する部位Bの積層面10bと対向するように配置している。
 ここで、本実施形態では、第3ガス経路64を、燃料電池10のセル積層方向の端部側に位置する部位Bの積層面10bのうち、第2空気予熱器34および燃料改質器44と対向する積層面10bを除く積層面10bに対向するように配置している。なお、本実施形態の第3ガス経路64は、燃料電池10のセル積層方向の端部側に位置する部位Bに対して充分に熱が放射されるように、燃料電池10の積層面10bから離間して配置されている。
 その他の構成および作動は、第1、第5実施形態と同様である。本実施形態の燃料電池装置1では、燃焼ガス経路6を構成する第1、第2ガス経路62、63を、第2空気予熱器34および燃料改質器44に熱的に接触させると共に、第3ガス経路64を燃料電池10のセル積層方向の端部側に位置する部位Bに対向するように配置している。
 このように、燃焼ガスの熱を利用して、燃料電池10における低温となり易いセル積層方向の端部側に位置する部位Bを昇温させる構成とすれば、燃料電池10におけるセル積層方向の温度分布を縮小することができる。
 なお、本実施形態では、第3ガス経路64を、燃料電池10のセル積層方向の端部側に位置する部位Bに対向するように配置する構成を例示したが、これに限定されない。例えば、第3ガス経路64を、燃料電池10のセル積層方向の端部側に位置する部位Cに対向するように配置したり、燃料電池10のセル積層方向の端部側に位置する部位B、Cの双方に対向するように配置したりしてもよい。
 また、本実施形態では、第3ガス経路64を、燃料電池10のセル積層方向の端部側に位置する部位Bの積層面10bのうち、各機器34、44と対向する積層面10bを除く積層面10bに対向配置する構成を例示したが、これに限定されない。
 例えば、第3ガス経路64を、燃料電池10のセル積層方向の端部側に位置する部位Bの各積層面10bの全周を囲むように、各積層面10bに対向配置してもよい。この場合、第3ガス経路64は、第2空気予熱器34および燃料改質器44と燃料電池10との間にも介在することとなる。
 (第8実施形態)
 次に、第8実施形態について説明する。本実施形態では、第1実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
 前述の第6実施形態にて説明したように、発電セル10aの積層体で構成される燃料電池10は、セル積層方向における端部側に位置する部位B、Cの温度が、セル積層方向の中段部Aの温度に比べて低くなる傾向がある。
 このため、燃料電池10のセル積層方向の端部側に位置する部位B、Cと第2空気予熱器34および燃料改質器44とを対向配置するだけでは、燃料電池10のセル積層方向における温度分布が依然として生ずる虞がある。
 そこで、本実施形態では、燃料電池10におけるセル積層方向の端部側に位置する部位から、第2空気予熱器34や燃料改質器44への熱の移動を抑制する構成としている。本実施形態では、図17に示すように、第2空気予熱器34と燃料電池10におけるセル積層方向の端部側に位置する部位Cとの間に、燃料電池10から出力電流を引き出すためのバスバー16を配置している。
 これにより、本実施形態のバスバー16は、燃料電池10から出力電流を引き出すための部材として機能すると共に、第2空気予熱器34と燃料電池10との間の熱移動を妨げる熱遮断部としても機能する。
 ここで、第2空気予熱器34における空気入口部34a付近は、燃料電池10の輻射熱により昇温した空気が流れる空気出口部34b付近よりも低温となり易い傾向がある。このように、第2空気予熱器34において温度分布が生ずると、燃料電池10の温度ばらつきの発生要因となってしまう。つまり、燃料電池10では、第2空気予熱器34における低温となる空気入口部34a付近に対向する部位の温度が、高温となる空気出口部34b付近に対向する部位の温度よりも低くなり易くなって虞がある。
 この点を考慮して、本実施形態では、第2空気予熱器34の空気入口部34a付近の部位と燃料電池10におけるセル積層方向の端部側に位置する部位Cとの間に、バスバー16を配置している。
 その他の構成および作動は第1実施形態と同様である。本実施形態では、第2空気予熱器34と燃料電池10におけるセル積層方向の端部側に位置する部位Cとの間に、熱遮断部として機能するバスバー16を配置している。
 これによれば、燃料電池10におけるセル積層方向の端部側に位置する部位Cから、第2空気予熱器34への熱の移動が抑制されることで、セル積層方向における端部側に位置する部位Cの温度低下を抑えることができる。この結果、燃料電池10におけるセル積層方向の温度分布を縮小することができる。
 特に、本実施形態では、第2空気予熱器34の空気入口部34a付近の部位と燃料電池10におけるセル積層方向の端部側に位置する部位Cとが対向する配置構成であるため、燃料電池10におけるセル積層方向の温度分布をより効果的に縮小することができる。
 また、本実施形態では、燃料電池10から出力電流を引き出すためのバスバー16を熱遮断部として利用しているので、別途部材を追加することなく、燃料電池10におけるセル積層方向の温度分布を縮小することができる。
 なお、本実施形態では、第2空気予熱器34と燃料電池10におけるセル積層方向の端部側に位置する部位Cとの間に、熱遮断部として機能するバスバー16を配置する例について説明したが、これに限定されない。
 すなわち、第2空気予熱器34および燃料改質器44のうち少なくとも一方と、燃料電池10におけるセル積層方向の端部側に位置する部位との間に熱遮断部が配置されていればよい。
 例えば、第2空気予熱器34と燃料電池10におけるセル積層方向の端部側に位置する部位Bとの間に、熱遮断部として機能するバスバー16を配置してもよい。また、燃料改質器44と燃料電池10におけるセル積層方向の端部側に位置する部位Cとの間に、熱遮断部として機能するバスバー16を配置してもよい。
 また、本実施形態では、バスバー16を熱遮断部として機能させる例について説明したが、これに限定されない。例えば、燃料電池装置1を構成する部材のうち、バスバー16以外の部材を熱遮断部として機能させるようにしてもよい。勿論、熱遮断部として専用の熱遮蔽板を用いるようにしてもよい。
 (他の実施形態)
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。例えば、以下のように種々変形可能である。
 上述の各実施形態では、第1空気予熱器33および第2空気予熱器34を独立した構成機器とすると共に、燃料予熱器43および燃料改質器44を独立した構成機器とする例について説明したが、これに限定されない。例えば、第1空気予熱器33および第2空気予熱器34を一体化すると共に、燃料予熱器43および燃料改質器44を一体化し、これらを燃料電池10の周囲に配置するようにしてもよい。
 上述の各実施形態では、第2空気予熱器34および燃料改質器44を燃料電池10の周囲に配置する例について説明したが、これに限定されない。
 例えば、第2空気予熱器34を、互いに流入する空気の温度が同等となる2つ以上の予熱器で構成し、各予熱器同士が燃料電池10との間に介在しないように、燃料電池10の周囲に配置してもよい。また、燃料改質器44を、互いに流入する燃料ガスの温度が同等となる2つ以上の改質器で構成し、各改質器同士が燃料電池10との間に介在しないように、燃料電池10の周囲に配置してもよい。
 上述の第1、第2、第4実施形態では、燃料電池10、第2空気予熱器34、および燃料改質器44をハウジング2内に収容する例について説明したが、これに限定されず、ハウジング2を省略してもよい。
 上述の各実施形態では、燃料電池10を直方体型のスタック構造とする例について説明したが、これに限らず、燃料電池10を円柱型のスタック構造としてもよい。
 燃料電池10を平板型の発電セル10aを複数積層したスタック構造で構成する例について説明したが、これに限らず、燃料電池10を複数の円筒型の発電セル10aを積層した積層体で構成してもよい。
 上述の第5~第7実施形態では、第1ガス経路62を燃料改質器44の背面全域に熱的に接触するように配置すると共に、第2ガス経路63を第2空気予熱器34の背面全域に熱的に接触するように配置する例について説明したが、これに限定されない。例えば、第1ガス経路62を燃料改質器44の背面の一部に熱的に接触した状態で配置すると共に、第2ガス経路63を第2空気予熱器34の背面の一部に熱的に接触した状態で配置するようにしてもよい。
 上述の各実施形態では、発電セル10aの積層方向(セル積層方向)が天地方向と一致する燃料電池10を例示したが、これに限定されない。燃料電池10のセル積層方向が、天地方向に交差する方向(例えば、水平方向)となっていてもよい。
 上述の各実施形態では、燃料電池10を高温で作動する固体酸化物型燃料電池とする例について説明したが、これに限定されず、例えば、燃料電池10を高温で作動する溶融炭酸塩型燃料電池としてもよい。
 上述の各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上述の各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。

Claims (9)

  1.  燃料ガスおよび酸化剤ガスの電気化学反応により電気エネルギを出力する燃料電池(10)と、
     発電時の前記燃料電池の温度よりも温度の低い第1流体が流入し、前記燃料電池からの放射熱を前記第1流体と熱交換させる第1熱交換部(44)と、
     前記第1流体と同等の温度となる第2流体が流入し、前記燃料電池からの放射熱を前記第2流体と熱交換させる第2熱交換部(34)と、を備え、
     前記第1流体は、前記燃料電池に供給される前の前記燃料ガスおよび前記酸化剤ガスのいずれかであり、
     前記第2流体は、前記燃料電池に供給される前の前記燃料ガスおよび前記酸化剤ガスのいずれかであり、
     前記第1熱交換部および前記第2熱交換部は、互いに離間すると共に、一方の熱交換部と前記燃料電池との間に他方の熱交換部が介在しないように前記燃料電池の周囲に対向配置されている燃料電池装置。
  2.  前記燃料電池から排出された未反応ガスを燃焼させて高温の燃焼ガスを生成する燃焼器(61)と、
     前記燃焼器にて生成された前記燃焼ガスが流通する燃焼ガス経路(6)と、を備え、
     前記燃焼ガス経路は、前記第1熱交換部および前記第2熱交換部における前記燃料電池に対向する対向面の反対側に熱的に接触するように配置されている請求項1に記載の燃料電池装置。
  3.  前記燃料電池は、複数の発電セル(10a)を積層した積層体で構成され、前記発電セルの積層方向に沿って延びる積層面(10b)、および前記発電セルの積層方向の両端部に形成される一対の積層端面(10c、10d)を有しており、
     前記第1熱交換部および前記第2熱交換部それぞれは、前記積層面と対向するように配置され、
     前記燃焼ガス経路は、前記第1熱交換部および前記第2熱交換部に熱的に接触すると共に、前記一対の積層端面のうち、少なくとも一方に対向するように配置されている請求項2に記載の燃料電池装置。
  4.  前記燃料電池は、複数の発電セル(10a)を積層した積層体で構成され、前記発電セルの積層方向に沿って延びる積層面(10b)を有しており、
     前記第1熱交換部および前記第2熱交換部それぞれは、前記積層面と対向するように配置され、
     前記燃焼ガス経路は、前記第1熱交換部および前記第2熱交換部に熱的に接触すると共に、前記燃料電池における前記セルの積層方向の端部側に位置する部位に対向するように配置されている請求項2に記載の燃料電池装置。
  5.  前記第1熱交換部および前記第2熱交換部それぞれは、少なくとも一部が互いの対向方向において前記燃料電池と重合し、且つ、前記対向方向に直交する直交方向において前記燃料電池と非重合となるように配置されている請求項1ないし4のいずれか1つに記載の燃料電池装置。
  6.  前記第1熱交換部は、少なくとも前記燃料電池からの放射熱を利用して前記燃料ガスを改質する燃料改質器(44)であり、
     前記第2熱交換部は、少なくとも前記燃料電池からの放射熱を利用して前記酸化剤ガスを加熱する酸化剤ガス予熱器(34)である請求項1ないし5のいずれか1つに記載の燃料電池装置。
  7.  前記第2熱交換部は、前記燃料電池から離間して配置され、
     前記第2熱交換部と前記燃料電池との間隔は、前記第1熱交換部と前記燃料電池との間隔よりも広い請求項6に記載の燃料電池装置。
  8.  前記燃料電池、前記第1熱交換部、および前記第2熱交換部を収容するハウジング(2)を備え、
     前記燃料電池は、少なくとも前記酸化剤ガスのオフガスを外周部から放出するシールレス構造となっており、
     前記第1熱交換部は、前記酸化剤ガスのオフガスに晒されるように、前記燃料電池における前記酸化剤ガスのオフガスの排出部(14c)に対向する位置に配置されている請求項6または7に記載の燃料電池装置。
  9.  熱の移動を妨げる熱遮断部(16)を備え、
     前記燃料電池は、複数の発電セル(10a)を積層した積層体で構成されており、
     前記熱遮断部は、前記第1熱交換部および前記第2熱交換部のうち少なくとも一方の熱交換部と、前記燃料電池における前記発電セルの積層方向の端部側に位置する部位との間に配置されている請求項1ないし8のいずれか1つに記載の燃料電池装置。
PCT/JP2013/007528 2013-01-18 2013-12-23 燃料電池装置 WO2014112018A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013007463 2013-01-18
JP2013-007463 2013-01-18
JP2013222120A JP6237114B2 (ja) 2013-01-18 2013-10-25 燃料電池装置
JP2013-222120 2013-10-25

Publications (1)

Publication Number Publication Date
WO2014112018A1 true WO2014112018A1 (ja) 2014-07-24

Family

ID=51209146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007528 WO2014112018A1 (ja) 2013-01-18 2013-12-23 燃料電池装置

Country Status (2)

Country Link
JP (1) JP6237114B2 (ja)
WO (1) WO2014112018A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6512847B2 (ja) * 2015-02-04 2019-05-15 本田技研工業株式会社 燃料電池モジュール
JP2016171016A (ja) * 2015-03-13 2016-09-23 富士電機株式会社 固体酸化物形燃料電池モジュール
JP7271910B2 (ja) * 2018-11-16 2023-05-12 株式会社Ihi 燃料電池システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080760A (ja) * 2005-09-16 2007-03-29 Mitsubishi Materials Corp 燃料電池
JP2009064565A (ja) * 2007-09-04 2009-03-26 Toyota Motor Corp 燃料電池
JP2011238363A (ja) * 2010-05-06 2011-11-24 Kawasaki Heavy Ind Ltd 燃料電池
JP2012198994A (ja) * 2011-03-18 2012-10-18 Kawasaki Heavy Ind Ltd 燃料電池およびその運転方法
JP2013004442A (ja) * 2011-06-21 2013-01-07 Ngk Spark Plug Co Ltd 燃料電池用原料供給装置、燃料電池システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3913008B2 (ja) * 2001-06-28 2007-05-09 三菱重工業株式会社 固体電解質型燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080760A (ja) * 2005-09-16 2007-03-29 Mitsubishi Materials Corp 燃料電池
JP2009064565A (ja) * 2007-09-04 2009-03-26 Toyota Motor Corp 燃料電池
JP2011238363A (ja) * 2010-05-06 2011-11-24 Kawasaki Heavy Ind Ltd 燃料電池
JP2012198994A (ja) * 2011-03-18 2012-10-18 Kawasaki Heavy Ind Ltd 燃料電池およびその運転方法
JP2013004442A (ja) * 2011-06-21 2013-01-07 Ngk Spark Plug Co Ltd 燃料電池用原料供給装置、燃料電池システム

Also Published As

Publication number Publication date
JP2014157811A (ja) 2014-08-28
JP6237114B2 (ja) 2017-11-29

Similar Documents

Publication Publication Date Title
JP5779371B2 (ja) 燃料電池およびその運転方法
JP5109252B2 (ja) 燃料電池
KR20110044771A (ko) 공기 분배 장치를 이용하는 향상된 연료전지 스택 플로우 후드 공기 플로우
JP2009099437A (ja) 燃料電池モジュール
JP5966970B2 (ja) 燃料電池装置、および燃料電池システム
JP5575535B2 (ja) 燃料電池
JP6111904B2 (ja) 燃料電池装置
JP2007128716A (ja) 燃料電池
JP6072111B2 (ja) 燃料電池モジュール
JP6064782B2 (ja) 燃料電池装置
JP2006269332A (ja) 固体酸化物形燃料電池システム
JP6237114B2 (ja) 燃料電池装置
JP5725048B2 (ja) 燃料電池装置
JP5643711B2 (ja) 燃料電池モジュール
JP2016207342A (ja) 燃料電池モジュール
JP2007026928A (ja) 燃料電池
JP4210912B2 (ja) 燃料改質器および燃料電池発電装置
JP2008147026A (ja) 固体酸化物形燃料電池
JP2013168303A (ja) 固体酸化物形燃料電池
JP2008235109A (ja) 燃料電池システム
JP2012238537A (ja) 燃料電池モジュール
JP6187209B2 (ja) 燃料電池装置
JP5697575B2 (ja) 燃料電池モジュール
JP6194854B2 (ja) 燃料電池装置
JP6280384B2 (ja) 燃料電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871571

Country of ref document: EP

Kind code of ref document: A1