WO2014104098A1 - 複合基板、その製法及び弾性波デバイス - Google Patents

複合基板、その製法及び弾性波デバイス Download PDF

Info

Publication number
WO2014104098A1
WO2014104098A1 PCT/JP2013/084675 JP2013084675W WO2014104098A1 WO 2014104098 A1 WO2014104098 A1 WO 2014104098A1 JP 2013084675 W JP2013084675 W JP 2013084675W WO 2014104098 A1 WO2014104098 A1 WO 2014104098A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thickness
piezoelectric substrate
less
composite
Prior art date
Application number
PCT/JP2013/084675
Other languages
English (en)
French (fr)
Inventor
裕二 堀
知義 多井
光雄 池尻
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to KR1020157016846A priority Critical patent/KR102133336B1/ko
Priority to CN201380066077.2A priority patent/CN104871431B/zh
Priority to DE112013006227.5T priority patent/DE112013006227T5/de
Priority to JP2014554494A priority patent/JP6265915B2/ja
Publication of WO2014104098A1 publication Critical patent/WO2014104098A1/ja
Priority to US14/737,655 priority patent/US9917246B2/en
Priority to US15/810,714 priority patent/US10622544B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/086Shaping or machining of piezoelectric or electrostrictive bodies by machining by polishing or grinding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Definitions

  • the present invention relates to a composite substrate, a manufacturing method thereof, and an acoustic wave device.
  • CVD and smart cut can provide thin films with very uniform thickness, they have the following problems. 1) CVD ⁇ The crystallinity is very bad. -The direction of the crystal axis is limited. 2) Damage due to smart cut ion implantation cannot be fully recovered and crystal defects remain.
  • the present invention has been made in view of such problems, and an object of the present invention is to obtain a piezoelectric single crystal thin film having high crystallinity and having an arbitrary crystal axis and a uniform thickness.
  • the method for producing the composite substrate of the present invention includes: (A) mirror polishing the piezoelectric substrate side of a bonded substrate having a diameter of 4 inches or more formed by bonding the piezoelectric substrate and the support substrate until the thickness of the piezoelectric substrate is 3 ⁇ m or less; (B) creating data of thickness distribution of the mirror-polished piezoelectric substrate; (C) By performing processing with an ion beam processing machine based on the data of the thickness distribution, the thickness of the piezoelectric substrate is 3 ⁇ m or less, the difference between the maximum value and the minimum value of the thickness is 60 nm or less on all planes, X-rays Obtaining a composite substrate having a crystallinity of a half-value width of a rocking curve obtained by diffraction of 100 arcsec or less; Is included.
  • the composite substrate of the present invention is A composite substrate having a diameter of 4 inches or more formed by bonding a piezoelectric substrate and a support substrate,
  • the piezoelectric substrate has a thickness of 3 ⁇ m or less, the difference between the maximum value and the minimum value of the thickness is 60 nm or less on all planes of the piezoelectric substrate, and the rocking curve obtained by X-ray diffraction has a half-value width of 100 arcsec or less. It is.
  • This composite substrate can be easily obtained by the manufacturing method described above.
  • the composite substrate can be used for an acoustic wave device.
  • FIG. 2 is a cross-sectional photograph of the piezoelectric substrate of Example 1.
  • FIG. 4 is a cross-sectional photograph of the piezoelectric substrate of Example 2.
  • the composite substrate of this embodiment has a diameter of 4 inches or more formed by bonding a piezoelectric substrate and a support substrate.
  • the piezoelectric substrate has a thickness of 3 ⁇ m or less, and the difference between the maximum value and the minimum value of the thickness is 60 nm or less over the entire plane of the piezoelectric substrate.
  • the piezoelectric substrate exhibits crystallinity where the half-value width of the rocking curve obtained by X-ray diffraction is 100 arcsec or less.
  • Examples of the material of the piezoelectric substrate include lithium tantalate, lithium niobate, lithium niobate-lithium tantalate solid solution single crystal, lithium borate, langasite, and quartz.
  • the material of the supporting substrate is silicon, sapphire, aluminum nitride, alumina, alkali-free glass, borosilicate glass, quartz glass, lithium tantalate, lithium niobate, lithium niobate-lithium tantalate solid solution single crystal, lithium borate, Examples include langasite and crystal.
  • the support substrate has the same diameter as the piezoelectric substrate and a thickness of 100 to 1000 ⁇ m, preferably 150 to 500 ⁇ m.
  • the composite substrate of this embodiment can be used as an acoustic wave device by forming an electrode pattern on the surface of a piezoelectric substrate.
  • a bonded substrate (composite substrate before polishing) having a diameter of 4 inches or more formed by bonding a piezoelectric substrate having a thickness of 100 to 1000 ⁇ m and a supporting substrate having a thickness of 100 to 1000 ⁇ m is 3 ⁇ m in thickness. Mirror finish until below.
  • This bonded substrate is a substrate obtained by bonding a piezoelectric substrate and a support substrate through an organic adhesive layer, or is integrated by direct bonding. Examples of the material for the organic adhesive layer include an epoxy resin and an acrylic resin.
  • Direct bonding is performed by activating the respective bonding surfaces of the piezoelectric substrate and the support substrate and then pressing both substrates in a state where the bonding surfaces face each other. Examples of the method for activating the bonding surface include irradiation of an ion beam of an inert gas (such as argon) to the bonding surface, irradiation of plasma or a neutral atom beam, and the like.
  • the piezoelectric substrate side of the bonded substrate is first polished with a cylinder processing machine, then polished with a lapping machine, and further until the thickness of the piezoelectric substrate becomes 3 ⁇ m or less with a CMP polishing machine. Mirror polishing may be performed. In this way, the thickness of the piezoelectric substrate can be efficiently reduced to 3 ⁇ m or less.
  • CMP is an abbreviation for chemical mechanical polishing.
  • ⁇ Process (b) Data on the thickness distribution of the mirror-polished piezoelectric substrate is created.
  • thickness distribution data may be created by measuring the thickness of a mirror-polished piezoelectric substrate with an optical film thickness measuring instrument using laser interference. In this way, thickness distribution data can be created with high accuracy.
  • the piezoelectric substrate is processed by an ion beam processing machine.
  • the piezoelectric substrate has a thickness of 3 ⁇ m or less, the difference between the maximum value and the minimum value of the thickness is 60 nm or less in all planes, and the rocking curve obtained by X-ray diffraction has a half-value width of 100 arcsec or less. A substrate is obtained.
  • step (c) thickness distribution data may be input to an ion beam processing machine to determine a beam irradiation time at each point on the surface of the piezoelectric substrate, and processing may be performed using the beam irradiation time. In this way, processing can be performed with high accuracy.
  • the beam output value is constant, and the beam irradiation time may be increased as the thickness increases.
  • the thickness distribution data may be input to an ion beam processing machine to determine the beam output value at each point on the surface of the piezoelectric substrate, and processing may be performed using the beam output value. Good. Even in this case, processing can be performed with high accuracy.
  • the beam irradiation time is fixed, and the beam output value may be increased as the thickness increases.
  • the processing is preferably performed using an ion beam processing machine equipped with a DC excitation type Ar beam source.
  • an ion beam processing machine equipped with a plasma excitation type Ar beam source may be used, but the ion beam processing machine equipped with a DC excitation type Ar beam source is more suitable for the surface of the piezoelectric substrate. This is preferable because the damage given is further reduced.
  • the problems of CVD and smart cut are solved, and a piezoelectric single crystal thin film having a uniform thickness and high crystallinity and having an arbitrary crystal axis is obtained. Can do.
  • the composite substrate manufactured by this manufacturing method can be used for an acoustic wave device.
  • Example 1 A silicon substrate (support substrate) and a LiTaO 3 substrate (piezoelectric substrate) having a thickness of 230 ⁇ m and a diameter of 4 inches polished on both sides were prepared. These substrates were introduced into a vacuum chamber maintaining a degree of vacuum on the order of 10 ⁇ 6 Pa, and the bonded surfaces were held facing each other. The bonded surfaces of both substrates were irradiated with Ar beam for 80 seconds, and the inactive layer on the surface was removed and activated. Next, the substrates were brought into contact with each other and bonded under a load of 1200 kgf. After taking out the bonded substrate thus obtained, the piezoelectric substrate side was ground by a grinder processing machine until the thickness became 10 ⁇ m.
  • the bonded substrate was set on a lapping machine and polished with a diamond slurry until the thickness of the piezoelectric substrate became 3 ⁇ m. Further, the surface of the piezoelectric substrate was mirror-polished with a CMP grinder until the thickness became 0.8 ⁇ m. At this time, colloidal silica was used as an abrasive.
  • the thickness of the piezoelectric substrate was measured with an optical film thickness measuring device using laser interference, the thickness was within the range of ⁇ 0.1 ⁇ m over the entire surface of the piezoelectric substrate centered on 0.8 ⁇ m. The total number of measurement points was 80 on all planes except for the chamfered end of the piezoelectric substrate.
  • the bonded substrate thus obtained was set in an ion beam processing machine equipped with a plasma excitation type Ar beam source.
  • the thickness data of the piezoelectric substrate measured by the optical film thickness measuring instrument described above was imported into an ion beam processing machine, and the processing amount at each measurement point of the piezoelectric substrate, here, the irradiation time of the Ar beam was determined.
  • the irradiation time of the beam was adjusted by the feeding speed of the bonded substrate.
  • an Ar beam having a constant output was irradiated on the entire surface of the piezoelectric substrate while changing the feeding speed of the bonded substrate.
  • the beam spot was 6 mm in diameter.
  • RF plasma was excited under the conditions of an ion acceleration voltage of 1300 eV and an ion current of 30 mA. Actual processing time was approximately 5 minutes.
  • the center film thickness was 0.76 ⁇ m, and the difference between the maximum value and the minimum value was 24 nm over the entire surface.
  • the half-width (FWHM) was 80 arcsec, which was exactly the same as that of a bulk single crystal, and it was confirmed that no deterioration in crystallinity occurred.
  • This composite substrate can be used for an elastic wave filter to obtain a device with small frequency variation and excellent filter characteristics.
  • Example 2 A bonded substrate was produced in the same manner as in Example 1.
  • the thickness of the piezoelectric substrate was measured with an optical film thickness measuring instrument using laser interference, the thickness was within the range of ⁇ 0.12 ⁇ m over the entire surface of the piezoelectric substrate centered at 1.0 ⁇ m.
  • the total number of measurement points was 80 as in Example 1.
  • the bonded substrate thus obtained was set in an ion beam processing machine equipped with a DC excitation type Ar beam source.
  • the thickness data of the piezoelectric substrate measured by the optical film thickness measuring instrument described above was imported into an ion beam processing machine, and the processing amount at each measurement point of the piezoelectric substrate, here, the output value of the Ar beam was determined.
  • the output of the Ar beam was changed between 20 and 100 W, and the entire surface of the piezoelectric substrate was irradiated with the Ar beam.
  • the beam spot was 6 mm in diameter. Since the feed speed is constant, the beam irradiation time is the same over the entire surface of the piezoelectric substrate.
  • the center film thickness was 0.92 ⁇ m, and the difference between the maximum value and the minimum value was 50 nm over the entire surface.
  • the rocking curve was measured with an X-ray diffractometer, the half-width (FWHM) was 65 arcsec, which was exactly the same as that of a bulk single crystal, and it was confirmed that no deterioration in crystallinity occurred.
  • FIG. 1 is a cross-sectional photograph of Example 1
  • FIG. 2 is a cross-sectional photograph of Example 2.
  • the thickness of the damaged layer (black layer on the surface) of Example 1 was 10 nm
  • the thickness of the damaged layer of Example 2 was 3 nm. From this, it was found that the ion beam processing machine provided with the DC excitation type Ar beam source caused less damage to the surface than the ion beam processing machine provided with the plasma excitation type Ar beam source.
  • an electrode of a SAW resonator was formed on the piezoelectric substrate of the composite substrate of Examples 1 and 2.
  • the electrode pitch was 4 ⁇ m.
  • the resonator characteristics having a center frequency of about 930 MHz were not different from those of a resonator formed on a normal piezoelectric substrate. That is, it was found that a damaged layer having a thickness of about 10 nm does not affect the characteristics.
  • the present invention can be used for an acoustic wave device such as a SAW filter.

Abstract

 本発明の複合基板の製法は、(a)圧電基板と支持基板とを接合してなる直径4インチ以上の貼り合わせ基板の圧電基板側を、前記圧電基板の厚みが3μm以下になるまで鏡面研磨する工程と、(b)前記鏡面研磨した圧電基板の厚み分布のデータを作成する工程と、(c)前記厚み分布のデータに基づいてイオンビーム加工機で加工を行うことにより、前記圧電基板の厚みが3μm以下、その厚みの最大値と最小値の差が全平面で60nm以下、X線回折により得られるロッキングカーブの半値幅が100arcsec以下の結晶性を示す複合基板を得る工程と、を含むものである。

Description

複合基板、その製法及び弾性波デバイス
 本発明は、複合基板、その製法及び弾性波デバイスに関する。
 非常に薄い圧電薄膜を用いることで、従来にない高周波での動作が可能な弾性波デバイスを実現することが期待される。このような薄膜を得る手法として、化学気相成長法(CVD)とスマートカットとの二つが挙げられる。この二つの手法はいずれも周知技術である。例えば、スマートカットについては、特許文献1に記載されている。
特開2010-109949(段落0004)
 CVD、スマートカットの両者とも非常に均一な厚みを持つ薄膜を得られるが、それぞれ次のような問題点がある。
1)CVD
・結晶性が非常に悪い。
・結晶軸の方向が限定される。
2)スマートカット
・イオン注入によるダメージが十分に回復できず、結晶欠陥が残る。
 上記二つの手法のほかに、圧電膜を薄く削る方法も試してみたが、研磨途中で割れが生じたり、膜厚が均一にならないなどの問題点があった。
 本発明はこのような問題を鑑みてなされたもので、結晶性が高く、任意の結晶軸を持つ、均一な厚みの圧電単結晶薄膜を得ることを目的とする。
 本発明の複合基板の製法は、
(a)圧電基板と支持基板とを接合してなる直径4インチ以上の貼り合わせ基板の圧電基板側を、前記圧電基板の厚みが3μm以下になるまで鏡面研磨する工程と、
(b)前記鏡面研磨した圧電基板の厚み分布のデータを作成する工程と、
(c)前記厚み分布のデータに基づいてイオンビーム加工機で加工を行うことにより、前記圧電基板の厚みが3μm以下、その厚みの最大値と最小値の差が全平面で60nm以下、X線回折により得られるロッキングカーブの半値幅が100arcsec以下の結晶性を示す複合基板を得る工程と、
 を含むものである。
 この製法によれば、CVDやスマートカットの問題点が解消され、結晶性が高く、任意の結晶軸を持つ、均一な厚みの圧電単結晶薄膜を得ることができる。
 本発明の複合基板は、
 圧電基板と支持基板とを接合してなる直径4インチ以上の複合基板であって、
 前記圧電基板の厚みが3μm以下、その厚みの最大値と最小値の差は前記圧電基板の全平面で60nm以下、X線回折により得られるロッキングカーブの半値幅が100arcsec以下の結晶性を示す
 ものである。
 この複合基板は、上述した製法により容易に得ることができる。また、この複合基板は、弾性波デバイスに利用可能である。
実施例1の圧電基板の断面写真。 実施例2の圧電基板の断面写真。
 本発明の好適な一実施形態の複合基板について、以下に説明する。本実施形態の複合基板は、圧電基板と支持基板とを接合してなる直径4インチ以上のものである。圧電基板は、厚みが3μm以下であり、その厚みの最大値と最小値の差は圧電基板の全平面で60nm以下である。また、圧電基板は、X線回折により得られるロッキングカーブの半値幅が100arcsec以下の結晶性を示す。
 圧電基板の材質としては、タンタル酸リチウム、ニオブ酸リチウム、ニオブ酸リチウム-タンタル酸リチウム固溶体単結晶、硼酸リチウム、ランガサイト、水晶などが挙げられる。
 支持基板の材質としては、シリコン、サファイア、窒化アルミニウム、アルミナ、無アルカリガラス、ホウ珪酸ガラス、石英ガラス、タンタル酸リチウム、ニオブ酸リチウム、ニオブ酸リチウム-タンタル酸リチウム固溶体単結晶、ホウ酸リチウム、ランガサイト、水晶などが挙げられる。支持基板の大きさは、直径が圧電基板と同じであり、厚さが100~1000μm、好ましくは150~500μmである。
 本実施形態の複合基板は、圧電基板の表面に電極パターンを形成して弾性波デバイスとして利用可能である。
 次に、本実施形態の複合基板を製造するプロセスについて、以下に説明する。
・工程(a)
 厚みが100~1000μmの圧電基板と厚みが100~1000μmの支持基板とを接合してなる直径4インチ以上の貼り合わせ基板(研磨前の複合基板)の圧電基板側を、圧電基板の厚みが3μm以下になるまで鏡面研磨する。この貼り合わせ基板は、圧電基板と支持基板とを有機接着層を介して貼り合わせたものであるか、直接接合により一体化したものである。有機接着層の材質としては、例えばエポキシ樹脂やアクリル樹脂などが挙げられる。直接接合は、圧電基板と支持基板のそれぞれの接合面を活性化した後、両接合面を向かい合わせにした状態で両基板を押圧することにより行う。接合面を活性化する方法は、例えば、接合面への不活性ガス(アルゴンなど)のイオンビームの照射のほか、プラズマや中性原子ビームの照射などが挙げられる。
 工程(a)では、例えば、貼り合わせ基板の圧電基板側を、まずクラインダー加工機で研磨し、次いでラップ加工機で研磨し、更にCMP研磨機で前記圧電基板の厚みが3μm以下になるまで鏡面研磨してもよい。こうすれば、圧電基板の厚みを効率よく3μm以下にすることができる。なお、CMPは、化学的機械的研磨(Chemical Mechanical Polishing)の略である。
・工程(b)
 鏡面研磨した圧電基板の厚み分布のデータを作成する。例えば、鏡面研磨した圧電基板の厚みをレーザーの干渉を用いた光学式膜厚測定器で測定して厚み分布のデータを作成してもよい。こうすれば、厚み分布のデータを精度よく作成することができる。
・工程(c)
 厚み分布のデータに基づいてイオンビーム加工機で圧電基板に加工を行う。こうすることにより、圧電基板の厚みが3μm以下、その厚みの最大値と最小値の差が全平面で60nm以下、X線回折により得られるロッキングカーブの半値幅が100arcsec以下の結晶性を示す複合基板が得られる。
 工程(c)では、厚み分布のデータをイオンビーム加工機に入力して圧電基板の表面の各点におけるビーム照射時間を決定し、該ビーム照射時間を用いて加工を行ってもよい。こうすれば、加工を精度よく行うことができる。この場合、ビームの出力値は一定とし、厚いところほどビーム照射時間を長くすればよい。あるいは、工程(c)では、厚み分布のデータをイオンビーム加工機に入力して圧電基板の表面の各点におけるビームの出力値を決定し、該ビームの出力値を用いて加工を行ってもよい。こうしても、加工を精度よく行うことができる。この場合、ビーム照射時間は一定とし、厚いところほどビームの出力値を大きくすればよい。
 また、工程(c)では、加工を、DC励起型Arビーム源を備えたイオンビーム加工機を用いて行うことが好ましい。イオンビーム加工機としては、プラズマ励起型Arビーム源を備えたイオンビーム加工機を用いてもよいが、DC励起型Arビーム源を備えたイオンビーム加工機を用いた方が圧電基板の表面に与えるダメージが一層少なくなるため好ましい。
 以上詳述した本実施形態の複合基板の製法によれば、CVDやスマートカットの問題点が解消され、結晶性が高く、任意の結晶軸を持つ、均一な厚みの圧電単結晶薄膜を得ることができる。また、この製法によって製造された複合基板は、弾性波デバイスに利用可能である。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
[実施例1]
 両面研磨された厚みが230μm、直径が4インチのシリコン基板(支持基板)、LiTaO3基板(圧電基板)をそれぞれ用意した。これら基板を10-6Pa台の真空度を保つ真空チャンバーに導入し、接合面を対向させ保持した。両基板の接合面にArビームを80sec間照射し、表面の不活性層を除去し活性化した。ついで互いの基板を接触させ、1200kgfの荷重をかけて接合した。このようにして得られた貼り合わせ基板を取り出した後、グラインダー加工機により圧電基板側をその厚みが10μmになるまで研削した。ついで、その貼り合わせ基板をラップ加工機にセットし、ダイヤモンドスラリーを用いて圧電基板の厚みが3μmになるまで研磨した。更に、その圧電基板の表面をCMP研磨機で厚みが0.8μmになるまで鏡面研磨した。この時、研磨剤としてコロイダルシリカを用いた。レーザーの干渉を用いた光学式膜厚測定器で圧電基板の厚みを測定したところ、その厚みは0.8μmを中心として圧電基板の全面で±0.1μmの範囲に収まっていた。測定点は、圧電基板の面取りがされた端部を除く全平面で合計80点とした。
 このようにして得られた貼り合わせ基板を、プラズマ励起型Arビーム源を備えたイオンビーム加工機にセットした。次いで、前述した光学式膜厚測定器で測定した圧電基板の厚みデータをイオンビーム加工機にインポートして、圧電基板の各測定点における加工量、ここではArビームの照射時間を決定した。ビームの照射時間は、貼り合わせ基板の送り速度によって調整した。そして、貼り合わせ基板の送り速度を変化させながら、圧電基板の全面に出力一定のArビームを照射した。ビームスポットは直径6mmとした。また、イオン加速電圧を1300eV、イオン電流を30mA一定の条件とし、RFプラズマを励起した。実加工時間はおおよそ5分であった。
 加工後の貼り合わせ基板(本実施例の複合基板)の圧電基板の厚みを再度測定したところ、中心膜厚が0.76μmで厚みの最大値と最小値の差は全面で24nmであった。X線回折装置によりロッキングカーブを測定したところ、その半値幅(FWHM)は80arcsecとバルクの単結晶と全く同等の値が得られ、結晶性の劣化が生じていないことが確認された。
 この複合基板は、弾性波フィルタに活用することにより、周波数ばらつきが小さく、フィルタ特性が優れたデバイスを得ることができる。
[実施例2]
 実施例1と同じようにして貼り合わせ基板を作製した。レーザーの干渉を用いた光学式膜厚測定器で圧電基板の厚みを測定したところ、その厚みは1.0μmを中心として圧電基板の全面で±0.12μmの範囲に収まっていた。測定点は、実施例1と同じく合計80点とした。
 このようにして得られた貼り合わせ基板を、DC励起型Arビーム源を備えたイオンビーム加工機にセットした。次いで、前述した光学式膜厚測定器で測定した圧電基板の厚みデータをイオンビーム加工機にインポートして、圧電基板の各測定点における加工量、ここではArビームの出力値を決定した。そして、貼り合わせ基板を送り速度0.5mm/sec(一定)で送りながら、Arビームの出力を20~100Wの間で変化させ、圧電基板の全面にArビームを照射した。ビームスポットは直径6mmとした。送り速度を一定としたため、ビーム照射時間は圧電基板の全面で同じになる。
 加工後の貼り合わせ基板(本実施例の複合基板)の圧電基板の厚みを再度測定したところ、中心膜厚が0.92μmで厚みの最大値と最小値の差は全面で50nmであった。X線回折装置によりロッキングカーブを測定したところ、その半値幅(FWHM)は65arcsecとバルクの単結晶と全く同等の値が得られ、結晶性の劣化が生じていないことが確認された。
 実施例1と実施例2の圧電基板の表面付近の断面をTEMで観察したところ、それぞれの表面にダメージ層が見受けられた。図1は実施例1の断面写真、図2は実施例2の断面写真である。実施例1のダメージ層(表面の黒い層)の厚みは10nm、実施例2のダメージ層の厚みは3nmであった。このことから、DC励起型Arビーム源を備えたイオンビーム加工機の方が、プラズマ励起型Arビーム源を備えたイオンビーム加工機に比べて、表面へのダメージが少ないことが分かった。
 ダメージ層の素子特性への影響を推し量るため、実施例1,2の複合基板の圧電基板上にSAW共振器の電極を作成した。電極ピッチは4μmとした。約930MHzの中心周波数を持つ共振器特性は、通常の圧電基板上に作成された共振器との間で差異は見られなかった。すなわち、厚み10nm程度のダメージ層は特性に影響を与えないことが分かった。
 本出願は、2012年12月26日に出願された米国仮出願第61/745898号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、SAWフィルタなどの弾性波デバイスに利用可能である。

Claims (8)

  1. (a)圧電基板と支持基板とを接合してなる直径4インチ以上の貼り合わせ基板の圧電基板側を、前記圧電基板の厚みが3μm以下になるまで鏡面研磨する工程と、
    (b)前記鏡面研磨した圧電基板の厚み分布のデータを作成する工程と、
    (c)前記厚み分布のデータに基づいてイオンビーム加工機で加工を行うことにより、前記圧電基板の厚みが3μm以下、その厚みの最大値と最小値の差が全平面で60nm以下、X線回折により得られるロッキングカーブの半値幅が100arcsec以下の結晶性を示す複合基板を得る工程と、
     を含む複合基板の製法。
  2.  前記工程(a)では、前記貼り合わせ基板の圧電基板側を、まずクラインダー加工機で研磨し、次いでラップ加工機で研磨し、更にCMP研磨機で前記圧電基板の厚みが3μm以下になるまで鏡面研磨する、
     請求項1に記載の複合基板の製法。
  3.  前記工程(b)では、前記鏡面研磨した圧電基板の厚みをレーザーの干渉を用いて光学式膜厚測定器で測定して厚み分布のデータを作成する、
     請求項1又は2に記載の複合基板の製法。
  4.  前記工程(c)では、前記厚み分布のデータを前記イオンビーム加工機に入力して前記圧電基板の表面の各点におけるビーム照射時間を決定し、該ビーム照射時間を用いて加工を行う、
     請求項1~3のいずれか1項に記載の複合基板の製法。
  5.  前記工程(c)では、前記厚み分布のデータを前記イオンビーム加工機に入力して前記圧電基板の表面の各点におけるビームの出力値を決定し、該ビームの出力値を用いて加工を行う、
     請求項1~3のいずれか1項に記載の複合基板の製法。
  6.  前記工程(c)では、前記イオンビーム加工機として、DC励起型Arビーム源を備えたイオンビーム加工機を用いる、
     請求項1~5のいずれか1項に記載の複合基板の製法。
  7.  圧電基板と支持基板とを接合してなる直径4インチ以上の複合基板であって、
     前記圧電基板の厚みが3μm以下、その厚みの最大値と最小値の差は前記圧電基板の全平面で60nm以下、X線回折により得られるロッキングカーブの半値幅が100arcsec以下の結晶性を示す、複合基板。
  8.  請求項7に記載の複合基板を用いた弾性波デバイス。
PCT/JP2013/084675 2012-12-26 2013-12-25 複合基板、その製法及び弾性波デバイス WO2014104098A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157016846A KR102133336B1 (ko) 2012-12-26 2013-12-25 복합 기판, 그 제법 및 탄성파 디바이스
CN201380066077.2A CN104871431B (zh) 2012-12-26 2013-12-25 复合基板及其制造方法,以及弹性波装置
DE112013006227.5T DE112013006227T5 (de) 2012-12-26 2013-12-25 Verbundsubstrat, Herstellungsverfahren dafür und akustische-Wellen-Vorrichtung
JP2014554494A JP6265915B2 (ja) 2012-12-26 2013-12-25 複合基板の製法
US14/737,655 US9917246B2 (en) 2012-12-26 2015-06-12 Composite substrate, production method thereof, and acoustic wave device
US15/810,714 US10622544B2 (en) 2012-12-26 2017-11-13 Composite substrate and acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261745898P 2012-12-26 2012-12-26
US61/745898 2012-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/737,655 Continuation US9917246B2 (en) 2012-12-26 2015-06-12 Composite substrate, production method thereof, and acoustic wave device

Publications (1)

Publication Number Publication Date
WO2014104098A1 true WO2014104098A1 (ja) 2014-07-03

Family

ID=51021176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084675 WO2014104098A1 (ja) 2012-12-26 2013-12-25 複合基板、その製法及び弾性波デバイス

Country Status (7)

Country Link
US (2) US9917246B2 (ja)
JP (2) JP6265915B2 (ja)
KR (1) KR102133336B1 (ja)
CN (1) CN104871431B (ja)
DE (1) DE112013006227T5 (ja)
TW (1) TWI584505B (ja)
WO (1) WO2014104098A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015146512A (ja) * 2014-02-03 2015-08-13 京セラクリスタルデバイス株式会社 水晶加工装置及び方法
JP6097896B1 (ja) * 2015-09-15 2017-03-15 日本碍子株式会社 複合基板及び圧電基板の厚み傾向推定方法
JP6100984B1 (ja) * 2015-09-15 2017-03-22 日本碍子株式会社 複合基板の製造方法
WO2017047605A1 (ja) * 2015-09-15 2017-03-23 日本碍子株式会社 複合基板及び圧電基板の厚み傾向推定方法
JP2018093496A (ja) * 2012-12-26 2018-06-14 日本碍子株式会社 複合基板及び弾性波デバイス

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051979B1 (fr) * 2016-05-25 2018-05-18 Soitec Procede de guerison de defauts dans une couche obtenue par implantation puis detachement d'un substrat
TWI780103B (zh) * 2017-05-02 2022-10-11 日商日本碍子股份有限公司 彈性波元件及其製造方法
JP2019029941A (ja) * 2017-08-02 2019-02-21 株式会社ディスコ 弾性波デバイス用基板の製造方法
DE102017221267A1 (de) * 2017-11-28 2019-05-29 Siemens Aktiengesellschaft Wicklungsanordnung für zumindest zwei versetzt taktende leistungselektronische Wandler und Wandleranordnung
CN111092148B (zh) * 2019-12-27 2022-08-09 厦门市三安集成电路有限公司 一种压电材料复合基板的制造方法
JP2023552014A (ja) * 2021-09-01 2023-12-14 福建晶安光電有限公司 フィルタ用基板の加工方法、基板及びtc-sawフィルタ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004713A1 (fr) * 1994-08-05 1996-02-15 Japan Energy Corporation Dispositif a ondes acoustiques de surface et procede de production
JPH0992895A (ja) * 1995-07-19 1997-04-04 Matsushita Electric Ind Co Ltd 圧電素子とその製造方法
JP2004200432A (ja) * 2002-12-19 2004-07-15 Toshiba Corp 半導体装置及びその製造方法
JP2004221816A (ja) * 2003-01-14 2004-08-05 Nippon Dempa Kogyo Co Ltd 水晶振動子の製造方法
JP2005174991A (ja) * 2003-12-08 2005-06-30 Seiko Epson Corp 半導体装置の製造方法、半導体装置、回路基板および電子機器
JP2007214215A (ja) * 2006-02-07 2007-08-23 Showa Shinku:Kk エッチング装置、エッチング方法及びプログラム
JP2008301066A (ja) * 2007-05-30 2008-12-11 Yamajiyu Ceramics:Kk タンタル酸リチウム(lt)又はニオブ酸リチウム(ln)単結晶複合基板
WO2011013553A1 (ja) * 2009-07-30 2011-02-03 日本碍子株式会社 複合基板及びその製造方法
JP2011124738A (ja) * 2009-12-10 2011-06-23 Murata Mfg Co Ltd 圧電デバイスの製造方法
JP2012060259A (ja) * 2010-09-06 2012-03-22 Fujitsu Ltd 振動子の作製方法、振動子および発振器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759753A (en) 1995-07-19 1998-06-02 Matsushita Electric Industrial Co., Ltd. Piezoelectric device and method of manufacturing the same
JPH09208399A (ja) * 1996-01-31 1997-08-12 Kyocera Corp 圧電基体及び弾性表面波装置
US20030030119A1 (en) * 2001-08-13 2003-02-13 Motorola, Inc. Structure and method for improved piezo electric coupled component integrated devices
US20040070312A1 (en) * 2002-10-10 2004-04-15 Motorola, Inc. Integrated circuit and process for fabricating the same
JP4712450B2 (ja) * 2004-06-29 2011-06-29 日本碍子株式会社 AlN結晶の表面平坦性改善方法
JP2007243918A (ja) * 2006-02-08 2007-09-20 Seiko Epson Corp 弾性表面波素子および電子機器
JP2008013390A (ja) 2006-07-04 2008-01-24 Sumitomo Electric Ind Ltd AlN結晶基板の製造方法、AlN結晶の成長方法およびAlN結晶基板
JP4743258B2 (ja) 2008-10-31 2011-08-10 株式会社村田製作所 圧電デバイスの製造方法
JP5389627B2 (ja) * 2008-12-11 2014-01-15 信越化学工業株式会社 ワイドバンドギャップ半導体を積層した複合基板の製造方法
JP5500966B2 (ja) * 2008-12-25 2014-05-21 日本碍子株式会社 複合基板及び金属パターンの形成方法
JP5549167B2 (ja) * 2009-09-18 2014-07-16 住友電気工業株式会社 Sawデバイス
KR101374303B1 (ko) * 2009-11-26 2014-03-14 가부시키가이샤 무라타 세이사쿠쇼 압전 디바이스 및 압전 디바이스의 제조방법
JP5429200B2 (ja) * 2010-05-17 2014-02-26 株式会社村田製作所 複合圧電基板の製造方法および圧電デバイス
JP5447682B2 (ja) * 2010-09-28 2014-03-19 株式会社村田製作所 圧電デバイスの製造方法
JP5796316B2 (ja) 2011-03-22 2015-10-21 株式会社村田製作所 圧電デバイスの製造方法
WO2013031617A1 (ja) * 2011-08-26 2013-03-07 株式会社村田製作所 圧電デバイス、および、圧電デバイスの製造方法
CN104871431B (zh) * 2012-12-26 2018-04-10 日本碍子株式会社 复合基板及其制造方法,以及弹性波装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004713A1 (fr) * 1994-08-05 1996-02-15 Japan Energy Corporation Dispositif a ondes acoustiques de surface et procede de production
JPH0992895A (ja) * 1995-07-19 1997-04-04 Matsushita Electric Ind Co Ltd 圧電素子とその製造方法
JP2004200432A (ja) * 2002-12-19 2004-07-15 Toshiba Corp 半導体装置及びその製造方法
JP2004221816A (ja) * 2003-01-14 2004-08-05 Nippon Dempa Kogyo Co Ltd 水晶振動子の製造方法
JP2005174991A (ja) * 2003-12-08 2005-06-30 Seiko Epson Corp 半導体装置の製造方法、半導体装置、回路基板および電子機器
JP2007214215A (ja) * 2006-02-07 2007-08-23 Showa Shinku:Kk エッチング装置、エッチング方法及びプログラム
JP2008301066A (ja) * 2007-05-30 2008-12-11 Yamajiyu Ceramics:Kk タンタル酸リチウム(lt)又はニオブ酸リチウム(ln)単結晶複合基板
WO2011013553A1 (ja) * 2009-07-30 2011-02-03 日本碍子株式会社 複合基板及びその製造方法
JP2011124738A (ja) * 2009-12-10 2011-06-23 Murata Mfg Co Ltd 圧電デバイスの製造方法
JP2012060259A (ja) * 2010-09-06 2012-03-22 Fujitsu Ltd 振動子の作製方法、振動子および発振器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093496A (ja) * 2012-12-26 2018-06-14 日本碍子株式会社 複合基板及び弾性波デバイス
US10622544B2 (en) 2012-12-26 2020-04-14 Ngk Insulators, Ltd. Composite substrate and acoustic wave device
JP2015146512A (ja) * 2014-02-03 2015-08-13 京セラクリスタルデバイス株式会社 水晶加工装置及び方法
JP6097896B1 (ja) * 2015-09-15 2017-03-15 日本碍子株式会社 複合基板及び圧電基板の厚み傾向推定方法
JP6100984B1 (ja) * 2015-09-15 2017-03-22 日本碍子株式会社 複合基板の製造方法
WO2017047604A1 (ja) * 2015-09-15 2017-03-23 日本碍子株式会社 複合基板の製造方法
WO2017047605A1 (ja) * 2015-09-15 2017-03-23 日本碍子株式会社 複合基板及び圧電基板の厚み傾向推定方法
US9935257B2 (en) 2015-09-15 2018-04-03 Ngk Insulators, Ltd. Production method for composite substrate
US10566518B2 (en) 2015-09-15 2020-02-18 Ngk Insulators, Ltd. Composite substrate and thickness-tendency estimating method for piezoelectric substrate

Also Published As

Publication number Publication date
US20150280107A1 (en) 2015-10-01
CN104871431A (zh) 2015-08-26
TW201448298A (zh) 2014-12-16
CN104871431B (zh) 2018-04-10
JPWO2014104098A1 (ja) 2017-01-12
JP2018093496A (ja) 2018-06-14
KR20150100696A (ko) 2015-09-02
KR102133336B1 (ko) 2020-07-13
TWI584505B (zh) 2017-05-21
JP6265915B2 (ja) 2018-01-24
US20180083184A1 (en) 2018-03-22
US10622544B2 (en) 2020-04-14
DE112013006227T5 (de) 2015-10-01
US9917246B2 (en) 2018-03-13

Similar Documents

Publication Publication Date Title
JP6265915B2 (ja) 複合基板の製法
US11239405B2 (en) Method of producing a composite substrate
KR101794488B1 (ko) 복합 기판의 제조 방법
DE112017001539B4 (de) Verbindungsverfahren
JP2007134889A (ja) 複合圧電基板
US11070189B2 (en) Joint and elastic wave element
US20230216463A1 (en) Method for manufacturing composite substrate provided with piezoelectric single crystal film
JP2019077607A (ja) タンタル酸リチウム単結晶基板及びこれの接合基板とこの製造法及びこの基板を用いた弾性表面波デバイス
CN108352442B (zh) 复合基板及压电基板的厚度趋势推定方法
US20220149811A1 (en) Bonded body and acoustic wave element
JP2018093329A (ja) 弾性波素子
JP2015159499A (ja) 複合基板の製法及び複合基板
US11411547B2 (en) Joint and elastic wave element
JP2002171008A (ja) 圧電素子片及び圧電デバイスの製造方法
JP2022068747A (ja) 酸化物単結晶ウエハ、複合基板用ウエハ、複合基板、酸化物単結晶ウエハの加工方法、酸化物単結晶ウエハの製造方法、複合基板用ウエハの製造方法および複合基板の製造方法
JP2011124628A (ja) 複合圧電チップ及び複合圧電チップの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554494

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157016846

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013006227

Country of ref document: DE

Ref document number: 1120130062275

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867310

Country of ref document: EP

Kind code of ref document: A1