WO2014103788A1 - 光学用重合体及びそれを成形してなる光学素子 - Google Patents

光学用重合体及びそれを成形してなる光学素子 Download PDF

Info

Publication number
WO2014103788A1
WO2014103788A1 PCT/JP2013/083704 JP2013083704W WO2014103788A1 WO 2014103788 A1 WO2014103788 A1 WO 2014103788A1 JP 2013083704 W JP2013083704 W JP 2013083704W WO 2014103788 A1 WO2014103788 A1 WO 2014103788A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
norbornene
optical
monomer
lens
Prior art date
Application number
PCT/JP2013/083704
Other languages
English (en)
French (fr)
Inventor
佐藤鮎美
原内洋輔
西岡寛哉
寳川卓士
梅田謙治
小松原拓也
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201380064463.8A priority Critical patent/CN104854161B/zh
Priority to KR1020157019082A priority patent/KR102125060B1/ko
Priority to JP2014554335A priority patent/JP6256353B2/ja
Priority to EP13868914.6A priority patent/EP2940055B1/en
Priority to US14/655,551 priority patent/US9459376B2/en
Publication of WO2014103788A1 publication Critical patent/WO2014103788A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]

Definitions

  • the present invention relates to an optical polymer for forming a thin optical element having a wide optical effective surface, that is, having few optical defects.
  • the wide optical effective surface means, for example, an optical effective surface with respect to the entire lens when the optical element is a lens.
  • the mounted camera unit has a thin shape and a small diameter, and in terms of image quality, F-number characteristics (aperture value: F-number) and MTF (Modulation Transfer Function) characteristics (The contrast reproduction ratio is required to be good. Therefore, not only is the optical lens used in the camera unit to be mounted thinner, but the shape is also complicated. For this reason, the optical lens used in the camera unit to be mounted is not uniform in thickness, but is becoming increasingly uneven because the thin portion and the thick portion coexist.
  • the optical lens used for the camera unit to be mounted is required to be manufactured by an injection molding method which is low in manufacturing cost and suitable for mass production.
  • a small-diameter lens whose diameter is less than 1 cm has a wide optically effective surface.
  • it is difficult to widen the optical effective surface because weld lines and birefringence are made non-uniform.
  • Patent Document 1 proposes using a composition comprising a norbornene-based polymer and a wax.
  • a wax when a wax is blended, the wax may bleed on the surface of the molded body, causing problems such as mold contamination.
  • Patent Document 2 discloses that a polymer having a specific monomer composition is excellent in thin-wall moldability, and provides a small and thin lens in which optical characteristics and heat resistance are highly balanced. .
  • Patent Document 3 proposes a polymer obtained by ring-opening polymerization of a norbornene-based monomer in the presence of an olefin.
  • An object of the present invention is to provide an optical polymer for molding an optical element that does not cause optical defects even if it is thin and uneven, that is, has a wide optical effective surface.
  • the inventors of the present invention attempted to injection-mold a small-diameter and thin-walled lens using the polymer specifically disclosed in Patent Document 2 that is said to be suitable as an optical material excellent in thin-wall moldability. It was found that the optical effective surface becomes narrow because the birefringence near the gate of the optical lens is large and a weld line is generated on the side opposite to the gate, resulting in an optical defect.
  • the injection molding method includes (1) an injection process in which a molten resin is filled in a cavity of a mold, and (2) pressure is applied to the cavity until the gate is sealed, and the molten resin filled in the injection process comes into contact with the mold.
  • Birefringence in the vicinity of the gate occurs because polymer molecules are oriented by injecting the molten resin by applying a high pressure while the viscosity of the molten resin is high in the pressure holding step.
  • the weld line is a linear joining trace that appears at the meeting interface of two or more flow front portions of the resin that has flowed into the mold in the injection step.
  • the fluidity of the flow front part is related to the cause of the weld line, and it is considered to increase the fluidity to reduce the weld line. If the weld line is long, the effective optical surface becomes narrow, which is a problem particularly in a small and thin optical lens.
  • the inventors of the present invention have tried to mold a thin and uneven lens using polymers having different fluidity, and found that a weld line having the same length is generated even with a polymer having different fluidity. confirmed.
  • a polymer having a specific melt viscosity pattern can suppress the generation of weld lines and suppress the generation of optical defects in the molding of thin and uneven lenses.
  • the present invention has been conceived by finding out that it can be done.
  • melt viscosity at 290 ° C. and the shear rate of 200 (1 / s) is ⁇ A
  • melt viscosity at 290 ° C. and the shear rate of 2000 (1 / s) is ⁇ B
  • optical polymer as described above, wherein the optical polymer is a norbornene-based polymer.
  • the optical polymer as described above wherein the norbornene-based polymer has a glass transition temperature of 100 to 160 ° C.
  • the optical polymer as described above wherein the norbornene-based polymer contains a structural unit derived from an ⁇ -olefin having 14 to 40 carbon atoms at the molecular end.
  • the norbornene polymer is a norbornene polymer obtained by polymerizing a norbornene monomer in the presence of an ⁇ -olefin having 14 to 40 carbon atoms.
  • the norbornene-based polymer includes a step of sequentially adding a polymerizable monomer containing a norbornene monomer and an ⁇ -olefin having 14 to 40 carbon atoms into a solvent containing at least a polymerization catalyst.
  • the above-mentioned optical polymer obtained through the process is provided.
  • an optical element formed by molding the above optical polymer.
  • the optical element is an optical lens.
  • An optical element formed by molding the optical polymer of the present invention has a wide optical effective surface, that is, it is preferable for an optical lens because it has few optical defects, and is particularly preferable for an optical lens having a small-diameter thin wall thickness. Ideal for telephone camera lenses.
  • FIG. 1 is a diagram illustrating a lens when R1> R2.
  • FIG. 2 is a diagram illustrating a lens when R1 ⁇ R2.
  • FIG. 3 is a view showing a mold for forming a lens.
  • the optical polymer of the present invention has a specific melt viscosity pattern.
  • the optical polymer was 290 ° C, the melt viscosity at a shear rate of 200 (1 / s) was ⁇ A, the melt viscosity at a shear rate of 2000 (1 / s) was ⁇ B, and the melt viscosity was ⁇ B.
  • the value of ( ⁇ A ⁇ B) / ⁇ B ⁇ 100 is less than 60, preferably less than 50, more preferably less than 40.
  • the value of ( ⁇ A ⁇ B) / ⁇ B ⁇ 100 is preferably closer to 0. When the value of ( ⁇ A ⁇ B) / ⁇ B ⁇ 100 is large, the shear rate dependency of the melt viscosity increases (the slope of the flow curve is large). ), When a thin lens is molded, there is a possibility that a weld line is generated on the side opposite to the gate, which is not preferable.
  • optical polymer is not particularly limited as long as it has transparency, but examples thereof include polycarbonate resins, acrylic resins, polystyrene resins, and norbornene polymers.
  • norbornene-based polymers are preferable because they are excellent in heat resistance, transparency, low water absorption, and low birefringence.
  • norbornene polymer The norbornene polymer is obtained by polymerizing a norbornene monomer which is a monomer having a norbornene skeleton, and is obtained by ring-opening polymerization or by addition polymerization. It is divided roughly into.
  • the polymerizable monomer containing the norbornene monomer may be composed only of the norbornene monomer, and a mixture of the norbornene monomer and a monomer capable of ring-opening or addition copolymerization. It may be.
  • ring-opening polymers of norbornene monomers As ring-opening polymerization, ring-opening polymers of norbornene monomers, ring-opening polymers of norbornene monomers and other monomers capable of ring-opening copolymerization, and hydrides thereof, etc. Is mentioned.
  • Examples of the polymers obtained by addition polymerization include addition polymers of norbornene monomers and addition polymers of norbornene monomers and other monomers copolymerizable therewith.
  • a ring-opening polymer hydride of norbornene monomer and an addition polymer of norbornene monomer are preferable from the viewpoints of heat resistance, mechanical strength, and the like.
  • ⁇ Norbornene monomer examples include a tetracyclododecene monomer, a norbornene monomer, a dicyclopentadiene monomer, and a methanotetrahydrofluorene monomer.
  • tetracyclododecene monomer tetracyclo [4.4.0.1 2,5 . 1 7,10 ] -3-dodecene (tetracyclododecene), tetracyclo [4.4.0.1 2,5 . 1 7,10 ] -3-dodecene, 8-methyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] -3-dodecene, 8-ethyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] -3-dodecene, 8-ethylidenetetracyclo [4.4.0.1 2,5 .
  • Examples of the norbornene monomer include bicyclo [2.2.1] hept-2-ene (common name: norbornene), 5-methyl-bicyclo [2.2.1] hept-2-ene, 5,5-dimethyl. -Bicyclo [2.2.1] hept-2-ene, 5-ethyl-bicyclo [2.2.1] hept-2-ene, 5-ethylidene-bicyclo [2.2.1] hept-2-ene 5-vinyl-bicyclo [2.2.1] hept-2-ene, 5-propenylbicyclo [2.2.1] hept-2-ene, 5-methoxycarbonyl-bicyclo [2.2.1] hepta Examples include -2-ene, 5-cyanobicyclo [2.2.1] hept-2-ene, and 5-methyl5-methoxycarbonyl-bicyclo [2.2.1] hept-2-ene.
  • dicyclopentadiene monomer examples include tricyclo [4.3.0 1,6 .
  • examples include 1 2,5 ] deca-3,7-diene (common name dicyclopentadiene), 2-methyldicyclopentadiene, 2,3-dimethyldicyclopentadiene, 2,3-dihydroxydicyclopentadiene, and the like.
  • methanotetrahydrofluorene monomer 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name methanotetrahydrofluorene: 1,4-methano-1,4) , 4a, 9a-tetrahydrofluorene), 1,4-methano-8-methyl-1,4,4a, 9a-tetrahydrofluorene, 1,4-methano-8-chloro-1,4,4a, 9a- Examples include tetrahydrofluorene and 1,4-methano-8-bromo-1,4,4a, 9a-tetrahydrofluorene.
  • These norbornene monomers can be used in combination of two or more.
  • a methanotetrahydrofluorene monomer is preferable from the viewpoint of improving the birefringence of the optical lens.
  • the amount of the methanotetrahydrofluorene-based monomer is usually 10 to 90% by weight, preferably 50 to 90% by weight, and more preferably 60 to 80% by weight in the total monomers. If the amount of the methanotetrahydrofluorene monomer is too small, the birefringence of the optical lens may be deteriorated.
  • a norbornene monomer is preferable because it is easy to adjust the glass transition temperature.
  • the amount of the norbornene-based polymer is usually 0 to 20% by weight, preferably 1 to 15% by weight, more preferably 3 to 10% by weight. If the norbornene monomer is too much, the heat resistance (glass transition temperature) of the norbornene monomer may be too low.
  • examples of the monomer other than the tetracyclododecene monomer include a dicyclopentadiene monomer.
  • the amount of the dicyclopentadiene polymer is usually 0 to 10% by weight, preferably 0 to 5% by weight. If the dicyclopentadiene polymer is too much, the birefringence of the optical lens may be deteriorated.
  • the amount of tetracyclododecene monomer is 15 to 50% by weight
  • the amount of methanotetrahydrofluorene monomer is 10 to 90% by weight
  • the amount of norbornene polymer is 1 to 15% by weight
  • the norbornene-based polymer which is a total amount of tetracyclododecene-based monomer, methanotetrahydrofluorene-based monomer and norbornene-based monomer is 100% by weight
  • a norbornene-based ring-opening polymer hydride having an excellent balance of heat resistance of the molded product is preferable.
  • a ring-opening polymer of a norbornene monomer, or a ring-opening polymer of a norbornene monomer and another monomer capable of undergoing ring-opening copolymerization with a monomer component is a known ring-opening polymerization catalyst. It can be obtained by polymerization in the presence.
  • the ring-opening polymerization catalyst examples include a catalyst comprising a metal halide such as ruthenium or osmium, a nitrate or an acetylacetone compound, and a reducing agent, or a metal halide or acetylacetone such as titanium, zirconium, tungsten, or molybdenum.
  • a catalyst comprising a compound and an organoaluminum compound can be used.
  • Examples of other monomers that can be ring-opening copolymerized with norbornene monomer include monocyclic olefin monomers such as cyclohexene, cycloheptene, and cyclooctene.
  • ⁇ Ring-opening polymer hydride of norbornene monomer In the ring-opening polymer hydride of norbornene monomer, a known hydrogenation catalyst containing a transition metal such as nickel or palladium is usually added to the polymerization solution of the ring-opening polymer to form a carbon-carbon unsaturated bond. It can be obtained by hydrogenation.
  • a known hydrogenation catalyst containing a transition metal such as nickel or palladium
  • addition polymer of norbornene monomer An addition polymer of norbornene monomer, or an addition polymer of norbornene monomer and another monomer copolymerizable therewith, these monomers are added to known addition polymerization catalysts such as titanium, It can be obtained by polymerization using a catalyst comprising a zirconium or vanadium compound and an organoaluminum compound.
  • Examples of other monomers that can be addition copolymerized with norbornene monomer include ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, and the like.
  • cycloolefins such as cyclobutene, cyclopentene, cyclohexene, cyclooctene, 3a, 5,6,7a-tetrahydro-4,7-methano-1H-indene, and derivatives thereof; 1,4-hexadiene, 4-methyl- Non-conjugated dienes such as 1,4-hexadiene, 5-methyl-1,4-hexadiene, 1,7-octadiene; and the like.
  • ⁇ -olefin is preferable, and ethylene is particularly preferable.
  • a preferred norbornene polymer can be produced by polymerizing a norbornene monomer in the presence of an ⁇ -olefin having 14 to 40 carbon atoms.
  • the ⁇ -olefin having 14 to 40 carbon atoms is not particularly limited as long as it has 14 to 40 carbon atoms.
  • Specific examples of the ⁇ -olefin having 14 to 40 carbon atoms include 1 having one or more substituents on an alkyl chain such as 3-methyltetradecene, 4-methyltetradecene, 10-methyltetradecene, 5-cyclohexylhexadecene and the like.
  • Substituted olefins linear ⁇ -olefins such as 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosacene, 1-docosene, 1-tetracontene and the like.
  • a straight chain ⁇ -olefin having 16 to 30 carbon atoms is particularly preferred.
  • the structural unit derived from the amount of ⁇ -olefin having 14 to 40 carbon atoms is preferably 0.5 to 5.5 based on 100 parts by weight of the total amount of other monomers copolymerizable with the norbornene monomer.
  • the content is preferably 0 part by weight, more preferably 1.0 to 4.0 parts by weight, and particularly preferably 1.3 to 3.0 parts by weight. If the amount of the structural unit derived from the amount of ⁇ -olefin having 14 to 40 carbon atoms is too large, the glass transition temperature may be too low, and if it is too small, the birefringence near the gate of the molded article may be deteriorated.
  • R 1 to R 3 represent an alkyl group, and Mtl represents a polymerization catalyst.
  • Chemical formula 1 shows an example in which a structural unit derived from an ⁇ -olefin is introduced at the molecular terminal of a ring-opening polymer hydride of a norbornene monomer.
  • the active end of the polymerization catalyst that has undergone the polymerization reaction reacts with the ⁇ -olefin (chain transfer reaction)
  • the active end of the polymerization catalyst is generated at the end of the structure derived from the ⁇ -olefin.
  • an olefin is hydrogenated after the polymerization reaction proceeds between the active terminal and the monomer, it is understood that an ⁇ -olefin-derived structural unit is introduced into the molecular terminal.
  • Chemical Formula 2 shows an example in which a structural unit derived from ⁇ -olefin is introduced into the molecular terminal of an addition copolymer of norbornene monomer and ethylene.
  • a norbornene polymer is generally produced by polymerizing a norbornene monomer in the presence of a chain transfer agent (also referred to as a molecular weight modifier) in order to adjust the molecular weight.
  • a chain transfer agent also referred to as a molecular weight modifier
  • conventionally known ones can be used, for example, ⁇ -olefins such as 1-butene, 1-pentene, 1-hexene and 1-octene; styrenes such as styrene and vinyltoluene; ethyl vinyl ether, Ethers such as isobutyl vinyl ether and allyl glycidyl ether; halogen-containing vinyl compounds such as allyl chloride; oxygen-containing vinyl compounds such as glycidyl methacrylate; nitrogen-containing vinyl compounds such as acrylamide; 1,4-pentadiene, 1,4-hexadiene, 1, Non-conjugated dienes such as 5-hexad
  • the above ⁇ -olefin having 14 to 40 carbon atoms also acts as a chain transfer agent.
  • a preferred chain transfer agent for polymerizing the norbornene monomer may be a combination of two or more of the above linear ⁇ -olefins having 14 to 40 carbon atoms, or a linear ⁇ -olefin having 14 to 40 carbon atoms, Other chain transfer agents such as ⁇ -olefins having 4 to 12 carbon atoms or styrenes may be combined.
  • a chain transfer agent other than an ⁇ -olefin having 14 to 40 carbon atoms (other chain transfer agent) is used as the chain transfer agent
  • the other chain transfer agent is mixed with an ⁇ -olefin having 14 to 40 carbon atoms. Or may be added separately from the ⁇ -olefin having 14 to 40 carbon atoms.
  • the addition amount of the chain transfer agent may be an amount sufficient to obtain a copolymer having a desired molecular weight, and is usually 1:50 to 1 in a molar ratio of (chain transfer agent) :( norbornene monomer). : 1,000,000, preferably 1: 100 to 1: 5,000, more preferably 1: 300 to 1: 3,000.
  • the total amount of the chain transfer agent is the sum of the amounts of the ⁇ -olefin having 14 to 40 carbon atoms and other chain transfer agents.
  • the entire amount of the ⁇ -olefin may be added to the reaction solvent in advance, or the ⁇ -olefin may be added sequentially simultaneously with the norbornene monomer.
  • the method of sequentially adding the ⁇ -olefin simultaneously with the norbornene monomer has a wide optically effective surface of the optical element, and even when molded at a high temperature, it is difficult for silver streak to occur in the optical element. preferable.
  • the polymerization temperature of the norbornene monomer is usually in the range of ⁇ 50 ° C. to 250 ° C., preferably ⁇ 30 ° C. to 200 ° C., more preferably ⁇ 20 ° C. to 150 ° C.
  • the polymerization pressure is usually in the range of 0 to 50 kg / cm 2 , preferably 0 to 20 kg / cm 2 .
  • the polymerization time is appropriately selected depending on the polymerization conditions, but is usually in the range of 30 minutes to 20 hours, preferably 1 to 10 hours.
  • the number average molecular weight (Mn) of the norbornene-based polymer is usually 5,000 to 100,000, preferably 6,000 to 70,000, more preferably 7,000 to 60,000.
  • the weight average molecular weight (Mw) is usually 10,000 to 350,000, preferably 12,000 to 245,000, more preferably 14,000 to 210,000.
  • the molecular weight is measured by gel permeation chromatography (GPC) using cyclohexane as a solvent, and is expressed as a standard polyisoprene conversion value. When the molecular weight is within these ranges, the balance between mechanical strength and moldability is excellent.
  • the molecular weight distribution (Mw / Mn) is not particularly limited, but is preferably in the range of 1 to 5, more preferably 1 to 4.
  • the norbornene-based polymer has a viscosity of ⁇ A at 290 ° C. and a shear rate of 200 (1 / s), where ⁇ B is a melt viscosity of 290 ° C. and a shear rate of 2000 (1 / s) ( ⁇ A ⁇ B)
  • the value of / ⁇ B ⁇ 100 is preferably less than 60, more preferably less than 50, and particularly preferably less than 40.
  • the value of ( ⁇ A ⁇ B) / ⁇ B ⁇ 100 of the norbornene polymer can be adjusted by appropriately adjusting the amount of the tetracyclododecene monomer and the molecular weight of the norbornene polymer.
  • the molecular weight of the norbornene-based polymer is a weight average molecular weight in terms of polyisoprene measured by gel permeation chromatography method of a cyclohexane solution (or a toluene solution when the polymer resin is not dissolved), preferably 20,000-30. , 2,000, particularly preferably 22,000 to 28,000, more preferably 23,000 to 26,000, and the value of ( ⁇ A ⁇ B) / ⁇ B ⁇ 100 (the shear rate dependence of the melt viscosity is May be higher).
  • the amount of the tetracyclododecene monomer is preferably 15 to 50% by weight, more preferably 20 to 40% by weight. If the amount of tetracyclododecene monomer is too small, the value of ( ⁇ A ⁇ B) / ⁇ B ⁇ 100 may increase. (The melt viscosity may be highly dependent on the shear rate). Moreover, when there are too many tetracyclododecene-type monomers, there exists a possibility that the solubility to the solvent of a norbornene-type polymer may worsen, or birefringence may deteriorate.
  • the glass transition temperature (Tg) of the norbornene-based polymer may be appropriately selected according to the purpose of use, but is usually in the range of 100 to 160 ° C., preferably 120 to 150 ° C., particularly preferably 130 to 145 ° C. Sometimes, heat resistance and moldability are well balanced and suitable.
  • norbornene polymers can be used alone or in combination of two or more.
  • the optical polymer can contain a known additive as long as the effects of the invention are not impaired.
  • the additive include a filler, an antioxidant, a light stabilizer, a release agent, a flame retardant, and an antibacterial agent, for example, a filler, an antioxidant, a light stabilizer, a release agent, Various additives such as a flame retardant, an antibacterial agent, wood powder, a coupling agent, a plasticizer, a colorant, a lubricant, a silicone oil, a foaming agent, a surfactant, and a release agent can be blended.
  • the light stabilizer a hindered amine light stabilizer (HALS) is preferable.
  • HALS hindered amine light stabilizer
  • the mold release agent a fatty acid ester of a polyhydric alcohol is preferable.
  • the method of adding various additives to the optical polymer is not particularly limited, and any method such as a method of adding to the optical polymer solution after filtration or a method of melt blending can be employed.
  • a specific method for example, an optical polymer and various additives are mixed using a Henschel mixer, a V-blender, a ribbon blender, a tumbler blender, etc., and then a single screw extruder, a twin screw extruder, a kneader. And a method of melt-kneading using a roll or the like; a method of removing various volatile components such as a solvent after mixing various additives into the optical polymer solution after filtration; and the like.
  • optical polymer of the present invention containing various additives is molded to obtain an optical element.
  • the molding method can be obtained by molding the optical polymer using a known molding means such as an injection molding method, a compression molding method, an extrusion molding method, a blow molding method or an inflation molding method.
  • a known molding means such as an injection molding method, a compression molding method, an extrusion molding method, a blow molding method or an inflation molding method.
  • an injection molding method is preferable because an optical component excellent in transparency can be obtained.
  • the shape of the molded body can be appropriately selected according to various uses such as a plate shape, a lens shape, a disk shape, a film shape, a sheet shape, and a prism shape.
  • the resin temperature may vary depending on the glass transition temperature (Tg) of the optical polymer, but is preferably in the range of 200 to 350 ° C. If it is less than this, the fluidity is low and transferability is not achieved. When the temperature is 350 ° C. or higher, the resin begins to deteriorate, causing burn-out defects and mold contamination. The lower the range in which fluidity is ensured, the smaller the density distribution of the molded product. When lower birefringence is required, the higher the temperature is, the better.
  • the resin temperature is set according to the balance between the two. 230 ° C. to 330 ° C. is more preferable, and 250 to 320 ° C. is particularly preferable.
  • the mold temperature is preferably as high as possible within a range lower than the glass transition temperature.
  • the glass transition temperature of the optical polymer is preferably in the range of ⁇ 20 ° C. to glass transition temperature of ⁇ 3 ° C. If it is lower than this, there will be a problem in transferability and birefringence, and if it is more than this, the molding cycle time will be longer and productivity may be lowered. Lowering the mold temperature as long as there is no problem in transferability and birefringence is superior in productivity.
  • Screw rotation speed is generally 10 to 100 rpm and back pressure is generally 3 to 10 MPa. It is better that the screw rotation speed is high enough not to cause burns and the back pressure is high enough not to generate bubbles.
  • the injection speed may be single-stage or multi-stage injection.
  • the injection speed is generally formed at a screw advance speed of 2 to 100 mm / sec. If it is 2 mm / sec or less, there is a possibility that it cannot be filled by solidifying at the time of injection. If the injection speed is too high, appearance defects such as jetting may occur.
  • the pressure in the pressure holding step is preferably 20 MPa or less, more preferably 10 MPa, and particularly preferably 5 MPa. If the pressure in the pressure-holding step is high, the optical distortion may increase, and if it is low, molding defects such as sprue clogging may occur. It is preferable to apply a low pressure as long as sprue clogging does not occur.
  • the optical element of the present invention has excellent surface accuracy and birefringence of an optically effective surface, and optical lenses such as Fresnel lenses, lenticular lenses, f ⁇ lenses, and mobile phone camera lenses: diffraction gratings, prisms, optical disks for blue lasers, blue It can be suitably used for optical elements such as optical disks for lasers.
  • optical lens it is preferable for an optical lens, and is preferable for an optical lens having a small-diameter, thin-walled and uneven thickness, and is therefore optimal for a lens for a mobile phone camera.
  • the preferred size thereof is preferably 10 mm or less, more preferably 7 mm or less, and particularly preferably 5 mm or less when the outer diameter is L1.
  • the shape of the lens portion is set such that the radius of curvature when the convex surface is approximated to a circle is R1, and the radius of curvature when the concave surface is approximated to a circle is R2.
  • R1> R2 (R1 / R2> 1) is preferable, R1 / R2 ⁇ 1.4 is more preferable, R1 / R2 ⁇ 1.6 is particularly preferable, and R1 / R2 ⁇ 1.8 is still more preferable.
  • the lens shape in the case of R1> R2 is shown in FIG. 1, and the lens shape in the case of R1 ⁇ R2 is shown in FIG.
  • the preferable thickness thereof is preferably 1.00 mm or less, more preferably 0.5 mm or less, and particularly preferably 0.30 mm or less if the lens has a uniform thickness.
  • T1 is the thickness of the edge portion
  • T2 is the thickness of the thickest portion of the lens portion
  • T3 is the thickness of the thinnest portion of the lens portion.
  • T3 is preferably 0.50 mm or less, more preferably 0.30 mm or less, particularly preferably 0.20 mm or less
  • the thickness (T1) of the edge portion is preferably T1 / T3 ⁇ 1.5.
  • T1 / T3 ⁇ 2.0 is preferably T1 / T2 ⁇ 1.5, more preferably T1 /.
  • T2 ⁇ 2.0 is particularly preferably T1 / T2 ⁇ 2.5.
  • the measurement methods for various physical properties are shown below.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • MWD molecular weight distribution
  • the measurement was performed under the conditions of using TSKgel G5000HXL, TSKgel G4000HXL, and TSKgel G2000HXL manufactured by Tosoh Corporation as a column, connected in series, a flow rate of 1.0 ml / min, a sample injection amount of 100 ⁇ ml, and a column temperature of 40 ° C.
  • Glass transition temperature (Tg) The glass transition temperature was measured using a differential scanning calorimeter (DSC 6220SII, manufactured by Nanotechnology Co., Ltd.) based on JIS K6911 at a temperature increase rate of 10 ° C./min.
  • Formability evaluation of thin-walled lens is as follows: convex radius of curvature is 5.73 mm, concave radius of curvature is 3.01 mm, size is 4.5 mm, lens part diameter is 3 mm, lens center Using a mold (FIG. 3) that forms a lens having a thickness of 0.20 mm, an injection molding machine (FANUC ROBOSHOT (registered trademark) ⁇ 100B, manufactured by FANUC) has a resin temperature of 300 ° C., a mold temperature of Tg-5 ° C., and a pressure holding pressure. Ten molded articles were created at 400 Pa.
  • FANUC ROBOSHOT registered trademark
  • Example 1 In a dry and nitrogen-substituted polymerization reactor, 70% by weight of methanotetrahydrofluorene (hereinafter abbreviated as “MTF”), 22% by weight of tetracyclododecene (hereinafter abbreviated as “TCD”), and norbornene (hereinafter, “ NB “abbreviated as” NB ”) 7 parts of a monomer mixture consisting of 8% by weight (1% with respect to the total amount of monomers used for polymerization), 1,600 parts of dehydrated cyclohexane, 0.6 parts of 1-hexene, diisopropyl ether -1.3 parts of tellurium, 0.33 parts of isobutyl alcohol, 0.84 part of triisobutylaluminum and 30 parts of a tungsten hexachloride 0.66% cyclohexane solution were added and stirred at 55 ° C for 10 minutes.
  • MTF methanotetrahydrofluoren
  • the solution was filtered through a filter (Cuneau Filter; “Zeta Plus (registered trademark) 30H”, pore size: 0.5 to 1 ⁇ m), and the filtrate was filtered through a metal fiber filter (Nichidai, pore size: 0.4 ⁇ m). And filtered to remove foreign matter.
  • the filtrate obtained above was removed from the solution at a temperature of 260 ° C. and a pressure of 1 kPa or less using a cylindrical concentration dryer (manufactured by Hitachi, Ltd.), and the solvent, cyclohexane and other volatile components, Extruded into a strand form in a molten state from a die directly connected to a concentrator, cooled with water, and then cut with a pelletizer (manufactured by Nagata Seisakusho; “OSP-2”) to obtain norbornene polymer pellets.
  • a pelletizer manufactured by Nagata Seisakusho; “OSP-2”
  • Example 2 A norbornene-based polymer was obtained in the same manner as in Example 1 except that the composition of the monomer mixture was MTF 65 wt%, TCD 30 wt%, and NB 5 wt%, and 1-hexene was 0.55 parts by weight.
  • the conversion ratio of the monomer of the polymerization reaction solution to the polymer was 99.9%.
  • Table 1 shows the result of the shaping evaluation of the thin lens using the obtained pellets.
  • Example 3 A norbornene polymer was obtained in the same manner as in Example 2, except that 1-hexene was changed to 0.45 parts by weight.
  • the conversion ratio of the monomer of the polymerization reaction solution to the polymer was 99.9%.
  • Table 1 shows the result of the shaping evaluation of the thin lens using the obtained pellets.
  • Example 4 Example 3 except that the composition of the monomer mixture was 20% by weight of ethylidene norbornene (hereinafter abbreviated as “ETD”), 80% by weight of dicyclopentadiene (hereinafter abbreviated as “DCP”), and 8% by weight of NB. Similarly, a norbornene polymer was obtained.
  • ETD ethylidene norbornene
  • DCP dicyclopentadiene
  • NB 8% by weight
  • the conversion ratio of the monomer of the polymerization reaction solution to the polymer was 99.9%.
  • Table 1 shows the result of the shaping evaluation of the thin lens using the obtained pellets.
  • Example 5 A norbornene-based polymer was obtained in the same manner as in Example 3 except that the composition of the monomer mixture was 40% by weight of MTF, 35% by weight of TCD, and 25% by weight of DCP, and 0.55 parts by weight of 1-hexene was used.
  • the conversion ratio of the monomer of the polymerization reaction solution to the polymer was 99.9%.
  • Table 1 shows the result of the shaping evaluation of the thin lens using the obtained pellets.
  • Example 6 A norbornene polymer was obtained in the same manner as in Example 1 except that the composition of the monomer mixture was MTF 49% by weight, TCD 46% by weight, and NB 6% by weight.
  • the conversion ratio of the monomer of the polymerization reaction solution to the polymer was 99.9%.
  • Table 1 shows the result of the shaping evaluation of the thin lens using the obtained pellets.
  • Example 7 A norbornene polymer was obtained in the same manner as in Example 1 except that the composition of the monomer mixture was MTF 45% by weight, TCD 25% by weight, and NB 20% by weight.
  • the conversion ratio of the monomer of the polymerization reaction solution to the polymer was 99.9%.
  • Table 1 shows the result of the shaping evaluation of the thin lens using the obtained pellets.
  • Example 1 A norbornene polymer was obtained in the same manner as in Example 1, except that the composition of the monomer mixture was 80% by weight of MTF, 10% by weight of TCD, and 10% by weight of NB.
  • the conversion ratio of the monomer of the polymerization reaction solution to the polymer was 99.9%.
  • Table 1 shows the result of the shaping evaluation of the thin lens using the obtained pellets.
  • Example 2 A polymerization reaction and a hydrogenation reaction were performed in the same manner as in Example 1 except that the composition of the monomer mixture was 39% by weight of MTF, 55% by weight of TCD, and 5% by weight of NB. After completion of the hydrogenation reaction, pressure filtration was performed at a pressure of 0.25 MPa using a pressure filter (Ishikawajima-Harima Heavy Industries Co., Ltd .; “Funda filter”) with diatomaceous earth (“Radiolite # 500”) as a filter bed. However, clogging occurred and no filtrate was obtained.
  • a pressure filter Ishikawajima-Harima Heavy Industries Co., Ltd .; “Funda filter”
  • diatomaceous earth Radiolite # 500
  • Example 3 A norbornene polymer was obtained in the same manner as in Example 2 except that 0.40 part by weight of 1-hexene was used.
  • the conversion ratio of the monomer of the polymerization reaction solution to the polymer was 99.9%.
  • Table 1 shows the result of the shaping evaluation of the thin lens using the obtained pellets.
  • Example 4 A norbornene polymer was obtained in the same manner as in Example 1 except that the composition of the monomer mixture was MTF 45% by weight, TCD 10% by weight, and dicyclopentadiene 45% by weight.
  • the conversion ratio of the monomer of the polymerization reaction solution to the polymer was 99.9%.
  • Table 1 shows the result of the shaping evaluation of the thin lens using the obtained pellets.
  • Examples 8 to 17, Comparative Example 5 In a dried and nitrogen-substituted polymerization reactor, 7 parts of norbornene monomer mixture shown in Table 2 (1% with respect to the total amount of monomers used for polymerization), 1,600 parts of dehydrated cyclohexane, Table 2 The chain transfer agent species and amount shown, 1.3 parts diisopropyl ether, 0.33 parts isobutyl alcohol, 0.84 parts triisobutylaluminum and 30 parts 0.66% tungsten hexachloride in cyclohexane solution were added at 55 ° C. Stir for 10 minutes.
  • a diatomaceous earth made by Showa Chemical Industry Co., Ltd., product name “Radiolite (registered trademark) # 500”) is used as a filter bed, and a pressure filter (IHI Corp., product name “Funda Filter”) is used. Used and pressure filtered at a pressure of 0.25 MPa to obtain a clear and colorless solution.
  • This solution was filtered with a filter (product name “Zeta Plus (registered trademark) 30H”, pore size 0.5 to 1 ⁇ m, manufactured by Cunnow Filter Co., Ltd.), and then the filtrate was made of a metal fiber filter (manufactured by Nichidai, pore size 0.4 ⁇ m). ) To remove foreign matters.
  • a filter product name “Zeta Plus (registered trademark) 30H”, pore size 0.5 to 1 ⁇ m, manufactured by Cunnow Filter Co., Ltd.
  • the obtained filtrate is concentrated at a temperature of 260 ° C. and a pressure of 1 kPa or less by removing a cyclohexane and other volatile components as a solvent from the solution using a cylindrical concentration dryer (manufactured by Hitachi, Ltd.). Extruded into a strand in a molten state from a die directly connected to the machine, cooled with water, and then cut with a pelletizer (product name “OSP-2”, manufactured by Nagata Seisakusho) to obtain norbornene polymer pellets.
  • a pelletizer product name “OSP-2”, manufactured by Nagata Seisakusho
  • Table 2 shows the molecular weight (Mw), glass transition temperature (Tg) and melt viscosity of the norbornene polymer.
  • Mw molecular weight
  • Tg glass transition temperature
  • the hydrogenation rate of all norbornene polymers was 99% or more.
  • the norbornene-based polymer having a structural unit derived from C14-40 ⁇ -olefin at the molecular end has a good value of Re [A] (Examples 8-13).
  • a norbornene polymer having a value of ( ⁇ A ⁇ B) / ⁇ B ⁇ 100 of less than 60 has good weld line evaluation (Examples 8 to 17).
  • a “monomer-chain transfer agent mixture” was prepared by mixing the norbornene monomer and the chain transfer agent in the proportions shown in Table 3.
  • a diatomaceous earth made by Showa Chemical Industry Co., Ltd., product name “Radiolite (registered trademark) # 500”) is used as a filter bed, and a pressure filter (IHI Corp., product name “Funda Filter”) is used. Used and pressure filtered at a pressure of 0.25 MPa to obtain a clear and colorless solution.
  • This solution was filtered with a filter (product name “Zeta Plus (registered trademark) 30H”, pore size 0.5 to 1 ⁇ m, manufactured by Cunnow Filter Co., Ltd.), and then the filtrate was made of a metal fiber filter (manufactured by Nichidai, pore size 0.4 ⁇ m). ) To remove foreign matters.
  • a filter product name “Zeta Plus (registered trademark) 30H”, pore size 0.5 to 1 ⁇ m, manufactured by Cunnow Filter Co., Ltd.
  • the obtained filtrate is concentrated at a temperature of 260 ° C. and a pressure of 1 kPa or less by removing a cyclohexane and other volatile components as a solvent from the solution using a cylindrical concentration dryer (manufactured by Hitachi, Ltd.). Extruded into a strand in a molten state from a die directly connected to the machine, cooled with water, and then cut with a pelletizer (product name “OSP-2”, manufactured by Nagata Seisakusho) to obtain norbornene polymer pellets.
  • a pelletizer product name “OSP-2”, manufactured by Nagata Seisakusho
  • Table 2 shows the molecular weight (Mw), glass transition temperature (Tg), and melt viscosity of the norbornene polymer.
  • Mw molecular weight
  • Tg glass transition temperature
  • Tg melt viscosity of the norbornene polymer.
  • the hydrogenation rate of all norbornene polymers was 99% or more. The results are shown in Table 3.
  • the optical element formed by molding the optical polymer of the present invention is preferable for an optical lens because of its wide optical effective surface, that is, having few optical defects, and is particularly preferable for an optical lens having a small-diameter, thin-walled uneven shape. Ideal for telephone camera lenses.
  • R1 radius of curvature when the convex surface is approximated to a circle
  • R2 radius of curvature when the concave surface is approximated to a circle
  • T1 thickness of the edge portion
  • T2 thickness of the thickest portion of the lens portion
  • T3 Thickness of the thinnest part of the lens

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polarising Elements (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 290℃で、せん断速度200(1/s)での溶融粘度をηAとし、290℃で、せん断速度2000(1/s)での溶融粘度をηBとしたとき、下記式(1)を満たす光学用重合体。 (ηA-ηB)/ηB×100<60 (1)

Description

光学用重合体及びそれを成形してなる光学素子
 本発明は、光学有効面が広い、すなわち、光学欠陥の少ない薄肉形状の光学素子を成形するための光学用重合体に関する。この場合、光学有効面が広いとは、例えば、光学素子がレンズの場合、レンズ全体に対する光学有効面のことをいう。
 近年の電子技術の発展をともに、電子電気機器の軽量化、小型化、薄型化が進んでいる。特に、携帯電話類においては、搭載されるカメラユニットには、形状が薄型・小径化されると共に、画質の面でもF値特性(絞り値;F-number)及びMTF(Modulation Transfer Function)特性(コントラスト再現比)が良いことが求められている。したがって、搭載されるカメラユニットに用いられる光学レンズの薄肉化が求められるばかりでなく、その形状も複雑化している。このため、搭載されるカメラユニットに用いられる光学レンズは、均等な厚みではなく、薄肉部と厚肉部とが併存する偏肉化が進んでいる。
 ところで、搭載されるカメラユニットに用いられる光学レンズは、製造コストが低く大量生産に適している射出成形法で製造できることが求められている。通常、直径が1cmに満たないような小径のレンズは、光学有効面が広い。しかし、射出成形でレンズを形成する場合、ウェルドラインや複屈折の不均一化が生じるため、光学有効面を広げることが難しい。
 小型で薄肉のレンズを射出成形する方法として、特許文献1にはノルボルネン系重合体とワックスからなる組成物を用いることが提案されている。しかし、ワックスを配合すると成形体表面にワックスがブリードすることがあり、金型汚れなどの問題が生じる。また、特許文献2には、特定の単量体組成からなる重合体が薄肉成形性に優れ、しかも光学特性や耐熱性も高度にバランスされた小型で薄肉のレンズを与えることが開示されている。
 ところで、防湿性、透明性及び耐熱性のバランスに優れた、包装材料や電子デバイス用封止材料に好適なフィルムを与えるノルボルネン系開環共重合体として、炭素数14~40の直鎖α-オレフィン存在下、ノルボルネン系単量体を開環重合して得られる重合体が、特許文献3に提案されている。
特開2009-138111号公報 特開2010-150443号公報 特開2012-57122号公報
 本発明の課題は、薄肉かつ偏肉であっても、光学欠陥が発生しない、すなわち、光学有効面が広い光学素子を成形するための光学用重合体を提供することである。
 本発明者らは、薄肉成形性に優れた光学材料として好適であるとされる特許文献2に具体的に開示された重合体を用いて、小径かつ薄肉のレンズを射出成形しようとしたところ、光学レンズのゲート付近の複屈折が大きく、かつ反ゲート側にウェルドラインが発生し光学欠陥が生じるため、光学有効面が狭くなることが分かった。
 通常、射出成形法は、(1)溶融樹脂を金型のキャビティに充填する射出工程、(2)ゲートシールするまでキャビティ内に圧力をかけ、射出工程で充填された溶融樹脂が金型に接し冷却されて収縮した量に相当する樹脂を注入する保圧工程、(3)保圧を開放後、樹脂が冷却されるまで成形品を保持する冷却工程を実施する。
 ゲート付近の複屈折は、前記保圧工程で、溶融樹脂の粘度が高くなった状態で高い圧力をかけて溶融樹脂を注入することにより重合体分子が配向するために発生する。
 ウェルドラインは、前記射出工程で、金型に流れ込んだ樹脂の2以上の流動先端部の会合界面に発現する線状の接合痕である。一般には、流動先端部の流動性がウェルドラインの原因に関係すると言われ、ウェルドラインの低減には流動性を高くすることが検討される。ウェルドラインが長いと、光学有効面が狭くなるため、特に小型で薄肉の光学レンズにおいて問題になる。本発明者らは、流動性の異なる重合体を用いて薄肉かつ偏肉のレンズを成形してみたところ、流動性が異なる重合体であっても、同じ長さのウェルドラインが発生することを確認した。
 そこで、本発明者らの検討の結果、特定の溶融粘度のパターンを持った重合体が、薄肉かつ偏肉のレンズ成形において、ウェルドラインの発生を抑制することができ、光学欠陥の発生を抑制することができることを見出し、本発明を想到した。
 更に、本発明者らは、小型で薄肉のレンズ全体に対する光学有効面を広げるべく鋭意検討した結果、特許文献3で開示されたフィルム用ノルボルネン系重合体を、射出成形法に適用して光学レンズを成形するとゲート付近の複屈折を特異的に低減する効果があることを見出した。この効果は、小型で薄肉のレンズに限らず、射出成形法により得られる光学素子一般で得られるものである。
 ところで、通常、シルバーストリークは、樹脂ペレットや成形体を十分乾燥する、揮発分解ガスの発生を防止するなど、作業環境の改善と成形条件の調製によって抑制する方法が採用されている。
 ところが、本発明者らが検討した結果、重合性単量体と炭素数14~40のα-オレフィンとを反応系内に逐次添加する方法を採用すると、成形体のシルバーストリークの発生を抑えることを見いだした。
 かくして、本発明によれば、290℃で、せん断速度200(1/s)での溶融粘度をηA、290℃で、せん断速度2000(1/s)での溶融粘度をηBとしたとき、下記式(1)を満たす光学用重合体。
 (ηA-ηB)/ηB×100<60    (1)
 が提供される。
 また、本発明によれば、光学用重合体が、ノルボルネン系重合体である前記の光学用重合体が提供される。
 また、本発明によれば、ノルボルネン系重合体のガラス転移温度が、100~160℃である前記の光学用重合体が提供される。
 また、本発明によれば、ノルボルネン系重合体が、分子末端に炭素数14~40のα-オレフィン由来の構造単位を含有する前記の光学用重合体が提供される。
 また、本発明によれば、ノルボルネン系重合体が、炭素数14~40のα-オレフィン存在下、ノルボルネン単量体を重合してなるノルボルネン系重合体である前記の光学用重合体が提供される。
 また、本発明によれば、ノルボルネン系重合体が、ノルボルネン単量体を含む重合性単量体及び炭素数14~40のα-オレフィンを、少なくとも重合触媒を含む溶媒中に逐次添加する工程を経て得られたものである前記の光学用重合体が提供される。
 また、本発明によれば、前記の光学用重合体を成形してなる光学素子が提供される。
 また、本発明によれば、光学素子が、光学レンズである前記の光学素子が提供される。
 本発明の光学用重合体を成形してなる光学素子は、光学有効面が広い、すなわち、光学欠陥の少ないため、光学レンズに好ましく、とりわけ、小径薄肉偏肉形状の光学レンズにより好ましいことから携帯電話カメラ用レンズに最適である。
図1は、R1>R2の場合のレンズを示す図である。 図2は、R1<R2の場合のレンズを示す図である。 図3は、レンズを形成する金型を示す図である。
 本発明の光学用重合体は、特定の溶融粘度のパターンを持つ。
(1)光学用重合体
 光学用重合体は、290℃で、せん断速度200(1/s)の溶融粘度をηA、290℃で、せん断速度2000(1/s)の溶融粘度をηBとしたとき、(ηA-ηB)/ηB×100の値は60未満であり、好ましくは50未満、より好ましくは40未満である。(ηA-ηB)/ηB×100の値は0に近いほど好ましく、(ηA-ηB)/ηB×100の値が大きいと、溶融粘度のせん断速度依存性が高くなり(流動曲線の傾きが大きい)、薄肉レンズを成形したときに反ゲート側にウェルドラインが発生するおそれがあるため、好ましくない。
 光学用重合体の種類としては、透明性を有すれば特に限定されないが、ポリカーボネート樹脂、アクリル樹脂、ポリスチレン系樹脂、ノルボルネン系重合体などが例示される。
 これらのなかでも、耐熱性、透明性、低吸水性、低複屈折性に優れることからノルボルネン系重合体が好ましい。
(2)ノルボルネン系重合体
 ノルボルネン系重合体は、ノルボルネン骨格を有する単量体であるノルボルネン単量体を重合してなるものであり、開環重合によって得られるものと、付加重合によって得られるものに大別される。
 ここでノルボルネン単量体を含む重合性単量体は、ノルボルネン単量体のみからなるものであっても良く、ノルボルネン単量体及びこれと開環又は付加共重合可能な単量体との混合物であっても良い。
 開環重合によって得られるものとして、ノルボルネン単量体の開環重合体及びノルボルネン単量体とこれと開環共重合可能なその他の単量体との開環重合体、ならびにこれらの水素化物などが挙げられる。
 付加重合によって得られるものとしてノルボルネン単量体の付加重合体及びノルボルネン単量体とこれと共重合可能なその他の単量体との付加重合体などが挙げられる。これらの中でも、ノルボルネン単量体の開環重合体水素化物およびノルボルネン単量体の付加重合体が、耐熱性、機械的強度等の観点から好ましい。
<ノルボルネン単量体>
 ノルボルネン単量体としては、テトラシクロドデセン系単量体の他、ノルボルネン系単量体、ジシクロペンタジエン系単量体、メタノテトラヒドロフルオレン系単量体、などが挙げられる。
 テトラシクロドデセン系単量体としては、テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(テトラシクロドデセン)、テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-エチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8,9-ジメチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-エチル-9-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-エチリデン-9-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メチル-8-カルボキシメチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンなどが例示される。
 ノルボルネン系単量体としては、ビシクロ[2.2.1]ヘプタ-2-エン(慣用名ノルボルネン)、5-メチル-ビシクロ[2.2.1]ヘプタ-2-エン、5,5-ジメチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプタ-2-エン、5-プロペニルビシクロ[2.2.1]ヘプタ-2-エン、5-メトキシルボニル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シアノビシクロ[2.2.1]ヘプタ-2-エン、5-メチル5-メトキシカルボニル-ビシクロ[2.2.1]ヘプタ-2-エンなどが例示される。
 ジシクロペンタジエン系単量体としては、トリシクロ[4.3.01,6.12,5]デカ-3,7-ジエン(慣用名ジシクロペンタジエン)、2-メチルジシクロペンタジエン、2,3-ジメチルジシクロペンタジエン、2,3-ジヒドロキシジシクロペンタジエンなどが例示される。
 メタノテトラヒドロフルオレン系単量体としては、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名メタノテトラヒドロフルオレン:1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)、1,4-メタノ-8-メチル-1,4,4a,9a-テトラヒドロフルオレン、1,4-メタノ-8-クロロ-1,4,4a,9a-テトラヒドロフルオレン、1,4-メタノ-8-ブロモ-1,4,4a,9a-テトラヒドロフルオレンなどが例示される。
 これらのノルボルネン単量体は、2種以上を組み合わせて用いることができる。
 テトラシクロドデセン系単量体以外の単量体としては、光学レンズの複屈折を良化する観点から、メタノテトラヒドロフルオレン系単量体が好ましい。メタノテトラヒドロフルオレン系単量体の量は、全単量体中、通常10~90重量%、好ましくは50~90重量%、より好ましくは60~80重量%、である。メタノテトラヒドロフルオレン系単量体が少なすぎると、光学レンズの複屈折が悪化する恐れがある。
 また、テトラシクロドデセン系単量体以外の単量体としては、ガラス転移温度を調整するのが容易なことから、ノルボルネン系単量体が好ましい。ノルボルネン系重合体の量は、通常0~20重量%、好ましくは1~15重量%、より好ましくは3~10重量%である。ノルボルネン系単量体が多すぎると、ノルボルネン系単量体の耐熱性(ガラス転移温度)が低下しすぎる恐れがある。
 更にテトラシクロドデセン系単量体以外の単量体としては、ジシクロペンタジエン系単量体が挙げられる。ジシクロペンタジエン系重合体の量は、通常0~10重量%、好ましくは0~5重量%である。ジシクロペンタジエン系重合体が多すぎると、光学レンズの複屈折が悪化する恐れがある。
 これらの中でも、テトラシクロドデセン系単量体の量が15~50重量%、メタノテトラヒドロフルオレン系単量体の量が10~90重量%、ノルボルネン系重合体の量が1~15重量%(但し、テトラシクロドデセン系単量体とメタノテトラヒドロフルオレン系単量体とノルボルネン系単量体の合計量は100重量%)であるノルボルネン系重合体が、薄肉成形性、成形体の複屈折、及び成形体の耐熱性のバランスに優れたノルボルネン系開環重合体水素化物を与えるため、好ましい。
<ノルボルネン単量体の開環重合体>
 ノルボルネン単量体の開環重合体、又はノルボルネン単量体とこれと開環共重合可能なその他の単量体との開環重合体は、単量体成分を、公知の開環重合触媒の存在下で重合して得ることができる。開環重合触媒としては、例えば、ルテニウム、オスミウムなどの金属のハロゲン化物と、硝酸塩又はアセチルアセトン化合物、及び還元剤とからなる触媒、あるいは、チタン、ジルコニウム、タングステン、モリブデンなどの金属のハロゲン化物又はアセチルアセトン化合物と、有機アルミニウム化合物とからなる触媒を用いることができる。
 ノルボルネン単量体と開環共重合可能なその他の単量体としては、例えば、シクロヘキセン、シクロヘプテン、シクロオクテンなどの単環の環状オレフィン系単量体などを挙げることができる。
<ノルボルネン単量体の開環重合体水素化物>
 ノルボルネン単量体の開環重合体水素化物は、通常、上記開環重合体の重合溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素化触媒を添加し、炭素-炭素不飽和結合を水素化することにより得ることができる。
<ノルボルネン単量体の付加重合体>
 ノルボルネン単量体の付加重合体、又はノルボルネン単量体とこれと共重合可能なその他の単量体との付加重合体は、これらの単量体を、公知の付加重合触媒、例えば、チタン、ジルコニウム又はバナジウム化合物と有機アルミニウム化合物とからなる触媒を用いて重合させて得ることができる。
 ノルボルネン単量体と付加共重合可能なその他の単量体としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセンなどの炭素数2~20のα-オレフィン、及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセン、シクロオクテン、3a,5,6,7a-テトラヒドロ-4,7-メタノ-1H-インデンなどのシクロオレフィン、及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエンなどの非共役ジエン;などが挙げられる。これらの中でも、α-オレフィンが好ましく、エチレンが特に好ましい。
 これらの、ノルボルネン単量体と付加共重合可能なその他の単量体は、2種以上を組み合わせて使用することができる。ノルボルネン単量体とこれと付加共重合可能なその他の単量体とを付加共重合する場合は、付加重合体中のノルボルネン単量体由来の構造単位と付加共重合可能なその他の単量体由来の構造単位との割合が、重量比で通常30:70~99:1、好ましくは50:50~97:3、より好ましくは60:40~95:5の範囲となるように適宜選択される。
 これらの中でも、耐熱性、機械的強度、成形性等の観点から、ノルボルネン単量体とこれと付加共重合可能なその他の単量体とを付加共重合することが好ましく、ノルボルネン単量体とエチレンとの付加共重合体が特に好ましい。
<炭素数14~40のα-オレフィン存在下、ノルボルネン単量体を重合するノルボルネン系重合体>
 好ましいノルボルネン系重合体は、炭素数14~40のα-オレフィン存在下、ノルボルネン単量体を重合することで製造することができる。
 炭素数14~40のα-オレフィンは、炭素数が14~40であれば特に限定されない。炭素数14~40のα-オレフィンの具体例としては、3-メチルテトラデセン、4-メチルテトラデセン、10-メチルテトラデセン、5-シクロヘキシルヘキサデセン等のアルキル鎖に1以上の置換基を有する1置換オレフィン:1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコサセン、1-ドコセン、1-テトラコンテン等の直鎖α-オレフィン等が挙げられる。炭素数16~30の直鎖α-オレフィンが特に好ましい。
 また、炭素数14~40のα-オレフィン量由来の構造単位は、ノルボルネン単量体と共重合可能なその他の単量体の合計量100重量部に対して、好ましくは0.5~5.0重量部、より好ましくは1.0~4.0重量部、特に好ましくは1.3~3.0重量部含有されていることが好ましい。炭素数14~40のα-オレフィン量由来の構造単位の量が多すぎると、ガラス転移温度が低下しすぎる恐れがあり、少なすぎると成形体のゲート付近の複屈折が悪化する恐れがある。
 例えば、直鎖α-オレフィンとして炭素数20のα-オレフィン(1-エイコセン)存在下、ノルボルネン単量体を重合した例を下記に示す。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
(式中R~Rはアルキル基を示し、Mtlは重合触媒を示す。)
 化1はノルボルネン単量体の開環重合体水素化物の分子末端にα-オレフィン由来の構造単位が導入される例を示したものである。重合反応が進行した重合触媒の活性末端とα-オレフィンが反応(連鎖移動反応)すると、α-オレフィン由来の構造末端に重合触媒の活性末端が生じる。続いてこの活性末端とモノマーとで重合反応が進行させた後に、オレフィンの水素化を行うと、分子末端にα-オレフィン由来の構造単位が導入されることがわかる。
 化2は同様にノルボルネン単量体とエチレンの付加共重合体の分子末端に、α-オレフィン由来の構造単位が導入される例を示したものである。
<連鎖移動剤>
 ノルボルネン系重合体は一般的に、分子量調整するために連鎖移動剤(分子量調節剤ともいう)存在下、ノルボルネン単量体を重合することにより製造される。連鎖移動剤としては、従来公知のものが使用でき、例えば、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィン類;スチレン、ビニルトルエン等のスチレン類;エチルビニルエーテル、イソブチルビニルエーテル、アリルグリシジルエーテル等のエーテル類;アリルクロライド等のハロゲン含有ビニル化合物;グリシジルメタクリレート等酸素含有ビニル化合物;アクリルアミド等の窒素含有ビニル化合物;1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,6-ヘプタジエン、2-メチル-1,4-ペンタジエン、2,5-ジメチル-1,5-ヘキサジエン等の非共役ジエン、又は1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン等を挙げることができる。これらの中で、分子量調節のし易さから、α-オレフィン類が好ましい。
 上記炭素数14~40のα-オレフィンも連鎖移動剤として作用するものである。
 ノルボルネン単量体を重合する際の好ましい連鎖移動剤は、上記炭素数14~40の直鎖α-オレフィンを2種以上組み合わせても良いし、炭素数14~40の直鎖α-オレフィンと、炭素数4~12のα-オレフィン又はスチレン類などのその他の連鎖移動剤を組み合わせても良い。尚、連鎖移動剤として、炭素数14~40のα-オレフィン以外の連鎖移動剤(その他の連鎖移動剤)を用いる場合、その他の連鎖移動剤は、炭素数14~40のα-オレフィンと混合して添加しても良いし、炭素数14~40のα-オレフィンとは別に添加しても良い。
 連鎖移動剤の添加量は、所望の分子量を持つ共重合体を得るに足る量であればよく、(連鎖移動剤):(ノルボルネン単量体)のモル比で、通常、1:50~1:1,000,000、好ましくは1:100~1:5,000、より好ましくは1:300~1:3,000である。
 炭素数14~40のα-オレフィン存在下で、ノルボルネン単量体を重合する場合の全連鎖移動剤量は、炭素数14~40のα-オレフィンとその他の連鎖移動剤の量の合計となる。
<重合する形態>
 ノルボルネン単量体を重合する形態に、格別制限はないが、一括重合法(予め重合触媒又はノルボルネン単量体を全量添加した溶媒中に、重合触媒又はノルボルネン単量体を一括添加して重合を行う方法)、単量体逐次加法(少なくとも重合触媒を含む溶媒中にノルボルネン単量体を連続添加して重合を進めていく方法)等が挙げられ、特に単量体逐次添加法を用いると、連鎖構造が、よりランダムになるので好ましい。
 炭素数14~40のα-オレフィンの添加方法としては、予め反応溶媒に当該α-オレフィンを全量添加しておいても良いし、ノルボルネン単量体と同時に当該α-オレフィンを逐次添加していく方法が挙げられ、特にノルボルネン単量体と同時に当該α-オレフィンを逐次添加していく方法が光学素子の光学有効面が広く、且つ高温で成形しても光学素子にシルバーストリークが発生しづらく、好ましい。
<重合温度>
 ノルボルネン単量体の重合温度は、通常-50℃~250℃、好ましくは-30℃~200℃、より好ましくは-20℃~150℃の範囲である。重合圧力は、通常0~50kg/cm、好ましくは0~20kg/cmの範囲である。重合時間は、重合条件により適宜選択されるが、通常30分~20時間、好ましくは1~10時間の範囲である。
<ノルボルネン系重合体の数平均分子量(Mn)>
 ノルボルネン系重合体の数平均分子量(Mn)は、通常5,000~100,000、好ましくは6,000~70,000であり、より好ましくは7,000~60,000である。重量平均分子量(Mw)は、通常10,000~350,000、好ましくは12,000~245,000、より好ましくは14,000~210,000である。分子量は、シクロヘキサンを溶媒とするゲルパーミエーションクロマトグラフィー(GPC)により測定され、標準ポリイソプレン換算値として表す。分子量が、これらの範囲にあるとき機械的強度と成形性とのバランスに優れる。分子量の分布(Mw/Mn)は、特に限定されないが、好ましくは1~5、より好ましくは1~4の範囲である。
<ノルボルネン系重合体の溶融粘度>
 ノルボルネン系重合体は、290℃で、せん断速度200(1/s)の溶融粘度をηA、290℃で、せん断速度2000(1/s)の溶融粘度をηBとしたとき、(ηA-ηB)/ηB×100の値は60未満であることが好ましい、より好ましくは50未満、特に好ましくは40未満である。
 (ηA-ηB)/ηB×100の値が大きいと、溶融粘度のせん断速度依存性が高くなり(流動曲線の傾きが大きい)、薄肉レンズを成形したときに反ゲート側にウェルドラインが発生する恐れがある。
 ノルボルネン系重合体の(ηA-ηB)/ηB×100の値は、テトラシクロドデセン系単量体の量、並びにノルボルネン系重合体の分子量を適宜調整することで調整できる。
 ノルボルネン系重合体の分子量が、シクロヘキサン溶液(重合体樹脂が溶解しない場合はトルエン溶液)のゲル・パーミエーション・クロマトグラフ法で測定したポリイソプレン換算の重量平均分子量で、好ましくは20,000~30,000、特に好ましくは22,000~28,000、より好ましく23,000~26,000の範囲であるときに、(ηA-ηB)/ηB×100の値(溶融粘度のせん断速度依存性が高くなる恐れがある)が好適である。
 テトラシクロドデセン系単量体の量は、好ましくは15~50重量%、より好ましくは20~40重量%である。テトラシクロドデセン系単量体が少なすぎると、(ηA-ηB)/ηB×100の値が大きくなるおそれがある。(溶融粘度のせん断速度依存性が高くなる恐れがある)。また、テトラシクロドデセン系単量体が多すぎると、ノルボルネン系重合体の溶媒への溶解性が悪くなったり、複屈折が悪化する恐れがある。
<ノルボルネン系重合体のガラス転移温度(Tg)>
 ノルボルネン系重合体のガラス転移温度(Tg)は、使用目的に応じて適宜選択されればよいが、通常100~160℃、好ましくは120~150℃、特に好ましくは130~145℃の範囲であるときに、耐熱性と成形加工性とが高度にバランスし、好適である。
 これらのノルボルネン系重合体は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
<添加剤>
 光学用重合体には、必要に応じて公知の添加剤を発明の効果が損なわれない範囲で含有させることができる。添加剤としては、例えば、充填剤、酸化防止剤、光安定剤、離型剤、難燃剤、抗菌剤添加剤としては、例えば、充填剤、酸化防止剤、光安定剤、離型剤、難燃剤、抗菌剤、木粉、カップリング剤、可塑剤、着色剤、滑剤、シリコーンオイル、発泡剤、界面活性剤、離型剤などの各種添加剤を配合することができる。光安定剤としては、ヒンダードアミン系光安定剤(HALS)が好ましい。離型剤としては、多価アルコールの脂肪酸エステルが好ましい。
 光学用重合体に各種添加剤を含有させる方法は、特に限定されず、濾過後の光学用重合体溶液に添加する方法や、溶融ブレンドする方法など任意の方法を採用することができる。具体的な方法としては、例えば、光学用重合体と各種添加剤を、ヘンシェルミキサー、V-ブレンダー、リボンブレンダー、タンブラーブレンダー等を用いて混合し、次いで、一軸押出機、二軸押出機、ニーダー、ロール等を用いて溶融混練する方法;濾過後の光学用重合体の溶液に、各種添加剤を混合した後、溶剤等の揮発成分を除去する方法;などが挙げられる。
(3)光学素子
 必要に応じて各種添加剤を含む本発明の光学用重合体を成形して、光学素子を得る。
 成形方法としては、公知の成形手段、例えば射出成形法、圧縮成形法、押出成形法、ブロー成形法、インフレーション成形法などを用いて、前記光学用重合体を成形することによって得られる。これらのうち、透明性に優れた光学部品を得ることができるので射出成形法が好ましい。成形体の形状は板状、レンズ形状、ディスク形状、フィルム形状、シート状、プリズム状などの各種用途に応じて適宜選択できる。
<射出成形>
 射出成形の条件としては、樹脂温度は光学用重合体のガラス転移温度(Tg)によって変わりえるが200~350℃の範囲が好ましい。これ以下だと流動性が低いため転写性が出ない。350℃以上だと樹脂の劣化が始まり、ヤケ不良や金型汚れなど発生する。流動性が確保される範囲で低い方が成形品の密度分布を小さくすることができる。より低複屈折を必要とする場合は該範囲で高温になる程優れる。両者のバランスによって樹脂温度を設定する。230℃~330℃がより好ましく、250~320℃が特に好ましい。
 金型温度は、ガラス転移温度より低い範囲でできるだけ高い温度が好ましい。光学用重合体のガラス転移温度‐20℃~ガラス転移温度‐3℃の範囲が好ましい。これより低いと転写性や複屈折に問題が生じ、これ以上だと成形サイクルタイムが長くなり生産性が落ちる可能性がある。転写性と複屈折に問題が無い範囲で金型温度を下げた方が生産性の点で優れる。
 計量工程の条件は特に限定しないが、スクリュ回転数は10~100rpm、背圧は3~10MPaが一般的である。ヤケが発生しない程度にスクリュ回転数は高く、気泡が発生しない程度に背圧は高い方が良い。
 射出速度は、一段でも多段射出でも良い。射出速度はスクリュの前進速度が2~100mm/秒で成形するのが一般的である。2mm/秒以下だと射出時に固化して充填できない恐れがある。射出速度が速すぎるとジェッティング等の外観不良が起こる恐れがある。
 保圧工程の圧力は好ましくは20MPa以下、より好ましくは10MPa、特に好ましくは5MPaである。保圧工程の圧力が高いと、光学歪みが高くなる恐れがあり、低いとスプル詰まりなどの成形不良が起こる恐れがある。スプル詰まりなどが起こらない範囲で低い圧力をかけておくのが好ましい。
 保圧時間もゲートシールあるいはスプル詰まりが発生しない程度の短い時間で制御するのが好ましい。
 冷却工程では、冷却時間は長ければ長いほうが金型内でのアニール効果により光学特性は優れるが、サイクルタイムが長くなるため生産性と光学特性のバランスを見ながら適切に定めるのが良い。
<用途>
 本発明の光学素子は、光学有効面の面精度、複屈折に優れ、フレネルレンズ、レンチキュラ-レンズ、fθレンズ、携帯電話カメラ用レンズ等の光学レンズ:回折格子、プリズム、ブルーレーザー用光ディスク、ブルーレーザー用光ディスク等の光学素子に好適に用いることができる。これらの中でも光学レンズに好ましく、小径薄肉偏肉形状の光学レンズにより好ましいことから携帯電話カメラ用レンズに最適である。
 好ましい光学素子である光学レンズにおいて、その好適な大きさは、外径をL1としたとき、好ましくは10mm以下、より好ましくは7mm以下、特に好ましくは5mm以下である。
 好ましい光学素子である光学レンズにおいて、そのレンズ部(光学有効面)の形状としては、凸面を円と近似した際の曲率半径をR1、凹面を円と近似した際の曲率半径をR2としたとき、R1>R2(R1/R2>1)が好ましく、R1/R2≧1.4がより好ましく、R1/R2≧1.6が特に好ましく、R1/R2≧1.8が更に好ましい。R1>R2の場合のレンズ形状を図1に、R1<R2の場合のレンズ形状を図2に示す。
 好ましい光学素子である光学レンズにおいて、その好適な厚みは、厚みが均一のレンズであれば、好ましくは1.00mm以下、より好ましくは0.5mm以下であり、特に好ましくは0.30mm以下である。厚みが不均一の偏肉レンズであれば、エッジ部の厚みをT1、レンズ部最厚部の厚みをT2、レンズ部最薄部の厚みをT3としたとき、レンズ部最薄部の厚さ(T3)が、好ましくは0.50mm以下、より好ましくは0.30mm以下であり、特に好ましくは0.20mm以下であり、エッジ部の厚み(T1)が、好ましくはT1/T3≧1.5、より好ましくはT1/T3≧2.0、特に好ましくはT1/T3≧2.5であり、レンズ部最厚部(T2)が、好ましくはT1/T2≧1.5、より好ましくはT1/T2≧2.0、特に好ましくはT1/T2≧2.5である。
 以下、本発明について、実施例及び比較例を挙げて、より具体的に説明する。本発明は、これらの実施例のみに限定されるものではない。以下の実施例及び比較例において、部及び%は、特に断りがない限り、重量基準である。
 以下に各種物性の測定法を示す。
(1)分子量
 数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(MWD)はシクロヘキサンを溶媒とするゲルパーミエーションクロマトグラフィー(GPC)による、標準ポリイソプレン換算値として測定した。
 GPCは、東ソー社製HLC8120GPCを用いた。
 標準ポリイソプレンとしては、東ソー社製標準ポリイソプレン、Mw=602、1390、3920、8050、13800、22700、58800、71300、109000、280000の計10点を用いた。
 測定は、カラムとして東ソー社製TSKgelG5000HXL、TSKgelG4000HXL及びTSKgelG2000HXLを3本直列に繋いで用い、流速1.0ml/分、サンプル注入量100μml、カラム温度40℃の条件で行った。
(2)水素添加率(炭素-炭素二重結合残存率)
 水素添加後の、主鎖及び環状炭化水素構造の水素添加率は、NMR測定により求めた。
(3)ガラス転移温度(Tg)
 ガラス転移温度は示差走査熱量分析計(DSC6220SII、ナノテクノロジー社製)を用いて、JISK6911に基づき昇温速度10℃/minの条件で測定した。
(4)溶融粘度
 ツインキャピラリー・レオメーター Rheologic5000(CEAST社製)を用いて測定した。
(5)薄肉レンズの成形性評価
 薄肉成形性は、凸面の曲率半径が5.73mm、凹面の曲率半径が3.01mm、大きさが直径4.5mm、レンズ部分の直径が3mm、レンズの中心厚が0.20mmのレンズを形成する金型(図3)を用い、射出成形機(FANUC ROBOSHOT(登録商標)α100B、ファナック社製)で樹脂温度300℃、型温Tg-5℃、保圧400Paで成形品を10個作成した。
〔複屈折評価〕
(1)表1での複屈折評価
 得られた成形品を複屈折計(王子計測器社製;KOBRA(登録商標)-CCD/X)により測定し、レンズ中心部の、測定波長650nmでのレタデーションの値によって比較した。レタデーションの値は小さいほど低複屈折性に優れていることを意味し、20未満をA、20以上40未満をB、40以上60未満をC、60以上をDとした。
(2)表2、3での複屈折評価
 得られた成形品を複屈折計(王子計測器社製、製品名「KOBRA(登録商標)-CCD/X」)により測定し、測定波長650nmでのレタデーションの値の平均値によって比較した。
 ゲート方向レンズ中心より1.8mmをRe測定点[A]としてレタデーション値をRe[A]とし、レンズ中心部をRe測定点[B]としてレタデーション値をRe[B]とした。
 Re[A]の測定値が50nm未満をA、50nm以上100nm未満をB、100nm以上をDとした。
 Re[B]の測定値が30nm未満をA、30nm以上60nm未満をB、60nm以上をDとした。
 レタデーションの値は小さいほど低複屈折性に優れていることを意味する。
〔ウェルドライン評価〕
 得られた成形品を顕微鏡により観察し、反ゲート方向に生じたウェルドライン長さの測定を行った。ウェルドラインの長さが0.1mm未満ならA、0.1mm以上0.3mm未満ならB、0.3mm以上0.5mm未満ならC、0.5mm以上ならD、とした。
〔シルバーストリーク発生評価〕
 以下の判定基準で評価を行った。10回の射出成形で得られた成形品を目視により観察し、シルバーストリークが全く見られない場合をA、1~2サンプルで見られる場合をB、3~4サンプルで見られる場合をC、5サンプル以上で見られる場合をDとした。
[実施例1]
 乾燥し、窒素置換した重合反応器に、メタノテトラヒドロフルオレン(以下、「MTF」と略記)70重量%、テトラシクロドデセン(以下、「TCD」と略記)22重量%、及びノルボルネン(以下、「NB」と略記)8重量%からなる単量体混合物7部(重合に使用する単量体全量に対して1%)、脱水したシクロヘキサン1,600部、1-ヘキセン0.6部、ジイソプロピルエ-テル1.3部、イソブチルアルコール0.33部、トリイソブチルアルミニウム0.84部並びに六塩化タングステン0.66%シクロヘキサン溶液30部を入れ、55℃で10分間攪拌した。
 次いで、反応系を55℃に保持し、攪拌しながら、前記重合反応器中に前記単量体混合物693部と六塩化タングステン0.77%シクロヘキサン溶液72部を各々150分かけて連続的に滴下し、さらに滴下終了後30分間攪拌した後にイソプロピルアルコール1.0部を添加して重合反応を停止させた。ガスクロマトグラフィーによって重合反応溶液を測定したしたところ、モノマーの重合体への転化率は100%であった。
 次いで、上記重合体を含有する重合反応溶液300部を攪拌器付きオートクレーブに移し、シクロヘキサン100部および珪藻土担持ニッケル触媒(日揮化学社製;「T8400RL」、ニッケル担持率58%)2.0部を加えた。オートクレーブ内を水素で置換した後、180℃、4.5MPaの水素圧力下で6時間反応させた。
 水素化反応終了後、珪藻土(昭和化学工業社製、「ラヂオライト(登録商標)♯500」)を濾過床として、加圧濾過器(IHI社製;「フンダフィルタ-」)を使用し、圧力0.25MPaで加圧濾過して、無色透明な溶液を得た。
 次いで、得られた溶液に、前記水素添加物100部当り、酸化防止剤として、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](チバ・スペシャルティ・ケミカルズ社製;「イルガノックス(登録商標)1010」)0.5部を加えて溶解させた。
 この溶液をフィルター(キュノーフィルター社製;「ゼータプラス(登録商標)30H」、孔径0.5~1μm)で濾過した後、濾液を金属ファイバー製フィルター(ニチダイ社製、孔径0.4μm)にて濾過して異物を除去した。
 次いで、上記で得られた濾液を、円筒型濃縮乾燥機(日立製作所社製)を用いて、温度260℃、圧力1kPa以下で、溶液から、溶媒であるシクロヘキサン及びその他の揮発成分を除去し、濃縮機に直結したダイから溶融状態でストランド状に押出し、水冷後、ペレタイザー(長田製作所社製;「OSP-2」)でカッティングしてノルボルネン系重合体のペレットを得た。
 このノルボルネン系重合体の分子量はMw=24,000、Mw/Mn=1.75であり、水素化率は99.9%、Tgは140℃であった。
 得られたペレットを用いて薄肉レンズの整形評価した結果を表1に示す。
[実施例2]
 単量体混合物の組成をMTF65重量%、TCD30重量%、及びNB5重量%とし、1-ヘキセンを0.55重量部にした以外は実施例1と同様にしてノルボルネン系重合体を得た。
 重合反応溶液のモノマーのポリマーへの転化率は99.9%であった。得られたノルボルネン系重合体の分子量はMw=25,000、Mw/Mn=1.72であり、水素化率は99.9%、Tgは145℃であった。
 得られたペレットを用いて薄肉レンズの整形評価した結果を表1に示す。
[実施例3]
 1-ヘキセンを0.45重量部にした以外は実施例2と同様にしてノルボルネン系重合体を得た。
 重合反応溶液のモノマーのポリマーへの転化率は99.9%であった。得られたノルボルネン系重合体の分子量はMw=29,000、Mw/Mn=1.88であり、水素化率は99.9%、Tgは145℃であった。
 得られたペレットを用いて薄肉レンズの整形評価した結果を表1に示す。
[実施例4]
 単量体混合物の組成をエチリデンノルボルネン(以下、「ETD」と略記)20重量%、ジシクロペンタジエン(以下、「DCP」と略記)80重量%、及びNB8重量%とした以外は実施例3と同様にしてノルボルネン系重合体を得た。
 重合反応溶液のモノマーのポリマーへの転化率は99.9%であった。得られたノルボルネン系重合体の分子量はMw=28,500、Mw/Mn=2.12であり、水素化率は99.9%、Tgは105℃であった。
 得られたペレットを用いて薄肉レンズの整形評価した結果を表1に示す。
[実施例5]
 単量体混合物の組成をMTF40重量%、TCD35重量%、及びDCP25重量%とし、1-ヘキセンを0.55重量部にした以外は実施例3と同様にしてノルボルネン系重合体を得た。
 重合反応溶液のモノマーのポリマーへの転化率は99.9%であった。得られたノルボルネン系重合体の分子量はMw=29,500、Mw/Mn=2.22であり、水素化率は99.9%、Tgは141℃であった。
 得られたペレットを用いて薄肉レンズの整形評価した結果を表1に示す。
[実施例6]
 単量体混合物の組成をMTF49量%、TCD46重量%、及びNB6重量%とした以外は実施例1と同様にしてノルボルネン系重合体を得た。
 重合反応溶液のモノマーのポリマーへの転化率は99.9%であった。得られたノルボルネン系重合体の分子量はMw=25,500、Mw/Mn=1.71であり、水素化率は99.9%、Tgは145℃であった。
 得られたペレットを用いて薄肉レンズの整形評価した結果を表1に示す。
[実施例7]
 単量体混合物の組成をMTF45量%、TCD25重量%、及びNB20重量%とした以外は実施例1と同様にしてノルボルネン系重合体を得た。
 重合反応溶液のモノマーのポリマーへの転化率は99.9%であった。得られたノルボルネン系重合体の分子量はMw=26,500、Mw/Mn=1.64であり、水素化率は99.9%、Tgは98℃であった。
 得られたペレットを用いて薄肉レンズの整形評価した結果を表1に示す。
[比較例1]
 単量体混合物の組成をMTF80量%、TCD10重量%、及びNB10重量%とした以外は実施例1と同様にしてノルボルネン系重合体を得た。
 重合反応溶液のモノマーのポリマーへの転化率は99.9%であった。得られたノルボルネン系重合体の分子量はMw=25,500、Mw/Mn=1.72であり、水素化率は99.9%、Tgは134℃であった。
 得られたペレットを用いて薄肉レンズの整形評価した結果を表1に示す。
[比較例2]
 単量体混合物の組成をMTF39量%、TCD55重量%、及びNB5重量%とした以外は実施例1と同様にして重合反応及び水素添加反応を行った。水素化反応終了後、珪藻土(「ラジオライト♯500」)を濾過床として、加圧濾過器(石川島播磨重工社製;「フンダフィルタ-」)を使用し、圧力0.25MPaで加圧濾過したが、詰りが発生して濾液が得られなかった。
[比較例3]
 1-ヘキセンを0.40重量部にした以外は実施例2と同様にしてノルボルネン系重合体を得た。
 重合反応溶液のモノマーのポリマーへの転化率は99.9%であった。得られたノルボルネン系重合体の分子量はMw=31,000、Mw/Mn=1.95であり、水素化率は99.9%、Tgは145℃であった。
 得られたペレットを用いて薄肉レンズの整形評価した結果を表1に示す。
[比較例4]
 単量体混合物の組成をMTF45量%、TCD10重量%、及びジシクロペンタジエン45重量%とした以外は実施例1と同様にしてノルボルネン系重合体を得た。
 重合反応溶液のモノマーのポリマーへの転化率は99.9%であった。得られたノルボルネン系重合体の分子量はMw=25,500、Mw/Mn=1.92であり、水素化率は99.9%、Tgは130℃であった。
 得られたペレットを用いて薄肉レンズの整形評価した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 [考察]
 表1の結果から以下のことがわかる。
 (ηA-ηB)/ηB×100が高いと、ウェルドライン評価が悪い(比較例1,3,4)。(比較例2は濾液得られず。)
 (ηA-ηB)/ηB×100が低いほど、ウェルドライン評価が良くなる傾向にある(実施例1~7)。
 Mwが低下するほど、(ηA-ηB)/ηB×100が低下してウェルドライン評価及び複屈折評価が良くなる傾向にある(実施例2及び3と比較例3との対比)。
 テトラシクロドデセン系単量体(TCD)が多くなるほど、(ηA-ηB)/ηB×100が低下してウェルドライン評価及び複屈折評価が良くなる傾向にある(実施例2と比較例1との対比、実施例7と比較例4との対比)。
 メタノテトラヒドロフルオレン系単量体(MTF)が多くなるほど、複屈折評価が良くなる傾向にある(実施例1~7)。
[実施例8~17、比較例5]
 乾燥し、窒素置換した重合反応器に、表2で示したノルボルネン単量体混合物7部(重合に使用する単量体全量に対して1%)、脱水したシクロヘキサン1,600部、表2で示した連鎖移動剤種及び量、ジイソプロピルエ-テル1.3部、イソブチルアルコール0.33部、トリイソブチルアルミニウム0.84部並びに六塩化タングステン0.66%シクロヘキサン溶液30部を入れ、55℃で10分間攪拌した。
 次いで、反応系を55℃に保持し、攪拌しながら、前記重合反応器中に前記単量体混合物693部と六塩化タングステン0.77%シクロヘキサン溶液72部を各々150分かけて連続的に滴下し、さらに滴下終了後30分間攪拌した後にイソプロピルアルコール1.0部を添加して重合反応を停止させた。ガスクロマトグラフィーによって重合反応溶液を測定したしたところ、モノマーの重合体への転化率は100%であった。
 次いで、上記重合体を含有する重合反応溶液300部を攪拌器付きオートクレーブに移し、シクロヘキサン100部および珪藻土担持ニッケル触媒(日揮化学社製、製品名「T8400RL」、ニッケル担持率58%)2.0部を加えた。オートクレーブ内を水素で置換した後、180℃、4.5MPaの水素圧力下で6時間反応させた。
 水素化反応終了後、珪藻土(昭和化学工業社製、製品名「ラヂオライト(登録商標)♯500」)を濾過床として、加圧濾過器(IHI社製、製品名「フンダフィルタ-」)を使用し、圧力0.25MPaで加圧濾過して、無色透明な溶液を得た。
 次いで、得られた溶液に、前記水素添加物100部当り、酸化防止剤として、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](チバ・スペシャルティ・ケミカルズ社製、製品名「イルガノックス(登録商標)1010」)0.5部を加えて溶解させた。
 この溶液をフィルター(キュノーフィルター社製、製品名「ゼータプラス(登録商標)30H」、孔径0.5~1μm)で濾過した後、濾液を金属ファイバー製フィルター(ニチダイ社製、孔径0.4μm)にて濾過して異物を除去した。
 次いで、上記で得られた濾液を、円筒型濃縮乾燥機(日立製作所製)を用いて、温度260℃、圧力1kPa以下で、溶液から、溶媒であるシクロヘキサン及びその他の揮発成分を除去し、濃縮機に直結したダイから溶融状態でストランド状に押出し、水冷後、ペレタイザー(長田製作所製、製品名「OSP-2」)でカッティングしてノルボルネン系重合体のペレットを得た。
 ノルボルネン系重合体の分子量(Mw)、ガラス転移温度(Tg)、溶融粘度を表2に示した。すべてのノルボルネン系重合体の水添率は99%以上であった。
Figure JPOXMLDOC01-appb-T000004
[考察]
 表2の結果から以下のことがわかる。
 分子末端にC14~40のα-オレフィン由来の構造単位を持たないノルボルネン系重合体は、Re[A]の値が悪い(実施例14~17)。
 分子末端にC14~40のα-オレフィン由来の構造単位を持つノルボルネン系重合体は、Re[A]の値がよい(実施例8~13)。
 (ηA-ηB)/ηB×100の値が60未満であるノルボルネン系重合体はウェルドライン評価が良好である(実施例8~17)。
[実施例18、19]
 ノルボルネン単量体と連鎖移動剤を表3で示した割合で混合した「単量体-連鎖移動剤混合物」を調製した。
 さらに乾燥し、窒素置換した重合反応器に、予め調製した「単量体-連鎖移動剤混合物」7部(重合に使用する単量体全量に対して1%)、脱水したシクロヘキサン1,600部、ジイソプロピルエ-テル1.3部、イソブチルアルコール0.33部、トリイソブチルアルミニウム0.84部並びに六塩化タングステン0.66%シクロヘキサン溶液30部を入れ、55℃で10分間攪拌した。
 次いで、反応系を55℃に保持し、攪拌しながら、前記重合反応器中に「単量体-連鎖移動剤混合物」693部と六塩化タングステン0.77%シクロヘキサン溶液72部を各々150分かけて連続的に滴下し、さらに滴下終了後30分間攪拌した後にイソプロピルアルコール1.0部を添加して重合反応を停止させた。ガスクロマトグラフィーによって重合反応溶液を測定したしたところ、モノマーの重合体への転化率は100%であった。
 次いで、上記重合体を含有する重合反応溶液300部を攪拌器付きオートクレーブに移し、シクロヘキサン100部および珪藻土担持ニッケル触媒(日揮化学社製、製品名「T8400RL」、ニッケル担持率58%)2.0部を加えた。オートクレーブ内を水素で置換した後、180℃、4.5MPaの水素圧力下で6時間反応させた。
 水素化反応終了後、珪藻土(昭和化学工業社製、製品名「ラヂオライト(登録商標)♯500」)を濾過床として、加圧濾過器(IHI社製、製品名「フンダフィルタ-」)を使用し、圧力0.25MPaで加圧濾過して、無色透明な溶液を得た。
 次いで、得られた溶液に、前記水素添加物100部当り、酸化防止剤として、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](BASFジャパン社製、製品名「イルガノックス(登録商標)1010」)0.5部を加えて溶解させた。
 この溶液をフィルター(キュノーフィルター社製、製品名「ゼータプラス(登録商標)30H」、孔径0.5~1μm)で濾過した後、濾液を金属ファイバー製フィルター(ニチダイ社製、孔径0.4μm)にて濾過して異物を除去した。
 次いで、上記で得られた濾液を、円筒型濃縮乾燥機(日立製作所製)を用いて、温度260℃、圧力1kPa以下で、溶液から、溶媒であるシクロヘキサン及びその他の揮発成分を除去し、濃縮機に直結したダイから溶融状態でストランド状に押出し、水冷後、ペレタイザー(長田製作所製、製品名「OSP-2」)でカッティングしてノルボルネン系重合体のペレットを得た。
 ノルボルネン系重合体の分子量(Mw)、ガラス転移温度(Tg)、溶融粘度を表2に示した。すべてのノルボルネン系重合体の水素添加率は99%以上であった。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
[考察]
 表3の結果から、重合性単量体と連鎖移動剤とを逐次添加(連続的滴下)した場合に、成形体にシルバーストリークが発生しないことが分かる(実施例18、19)。
 本発明の光学用重合体を成形してなる光学素子は、光学有効面が広い、すなわち、光学欠陥の少ないため、光学レンズに好ましく、とりわけ、小径薄肉偏肉形状の光学レンズにより好ましいことから携帯電話カメラ用レンズに最適である。
R1:凸面を円と近似した際の曲率半径
R2:凹面を円と近似した際の曲率半径
T1:エッジ部の厚み
T2:レンズ部最厚部の厚み、
T3:レンズ部最薄部の厚み

Claims (8)

  1.  290℃で、せん断速度200(1/s)での溶融粘度をηAとし、290℃で、せん断速度2000(1/s)での溶融粘度をηBとしたとき、下記式(1)を満たす光学用重合体。
     (ηA-ηB)/ηB×100<60    (1)
  2.  光学用重合体が、ノルボルネン系重合体である請求項1記載の光学用重合体。
  3.  ノルボルネン系重合体のガラス転移温度が、100~160℃である請求項2記載の光学用重合体。
  4.  ノルボルネン系重合体が、分子末端に炭素数14~40のα-オレフィン由来の構造単位を含有する請求項2または3記載の光学用重合体。
  5.  ノルボルネン系重合体が、炭素数14~40のα-オレフィン存在下、ノルボルネン単量体を重合してなるノルボルネン系重合体である請求項4記載の光学用重合体。
  6.  ノルボルネン系重合体が、ノルボルネン単量体を含む重合性単量体及び炭素数14~40のα-オレフィンを、少なくとも重合触媒を含む溶媒中に逐次添加する工程を経て得られたものである請求項4または5記載の光学用重合体。
  7.  請求項1~6のいずれか1項に記載の光学用重合体を成形してなる光学素子。
  8.  光学素子が、光学レンズである請求項7記載の光学素子。
PCT/JP2013/083704 2012-12-25 2013-12-17 光学用重合体及びそれを成形してなる光学素子 WO2014103788A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380064463.8A CN104854161B (zh) 2012-12-25 2013-12-17 光学用聚合物以及将其成型而成的光学元件
KR1020157019082A KR102125060B1 (ko) 2012-12-25 2013-12-17 광학용 중합체 및 그것을 성형하여 이루어지는 광학 소자
JP2014554335A JP6256353B2 (ja) 2012-12-25 2013-12-17 光学用重合体及びそれを成形してなる光学素子
EP13868914.6A EP2940055B1 (en) 2012-12-25 2013-12-17 Optical polymer and optical element obtained by forming thereof
US14/655,551 US9459376B2 (en) 2012-12-25 2013-12-17 Optical polymer and optical element obtained by forming thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012281016 2012-12-25
JP2012-281016 2012-12-25
JP2013055854 2013-03-19
JP2013-055854 2013-03-19
JP2013-153122 2013-07-24
JP2013153122 2013-07-24

Publications (1)

Publication Number Publication Date
WO2014103788A1 true WO2014103788A1 (ja) 2014-07-03

Family

ID=51020875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083704 WO2014103788A1 (ja) 2012-12-25 2013-12-17 光学用重合体及びそれを成形してなる光学素子

Country Status (7)

Country Link
US (1) US9459376B2 (ja)
EP (1) EP2940055B1 (ja)
JP (1) JP6256353B2 (ja)
KR (1) KR102125060B1 (ja)
CN (1) CN104854161B (ja)
TW (1) TWI589611B (ja)
WO (1) WO2014103788A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515354A (ja) * 2016-05-06 2019-06-06 セルオプティック、インコーポレイテッドCelloptic, Inc. 顕微鏡法及び他の応用例で使用するための複屈折レンズ干渉計

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163371A1 (ja) * 2015-04-06 2016-10-13 日本ゼオン株式会社 共重合体、重合体、成形材料及び樹脂成形体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005309104A (ja) * 2004-04-22 2005-11-04 Fuji Photo Film Co Ltd プラスチック製レンズを用いた光学ユニット
JP2007270009A (ja) * 2006-03-31 2007-10-18 Nippon Zeon Co Ltd 脂環構造含有熱可塑性樹脂
JP2008013604A (ja) * 2006-07-03 2008-01-24 Nippon Zeon Co Ltd テトラシクロドデセン含有開環重合体水素化物、光学樹脂材料および光学成形体
JP2009138111A (ja) 2007-12-07 2009-06-25 Nippon Zeon Co Ltd 光学用射出成形体
JP2010150443A (ja) 2008-12-26 2010-07-08 Nippon Zeon Co Ltd ノルボルネン系開環重合体水素添加物及びその利用
JP2012057122A (ja) 2010-09-13 2012-03-22 Nippon Zeon Co Ltd ノルボルネン系開環共重合体水素化物からなるフィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031744A (ja) * 1999-07-21 2001-02-06 Jsr Corp 光学用成形材料および光ディスク
JP2005234174A (ja) * 2004-02-19 2005-09-02 Konica Minolta Opto Inc 光学用樹脂レンズ及び光学用樹脂レンズの作製方法
JP4813851B2 (ja) 2005-09-05 2011-11-09 デュプロ精工株式会社 中間バッファ装置
JP4821530B2 (ja) * 2006-09-19 2011-11-24 Jsr株式会社 薄型の光学レンズ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005309104A (ja) * 2004-04-22 2005-11-04 Fuji Photo Film Co Ltd プラスチック製レンズを用いた光学ユニット
JP2007270009A (ja) * 2006-03-31 2007-10-18 Nippon Zeon Co Ltd 脂環構造含有熱可塑性樹脂
JP2008013604A (ja) * 2006-07-03 2008-01-24 Nippon Zeon Co Ltd テトラシクロドデセン含有開環重合体水素化物、光学樹脂材料および光学成形体
JP2009138111A (ja) 2007-12-07 2009-06-25 Nippon Zeon Co Ltd 光学用射出成形体
JP2010150443A (ja) 2008-12-26 2010-07-08 Nippon Zeon Co Ltd ノルボルネン系開環重合体水素添加物及びその利用
JP2012057122A (ja) 2010-09-13 2012-03-22 Nippon Zeon Co Ltd ノルボルネン系開環共重合体水素化物からなるフィルム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515354A (ja) * 2016-05-06 2019-06-06 セルオプティック、インコーポレイテッドCelloptic, Inc. 顕微鏡法及び他の応用例で使用するための複屈折レンズ干渉計

Also Published As

Publication number Publication date
TWI589611B (zh) 2017-07-01
US9459376B2 (en) 2016-10-04
EP2940055B1 (en) 2017-08-30
EP2940055A1 (en) 2015-11-04
JPWO2014103788A1 (ja) 2017-01-12
TW201430004A (zh) 2014-08-01
CN104854161A (zh) 2015-08-19
EP2940055A4 (en) 2016-07-06
CN104854161B (zh) 2017-10-17
KR102125060B1 (ko) 2020-06-19
US20150346386A1 (en) 2015-12-03
JP6256353B2 (ja) 2018-01-10
KR20150099566A (ko) 2015-08-31

Similar Documents

Publication Publication Date Title
CN107735451B (zh) 树脂组合物、树脂成型体及光学构件
JP6256353B2 (ja) 光学用重合体及びそれを成形してなる光学素子
WO2006033414A1 (ja) 光学補償フィルムおよびそれを用いた表示素子
JP4712455B2 (ja) 光学用フィルム
JP2015124282A (ja) 脂環構造含有重合体組成物及びその利用
JP5803322B2 (ja) 樹脂組成物及び成形体
JP2009138111A (ja) 光学用射出成形体
WO2023189303A1 (ja) 樹脂組成物、成形体及び光学部材
JP5778884B2 (ja) 樹脂組成物、ペンタエリスリトール誘導体組成物およびその製造方法
JP2013124310A (ja) 脂環構造含有重合体組成物及びその利用
JP2007230016A (ja) 射出成形体の製造方法
JP5007688B2 (ja) 光学用樹脂組成物及び光学部品
JP5803304B2 (ja) 樹脂組成物及び光反射体
WO2023189302A1 (ja) 樹脂組成物、成形体及び光学部材
JP2007253379A (ja) 板状成形体の製造方法
JP2015124281A (ja) 脂環構造含有重合体組成物及びその利用
JP2007230161A (ja) 射出成形体の製造方法
JP2007270009A (ja) 脂環構造含有熱可塑性樹脂
JP2011215193A (ja) 光学素子
JP2010082849A (ja) 樹脂組成物、樹脂型及び当該樹脂型を使用する成形体の製造方法
JP2007334140A (ja) 位相差フィルム
JP2004295977A (ja) 光ディスク用基板の製造方法
JP2007206363A (ja) 精密光学レンズ
KR20240015066A (ko) 수지 조성물 및 광학 소자
JP2002144388A (ja) 成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013868914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14655551

Country of ref document: US

Ref document number: 2013868914

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157019082

Country of ref document: KR

Kind code of ref document: A