WO2014103623A1 - フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法 - Google Patents

フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法 Download PDF

Info

Publication number
WO2014103623A1
WO2014103623A1 PCT/JP2013/082423 JP2013082423W WO2014103623A1 WO 2014103623 A1 WO2014103623 A1 WO 2014103623A1 JP 2013082423 W JP2013082423 W JP 2013082423W WO 2014103623 A1 WO2014103623 A1 WO 2014103623A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorene
group
general formula
compound
acid
Prior art date
Application number
PCT/JP2013/082423
Other languages
English (en)
French (fr)
Inventor
正晃 松原
俊一 平林
克宏 藤井
Original Assignee
田岡化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田岡化学工業株式会社 filed Critical 田岡化学工業株式会社
Priority to CN201380067848.XA priority Critical patent/CN104870517B/zh
Priority to KR1020157018832A priority patent/KR101997314B1/ko
Publication of WO2014103623A1 publication Critical patent/WO2014103623A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/16Preparation of ethers by reaction of esters of mineral or organic acids with hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • C08G63/197Hydroxy compounds containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation

Definitions

  • the present invention relates to a fluorene polymer that can be suitably used as a resin (optical resin) constituting an optical member typified by an optical lens or an optical film. Moreover, this invention relates to the fluorene type diol compound suitable as a monomer which forms the said fluorene type polymer, and its manufacturing method.
  • Polycarbonate resin, cycloolefin resin, polymethacrylic resin, and the like have been conventionally used as optical resins because they are relatively excellent in high refractive index properties, low birefringence properties, transparency, and processability.
  • a skeleton of a so-called “cardo structure” in which two phenyl groups are introduced at the 9-position of fluorene since it is particularly advantageous for achieving both high refractive index and low birefringence, a skeleton of a so-called “cardo structure” in which two phenyl groups are introduced at the 9-position of fluorene.
  • An optical resin made of a fluorene-based polymer has attracted attention, and active research and development has been conducted.
  • Patent Document 1 discloses a polycarbonate resin having 9,9-bis (4-hydroxyphenyl) fluorenes as a part of the diol component.
  • Patent Document 2 discloses a polyester polymer for an optical material having 9,9-bis (4-hydroxyalkoxyphenyl) fluorene as a part of a diol component.
  • Patent No. 5011450 discloses a polyester carbonate copolymer for optical lenses having 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene as a diol component. Yes.
  • the present invention includes the following. [1] The following general formula (I):
  • R 1 represents an alkyl group, a cycloalkyl group or an aryl group.
  • R 2 represents an alkylene group having 2 to 6 carbon atoms, and n represents an integer of 1 to 5.
  • R 1 represents an alkyl group, a cycloalkyl group or an aryl group.
  • R 1 represents an alkyl group, a cycloalkyl group or an aryl group.
  • the fluorene polymer according to the present invention containing the structural unit derived from the fluorene diol compound represented by the above general formula (I) has both high refractive index and low birefringence, transparency and heat resistance. And is suitable as an optical resin constituting an optical member such as an optical lens, an optical film, a plastic optical fiber, and an optical disk substrate. Further, taking advantage of its high heat resistance, transparency, durability, etc., it can also be used as a non-optical resin such as a heat resistant resin or engineering plastic.
  • the present invention it is possible to provide a fluorene-based diol compound represented by the above general formula (I) that is useful as a raw material monomer for the fluorene-based polymer.
  • the compound represented by the above general formula (III) can be produced with high reaction selectivity, so that the fluorene-based diol compound represented by the general formula (I) having high purity can be collected. It can be obtained efficiently.
  • the fluorene polymer of the present invention (hereinafter also simply referred to as “fluorene polymer”) is a polymer containing a structural unit derived from the fluorene diol compound represented by the general formula (I) in the main chain.
  • R 1 is an alkyl group, a cycloalkyl group or an aryl group.
  • R 2 represents an alkylene group having 2 to 6 carbon atoms, and n represents an integer of 1 to 5.
  • Examples of the alkyl group in R 1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, a t-butyl group, a pentyl group, and a hexyl group.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 8 carbon atoms, more preferably a linear or branched alkyl group having 1 to 6 carbon atoms, and further preferably 1 to 8 carbon atoms. 3 linear or branched alkyl groups.
  • Examples of the cycloalkyl group include a cyclopentyl group, a cyclohexyl group, an alkyl (for example, alkyl having 1 to 4 carbons) substituted cyclopentyl group, an alkyl (for example, an alkyl having 1 to 4 carbon atoms) substituted cyclohexyl group, and the like. And a cycloalkyl group having 16 to 16 (preferably 5 to 8 carbon atoms) or an alkyl-substituted cycloalkyl group.
  • the cycloalkyl group is preferably a cyclopentyl group or a cyclohexyl group.
  • aryl group examples include a phenyl group, an alkyl (for example, alkyl having 1 to 4 carbon atoms) -substituted phenyl group, and a naphthyl group.
  • the aryl group is preferably a phenyl group or an alkyl-substituted phenyl group (for example, a methylphenyl group, a dimethylphenyl group, an ethylphenyl group, etc.), and more preferably a phenyl group.
  • the alkyl group, cycloalkyl group, and aryl group may have a substituent other than the alkyl group (for example, an alkoxyl group, an acyl group, a halogen atom, etc.).
  • the alkylene group represented by R 2 can be linear or branched, and examples thereof include an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
  • the alkylene group represented by R 2 is preferably a linear or branched alkylene group having 2 to 4 carbon atoms, and more preferably a linear or branched alkylene group having 2 or 3 carbon atoms.
  • N representing the number of repetitions of OR 2 is preferably 1 to 3, more preferably 1 or 2, and typically 1.
  • (OR 2 ) n may be composed of the same OR 2 or may be composed of two or more different OR 2 . Further, the two (OR 2 ) n OH groups possessed by the fluorene-based diol compound represented by the general formula (I) can have different repeating numbers n.
  • the fluorene polymer may be a thermoplastic resin such as a polycarbonate resin, a polyester resin, a polyester carbonate resin, a (meth) acrylic resin, a polyurethane resin, or a heat such as an epoxy resin, a (meth) acrylic resin, or a polyurethane resin.
  • a curable resin or a photocurable resin it is preferably a thermoplastic resin that can be injection-molded when a molded article such as an optical member is produced.
  • the fluorene-based polymer of the present invention includes modified products of various resins as described above. Examples of the modified product include those having a functional group or molecular chain introduced at the end of the polymer, and those having a functional group or molecular chain introduced as a side chain of the polymer.
  • the fluorene-based polymer exhibits a very high refractive index while exhibiting a low birefringence due to including a structural unit derived from the fluorene-based diol compound represented by the general formula (I).
  • the refractive index (23 ° C.) is the type of polymer, the chemical structure of the constituent units constituting the polymer, the presence / absence of constituent units derived from other diol components other than the fluorene diol compound, the content rate and / or Although it may vary depending on the chemical structure (type of other diol component) and the like, it is typically 1.6 or more.
  • the fluorene-based polymer may exhibit a refractive index of 1.61 or more, further 1.62 or more, and even more 1.64 or more.
  • the refractive index (20 ° C.) of a general polycarbonate resin for example, bisphenol A or the like is used as a diol component
  • a cycloolefin resin or a polymethacrylic resin that is widely used as an optical resin
  • the fluorene polymer of the present invention is extremely superior in terms of refractive index as compared with these general conventional general-purpose optical resins.
  • polyester resin containing 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene as a diol component and is a conventionally known fluorene heavy polymer as a high refractive index optical resin.
  • fluorene polymer a polyester resin containing 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene as a diol component and is a conventionally known fluorene heavy polymer as a high refractive index optical resin.
  • the refractive index (20 ° C.) of these polyester resins is about 1.60 to about 1.63.
  • the fluorene polymer of the present invention containing a structural unit derived from the fluorene-based diol compound represented by the above general formula (I) is superior in terms of refractive index as compared with the above-mentioned conventionally known fluorene-based polymer. It can be said that. Such an improvement in refractive index is presumed to be due to the difference in the positions of the (OR 2 ) n OH groups on the two phenyl groups.
  • the fluorene polymer of the present invention has a “cardo structure” (a fluorene ring, which is a structural unit derived from a fluorene diol compound) and two bonded to the 9-position thereof.
  • Low birefringence is realized by a structure comprising a phenyl group).
  • a polymer for example, a polymer containing 9,9-bis (4-hydroxyphenyl) fluorene or 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene as a diol component.
  • a polymer for example, a polymer containing 9,9-bis (4-hydroxyphenyl) fluorene or 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene as a diol component.
  • the fluorene polymer of the present invention is a material suitable as an optical resin even in terms of a low Abbe number.
  • the fluorene-based polymer can exhibit a low Abbe number of 30 or less, further 27 or less, and even 24 or less at 23 ° C., and can also exhibit an Abbe number of 22 or less.
  • the Abbe numbers (20 ° C.) of the trade names “OKP4” and “OKP4HT” manufactured by Osaka Gas Chemical Co., Ltd. are 27 and 23, respectively.
  • the fluorene polymer of the present invention has sufficient heat resistance as an optical resin. That is, the fluorene polymer of the present invention typically has a glass transition temperature of about 130 ° C. or higher, and has a glass transition temperature of 140 ° C. or higher, further 150 ° C. or higher, and even more preferably 155 ° C. or higher. May also have.
  • the glass transition temperatures of general polycarbonate resins, cycloolefin resins, and polymethacrylic resins that are widely used as optical resins are about 145 ° C., about 140 ° C., and about 110 ° C., respectively, and 9,9-bis [4
  • the glass transition temperature of the polyester resin having a diol component of (2-hydroxyethoxy) phenyl] fluorene (for example, trade names “OKP4” and “OKP4HT” manufactured by Osaka Gas Chemical Co., Ltd.) and polycarbonate resin is about 120 respectively. 140 ° C. and about 150 ° C. (when the diol component consists only of 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene).
  • the fluorene polymer of the present invention also has sufficient transparency, workability (moldability, etc.) and durability required for optical resins.
  • the fluorene polymer of the present invention which is a polycarbonate resin, reacts a diol component containing the fluorene diol compound represented by the general formula (I) with a carbonic acid diester or phosgene in the presence or absence of a polymerization catalyst. It can be obtained according to conventional methods.
  • the polycarbonate resin of the present invention is a resin containing a carbonate bond in which the OH group of the (OR 2 ) n OH group represented by the general formula (I) is involved in the main chain. -1):
  • the diol component is only one kind of fluorene-based diol compound represented by the general formula (I) (for example, a compound in which R 1 in the general formula (I) is a methyl group or an ethyl group, and an (OR 2 ) n OH group A compound that is a specific one) or two or more (that is, a plurality of compounds in which R 1 , R 2, and / or n in general formula (I) are different from each other). Also good.
  • the diol component can contain other diol components other than the fluorene-type diol compound represented by general formula (I). Other diol components may be used alone or in combination of two or more.
  • diol components include fluorene diol compounds other than the fluorene diol compound represented by the general formula (I) [for example, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-alkyl-substituted phenyl) fluorene and their alkylene oxides (eg, alkylene oxides having 2 to 6 carbon atoms) adducts, etc.]; alkylene glycols [for example, ethylene glycol, propylene glycol, trimethylene glycol, 1, 3-butanediol, tetramethylene glycol, hexanediol, neopentyl glycol, octanediol, linear or branched alkylene glycol having 2 to 12 carbon atoms represented by decanediol, etc.]; (poly) oxyalkylene glycol [for example The Di-, tri- or tetra-alkylene glycol
  • a tri- or higher functional polyol component such as glycerin, trimethylolpropane, trimethylolethane, or pentaerythritol may be used in combination.
  • carbonic acid diester examples include diphenyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate.
  • Carbonic acid diester can be used individually or in combination of 2 or more types.
  • polymerization catalysts include, for example, alkali metals (lithium, sodium, potassium, etc.), alkaline earth metals (magnesium, calcium, barium, etc.), transition metals (zinc, aluminum, germanium, tin, lead, antimony, titanium) , Manganese, cobalt, lancerium, etc.].
  • the metal compound include hydroxides, alcoholates, organic acid salts (acetates, propionates, etc.), inorganic acid salts (borate, carbonates, etc.), oxides, and the like.
  • a polymerization catalyst can be used individually or in combination of 2 or more types.
  • the molecular weight of the polycarbonate resin is not particularly limited, and is, for example, about 5,000 to 500,000, preferably about 10,000 to 100,000 in terms of weight average molecular weight (polystyrene conversion).
  • the fluorene polymer of the present invention which is a polyester resin, is a conventional reaction in which a diol component containing a fluorene diol compound represented by the above general formula (I) and a dicarboxylic acid component are reacted in the presence or absence of a polymerization catalyst. It can be obtained according to a method [for example, direct polymerization method (direct esterification method) or transesterification method].
  • the polyester resin of the present invention is a resin containing an ester bond in which the OH group of the (OR 2 ) n OH group represented by the general formula (I) is involved in the main chain. -2):
  • R 1 , R 2 and n in the formula are as described above.
  • Q is a divalent residue excluding the carboxyl group of the dicarboxylic acid component (or a derivative group capable of forming an ester thereof).
  • the diol component may contain only one kind of fluorene diol compound represented by the general formula (I), or may contain two or more kinds. Moreover, the diol component can contain other diol components other than the fluorene-type diol compound represented by general formula (I). Other diol components may be used alone or in combination of two or more. Specific examples of other diol components and the content ratio of the fluorene-based diol compound represented by the general formula (I) to the other diol components in the diol component can be the same as those described for the polycarbonate resin.
  • a tri- or higher functional polyol component such as glycerin, trimethylolpropane, trimethylolethane, or pentaerythritol may be used in combination.
  • dicarboxylic acid component examples include aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, aromatic dicarboxylic acids, and derivatives capable of forming esters thereof (for example, acid anhydrides, acid chlorides, lower alkyl esters, etc.).
  • a dicarboxylic acid component can be used individually or in combination of 2 or more types.
  • aliphatic dicarboxylic acid examples include saturated aliphatic dicarboxylic acids (for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, hexadecanedicarboxylic acid, etc.
  • saturated aliphatic dicarboxylic acids for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, hexadecanedicarboxylic acid, etc.
  • Unsaturated aliphatic dicarboxylic acids eg, maleic acid, fumaric acid, citraconic acid, mesaconic acid, etc.
  • alicyclic dicarboxylic acid examples include saturated alicyclic dicarboxylic acids [for example, cyclopentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 1,3-cyclohexane dicarboxylic acid, 1,2-cyclohexane dicarboxylic acid, cycloheptane.
  • Dicarboxylic acid etc. unsaturated alicyclic dicarboxylic acid [eg 1,2-cyclohexene dicarboxylic acid, 1,3-cyclohexene dicarboxylic acid etc.]; polycyclic alkane dicarboxylic acid [eg bornane dicarboxylic acid, norbornane dicarboxylic acid , Adamantane dicarboxylic acid, etc.]; polycyclic alkene dicarboxylic acids [for example, bornene dicarboxylic acid, norbornene dicarboxylic acid, etc.]; and their ester-forming derivatives.
  • unsaturated alicyclic dicarboxylic acid eg 1,2-cyclohexene dicarboxylic acid, 1,3-cyclohexene dicarboxylic acid etc.
  • polycyclic alkane dicarboxylic acid eg bornane dicarboxylic acid, norbornane dicarboxylic acid , Adamantane di
  • aromatic dicarboxylic acid examples include phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid (2,6-naphthalenedicarboxylic acid, etc.), 4,4′-diphenyldicarboxylic acid, diphenylether-4,4′-dicarboxylic acid. 4,4′-diphenylmethane dicarboxylic acid, 4,4′-diphenyl ketone dicarboxylic acid, and their ester-forming derivatives.
  • a tri- or higher functional carboxylic acid component such as trimellitic acid or pyromellitic acid may be used in combination with the dicarboxylic acid component.
  • the same ones as described for the polycarbonate resin can be used.
  • the molecular weight of the polyester resin is not particularly limited, and is, for example, about 5,000 to 500,000, preferably about 10,000 to 100,000 in terms of weight average molecular weight (polystyrene conversion).
  • the fluorene polymer of the present invention which is a polyester carbonate resin comprises a diol component containing a fluorene diol compound represented by the above general formula (I), a carbonic acid diester or phosgene, and a dicarboxylic acid component in the presence of a polymerization catalyst or It can be obtained according to a conventional method of reacting in the absence.
  • the polyester carbonate resin of the present invention is a resin comprising a carbonate bond involving the OH group of the (OR 2 ) n OH group represented by the general formula (I) and an ester bond involving the OH group in the main chain. Specifically, it is a resin containing the structural units represented by the general formula (I-1) and the general formula (I-2) in the main chain.
  • the diol component may contain only one kind of fluorene diol compound represented by the general formula (I), or may contain two or more kinds. Moreover, the diol component can contain other diol components other than the fluorene-type diol compound represented by general formula (I).
  • the other diol component, carbonic acid diester and dicarboxylic acid component can be used alone or in combination of two or more. Specific examples of other diol components, carbonic acid diesters and dicarboxylic acid components, and the content ratio of the fluorene-based diol compound represented by the general formula (I) in the diol component to other diol components are described for polycarbonate resins and polyester resins. Can be similar to
  • a tri- or higher functional polyol component such as glycerin, trimethylolpropane, trimethylolethane, or pentaerythritol may be used in combination.
  • the molecular weight of the polyester carbonate resin is not particularly limited, and is, for example, about 5,000 to 500,000, preferably about 10,000 to 100,000 in terms of weight average molecular weight (polystyrene conversion).
  • the fluorene polymer of the present invention which is a polyurethane resin, is a conventional method in which a diol component containing a fluorene diol compound represented by the above general formula (I) and a diisocyanate component are urethanated in the presence or absence of a polymerization catalyst. Can be obtained according to the method.
  • the diol component may contain only one kind of fluorene diol compound represented by the general formula (I), or may contain two or more kinds. Moreover, the diol component can contain other diol components other than the fluorene-type diol compound represented by general formula (I). Other diol components may be used alone or in combination of two or more. Specific examples of other diol components and the content ratio of the fluorene-based diol compound represented by the general formula (I) to the other diol components in the diol component can be the same as those described for the polycarbonate resin.
  • a tri- or higher functional polyol component such as glycerin, trimethylolpropane, trimethylolethane, or pentaerythritol may be used in combination.
  • diisocyanate component examples include aromatic diisocyanates [for example, paraphenylene diisocyanate, tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI), naphthalene diisocyanate (NDI), bis (isocyanato Phenyl) methane (MDI), toluidine diisocyanate (TODI), 1,2-bis (isocyanatophenyl) ethane, 1,3-bis (isocyanatophenyl) propane, 1,4-bis (isocyanatophenyl) butane, polymeric MDI, etc.]; Alicyclic diisocyanates [eg, cyclohexane 1,4-diisocyanate, isophorone diisocyanate (IPDI), hydrogenated XDI, hydrogenated MDI, etc.]; Aliphatic diisocyanates Pre
  • the amount of the diisocyanate component used in the urethanization reaction is usually about 0.7 to 2.5 mol, preferably about 0.8 to 2.2 mol, relative to 1 mol of the diol component.
  • a polymerization catalyst well-known urethanation catalysts, such as an amine type, a tin type, and a lead type, can be used, for example.
  • the fluorene polymer (resin) of the present invention may be used alone as a material for a resin member such as an optical member [for example, an optical lens, an optical film], or combined with other components to form a resin composition. This may be used as a material for the resin member.
  • the resin composition can contain a resin other than the fluorene polymer of the present invention, and can contain an appropriate additive as required. Specific examples of additives include plasticizers, lubricants, stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, etc.), mold release agents, antistatic agents, fillers, flame retardants, colorants, dispersants, flow agents Contains modifiers, leveling agents, antifoaming agents, etc.
  • An additive can be used individually or in combination of 2 or more types.
  • the fluorene polymer (resin) of the present invention or a resin composition containing the same is, for example, an injection molding method, an injection compression molding method, an extrusion molding method, a transfer molding method, a blow molding method, a pressure molding method, a casting molding method, etc. It can shape
  • fluorene-based diol compound represented by the above general formula (I) (hereinafter also simply referred to as “fluorene-based diol compound”) is a compound suitably used as a raw material monomer for forming the above-mentioned fluorene polymer. It is.
  • R 1 is an alkyl group, a cycloalkyl group or an aryl group. Specific examples of the alkyl group, cycloalkyl group and aryl group are as described above.
  • R 2 represents an alkylene group having 2 to 6 carbon atoms, and n represents an integer of 1 to 5.
  • the alkylene group represented by R 2 can be linear or branched, and examples thereof include an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group. It is done.
  • the alkylene group represented by R 2 is preferably a linear or branched alkylene group having 2 to 4 carbon atoms, and more preferably a linear or branched alkylene group having 2 or 3 carbon atoms.
  • n representing the number of repetitions of OR 2 is preferably 1 to 3, more preferably 1 or 2, and typically 1.
  • (OR 2 ) n may be composed of the same OR 2 or may be composed of two or more different OR 2 .
  • the two (OR 2 ) n OH groups possessed by the fluorene-based diol compound may have different repeating numbers n.
  • the refractive index (23 ° C.) of the fluorene-based diol compound is, for example, about 1.60 to 1.61 when R 1 is a methyl group or an ethyl group and the two (OR 2 ) n OH groups are hydroxyethoxy groups. It is.
  • This refractive index value is the refractive index value of 1.9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, which is a raw material monomer of a fluorene polymer that has been conventionally known to exhibit a high refractive index. 62.
  • the fluorene-based diol compound itself has a low Abbe number, and can exhibit a low Abbe number of 30 or less, further 27 or less, and even 25 or less at 23 ° C.
  • a fluorene-based bisphenol compound represented by the following general formula (III) (hereinafter referred to as “compound”) is subjected to a condensation reaction between 9-fluorenone and m-alkylphenol represented by the above general formula (II) under acidic conditions. (III) "), and (B) a step of converting the OH group of compound (III) into an (OR 2 ) n OH group.
  • R 1 in the general formulas (II) and (III) is the same as in the general formula (I).
  • the meanings of R 2 and n in the (OR 2 ) n OH group formed in the step (B) are also as described above.
  • the fluorene diol compound according to the present invention is an alkylene oxide adduct of compound (III).
  • step (A) a method of performing the above condensation reaction in the presence of an acidic compound (organic acid and / or inorganic acid) and a thiol compound can be mentioned.
  • compound (III) can be formed with high reaction selectivity, and a high-purity fluorene-based diol compound represented by general formula (I) can be obtained in high yield.
  • m-alkylphenol is usually used in an excess amount relative to 9-fluorenone.
  • the ratio of the amount of m-alkylphenol used relative to the amount of 9-fluorenone used is usually 2.0 to 40 times (eg, 2.1 to 40 times), preferably 3 to 30 times, more preferably, molar ratio. 4 to 20 times.
  • the condensation reaction can be carried out in the presence or absence of a solvent, and an excess amount of m-alkylphenol is also preferably used as the solvent.
  • organic acid paratoluenesulfonic acid, methanesulfonic acid, or the like can be used.
  • inorganic acid hydrohalic acid such as hydrochloric acid (hydrogen chloride aqueous solution), phosphoric acid, or the like can be used.
  • the hydrogen chloride concentration of hydrochloric acid is preferably 10 to 37% by weight, more preferably 20 to 37% by weight, and still more preferably 25 to 37% by weight.
  • paratoluenesulfonic acid, hydrochloric acid (especially high-concentration hydrochloric acid) or the like because high reaction selectivity and thus high yield can be obtained.
  • the acidic compound (organic acid and / or inorganic acid) can be used alone or in combination of two or more.
  • a xanthene compound represented by the formula (1) is produced as a main reaction product, and the use of sulfuric acid (concentrated sulfuric acid) is relatively disadvantageous in this respect.
  • sulfuric acid concentrated sulfuric acid
  • hydrochloric acid especially high concentration hydrochloric acid
  • the ratio of the amount of acidic compound (organic acid or inorganic acid) used relative to the amount of 9-fluorenone used (in the case of a solution such as hydrochloric acid, the amount of acidic compound contained in the solution) is usually 0.05. -3 times, preferably 0.1-2 times, more preferably 0.2-1.5 times.
  • thiol compound examples include alkyl mercaptans [eg, alkyl mercaptans having 1 to 20 carbon atoms such as methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, n-lauryl mercaptan]; aralkyl mercaptans [eg, benzyl mercaptan Etc.]; mercaptocarboxylic acids (eg, thioacetic acid, ⁇ -mercaptopropionic acid, ⁇ -mercaptopropionic acid, thioglycolic acid, thiooxalic acid, mercaptosuccinic acid, mercaptobenzoic acid, etc.); and salts thereof (eg, Na Salt, K salt, etc.] can be used.
  • a thiol compound can be used individually or in combination of 2 or more types.
  • the ratio of the amount of the thiol compound used relative to the amount of 9-fluorenone used is usually 0.01 to 0.5 times, preferably 0.02 to 0.3 times, more preferably 0.03 to 0.3 in terms of molar ratio. 0.2 times.
  • condensation reaction is carried out in the presence of an acidic compound (organic acid and / or inorganic acid) and a thiol compound, for example, the starting materials 9-fluorenone and m-alkylphenol, acidic compound, thiol compound, Moreover, it can carry out by charging the solvent used as needed to reaction container, and stirring in air or inert gas atmosphere, such as nitrogen and helium.
  • Liquid containing an acidic compound for example, liquid acid itself (hydrochloric acid hydrochloric acid itself), solid acid dissolved in a solvent), or liquid containing an acidic compound and a thiol compound It is also effective to add the solution to a reaction vessel charged with another reagent while stirring.
  • the reaction temperature is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, and further preferably 15 ° C. or higher from the viewpoint of the reaction rate.
  • the reaction temperature is preferably 60 ° C or lower, more preferably 50 ° C or lower, and 40 ° C or lower. More preferably, it is particularly preferably 35 ° C. or lower.
  • HPLC high performance liquid chromatography
  • the compound (III) can be isolated as crystals by performing an appropriate post-treatment operation.
  • the post-treatment operations include extraction of compound (III) into an organic layer (organic solvent), neutralization of an acidic compound with alkali, washing of the organic layer, concentration of the organic layer, crystallization, filtration, and drying. One or more of these operations may be omitted, or other operations may be added.
  • the purification method include recrystallization (recrystallization) and impurity removal treatment using an adsorbent such as activated carbon.
  • the compound (III) produced by the condensation reaction in the step (A) may be subjected to the next step (B) without being isolated as crystals.
  • Conversion of the OH group to the (OR 2 ) n OH group in the step (B) is carried out by converting the compound (III) and the alkylene oxide corresponding to the desired (OR 2 ) n OH group [for example, ethylene oxide, propylene oxide, etc.] Alternatively, it can be carried out according to a conventional method in which an alkylene carbonate [for example, ethylene carbonate, propylene carbonate, etc.] is reacted in the presence or absence of a catalyst [base catalyst, etc.]. The progress of the reaction can be monitored by high performance liquid chromatography (HPLC) or the like.
  • HPLC high performance liquid chromatography
  • the fluorene diol compound represented by the general formula (I) can be isolated as crystals by performing an appropriate post-treatment operation.
  • the post-treatment operation include extraction of a fluorene-based diol compound into an organic layer (organic solvent), washing of the organic layer, concentration of the organic layer, crystallization, filtration, and drying.
  • One or more operations may be omitted or other operations may be added.
  • the purification method include recrystallization (recrystallization) and impurity removal treatment using an adsorbent such as activated carbon. You may use for the manufacturing process of the above-mentioned fluorene type polymer, without isolating the fluorene type diol compound produced
  • a fluorene diol compound can also be produced by a method including the following steps.
  • alkylene oxide adduct (V) condensing 9-fluorenone and the alkylene oxide adduct (V) under acidic conditions, and obtaining the alkylene oxide adduct represented by the formula (hereinafter also referred to as “alkylene oxide adduct (V)”). Reacting.
  • alkylene oxide adduct (V) examples include (3-methylphenoxy) ethanol, (3-ethylphenoxy) ethanol, (3-methylphenoxy) propanol, (3-ethylphenoxy) propanol, (3-methylphenoxy) butanol, And (3-ethylphenoxy) butanol.
  • Process (a) and (b) can be performed similarly to the above-mentioned process (B) and (A), respectively.
  • HPLC purity The area percentage value when HPLC measurement was performed under the following measurement conditions was defined as HPLC purity.
  • Weight average molecular weight of fluorene polymer The weight average molecular weight was measured (polystyrene conversion) using a high-speed GPC apparatus ("HLC-8200 GPC" manufactured by Tosoh Corporation).
  • Haze of fluorene polymer Haze was measured using a haze meter (“HGM-2DP” manufactured by Suga Test Instruments Co., Ltd.).
  • the precipitated crystals are filtered and dried, and white crystals of the fluorene diol compound IIIb [9,9-bis (2-hydroxy-4-methylphenyl) fluorene] in which R 1 in the above general formula (III) is a methyl group 48.1 g was obtained (9-fluorenone based yield: 57.3%).
  • the HPLC purity of the white crystals was 90.3%.
  • FIGS. 1 and 2 show HH COSY and CH COSY spectra of the fluorene diol compound Ia, respectively.
  • FIGS. 3 and 4 show HH COSY and CH COSY spectra of the fluorene diol compound Ib, respectively. Shown in From these two-dimensional NMR spectra, the fluorene-based diol compounds Ia and Ib have a structure as shown by the above general formula (I), and in particular, the (OR 2 ) n OH group is the 2-position of the phenyl group. It was confirmed that R 1 was bonded to the 4-position.
  • the temperature was raised to 210 ° C. at a rate of 60 ° C./hr, and the mixture was stirred at the same temperature for 30 minutes. Then, it heated up to 220 degreeC at the speed
  • reaction container was made into 133 Pa or less over 1 hour, and it stirred for 10 minutes on 240 degreeC and 133 Pa or less conditions, and was complete
  • Example 4 Production of polycarbonate resin> Fluorene-based diol compound Ib [9,9-bis [2- (2-hydroxyethoxy) -4-methylphenyl] fluorene] 18.09 parts by weight, diphenyl carbonate 8.60 parts by weight and sodium hydrogen carbonate 2 as a polymerization catalyst 0.0 ⁇ 10 ⁇ 5 parts by weight was charged into a reaction vessel equipped with a stirrer and a distillation apparatus, heated to 200 ° C. in a nitrogen atmosphere, and stirred for 20 minutes to be completely melted. Then, the pressure reduction degree in reaction container was adjusted to 27 kPa, and it stirred for 30 minutes on 200 degreeC and 27 kPa conditions. Next, the temperature was raised to 210 ° C.
  • reaction container was made into 133 Pa or less over 1 hour, and it stirred for 10 minutes on 240 degreeC and 133 Pa or less conditions, and was complete
  • reaction container was made into 133 Pa or less over 1 hour, and it stirred on 240 degreeC and 133 Pa or less conditions for 1 hour, and was complete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 下記一般式(I):で表わされるフルオレン系ジオール化合物由来の構成単位を主鎖に含むフルオレン系重合体[式中、R1はアルキル基、シクロアルキル基又はアリール基を示す。R2は炭素数2~6のアルキレン基を示し、nは1~5のいずれかの整数を示す。]、並びに上記フルオレン系ジオール化合物及びその製造方法が提供される。

Description

フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法
 本発明は、光学レンズや光学フィルムに代表される光学部材を構成する樹脂(光学樹脂)等として好適に用いることができるフルオレン系重合体に関する。また本発明は、当該フルオレン系重合体を形成するモノマーとして好適なフルオレン系ジオール化合物及びその製造方法に関する。
 高屈折率性、低複屈折率性、透明性、加工性に比較的優れていることから、ポリカーボネート樹脂、シクロオレフィン樹脂、ポリメタクリル樹脂等が光学樹脂として従来用いられている。近年では、高屈折率性と低複屈折率性とを両立させる上でとりわけ有利であることから、フルオレンの9位に2つのフェニル基を導入した、いわゆる「カルド(蝶つがい)構造」を骨格に有するフルオレン系重合体からなる光学樹脂が注目されており、活発な研究開発が行われている。
 例えば、特開平06-025398号公報(特許文献1)には、9,9-ビス(4-ヒドロキシフェニル)フルオレン類をジオール成分の一部とするポリカーボネート樹脂が開示されている。特開平06-049186号公報(特許文献2)には、9,9-ビス(4-ヒドロキシアルコキシフェニル)フルオレンをジオール成分の一部とする光学材料用ポリエステル重合体が開示されている。また、特許第5011450号明細書(特許文献3)には、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンをジオール成分とする光学レンズ用ポリエステルカーボネート共重合体が開示されている。
特開平06-025398号公報 特開平06-049186号公報 特許第5011450号明細書
 本発明の目的は、高い屈折率を示し、光学樹脂として有用である新規なフルオレン系重合体を提供することにある。また、本発明の他の目的は、上記フルオレン系重合体を形成するモノマーとして有用なフルオレン系ジオール化合物及びその製造方法を提供することにある。
 本発明は以下のものを含む。
 [1] 下記一般式(I):
Figure JPOXMLDOC01-appb-C000004
[式中、R1はアルキル基、シクロアルキル基又はアリール基を示す。R2は炭素数2~6のアルキレン基を示し、nは1~5のいずれかの整数を示す。]
で表わされるフルオレン系ジオール化合物由来の構成単位を主鎖に含むフルオレン系重合体。
 [2] カーボネート結合及びエステル結合の少なくともいずれか一方を主鎖に含む[1]に記載のフルオレン系重合体。
 [3] 23℃における屈折率が1.6以上である[1]又は[2]に記載のフルオレン系重合体。
 [4] [1]に記載の一般式(I)で表わされるフルオレン系ジオール化合物。
 [5] [1]に記載の一般式(I)で表わされるフルオレン系ジオール化合物の製造方法であって、
 (A)酸性条件下に、9-フルオレノンと、下記一般式(II):
Figure JPOXMLDOC01-appb-C000005
[式中、R1はアルキル基、シクロアルキル基又はアリール基を示す。]
で表わされるm-アルキルフェノールとを反応させることにより、下記一般式(III):
Figure JPOXMLDOC01-appb-C000006
[式中、R1はアルキル基、シクロアルキル基又はアリール基を示す。]
で表わされる化合物を得る工程と、
 (B)前記一般式(III)で表わされる化合物のOH基を(OR2nOH基[R2は炭素数2~6のアルキレン基を示し、nは1~5のいずれかの整数を示す。]に変換する工程と、
を含む製造方法。
 [6] 前記工程(A)において、パラトルエンスルホン酸及びチオール化合物の存在下に、9-フルオレノンと前記m-アルキルフェノールとを反応させる[5]に記載の製造方法。
 上記一般式(I)で表わされるフルオレン系ジオール化合物由来の構成単位を含む本発明に係るフルオレン系重合体は、高屈折率性と低複屈折率性とを兼ね備えているとともに、透明性及び耐熱性に優れており、光学レンズ、光学フィルム、プラスチック光ファイバー、光ディスク基板等の光学部材を構成する光学樹脂として好適である。また、その高い耐熱性、透明性、耐久性等を生かして、耐熱性樹脂やエンジニアリングプラスチック等の非光学樹脂としても使用できる。
 また、本発明によれば、上記フルオレン系重合体の原料モノマーとして有用な上記一般式(I)で表わされるフルオレン系ジオール化合物を提供することができる。本発明の製造方法によれば、高い反応選択性で上記一般式(III)で表わされる化合物を生成させることができるため、もって高純度の一般式(I)で表わされるフルオレン系ジオール化合物を収率良く得ることができる。
フルオレン系ジオール化合物Iaの2次元NMR(H-H COSY)スペクトルである。 フルオレン系ジオール化合物Iaの2次元NMR(C-H COSY)スペクトルである。 フルオレン系ジオール化合物Ibの2次元NMR(H-H COSY)スペクトルである。 フルオレン系ジオール化合物Ibの2次元NMR(C-H COSY)スペクトルである。
 <フルオレン系重合体>
 本発明のフルオレン系重合体(以下、単に「フルオレン系重合体」ともいう。)は、上記一般式(I)で表わされるフルオレン系ジオール化合物由来の構成単位を主鎖に含む重合体である。一般式(I)においてR1はアルキル基、シクロアルキル基又はアリール基である。R2は炭素数2~6のアルキレン基を示し、nは1~5のいずれかの整数を示す。
 R1におけるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基等の炭素数1~20の直鎖状又は分岐状アルキル基を挙げることができる。アルキル基は、好ましくは炭素数1~8の直鎖状又は分岐状アルキル基であり、より好ましくは炭素数1~6の直鎖状又は分岐状アルキル基であり、さらに好ましくは炭素数1~3の直鎖状又は分岐状アルキル基である。
 シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、アルキル(例えば、炭素数1~4のアルキル)置換シクロペンチル基、アルキル(例えば、炭素数1~4のアルキル)置換シクロヘキシル基等の炭素数4~16(好ましくは炭素数5~8)のシクロアルキル基又はアルキル置換シクロアルキル基を挙げることができる。シクロアルキル基は、好ましくはシクロペンチル基又はシクロヘキシル基である。
 アリール基としては、例えば、フェニル基、アルキル(例えば、炭素数1~4のアルキル)置換フェニル基、ナフチル基を挙げることができる。アリール基は、好ましくはフェニル基又はアルキル置換フェニル基(例えば、メチルフェニル基、ジメチルフェニル基、エチルフェニル基等)であり、より好ましくはフェニル基である。
 上記アルキル基、シクロアルキル基、アリール基は、アルキル基以外の置換基(例えば、アルコキシル基、アシル基、ハロゲン原子等)を有していてもよい。
 R2で表わされるアルキレン基は、直鎖状又は分岐状であることができ、例えばエチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。R2で表わされるアルキレン基は、好ましくは炭素数2~4の直鎖状又は分岐状アルキレン基であり、より好ましくは炭素数2又は3の直鎖状又は分岐状アルキレン基である。
 OR2の繰り返し数を表すnは、好ましくは1~3であり、より好ましくは1又は2であって、典型的には1である。nが2以上のとき、(OR2nは同一のOR2で構成されていてもよく、2種以上の異なるOR2で構成されていてもよい。また、一般式(I)で表わされるフルオレン系ジオール化合物が有する2つの(OR2nOH基は、互いに異なる繰り返し数nを有し得る。
 フルオレン系重合体は、ポリカーボネート樹脂、ポリエステル樹脂、ポリエステルカーボネート樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂等の熱可塑性樹脂であってもよいし、エポキシ樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂等の熱硬化性樹脂又は光硬化性樹脂であってもよいが、好ましくは、光学部材等の成形品を製造する際に射出成形が可能である熱可塑性樹脂である。なお、本発明のフルオレン系重合体には、上記したような各種樹脂の変性体が含まれる。変性体としては、重合体の末端に官能基や分子鎖を導入したもの、重合体の側鎖として官能基や分子鎖を導入したもの等が挙げられる。
 フルオレン系重合体は、上記一般式(I)で表わされるフルオレン系ジオール化合物に由来する構成単位を含むことに起因して、低い複屈折率を示しつつも、極めて高い屈折率を示す。その屈折率(23℃)は、重合体の種類及び重合体を構成する構成単位の化学構造や、上記フルオレン系ジオール化合物以外の他のジオール成分に由来する構成単位の有無、含有率及び/又は化学構造(他のジオール成分の種類)等によって変動し得るが、典型的には1.6以上である。フルオレン系重合体は、1.61以上、さらには1.62以上、なおさらには1.64又はそれ以上の屈折率を示し得る。
 光学樹脂として汎用されている一般的なポリカーボネート樹脂(ジオール成分として、例えばビスフェノールA等が用いられている。)、シクロオレフィン樹脂、ポリメタクリル樹脂の屈折率(20℃)はそれぞれ、約1.59、約1.53、約1.49である。従って、これらの一般的な従来の汎用光学樹脂に比べて、本発明のフルオレン系重合体は、屈折率の点で極めて優れている。
 同じくフルオレン系重合体ではあるが、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンをジオール成分とするポリエステル樹脂であり、高屈折率の光学樹脂として従来公知であるフルオレン系重合体に、例えば、大阪ガスケミカル(株)製の商品名「OKP4」及び「OKP4HT」がある。これらのポリエステル樹脂の屈折率(20℃)は、約1.60~約1.63である。従って、上記一般式(I)で表わされるフルオレン系ジオール化合物に由来する構成単位を含む本発明のフルオレン系重合体は、上記従来公知のフルオレン系重合体と比べても、屈折率の点で優れているといえる。このような屈折率の向上は、2つのフェニル基上の(OR2nOH基の位置の違いによるものと推定される。
 本発明のフルオレン系重合体は、従来のフルオレン系重合体と同様、フルオレン系ジオール化合物由来の構成単位が有する「カルド(蝶つがい)構造」(フルオレン環と、その9位に結合される2つのフェニル基とからなる構造)により低複屈折率化を実現しているが、その複屈折率は、2つのフェニル基の4位にOH基やヒドロキシアルコキシル基が結合している従来のフルオレン系重合体(例えば、9,9-ビス(4-ヒドロキシフェニル)フルオレン又は9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンをジオール成分とする重合体)よりも低い傾向にある。これは、2つのフェニル基の2位に嵩高いOH基を有する本発明のフルオレン系重合体においては、上記従来のフルオレン系重合体と比較して、フェニル基がフルオレン骨格に対してより直交した立体配座を採るためであると考えられる。
 本発明のフルオレン系重合体は、アッベ数が低い点においても光学樹脂として好適な材料である。フルオレン系重合体は、23℃において、30以下、さらには27以下、なおさらには24以下という低いアッベ数を示すことができ、22以下のアッベ数をも示し得る。なお、上記大阪ガスケミカル(株)製の商品名「OKP4」及び「OKP4HT」のアッベ数(20℃)はそれぞれ、27、23である。
 本発明のフルオレン系重合体は、光学樹脂としての十分な耐熱性を備えている。すなわち、本発明のフルオレン系重合体は、典型的には約130℃以上のガラス転移温度を有しており、140℃以上、さらには150℃以上、なおさらには155℃以上のガラス転移温度をも有し得る。なお、光学樹脂として汎用されている一般的なポリカーボネート樹脂、シクロオレフィン樹脂、ポリメタクリル樹脂のガラス転移温度はそれぞれ、約145℃、約140℃、約110℃であり、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンをジオール成分とするポリエステル樹脂(例えば、大阪ガスケミカル(株)製の商品名「OKP4」及び「OKP4HT」)及びポリカーボネート樹脂のガラス転移温度はそれぞれ、約120~140℃、約150℃(ジオール成分が9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンのみからなる場合)である。
 本発明のフルオレン系重合体はまた、光学樹脂に要求される十分な透明性、加工性(成形性等)及び耐久性を具備している。
 以下、代表的なフルオレン系重合体(樹脂)についてさらに具体的に説明する。
 (ポリカーボネート樹脂)
 ポリカーボネート樹脂である本発明のフルオレン系重合体は、上記一般式(I)で表わされるフルオレン系ジオール化合物を含むジオール成分と、炭酸ジエステル又はホスゲンとを重合触媒の存在下又は非存在下に反応させる慣用の方法に従って得ることができる。本発明のポリカーボネート樹脂は、上記一般式(I)に示される(OR2nOH基のOH基が関与するカーボネート結合を主鎖に含む樹脂であり、具体的には、下記一般式(I-1):
Figure JPOXMLDOC01-appb-C000007
[式中のR1、R2及びnの意味は上述のとおりである。]
で表わされる構成単位を主鎖に含む樹脂である。
 ジオール成分は、一般式(I)で表わされるフルオレン系ジオール化合物の1種のみ(例えば、一般式(I)におけるR1がメチル基である化合物又はエチル基であり、(OR2nOH基がある特定の1種である化合物)を含んでいてもよいし、2種以上(すなわち、一般式(I)におけるR1、R2及び/又はnが互いに異なる複数の化合物)を含んでいてもよい。また、ジオール成分は、一般式(I)で表わされるフルオレン系ジオール化合物以外の他のジオール成分を含むことができる。他のジオール成分は、単独で又は2種以上組み合わせて使用することができる。
 他のジオール成分の具体例を挙げれば、一般式(I)で表わされるフルオレン系ジオール化合物以外のフルオレン系ジオール化合物〔例えば、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-アルキル置換フェニル)フルオレン、及びそれらのアルキレンオキサイド(例:炭素数2~6のアルキレンオキサイド)付加体等〕;アルキレングリコール〔例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、テトラメチレングリコール、ヘキサンジオール、ネオペンチルグリコール、オクタンジオール、デカンジオールに代表される炭素数2~12の直鎖状又は分岐状アルキレングリコール等〕;(ポリ)オキシアルキレングリコール〔例えば、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコールに代表されるジ-、トリ-又はテトラ-アルキレングリコール等〕;脂環族ジオール〔例えば、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン及びそのアルキレンオキサイド付加体等〕;芳香族ジオール〔例えば、ビフェノール、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、ビスフェノールAD、ビスフェノールF及びそれらのアルキレンオキサイド(例:炭素数2~6のアルキレンオキサイド)付加体、キシリレングリコール等〕などである。
 ジオール成分における、一般式(I)で表わされるフルオレン系ジオール化合物と他のジオール成分との含有比率(モル比)は、例えば、〔一般式(I)で表わされるフルオレン系ジオール化合物〕/〔他のジオール成分〕=100/0~40/60であり、好ましくは100/0~50/50、より好ましくは100/0~60/40、さらに好ましくは100/0~70/30(例えば、100/0~80/20又は100/0~90/10)である。
 必要に応じて、ジオール成分に加えて、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトールのような3官能以上のポリオール成分を併用してもよい。
 炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート等を用いることができる。炭酸ジエステルは、単独で又は2種以上組み合わせて使用することができる。
 重合触媒の例を挙げれば、例えば、アルカリ金属〔リチウム、ナトリウム、カリウム等〕、アルカリ土類金属〔マグネシウム、カルシウム、バリウム等〕、遷移金属〔亜鉛、アルミニウム、ゲルマニウム、スズ、鉛、アンチモン、チタン、マンガン、コバルト、ランセリウム等〕の金属化合物などである。金属化合物としては、水酸化物、アルコラート、有機酸塩〔酢酸塩、プロピオン酸塩等〕、無機酸塩〔ホウ酸塩、炭酸塩等〕、酸化物などが挙げられる。重合触媒は単独で又は2種以上組み合わせて使用することができる。
 ポリカーボネート樹脂の分子量は特に制限されず、例えば、重量平均分子量(ポリスチレン換算)で5,000~500,000程度であり、好ましくは10,000~100,000程度である。
 (ポリエステル樹脂)
 ポリエステル樹脂である本発明のフルオレン系重合体は、上記一般式(I)で表わされるフルオレン系ジオール化合物を含むジオール成分とジカルボン酸成分とを重合触媒の存在下又は非存在下に反応させる慣用の方法〔例えば、直接重合法(直接エステル化法)又はエステル交換法〕に従って得ることができる。本発明のポリエステル樹脂は、上記一般式(I)に示される(OR2nOH基のOH基が関与するエステル結合を主鎖に含む樹脂であり、具体的には、下記一般式(I-2):
Figure JPOXMLDOC01-appb-C000008
[式中のR1、R2及びnの意味は上述のとおりである。Qはジカルボン酸成分のカルボキシル基(又はそのエステル形成可能な誘導基)を除く2価の残基である。]
で表わされる構成単位を主鎖に含む樹脂である。
 ポリカーボネート樹脂の場合と同様、ジオール成分は、一般式(I)で表わされるフルオレン系ジオール化合物の1種のみを含んでいてもよいし、2種以上を含んでいてもよい。また、ジオール成分は、一般式(I)で表わされるフルオレン系ジオール化合物以外の他のジオール成分を含むことができる。他のジオール成分は、単独で又は2種以上組み合わせて使用することができる。他のジオール成分の具体例、及び、ジオール成分における一般式(I)で表わされるフルオレン系ジオール化合物と他のジオール成分との含有比率は、ポリカーボネート樹脂について記載したものと同様であることができる。
 必要に応じて、ジオール成分に加えて、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトールのような3官能以上のポリオール成分を併用してもよい。
 ジカルボン酸成分としては、脂肪族ジカルボン酸、脂環族ジカルボン酸、芳香族ジカルボン酸及びそれらのエステル形成可能な誘導体〔例えば、酸無水物、酸塩化物、低級アルキルエステル等〕が挙げられる。ジカルボン酸成分は、単独で又は2種以上組み合わせて使用することができる。
 脂肪族ジカルボン酸の具体例は、飽和脂肪族ジカルボン酸〔例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、ヘキサデカンジカルボン酸等〕;不飽和脂肪族ジカルボン酸〔例えば、マレイン酸、フマル酸、シトラコン酸、メサコン酸等〕;及び、それらのエステル形成可能な誘導体を含む。
 脂環族ジカルボン酸の具体例は、飽和脂環族ジカルボン酸〔例えば、シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、シクロヘプタンジカルボン酸等〕;不飽和脂環族ジカルボン酸〔例えば、1,2-シクロヘキセンジカルボン酸、1,3-シクロヘキセンジカルボン酸等〕;多環式アルカンジカルボン酸〔例えば、ボルナンジカルボン酸、ノルボルナンジカルボン酸、アダマンタンジカルボン酸等〕;多環式アルケンジカルボン酸〔例えば、ボルネンジカルボン酸、ノルボルネンジカルボン酸等〕;及び、それらのエステル形成可能な誘導体を含む。
 芳香族ジカルボン酸の具体例は、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸(2,6-ナフタレンジカルボン酸等)、4,4’-ジフェニルジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルケトンジカルボン酸、及び、それらのエステル形成可能な誘導体を含む。
 必要に応じて、ジカルボン酸成分に加えて、トリメリット酸、ピロメリット酸のような3官能以上のカルボン酸成分を併用してもよい。
 重合触媒としては、ポリカーボネート樹脂について記載したものと同様のものを用いることができる。
 ポリエステル樹脂の分子量は特に制限されず、例えば、重量平均分子量(ポリスチレン換算)で5,000~500,000程度であり、好ましくは10,000~100,000程度である。
 (ポリエステルカーボネート樹脂)
 ポリエステルカーボネート樹脂である本発明のフルオレン系重合体は、上記一般式(I)で表わされるフルオレン系ジオール化合物を含むジオール成分と、炭酸ジエステル又はホスゲンと、ジカルボン酸成分とを重合触媒の存在下又は非存在下に反応させる慣用の方法に従って得ることができる。本発明のポリエステルカーボネート樹脂は、上記一般式(I)に示される(OR2nOH基のOH基が関与するカーボネート結合と、当該OH基が関与するエステル結合とを主鎖に含む樹脂であり、具体的には、上記一般式(I-1)及び一般式(I-2)で表わされる構成単位を主鎖に含む樹脂である。
 ポリカーボネート樹脂の場合と同様、ジオール成分は、一般式(I)で表わされるフルオレン系ジオール化合物の1種のみを含んでいてもよいし、2種以上を含んでいてもよい。また、ジオール成分は、一般式(I)で表わされるフルオレン系ジオール化合物以外の他のジオール成分を含むことができる。他のジオール成分、炭酸ジエステル及びジカルボン酸成分は、それぞれ単独で又は2種以上組み合わせて使用することができる。他のジオール成分、炭酸ジエステル及びジカルボン酸成分の具体例、並びに、ジオール成分における一般式(I)で表わされるフルオレン系ジオール化合物と他のジオール成分との含有比率は、ポリカーボネート樹脂やポリエステル樹脂について記載したものと同様であることができる。
 必要に応じて、ジオール成分に加えて、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトールのような3官能以上のポリオール成分を併用してもよい。
 ポリエステルカーボネート樹脂の分子量は特に制限されず、例えば、重量平均分子量(ポリスチレン換算)で5,000~500,000程度であり、好ましくは10,000~100,000程度である。
 (ポリウレタン樹脂)
 ポリウレタン樹脂である本発明のフルオレン系重合体は、上記一般式(I)で表わされるフルオレン系ジオール化合物を含むジオール成分とジイソシアネート成分とを重合触媒の存在下又は非存在下にウレタン化反応させる慣用の方法に従って得ることができる。
 ポリカーボネート樹脂の場合と同様、ジオール成分は、一般式(I)で表わされるフルオレン系ジオール化合物の1種のみを含んでいてもよいし、2種以上を含んでいてもよい。また、ジオール成分は、一般式(I)で表わされるフルオレン系ジオール化合物以外の他のジオール成分を含むことができる。他のジオール成分は、単独で又は2種以上組み合わせて使用することができる。他のジオール成分の具体例、及び、ジオール成分における一般式(I)で表わされるフルオレン系ジオール化合物と他のジオール成分との含有比率は、ポリカーボネート樹脂について記載したものと同様であることができる。
 必要に応じて、ジオール成分に加えて、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトールのような3官能以上のポリオール成分を併用してもよい。
 ジイソシアネート成分の具体例は、芳香族ジイソシアネート〔例えば、パラフェニレンジイソシアネート、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、ナフタレンジイソシアネート(NDI)、ビス(イソシアナトフェニル)メタン(MDI)、トルイジンジイソシアネート(TODI)、1,2-ビス(イソシアナトフェニル)エタン、1,3-ビス(イソシアナトフェニル)プロパン、1,4-ビス(イソシアナトフェニル)ブタン、ポリメリックMDI等〕;脂環族ジイソシアネート〔例えば、シクロヘキサン1,4-ジイソシアネート、イソホロンジイソシアネート(IPDI)、水添XDI、水添MDI等〕;脂肪族ジイソシアネート〔例えば、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMDI)、リジンジイソシアネート(LDI)等〕を含む。ジイソシアネート成分は、単独で又は2種以上組み合わせて使用することができる。必要に応じて、ジイソシアネート成分とともに、3官能以上のポリイソシアネート成分を併用してもよい。
 ウレタン化反応におけるジイソシアネート成分の使用量は、ジオール成分1モルに対して、通常0.7~2.5モル程度であり、好ましくは0.8~2.2モル程度である。重合触媒としては、例えば、アミン系、スズ系、鉛系などの公知のウレタン化触媒を用いることができる。
 本発明のフルオレン系重合体(樹脂)は、それ単独で光学部材〔例えば、光学レンズ、光学フィルム〕等の樹脂部材用の材料として用いてもよいし、他の成分と組み合わせて樹脂組成物とし、これを樹脂部材用の材料として用いてもよい。樹脂組成物は、本発明のフルオレン系重合体以外の樹脂を含むことができ、また、必要に応じて、適宜の添加剤を含むことができる。添加剤の具体例は、可塑剤、滑剤、安定剤〔酸化防止剤、紫外線吸収剤、熱安定剤等〕、離型剤、帯電防止剤、充填剤、難燃剤、着色剤、分散剤、流動調整剤、レベリング剤、消泡剤等を含む。添加剤は、単独で又は2種以上組み合わせて使用することができる。
 本発明のフルオレン系重合体(樹脂)又はこれを含む樹脂組成物は、例えば射出成形法、射出圧縮成形法、押出成形法、トランスファー成形法、ブロー成形法、加圧成形法、キャスティング成形法等の公知の成形方法により、光学部材等の樹脂部材に成形することができる。
 <フルオレン系ジオール化合物及びその製造方法>
 上記一般式(I)で表わされる本発明に係るフルオレン系ジオール化合物(以下、単に「フルオレン系ジオール化合物」ともいう。)は、上述したフルオレン系重合体形成用の原料モノマーとして好適に用いられる化合物である。一般式(I)においてR1はアルキル基、シクロアルキル基又はアリール基である。アルキル基、シクロアルキル基及びアリール基の具体例は上述のとおりである。R2は炭素数2~6のアルキレン基を示し、nは1~5のいずれかの整数を示す。
 上述のように、R2で表わされるアルキレン基は、直鎖状又は分岐状であることができ、例えばエチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。R2で表わされるアルキレン基は、好ましくは炭素数2~4の直鎖状又は分岐状アルキレン基であり、より好ましくは炭素数2又は3の直鎖状又は分岐状アルキレン基である。
 また、OR2の繰り返し数を表すnは、好ましくは1~3であり、より好ましくは1又は2であって、典型的には1である。nが2以上のとき、(OR2nは同一のOR2で構成されていてもよく、2種以上の異なるOR2で構成されていてもよい。フルオレン系ジオール化合物が有する2つの(OR2nOH基は、互いに異なる繰り返し数nを有し得る。
 フルオレン系重合体形成用の原料モノマーとして好適に用いられるフルオレン系ジオール化合物の具体例を挙げれば、例えば次のとおりである。
〔a〕R1=メチル基、R2=エチレン基、n=1である化合物、
〔b〕R1=メチル基、R2=エチレン基、n=2である化合物、
〔c〕R1=メチル基、R2=プロピレン基、n=1である化合物、
〔d〕R1=メチル基、R2=プロピレン基、n=2である化合物、
〔e〕R1=メチル基、R2=トリメチレン基、n=1である化合物、
〔f〕R1=メチル基、R2=トリメチレン基、n=2である化合物、
〔g〕R1=エチル基、R2=エチレン基、n=1である化合物、
〔h〕R1=エチル基、R2=エチレン基、n=2である化合物、
〔i〕R1=エチル基、R2=プロピレン基、n=1である化合物、
〔j〕R1=エチル基、R2=プロピレン基、n=2である化合物、
〔k〕R1=エチル基、R2=トリメチレン基、n=1である化合物、
〔l〕R1=エチル基、R2=トリメチレン基、n=2である化合物、
〔m〕R1=シクロヘキシル基、R2=エチレン基、n=1である化合物、
〔n〕R1=シクロヘキシル基、R2=エチレン基、n=2である化合物、
〔o〕R1=シクロヘキシル基、R2=プロピレン基、n=1である化合物、
〔p〕R1=シクロヘキシル基、R2=プロピレン基、n=2である化合物、
〔q〕R1=シクロヘキシル基、R2=トリメチレン基、n=1である化合物、
〔r〕R1=シクロヘキシル基、R2=トリメチレン基、n=2である化合物、
〔s〕R1=フェニル基、R2=エチレン基、n=1である化合物、
〔t〕R1=フェニル基、R2=エチレン基、n=2である化合物、
〔u〕R1=フェニル基、R2=プロピレン基、n=1である化合物、
〔v〕R1=フェニル基、R2=プロピレン基、n=2である化合物、
〔w〕R1=フェニル基、R2=トリメチレン基、n=1である化合物、
〔x〕R1=フェニル基、R2=トリメチレン基、n=2である化合物。
 フルオレン系ジオール化合物はそれ自体、高い屈折率を有しているため、これを用いて形成したフルオレン系重合体は、上述のとおり高い屈折率を示す。フルオレン系ジオール化合物の屈折率(23℃)は、例えばR1がメチル基又はエチル基であり、2つの(OR2nOH基がヒドロキシエトキシ基である場合、約1.60~1.61である。この屈折率値は、高屈折率を示すものとして従来知られているフルオレン系重合体の原料モノマーである9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンの屈折率値1.62と同等である。
 また、フルオレン系ジオール化合物はそれ自体アッベ数が低く、23℃において、30以下、さらには27以下、なおさらには25以下という低いアッベ数を示すことができる。
 フルオレン系ジオール化合物の製造方法は特に制限されないが、次の工程を含む方法を好適に用いることができる。
(A)酸性条件下に、9-フルオレノンと上記一般式(II)で表わされるm-アルキルフェノールとを縮合反応させることにより、下記一般式(III)で表わされるフルオレン系ビスフェノール化合物(以下、「化合物(III)」ともいう。)を得る工程、及び
(B)化合物(III)のOH基を(OR2nOH基に変換する工程。
 一般式(II)及び(III)におけるR1の意味は一般式(I)と同じである。工程(B)で形成される(OR2nOH基におけるR2及びnの意味も上述のとおりである。本発明に係るフルオレン系ジオール化合物は、化合物(III)のアルキレンオキサイド付加体である。
 工程(A)の好ましい態様として、酸性化合物(有機酸及び/又は無機酸)とチオール化合物との存在下に上記縮合反応を行う方法を挙げることができる。この方法によれば、高い反応選択性で化合物(III)を形成し得、高純度の一般式(I)で表わされるフルオレン系ジオール化合物を高収率で得ることが可能である。
 上記縮合反応においてm-アルキルフェノールは通常、9-フルオレノンに対して過剰量用いられる。9-フルオレノンの使用量に対するm-アルキルフェノールの使用量の比は、モル比で、通常2.0~40倍(例えば2.1~40倍)であり、好ましくは3~30倍、より好ましくは4~20倍である。縮合反応は、溶媒の存在下又は非存在下で行うことができ、過剰量のm-アルキルフェノールを溶媒として用いることも好ましい。
 有機酸としては、パラトルエンスルホン酸、メタンスルホン酸等を用いることができる。無機酸としては、塩酸(塩化水素水溶液)のようなハロゲン化水素酸、リン酸等を用いることができる。塩酸の塩化水素濃度は、好ましくは10~37重量%、より好ましくは20~37重量%、さらに好ましくは25~37重量%である。高い反応選択性、ひいては高い収率が得られることから、上記のなかでもパラトルエンスルホン酸や塩酸(とりわけ高濃度の塩酸)等を用いることが好ましい。酸性化合物(有機酸及び/又は無機酸)は、単独で又は2種以上組み合わせて使用することができる。
 なお、無機酸として硫酸(濃硫酸)を使用すると、下記一般式(IV):
Figure JPOXMLDOC01-appb-C000009
で表されるキサンテン系化合物が主要な反応生成物として生成することが本発明者らによって明らかになっており、この点で硫酸(濃硫酸)の使用は比較的不利である。パラトルエンスルホン酸、塩酸(とりわけ高濃度の塩酸)等の使用によれば、当該キサンテン系化合物の生成を効果的に抑制し、高い反応選択性で化合物(III)を得ることが可能である。
 9-フルオレノンの使用量に対する酸性化合物(有機酸又は無機酸)の使用量(塩酸等の溶液の場合には、溶液に含まれる酸性化合物の量)の比は、モル比で、通常0.05~3倍であり、好ましくは0.1~2倍、より好ましくは0.2~1.5倍である。
 チオール化合物としては、アルキルメルカプタン〔例えば、メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、イソプロピルメルカプタン、n-ブチルメルカプタン、n-ラウリルメルカプタン等の炭素数1~20のアルキルメルカプタン〕;アラルキルメルカプタン〔例えば、ベンジルメルカプタン等〕;メルカプトカルボン酸〔例えば、チオ酢酸、β-メルカプトプロピオン酸、α-メルカプトプロピオン酸、チオグリコール酸、チオシュウ酸、メルカプトコハク酸、メルカプト安息香酸等〕;及び、それらの塩〔例えば、Na塩、K塩等〕を用いることができる。チオール化合物は、単独で又は2種以上組み合わせて使用することができる。
 9-フルオレノンの使用量に対するチオール化合物の使用量の比は、モル比で、通常0.01~0.5倍であり、好ましくは0.02~0.3倍、より好ましくは0.03~0.2倍である。
 上記縮合反応は、例えば酸性化合物(有機酸及び/又は無機酸)とチオール化合物との存在下に当該反応を行う場合であれば、原料の9-フルオレノン及びm-アルキルフェノール、酸性化合物、チオール化合物、並びに、必要に応じて用いられる溶媒を反応容器に仕込み、空気中又は窒素、ヘリウム等の不活性ガス雰囲気下で撹拌することにより行うことができる。酸性化合物を含む液〔例えば、液体酸であればそれ自体(塩酸であれば塩酸それ自体)、固体酸であればこれを溶媒に溶解した溶液〕、又は、酸性化合物とチオール化合物とを含む液を、他の試剤を仕込んだ反応容器内へ、撹拌下に滴下する方法も有効である。
 反応温度は、反応速度の観点から5℃以上とすることが好ましく、10℃以上とすることがより好ましく、15℃以上とすることがさらに好ましい。一方、反応温度が過度に高い場合には上記キサンテン系化合物の副生が顕著になることから、反応温度は60℃以下であることが好ましく、50℃以下であることがより好ましく、40℃以下であることがさらに好ましく、35℃以下であることが特に好ましい。反応の進行度は、高速液体クロマトグラフィ(HPLC)等により追跡することができる。
 反応終了後、適宜の後処理操作を施して、化合物(III)を結晶として単離することができる。上記後処理操作としては、例えば、化合物(III)の有機層(有機溶媒)への抽出、アルカリによる酸性化合物の中和、有機層の洗浄、有機層の濃縮、晶析、濾過、乾燥等を挙げることができるが、これらの操作のうち1以上の操作を省略してもよいし、他の操作を付加してもよい。また必要に応じて、単離された結晶を精製してもよい。精製方法としては、再晶析(再結晶)や活性炭等の吸着剤を用いた不純物除去処理を挙げることができる。工程(A)における縮合反応により生成した化合物(III)を、結晶として単離することなく、次の工程(B)に供してもよい。
 工程(B)におけるOH基の(OR2nOH基への変換は、化合物(III)と、所望の(OR2nOH基に対応するアルキレンオキサイド〔例えば、エチレンオキサイド、プロピレンオキサイド等〕又はアルキレンカーボネート〔例えば、エチレンカーボネート、プロピレンカーボネート等〕とを、触媒〔塩基触媒等〕の存在下又は非存在下に反応させる慣用の方法に従って行うことができる。反応の進行度は、高速液体クロマトグラフィ(HPLC)等により追跡することができる。
 反応終了後、適宜の後処理操作を施して、一般式(I)で表わされるフルオレン系ジオール化合物を結晶として単離することができる。上記後処理操作としては、例えば、フルオレン系ジオール化合物の有機層(有機溶媒)への抽出、有機層の洗浄、有機層の濃縮、晶析、濾過、乾燥等を挙げることができるが、これらの操作のうち1以上の操作を省略してもよいし、他の操作を付加してもよい。また必要に応じて、単離された結晶を精製してもよい。精製方法としては、再晶析(再結晶)や活性炭等の吸着剤を用いた不純物除去処理を挙げることができる。工程(B)により生成したフルオレン系ジオール化合物を、結晶として単離することなく、上述のフルオレン系重合体の製造工程に供してもよい。
 上記工程(A)及び(B)を含む製造方法以外にも、次の工程を含む方法によりフルオレン系ジオール化合物を製造することもできる。
(a)上記一般式(II)で表わされるm-アルキルフェノールのOH基を(OR2nOH基(R2及びnの意味は上述のとおりである。)に変換して、下記一般式(V):
Figure JPOXMLDOC01-appb-C000010
で表わされるアルキレンオキサイド付加体(以下、「アルキレンオキサイド付加体(V)」ともいう。」を得る工程、及び
(b)酸性条件下に、9-フルオレノンとアルキレンオキサイド付加体(V)とを縮合反応させる工程。
 アルキレンオキサイド付加体(V)としては、(3-メチルフェノキシ)エタノール、(3-エチルフェノキシ)エタノール、(3-メチルフェノキシ)プロパノール、(3-エチルフェノキシ)プロパノール、(3-メチルフェノキシ)ブタノール、(3-エチルフェノキシ)ブタノール等を挙げることができる。
 工程(a)及び(b)は、それぞれ上述の工程(B)及び(A)と同様にして行うことができる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 フルオレン系ジオール化合物、フルオレン系重合体について測定した各測定値は、次の方法、測定条件に従った。
 〔1〕HPLC純度
 次の測定条件でHPLC測定を行ったときの面積百分率値をHPLC純度とした。
 ・装置:(株)島津製作所製「LC-2010AHT」、
 ・カラム:一般財団法人 化学物質評価研究機構製「L-column ODS」
      (5μm、4.6mmφ×250mm)、
 ・カラム温度:40℃、
 ・検出波長:UV 254nm、
 ・移動相:A液=水、B液=アセトニトリル、
 ・移動相流量:1.0ml/分、
 ・移動相グラジエント:B液濃度:30%(0分)→100%(25分後)→100%(35分後)。
 〔2〕融点及びガラス転移温度
 示差走査熱量計(エスアイアイナノテクノロジー(株)製「EXSTAR DSC 7020」)を用いて、昇温速度10℃/分で測定した。
 〔3〕屈折率及びアッベ数
 アッベ屈折計((株)アタゴ製「多波長アッベ屈折計 DR-2M」)を用いて、23℃における屈折率(波長:589nm)及び23℃におけるアッベ数(波長:486、589、656nm)を測定した。なお、フルオレン系ジオール化合物については次のようにして屈折率及びアッベ数を測定した。まず、フルオレン系ジオール化合物をジメチルスルホキシドに溶解して10重量%、20重量%及び30重量%溶液を調製し、各溶液について屈折率及びアッベ数を測定した。次に、得られた3点の測定値から近似曲線を導き、これを100重量%に外挿したときの値をフルオレン系ジオール化合物の屈折率及びアッベ数とした。また、フルオレン系重合体については、これをフィルム状に成形したものから短冊状に切り出した試験片を用いて測定を行った。
 〔4〕フルオレン系重合体の重量平均分子量
 高速GPC装置(東ソー(株)製「HLC-8200 GPC)を用いて、重量平均分子量を測定した(ポリスチレン換算)。
 〔5〕フルオレン系重合体のヘイズ
 ヘイズメータ(スガ試験機(株)製「HGM-2DP」)を用いてヘイズを測定した。
 (1)フルオレン系ジオール化合物の製造
 <実施例1>
 〔a〕9,9-ビス(2-ヒドロキシ-4-エチルフェニル)フルオレンの製造
 攪拌器、冷却器及び温度計を備えた300mlのガラス製反応容器に、9-フルオレノン40.00g(0.222mol)、m-エチルフェノール161.76g(1.324mol)、n-ラウリルメルカプタン(1-ドデカンチオール)2.25g(0.011mol)及び、パラトルエンスルホン酸21.11g(0.111mol)を仕込み、30℃まで昇温した。同温度で12時間攪拌した時点で、HPLCにより反応混合液の分析を行ったところ、9-フルオレノンの残存量は1.0%以下であった。
 得られた反応混合液にトルエン及び水を加えて85℃に昇温し、24重量%水酸化ナトリウムを加えて中和した後、水層を分液除去した。次いで、有機層を水で3回洗浄した後、有機層を減圧濃縮することにより、トルエン及びm-エチルフェノールを部分的に留去した。得られたスラリーにトルエンを加え、110℃まで昇温した後、室温まで放冷した。析出した結晶を濾過・乾燥して、上記一般式(III)におけるR1がエチル基である化合物IIIa〔9,9-ビス(2-ヒドロキシ-4-エチルフェニル)フルオレン〕の白色結晶67.59gを得た(9-フルオレノン基準の収率:74.9%)。この白色結晶のHPLC純度は98.7%であった。
 次に、上記白色結晶の全量及びトルエンをガラス製反応容器に仕込み、110℃まで昇温した後、室温まで徐々に冷却した。析出した結晶を濾過・乾燥して、精製品47.5gを得た(9-フルオレノン基準の収率:52.5%)。この精製品のHPLC純度は99.2%であった。
 〔b〕9,9-ビス[2-(2-ヒドロキシエトキシ)-4-エチルフェニル]フルオレンの製造
 攪拌器、窒素吹込管、温度計及び冷却管を備えた300mlのガラス製反応器に、上記〔a〕の方法に従って調製した化合物IIIaの精製品40.0g(0.098mol)、トルエン10.0g(0.109mol)、エチレンカーボネート18.6g(0.211mol)及びトリフェニルホスフィン2.0g(0.008mol)を仕込み、115℃で11時間撹拌し、反応を完結した。この時点で、HPLCにより反応混合液の分析を行ったところ、エチレンオキサイド(EO)2モル付加体(2つのOH基にそれぞれ1つのEOが付加した化合物)の純度(含有率、溶媒除く)は86.5%であり、この他、1モル付加体2.2%、3モル付加体2.5%が検出された。
 次いで、反応混合液にトルエン、12重量%水酸化ナトリウムを加え、85℃で1時間攪拌洗浄後、静置し、下層(水層)を分離した。さらに有機層に12重量%水酸化ナトリウムを加えて洗浄を行い、下層を分離した。この時点で、HPLCにより有機層の分析を行ったところ、エチレンオキサイド(EO)2モル付加体の純度(含有率、溶媒除く)は93.5%であり、1モル付加体は2.1%、3モル付加体は2.4%であった。
 その後、さらに有機層を3回水洗して無機分を除去した。得られた有機層を減圧濃縮することにより、トルエンを一部留去した。次に、110℃で保温し完溶を確認した後、室温まで放冷した。析出した結晶を濾過・乾燥して、上記一般式(I)におけるR1がエチル基であり、R2がエチレン基であり、nが1であるフルオレン系ジオール化合物Ia〔9,9-ビス[2-(2-ヒドロキシエトキシ)-4-エチルフェニル]フルオレン〕の白色結晶33.8gを得た(化合物IIIa基準の収率:69.5%)。この白色結晶のHPLC純度は98.7%(1モル付加体0.3%、3モル付加体0.7%)であった。
 <製造例1:9,9-ビス(2-ヒドロキシ-4-エチルフェニル)フルオレンの製造>
 攪拌器、冷却器及び温度計を備えた300mlのガラス製反応容器に、9-フルオレノン40.00g(0.222mol)、m-エチルフェノール161.76g(1.324mol)及び、n-ラウリルメルカプタン(1-ドデカンチオール)2.25g(0.011mol)を仕込み、30℃まで昇温した。その後、30℃で35重量%塩酸22.70g(0.218mol)を滴下した。同温度で20時間攪拌した時点で、HPLCにより反応混合液の分析を行ったところ、9-フルオレノンの残存量は1.0%以下であった。
 得られた反応混合液にトルエン及び水を加えて85℃に昇温し、24重量%水酸化ナトリウムを加えて中和した後、水層を分液除去した。次いで、有機層を水で3回洗浄した後、有機層を減圧濃縮することにより、トルエン及びm-エチルフェノールを部分的に留去した。得られたスラリーにトルエンを加え、110℃まで昇温した後、室温まで放冷した。析出した結晶を濾過・乾燥して、化合物IIIa〔9,9-ビス(2-ヒドロキシ-4-エチルフェニル)フルオレン〕の白色結晶61.8gを得た(9-フルオレノン基準の収率:68.5%)。この白色結晶のHPLC純度は97.1%であった。
 <実施例2>
 〔a〕9,9-ビス(2-ヒドロキシ-4-メチルフェニル)フルオレンの製造
 攪拌器、冷却器及び温度計を備えた300mlのガラス製反応容器に、9-フルオレノン40.00g(0.222mol)、m-クレゾール279.89g(2.588mol)及び、n-ラウリルメルカプタン(1-ドデカンチオール)2.25g(0.011mol)を仕込み、30℃まで昇温した。その後、30℃で35重量%塩酸22.70g(0.218mol)を滴下した。同温度で8時間攪拌した時点で、HPLCにより反応混合液の分析を行ったところ、9-フルオレノンの残存量は1.0%以下であった。
 得られた反応混合液にトルエン及び水を加えて85℃に昇温し、24重量%水酸化ナトリウムを加えて中和した後、水層を分液除去した。次いで、有機層を水で3回洗浄した後、有機層を減圧濃縮することにより、トルエン及びm-クレゾールを部分的に留去した。得られたスラリーにトルエンを加え、110℃まで昇温した後、室温まで放冷した。析出した結晶を濾過・乾燥して、上記一般式(III)におけるR1がメチル基であるフルオレン系ジオール化合物IIIb〔9,9-ビス(2-ヒドロキシ-4-メチルフェニル)フルオレン〕の白色結晶48.1gを得た(9-フルオレノン基準の収率:57.3%)。この白色結晶のHPLC純度は90.3%であった。
 次に、上記白色結晶の全量及びトルエンをガラス製反応容器に仕込み、110℃まで昇温した後、室温まで徐々に冷却した。析出した結晶を濾過・乾燥して、精製品35.1gを得た(9-フルオレノン基準の収率:41.8%)。この精製品のHPLC純度は97.0%であった。
 〔b〕9,9-ビス[2-(2-ヒドロキシエトキシ)-4-メチルフェニル]フルオレンの製造
 攪拌器、窒素吹込管、温度計及び冷却管を備えた300mlのガラス製反応器に、上記〔a〕の方法に従って調製した化合物IIIbの精製品40.0g(0.106mol)、キシレン20.0g(0.188mol)、エチレンカーボネート19.9g(0.226mol)及びトリフェニルホスフィン2.0g(0.008mol)を仕込み、115℃で13時間撹拌し、反応を完結した。この時点で、HPLCにより反応混合液の分析を行ったところ、エチレンオキサイド(EO)2モル付加体(2つのOH基にそれぞれ1つのEOが付加した化合物)の純度(含有率、溶媒除く)は83.0%であり、この他、1モル付加体3.8%、3モル付加体3.8%が検出された。
 次いで、反応混合液にキシレン、12重量%水酸化ナトリウムを加え、85℃で1時間攪拌洗浄後、静置し、下層(水層)を分離した。さらに有機層に12重量%水酸化ナトリウムを加えて洗浄を行い、下層を分離した。この時点で、HPLCにより有機層の分析を行ったところ、エチレンオキサイド(EO)2モル付加体の純度(含有率、溶媒除く)は90.6%であり、1モル付加体は3.7%、3モル付加体は3.7%であった。
 その後、さらに有機層を3回水洗して無機分を除去した。得られた有機層を減圧濃縮することにより、キシレンを一部留去した。次に、110℃で保温し完溶を確認した後、室温まで放冷した。析出した結晶を濾過・乾燥して、上記一般式(I)におけるR1がメチル基であり、R2がエチレン基であり、nが1であるフルオレン系ジオール化合物Ib〔9,9-ビス[2-(2-ヒドロキシエトキシ)-4-メチルフェニル]フルオレン〕の白色結晶38.0gを得た(化合物IIIb基準の収率:76.9%)。この白色結晶のHPLC純度は99.0%(1モル付加体0.4%、3モル付加体0.5%)であった。
 <参考例1>
 攪拌器、冷却器及び温度計を備えた300mlのガラス製反応容器に、9-フルオレノン40.00g(0.222mol)、m-エチルフェノール161.76g(1.324mol)、β-メルカプトプロピオン酸1.17g(0.011mol)及び、98重量%濃硫酸11.11g(0.111mol)を仕込み、55℃まで昇温した。同温度で6時間攪拌した時点で、HPLCにより反応混合液の分析を行ったところ、最も多い生成物として、上記一般式(IV)で表わされるキサンテン系化合物(R1=エチル基)の生成が確認された(HPLC:35%)。
 <参考例2>
 m-エチルフェノールの代わりに、m-クレゾール143.18g(1.324mol)を用いたこと以外は参考例1と同様にして反応を行った。55℃で6時間攪拌した時点で、HPLCにより反応混合液の分析を行ったところ、最も多い生成物として、上記一般式(IV)で表わされるキサンテン系化合物(R1=メチル基)の生成が確認された(HPLC:67%)。
 実施例1で得られたフルオレン系ジオール化合物Ia〔9,9-ビス[2-(2-ヒドロキシエトキシ)-4-エチルフェニル]フルオレン〕、及び、実施例2で得られたフルオレン系ジオール化合物Ib〔9,9-ビス[2-(2-ヒドロキシエトキシ)-4-メチルフェニル]フルオレン〕の1H-NMRデータはそれぞれ次のとおりである。
 〔a〕フルオレン系ジオール化合物Ia
 1H-NMR(CDCl3,400MHz,TMS)δ(ppm):0.87-0.92(m、2H)、1.17(s、6H)、2.51-2.58(m、4H)、3.34-3.41(m、2H)、3.55(br、2H)、3.83-3.87(m、2H)、3.93(br、2H)、6.56(d、J=7.33、2H)、6.65(s、2H)、6.73(d、J=7.05,2H)、7.19-7.23(m、2H)、7.28-7.33(m、2H)、7.72(d、J=7.33、4H)。
 〔b〕フルオレン系ジオール化合物Ib
 1H-NMR(CDCl3,400MHz,TMS)δ(ppm):0.87-0.95(m、2H)、2.28(s、6H)、3.37-3.40(m、2H)、3.58(br、2H)、3.84-3.88(m、2H)、3.95(br、2H)、6.54(d、J=7.79、2H)、6.65(s、2H)、6.71(d、J=7.33、2H)、7.20-7.25(m、2H)、7.32-7.35(m、2H)、7.73(d、J=7.79、4H)。
 また、フルオレン系ジオール化合物IaのH-H COSY、C-H COSYスペクトルをそれぞれ図1、図2に、フルオレン系ジオール化合物IbのH-H COSY、C-H COSYスペクトルをそれぞれ図3、図4に示す。これらの2次元NMRスペクトルから、フルオレン系ジオール化合物Ia及びIbは、上記一般式(I)で示されるとおりの構造を有していること、特に(OR2nOH基がフェニル基の2位に結合しており、R1が4位に結合していることが確認された。
 実施例1で得られたフルオレン系ジオール化合物Ia、及び、実施例2で得られたフルオレン系ジオール化合物Ibについて、融点、屈折率及びアッベ数を測定した。結果を表1に示す。表1には、比較のため、従来公知のフルオレン系ジオール化合物である下記一般式(VI):
Figure JPOXMLDOC01-appb-C000011
で表わされる9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンの測定結果を併せて示している。
Figure JPOXMLDOC01-appb-T000012
 (2)フルオレン系重合体の製造
 <実施例3:ポリカーボネート樹脂の製造>
 フルオレン系ジオール化合物Ia〔9,9-ビス[2-(2-ヒドロキシエトキシ)-4-エチルフェニル]フルオレン〕14.02重量部、ジフェニルカーボネート6.28重量部及び重合触媒としての炭酸水素ナトリウム1.7×10-6重量部を、攪拌機及び留出装置付の反応容器に仕込み、窒素雰囲気下で200℃に加熱し、20分間攪拌を行って完全溶融させた。その後、反応容器内の減圧度を27kPaに調整し、200℃、27kPaの条件下で20分間撹拌した。次に、60℃/hrの速度で210℃まで昇温を行い、同温度で30分間撹拌した。引き続き、60℃/hrの速度で220℃まで昇温を行い、同温度で20分間撹拌した。次いで、反応容器内の減圧度を24kPaに調整した後、60℃/hrの速度で230℃まで昇温を行い、同温度で20分間撹拌した。次に、反応容器内の減圧度を20kPaに調整した後、60℃/hrの速度で240℃まで昇温を行い、同温度で70分間撹拌した。最後に、1時間かけて反応容器内の減圧度を133Pa以下とし、240℃、133Pa以下の条件下で10分間撹拌し、反応終了とした。その後、反応容器内に窒素を吹き込みながら生成したポリカーボネート樹脂A1を取り出した。
 <実施例4:ポリカーボネート樹脂の製造>
 フルオレン系ジオール化合物Ib〔9,9-ビス[2-(2-ヒドロキシエトキシ)-4-メチルフェニル]フルオレン〕18.09重量部、ジフェニルカーボネート8.60重量部及び重合触媒としての炭酸水素ナトリウム2.0×10-5重量部を、攪拌機及び留出装置付の反応容器に仕込み、窒素雰囲気下で200℃に加熱し、20分間攪拌を行って完全溶融させた。その後、反応容器内の減圧度を27kPaに調整し、200℃、27kPaの条件下で30分間撹拌した。次に、60℃/hrの速度で210℃まで昇温を行い、同温度で40分間撹拌した。引き続き、60℃/hrの速度で220℃まで昇温を行い、同温度で20分間撹拌した。次いで、反応容器内の減圧度を24kPaに調整した後、60℃/hrの速度で230℃まで昇温を行い、同温度で20分間撹拌した。次に、反応容器内の減圧度を20kPaに調整した後、60℃/hrの速度で240℃まで昇温を行い、同温度で30分間撹拌した。最後に、1時間かけて反応容器内の減圧度を133Pa以下とし、240℃、133Pa以下の条件下で10分間撹拌し、反応終了とした。その後、反応容器内に窒素を吹き込みながら生成したポリカーボネート樹脂A2を取り出した。
 <実施例5:ポリエステル樹脂の製造>
 フルオレン系ジオール化合物Ia〔9,9-ビス[2-(2-ヒドロキシエトキシ)-4-エチルフェニル]フルオレン〕30.00重量部、テレフタル酸ジメチル17.25重量部、エチレングリコール3.52重量部及び重合触媒としてのチタンテトライソプロポキシド3.03×10-5重量部を、攪拌機及び留出装置付の反応容器に仕込み、窒素雰囲気下で220℃に加熱し、攪拌を行って溶融させた。その後、220℃で、生成したメタノールを反応系外に留出させながら攪拌を継続した。メタノールがほぼ留出しなくなった時点で酸化ゲルマニウム6.6×10-5重量部を加えた後、60℃/hrの速度で280℃まで昇温を行い、同温度で10分間撹拌した。さらに、反応容器内の減圧度を徐々に133Pa以下とし、留出したエチレングリコールを反応系外に除きながら3時間攪拌し、反応終了とした。その後、反応容器内に窒素を吹き込みながら生成したポリエステル樹脂A3を取り出した。
 <比較例1:ポリカーボネート樹脂の製造>
 9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン20.00重量部、ジフェニルカーボネート10.10重量部及び重合触媒としての炭酸水素ナトリウム2.2×10-5重量部を、攪拌機及び留出装置付の反応容器に仕込み、窒素雰囲気下で200℃に加熱し、20分間攪拌を行って完全溶融させた。その後、反応容器内の減圧度を27kPaに調整し、200℃、27kPaの条件下で40分間撹拌した。次に、60℃/hrの速度で210℃まで昇温を行い、同温度で30分間撹拌した。引き続き、60℃/hrの速度で220℃まで昇温を行い、同温度で40分間撹拌した。次いで、反応容器内の減圧度を24kPaに調整した後、60℃/hrの速度で230℃まで昇温を行い、同温度で20分間撹拌した。次に、反応容器内の減圧度を20kPaに調整した後、60℃/hrの速度で240℃まで昇温を行い、同温度で40分間撹拌した。最後に、1時間かけて反応容器内の減圧度を133Pa以下とし、240℃、133Pa以下の条件下で1時間撹拌し、反応終了とした。その後、反応容器内に窒素を吹き込みながら生成したポリカーボネート樹脂B1を取り出した。
 <比較例2:ポリエステル樹脂の製造>
 9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン20.00重量部、テレフタル酸ジメチル13.02重量部、エチレングリコール2.66重量部及び重合触媒としてのチタンテトライソプロポキシド2.29×10-5重量部を、攪拌機及び留出装置付の反応容器に仕込み、窒素雰囲気下で220℃に加熱し、攪拌を行って溶融させた。その後、220℃で、生成したメタノールを反応系外に留出させながら攪拌を継続した。メタノールがほぼ留出しなくなった時点で酸化ゲルマニウム5.7×10-5重量部を加えた後、60℃/hrの速度で280℃まで昇温を行い、同温度で10分間撹拌した。さらに、反応容器内の減圧度を徐々に133Pa以下とし、留出したエチレングリコールを反応系外に除きながら3時間攪拌し、反応終了とした。その後、反応容器内に窒素を吹き込みながら生成したポリエステル樹脂B2を取り出した。
 実施例3~5及び比較例1~2で得られたポリカーボネート樹脂及びポリエステル樹脂について、ガラス転移温度、屈折率、アッベ数、重量平均分子量及びヘイズを測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000013

Claims (6)

  1.  下記一般式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1はアルキル基、シクロアルキル基又はアリール基を示す。R2は炭素数2~6のアルキレン基を示し、nは1~5のいずれかの整数を示す。]
    で表わされるフルオレン系ジオール化合物由来の構成単位を主鎖に含むフルオレン系重合体。
  2.  カーボネート結合及びエステル結合の少なくともいずれか一方を主鎖に含む請求項1に記載のフルオレン系重合体。
  3.  23℃における屈折率が1.6以上である請求項1又は2に記載のフルオレン系重合体。
  4.  請求項1に記載の一般式(I)で表わされるフルオレン系ジオール化合物。
  5.  請求項1に記載の一般式(I)で表わされるフルオレン系ジオール化合物の製造方法であって、
     (A)酸性条件下に、9-フルオレノンと、下記一般式(II):
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1はアルキル基、シクロアルキル基又はアリール基を示す。]
    で表わされるm-アルキルフェノールとを反応させることにより、下記一般式(III):
    Figure JPOXMLDOC01-appb-C000003
    [式中、R1はアルキル基、シクロアルキル基又はアリール基を示す。]
    で表わされる化合物を得る工程と、
     (B)前記一般式(III)で表わされる化合物のOH基を(OR2nOH基[R2は炭素数2~6のアルキレン基を示し、nは1~5のいずれかの整数を示す。]に変換する工程と、
    を含む製造方法。
  6.  前記工程(A)において、パラトルエンスルホン酸及びチオール化合物の存在下に、9-フルオレノンと前記m-アルキルフェノールとを反応させる請求項5に記載の製造方法。
PCT/JP2013/082423 2012-12-25 2013-12-03 フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法 WO2014103623A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380067848.XA CN104870517B (zh) 2012-12-25 2013-12-03 芴系聚合物、芴系二醇化合物及其制造方法
KR1020157018832A KR101997314B1 (ko) 2012-12-25 2013-12-03 플루오렌계 중합체, 플루오렌계 디올 화합물 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012280425A JP6233950B2 (ja) 2012-12-25 2012-12-25 フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法
JP2012-280425 2012-12-25

Publications (1)

Publication Number Publication Date
WO2014103623A1 true WO2014103623A1 (ja) 2014-07-03

Family

ID=51020717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082423 WO2014103623A1 (ja) 2012-12-25 2013-12-03 フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法

Country Status (5)

Country Link
JP (1) JP6233950B2 (ja)
KR (1) KR101997314B1 (ja)
CN (1) CN104870517B (ja)
TW (1) TWI583717B (ja)
WO (1) WO2014103623A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348798B2 (ja) * 2019-10-03 2023-09-21 帝人株式会社 ポリカーボネート-ポリジオルガノシロキサン共重合体およびその樹脂組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047227A (ja) * 2002-01-29 2002-02-12 Osaka Gas Co Ltd フルオレン誘導体の製造方法
JP2002284864A (ja) * 2001-03-26 2002-10-03 Osaka Gas Co Ltd 低温用成形材料
JP2009155251A (ja) * 2007-12-26 2009-07-16 Osaka Gas Co Ltd フルオレン骨格を有するアルコール
JP2011074222A (ja) * 2009-09-30 2011-04-14 Osaka Gas Co Ltd フルオレン骨格を有するポリエステル樹脂
JP2011236336A (ja) * 2010-05-11 2011-11-24 Teijin Chem Ltd 光弾性定数が低いポリカーボネート樹脂および光学成形体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011450A (ja) 1973-06-04 1975-02-05
JP3187142B2 (ja) 1992-07-07 2001-07-11 帝人化成株式会社 高屈折率低複屈折性ポリカーボネート樹脂
JP2843215B2 (ja) 1992-07-30 1999-01-06 鐘紡株式会社 ポリエステル重合体およびその成形体並びに成形体の製造方法
WO1999019771A1 (fr) * 1997-10-13 1999-04-22 Pi R & D Co., Ltd. Composition de polyimide photosensible positive
KR101624374B1 (ko) * 2009-04-13 2016-05-25 타오카 케미컬 컴퍼니 리미티드 플루오렌 유도체의 제조방법
JP2012224759A (ja) * 2011-04-20 2012-11-15 Teijin Chem Ltd 3d液晶表示の前面板用シート
CN104144904A (zh) * 2012-03-09 2014-11-12 本州化学工业株式会社 9,9-双(4-(2-羟基乙氧基)苯基)芴的制造方法、其结晶体及其结晶体的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284864A (ja) * 2001-03-26 2002-10-03 Osaka Gas Co Ltd 低温用成形材料
JP2002047227A (ja) * 2002-01-29 2002-02-12 Osaka Gas Co Ltd フルオレン誘導体の製造方法
JP2009155251A (ja) * 2007-12-26 2009-07-16 Osaka Gas Co Ltd フルオレン骨格を有するアルコール
JP2011074222A (ja) * 2009-09-30 2011-04-14 Osaka Gas Co Ltd フルオレン骨格を有するポリエステル樹脂
JP2011236336A (ja) * 2010-05-11 2011-11-24 Teijin Chem Ltd 光弾性定数が低いポリカーボネート樹脂および光学成形体

Also Published As

Publication number Publication date
CN104870517B (zh) 2017-11-10
JP2014125489A (ja) 2014-07-07
TW201430008A (zh) 2014-08-01
CN104870517A (zh) 2015-08-26
KR101997314B1 (ko) 2019-07-05
KR20150099557A (ko) 2015-08-31
TWI583717B (zh) 2017-05-21
JP6233950B2 (ja) 2017-11-22

Similar Documents

Publication Publication Date Title
US20220146713A1 (en) Optical lens
JP7082872B2 (ja) 高耐熱性ポリカーボネート樹脂及び成形体
JP2018002894A (ja) 熱可塑性樹脂
JP2018002893A (ja) 熱可塑性樹脂
JP2018002895A (ja) 熱可塑性樹脂
JP5285561B2 (ja) フルオレン骨格を有するポリエステル樹脂
JP7221706B2 (ja) 熱可塑性樹脂および光学部材
JP6233949B2 (ja) フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法
JP2010100770A (ja) 熱可塑性樹脂の製造方法、ポリエステル樹脂及びポリカーボネート樹脂、ならびにそれらの用途
JP6711660B2 (ja) ポリカーボネート樹脂及びポリエステル樹脂の製造方法、並びにポリカーボネート樹脂及びポリエステル樹脂
JP5179808B2 (ja) 新規ジベンゾフルオレン化合物
JP6233950B2 (ja) フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法
WO2019026889A1 (ja) 単官能性(メタ)アクリレート及び硬化性組成物
TW202336079A (zh) 熱塑性樹脂及光學構件
WO2002072670A1 (fr) Elements optiques et (co)polymere poly(thio)ester contenant du soufre
KR102625933B1 (ko) 열가소성 수지 및 광학 부재
JP5502969B2 (ja) 新規ジベンゾフルオレン化合物
KR101596986B1 (ko) 디옥산 구조를 가지는 글리콜 화합물 및 그 제조 방법
JP7416196B2 (ja) 化合物、熱可塑性樹脂、光学部材、光学レンズ
KR102678426B1 (ko) 광학 렌즈
JP2018172658A (ja) 高耐熱性ポリエステル樹脂及び成形体
TW202244031A (zh) 熱可塑性樹脂及光學構件
JP2014208605A (ja) 硫黄含有フルオレン化合物
JP2022022905A (ja) フルオレン骨格を有する化合物
JP2019043897A (ja) フルオレン骨格を有するビスフェノール類及び該ビスフェノール類から誘導されるポリアリレート樹脂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157018832

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13868018

Country of ref document: EP

Kind code of ref document: A1