WO2014101247A1 - 一种制备烧结钕铁硼磁体的方法 - Google Patents

一种制备烧结钕铁硼磁体的方法 Download PDF

Info

Publication number
WO2014101247A1
WO2014101247A1 PCT/CN2013/000059 CN2013000059W WO2014101247A1 WO 2014101247 A1 WO2014101247 A1 WO 2014101247A1 CN 2013000059 W CN2013000059 W CN 2013000059W WO 2014101247 A1 WO2014101247 A1 WO 2014101247A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
weight
auxiliary
neodymium iron
iron boron
Prior art date
Application number
PCT/CN2013/000059
Other languages
English (en)
French (fr)
Inventor
吕向科
张民
欧阳习科
丁勇
王昭
刘盛业
Original Assignee
宁波韵升股份有限公司
宁波韵升高科磁业有限公司
宁波韵升特种金属材料有限公司
包头韵升强磁材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波韵升股份有限公司, 宁波韵升高科磁业有限公司, 宁波韵升特种金属材料有限公司, 包头韵升强磁材料有限公司 filed Critical 宁波韵升股份有限公司
Publication of WO2014101247A1 publication Critical patent/WO2014101247A1/zh
Priority to US14/542,535 priority Critical patent/US9728311B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling

Definitions

  • the present invention relates to a method of preparing a neodymium iron boron magnet, and more particularly to a method of preparing a sintered neodymium iron boron magnet. Background technique
  • Sintered NdFeB permanent magnet materials are widely used in electronics, electromechanical, communication, instrumentation, medical and military fields due to their excellent integrated magnetic properties. With the development of application requirements, the amount of sintered NdFeB magnets is increasing, and the performance requirements for sintered NdFeB magnets are becoming higher and higher.
  • a method of directly adding heavy rare earth elements lanthanum and cerium is currently employed. The heavy rare earth elements lanthanum and cerium will form Tb 2 Fe 14 B and Dy 2 Fe 14 B with higher magnetocrystalline anisotropy field in the sintered NdFeB magnet, which can significantly improve the coercive force of the sintered NdFeB magnet.
  • the antiferromagnetic coupling of heavy rare earth elements with iron in the above method will reduce the saturation magnetization and residual magnetization of the sintered NdFeB magnet, and reduce the comprehensive magnetic properties of the sintered NdFeB magnet, and also cause heavy rare earth. Excessive use of elements. Due to the high price of heavy rare earth elements, the production cost is greatly increased.
  • the dual alloy process can control the concentration of Dy in the vicinity of the grain boundary, and the sintering can be ensured under the premise of increasing the coercive force of the sintered NdFeB magnet.
  • the saturation magnetization and residual magnetization of the neodymium iron boron magnet give a sintered NdFeB magnet with good comprehensive magnetic properties.
  • a method for improving the coercive force of sintered NdFeB magnets by using a double alloy process is separately disclosed.
  • one of the above three methods requires the use of pure heavy rare earth elements to prepare heavy rare earth hydrides, and the production cost is still high.
  • the technical problem to be solved by the present invention is to provide a method for preparing a sintered NdFeB magnet with a simple production process and a low production cost, and the high coercive sintered NdFeB magnet prepared by the method has excellent comprehensive magnetic properties. , and the consistency is good.
  • a method for preparing a sintered NdFeB magnet comprising the steps of:
  • a main alloy and a secondary alloy wherein the main alloy is a neodymium iron boron alloy ingot or a cast piece, the auxiliary alloy is a heavy rare earth alloy, and the auxiliary alloy has a composition of R a M b Fe lw . a . b , wherein R is at least one of Gd, Tb, Dy, and Ho, and M is at least one of Co, Mn, Cu, Al, Ti, Ga, Zr, V, Hf, W, B, and Nb , a and b both represent a weight percentage, and 30 ⁇ a ⁇ 100, 0 ⁇ b ⁇ 70;
  • Hydrogen breaking method is used to crush the main alloy into the main alloy hydrogen breaking coarse powder, and the auxiliary alloy is subjected to hydrogen absorption treatment to be crushed to form auxiliary alloy hydride particles;
  • the mixture obtained in the step 3 is made into a powder having a surface area average particle diameter of 1-5 ⁇ ;
  • step 5 the powder obtained in step 4 is stirred again and then subjected to orientation molding treatment to obtain a neodymium iron boron magnet green body;
  • the green body of the neodymium iron boron magnet is sintered to obtain a sintered neodymium iron boron magnet.
  • the composition of the main alloy in the step 1 is Nd m N n X t Fe 1 (W . m . n . k . t B k , where N is at least one of La, Ce, Pr, Dy, Tb X is at least one of Co, Mn, Cu, Al, Ti, Ga, Zr, V, Hf, W and Nb, and m, n, t and k each represent a weight percentage, and 28.5 ⁇ m + n ⁇ 33, 0 ⁇ t ⁇ 5, 0.9 ⁇ k ⁇ 1.2.
  • the hydrogen content (weight ratio) of the auxiliary alloy hydride particles in the step 2 is 4000 ppm or more and 15000 ppm or less.
  • the orientation molding process used in the orientation molding process has a size of 1 to 5T.
  • the sintering process in the step 6 is -
  • 6 -1 Place the neodymium iron boron magnet green body in a vacuum sintering furnace, heat-treat from 800 ° C to 1000 ° C for 2 hours; 6 - 2 heat the vacuum sintering furnace to 1010 ⁇ 1120 ° C, vacuum sintering 1 ⁇ 4 hours;
  • the invention has the advantages that the heavy rare earth alloy is prepared by using a heavy rare earth alloy to replace the conventional heavy rare earth direct addition process, which can greatly reduce the production cost; and the preparation of heavy rare earth hydrogenation by adding heavy rare earth elements. Compared with the process of the material, the cost is also reduced.
  • the alloying element which improves the phase characteristics of the product is included, and the grain boundary phase is more effectively modified to ensure the sintered NdFeB magnet. It has excellent comprehensive magnetic properties; on the other hand, by mixing the main alloy hydrogen cracking coarse powder and the auxiliary alloy hydride particles evenly The powder is then ground into a powder.
  • the two alloys can be more fully collided and mixed to improve the consistency of the sintered NdFeB magnet, and compared to the existing dual alloy art, It is necessary to prepare and add ultrafine heavy hydride alloy hydride powder, and the production process is simple;
  • the auxiliary alloy is placed in a hydrogen furnace to absorb hydrogen, and the hydrogen content (weight ratio) of the auxiliary alloy hydride particles is greater than or equal to 4000 p pm and less than or equal to 1 5000 p pm , and the obtained auxiliary alloy hydride is brittle and easily broken. It is not easy to oxidize, and it can be mixed with the main alloy to carry out airflow milling, and the preparation process is simple. detailed description
  • Embodiment 1 A method for preparing a sintered NdFeB magnet includes the following steps:
  • the main alloy is prepared by rapid solidification casting process, the main alloy is NdFeB alloy casting piece, the auxiliary alloy is NdFe alloy; the main alloy is composed of the following components: 32% (% by weight) of Nd, 1% (by weight) of B and 67% (by weight) of Fe:
  • the secondary alloy consists of the following components: 80% by weight of Dy and 20% by weight of Fe, which can be used in the art.
  • Hydrogen breaking method is used to crush the main alloy into the main alloy hydrogen breaking coarse powder, and the auxiliary alloy is subjected to hydrogen absorption treatment to be crushed to form auxiliary alloy hydride particles; wherein the hydrogen content (weight ratio) in the auxiliary alloy hydride particles is 4251 ppm. ;
  • the mixture obtained in the step 3 is ground by a jet mill to obtain a powder having a surface area average particle diameter of 3.22 ⁇ m;
  • the orientation molding process is performed to obtain a green body of the neodymium iron boron magnet; the orientation molding process is: oriented under a nitrogen atmosphere by a magnetic field having a size of 1.6T, and press-molded, and then passed through Cold isostatic pressing treatment;
  • the neodymium iron boron magnet green body is placed in a vacuum sintering furnace, heated from 800 ° C to 1000 ° C dehydrogenation treatment for 2 hours; 6 - 2 the vacuum sintering furnace is heated to 1070 ° C, vacuum sintering for 4 hours;
  • Example 2 A method for preparing a sintered NdFeB magnet, comprising the following steps:
  • the main alloy is prepared by rapid solidification casting process.
  • the main alloy is NdFeB alloy casting piece and the auxiliary alloy is NdFe alloy:
  • the main alloy is composed of the following components: 32% (% by weight) of Nd, 1% (by weight) of B and 67% by weight of Fe; the secondary alloy consists of the following components: 80% (by weight) of Dy and 20% (% by weight) of Fe, which can be matured on the market.
  • Hydrogen breaking method is used to crush the main alloy into the main alloy hydrogen breaking coarse powder, and the auxiliary alloy is subjected to hydrogen absorption treatment to be crushed to form auxiliary alloy hydride particles; wherein the hydrogen content (weight ratio) in the auxiliary alloy hydride particles is 4251 ppm. ;
  • the mixture obtained in the step 3 is ground by a jet mill to obtain a powder having a surface area average particle diameter of 2.97 ⁇ ?
  • step 5 the powder obtained in step 4 is stirred again and then subjected to orientation molding treatment to obtain a green body of neodymium iron boron magnet;
  • the orientation molding process is: orientation and compression molding by a magnetic field of 1.6T under nitrogen protection, and then passing through cold Isostatic pressing treatment;
  • 6 -1 The green body of the neodymium iron boron magnet is placed in a vacuum sintering furnace, heated from 800 ° C to 1000 dehydrogenation treatment for 2 hours; 6 - 2 is heated to 1065 ⁇ in a vacuum sintering furnace, and vacuum sintered for 4 hours;
  • Embodiment 3 A method for preparing a sintered NdFeB magnet, comprising the following steps:
  • the main alloy and the auxiliary alloy are prepared by the rapid solidification casting process, the main alloy is a NdFeB alloy cast piece, and the auxiliary alloy is a heavy rare earth alloy ingot;
  • the main alloy is composed of the following components: 29% ( Percent by weight of PrNd alloy, 1.2% (by weight) of Dy, 0.98% (by weight) of B, and ⁇ . ⁇ (% by weight) of Fe and 1% (% by weight) of Co; Composition: 69.5% (% by weight Ratio of Dy, 5% (by weight) of Nd, 0.8% (by weight) of Ga, 0.7% (% by weight) of Cu, 1.6% (% by weight) of A1 and 22.4»/. (% by weight) of Fe;
  • Hydrogen breaking method is used to crush the main alloy into the main alloy hydrogen breaking coarse powder, and the auxiliary alloy is subjected to hydrogen absorption treatment to be crushed to form auxiliary alloy hydride particles; wherein the hydrogen content (weight ratio) in the auxiliary alloy hydride particles is 10840 ppm ;
  • the mixture obtained in the step 3 is ground by a jet mill to obtain a powder having a surface area average particle diameter of 2.88 ⁇ m;
  • the powder obtained in the step 4 is stirred again and then subjected to orientation molding treatment to obtain a green body of the ferro-boron magnet;
  • the orientation molding process is: oriented under a nitrogen atmosphere by a magnetic field having a size of 1.8 T, and press-molded, and then passed through Cold isostatic pressing treatment;
  • 6 -1 The neodymium iron boron magnet green body was placed in a vacuum sintering furnace, heated from 80 CTC to 1000 ° C for 2 hours; 6 - 2 vacuum oven was heated to 1061 V, and vacuum sintered for 4 hours;
  • Embodiment 4 A method for preparing a sintered NdFeB magnet, comprising the following steps:
  • the main alloy and the auxiliary alloy are prepared by the rapid solidification casting process, the main alloy is a NdFeB alloy cast piece, and the auxiliary alloy is a heavy rare earth alloy ingot;
  • the main alloy is composed of the following components: 29% ( Percent by weight of PrNd alloy, .2% by weight of Dy, 0.98% by weight of B, and 67.82% by weight of Fe and 1% by weight of Co;
  • Component composition 69.5% (by weight) of Dy, 5% (by weight) of Nd, 0.8% (by weight) of Ga, 0.7% (% by weight) of Cu, 1.6% (% by weight) of A1 and 22.4 °/. (% by weight) of Fe;
  • Hydrogen breaking method is used to crush the main alloy into the main alloy hydrogen breaking coarse powder, and the auxiliary alloy is subjected to hydrogen absorption treatment to be crushed to form auxiliary alloy hydride particles; wherein the hydrogen content (weight ratio) in the auxiliary alloy hydride particles is 10840 ppm ;
  • step 4 The mixture obtained in step 3 is passed through a jet mill to obtain a powder having a surface area average particle diameter of 2.56 ⁇ m; 5, the powder obtained in step 4 is stirred again and then subjected to orientation molding treatment to obtain a green body of neodymium iron boron magnet; the orientation molding process is: orientation and compression molding by a magnetic field of 1.8T under nitrogen protection, and then passing through cold Isostatic pressing treatment;
  • 6 -1 The neodymium iron boron magnet green body is placed in a vacuum sintering furnace, heated from 800 ° C to 1000 4 C dehydrogenation treatment for 2 hours; 6 - 2 vacuum oven is heated to 1030 'C, vacuum sintering for 4 hours;
  • Table 4 shows the magnetic properties of 2.7% heavy rare earth alloy (Dy ⁇ NdsGao.sCuojAl ⁇ Fe ⁇ )
  • Embodiment 5 A method for preparing a sintered NdFeB magnet, comprising the following steps:
  • the main alloy and the auxiliary alloy are prepared by the rapid solidification casting process, the main alloy is a neodymium iron boron alloy cast piece, and the auxiliary alloy is a heavy rare earth alloy cast piece: the main alloy is composed of the following components: 29.3% ( Percent by weight of PrNd alloy, 0.2% by weight of Nb, 1% by weight of Co, 0.1% by weight of A1, 0.15% by weight of Cu, 1% by weight B and 68.
  • the secondary alloy consists of: 55% by weight of Dy, 0.1% by weight of Ga, 0.15% by weight of Cu, 0.3% (% by weight) of Al, 1.4% (by weight) of B and 43.05% (by weight) of Fe;
  • Hydrogen breaking method is used to crush the main alloy into the main alloy hydrogen breaking coarse powder, and the auxiliary alloy is subjected to hydrogen absorption treatment to be crushed to form auxiliary alloy hydride particles; wherein the hydrogen content (weight ratio) in the auxiliary alloy hydride particles is 8086 ppm. ;
  • the mixture obtained in the step 3 is ground by a jet mill to obtain a powder having a surface area average particle diameter of 2.44 ⁇ m;
  • step 5 the powder obtained in step 4 is stirred again and then subjected to orientation molding treatment to obtain a green body of neodymium iron boron magnet;
  • the orientation molding process is: oriented under a nitrogen atmosphere by a magnetic field of 1.8T and pressed and formed, and then passed through Cold isostatic pressing treatment;
  • Embodiment 6 A method for preparing a sintered NdFeB magnet, comprising the following steps:
  • the main alloy and the auxiliary alloy are prepared by the rapid solidification casting process, the main alloy is a NdFeB alloy cast piece, and the auxiliary alloy is a heavy rare earth alloy cast piece;
  • the main alloy is composed of the following components: 29.3% ( Percent by weight of PrNd alloy, 0.2% by weight of Nb, 1% by weight of Co, 0.1% by weight of A1, 0.15% by weight of Cu, 1% by weight B and 68. 25% by weight of Fe;
  • the secondary alloy consists of: 45% by weight of Dy, 0.1% by weight of Ga, 0.15% by weight of Cu, 0.3% (% by weight) of Al, 1.4% (by weight) of B and 53.05% (by weight) of Fe;
  • Hydrogen breaking method is used to crush the main alloy into the main alloy hydrogen breaking coarse powder, and the auxiliary alloy is subjected to hydrogen absorption treatment to be crushed to form auxiliary alloy hydride particles; wherein the hydrogen content (weight ratio) of the auxiliary alloy hydride particles is 8911 ppm. ;
  • the mixture obtained in the step 3 is ground by a jet mill to a powder having a surface area average particle diameter of 2.49 ⁇ m;
  • step 5 the powder obtained in step 4 is stirred again and then subjected to orientation molding treatment to obtain a green body of neodymium iron boron magnet;
  • the orientation molding process is: oriented under a nitrogen atmosphere by a magnetic field of 1.8T and pressed and formed, and then passed through Cold isostatic pressing treatment;
  • 6 -1 The neodymium iron boron magnet green body is placed in a vacuum sintering furnace, heated from 800 ° C to 1000 ° C dehydrogenation treatment for 2 hours; 6 - 2 will be heated to 1030 ° C in a true sintering furnace, vacuum sintering for 4 hours;
  • Example 7 A method of preparing a sintered NdFeB magnet comprising the following steps:
  • the main alloy and the auxiliary alloy are prepared by the rapid solidification casting process, the main alloy is a NdFeB alloy cast piece, and the auxiliary alloy is a heavy rare earth alloy cast piece;
  • the main alloy is composed of the following components: 29.3% ( Percent by weight of PrNd alloy, 0.2% by weight of Nb, 1% by weight of Co, 0.1% by weight of A1, 0.15% by weight of Cu, 1% by weight B and 68. 25% by weight of Fe;
  • the secondary alloy consists of: 35% by weight of Dy, 0.1% by weight of Ga, 0.15% by weight of Cu, 0.3% (% by weight) of Al, 1.4% (by weight) of B and 63.05% (by weight) of Fe;
  • Hydrogen breaking method is used to crush the main alloy into the main alloy hydrogen breaking coarse powder, and the auxiliary alloy is subjected to hydrogen absorption treatment to be crushed to form auxiliary alloy hydride particles; wherein the hydrogen content (weight ratio) in the auxiliary alloy hydride particles is 7423 ppm. ;
  • the mixture obtained in the step 3 is ground by a jet mill to obtain a powder having a surface area average particle diameter of 2.51 ⁇ m;
  • step 5 the powder obtained in step 4 is stirred again and then subjected to orientation molding treatment to obtain a green ferro-boron magnet green body;
  • the orientation molding process is: oriented under a nitrogen atmosphere by a magnetic field of 1.8T and pressed and formed, and then passed through Cold isostatic pressing treatment;
  • 6 -1 The neodymium iron boron magnet green body was placed in a vacuum sintering furnace, and the temperature was raised to 100 at 800 ° C (TC dehydrogenation treatment for 2 hours; 6 - 2 was heated in a vacuum sintering furnace to 1030 ° C, and vacuum sintered for 4 hours;

Abstract

提供一种制备烧结钕铁硼磁体的方法,包括以下步骤:选取主合金和辅合金,主合金为钕铁硼合金铸锭或铸片,辅合金为重稀土合金;采用氢破法将主合金破碎为主合金氢破粗粉,将辅合金进行吸氢处理后破碎制成辅合金氢化物颗粒;将主合金氢破粗粉和辅合金氢化物颗粒混合后搅拌均匀,其中主合金氢破粗粉的重量百分比为大于等于75%且小于100%,辅合金氢化物颗粒的重量百分比为大于0且小于等于25%;将混合物制成表面积平均粒径为1-5μm粉末;将粉末再次搅拌均匀后进行取向成型处理;最后进行烧结;优点是工艺简单,成本低,且采用该方法制备的高矫顽力烧结钕铁硼体具有优异的综合磁性能,一致性好。

Description

一种制备烧结钕铁硼磁体的方法
技术领域
本发明涉及一种制备钕铁硼磁体的方法,尤其是涉及一种制备烧结钕铁硼磁体的方 法。 背景技术
烧结钕铁硼永磁材料由于具有优异的综合磁性能, 广泛应用于电子、 机电、 通讯、 仪表、医疗和军事等诸多领域。随着应用需求的发展,烧结钕铁硼磁体的用量日益增大, 而且对烧结钕铁硼磁体的性能要求也越来越高。 为了提高烧结钕铁硼磁体的矫顽力, 目 前主要采用直接添加重稀土元素铽和镝的方法。重稀土元素铽和镝会在烧结钕铁硼磁体 中形成磁晶各向异性场更高的 Tb2Fe14B和 Dy2Fe14B, 可以显著提高烧结钕铁硼磁体的 矫顽力。然而, 上述方法中重稀土元素与铁的反铁磁耦合却会降低烧结钕铁硼磁体的饱 和磁化强度和剩余磁化强度, 使烧结钹铁硼磁体的综合磁性能下降, 另外还会造成重稀 土元素的过量使用。 由于重稀土元素价格品贵, 极大地增加了生产成本。
为了得到综合磁性能好的烧结钕铁硼磁体, 经研究发现, 利用双合金工艺可以控制 Dy较集中分布于晶界附近, 在提高烧结钕铁硼磁体的矫顽力的前提下, 可以保证烧结 钕铁硼磁体的饱和磁化强度和剩余磁化强度, 得到综合磁性能很好的烧结钕铁硼磁体。 目前, 在专利公布号为 CN102368439A、 CN101996721A和 CN101521069A的三份中国 专利中, 分别公布了一种利用双合金工艺来提升烧结钕铁硼磁体矫顽力的方法。但是上 述三种方法中一方面需要利用纯的重稀土元素来制备重稀土氢化物, 生产成本仍然很 高, 另一方面需要将重稀土氢化物制成超细粉末, 生产工艺复杂且难度大, 产品的一致 性较差, 由此, 上述三种方法难以在实际生产中使用。
发明内容
本发明所要解决的技术问题是提供一种生产工艺简单,且生产成本较低的制备烧结 钕铁硼磁体的方法, 采用本方法制备的高矫顽力烧结钕铁硼磁体具有优异的综合磁性 能, 且一致性较好。
1
确认本 本发明解决上述技术问题所采用的技术方案为: 一种制备烧结钕铁硼磁体的方法, 包括以卜步骤:
①选取主合金和辅合金, 其中所述的主合金为钕铁硼合金铸锭或铸片, 所述的辅合 金为重稀土合金, 所述的辅合金的成分为 RaMbFelw.a.b, 其中 R为 Gd、 Tb、 Dy和 Ho 中的至少一种, M为 Co、 Mn、 Cu、 Al、 Ti、 Ga、 Zr、 V、 Hf、 W、 B和 Nb中的至少 一种, a和 b均表示重量百分含量, 且 30≤a< 100, 0<b<70;
②采用氢破法将主合金破碎为主合金氢破粗粉,将辅合金进行吸氢处理后破碎制成 辅合金氢化物颗粒;
③取主合金氢破粗粉和辅合金氢化物颗粒, 将两者混合后搅拌均匀, 其中主合金氢 破粗粉的重量占两者总重量的百分比为大于等于 75%且小于 100%, 辅合金氢化物颗粒 的重量占两者总重量的百分比为大于 0且小于等于 25%;
④将歩骤③得到的混合物制成表面积平均粒径为 1-5μηι粉末;
⑤将步骤④得到的粉末再次搅拌均匀后进行取向成型处理, 得到钕铁硼磁体生坯;
⑥将钕铁硼磁体生坯进行烧结, 得到烧结钕铁硼磁体。
所述的步骤①中的主合金的成分为 NdmNnXtFe1(W.m.n.k.tBk, 其中 N为 La、 Ce、 Pr、 Dy、 Tb中的至少一种, X为 Co、 Mn、 Cu、 Al、 Ti、 Ga、 Zr、 V、 Hf、 W和 Nb中的至 少一种, m、 n、 t和 k均表示重量百分含量, 且 28.5≤m+n≤33, 0<t<5 , 0.9≤k≤1.2。
所述的歩骤②中辅合金氢化物颗粒中氢含量(重量比)大于等于 4000ppm小于等于 15000ppm。
所述的步骤⑤中取向成型处理工艺采用的取向磁场大小为 1〜5T。
所述的歩骤⑥中烧结工艺过程为-
⑥ -1将钕铁硼磁体生坯置于真空烧结炉中,由 800°C升温到 1000°C脱氢处理 2小时; ⑥ -2将真空烧结炉升温至 1010~ 1120°C , 真空烧结 1〜4小时;
⑥ -3经过 850〜950°C—级回火热处理 1〜4小时和 450〜600°C二级回火热处理 1〜 4小时, 制得烧结钕铁硼磁体。
与现有技术相比,本发明的优点在于一方面采用重稀土合金制备重稀土合金氢化物 来取代目前常规的重稀土直接添加工艺, 可以大幅降低生产成本; 与添加重稀土元素制 备重稀土氢化物的工艺相比, 成本也有降低, 同时重稀土合金中除重稀土元素外, 还包 含改善品界相特性的合金元素, 更为有效的对晶界相进行改性, 保证烧结钕铁硼磁体具 有优异的综合磁性能; 另一方面通过将主合金氢破粗粉和辅合金氢化物颗粒混合均匀后 再通过气流磨制成粉末, 在气流磨制粉过程中, 两种合金可以更加充分的碰撞和混合, 提高 烧结钕铁硼磁体的一致性, 且相对于目前巳有的双合金丄艺, 不需要制备和添加 超细的重稀土合金氢化物粉末, 生产工艺简单;
将辅合金置于氢破炉中吸氢处理, 得到的辅合金氢化物颗粒中氢含量(重量比)大 于等于 4000ppm小于等于 l5000ppm, 所得的辅合金氢化物较脆、 易破碎、 不易氧化, 可以和主合金混合进行气流磨制粉, 制备工艺简单。 具体实施方式
以下结合实施例对本发明作进一歩详细描述。
实施例一: 一种制备烧结钕铁硼磁体的方法, 包括以下步骤:
①选取主合金和辅合金:采用速凝铸造工艺制备主合金,主合金为钕铁硼合金铸片, 辅合金为镝铁合金; 主合金由以下组分组成: 32% (重量百分比) 的 Nd, 1% (重量百 分比) 的 B和 67% (重量百分比) 的 Fe: 辅合金由以下组分组成: 80% (重量百分比) 的 Dy和 20% (重量百分比) 的 Fe, 可采用本技术领域的成熟产品;
②采用氢破法将主合金破碎为主合金氢破粗粉,将辅合金进行吸氢处理后破碎制成 辅合金氢化物颗粒; 其中辅合金氢化物颗粒中的氢含量(重量比) 为 4251ppm;
③将主合金氢破粗粉和辅合金氢化物颗粒按照重量比 99: 1混合并搅拌均匀;
④将歩骤③得到的混合物通过气流磨制成表面积平均粒径为 3.22μιη的粉末;
⑤将歩骤④得到的粉末再次搅拌均匀后进行取向成型处理, 得到钕铁硼磁体生坯; 取向成型处理过程为: 在氮气保护下通过大小为 1.6T 的磁场进行取向并压制成型, 然 后经过冷等静压处理;
⑥将钕铁硼磁体生坯进行烧结, 得到烧结钕铁硼磁体; 具体烧结工艺过程为:
⑥ -1将钕铁硼磁体生坯置于真空烧结炉中,由 800'C升温到 1000'C脱氢处理 2小时; ⑥ -2将真空烧结炉升温至 1070°C, 真空烧结 4小时;
⑥ -3经过 890°C—级回火热处理 2小时和 500°C二级回火热处理 4小时, 制得烧结 钕铁硼磁体。
对本实施例的烧结钕铁硼磁体的磁性能进行测试, 其磁性能如表 I所示:
表 1 添加 1%重稀土合金 (Dy8GFe2G)的磁性能
Figure imgf000004_0001
(wt%) (kGs) (kOe) (kOe) (MGsOe) (kOe)
0.8 11.8 11.47 18.61 33.84 17.74 0.95 实施例二: 一种制备烧结钕铁硼磁体的方法, 包括以下步骤:
①选取主合金和辅合金:采用速凝铸造工艺制备主合金,主合金为钕铁硼合金铸片, 辅合金为镝铁合金: 主合金由以下组分组成: 32% (重量百分比) 的 Nd, 1% (重量百 分比) 的 B和 67% (重量百分比) 的 Fe; 辅合金由以下组分组成: 80% (重量百分比) 的 Dy和 20% (重量百分比) 的 Fe, 可采用市场上的成熟产品;
②采用氢破法将主合金破碎为主合金氢破粗粉,将辅合金进行吸氢处理后破碎制成 辅合金氢化物颗粒; 其中辅合金氢化物颗粒中的氢含量(重量比) 为 4251ppm;
③将主合金氨破粗粉和辅合金氢化物颗粒按照重量比 97.5 : 2.5混合并搅拌均匀;
④将歩骤③得到的混合物通过气流磨制成表面积平均粒径为 2.97μΐη的粉末;
⑤将步骤④得到的粉末再次搅拌均匀后进行取向成型处理, 得到钕铁硼磁体生坯; 取向成型处理过程为: 在氮气保护下通过大小为 1.6T 的磁场进行取向并压制成型, 然 后经过冷等静压处理;
⑥将钕铁硼磁体生坯进行烧结, 得到烧结钕铁硼磁体; 具体烧结工艺过程为:
⑥ -1将钕铁硼磁体生坯置于真空烧结炉中,由 800°C升温到 1000 脱氢处理 2小吋; ⑥ -2将真空烧结炉升温至 1065 Ό , 真空烧结 4小时;
⑥ -3经过 890°C—级回火热处理 2小时和 480°C二级回火热处理 4小时, 制得烧结 钕铁硼磁体。
对本实施例的烧结钕铁硼磁体的磁性能进行测试, 其磁性能如表 1所示:
添加 2.5%重稀土合金 (Dy8GFe2G)的磁性能
Figure imgf000005_0001
实施例三: 一种制备烧结钕铁硼磁体的方法, 包括以下步骤:
①选取主合金和辅合金: 采用速凝铸造工艺制备主合金和辅合金, 主合金为钕铁硼 合金铸片, 辅合金为重稀土合金铸锭; 主合金由以下组分组成: 29% (重量百分比) 的 PrNd合金、 1.2% (重量百分比) 的 Dy、 0.98% (重量百分比) 的 B、 和 ό .δΖ^ (重量 百分比) 的 Fe和 1% (重量百分比) 的 Co; 辅合金由以下组分组成: 69.5% (重量百分 比) 的 Dy、 5% (重量百分比) 的 Nd、 0.8% (重量百分比) 的 Ga、 0.7% (重量百分比) 的 Cu、 1.6% (重量百分比) 的 A1和 22.4»/。 (重量百分比) 的 Fe;
②采用氢破法将主合金破碎为主合金氢破粗粉,将辅合金进行吸氢处理后破碎制成 辅合金氢化物颗粒; 其中辅合金氢化物颗粒中的氢含量(重量比) 为 10840ppm;
③将主合金氢破粗粉和辅合金氢化物颗粒按照重量比 99: 1混合并搅拌均匀;
④将歩骤③得到的混合物通过气流磨制成表面积平均粒径为 2.88μπι的粉末;
⑤将歩骤④得到的粉末再次搅拌均匀后进行取向成型处理, 得到钱铁硼磁体生坯; 取向成型处理过程为: 在氮气保护下通过大小为 1.8T的磁场进行取向并压制成型, 然 后经过冷等静压处理;
⑥将钕铁硼磁体生坯进行烧结, 得到烧结钕铁硼磁体; 具体烧结工艺过程为:
⑥ -1将钕铁硼磁体生坯置于真空烧结炉中,由 80CTC升温到 1000°C脱氢处理 2小时; ⑥ -2将真空烧结炉升温至 1061 V, 真空烧结 4小时;
⑥ -3经过 890 —级回火热处理 2小时和 480°C二级回火热处理 4小时, 制得烧结 钕铁硼磁体。
对本实施例的烧结钕铁硼磁体的磁性能进行测试, 其磁性能如表 3所示:
表 3添加 1%重稀土合金 (Dy^NdsGao.sCuojAUe^) 的磁性能
Figure imgf000006_0001
实施例四: 一种制备烧结钕铁硼磁体的方法, 包括以下歩骤:
①选取主合金和辅合金: 采用速凝铸造工艺制备主合金和辅合金, 主合金为钕铁硼 合金铸片, 辅合金为重稀土合金铸锭; 主合金由以下组分组成: 29% (重量百分比) 的 PrNd合金、 】.2% (重量百分比) 的 Dy、 0.98% (重量百分比) 的 B、 和 67.82% (重量 百分比) 的 Fe和 1% (重量百分比) 的 Co; 辅合金由以下组分组成: 69.5% (重量百分 比) 的 Dy、 5% (重量百分比) 的 Nd、 0.8% (重量百分比) 的 Ga、 0.7% (重量百分比) 的 Cu、 1.6% (重量百分比) 的 A1和 22.4°/。(重量百分比) 的 Fe;
②采用氢破法将主合金破碎为主合金氢破粗粉,将辅合金进行吸氢处理后破碎制成 辅合金氢化物颗粒; 其中辅合金氢化物颗粒中的氢含量(重量比) 为 10840ppm;
③将主合金氢破粗粉和辅合金氢化物颗粒按照重量比 97.3 : 2.7混合并搅拌均匀;
④将步 '骤③得到的混合物通过气流磨制成表面积平均粒径为 2.56μιη的粉末; ⑤将步骤④得到的粉末再次搅拌均匀后进行取向成型处理, 得到钹铁硼磁体生坯; 取向成型处理过程为: 在氮气保护下通过大小为 1.8T的磁场进行取向并压制成型, 然 后经过冷等静压处理;
⑥将钕铁硼磁体生坯进行烧结, 得到烧结钕铁硼磁体; 具体烧结工艺过程为:
⑥ -1将钕铁硼磁体生坯置于真空烧结炉中,由 800°C升温到 10004C脱氢处理 2小时; ⑥ -2将真空烧结炉升温至 1030'C, 真空烧结 4小时;
⑥ -3经过 890°C—级回火热处理 2小吋和 450Ό二级回火热处理 4小时, 制得烧结 钕铁硼磁体。
对本实施例的烧结钕铁硼磁体的磁性能进行测试, 其磁性能如表 4所示:
表 4添加 2.7%重稀土合金 (Dy^NdsGao.sCuojAl^Fe^ ) 的磁性能
Figure imgf000007_0001
实施例五: 一种制备烧结钕铁硼磁体的方法, 包括以下歩骤:
①选取主合金和辅合金: 采用速凝铸造工艺制备主合金和辅合金, 主合金为钕铁硼 合金铸片, 辅合金为重稀土合金铸片: 主合金由以下组分组成: 29.3% (重量百分比) 的 PrNd合金、 0.2% (重量百分比) 的 Nb、 1% (重量百分比) 的 Co、 0.1% (重量百分 比) 的 A1 、 0.15% (重量百分比) 的 Cu、 1% (重量百分比) 的 B和 68. 25% (重量百 分比) 的 Fe; 辅合金由以下组分组成: 55% (重量百分比) 的 Dy、 0.1% (重量百分比) 的 Ga、 0.15% (重量百分比) 的 Cu、 0.3% (重量百分比) 的 Al、 1.4% (重量百分比) 的 B和 43.05% (重量百分比) 的 Fe;
②采用氢破法将主合金破碎为主合金氢破粗粉,将辅合金进行吸氢处理后破碎制成 辅合金氢化物颗粒; 其中辅合金氢化物颗粒中的氢含量 (重量比) 为 8086ppm;
③将主合金氢破粗粉和辅合金氢化物颗粒按照重量比 92.2: 7.8混合并搅拌均匀:
④将步骤③得到的混合物通过气流磨制成表面积平均粒径为 2.44μηι的粉末;
⑤将歩骤④得到的粉末再次搅拌均匀后进行取向成型处理, 得到钕铁硼磁体生坯; 取向成型处理过程为: 在氮气保护下通过大小为 1.8T 的磁场进行取向并压制成型, 然 后经过冷等静压处理;
⑥将钕铁硼磁体生坯进行烧结, 得到烧结钕铁硼磁体; 具体烧结工艺过程为:
⑥ -1将铵铁硼磁体生坯置于真空烧结炉中,由 80CTC升温到 100CTC脱氢处理 2小时; ⑥ -2将真空烧结炉升温至 103(TC, 真空烧结 4小时;
⑥ -3经过 890°C—级回火热处理 2小时和 500'C二级回火热处理 4小时, 制得烧结 钕铁硼磁体。
对本实施例的烧结钕铁硼磁体的磁性能进行测试, 其磁性能如表 5所示:
表 5 添加 7.8%重稀土合金 (Dy55Gao. i Cuoj5Alo.3Fe43.05BM ) 的磁性能
Figure imgf000008_0001
实施例六: 一种制备烧结钕铁硼磁体的方法, 包括以下歩骤:
①选取主合金和辅合金: 采用速凝铸造工艺制备主合金和辅合金, 主合金为钕铁硼 合金铸片, 辅合金为重稀土合金铸片; 主合金由以下组分组成: 29.3% (重量百分比) 的 PrNd合金、 0.2% (重量百分比) 的 Nb、 1% (重量百分比) 的 Co、 0.1% (重量百分 比) 的 A1 、 0.15% (重量百分比) 的 Cu、 1% (重量百分比) 的 B和 68. 25% (重量百 分比) 的 Fe; 辅合金由以下组分组成: 45% (重量百分比) 的 Dy、 0.1% (重量百分比) 的 Ga、 0.15% (重量百分比) 的 Cu、 0.3% (重量百分比) 的 Al、 1.4% (重量百分比) 的 B和 53.05% (重量百分比) 的 Fe;
②采用氢破法将主合金破碎为主合金氢破粗粉,将辅合金进行吸氢处理后破碎制成 辅合金氢化物颗粒; 其中辅合金氢化物颗粒中的氢含量(重量比) 为 8911ppm;
③将主合金氢破粗粉和辅合金氢化物颗粒按照重量比 85.1 : 14.9混合并搅拌均匀;
④将歩骤③得到的混合物通过气流磨制成表面积平均粒径为 2.49μηι的粉末;
⑤将歩骤④得到的粉末再次搅拌均匀后进行取向成型处理, 得到钕铁硼磁体生坯; 取向成型处理过程为: 在氮气保护下通过大小为 1.8T的磁场进行取向并压制成型, 然 后经过冷等静压处理;
⑥将钕铁硼磁体生坯进行烧结, 得到烧结钕铁硼磁体; 具体烧结工艺过程为:
⑥ -1将钕铁硼磁体生坯置于真空烧结炉中,由 800°C升温到 1000'C脱氢处理 2小时; ⑥ -2将真 烧结炉升温至 1030°C, 真空烧结 4小时;
⑥ -3经过 890Ό—级回火热处理 2小时和 53CTC二级回火热处理 4小时, 制得烧结 钕铁硼磁体。
对本实施例的烧结钕铁硼磁体的磁性能进行测试, 其磁性能如表 6所示:
表 6 添加 14.9%重稀土合金 (Dy Ga^CiKusAl sFe osBw) 的磁性能 Dy含量 Br HcB Hcj (BH)max Hk Hk Hcj
(wt%) (kGs) (kOe) (kOe) (MGsOe) (kOe)
6.7 11.24 10.86 30.04 31.15 29.14 0.97 实施例七: 一种制备烧结钕铁硼磁体的方法, 包括以下步骤:
①选取主合金和辅合金: 采用速凝铸造工艺制备主合金和辅合金, 主合金为钕铁硼 合金铸片, 辅合金为重稀土合金铸片; 主合金由以下组分组成: 29.3% (重量百分比) 的 PrNd合金、 0.2% (重量百分比) 的 Nb、 1% (重量百分比) 的 Co、 0.1% (重量百分 比) 的 A1 、 0.15% (重量百分比) 的 Cu、 1% (重量百分比) 的 B和 68. 25% (重量百 分比) 的 Fe; 辅合金由以下组分组成: 35% (重量百分比) 的 Dy、 0.1% (重量百分比) 的 Ga、 0.15% (重量百分比) 的 Cu、 0.3% (重量百分比) 的 Al、 1.4% (重量百分比) 的 B和 63.05% (重量百分比) 的 Fe;
②采用氢破法将主合金破碎为主合金氢破粗粉,将辅合金进行吸氢处理后破碎制成 辅合金氢化物颗粒; 其中辅合金氢化物颗粒中的氢含量(重量比) 为 7423ppm;
③将主合金氢破粗粉和辅合金氢化物颗粒按照重量比 75 : 25混合并搅拌均匀:
④将歩骤③得到的混合物通过气流磨制成表面积平均粒径为 2.51μιη的粉末;
⑤将步骤④得到的粉末再次搅拌均勾后进行取向成型处理, 得到铵铁硼磁体生坯; 取向成型处理过程为: 在氮气保护下通过大小为 1.8T 的磁场进行取向并压制成型, 然 后经过冷等静压处理;
⑥将钕铁硼磁体生坯进行烧结, 得到烧结钕铁硼磁体; 具体烧结工艺过程为:
⑥ -1将钕铁硼磁体生坯置于真空烧结炉中, ώ 800°C升温到 100(TC脱氢处理 2小时; ⑥ -2将真空烧结炉升温至 1030°C, 真空烧结 4小时;
⑥ -3经过 890'C—级回火热处理 2小时和 53CTC二级回火热处理 4小时, 制得烧结 钕铁硼磁体。
对本实施例的烧结钕铁硼磁体的磁性能进行测试, 其磁性能如表 7所示:
添加 25%重稀土合金 (Dy Ga^Cuo^AlojFee.osBM) 的磁性能
Figure imgf000009_0001

Claims

权 利 要 求
1.一种制备烧结钕铁硼磁体的方法, 其特征在于包括以下歩骤:
①选取主合金和辅合金, 其中所述的主合金为钕铁硼合金铸锭或铸片, 所述的辅合 金为重稀土合金, 所述的辅合金的成分为 RaMbFe1()().a.b, 其中 R为 Gd、 Tb、 Dy和 Ho 中的至少一种, M为 Co、 Mn、 Cu、 Al、 Ti、 Ga、 Zr、 V、 Hf、 W、 B和 Nb中的至少 一种, a和 b均表示重量百分含量, 且 30≤a< 100, 0<b<70;
②采用氢破法将主合金破碎为主合金氢破粗粉,将辅合金进行吸氢处理后破碎制成 辅合金氢化物颗粒;
③取主合金氢破粗粉和辅合金氢化物颗粒, 将两者混合后搅拌均勾, 其中主合金氢 破粗粉的重量占两者总重量的百分比为大于等于 75%且小于 100°/。, 辅合金氢化物颗粒 的重量占两者总重量的百分比为大于 0且小于等于 25%;
④将步骤③得到的混合物制成表面积平均粒径为 1-5μηι粉末;
⑤将步骤④得到的粉末再次搅拌均匀后进行取向成型处理, 得到钕铁硼磁体生坯;
⑥将钕铁硼磁体生坯进行烧结, 得到烧结钕铁硼磁体。
2. 根据权利要求 1所述的一种制备烧结钕铁硼磁体的方法,其特征在于所述的歩骤
①中的主合金的成分为 NdmNnXtFe1()。.m.n.k.tBk, 其中 N为 La、 Ce、 Pr、 Dy、 Tb中的至 少一种, X为 Co、 Mn、 Cu、 Al、 Ti、 Ga、 Zr、 V、 Hf、 W和 Nb中的至少一种, m、 n、 t和 k均表示重量百分含量, 且 28.5≤m+n≤33, 0<t<5, 0.9≤k≤1.2。
3. 根据权利要求 1所述的一种制备烧结钕铁硼磁体的方法,其特征在于所述的步骤
②中辅合金氢化物颗粒中氢含量 (重量比) 大于等于 4000ppm小于等于 15000ppm。
4. 根据权利要求 1或 2或 3所述的一种制备烧结钕铁硼磁体的方法,其特征在于所 述的步骤⑤中取向成型处理工艺采用的取向磁场大小为 1〜5T。
5. 根据权利要求 1或 2或 3所述的一种制备烧结钕铁硼磁体的方法,其特征在于所 述的步骤⑥中烧结工艺过程为-
⑥ -1将钕铁硼磁体生坯置于真空烧结炉中,由 800°C升温到 lOOiTC脱氢处理 2小时; ⑥ -2将真空烧结炉升温至 1010〜1120°C, 真空烧结 1〜4小时;
⑥ -3经过 850〜950°C—级回火热处理 1〜4小时和 450〜600°C二级回火热处理 1〜 4小时, 制得烧结钕铁硼磁体。
PCT/CN2013/000059 2012-12-26 2013-01-21 一种制备烧结钕铁硼磁体的方法 WO2014101247A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/542,535 US9728311B2 (en) 2012-12-26 2014-11-14 Method for preparing neodymium-iron-boron (Nd—Fe—B)-based sintered magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210576207.4 2012-12-26
CN201210576207.4A CN103065787B (zh) 2012-12-26 2012-12-26 一种制备烧结钕铁硼磁体的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/542,535 Continuation-In-Part US9728311B2 (en) 2012-12-26 2014-11-14 Method for preparing neodymium-iron-boron (Nd—Fe—B)-based sintered magnet

Publications (1)

Publication Number Publication Date
WO2014101247A1 true WO2014101247A1 (zh) 2014-07-03

Family

ID=48108368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000059 WO2014101247A1 (zh) 2012-12-26 2013-01-21 一种制备烧结钕铁硼磁体的方法

Country Status (3)

Country Link
US (1) US9728311B2 (zh)
CN (1) CN103065787B (zh)
WO (1) WO2014101247A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492869B2 (en) * 2013-05-05 2016-11-15 China North Magnetic & Electronic Technology Co., LTD Double-alloy NdFeB rare earth permanent magnetic material and manufacturing method thereof
WO2016201944A1 (zh) * 2015-06-16 2016-12-22 北京科技大学 晶界为低熔点轻稀土-铜合金的钕铁硼磁体的制备方法
CN112447350A (zh) * 2019-08-29 2021-03-05 比亚迪股份有限公司 一种稀土永磁体及其制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426624B (zh) * 2013-08-14 2015-12-02 林建强 钕铁硼永磁体的制备方法
CN104752013A (zh) * 2013-12-27 2015-07-01 比亚迪股份有限公司 一种稀土永磁材料及其制备方法
CN104269238B (zh) * 2014-09-30 2017-02-22 宁波科田磁业有限公司 一种高性能烧结钕铁硼磁体和制备方法
CN105632748B (zh) * 2015-12-25 2019-01-11 宁波韵升股份有限公司 一种提高烧结钕铁硼薄片磁体磁性能的方法
CN105761925A (zh) * 2016-04-18 2016-07-13 中钢集团安徽天源科技股份有限公司 一种钬铁镓共晶掺杂制备高性能钕铁硼磁体的方法
CN106252009B (zh) * 2016-07-26 2019-06-25 浙江大学 一种基于稀土氢化物添加的高性能富La/Ce/Y稀土永磁体及其制备方法
CN106653269B (zh) * 2016-12-20 2018-10-23 山西大缙华磁性材料有限公司 制作高一致性烧结钕铁硼永磁体的工艺方法及其工装
CN107742564B (zh) * 2017-10-31 2019-05-07 中钢集团安徽天源科技股份有限公司 一种高镝辅合金添加制备低成本钕铁硼磁体的方法
KR102093491B1 (ko) * 2017-11-28 2020-03-25 주식회사 엘지화학 소결 자석의 제조 방법 및 소결 자석
CN108735413A (zh) * 2018-05-18 2018-11-02 宁波科田磁业有限公司 一种含Tb高性能高矫顽力磁体及其制备方法
CN109192426B (zh) * 2018-09-05 2020-03-10 福建省长汀金龙稀土有限公司 含有Tb和Hf的R-Fe-B系烧结磁体及其制备方法
CN109585113A (zh) * 2018-11-30 2019-04-05 宁波韵升股份有限公司 一种烧结钕铁硼磁体的制备方法
CN109509628B (zh) * 2018-12-21 2020-10-23 宁波韵升股份有限公司 一种烧结钕铁硼复合粉料的制备方法
CN110491616B (zh) * 2019-07-19 2022-04-19 宁波可可磁业股份有限公司 一种钕铁硼磁性材料及其制备方法
CN113496818A (zh) * 2020-03-19 2021-10-12 中华人民共和国北仑海关 一种钕铁硼的制备方法
CN111636035B (zh) * 2020-06-11 2022-03-01 福建省长汀金龙稀土有限公司 重稀土合金、钕铁硼永磁材料、原料和制备方法
CN112435820A (zh) * 2020-11-18 2021-03-02 宁波金鸡强磁股份有限公司 一种高性能烧结钕铁硼磁体及其制备方法
CN112768167A (zh) * 2020-12-23 2021-05-07 宁波科星材料科技有限公司 一种钕铁硼永磁体的制备方法
CN113571280B (zh) * 2021-07-23 2024-02-13 包头天和磁材科技股份有限公司 钕铁硼磁体粗粉助剂及制备方法、用途和磁体的制备方法
FR3133700A1 (fr) * 2022-03-16 2023-09-22 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de fabrication d’un aimant à partir d’aimants recyclés
CN114864259B (zh) * 2022-04-14 2023-09-12 浙江大学 通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344542A2 (en) * 1988-06-03 1989-12-06 Masato Sagawa An Nd-Fe-B sintered magnet and method for producing the same
CN1688000A (zh) * 2005-06-06 2005-10-26 浙江大学 晶界相中添加纳米氧化物提高烧结钕铁硼矫顽力方法
CN101006534A (zh) * 2005-04-15 2007-07-25 株式会社新王磁材 稀土类烧结磁铁及其制造方法
CN101266857A (zh) * 2007-12-24 2008-09-17 中国石油大学(华东) 纳米钛粉改性提高烧结钕铁硼矫顽力和工作温度方法
CN101996721A (zh) * 2009-08-11 2011-03-30 中国科学院宁波材料技术与工程研究所 一种提高烧结钕铁硼矫顽力的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1157464A (zh) * 1996-02-13 1997-08-20 中美合资北京奥瑞特磁体材料有限公司 高性能稀土金属-过渡金属-硼烧结磁体的制造方法
JP2008214661A (ja) * 2007-02-28 2008-09-18 Tdk Corp 希土類焼結磁石の製造方法
JP2010263172A (ja) * 2008-07-04 2010-11-18 Daido Steel Co Ltd 希土類磁石およびその製造方法
CN102347126B (zh) * 2010-07-30 2014-07-23 沈阳中北通磁科技股份有限公司 一种高性能烧结钕铁硼稀土永磁材料及制造方法
CN101982855A (zh) * 2010-09-16 2011-03-02 中国科学院宁波材料技术与工程研究所 一种烧结钕铁硼永磁材料及其制备方法
CN102456458B (zh) * 2010-10-15 2017-02-08 中国科学院宁波材料技术与工程研究所 高耐蚀性烧结钕铁硼磁体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344542A2 (en) * 1988-06-03 1989-12-06 Masato Sagawa An Nd-Fe-B sintered magnet and method for producing the same
CN101006534A (zh) * 2005-04-15 2007-07-25 株式会社新王磁材 稀土类烧结磁铁及其制造方法
CN1688000A (zh) * 2005-06-06 2005-10-26 浙江大学 晶界相中添加纳米氧化物提高烧结钕铁硼矫顽力方法
CN101266857A (zh) * 2007-12-24 2008-09-17 中国石油大学(华东) 纳米钛粉改性提高烧结钕铁硼矫顽力和工作温度方法
CN101996721A (zh) * 2009-08-11 2011-03-30 中国科学院宁波材料技术与工程研究所 一种提高烧结钕铁硼矫顽力的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492869B2 (en) * 2013-05-05 2016-11-15 China North Magnetic & Electronic Technology Co., LTD Double-alloy NdFeB rare earth permanent magnetic material and manufacturing method thereof
WO2016201944A1 (zh) * 2015-06-16 2016-12-22 北京科技大学 晶界为低熔点轻稀土-铜合金的钕铁硼磁体的制备方法
CN112447350A (zh) * 2019-08-29 2021-03-05 比亚迪股份有限公司 一种稀土永磁体及其制备方法
CN112447350B (zh) * 2019-08-29 2024-05-07 比亚迪股份有限公司 一种稀土永磁体及其制备方法

Also Published As

Publication number Publication date
US20150071810A1 (en) 2015-03-12
CN103065787B (zh) 2015-10-28
CN103065787A (zh) 2013-04-24
US9728311B2 (en) 2017-08-08

Similar Documents

Publication Publication Date Title
WO2014101247A1 (zh) 一种制备烧结钕铁硼磁体的方法
CN102959648B (zh) R-t-b系稀土类永久磁铁、电动机、汽车、发电机、风力发电装置
CN108922710B (zh) 一种高韧性、高矫顽力含Ce烧结稀土永磁体及其制备方法
CN101364465B (zh) 稀土永磁材料及其制备方法
CN101266855B (zh) 稀土永磁材料及其制造方法
CN102956336B (zh) 一种制备复合添加钆、钬和钇的烧结钕铁硼永磁材料的方法
CN110047636B (zh) 一种高矫顽力富La/Ce烧结磁体的制备方法
CN103903824B (zh) 一种稀土永磁材料及其制备方法
CN103824668A (zh) 一种低重稀土高矫顽力烧结钕铁硼磁体及其制备方法
WO2012048654A1 (zh) 高耐蚀性烧结钕铁硼磁体及其制备方法
WO2013107274A1 (zh) 纳米Cu粉掺杂制备高矫顽力SmCoFeCuZr高温永磁体的方法
CN104966607B (zh) 一种烧结钕铁硼永磁体的制备方法
CN104575920B (zh) 稀土永磁体及其制备方法
CN106710768A (zh) 一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法
CN107742564A (zh) 一种高镝辅合金添加制备低成本钕铁硼磁体的方法
TW202121451A (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
CN107958760B (zh) 一种稀土永磁材料及其制备方法
CN112086255A (zh) 一种高矫顽力、耐高温烧结钕铁硼磁体及其制备方法
CN106409458B (zh) 一种电机复合永磁材料及其制备方法
WO2012043139A1 (ja) R-t-b系希土類永久磁石用合金材料、r-t-b系希土類永久磁石の製造方法およびモーター
CN103137314B (zh) 一种制备稀土-铁-硼永磁体的方法
CN104275487B (zh) 一种添加mm合金的烧结钕铁硼的制备方法
CN102360909A (zh) 一种钕铁硼磁体的制备方法
CN113838622A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN105761925A (zh) 一种钬铁镓共晶掺杂制备高性能钕铁硼磁体的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867334

Country of ref document: EP

Kind code of ref document: A1