WO2014097998A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2014097998A1
WO2014097998A1 PCT/JP2013/083521 JP2013083521W WO2014097998A1 WO 2014097998 A1 WO2014097998 A1 WO 2014097998A1 JP 2013083521 W JP2013083521 W JP 2013083521W WO 2014097998 A1 WO2014097998 A1 WO 2014097998A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
liquid crystal
polarity
vertical electric
display device
Prior art date
Application number
PCT/JP2013/083521
Other languages
English (en)
French (fr)
Inventor
耕平 田中
村田 充弘
章仁 陣田
洋典 岩田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/652,344 priority Critical patent/US9552785B2/en
Publication of WO2014097998A1 publication Critical patent/WO2014097998A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0469Details of the physics of pixel operation
    • G09G2300/0478Details of the physics of pixel operation related to liquid crystal pixels
    • G09G2300/0495Use of transitions between isotropic and anisotropic phases in liquid crystals, by voltage controlled deformation of the liquid crystal molecules, as opposed to merely changing the orientation of the molecules as in, e.g. twisted-nematic [TN], vertical-aligned [VA], cholesteric, in-plane, or bi-refringent liquid crystals

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly, to a liquid crystal display device that controls the alignment of liquid crystal molecules by using both a vertical electric field and a horizontal electric field.
  • the operation mode of the liquid crystal in the liquid crystal display device includes an operation mode using a vertical electric field and an operation mode using a horizontal electric field.
  • a vertical electric field is generated between a pair of substrates arranged with a liquid crystal layer interposed therebetween.
  • a lateral electric field is generated between electrodes of one of the pair of substrates arranged with the liquid crystal layer interposed therebetween.
  • the operation mode using the vertical electric field is, for example, a TN (twisted nematic) mode or a VA (vertical alignment) mode.
  • the operation mode using the lateral electric field is, for example, an IPS (in-plane switching) mode.
  • the vertical electric field and the horizontal electric field have a positive polarity and a negative polarity, respectively. Therefore, when the vertical electric field and the horizontal electric field are used in combination, four combinations are required as combinations of polarities of the vertical electric field and the horizontal electric field. Simply implementing these combinations requires four frames. For example, when the frame frequency is 60 Hz, the polarity inversion frequency is 30 Hz if either the vertical electric field or the horizontal electric field is used. On the other hand, when the vertical electric field and the horizontal electric field are used in combination, the polarity inversion frequency is 15 Hz. Therefore, flicker is easily recognized.
  • An object of the present invention is to provide a liquid crystal display device that uses both a vertical electric field and a horizontal electric field and that is difficult to recognize flicker.
  • the liquid crystal display device includes a liquid crystal panel and a control unit.
  • the liquid crystal panel has a display area in which a plurality of pixels are arranged.
  • the control unit displays an image in the display area.
  • the liquid crystal panel includes an active matrix substrate, a counter substrate, and a liquid crystal layer.
  • the counter substrate is disposed to face the active matrix substrate.
  • the liquid crystal layer is sealed between the active matrix substrate and the counter substrate.
  • the active matrix substrate includes a pair of drive electrodes and a common electrode. A pair of drive electrodes is disposed for each pixel.
  • the common electrode is arranged farther from the liquid crystal layer than the pair of drive electrodes.
  • the counter substrate is disposed to face the common electrode and the pair of drive electrodes.
  • the control unit includes a horizontal electric field control unit and a vertical electric field control unit.
  • the lateral electric field control unit controls the lateral electric field generated between the pair of drive electrodes by controlling the potential of the pair of drive electrodes.
  • the vertical electric field control unit controls the vertical electric field generated between the common electrode and the counter electrode by controlling the potentials of the common electrode and the counter electrode.
  • the horizontal electric field control unit controls the strength and polarity of the horizontal electric field.
  • the vertical electric field control unit reverses the polarity of the vertical electric field.
  • FIG. 1 is a schematic diagram showing an example of a schematic configuration of the liquid crystal display device according to the first embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a schematic configuration of a pixel included in the liquid crystal panel.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 4A is a cross-sectional view illustrating a schematic configuration of the liquid crystal panel, and is a cross-sectional view illustrating a state in which a lateral electric field is not generated.
  • FIG. 4B is a cross-sectional view illustrating a schematic configuration of the liquid crystal panel, and is a cross-sectional view illustrating a state in which a lateral electric field is generated.
  • FIG. 1 is a schematic diagram showing an example of a schematic configuration of the liquid crystal display device according to the first embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a schematic configuration of a pixel included in the liquid crystal panel.
  • 3 is a cross-
  • FIG. 5 is a time chart showing the relationship between the polarity of the vertical electric field and the polarity of the horizontal electric field in the first embodiment.
  • FIG. 6 is a time chart showing the relationship between the polarity of the vertical electric field and the polarity of the horizontal electric field in Application Example 2 of the first embodiment.
  • FIG. 7 is a cross-sectional view illustrating a schematic configuration of a pixel included in the liquid crystal panel according to the application example 3 of the first embodiment.
  • FIG. 8 is a schematic diagram showing an example of a schematic configuration of the liquid crystal display device according to the second embodiment of the present invention.
  • FIG. 9 is a time chart showing the relationship between the polarity of the vertical electric field and the polarity of the horizontal electric field in the second embodiment.
  • FIG. 10 is a schematic diagram showing an example of a schematic configuration of the liquid crystal display device according to the third embodiment of the present invention.
  • FIG. 11 is a time chart showing the relationship between the polarity of the vertical electric field and the polarity of the horizontal electric field in the third embodiment.
  • the liquid crystal display device includes a liquid crystal panel and a control unit.
  • the liquid crystal panel has a display area in which a plurality of pixels are arranged.
  • the control unit displays an image in the display area.
  • the liquid crystal panel includes an active matrix substrate, a counter substrate, and a liquid crystal layer.
  • the counter substrate is disposed to face the active matrix substrate.
  • the liquid crystal layer is sealed between the active matrix substrate and the counter substrate.
  • the active matrix substrate includes a pair of drive electrodes and a common electrode. A pair of drive electrodes is disposed for each pixel.
  • the common electrode is arranged farther from the liquid crystal layer than the pair of drive electrodes.
  • the counter substrate is disposed to face the common electrode and the pair of drive electrodes.
  • the control unit includes a horizontal electric field control unit and a vertical electric field control unit.
  • the lateral electric field control unit controls the lateral electric field generated between the pair of drive electrodes by controlling the potential of the pair of drive electrodes.
  • the vertical electric field control unit controls the vertical electric field generated between the common electrode and the counter electrode by controlling the potentials of the common electrode and the counter electrode.
  • the horizontal electric field control unit controls the strength and polarity of the horizontal electric field.
  • the vertical electric field control unit reverses the polarity of the vertical electric field.
  • the polarity of the vertical electric field is reversed when the polarity of the horizontal electric field is maintained. Therefore, the combination of the polarities (four combinations) required when using the vertical electric field and the horizontal electric field together can be realized with two frames.
  • the polarity inversion frequency is 30 Hz. That is, the polarity inversion frequency is the same as when either the vertical electric field or the horizontal electric field is used. Therefore, it becomes difficult to recognize flicker.
  • the vertical electric field control unit has the same length of the period in which the polarity of the vertical electric field is positive and the length of the negative period when the polarity of the horizontal electric field is maintained.
  • the polarity of the vertical electric field is not biased to any polarity, that is, the direct current component is not included in the driving voltage of the liquid crystal, the life of the liquid crystal panel is prolonged. As a result, the reliability of the liquid crystal panel is improved.
  • the vertical electric field control unit reverses the polarity of the vertical electric field by changing the potential of the counter electrode.
  • the counter electrode is disposed on the counter substrate. Therefore, the counter electrode is farther from the pair of drive electrodes than the common electrode. As a result, it is possible to reduce the width of the potential fluctuation that occurs in each drive electrode as the polarity of the vertical electric field is reversed.
  • the fourth configuration is the third configuration, wherein the counter electrode has a plurality of divided electrodes.
  • the vertical electric field control unit sequentially changes the potential of each divided electrode.
  • All the pixels have the same change in the polarity of the vertical electric field when the polarity of the horizontal electric field is maintained. Therefore, the luminance gradient in the display area can be reduced.
  • the load when changing the potential is lighter than when the counter electrode is not divided into a plurality of electrodes.
  • the vertical electric field control unit inverts the polarity of the vertical electric field by changing the potential of the common electrode in the first configuration.
  • the common electrode is arranged on the active matrix substrate.
  • a wiring made of a metal film is arranged like a gate line or a source line. Therefore, the wiring connected to the common electrode can be formed using the same material as the gate line and the source line. In this case, the resistance of the wiring connected to the common electrode can be reduced. As a result, the load when the polarity of the vertical electric field is reversed is lighter than when the potential of the counter electrode is changed.
  • the common electrode has a plurality of divided electrodes in the fifth configuration.
  • the vertical electric field control unit sequentially changes the potential of each divided electrode.
  • All the pixels have the same change in the polarity of the vertical electric field when the polarity of the horizontal electric field is maintained. Therefore, the luminance gradient in the display area can be reduced.
  • the polarity of the vertical electric field is reversed when the horizontal electric field is maintained in the positive polarity, and the horizontal electric field is set in the negative polarity.
  • the direction in which the polarity of the vertical electric field is reversed when maintained is the same.
  • the direction of potential fluctuation generated in each drive electrode is the same as the polarity of the vertical electric field is reversed. Therefore, for example, when the switching element connected to each drive electrode is a thin film transistor, it is possible to prevent the thin film transistor from malfunctioning even if a potential fluctuation occurs due to the polarity inversion of the vertical electric field. As a result, the reliability of the operation of the thin film transistor is improved.
  • the counter substrate further includes a dielectric layer disposed closer to the liquid crystal layer than the counter electrode.
  • the lateral electric field control unit controls the potentials of the pair of drive electrodes for all the pixels in a period shorter than one frame.
  • the power consumption can be suppressed if nothing is done in the remaining period.
  • FIG. 1 shows a liquid crystal display device 10 according to a first embodiment of the present invention.
  • the liquid crystal display device 10 includes a liquid crystal panel 12 and a control unit 14.
  • the control unit 14 includes a control circuit 20 and drivers 22, 24, and 26.
  • the control circuit 20 includes a drive control unit 20A, a first polarity control unit 20B, and a second polarity control unit 20C.
  • the liquid crystal panel 12 has a display area 18 in which a plurality of pixels 16 are arranged.
  • the plurality of pixels 16 are arranged in a matrix.
  • the liquid crystal panel 12 has a plurality of gate lines 28 and a plurality of source lines 30.
  • the plurality of gate lines 28 and the plurality of source lines 30 are arranged in a lattice pattern.
  • the plurality of gate lines 28 are connected to the driver 22.
  • the driver 22 is a so-called gate driver.
  • the plurality of source lines 30 are connected to the driver 24.
  • the driver 24 is a so-called source driver.
  • the plurality of source lines 30 are composed of first source lines 30A and second source lines 30B arranged alternately. That is, the plurality of source lines 30 include a plurality of sets of source lines 30A and 30B including the first source line 30A and the second source line 30B arranged adjacent to each other.
  • the liquid crystal panel 12 includes a pair of drive electrodes 32A and 32B for each pixel 16.
  • the drive electrode 32A is connected to the first source line 30A via the thin film transistor 34A.
  • the drive electrode 32B is connected to the second source line 30B via the thin film transistor 34B.
  • the gate is connected to the gate line 28, the source is connected to the first source line 30A, and the drain is connected to the drive electrode 32A.
  • the gate is connected to the gate line 28, the source is connected to the second source line 30B, and the drain is connected to the drive electrode 32B.
  • the liquid crystal panel 12 includes a common electrode 36 and a counter electrode 38.
  • the common electrode 36 and the counter electrode 38 are connected to the driver 26.
  • the drive control unit 20A outputs a gate signal to the driver 22.
  • the driver 22 sequentially outputs gate signals to the plurality of gate lines 28.
  • the gate signal is the potential of the gates of the thin film transistors 34A and 34B.
  • the driver 22 outputs a gate signal, the thin film transistors 34A and 34B are driven.
  • the drive control unit 20A outputs image data (gradation signal) to the driver 24.
  • the gradation signal is the potential of each drive electrode 32A, 32B.
  • the driver 24 sequentially outputs gradation signals corresponding to the gate line 28 selected by the driver 22 to a plurality of sets of source lines 30A and 30B.
  • the driver 24 outputs a gradation signal
  • the potentials of the drive electrodes 32A and 32B are set. As a result, a lateral electric field is generated between the pair of drive electrodes 32A and 32B.
  • the drive control unit 20A outputs a drive signal to the driver 26.
  • the driver 26 outputs a drive signal to the common electrode 36 and the counter electrode 38.
  • the drive signal is the potential of the common electrode 36 and the counter electrode 38.
  • the driver 26 outputs a drive signal, the potentials of the common electrode 36 and the counter electrode 38 are set. As a result, a vertical electric field is generated between the common electrode 36 and the counter electrode 38.
  • the first polarity control unit 20B outputs a first polarity signal to the drive control unit 20A.
  • the drive control unit 20A generates a gradation signal having a positive polarity and a gradation signal having a negative polarity based on the first polarity signal.
  • the drive control unit 20A alternately outputs a gradation signal having a positive polarity and a gradation signal having a negative polarity to the driver 24.
  • the driver 24 alternately outputs a grayscale signal having a positive polarity and a grayscale signal having a negative polarity for each pair of source lines 30A and 30B. As a result, the polarity of the transverse electric field is reversed.
  • the second polarity control unit 20C outputs a second polarity signal to the drive control unit 20A.
  • the drive control unit 20A generates a drive signal having a positive polarity and a drive signal having a negative polarity based on the second polarity signal.
  • the drive control unit 20A alternately outputs a drive signal having a positive polarity and a drive signal having a negative polarity to the driver 26.
  • the driver 26 alternately outputs a drive signal having a positive polarity and a drive signal having a negative polarity to the common electrode 36 and the counter electrode 38. Thereby, the polarity of the vertical electric field is reversed.
  • the liquid crystal panel 12 includes an active matrix substrate 12A, a counter substrate 12B, and a liquid crystal layer 12C.
  • the active matrix substrate 12A includes a base substrate 40, a plurality of gate lines 28 (see FIG. 2), an insulating layer 42, a plurality of source lines 30 (a plurality of sets of source lines 30A and 30B), an insulating layer 44, A pair of drive electrodes 32A and 32B, thin film transistors 34A and 34B (see FIG. 2), a common electrode 36, and an insulating layer 46 are provided.
  • the plurality of gate lines 28 are formed, for example, above the main surface of the base substrate 40.
  • the insulating layer 42 covers the plurality of gate lines 28.
  • the plurality of source lines 30 are formed in contact with the insulating layer 42.
  • the insulating layer 44 covers the plurality of source lines 30.
  • the common electrode 36 is formed in contact with the insulating layer 44.
  • the common electrode 36 is disposed over the entire display area 18.
  • the insulating layer 46 covers the common electrode 36.
  • the pair of drive electrodes 32 ⁇ / b> A and 32 ⁇ / b> B are formed in contact with the insulating layer 46.
  • the thin film transistors 34A and 34B are arranged at positions overlapping the gate line 28 with the gate insulating film interposed therebetween.
  • the drive electrode 32A includes a first electrode part 321A and a plurality of second electrode parts 322A.
  • the first electrode portion 321A extends in parallel with the first source line 30A and overlaps the first source line 30A in plan view.
  • the plurality of second electrode portions 322A are each connected to the first electrode portion 321A.
  • the plurality of second electrode portions 322A are arranged at a predetermined interval in the direction in which the first electrode portion 321A extends.
  • the plurality of second electrode portions 322 ⁇ / b> A each extend in parallel with the gate line 28.
  • connection electrode portion 323A is formed at the other end of the first electrode portion 321A.
  • the connection electrode portion 323A has a contact hole 324A.
  • the connection electrode portion 323A is connected to the drain electrode portion 326A through the contact electrode portion 325A.
  • the contact electrode portion 325A is formed at a position overlapping the contact hole 324A.
  • the drain electrode portion 326A is connected to the drain of the thin film transistor 34A.
  • the drive electrode 32B includes a first electrode part 321B and a plurality of second electrode parts 322B.
  • the first electrode portion 321B extends in parallel with the second source line 30B and overlaps the second source line 30B in plan view.
  • the plurality of second electrode portions 322B are connected to the first electrode portion 321B, respectively.
  • the plurality of second electrode portions 322B are arranged at a predetermined interval in the direction in which the first electrode portion 321B extends.
  • the plurality of second electrode portions 322 ⁇ / b> B each extend in parallel with the gate line 28.
  • the second electrode portion 322B included in the drive electrode 32B and the second electrode portion 322A included in the drive electrode 32A are alternately arranged in the direction in which the source line 30 extends.
  • connection electrode portion 323B is formed at one end of the second electrode portion 322B.
  • the connection electrode portion 323B has a contact hole 324B.
  • the connection electrode part 323B is connected to the drain electrode part 326B through the contact electrode part 325B.
  • the contact electrode portion 325B is formed at a position overlapping the contact hole 324B.
  • the drain electrode portion 326B is connected to the drain of the thin film transistor 34B.
  • the counter substrate 12B is disposed to face the active matrix substrate 12A.
  • the counter substrate 12B includes a base substrate 48 and a counter electrode 38.
  • the counter electrode 38 is formed, for example, above the main surface of the base substrate 48.
  • the liquid crystal layer 12C is sealed between the active matrix substrate 12A and the counter substrate 12B.
  • the liquid crystal molecules have positive dielectric anisotropy and are vertically aligned.
  • the liquid crystal molecules 50 maintain the initial alignment (vertical alignment) (see FIG. 4A).
  • the pixels 16 having such an orientation are displayed in black.
  • the driver 26 generates a vertical electric field regardless of the presence or absence of a horizontal electric field.
  • the longitudinal electric field acts in a direction in which the liquid crystal molecules 50 are vertically aligned.
  • the orientation of the liquid crystal molecules 50 changes (see FIG. 4B).
  • the orientation of the liquid crystal molecules 50 changes according to the strength of the lateral electric field.
  • the pixels 16 having an orientation as shown in FIG. 4B are displayed in white.
  • FIG. 5 shows the relationship between the polarity of the vertical electric field and the polarity of the horizontal electric field for the pixel 16 having the thin film transistors 34A and 34B connected to a certain gate line 28.
  • the driver 26 changes the potential relationship between the common electrode 36 and the counter electrode 38 every horizontal period. Specifically, the driver 26 changes the potential of the counter electrode 38 every horizontal period, and keeps the potential of the common electrode 36 constant. At this time, the driver 26 makes the potential of the counter electrode 38 higher or lower than the potential of the common electrode 36. That is, in the example shown in FIG. 5, the driver 26 changes the polarity of the vertical electric field every horizontal period. In the example shown in FIG. 5, the case where the potential of the counter electrode 38 is higher than the potential of the common electrode 36 is the case where the polarity of the vertical electric field is positive.
  • the driver 24 changes the potential relationship between the pair of drive electrodes 32A and 32B for each frame. Specifically, the driver 24 makes the potential of the drive electrode 32A higher or lower than the potential of the drive electrode 32B. That is, in the example shown in FIG. 5, the driver 24 changes the polarity of the lateral electric field for each frame. In the example shown in FIG. 5, the case where the potential of the drive electrode 32A is higher than the potential of the drive electrode 32B is the case where the polarity of the lateral electric field is positive.
  • the driver 26 controls the polarity of the vertical electric field so that the period in which the polarity of the vertical electric field is positive and the period in which the polarity is negative when the driver 24 maintains the polarity of the horizontal electric field is the same.
  • the vertical electric field has a positive polarity and a negative polarity when the horizontal electric field is positive, and the vertical electric field is positive when the horizontal electric field is negative.
  • Polarity and negative polarity Therefore, a combination of polarities required when using both a vertical electric field and a horizontal electric field can be realized in two frames. As a result, flicker can be reduced.
  • the driver 26 changes the polarity of the vertical electric field every horizontal period.
  • the driver 26 may change the polarity of the vertical electric field every plural horizontal periods.
  • the period required for the driver 24 to write data to all the pixels 16 is one frame.
  • the data writing period is 1 ⁇ 2 frame. Therefore, the pause period is 1/2 frame.
  • the driver 26 controls the polarity of the vertical electric field so that the period in which the polarity of the vertical electric field is positive and the period in which the polarity is negative when the driver 24 maintains the polarity of the horizontal electric field is the same. Specifically, the driver 26 makes the polarity of the vertical electric field in the data writing period positive and makes the polarity of the vertical electric field in the rest period negative.
  • FIG. 6 shows the relationship between the polarity of the vertical electric field and the polarity of the horizontal electric field for the pixel 16 having the thin film transistors 34A and 34B connected to the gate line 28 in the first row, and also shows the gate line 28 in the jth row.
  • the relationship between the polarity of the vertical electric field and the polarity of the horizontal electric field for the pixel 16 having the thin film transistors 34A and 34B connected to is shown.
  • the number of times the driver 26 changes the potential of the counter electrode 38 is small. Therefore, as compared with the first embodiment, the burden when the driver 26 changes the potential of the counter electrode 38 is reduced. As a result, even when the size of the liquid crystal panel 12 is large, the burden on the driver 26 when changing the potential of the counter electrode 38 is reduced.
  • the data writing period and the pause period each have 1 ⁇ 2 frame. That is, the driver 24 writes data at double speed, and the driver 26 reverses the polarity of the vertical electric field every 1 ⁇ 2 frame.
  • the data writing period and the period in which the polarity of the vertical electric field is inverted are not limited to the mode shown in FIG.
  • the driver 24 may write data at a speed of 2 m, and the driver 26 may invert the polarity of the vertical electric field every 1 / 2n frame.
  • m is an integer of 1 or more
  • n is a positive number of 1 or more and an integer of m or less.
  • the semiconductor active layers of the thin film transistors 34A and 34B are oxide semiconductors in order to shorten the data writing period.
  • the counter substrate 12 ⁇ / b> B may include a dielectric layer 52.
  • the dielectric layer 52 is disposed closer to the liquid crystal layer 12C than the counter electrode 38 is.
  • the dielectric layer 52 is made of, for example, an organic film, an ultraviolet curable resin, or a thermosetting resin.
  • FIG. 8 shows a liquid crystal display device 10A according to the second embodiment of the present invention.
  • the liquid crystal display device 10A is different from the liquid crystal display device 10 in the counter electrode.
  • the counter electrode 38 ⁇ / b> A of the present embodiment has a plurality of divided electrodes 381. Each divided electrode 381 extends in parallel with the gate line 28. Each divided electrode 381 is connected to the driver 26. The driver 26 changes the potential of each divided electrode 381 in order.
  • FIG. 9 shows the relationship between the polarity of the vertical electric field and the polarity of the horizontal electric field for the pixel 16 having the thin film transistors 34A and 34B connected to the gate line 28 in the first row, and is connected to the gate line 28 in the jth row.
  • the relationship between the polarity of the vertical electric field and the polarity of the horizontal electric field for the pixel 16 having the thin film transistors 34A and 34B is shown.
  • the driver 26 changes the relationship between the potential of each divided electrode 381 and the potential of the common electrode 36 for each frame. Specifically, the driver 26 changes the potential of each divided electrode 381 for each frame, and keeps the potential of the common electrode 36 constant. At this time, the driver 26 makes the potential of each divided electrode 381 higher or lower than the potential of the common electrode 36. That is, in the example shown in FIG. 9, the driver 26 changes the polarity of the vertical electric field for each frame. In the example shown in FIG. 9, the case where the potential of each divided electrode 381 is higher than the potential of the common electrode 36 is the case where the polarity of the vertical electric field is positive.
  • the driver 24 changes the potential relationship between the pair of drive electrodes 32A and 32B for each frame. Specifically, the driver 24 makes the potential of the drive electrode 32A higher or lower than the potential of the drive electrode 32B. That is, in the example shown in FIG. 9, the driver 24 changes the polarity of the lateral electric field for each frame. In the example shown in FIG. 9, the case where the potential of the drive electrode 32A is higher than the potential of the drive electrode 32B is the case where the polarity of the lateral electric field is positive.
  • the driver 26 controls the polarity of the vertical electric field so that the period in which the polarity of the vertical electric field is positive and the period in which the polarity is negative when the driver 24 maintains the polarity of the horizontal electric field is the same.
  • the vertical electric field has a positive polarity and a negative polarity
  • the horizontal electric field is negative
  • the vertical electric field is positive.
  • Polarity and negative polarity Therefore, a combination of polarities required when using both a vertical electric field and a horizontal electric field can be realized in two frames. As a result, flicker can be reduced.
  • the potentials of the plurality of divided electrodes 381 change in order. Therefore, in any pixel 16, the relationship between the potential of the counter electrode 38 (divided electrode 381) and the potential of the common electrode 36 in the period after the data is written by the driver 24 (holding period) is the same.
  • FIG. 10 shows a liquid crystal display device 10B according to the third embodiment of the present invention.
  • the liquid crystal display device 10B is different from the liquid crystal display device 10 in common electrodes.
  • the common electrode 36 ⁇ / b> A of the present embodiment has a plurality of divided electrodes 361. Each divided electrode 361 extends in parallel with the gate line 28. Each divided electrode 361 is connected to the driver 26. The driver 26 changes the potential of each divided electrode 361 in order.
  • FIG. 11 shows the relationship between the polarity of the vertical electric field and the polarity of the horizontal electric field for the pixel 16 having the thin film transistors 34A and 34B connected to the gate line 28 in the first row, and is connected to the gate line 28 in the jth row.
  • the relationship between the polarity of the vertical electric field and the polarity of the horizontal electric field for the pixel 16 having the thin film transistors 34A and 34B is shown.
  • the driver 26 changes the relationship between the potential of each divided electrode 361 and the potential of the counter electrode 38 for each frame. Specifically, the driver 26 changes the potential of each divided electrode 361 for each frame, and keeps the potential of the counter electrode 38 constant. At this time, the driver 26 makes the potential of each divided electrode 361 higher or lower than the potential of the counter electrode 38. That is, in the example shown in FIG. 11, the driver 26 changes the polarity of the vertical electric field for each frame. In the example shown in FIG. 11, the case where the potential of each divided electrode 361 is higher than the potential of the counter electrode 38 is the case where the polarity of the vertical electric field is positive.
  • the driver 24 changes the potential relationship between the pair of drive electrodes 32A and 32B for each frame. Specifically, the driver 24 makes the potential of the drive electrode 32A higher or lower than the potential of the drive electrode 32B. That is, in the example shown in FIG. 11, the driver 24 changes the polarity of the lateral electric field for each frame. In the example shown in FIG. 11, the case where the potential of the drive electrode 32A is higher than the potential of the drive electrode 32B is the case where the polarity of the lateral electric field is positive.
  • the driver 26 controls the polarity of the vertical electric field so that the period in which the polarity of the vertical electric field is positive and the period in which the polarity is negative when the driver 24 maintains the polarity of the horizontal electric field is the same.
  • the vertical electric field has a positive polarity and a negative polarity when the horizontal electric field is positive, and the vertical electric field is positive when the horizontal electric field is negative.
  • Polarity and negative polarity Therefore, a combination of polarities required when using both a vertical electric field and a horizontal electric field can be realized in two frames. As a result, flicker can be reduced.
  • the driver 26 changes the potentials of the plurality of divided electrodes 361 in order. Therefore, in any pixel 16, the relationship between the potential of the counter electrode 38 and the potential of the common electrode 36 (divided electrode 361) in the period after the data is written by the driver 24 (holding period) is the same.
  • the driver 26 makes the polarity of the vertical electric field positive in any pixel 16. Therefore, in any pixel 16, when the driver 26 changes the polarity of the vertical electric field, the potentials of the drive electrodes 32A and 32B are lowered. That is, the direction in which the polarity of the vertical electric field is reversed when the horizontal electric field is maintained at a positive polarity is the same as the direction in which the polarity of the vertical electric field is reversed when the horizontal electric field is maintained at a negative polarity. Become. Here, if the polarity of the vertical electric field when the driver 24 writes data is negative, the potentials of the drive electrodes 32A and 32B rise when the polarity of the vertical electric field is changed by the driver 26.
  • the driver 26 when the polarity of the vertical electric field when the driver 24 writes data is not unified, the driver 26 has a longer electric field than when the polarity of the vertical electric field when the driver 24 writes data is unified.
  • the potential fluctuation width of each of the drive electrodes 32A and 32B when the polarity is changed is increased. Therefore, the reliability with respect to the operation of the thin film transistors 34A and 34B is lowered.
  • the polarity of the vertical electric field when the driver 24 writes data is unified. Therefore, the potential fluctuation width of each drive electrode 32A, 32B when the driver 26 changes the polarity of the vertical electric field can be reduced. As a result, the reliability of the operation of the thin film transistors 34A and 34B is improved.
  • the polarity of the vertical electric field when the driver 24 writes data may not be unified.
  • the liquid crystal molecules have a positive dielectric anisotropy, but the liquid crystal molecules may have a negative dielectric anisotropy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

 縦電界と横電界を併用する液晶表示装置であって、フリッカが認識され難い液晶表示装置を提供する。液晶表示装置(10)は、液晶パネル(12)と、制御部(14)とを備える。制御部(14)は、横電界制御部と、縦電界制御部とを備える。横電界制御部は、液晶パネル(12)が備える一対の駆動電極(32A、32B)の電位を制御することにより、一対の駆動電極(32A、32B)の間に発生する横電界を制御する。縦電界制御部は、液晶パネル(12)が備える共通電極(36)及び対向電極(38)の電位を制御することにより、共通電極(36)と対向電極(38)との間に発生する縦電界を制御する。縦電界制御部が縦電界を発生させているときに、横電界制御部が横電界の強さ及び極性を制御する。横電界制御部が横電界の極性を維持しているときに、縦電界制御部が縦電界の極性を反転する。

Description

液晶表示装置
 本発明は、液晶表示装置に関し、詳しくは、縦電界と横電界を併用して液晶分子の配向を制御する液晶表示装置に関する。
 液晶表示装置における液晶の動作モードには、縦電界を利用する動作モードや、横電界を利用する動作モードがある。縦電界は、液晶層を挟んで配置される一対の基板間に発生する。横電界は、液晶層を挟んで配置される一対の基板のうち一方の基板が有する電極間に発生する。縦電界を利用する動作モードは、例えば、TN(twisted nematic)モードやVA(vertical alignment)モードである。横電界を利用する動作モードは、例えば、IPS(in-plane switching)モードである。
 また、近年では、縦電界と横電界を併用して液晶分子の配向を制御する液晶表示装置が提案されている(例えば、特開2004-354407号公報参照)。
 縦電界と横電界には、それぞれ、正の極性と負の極性がある。そのため、縦電界と横電界を併用する場合、縦電界及び横電界の極性の組み合わせとして、4つの組み合わせが必要になる。単純に、これらの組み合わせを実現する場合、4つのフレームが必要になる。例えば、フレーム周波数が60Hzの場合、縦電界及び横電界の何れかを利用するのであれば、極性反転の周波数は30Hzになる。これに対して、縦電界と横電界を併用する場合、極性反転の周波数は15Hzになる。そのため、フリッカが認識され易くなる。
 本発明の目的は、縦電界と横電界を併用する液晶表示装置であって、フリッカが認識され難い液晶表示装置を提供することである。
 本発明の実施の形態による液晶表示装置は、液晶パネルと、制御部とを備える。液晶パネルは、複数の画素が配置された表示領域を有する。制御部は、表示領域に画像を表示させる。液晶パネルは、アクティブマトリクス基板と、対向基板と、液晶層とを備える。対向基板は、アクティブマトリクス基板に対向して配置される。液晶層は、アクティブマトリクス基板と対向基板との間に封入される。アクティブマトリクス基板は、一対の駆動電極と、共通電極とを備える。一対の駆動電極は、画素ごとに配置される。共通電極は、一対の駆動電極よりも液晶層から離れて配置される。対向基板は、共通電極及び一対の駆動電極に対向して配置される。制御部は、横電界制御部と、縦電界制御部とを備える。横電界制御部は、一対の駆動電極の電位を制御することにより、一対の駆動電極の間に発生する横電界を制御する。縦電界制御部は、共通電極及び対向電極の電位を制御することにより、共通電極と対向電極との間に発生する縦電界を制御する。縦電界制御部が縦電界を発生させているときに、横電界制御部が横電界の強さ及び極性を制御する。横電界制御部が横電界の極性を維持しているときに、縦電界制御部が縦電界の極性を反転する。
 本発明の実施の形態による液晶表示装置においては、フリッカが認識され難くなる。
図1は、本発明の第1の実施形態による液晶表示装置の概略構成の一例を示す模式図である。 図2は、液晶パネルが有する画素の概略構成を示す平面図である。 図3は、図2におけるIII-III断面図である。 図4Aは、液晶パネルの概略構成を示す断面図であって、横電界が発生していない状態を示す断面図である。 図4Bは、液晶パネルの概略構成を示す断面図であって、横電界が発生している状態を示す断面図である。 図5は、第1の実施形態における縦電界の極性と横電界の極性との関係を示すタイムチャートである。 図6は、第1の実施形態の応用例2における縦電界の極性と横電界の極性との関係を示すタイムチャートである。 図7は、第1の実施形態の応用例3における液晶パネルが有する画素の概略構成を示す断面図である。 図8は、本発明の第2の実施形態による液晶表示装置の概略構成の一例を示す模式図である。 図9は、第2の実施形態における縦電界の極性と横電界の極性との関係を示すタイムチャートである。 図10は、本発明の第3の実施形態による液晶表示装置の概略構成の一例を示す模式図である。 図11は、第3の実施形態における縦電界の極性と横電界の極性との関係を示すタイムチャートである。
 本発明の実施の形態による液晶表示装置は、液晶パネルと、制御部とを備える。液晶パネルは、複数の画素が配置された表示領域を有する。制御部は、表示領域に画像を表示させる。液晶パネルは、アクティブマトリクス基板と、対向基板と、液晶層とを備える。対向基板は、アクティブマトリクス基板に対向して配置される。液晶層は、アクティブマトリクス基板と対向基板との間に封入される。アクティブマトリクス基板は、一対の駆動電極と、共通電極とを備える。一対の駆動電極は、画素ごとに配置される。共通電極は、一対の駆動電極よりも液晶層から離れて配置される。対向基板は、共通電極及び一対の駆動電極に対向して配置される。制御部は、横電界制御部と、縦電界制御部とを備える。横電界制御部は、一対の駆動電極の電位を制御することにより、一対の駆動電極の間に発生する横電界を制御する。縦電界制御部は、共通電極及び対向電極の電位を制御することにより、共通電極と対向電極との間に発生する縦電界を制御する。縦電界制御部が縦電界を発生させているときに、横電界制御部が横電界の強さ及び極性を制御する。横電界制御部が横電界の極性を維持しているときに、縦電界制御部が縦電界の極性を反転する。
 上記の構成(第1の構成)では、横電界の極性が維持されているときに、縦電界の極性が反転する。そのため、縦電界と横電界を併用する場合に必要な極性の組み合わせ(4つの組み合わせ)を2つのフレームで実現できる。その結果、例えば、フレーム周波数が60Hzの場合、極性反転の周波数が30Hzになる。つまり、縦電界と横電界の何れかを用いる場合と極性反転の周波数が同じになる。したがって、フリッカが認識され難くなる。
 第2の構成は、第1の構成において、縦電界制御部は、横電界の極性が維持されているときの縦電界の極性が正である期間の長さと負である期間の長さとを同じにする。
 縦電界の極性が何れかの極性に偏っていないので、つまり、液晶の駆動電圧に直流成分が含まれないので、液晶パネルの寿命が長くなる。その結果、液晶パネルに対する信頼性が向上する。
 第3の構成は、第1又は第2の構成において、縦電界制御部は、対向電極の電位を変化させることにより、縦電界の極性を反転する。
 対向電極は、対向基板に配置される。そのため、対向電極は、共通電極よりも一対の駆動電極から離れる。その結果、縦電界の極性反転に伴って各駆動電極に発生する電位変動の幅を小さくできる。
 第4の構成は、第3の構成において、対向電極は、複数の分割電極を有する。縦電界制御部は、各分割電極の電位を順に変化させる。
 すべての画素において、横電界の極性が維持されているときの縦電界の極性の変化の仕方が同じになる。そのため、表示領域の輝度傾斜を軽減できる。
 また、対向電極が複数の電極に分割されていない場合と比べて、電位を変化させるときの負荷が軽くなる。
 第5の構成は、第1の構成において、縦電界制御部は、共通電極の電位を変化させることにより、縦電界の極性を反転する。
 共通電極は、アクティブマトリクス基板に配置される。アクティブマトリクス基板には、例えば、ゲート線やソース線のように、金属膜からなる配線が配置される。そのため、共通電極に接続される配線を、ゲート線やソース線と同じ材料で形成できる。この場合、共通電極に接続される配線の抵抗を低下させることができる。その結果、対向電極の電位を変化させる場合よりも、縦電界の極性を反転させるときの負荷が軽くなる。
 第6の構成は、第5の構成において、共通電極は、複数の分割電極を有する。縦電界制御部は、各分割電極の電位を順に変化させる。
 すべての画素において、横電界の極性が維持されているときの縦電界の極性の変化の仕方が同じになる。そのため、表示領域の輝度傾斜を軽減できる。
 第7の構成は、第1~第6の構成の何れか1つにおいて、横電界が正の極性に維持されているときに縦電界の極性が反転する方向と、横電界が負の極性に維持されているときに縦電界の極性が反転する方向とが同じである。
 すべての画素において、縦電界の極性反転に伴って各駆動電極に発生する電位変動の方向が同じになる。そのため、例えば、各駆動電極に接続されるスイッチング素子が薄膜トランジスタである場合、縦電界の極性反転に伴う電位変動が発生しても、薄膜トランジスタが誤動作するのを防ぐことができる。その結果、薄膜トランジスタの動作に対する信頼性が向上する。
 第8の構成は、第1~第7の構成の何れか1つにおいて、対向基板は、対向電極よりも液晶層側に配置される誘電体層をさらに備える。
 この場合、横電界が発生しているときに、対向電極付近の液晶分子が倒れやすくなる。その結果、透過率が向上する。
 第9の構成は、第1~第8の構成の何れか1つにおいて、横電界制御部は、1フレームよりも短い期間で、すべての画素について、一対の駆動電極の電位を制御する。
 データの書き込み期間が1フレームよりも短いので、残りの期間に何もしなければ、消費電力量を抑えることができる。
 以下、本発明のより具体的な実施形態について、図面を参照しながら説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、以下で参照する図面においては、説明を分かりやすくするために、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
 [第1の実施形態]
 図1は、本発明の第1の実施形態による液晶表示装置10を示す。液晶表示装置10は、液晶パネル12と、制御部14とを備える。制御部14は、制御回路20と、ドライバ22、24、26とを備える。制御回路20は、駆動制御部20Aと、第1極性制御部20Bと、第2極性制御部20Cとを含む。
 液晶パネル12は、複数の画素16が配置された表示領域18を有する。図1に示す例では、複数の画素16は、マトリクス状に配置される。
 液晶パネル12は、複数のゲート線28と、複数のソース線30とを有する。複数のゲート線28及び複数のソース線30は、格子状に配置される。
 複数のゲート線28は、ドライバ22に接続される。ドライバ22は、所謂ゲートドライバである。
 複数のソース線30は、ドライバ24に接続される。ドライバ24は、所謂ソースドライバである。
 図1に示す例では、複数のソース線30は、交互に配置された第1ソース線30Aと第2ソース線30Bからなる。つまり、複数のソース線30は、隣り合って配置される第1ソース線30Aと第2ソース線30Bからなるソース線30A、30Bの組を複数含む。
 液晶パネル12は、画素16ごとに、一対の駆動電極32A、32Bを備える。駆動電極32Aは、薄膜トランジスタ34Aを介して、第1ソース線30Aに接続される。駆動電極32Bは、薄膜トランジスタ34Bを介して、第2ソース線30Bに接続される。
 薄膜トランジスタ34Aにおいて、ゲートはゲート線28に接続され、ソースは第1ソース線30Aに接続され、ドレインは駆動電極32Aに接続される。薄膜トランジスタ34Bにおいて、ゲートはゲート線28に接続され、ソースは第2ソース線30Bに接続され、ドレインは駆動電極32Bに接続される。
 液晶パネル12は、共通電極36と、対向電極38とを備える。共通電極36及び対向電極38は、ドライバ26に接続される。
 駆動制御部20Aは、ゲート信号をドライバ22に出力する。ドライバ22は、ゲート信号を複数のゲート線28に順次出力する。ゲート信号は、薄膜トランジスタ34A、34Bのゲートの電位である。ドライバ22がゲート信号を出力することにより、薄膜トランジスタ34A、34Bが駆動される。
 駆動制御部20Aは、画像データ(階調信号)をドライバ24に出力する。階調信号は、各駆動電極32A、32Bの電位である。ドライバ24は、ドライバ22が選択したゲート線28に対応する階調信号を、複数組のソース線30A、30Bに順次出力する。ドライバ24が階調信号を出力することにより、各駆動電極32A、32Bの電位が設定される。その結果、一対の駆動電極32A、32Bの間に横電界が発生する。
 駆動制御部20Aは、駆動信号をドライバ26に出力する。ドライバ26は、駆動信号を共通電極36及び対向電極38に出力する。駆動信号は、共通電極36及び対向電極38の電位である。ドライバ26が駆動信号を出力することにより、共通電極36及び対向電極38の電位が設定される。その結果、共通電極36及び対向電極38の間に縦電界が発生する。
 第1極性制御部20Bは、第1極性信号を駆動制御部20Aに出力する。駆動制御部20Aは、第1極性信号に基づいて、正の極性を有する階調信号と、負の極性を有する階調信号とを生成する。駆動制御部20Aは、正の極性を有する階調信号と、負の極性を有する階調信号とをドライバ24に交互に出力する。ドライバ24は、正の極性を有する階調信号と、負の極性を有する階調信号とをソース線30A、30Bの組ごとに交互に出力する。これにより、横電界の極性が反転する。
 第2極性制御部20Cは、第2極性信号を駆動制御部20Aに出力する。駆動制御部20Aは、第2極性信号に基づいて、正の極性を有する駆動信号と、負の極性を有する駆動信号とを生成する。駆動制御部20Aは、正の極性を有する駆動信号と、負の極性を有する駆動信号とをドライバ26に交互に出力する。ドライバ26は、正の極性を有する駆動信号と、負の極性を有する駆動信号とを共通電極36及び対向電極38に交互に出力する。これにより、縦電界の極性が反転する。
 図2及び図3を参照しながら、液晶パネル12の詳細について説明する。図3に示すように、液晶パネル12は、アクティブマトリクス基板12Aと、対向基板12Bと、液晶層12Cとを備える。
 アクティブマトリクス基板12Aは、ベース基板40と、複数のゲート線28(図2参照)と、絶縁層42と、複数のソース線30(複数組のソース線30A、30B)と、絶縁層44と、一対の駆動電極32A、32Bと、薄膜トランジスタ34A,34B(図2参照)と、共通電極36と、絶縁層46とを備える。複数のゲート線28は、例えば、ベース基板40の主面の上方に形成される。絶縁層42は、複数のゲート線28を覆う。複数のソース線30は、絶縁層42に接して形成される。絶縁層44は、複数のソース線30を覆う。共通電極36は、絶縁層44に接して形成される。共通電極36は、表示領域18の全体に亘って配置される。絶縁層46は、共通電極36を覆う。一対の駆動電極32A、32Bは、絶縁層46に接して形成される。薄膜トランジスタ34A、34Bは、ゲート絶縁膜を介して、ゲート線28と重なる位置に配置される。
 駆動電極32Aは、第1電極部321Aと、複数の第2電極部322Aとを備える。
 第1電極部321Aは、第1ソース線30Aと平行に延びるとともに、平面視で第1ソース線30Aに重なる。複数の第2電極部322Aは、それぞれ、第1電極部321Aに接続される。複数の第2電極部322Aは、第1電極部321Aが延びる方向に所定の間隔で並ぶ。複数の第2電極部322Aは、それぞれ、ゲート線28と平行に延びる。
 第1電極部321Aの他端には、接続電極部323Aが形成されている。接続電極部323Aは、コンタクトホール324Aを有する。接続電極部323Aは、接触電極部325Aを介して、ドレイン電極部326Aに接続される。接触電極部325Aは、コンタクトホール324Aと重なる位置に形成される。ドレイン電極部326Aは、薄膜トランジスタ34Aのドレインに接続される。
 駆動電極32Bは、第1電極部321Bと、複数の第2電極部322Bとを備える。
 第1電極部321Bは、第2ソース線30Bと平行に延びるとともに、平面視で第2ソース線30Bに重なる。複数の第2電極部322Bは、それぞれ、第1電極部321Bに接続される。複数の第2電極部322Bは、第1電極部321Bが延びる方向に所定の間隔で並ぶ。複数の第2電極部322Bは、それぞれ、ゲート線28と平行に延びる。駆動電極32Bが有する第2電極部322Bと、駆動電極32Aが有する第2電極部322Aとは、ソース線30が延びる方向に交互に並ぶ。
 第2電極部322Bの一端には、接続電極部323Bが形成されている。接続電極部323Bは、コンタクトホール324Bを有する。接続電極部323Bは、接触電極部325Bを介して、ドレイン電極部326Bに接続される。接触電極部325Bは、コンタクトホール324Bと重なる位置に形成される。ドレイン電極部326Bは、薄膜トランジスタ34Bのドレインに接続される。
 対向基板12Bは、アクティブマトリクス基板12Aに対向して配置される。対向基板12Bは、ベース基板48と、対向電極38とを備える。対向電極38は、例えば、ベース基板48の主面の上方に形成される。
 液晶層12Cは、アクティブマトリクス基板12Aと対向基板12Bとの間に封入される。液晶層12Cにおいて、液晶分子は、正の誘電率異方性を有し、垂直配向される。
 図4A及び図4Bを参照しながら、液晶層12Cにおける液晶分子50の配向について説明する。
 横電界が発生していないとき、液晶分子50は初期の配向(垂直配向)を維持する(図4A参照)。液晶パネル12では、このような配向の画素16が黒表示される。
 横電界の有無に関わらず、ドライバ26が縦電界を発生させている。縦電界は、液晶分子50を垂直配向させる方向に作用する。
 ドライバ24が横電界を発生させると、液晶分子50の配向が変化する(図4B参照)。横電界の強さに応じて、液晶分子50の配向が変化する。液晶パネル12では、図4Bに示すような配向の画素16が白表示される。
 横電界がなくなると、縦電界の作用により、液晶分子50が初期の配向(垂直配向)に戻る。これにより、液晶分子50の応答速度が向上する。
 図5を参照しながら、縦電界の極性と横電界の極性との関係について説明する。図5は、あるゲート線28に接続された薄膜トランジスタ34A、34Bを有する画素16についての縦電界の極性と横電界の極性との関係を示す。
 ドライバ26は、共通電極36と対向電極38の電位の関係を1水平期間ごとに変化させる。具体的には、ドライバ26は、対向電極38の電位を1水平期間ごとに変化させ、共通電極36の電位を一定に保つ。このとき、ドライバ26は、対向電極38の電位を共通電極36の電位よりも高くしたり低くしたりする。つまり、図5に示す例では、ドライバ26は、1水平期間ごとに縦電界の極性を変化させる。なお、図5に示す例では、対向電極38の電位が共通電極36の電位よりも高い場合を縦電界の極性が正の場合としている。
 ドライバ24は、一対の駆動電極32A、32Bの電位の関係を1フレームごとに変化させる。具体的には、ドライバ24は、駆動電極32Aの電位を駆動電極32Bの電位よりも高くしたり低くしたりする。つまり、図5に示す例では、ドライバ24は、1フレームごとに横電界の極性を変化させる。なお、図5に示す例では、駆動電極32Aの電位が駆動電極32Bの電位よりも高い場合を横電界の極性が正の場合としている。
 ドライバ26は、ドライバ24が横電界の極性を維持しているときの縦電界の極性が正である期間と負である期間とが同じになるように、縦電界の極性を制御する。
 なお、図5に示す例では、ドライバ26が対向電極38の電位を1水平期間ごとに変化させることに伴って、各駆動電極32A、32Bの電位が1水平期間ごとに変動している。
 図5に示すように、液晶表示装置10においては、横電界が正の極性のときに縦電界が正の極性と負の極性になり、横電界が負の極性のときに縦電界が正の極性と負の極性になる。したがって、縦電界と横電界とを併用する場合に必要な極性の組み合わせを2フレームで実現できる。その結果、フリッカを軽減できる。
 [第1の実施形態の応用例1]
 図5に示す例では、ドライバ26が縦電界の極性を1水平期間ごとに変化させていたが、例えば、ドライバ26が縦電界の極性を複数の水平期間ごとに変化させてもよい。
 [第1の実施形態の応用例2]
 図5に示す例では、ドライバ24が全ての画素16にデータを書き込むために必要な期間(データ書込期間)は1フレームであったが、例えば、図6に示すように、データ書込期間は1フレームよりも短い期間であってもよい。この場合、フレームごとにデータを書き込まない期間(休止期間)が存在する。図6に示す例では、データ書込期間は1/2フレームである。したがって、休止期間は1/2フレームである。
 ドライバ26は、ドライバ24が横電界の極性を維持しているときの縦電界の極性が正である期間と負である期間とが同じになるように、縦電界の極性を制御する。具体的には、ドライバ26は、データ書込期間の縦電界の極性を正にし、休止期間の縦電界の極性を負にする。
 なお、図6は、1行目のゲート線28に接続された薄膜トランジスタ34A、34Bを有する画素16についての縦電界の極性と横電界の極性との関係を示すとともに、j行目のゲート線28に接続された薄膜トランジスタ34A、34Bを有する画素16についての縦電界の極性と横電界の極性との関係を示す。
 このような態様においては、フレームごとに休止期間が存在するため、消費電力量を抑えることができる。
 第1の実施形態と比べて、ドライバ26が対向電極38の電位を変化させる回数が少ない。そのため、第1の実施形態と比べて、ドライバ26が対向電極38の電位を変化させる際の負担が軽くなる。その結果、液晶パネル12のサイズが大きくても、ドライバ26が対向電極38の電位を変化させる際の負担が軽くなる。
 図6に示す例では、データ書込期間と休止期間とが、それぞれ、1/2フレームあった。つまり、ドライバ24が2倍速でデータを書き込み、ドライバ26が1/2フレームごとに縦電界の極性を反転させていた。しかしながら、データの書込期間や縦電界の極性が反転する周期は、図6に示す態様に限定されない。例えば、ドライバ24が2m倍速でデータを書き込み、ドライバ26が1/2nフレームごとに縦電界の極性を反転させてもよい。ここで、mは1以上の整数であり、nは1以上の正数であって且つm以下の整数である。
 なお、本応用例では、データ書込期間を短くするために、薄膜トランジスタ34A,34Bの半導体活性層は酸化物半導体であることが望ましい。
 [第1の実施形態の応用例3]
 図7に示すように、対向基板12Bが誘電体層52を備えてもよい。誘電体層52は、対向電極38よりも液晶層12C側に配置される。誘電体層52は、例えば、有機膜、紫外線硬化樹脂、熱硬化樹脂からなる。
 このような態様においては、横電界が発生しているときに、対向電極38付近の液晶分子46が倒れやすくなる。そのため、透過率が向上する。
 [第1の実施形態の応用例4]
 図5に示す例では、ドライバ26が対向電極38の電位を変化させていたが、ドライバ26が共通電極36の電位を変化させてもよい。
 [第2の実施形態]
 図8は、本発明の第2の実施形態による液晶表示装置10Aを示す。液晶表示装置10Aは、液晶表示装置10と比べて、対向電極が異なる。本実施形態の対向電極38Aは、複数の分割電極381を有する。各分割電極381は、ゲート線28と平行に延びる。分割電極381ごとに、ドライバ26に接続される。ドライバ26は、各分割電極381の電位を順に変化させる。
 図9を参照しながら、縦電界の極性と横電界の極性との関係について説明する。図9は、1行目のゲート線28に接続された薄膜トランジスタ34A、34Bを有する画素16についての縦電界の極性と横電界の極性との関係を示すとともに、j行目のゲート線28に接続された薄膜トランジスタ34A、34Bを有する画素16についての縦電界の極性と横電界の極性との関係を示す。
 ドライバ26は、各分割電極381の電位と共通電極36の電位との関係を1フレームごとに変化させる。具体的には、ドライバ26は、各分割電極381の電位を1フレームごとに変化させ、共通電極36の電位を一定に保つ。このとき、ドライバ26は、各分割電極381の電位を共通電極36の電位よりも高くしたり低くしたりする。つまり、図9に示す例では、ドライバ26は、1フレームごとに縦電界の極性を変化させる。なお、図9に示す例では、各分割電極381の電位が共通電極36の電位よりも高い場合を縦電界の極性が正の場合としている。
 ドライバ24は、一対の駆動電極32A、32Bの電位の関係を1フレームごとに変化させる。具体的には、ドライバ24は、駆動電極32Aの電位を駆動電極32Bの電位よりも高くしたり低くしたりする。つまり、図9に示す例では、ドライバ24は、1フレームごとに横電界の極性を変化させる。なお、図9に示す例では、駆動電極32Aの電位が駆動電極32Bの電位よりも高い場合を横電界の極性が正の場合としている。
 ドライバ26は、ドライバ24が横電界の極性を維持しているときの縦電界の極性が正である期間と負である期間とが同じになるように、縦電界の極性を制御する。
 なお、図9に示す例では、ドライバ26が各分割電極381の電位を1フレームごとに変化させることに伴って、各駆動電極32A、32Bの電位が1フレームごとに変動している。
 図9に示すように、液晶表示装置10Aにおいては、横電界が正の極性のときに縦電界が正の極性と負の極性になり、横電界が負の極性のときに縦電界が正の極性と負の極性になる。したがって、縦電界と横電界とを併用する場合に必要な極性の組み合わせを2フレームで実現できる。その結果、フリッカを軽減できる。
 複数の分割電極381の電位が順に変化する。そのため、いずれの画素16においても、ドライバ24がデータを書き込んだ後の期間(保持期間)における対向電極38(分割電極381)の電位と共通電極36の電位との関係が同じになる。
 [第2の実施形態の応用例]
 すべての画素16において、ドライバ24がデータを書き込むときの縦電界の極性を統一してもよい。
 [第3の実施形態]
 図10は、本発明の第3の実施形態による液晶表示装置10Bを示す。液晶表示装置10Bは、液晶表示装置10と比べて、共通電極が異なる。本実施形態の共通電極36Aは、複数の分割電極361を有する。各分割電極361は、ゲート線28と平行に延びる。分割電極361ごとに、ドライバ26に接続される。ドライバ26は、各分割電極361の電位を順に変化させる。
 図11を参照しながら、縦電界の極性と横電界の極性との関係について説明する。図11は、1行目のゲート線28に接続された薄膜トランジスタ34A、34Bを有する画素16についての縦電界の極性と横電界の極性との関係を示すとともに、j行目のゲート線28に接続された薄膜トランジスタ34A、34Bを有する画素16についての縦電界の極性と横電界の極性との関係を示す。
 ドライバ26は、各分割電極361の電位と対向電極38の電位との関係を1フレームごとに変化させる。具体的には、ドライバ26は、各分割電極361の電位を1フレームごとに変化させ、対向電極38の電位を一定に保つ。このとき、ドライバ26は、各分割電極361の電位を対向電極38の電位よりも高くしたり低くしたりする。つまり、図11に示す例では、ドライバ26は、1フレームごとに縦電界の極性を変化させる。なお、図11に示す例では、各分割電極361の電位が対向電極38の電位よりも高い場合を縦電界の極性が正の場合としている。
 ドライバ24は、一対の駆動電極32A、32Bの電位の関係を1フレームごとに変化させる。具体的には、ドライバ24は、駆動電極32Aの電位を駆動電極32Bの電位よりも高くしたり低くしたりする。つまり、図11に示す例では、ドライバ24は、1フレームごとに横電界の極性を変化させる。なお、図11に示す例では、駆動電極32Aの電位が駆動電極32Bの電位よりも高い場合を横電界の極性が正の場合としている。
 ドライバ26は、ドライバ24が横電界の極性を維持しているときの縦電界の極性が正である期間と負である期間とが同じになるように、縦電界の極性を制御する。
 なお、図11に示す例では、ドライバ26が各分割電極361の電位を1フレームごとに変化させることに伴って、各駆動電極32A、32Bの電位が1フレームごとに変動している。
 図11に示すように、液晶表示装置10Bにおいては、横電界が正の極性のときに縦電界が正の極性と負の極性になり、横電界が負の極性のときに縦電界が正の極性と負の極性になる。したがって、縦電界と横電界とを併用する場合に必要な極性の組み合わせを2フレームで実現できる。その結果、フリッカを軽減できる。
 ドライバ26が複数の分割電極361の電位を順に変化させる。そのため、いずれの画素16においても、ドライバ24がデータを書き込んだ後の期間(保持期間)における対向電極38の電位と共通電極36(分割電極361)の電位との関係が同じになる。
 ドライバ24がデータを書き込むとき、いずれの画素16においても、ドライバ26が縦電界の極性を正にしている。そのため、いずれの画素16においても、ドライバ26が縦電界の極性を変化したときには、各駆動電極32A、32Bの電位が下がる。つまり、横電界が正の極性に維持されているときに縦電界の極性が反転する方向と、横電界が負の極性に維持されているときに縦電界の極性が反転する方向とが同じになる。ここで、ドライバ24がデータを書き込むときの縦電界の極性が負であれば、ドライバ26が縦電界の極性が変化したときに各駆動電極32A、32Bの電位は上がる。つまり、ドライバ24がデータを書き込むときの縦電界の極性が統一されていない場合には、ドライバ24がデータを書き込むときの縦電界の極性が統一されている場合よりも、ドライバ26が縦電界の極性を変化させたときの各駆動電極32A、32Bの電位変動幅が大きくなる。そのため、薄膜トランジスタ34A、34Bの動作に対する信頼性が低下する。一方、本実施形態では、ドライバ24がデータを書き込むときの縦電界の極性が統一されている。そのため、ドライバ26が縦電界の極性を変化させたときの各駆動電極32A、32Bの電位変動幅を小さくできる。その結果、薄膜トランジスタ34A、34Bの動作に対する信頼性が向上する。
 [第3の実施形態の応用例]
 すべての画素16において、ドライバ24がデータを書き込むときの縦電界の極性は負であってもよい。
 すべての画素16において、ドライバ24がデータを書き込むときの縦電界の極性は統一されていなくてもよい。
 以上、本発明の実施形態について、詳述してきたが、これらはあくまでも例示であって、本発明は、上述の実施形態によって、何等、限定されない。
 例えば、第1~第3の実施形態では、液晶分子が正の誘電率異方性を有していたが、液晶分子は負の誘電率異方性を有していてもよい。

Claims (9)

  1.  複数の画素が配置された表示領域を有する液晶パネルと、
     前記表示領域に画像を表示させる制御部とを備え、
     前記液晶パネルは、
     アクティブマトリクス基板と、
     前記アクティブマトリクス基板に対向して配置される対向基板と、
     前記アクティブマトリクス基板と前記対向基板との間に封入される液晶層とを備え、
     前記アクティブマトリクス基板は、
     画素ごとに配置される一対の駆動電極と、
     前記一対の駆動電極よりも前記液晶層から離れて配置される共通電極とを備え、
     前記対向基板は、前記共通電極及び前記一対の駆動電極に対向して配置される対向電極を備え、
     前記制御部は、
     前記一対の駆動電極の電位を制御することにより、前記一対の駆動電極の間に発生する横電界を制御する横電界制御部と、
     前記共通電極及び前記対向電極の電位を制御することにより、前記共通電極と前記対向電極との間に発生する縦電界を制御する縦電界制御部とを備え、
     前記縦電界制御部が前記縦電界を発生させているときに、前記横電界制御部が前記横電界の強さ及び極性を制御し、
     前記横電界制御部が前記横電界の極性を維持しているときに、前記縦電界制御部が前記縦電界の極性を反転する、液晶表示装置。
  2.  請求項1に記載の液晶表示装置であって、
     前記縦電界制御部は、前記横電界の極性が維持されているときの前記縦電界の極性が正である期間の長さと負である期間の長さとを同じにする、液晶表示装置。
  3.  請求項1又は2に記載の液晶表示装置であって、
     前記縦電界制御部は、前記対向電極の電位を変化させることにより、前記縦電界の極性を反転する、液晶表示装置。
  4.  請求項3に記載の液晶表示装置であって、
     前記対向電極は、複数の分割電極を有し、
     前記縦電界制御部は、各分割電極の電位を順に変化させる、液晶表示装置。
  5.  請求項1又は2に記載の液晶表示装置であって、
     前記縦電界制御部は、前記共通電極の電位を変化させることにより、前記縦電界の極性を反転する、液晶表示装置。
  6.  請求項5に記載の液晶表示装置であって、
     前記共通電極は、複数の分割電極を有し、
     前記縦電界制御部は、各分割電極の電位を順に変化させる、液晶表示装置。
  7.  請求項1~6の何れか1項に記載の液晶表示装置であって、
     前記横電界が正の極性に維持されているときに前記縦電界の極性が反転する方向と、前記横電界が負の極性に維持されているときに前記縦電界の極性が反転する方向とが同じである、液晶表示装置。
  8.  請求項1~7の何れか1項に記載の液晶表示装置であって、
     前記対向基板は、前記対向電極よりも前記液晶層側に配置される誘電体層をさらに備える、液晶表示装置。
  9.  請求項1~8の何れか1項に記載の液晶表示装置であって、
     前記横電界制御部は、1フレームよりも短い期間で、すべての画素について、前記一対の駆動電極の電位を制御する、液晶表示装置。
PCT/JP2013/083521 2012-12-19 2013-12-13 液晶表示装置 WO2014097998A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/652,344 US9552785B2 (en) 2012-12-19 2013-12-13 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-277284 2012-12-19
JP2012277284 2012-12-19

Publications (1)

Publication Number Publication Date
WO2014097998A1 true WO2014097998A1 (ja) 2014-06-26

Family

ID=50978330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083521 WO2014097998A1 (ja) 2012-12-19 2013-12-13 液晶表示装置

Country Status (2)

Country Link
US (1) US9552785B2 (ja)
WO (1) WO2014097998A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102141459B1 (ko) 2013-03-22 2020-08-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치
KR101941118B1 (ko) * 2016-11-25 2019-01-23 주식회사 엘지화학 액정필름셀 및 이의 용도

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209063A (ja) * 1999-09-24 2001-08-03 Sharp Corp 液晶表示装置およびその表示方法
JP2002023178A (ja) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2004354407A (ja) * 2003-05-26 2004-12-16 Hitachi Ltd 液晶表示装置
JP2007148337A (ja) * 2005-10-31 2007-06-14 Casio Comput Co Ltd 視野角の範囲を制御可能とした液晶表示装置
WO2012128084A1 (ja) * 2011-03-18 2012-09-27 シャープ株式会社 薄膜トランジスタアレイ基板及び液晶表示装置
WO2014007193A1 (ja) * 2012-07-05 2014-01-09 シャープ株式会社 液晶表示装置および液晶表示装置の駆動方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3481509B2 (ja) * 1999-06-16 2003-12-22 Nec液晶テクノロジー株式会社 液晶表示装置
KR100433596B1 (ko) * 1999-10-21 2004-05-31 마쯔시다덴기산교 가부시키가이샤 액정표시장치
TWI282012B (en) * 2001-01-08 2007-06-01 Au Optronics Corp Liquid crystal display of low driving voltage
JP2002357851A (ja) * 2001-03-30 2002-12-13 Minolta Co Ltd 液晶表示装置
JP4117148B2 (ja) * 2002-05-24 2008-07-16 日本電気株式会社 半透過型液晶表示装置
US7995181B2 (en) * 2002-08-26 2011-08-09 University Of Central Florida Research Foundation, Inc. High speed and wide viewing angle liquid crystal displays
WO2005059637A1 (ja) * 2003-12-18 2005-06-30 Sharp Kabushiki Kaisha 表示装置
JP4394512B2 (ja) * 2004-04-30 2010-01-06 富士通株式会社 視角特性を改善した液晶表示装置
EP2270583B1 (en) * 2005-12-05 2017-05-10 Semiconductor Energy Laboratory Co., Ltd. Transflective Liquid Crystal Display with a Horizontal Electric Field Configuration
US8311902B2 (en) * 2007-01-05 2012-11-13 Amazon Technologies, Inc. System and method for filling an order
KR101421627B1 (ko) * 2007-10-09 2014-07-24 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
KR101518329B1 (ko) * 2008-10-31 2015-05-07 삼성디스플레이 주식회사 액정 표시 장치
JP4925371B2 (ja) * 2009-11-26 2012-04-25 東芝モバイルディスプレイ株式会社 液晶表示装置および液晶表示装置の駆動方法
TWI390291B (zh) * 2009-12-15 2013-03-21 Au Optronics Corp 液晶顯示裝置
US20140002762A1 (en) * 2011-03-18 2014-01-02 Sharp Kabushiki Kaisha Liquid crystal drive method and liquid crystal display device
WO2013001979A1 (ja) * 2011-06-27 2013-01-03 シャープ株式会社 液晶駆動装置及び液晶表示装置
WO2013001980A1 (ja) * 2011-06-27 2013-01-03 シャープ株式会社 液晶表示パネル及び液晶表示装置
CN102629017A (zh) * 2011-08-16 2012-08-08 京东方科技集团股份有限公司 一种液晶显示装置及其驱动方法
WO2013054745A1 (ja) * 2011-10-14 2013-04-18 シャープ株式会社 液晶駆動方法及び液晶表示装置
US20140240651A1 (en) * 2011-10-18 2014-08-28 Sharp Kabushiki Kaisha Liquid crystal display panel and liquid crystal display device
US9165948B2 (en) * 2011-10-31 2015-10-20 Sharp Kabushiki Kaisha Thin film transistor array substrate and liquid crystal display device
JP2015111176A (ja) * 2012-03-29 2015-06-18 シャープ株式会社 液晶表示装置及び液晶駆動方法
WO2013168545A1 (ja) * 2012-05-10 2013-11-14 シャープ株式会社 液晶駆動方法及び液晶表示装置
WO2013175917A1 (ja) * 2012-05-23 2013-11-28 シャープ株式会社 液晶駆動方法及び液晶表示装置
JP2015163908A (ja) * 2012-06-21 2015-09-10 シャープ株式会社 液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209063A (ja) * 1999-09-24 2001-08-03 Sharp Corp 液晶表示装置およびその表示方法
JP2002023178A (ja) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2004354407A (ja) * 2003-05-26 2004-12-16 Hitachi Ltd 液晶表示装置
JP2007148337A (ja) * 2005-10-31 2007-06-14 Casio Comput Co Ltd 視野角の範囲を制御可能とした液晶表示装置
WO2012128084A1 (ja) * 2011-03-18 2012-09-27 シャープ株式会社 薄膜トランジスタアレイ基板及び液晶表示装置
WO2014007193A1 (ja) * 2012-07-05 2014-01-09 シャープ株式会社 液晶表示装置および液晶表示装置の駆動方法

Also Published As

Publication number Publication date
US9552785B2 (en) 2017-01-24
US20150325187A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP4811510B2 (ja) 電気泳動表示装置及びその駆動方法
JP5342004B2 (ja) 液晶表示装置
US8077128B2 (en) Liquid crystal display device
US20070097052A1 (en) Liquid crystal display device
JP5080119B2 (ja) 横電界方式の液晶表示装置用アレイ基板及びそのアレイ基板を含む表示装置の駆動方法
US20110316843A1 (en) Liquid crystal element, liquid crystal display device, and method for displaying with liquid crystal display element
WO2012128061A1 (ja) 液晶駆動方法及び液晶表示装置
US20090309867A1 (en) Method of driving pixels and display apparatus for performing the method
CN102854680A (zh) 一种高透光率透明显示装置
WO2014185122A1 (ja) 液晶表示装置
US9406270B2 (en) Liquid crystal display device and method of driving the same
WO2013139149A1 (zh) 液晶显示器驱动电路、液晶显示器及其驱动方法
JP7118794B2 (ja) 表示装置及びその駆動方法
WO2014097998A1 (ja) 液晶表示装置
KR101624826B1 (ko) 액정 구동 방법 및 액정 표시 장치
KR101278003B1 (ko) 액정표시패널과 그 구동방법
US20190287473A1 (en) Liquid crystal display device and drive method for same
US8384703B2 (en) Liquid crystal display device
WO2017130293A1 (ja) 液晶表示装置
WO2017170069A1 (ja) 液晶表示装置
JP5159687B2 (ja) 液晶表示装置
JP2014134685A (ja) 液晶表示装置
US11694647B2 (en) Display device
WO2013146856A1 (ja) 液晶表示装置及び液晶駆動方法
KR20080054940A (ko) 액정표시장치와 그 구동방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863858

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14652344

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP