WO2017130293A1 - 液晶表示装置 - Google Patents
液晶表示装置 Download PDFInfo
- Publication number
- WO2017130293A1 WO2017130293A1 PCT/JP2016/052179 JP2016052179W WO2017130293A1 WO 2017130293 A1 WO2017130293 A1 WO 2017130293A1 JP 2016052179 W JP2016052179 W JP 2016052179W WO 2017130293 A1 WO2017130293 A1 WO 2017130293A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subpixel
- pixel
- liquid crystal
- line
- drive
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
Definitions
- the present invention relates to a liquid crystal display device in which a liquid crystal layer is sandwiched between a pixel substrate and a counter substrate, and a plurality of pixels are arranged in a matrix.
- liquid crystal displays which are representative of flat panel displays, have become mainstream not only in the field of small and medium-sized panels but also in the field of large-sized video display panels for TV.
- LCD liquid crystal display
- an active matrix type liquid crystal display device is widely used.
- An active matrix liquid crystal display device has a liquid crystal layer sandwiched between a translucent active matrix substrate (also referred to as a pixel substrate or a cell array substrate) and a counter substrate (also referred to as a color filter substrate).
- a translucent active matrix substrate also referred to as a pixel substrate or a cell array substrate
- a counter substrate also referred to as a color filter substrate.
- a plurality of pixel portions arranged in a matrix are provided, and each pixel portion is provided with a TFT (Thin Film Transistor) and a pixel electrode that is connected to the TFT and drives a liquid crystal.
- a scanning line is connected to the gate electrode of the TFT.
- the counter substrate is provided with a gradation signal line as a counter electrode so as to be opposed to the pixel electrode provided on the active matrix substrate (see Patent Document 1).
- TN Transmission Nematic
- VA Very Alignment
- liquid crystal modes of liquid crystal displays In the TN mode, the major axis of liquid crystal molecules having a positive dielectric anisotropy is aligned substantially horizontally with respect to the substrate surface, and the major axis of the liquid crystal molecules is aligned with the upper and lower substrates along the thickness direction of the liquid crystal layer. They are oriented so that they are twisted approximately 90 degrees between them.
- VA mode liquid crystal molecules are aligned so as to be perpendicular to the substrate surface when no electric field is applied.
- the VA mode can improve the viewing angle characteristics in the TN mode to some extent, but further improvement of the viewing angle characteristics is required.
- the improvement of the viewing angle characteristic is to solve the problem that the display contrast is lowered or the display gradation is inverted when the display surface is observed from an oblique direction.
- one pixel is composed of a first sub-pixel and a second sub-pixel each having a liquid crystal capacitor composed of a liquid crystal layer and the like, and an auxiliary capacitor electrically connected to the liquid crystal capacitor.
- a liquid crystal display device that improves viewing angle characteristics by supplying different voltages to the liquid crystal layer of the first subpixel and the liquid crystal layer of the second subpixel by supplying independent voltages to the auxiliary capacitor. It is disclosed (see Patent Document 2).
- the method for improving the viewing angle characteristic described in Patent Document 2 is configured to apply a voltage to the auxiliary capacitor, it can be applied to an active matrix liquid crystal display device that does not include the auxiliary capacitor. Can not.
- the auxiliary capacity is provided, the aperture ratio is reduced according to the size of the auxiliary capacity.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a liquid crystal display device capable of improving viewing angle characteristics.
- a liquid crystal layer is sandwiched between a pixel substrate and a counter substrate, and a conduction state between a plurality of pixels arranged in a matrix and two controlled terminals is a control terminal.
- a liquid crystal display comprising a plurality of switching elements controlled by an applied signal, each of the plurality of pixels being constituted by a first subpixel and a second subpixel having a pixel electrode and a counter electrode with the liquid crystal layer in between A first switching element in which one of the controlled terminals is connected to the pixel electrode of the first subpixel; and a second switching in which one of the controlled terminals is connected to the pixel electrode of the second subpixel.
- a first drive signal that is inverted is applied, and a second drive signal having a polarity different from the polarity of the first drive signal is applied to the second drive line.
- viewing angle characteristics can be improved.
- FIG. 1 is a schematic diagram illustrating an example of the configuration of the pixel unit 100 of the liquid crystal display device of the first embodiment
- FIG. 2 is an explanatory diagram illustrating an example of an equivalent circuit of the pixel unit 100 of the liquid crystal display device of the first embodiment
- FIG. 3 is a cross-sectional view showing an example of the configuration of the pixel unit 100 of the liquid crystal display device of the first embodiment.
- the pixel unit 100 indicates a main part of one pixel among a plurality of pixels arranged in a matrix. As shown in FIG.
- the liquid crystal display device includes a light-transmitting pixel substrate 50 (also referred to as an active matrix substrate or a cell array substrate), and a light-transmitting light disposed at an appropriate distance from the pixel substrate 50.
- a counter substrate 60 also referred to as a color filter substrate
- a liquid crystal layer 70 sandwiched in a gap between the pixel substrate 50 and the counter substrate 60, and the like.
- a plurality of pixel portions 100 arranged in a matrix are provided in the display area of the pixel substrate 50.
- one pixel unit 100 (that is, each of a plurality of pixels arranged in a matrix) is composed of two subpixels, a first subpixel 10 and a second subpixel 20. Further, the pixel unit 100 includes a TFT (Thin Film Transistor) 11 as a first switching element provided corresponding to the first subpixel 10 and a second switching element provided corresponding to the second subpixel 20. As a TFT (Thin Film Transistor) 21. Note that the switching element is not limited to the TFT.
- Each of the first sub-pixel 10 and the second sub-pixel 20 has a rectangular first sub-pixel region 15 and second sub-pixel region 25 separated on the pixel substrate 50.
- the first subpixel region 15 is a region on the substrate surface of the pixel electrode 12 and the counter electrode 13 provided with the liquid crystal layer 70 therebetween.
- the second subpixel region 25 is a region on the substrate surface of the pixel electrode 22 and the counter electrode 23 provided with the liquid crystal layer 70 therebetween.
- the scanning line 3 is arranged between the first subpixel region 15 and the second subpixel region 25 on the pixel substrate 50. Then, on the pixel substrate 50, along one side orthogonal to the scanning line 3 of the first subpixel region 15 and the other side opposite to the scanning line 3 of the first subpixel region 15 and parallel to the scanning line 3.
- the first drive line 1 is arranged. Further, on the pixel substrate 50, along one side orthogonal to the scanning line 3 of the second subpixel region 25 and the other side of the second subpixel region 25 opposite to the scanning line 3 and parallel to the scanning line 3.
- the second drive line 2 is arranged.
- the first subpixel region 15 and the second subpixel region 25 are arranged to face each other with the scanning line 3 therebetween.
- the TFT 11 is arranged near the corner on the scanning line 3 side of the first subpixel region, and the TFT 21 is arranged near the corner on the scanning line 3 side of the second subpixel region 25.
- the first drive line 1 is arranged in parallel to the scan line 3 on the side opposite to the scan line 3 side of the first subpixel region 15, and the first drive line 1 is placed on the side opposite to the TFT 11 side of the first subpixel region 15. Wiring to the TFT 11 is performed so as to be orthogonal to the scanning line 3 at the corner.
- the second drive line 2 is arranged in parallel with the scan line 3 on the opposite side of the second subpixel region 25 to the scan line 3 side, and the second drive line 2 is connected to the TFT 21 side of the second subpixel region 25. Wiring is performed up to the TFT 21 so as to be orthogonal to the scanning line 3 at the opposite corner. Thereby, the first drive line 1 and the second drive line 2 can be arranged on the pixel substrate 50.
- FIG. 1 schematically represents the pixel unit 100, and the actual configuration is not limited to the configuration illustrated in FIG.
- the first subpixel 10 has a first liquid crystal capacitor 14 formed by a pixel electrode 12, a counter electrode 13, and a liquid crystal layer 70 provided between the pixel electrode 12 and the counter electrode 13.
- the second subpixel 20 includes a pixel electrode 22, a counter electrode 23, and a second liquid crystal capacitor 24 formed by a liquid crystal layer 70 provided between the pixel electrode 22 and the counter electrode 23.
- the drain terminal of the TFT 11 is connected to the pixel electrode 12 of the first subpixel 10.
- the first drive line 1 is connected to the source terminal of the TFT 11.
- the gradation signal line 4 is connected to the counter electrode 13 of the first subpixel 10.
- drain terminal of the TFT 21 is connected to the pixel electrode 22 of the second sub-pixel 20.
- the second drive line 2 is connected to the source terminal of the TFT 21.
- the gradation signal line 4 is connected to the counter electrode 23 of the second subpixel 20.
- the scanning line 3 is connected to the gate terminals of the TFT 11 and TFT 21.
- FIG. 3 schematically shows a cross-sectional view of the pixel portion 100 as viewed from the line III-III in FIG. That is, FIG. 3 shows a cross-sectional view of the first subpixel 10 in the pixel portion 100, but the second subpixel 20 is the same, and the description thereof is omitted.
- the pixel substrate 50 has the scanning lines 3 and the first drive lines 1 formed on the insulating transparent substrate 56, and the gate insulating film covers the scan lines 3 and the first drive lines 1. 51 is formed.
- an a-Si (amorphous silicon) layer 52 is formed.
- An ohmic contact (n + a-Si) layer 53 (a source terminal and a drain terminal of the TFT 11) is formed at a position corresponding to the source and drain on the a-Si layer 52.
- a source terminal of the TFT 11 is connected to the first drive line 1 by a wiring 54.
- a pixel electrode 12 made of a transparent conductive film (for example, ITO: Indium Tin Oxide) is connected to the drain terminal of the TFT 11.
- the TFT 11 is protected by a protective film 55.
- An alignment film (not shown) is formed on the pixel electrode 12 and the protective film 55.
- the counter substrate 60 has a black matrix layer 62 and a color filter layer 63 formed on the surface of an insulating transparent substrate 61.
- the counter electrode 13 is formed on the color filter layer 63 on the pixel substrate 50 side through a planarizing film (not shown).
- the counter electrode 13 is disposed to face the pixel electrode 12 and has the same shape and size as the pixel electrode 12.
- a gradation signal line 4 is connected to the counter electrode 13. Note that the gradation signal line 4 can also be configured to serve as the counter electrode 13 in a portion facing the pixel electrode 12.
- An alignment film (not shown) is formed on the counter electrode 13 and the black matrix layer 62 on the pixel substrate 50 side.
- FIG. 3 schematically represents the pixel unit 100, and the actual configuration is not limited to the configuration illustrated in FIG.
- FIG. 4 is a time chart showing an example of voltage waveforms of the respective parts of the first subpixel 10 and the second subpixel 20 of the liquid crystal display device of the first embodiment.
- the horizontal axis indicates time.
- the first chart from the top shows scanning signals applied to the gate terminals of the TFTs 11 and 21 via the scanning lines 3.
- the second chart from the top shows the first drive signal Vc1 applied to the source terminal of the TFT 11 via the first drive line 1.
- the chart in the third row from the top shows the gradation signal Vs applied to the counter electrode 13 of the first subpixel 10 via the gradation signal line 4, and the chart shown by the broken line shows the drain terminal (that is, the TFT 11) The voltage Vd1 of the pixel electrode 12) is shown.
- the fourth chart from the top shows the second drive signal Vc2 applied to the source terminal of the TFT 21 via the second drive line 2.
- the chart in the fifth row from the top shows the gradation signal Vs applied to the counter electrode 23 of the second subpixel 20 via the gradation signal line 4, and the chart shown by the broken line shows the drain terminal (that is, the TFT 21)
- the voltage Vd2 of the pixel electrode 22) is shown.
- a first drive signal Vc1 whose polarity is inverted at a predetermined time interval is applied to the first drive line 1, and a second drive having a polarity different from the polarity of the first drive signal Vc1 is applied to the second drive line 2.
- a signal Vc2 is applied. That is, the first drive signal Vc1 and the second drive signal Vc2 are signals that have different polarities from each other and invert the polarities at the same timing. For example, when a positive signal is applied to the first drive line 1, a negative signal is applied to the second drive line 2, and when a negative signal is applied to the first drive line 1, the second drive line A positive signal is applied to 2.
- the same gradation signal Vs is applied to the first subpixel 10 and the second subpixel 20, and for example, when the frame is switched, the positive voltage is switched to the negative voltage, or the negative voltage is switched to the positive voltage.
- Vs the same gradation signal
- the TFTs 11 and 21 are in a conductive state between them.
- the voltage Vd1 at the drain terminal (pixel electrode 12) of the TFT 11 rises to the first drive signal Vc1. Since the first drive signal Vc1 has a positive polarity, the voltage Vd1 is also positive.
- the voltage Vd2 of the drain terminal (pixel electrode 22) of the TFT 21 falls to the second drive signal Vc2. Since the second drive signal Vc2 has a negative polarity, the voltage Vd2 is also negative.
- the voltage Vd1 and the voltage Vd2 are lowered by the field through voltage ⁇ V due to the field through phenomenon due to the parasitic capacitance between the gate and the source of the TFT. Then, the voltage Vd1 and the voltage Vd2 are held until the scanning signal is applied to the gate terminals of the TFT11 and TFT21 at time t3 and the TFT11 and TFT21 become conductive. Note that when the TFT 11 and the TFT 21 are in a non-conductive state, when the gradation signal Vs changes from positive to negative, the voltage Vd1 and the voltage Vd2 change in the same manner.
- the first drive signal Vc1 of the source terminal of the TFT 11 is output from the drain terminal.
- a first drive signal Vc1 appears on the ten pixel electrodes 12.
- the second drive signal Vc2 of the source terminal of the TFT 21 is output from the drain terminal, so that the pixel of the second subpixel 20 A second drive signal Vc2 appears on the electrode 22.
- the voltage V1 between the pixel electrode 12 and the counter electrode 13 of the first subpixel 10 and the pixel electrode 22 and the counter electrode of the second subpixel 20 are the same. It is possible to make the voltage V2 between 23 different.
- the TFT 11 and TFT 21 are turned off, the voltage V1 between the pixel electrode 12 and the counter electrode 13 of the first subpixel 10 and the voltage V2 between the pixel electrode 22 and the counter electrode 23 of the second subpixel 20 are obtained. A state in which different voltages are applied is maintained, and bright and dark subpixels can be generated by the first subpixel 10 and the second subpixel 20.
- FIG. 5 is an explanatory diagram showing an example of display characteristics of a general liquid crystal display device.
- the horizontal axis represents the applied voltage to the liquid crystal layer
- the vertical axis represents the normalized transmittance normalized with the transmittance when the highest gradation voltage is applied as 100%.
- the graph indicated by symbol A schematically shows display characteristics when viewed from the normal of the display surface, that is, from the front direction
- the graph indicated by symbol B schematically shows display characteristics when viewed from an oblique direction. Shown in
- the display characteristics when viewed from the front direction of the display surface of the liquid crystal display device are different from the display characteristics viewed from an oblique direction.
- the gamma ( ⁇ ) characteristics of the liquid crystal display device differ depending on the viewing direction of the display surface.
- the normalized transmittance in the front direction (referred to as front transmittance) is TA
- the normalized transmittance in the oblique direction (referred to as oblique transmittance). Let it be TB.
- one pixel is composed of the first subpixel 10 and the second subpixel 20, and the front transmittance of the first subpixel 10 is TA1 in order to obtain the front transmittance TA.
- the front transmittance of the second subpixel 20 can be TA2.
- the voltage V1 is applied to the liquid crystal layer 70 of the first sub-pixel 10
- the liquid crystal layer 70 of the second sub-pixel 20 is applied to the liquid crystal layer 70.
- a voltage V2 (> V1) is applied. As shown in FIG.
- the oblique transmittance TB1 is assumed, and when the voltage applied to the liquid crystal layer 70 is V2, the oblique transmittance TB2 is assumed.
- An average value of the oblique transmittance TB1 and the oblique transmittance TB2 is P.
- the oblique transmittance P is closer to the front transmittance TA than the oblique transmittance TB of the conventional general liquid crystal display device, and the amount of deviation of the ⁇ characteristic is reduced. It can be seen that the angular characteristics are improved.
- An example in which the viewing angle is improved is also described in Japanese Patent No. 4248306.
- the gradation signal when the gradation signal is positive, a positive signal is applied to the first drive line 1 and a negative signal is applied to the second drive line 2.
- the voltage V1 applied to the first subpixel 10 and the voltage V2 applied to the second subpixel 20 can be made different. The same applies when the gradation signal is negative.
- a bright and dark subpixel can be generated by the first subpixel 10 and the second subpixel 20, and the viewing angle characteristics can be improved.
- the viewing angle characteristics can be improved even in a configuration without an auxiliary capacitor.
- FIG. 6 is an explanatory diagram illustrating an example of a driving method of the pixel unit 100 of the liquid crystal display device according to the first embodiment.
- each vertical 3 ⁇ 3 block represents one pixel unit 100.
- FIG. 6 schematically shows nine 3 ⁇ 3 pixel units 100.
- Examples of the driving method include a dot inversion method and a source inversion method.
- the dot inversion method is a method in which the polarity of the pixel unit 100 is inverted along the horizontal direction (scanning line direction) and the vertical direction (gradation signal line direction), and the polarity of each pixel unit 100 is inverted by switching frames. is there.
- the polarity of the pixel unit 100 is inverted along the horizontal direction (scanning line direction), and the polarity of the pixel unit 100 is the same along the vertical direction (gradation signal line direction). This is a method in which the polarity of each pixel unit 100 is inverted by switching.
- FIG. 7 is a schematic diagram illustrating an example of brightness of the adjacent pixel unit 100 during dot inversion driving of the liquid crystal display device of the first embodiment
- FIG. 8 is during dot inversion driving of the liquid crystal display device of the first embodiment.
- 6 is a time chart illustrating an example of voltage waveforms of respective portions of the first subpixel 10 and the second subpixel 20 of the adjacent pixel portion 100 in FIG.
- FIG. 7 shows two (N + 1) pixels and (N + 2) pixels that are adjacent in the vertical direction. In FIG. 7, the same parts as those in FIG. In FIG. 7, the same parts as those in FIG. In FIG. 7, the same parts as those in FIG. In FIG. 7, the same parts as those in FIG. In FIG.
- the sign + indicates a subpixel to which a positive gradation signal Vs is applied
- the sign ⁇ indicates a subpixel to which a negative gradation signal Vs is applied.
- subpixels with circles surrounding the signs + and ⁇ indicate bright pixels
- subpixels without circles indicate dark pixels.
- FIG. 8 shows the voltage waveform of each part of the (N + 1) pixel, and the lower half chart shows the voltage waveform of each part of the (N + 2) pixel.
- the voltage waveform of each part shown in FIG. 8 is the same as the voltage waveform illustrated in FIG.
- a voltage V1 is applied and held in the liquid crystal layer 70 of the first subpixel 10 of (N + 1) pixels.
- the voltage V2 (> V1) is applied and held in the liquid crystal layer 70 of the second sub-pixel 20 of the (N + 1) pixel. Accordingly, as shown in FIG. 7, it can be seen that the first subpixel 10 of (N + 1) pixels is a dark pixel and the second subpixel 20 of (N + 1) pixels is a bright pixel.
- the voltage V1 is applied and held in the liquid crystal layer 70 of the first sub-pixel 10 of the (N + 2) pixel.
- the voltage V2 (> V1) is applied and held in the liquid crystal layer 70 of the second sub-pixel 20 of the (N + 2) pixel. Accordingly, as shown in FIG. 7, it can be seen that the first subpixel 10 of (N + 2) pixels is a dark pixel, and the second subpixel 20 of (N + 2) pixels is a bright pixel.
- FIG. 9 is a schematic diagram illustrating an example of the brightness of the adjacent pixel unit 100 during source inversion driving of the liquid crystal display device of the second embodiment
- FIG. 10 is during source inversion driving of the liquid crystal display device of the second embodiment.
- 6 is a time chart illustrating an example of voltage waveforms of respective portions of the first subpixel 10 and the second subpixel 20 of the adjacent pixel portion 100 in FIG.
- FIG. 9 shows three N pixels, (N + 1) pixels, and (N + 2) pixels that are adjacent in the vertical direction.
- the symbol + indicates a subpixel to which the positive gradation signal Vs is applied
- the circled subpixel surrounding the symbol + indicates a bright pixel, and the circle is not circled. Indicates a dark pixel.
- N pixels, (N + 1) pixels, and (N + 2) pixels composed of the first subpixel 10 and the second subpixel 20 are orthogonal to the scanning line 3. It is arranged in the direction to do. A portion parallel to the scanning line 3 of the (N + 2) pixel first driving line 1 and a portion parallel to the scanning line 3 of the (N + 1) pixel second driving line 2 are made common. The same applies to N pixels and (N + 1) pixels. Of the first drive line 1 and the second drive line 2, the portion parallel to the scanning line 3 can be shared by two subpixels. Therefore, the area occupied by the wiring on the pixel substrate is reduced, and the aperture ratio is reduced. Can be increased.
- FIG. 10 shows the voltage waveform of each part of the second sub-pixel 20 of the N pixel, the voltage waveform of each part of the (N + 1) pixel, and the voltage waveform of each part of the first sub-pixel 10 of the (N + 2) pixel.
- the voltage waveform of each part shown in FIG. 10 is the same as the voltage waveform illustrated in FIG.
- a voltage V1 is applied to and held in the liquid crystal layer 70 of the second sub-pixel 20 of the N pixel.
- the voltage V2 (> V1) is applied to and held in the liquid crystal layer 70 of the first sub-pixel 20 of the (N + 1) pixel.
- the voltage V1 is applied to the liquid crystal layer 70 of the second sub-pixel 20 of the (N + 1) pixel and is held. Further, the voltage V2 is applied to and held in the liquid crystal layer 70 of the first sub-pixel 10 of the (N + 2) pixel.
- the second sub-pixel 20 of N pixels is a dark pixel
- the first sub-pixel 10 of (N + 1) pixels is a bright pixel
- the second sub-pixel 20 of (N + 1) pixels is a dark pixel. It can be seen that the first sub-pixel 10 of the (N + 2) pixel is a bright pixel.
- FIG. 11 is a schematic diagram illustrating an example of lightness and darkness of adjacent pixel units 100 during dot inversion driving of the liquid crystal display device of the third embodiment.
- the third embodiment shows the structure of both-side gates. That is, the difference from the first embodiment is that the scanning line 3 is wired so as to surround the first subpixel 10 and the second subpixel 20. Redundancy can be imparted to the scanning lines 3, and even if the scanning lines 3 are disconnected somewhere, the scanning signals can be transmitted by bypassing the scanning lines 3 that are not disconnected.
- the sign + indicates a subpixel to which a positive gradation signal Vs is applied
- the sign ⁇ indicates a subpixel to which a negative gradation signal Vs is applied.
- subpixels with circles surrounding the signs + and ⁇ indicate bright pixels
- subpixels without circles indicate dark pixels.
- the voltage waveforms applied to the respective parts of the first subpixel 10 and the second subpixel 20 are the same as in the case of FIG.
- FIG. 12 is a schematic diagram illustrating an example of lightness and darkness of adjacent pixel units 100 during source inversion driving of the liquid crystal display device of the fourth embodiment.
- 4th Embodiment shows the structure of a both-sides gate similarly to 3rd Embodiment. That is, the difference from the second embodiment is that the scanning line 3 is wired so as to surround the first subpixel 10 and the second subpixel 20. Redundancy can be imparted to the scanning lines 3, and even if the scanning lines 3 are disconnected somewhere, the scanning signals can be transmitted by bypassing the scanning lines 3 that are not disconnected.
- the sign + indicates a subpixel to which a positive gradation signal Vs is applied
- the sign ⁇ indicates a subpixel to which a negative gradation signal Vs is applied.
- subpixels with circles surrounding the signs + and ⁇ indicate bright pixels
- subpixels without circles indicate dark pixels.
- the voltage waveforms applied to the respective parts of the first subpixel 10 and the second subpixel 20 are the same as those in FIG.
- the counter substrate 60 has the gradation signal lines 4, and the pixel substrate 50 has the first drive lines 1 and the second drive lines 2. If the gradation signal line 4 is provided on the pixel substrate 50, the wiring area occupied on the pixel substrate 50 increases and the aperture ratio decreases. By providing the gradation signal line 4 on the counter substrate 60, the pixel area on the pixel substrate 50 can be widened, and a decrease in the aperture ratio can be prevented.
- viewing angle characteristics in the TN mode or the VA mode can be improved.
- viewing angle characteristics of a liquid crystal display device that does not include an auxiliary capacitor can be improved.
- the transmissive liquid crystal display device has been described.
- the present invention is not limited to this, and the present invention can also be applied to a reflective liquid crystal display device.
- a liquid crystal layer is sandwiched between a pixel substrate and a counter substrate, and a conduction state between a plurality of pixels arranged in a matrix and two controlled terminals is applied to a control terminal.
- the liquid crystal display device includes a plurality of switching elements controlled by signals, and each of the plurality of pixels includes a first subpixel and a second subpixel having a pixel electrode and a counter electrode with the liquid crystal layer interposed therebetween.
- the first drive signal is applied, and the second drive signal having a polarity different from the polarity of the first drive signal is applied to the second drive line.
- the first switching element in which one of the controlled terminals is connected to the pixel electrode of the first subpixel, and the one of the controlled terminals is connected to the pixel electrode of the second subpixel.
- the second switching element in other words, each of the plurality of pixels arranged in a matrix includes a first subpixel and a first switching element, and a second subpixel and a second switching element.
- a first drive line is connected to the other controlled terminal of the first switching element.
- a second drive line is connected to the other controlled terminal of the second switching element.
- the switching element is a TFT
- one of the controlled terminals can be a drain terminal and the other of the controlled terminals can be a source terminal.
- a gradation signal line is connected to each of the counter electrode of the first subpixel and the counter electrode of the second subpixel.
- Scan lines are connected to control terminals of the first switching element and the second switching element, respectively.
- the control terminal can be a gate terminal.
- the source terminal of the first TFT (first switching element) is connected to the first drive line, the pixel electrode of the first subpixel is connected to the drain terminal of the first TFT, and the first subpixel is opposed to the first drive pixel.
- a gradation signal line is connected to the electrode.
- the source terminal of the second TFT (second switching element) is connected to the second drive line, the pixel electrode of the second subpixel is connected to the drain terminal of the second TFT, and the second subpixel is opposed to the second subpixel.
- a gradation signal line is connected to the electrode.
- a first drive signal whose polarity is inverted is applied to the first drive line, and a second drive signal having a polarity different from the polarity of the first drive signal is applied to the second drive line.
- the first drive signal and the second drive signal are signals that have different polarities from each other and invert the polarities at the same timing. For example, when a positive signal is applied to the first drive line, a negative signal is applied to the second drive line, and when a negative signal is applied to the first drive line, a positive signal is applied to the second drive line. Is applied.
- the grayscale signal is positive
- a positive signal is applied to the first drive line and a negative signal is applied to the second drive line
- the voltage applied to the first subpixel and the second subpixel are applied.
- the applied voltage can be different.
- the gradation signal is negative.
- the voltage between the pixel electrode and the counter electrode of the first subpixel when the first switching element and the second switching element are changed from the conductive state to the non-conductive state, the voltage between the pixel electrode and the counter electrode of the first subpixel, The voltage between the pixel electrode and the counter electrode of the second subpixel is different.
- the voltage between the pixel electrode and the counter electrode of the first subpixel when the first switching element and the second switching element are changed from the conductive state to the non-conductive state, the voltage between the pixel electrode and the counter electrode of the first subpixel, The voltage between the pixel electrode and the counter electrode of the second subpixel is different.
- the first drive signal of the source terminal of the first TFT is output from the drain terminal.
- the first drive signal appears on the pixel electrode of the first subpixel.
- a voltage (scanning signal) is applied to the gate terminal of the second TFT to make the second TFT conductive, the second drive signal of the source terminal of the second TFT is output from the drain terminal.
- the second drive signal appears on the pixel electrode of the second subpixel. Since the polarities of the first drive signal and the second drive signal are different, the voltage between the pixel electrode and the counter electrode of the first subpixel is different from the voltage between the pixel electrode and the counter electrode of the second subpixel.
- the voltage between the pixel electrode and the counter electrode of the first subpixel is different from the voltage between the pixel electrode and the counter electrode of the second subpixel. Is maintained, and bright and dark subpixels can be generated by the first subpixel and the second subpixel.
- the liquid crystal display device of this embodiment is characterized in that the counter substrate has the gradation signal line, and the pixel substrate has the first drive line and the second drive line.
- the counter substrate has a gradation signal line
- the pixel substrate has a first drive line and a second drive line. If the gradation signal line is provided on the pixel substrate, the wiring area occupied on the pixel substrate increases and the aperture ratio decreases. By providing the grayscale signal line on the counter substrate, the pixel region on the pixel substrate can be widened and the aperture ratio can be prevented from being lowered.
- each of the first subpixel and the second subpixel includes a rectangular first subpixel region and a second subpixel region that are separated from each other on the pixel substrate.
- the scanning line is disposed between the first sub-pixel region and the second sub-pixel region on the substrate, and one side orthogonal to the scanning line of the first sub-pixel region on the pixel substrate and the scanning line.
- the first drive line is disposed along the other side of the first sub-pixel region opposite to the scan line and is orthogonal to the scan line of the second sub-pixel region on the pixel substrate.
- the second drive line is arranged along one side that is parallel to the scanning line and on the other side of the second subpixel region opposite to the scanning line.
- each of the first subpixel and the second subpixel has a rectangular first subpixel region and a second subpixel region that are separated from each other on the pixel substrate.
- the first subpixel region and the second subpixel region are regions on the substrate surface of the pixel electrode and the counter electrode provided with the liquid crystal layer therebetween.
- a scanning line is arranged between the first subpixel region and the second subpixel region on the pixel substrate.
- the first drive line is arranged along one side orthogonal to the scanning line of the first subpixel region and the other side parallel to the scanning line and opposite to the scanning line of the first subpixel region.
- the second drive line is arranged along one side orthogonal to the scanning line of the second subpixel region and the other side opposite to the scanning line of the second subpixel region. It is.
- the first sub-pixel region and the second sub-pixel region are arranged to face each other with the scanning line in between, and the first switching element and the second sub-pixel region are arranged in the vicinity of the corner on the scanning line side of the first sub-pixel region and the second sub-pixel region.
- 2 switching elements are arranged, a first drive line is arranged in parallel to the scanning line on the side opposite to the scanning line side of the first subpixel region, and the first driving line is arranged on the first switching element side of the first subpixel region.
- the first switching element can be wired so as to be orthogonal to the scanning line at the corner on the opposite side.
- a second drive line is arranged in parallel to the scan line on the side opposite to the scan line side of the second subpixel region, and the second drive line is arranged on the side opposite to the second switching element side of the second subpixel region.
- the second switching element can be wired so as to be orthogonal to the scanning line at the corner.
- the first pixel and the second pixel configured by the first subpixel and the second subpixel are arranged in a direction orthogonal to the scanning line, and the first pixel A portion parallel to the scanning line of the first driving line and a portion parallel to the scanning line of the second driving line of the second pixel are shared.
- a pair of first and second pixels composed of the first subpixel and the second subpixel are arranged in a direction orthogonal to the scanning line.
- a portion parallel to the scanning line of the first drive line of the first pixel and a portion parallel to the scanning line of the second drive line of the second pixel are made common.
- the portion parallel to the scanning line can be shared by the two subpixels, so that the area occupied by the wiring on the pixel substrate is reduced and the aperture ratio is increased. Can do.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Liquid Crystal (AREA)
- Microelectronics & Electronic Packaging (AREA)
Abstract
視野角特性を改善することができる液晶表示装置を提供する。 液晶表示装置は、第1副画素(10)の画素電極(12)に被制御端子の一方を接続した第1スイッチング素子(11)と、第2副画素(20)の画素電極(22)に被制御端子の一方を接続した第2スイッチング素子(21)と、第1スイッチング素子(11)の他方の被制御端子に接続した第1駆動線(1)と、第2スイッチング素子(21)の他方の被制御端子に接続した第2駆動線(2)と、第1副画素(10)の対向電極(13)及び第2副画素の対向電極(23)それぞれに接続した階調信号線(4)と、第1スイッチング素子(11)及び第2スイッチング素子(21)それぞれの制御端子に接続した走査線(3)とを備え、第1駆動線(1)に極性が反転する第1駆動信号を印加し、第2駆動線(2)に第1駆動信号の極性と異なる極性の第2駆動信号を印加する。
Description
本発明は、画素基板及び対向基板の間に液晶層を挟持し、複数の画素をマトリクス状に配置した液晶表示装置に関する。
近年、フラットパネルディスプレイの代表である液晶ディスプレイ(LCD)は、中小型パネル分野だけでなくTV用の大型映像表示パネル分野でも主流になっている。このような液晶ディスプレイでは、アクティブマトリクス型の液晶表示装置が広く使用されている。
アクティブマトリクス型の液晶表示装置は、透光性のアクティブマトリクス基板(画素基板、セル・アレイ基板ともいう)と対向基板(カラーフィルタ基板ともいう)との間に液晶層を挟持し、アクティブマトリクス基板の表示領域には、マトリクス状に配置された複数の画素部が設けられ、各画素部には、TFT(Thin Film Transistor)及びTFTに接続され液晶を駆動する画素電極等が設けられている。TFTのゲート電極には、走査線が接続されている。また、対向基板には、アクティブマトリクス基板に設けられた画素電極に対向させて、対向電極としての階調信号線が設けられている(特許文献1参照)。
液晶ディスプレイの液晶モードには、TN(Twisted Nematic)モード、VA(Vertical Alignment)モードなどが知られている。TNモードは、正の誘電率異方性を持つ液晶分子の長軸を基板表面に対して略水平に配向させ、かつ、液晶分子の長軸が液晶層の厚さ方向に沿って上下の基板間で略90度捻じれるように配向されている。VAモードは、無電界のときに、液晶分子が基板表面に対して垂直になるように配向されている。
VAモードは、TNモードにおける視野角特性をある程度改善することができるが、更なる視野角特性の改善が求められている。ここで、視野角特性の改善とは、表示面を斜め方向から観測した場合に表示コントラストが低下し、あるいは表示階調が反転するといった問題を解消することである。
そこで、1つの画素を、液晶層等で構成される液晶容量、及び該液晶容量に電気的に接続された補助容量をそれぞれ有する第1副画素と第2副画素とで構成し、この2つの補助容量に対してお互いに独立の電圧を供給することにより、第1副画素の液晶層と第2副画素の液晶層に異なる電圧を印加することにより、視野角特性を改善する液晶表示装置が開示されている(特許文献2参照)。
しかし、特許文献2に記載の視野角特性の改善方法は、補助容量に対して電圧を印加する構成であるため、補助容量を具備しないアクティブマトリクス型の液晶表示装置に対しては適用することができない。一方で、補助容量を具備する場合、補助容量の大きさに応じて開口率が低減する。
本発明は斯かる事情に鑑みてなされたものであり、視野角特性を改善することができる液晶表示装置を提供することを目的とする。
本発明の実施の形態に係る液晶表示装置は、画素基板及び対向基板の間に液晶層を挟持し、マトリクス状に配置された複数の画素及び2つの被制御端子間の導通状態が制御端子に印加される信号により制御される複数のスイッチング素子を備え、前記液晶層を間にして画素電極及び対向電極を有する第1副画素及び第2副画素により前記複数の画素それぞれが構成される液晶表示装置であって、前記第1副画素の画素電極に前記被制御端子の一方を接続した第1スイッチング素子と、前記第2副画素の画素電極に前記被制御端子の一方を接続した第2スイッチング素子と、前記第1スイッチング素子の他方の被制御端子に接続した第1駆動線と、前記第2スイッチング素子の他方の被制御端子に接続した第2駆動線と、前記第1副画素の対向電極及び前記第2副画素の対向電極それぞれに接続した階調信号線と、前記第1スイッチング素子及び第2スイッチング素子それぞれの制御端子に接続した走査線とを備え、前記第1駆動線に極性が反転する第1駆動信号を印加し、前記第2駆動線に前記第1駆動信号の極性と異なる極性の第2駆動信号を印加することを特徴とする。
本発明によれば、視野角特性を改善することができる。
(第1実施形態)
以下、本発明をその実施の形態を示す図面に基づいて説明する。図1は第1実施形態の液晶表示装置の画素部100の構成の一例を示す模式図であり、図2は第1実施形態の液晶表示装置の画素部100の等価回路の一例を示す説明図であり、図3は第1実施形態の液晶表示装置の画素部100の構成の一例を示す断面図である。画素部100は、マトリクス状に配置された複数の画素の1つの画素の要部を示す。後述の図3に示すように、液晶表示装置は、透光性の画素基板50(アクティブマトリクス基板、セル・アレイ基板ともいう)、画素基板50に対して適長離隔して配置された透光性の対向基板60(カラーフィルタ基板ともいう)、画素基板50と対向基板60との間の隙間に挟持された液晶層70などを備える。画素基板50の表示領域には、マトリクス状に配置された複数の画素部100が設けられている。
以下、本発明をその実施の形態を示す図面に基づいて説明する。図1は第1実施形態の液晶表示装置の画素部100の構成の一例を示す模式図であり、図2は第1実施形態の液晶表示装置の画素部100の等価回路の一例を示す説明図であり、図3は第1実施形態の液晶表示装置の画素部100の構成の一例を示す断面図である。画素部100は、マトリクス状に配置された複数の画素の1つの画素の要部を示す。後述の図3に示すように、液晶表示装置は、透光性の画素基板50(アクティブマトリクス基板、セル・アレイ基板ともいう)、画素基板50に対して適長離隔して配置された透光性の対向基板60(カラーフィルタ基板ともいう)、画素基板50と対向基板60との間の隙間に挟持された液晶層70などを備える。画素基板50の表示領域には、マトリクス状に配置された複数の画素部100が設けられている。
図1に示すように、1つの画素部100(すなわち、マトリクス状に配置された複数の画素それぞれ)は、第1副画素10及び第2副画素20の2つの副画素で構成される。また、画素部100は、第1副画素10に対応して設けられた第1スイッチング素子としてのTFT(Thin Film Transistor)11、及び第2副画素20に対応して設けられた第2スイッチング素子としてのTFT(Thin Film Transistor)21を有する。なお、スイッチング素子はTFTに限定されるものではない。
第1副画素10及び第2副画素20それぞれは、画素基板50上で離隔した矩形状の第1副画素領域15及び第2副画素領域25を有する。第1副画素領域15は、液晶層70を間にして設けられた画素電極12及び対向電極13の基板面上の領域である。また、第2副画素領域25は、液晶層70を間にして設けられた画素電極22及び対向電極23の基板面上の領域である。
画素基板50上で第1副画素領域15及び第2副画素領域25の間に走査線3を配置してある。そして、画素基板50上で、第1副画素領域15の走査線3と直交する一辺及び走査線3と平行であって第1副画素領域15の走査線3と反対側の他辺に沿って第1駆動線1を配置してある。また、画素基板50上で、第2副画素領域25の走査線3と直交する一辺及び走査線3と平行であって第2副画素領域25の走査線3と反対側の他辺に沿って第2駆動線2を配置してある。
すなわち、走査線3を間にして第1副画素領域15及び第2副画素領域25を対向配置する。第1副画素領域の走査線3側の角部付近にTFT11を配置し、第2副画素領域25の走査線3側の角部付近にTFT21を配置する。第1副画素領域15の走査線3側と反対側に走査線3と平行に第1駆動線1を配置し、当該第1駆動線1を第1副画素領域15のTFT11側と反対側の角部で走査線3と直交するようにしてTFT11まで配線する。同様に、第2副画素領域25の走査線3側と反対側に走査線3と平行に第2駆動線2を配置し、当該第2駆動線2を第2副画素領域25のTFT21側と反対側の角部で走査線3と直交するようにしてTFT21まで配線する。これにより、画素基板50上で第1駆動線1及び第2駆動線2を配置することができる。
なお、図1に示す構成は、画素部100を模式的に表すものであり、実際の構成は図1に例示する構成に限定されない。
図2に示すように、第1副画素10は、画素電極12、対向電極13、及び画素電極12と対向電極13との間に設けられた液晶層70により形成される第1液晶容量14を有する。同様に、第2副画素20は、画素電極22、対向電極23、及び画素電極22と対向電極23との間に設けられた液晶層70により形成される第2液晶容量24を有する。
第1副画素10の画素電極12には、TFT11のドレイン端子を接続してある。TFT11のソース端子には、第1駆動線1を接続してある。また、第1副画素10の対向電極13には階調信号線4を接続してある。
また、第2副画素20の画素電極22には、TFT21のドレイン端子を接続してある。TFT21のソース端子には、第2駆動線2を接続してある。また、第2副画素20の対向電極23には階調信号線4を接続してある。TFT11及びTFT21のゲート端子には、走査線3を接続してある。
図3は、図1のIII-III線から見た画素部100の断面図を模式的に示すものである。すなわち、図3は画素部100のうち第1副画素10の断面図を示すが、第2副画素20も同様であるので説明は省略する。図3に示すように、画素基板50は、絶縁性透明基板56上に走査線3及び第1駆動線1を形成してあり、走査線3及び第1駆動線1を覆うようにゲート絶縁膜51を形成してある。ゲート絶縁膜51上の走査線3に対応する位置には、チャネル層としてのa-Si(アモルファスシリコン)層52を形成してある。また、a-Si層52上のソース及びドレインに対応する位置には、オーミックコンタクト(n+a-Si)層53(TFT11のソース端子及びドレイン端子)を形成してある。TFT11のソース端子は、配線54によって第1駆動線1に接続されている。また、TFT11のドレイン端子には、透明導電膜(例えば、ITO:Indium Tin Oxideなど)からなる画素電極12を接続してある。TFT11は、保護膜55で保護されている。画素電極12及び保護膜55上には、不図示の配向膜が形成されている。
対向基板60は、絶縁性透明基板61の表面にブラックマトリクス層62及びカラーフィルタ層63を形成してある。また、カラーフィルタ層63の画素基板50側には、不図示の平坦化膜を介して対向電極13を形成してある。対向電極13は、画素電極12に対向配置され、画素電極12と同様の形状及び大きさを有する。対向電極13には階調信号線4を接続してある。なお、階調信号線4は、画素電極12に対向する部分で対向電極13を兼ねた構成とすることもできる。対向電極13及びブラックマトリクス層62の画素基板50側には、不図示の配向膜が形成されている。
なお、図3に示す構成は、画素部100を模式的に表すものであり、実際の構成は図3に例示する構成に限定されない。
次に、第1副画素10及び第2副画素20の駆動状態について説明する。図4は第1実施形態の液晶表示装置の第1副画素10及び第2副画素20の各部の電圧波形の一例を示すタイムチャートである。図4において、横軸は時間を示す。上から1段目のチャートは、走査線3を介してTFT11及びTFT21のゲート端子に印加される走査信号を示す。上から2段目のチャートは、第1駆動線1を介してTFT11のソース端子に印加される第1駆動信号Vc1を示す。上から3段目のチャートは、階調信号線4を介して第1副画素10の対向電極13に印加される階調信号Vsを示し、破線で示すチャートは、TFT11のドレイン端子(すなわち、画素電極12)の電圧Vd1を示す。
また、上から4段目のチャートは、第2駆動線2を介してTFT21のソース端子に印加される第2駆動信号Vc2を示す。上から5段目のチャートは、階調信号線4を介して第2副画素20の対向電極23に印加される階調信号Vsを示し、破線で示すチャートは、TFT21のドレイン端子(すなわち、画素電極22)の電圧Vd2を示す。
図4に示すように、第1駆動線1に所定時間間隔で極性が反転する第1駆動信号Vc1を印加し、第2駆動線2に第1駆動信号Vc1の極性と異なる極性の第2駆動信号Vc2を印加する。すなわち、第1駆動信号Vc1及び第2駆動信号Vc2は、お互いに極性が異なり、同じタイミングで極性が反転する信号である。例えば、第1駆動線1に正の信号が印加された場合、第2駆動線2には負の信号が印加され、第1駆動線1に負の信号が印加された場合、第2駆動線2には正の信号が印加される。
また、第1副画素10及び第2副画素20には、同じ階調信号Vsが印加され、例えば、フレームが切り替わると正の電圧から負の電圧、あるいは負の電圧から正の電圧に切り替わる。これにより、液晶層70内部のわずかな不純物が電荷となって一方に偏って蓄積して液晶が劣化し、表示品質が低下することを防止することができる。
時刻t1からt2までの間に走査信号がTFT11、TFT21のゲート端子に印加されると、TFT11、TFT21は、この間で導通状態となる。TFT11が導通状態になることにより、TFT11のドレイン端子(画素電極12)の電圧Vd1は、第1駆動信号Vc1まで立ち上がる。第1駆動信号Vc1は極性が正であるので、電圧Vd1も正となる。また、TFT21が導通状態になることにより、TFT21のドレイン端子(画素電極22)の電圧Vd2は、第2駆動信号Vc2まで立ち下がる。第2駆動信号Vc2は極性が負であるので、電圧Vd2も負となる。
時刻t2でTFT11及びTFT21は非導通状態となると、TFTのゲート・ソース間の寄生容量によるフィールドスルー現象により、電圧Vd1及び電圧Vd2は、フィールドスルー電圧ΔVだけ低くなる。そして、時刻t3でTFT11、TFT21のゲート端子に走査信号が印加されてTFT11及びTFT21が導通状態になるまでの間、電圧Vd1及び電圧Vd2が保持される。なお、TFT11及びTFT21が非導通状態になる場合、階調信号Vsが正から負に変化すると、電圧Vd1及び電圧Vd2も同じように変化する。
そして、図4に示すように、第1副画素10の第1液晶容量14(画素電極12と対向電極13)には、電圧V1(=Vs-Vd1)が印加され、第2副画素20の第2液晶容量24(画素電極22と対向電極23)には、電圧V1より大きい電圧V2(=Vs-Vd2)が印加される。
時刻t3からt4までの間に走査信号がTFT11、TFT21のゲート端子に印加される場合も同様であるので、説明は省略する。
上述のように、TFT11のゲート端子に電圧(走査信号)を印加してTFT11を導通状態にした場合、TFT11のソース端子の第1駆動信号Vc1がドレイン端子から出力されるので、第1副画素10の画素電極12には第1駆動信号Vc1が表れる。また、TFT21のゲート端子に電圧(走査信号)を印加してTFT21を導通状態にした場合、TFT21のソース端子の第2駆動信号Vc2がドレイン端子から出力されるので、第2副画素20の画素電極22には第2駆動信号Vc2が表れる。第1駆動信号Vc1と第2駆動信号Vc2とでは、極性が異なるので、第1副画素10の画素電極12及び対向電極13間の電圧V1と、第2副画素20の画素電極22及び対向電極23間の電圧V2とを異ならせることができる。そして、TFT11及びTFT21を非導通状態にすると、第1副画素10の画素電極12及び対向電極13間の電圧V1と、第2副画素20の画素電極22及び対向電極23間の電圧V2とで異なる電圧が印加された状態が保持され、第1副画素10と第2副画素20とで明暗の副画素を生成することができる。
次に、視野角特性が改善される点について説明する。図5は一般的な液晶表示装置の表示特性の一例を示す説明図である。図5において、横軸は液晶層に対する印加電圧を示し、縦軸は最高階調電圧を印加したときの透過率を100%として規格化した規格化透過率を示す。また、符号Aで示すグラフは、表示面の法線上、すなわち正面方向から見た場合の表示特性を模式的に示し、符号Bで示すグラフは、斜め方向から見た場合の表示特性を模式的に示す。
図5から分かるように、液晶表示装置の表示面の正面方向から見た場合の表示特性と、斜め方向から見た表示特性とが異なっている。このことは、表示面を見る方向によって液晶表示装置のガンマ(γ)特性が異なっていることを示す。図5に示すように、液晶層に印加される電圧がVの場合に、正面方向の規格化透過率(正面透過率という)をTA、斜め方向の規格化透過率(斜め透過率という)をTBとする。
本実施の形態の液晶表示装置では、1つの画素を第1副画素10及び第2副画素20で構成し、正面透過率TAを得るために第1副画素10の正面透過率をTA1とし、第2副画素20の正面透過率をTA2とすることができる。また、正面透過率TA1を得るために、例えば、第1副画素10の液晶層70には電圧V1が印加され、正面透過率TA2を得るために、第2副画素20の液晶層70には電圧V2(>V1)が印加される。図5に示すように、液晶層70に印加される電圧がV1の場合に、斜め透過率TB1とし、液晶層70に印加される電圧がV2の場合に、斜め透過率TB2とする。そして、斜め透過率TB1と斜め透過率TB2との平均値をPとする。本実施の形態の液晶表示装置では、斜め透過率Pが、従来の一般的な液晶表示装置の斜め透過率TBよりも正面透過率TAに近づき、γ特性のずれ量が低減されるので、視野角特性が改善されることが分かる。なお、視野角が改善される例は、特許第4248306号公報にも記載されている。
上述のように、本実施の形態の液晶表示装置では、階調信号が正の場合に、第1駆動線1に正の信号が印加され、第2駆動線2に負の信号が印加されると、第1副画素10に印加される電圧V1と第2副画素20に印加される電圧V2とを異ならせることができる。階調信号が負の場合も同様である。これにより、複数の画素それぞれにおいて、第1副画素10と第2副画素20とで明暗の副画素を生成することができ、視野角特性を改善することができる。また、補助容量を具備しない構成であっても視野角特性を改善することができる。
次に、画素部100に電圧を印加する方式(駆動方式)について説明する。図6は第1実施形態の液晶表示装置の画素部100の駆動方式の例を示す説明図である。図6において、縦横3×3の各ブロックは、1つの画素部100を示す。便宜上、図6では、3×3の9個の画素部100を模式的に表している。駆動方式としては、例えば、ドット反転方式、ソース反転方式などがある。ドット反転方式は、横方向(走査線方向)及び縦方向(階調信号線方向)に沿って画素部100の極性が反転し、フレームの切り替えによって、各画素部100の極性が反転する方式である。また、ソース反転方式は、横方向(走査線方向)に沿って画素部100の極性が反転し、縦方向(階調信号線方向)に沿って画素部100の極性が同じであり、フレームの切り替えによって、各画素部100の極性が反転する方式である。
まず、ドット反転方式について説明する。図7は第1実施形態の液晶表示装置のドット反転駆動時での隣接する画素部100の明暗の一例を示す模式図であり、図8は第1実施形態の液晶表示装置のドット反転駆動時での隣接する画素部100の第1副画素10及び第2副画素20の各部の電圧波形の一例を示すタイムチャートである。図7は、縦方向に隣接する2つの(N+1)画素及び(N+2)画素を示す。図7において、図1と同様の箇所は同一符号を付して説明を省略する。図7において、符号+は、正の階調信号Vsが印加される副画素を示し、符号-は負の階調信号Vsが印加される副画素を示す。また、符号+、-を囲む丸印が付された副画素は明画素を示し、丸印が付されてない副画素は暗画素を示す。
図8の上半分のチャートは、(N+1)画素の各部の電圧波形を示し、下半分のチャートは、(N+2)画素の各部の電圧波形を示す。図8に示す各部の電圧波形は、図4で例示した電圧波形と同様である。図8に示すように、(N+1)画素の第1副画素10の液晶層70には電圧V1が印加され、保持されている。また、(N+1)画素の第2副画素20の液晶層70には電圧V2(>V1)が印加され、保持されている。これにより、図7に示すように、(N+1)画素の第1副画素10は暗画素となり、(N+1)画素の第2副画素20は明画素となることが分かる。
同様に、(N+2)画素の第1副画素10の液晶層70には電圧V1が印加され、保持されている。また、(N+2)画素の第2副画素20の液晶層70には電圧V2(>V1)が印加され、保持されている。これにより、図7に示すように、(N+2)画素の第1副画素10は暗画素となり、(N+2)画素の第2副画素20は明画素となることが分かる。
(第2実施形態)
次に、ソース反転方式について説明する。図9は第2実施形態の液晶表示装置のソース反転駆動時での隣接する画素部100の明暗の一例を示す模式図であり、図10は第2実施形態の液晶表示装置のソース反転駆動時での隣接する画素部100の第1副画素10及び第2副画素20の各部の電圧波形の一例を示すタイムチャートである。図9は、縦方向に隣接する3つのN画素、(N+1)画素及び(N+2)画素を示す。なお、簡便のため、N画素は第2副画素20だけを図示し、(N+2)画素は、第1副画素10だけを図示している。図9において、符号+は、正の階調信号Vsが印加される副画素を示し、符号+を囲む丸印が付された副画素は明画素を示し、丸印が付されてない副画素は暗画素を示す。
次に、ソース反転方式について説明する。図9は第2実施形態の液晶表示装置のソース反転駆動時での隣接する画素部100の明暗の一例を示す模式図であり、図10は第2実施形態の液晶表示装置のソース反転駆動時での隣接する画素部100の第1副画素10及び第2副画素20の各部の電圧波形の一例を示すタイムチャートである。図9は、縦方向に隣接する3つのN画素、(N+1)画素及び(N+2)画素を示す。なお、簡便のため、N画素は第2副画素20だけを図示し、(N+2)画素は、第1副画素10だけを図示している。図9において、符号+は、正の階調信号Vsが印加される副画素を示し、符号+を囲む丸印が付された副画素は明画素を示し、丸印が付されてない副画素は暗画素を示す。
図9に示すように、第2実施形態の液晶表示装置は、第1副画素10及び第2副画素20で構成されるN画素、(N+1)画素、(N+2)画素を走査線3と直交する方向に配置してある。(N+2)画素の第1駆動線1の走査線3と平行な部分及び(N+1)画素の第2駆動線2の走査線3と平行な部分を共通にしてある。N画素と(N+1)画素も同様である。第1駆動線1及び第2駆動線2のうち、走査線3に平行な部分は、2つの副画素で共有することができるので、画素基板上で配線が占める領域を少なくして開口率を増加させることができる。
図10は、N画素の第2副画素20の各部の電圧波形、(N+1)画素の各部の電圧波形、及び(N+2)画素の第1副画素10の各部の電圧波形を示す。図10に示す各部の電圧波形は、図4で例示した電圧波形と同様である。図10に示すように、N画素の第2副画素20の液晶層70には電圧V1が印加され、保持されている。また、(N+1)画素の第1副画素20の液晶層70には電圧V2(>V1)が印加され、保持されている。また、(N+1)画素の第2副画素20の液晶層70には電圧V1が印加され、保持されている。また、(N+2)画素の第1副画素10の液晶層70には電圧V2が印加され、保持されている。これにより、図9に示すように、N画素の第2副画素20は暗画素となり、(N+1)画素の第1副画素10は明画素となり、(N+1)画素の第2副画素20は暗画素となり、(N+2)画素の第1副画素10は明画素となることが分かる。
(第3実施形態)
図11は第3実施形態の液晶表示装置のドット反転駆動時での隣接する画素部100の明暗の一例を示す模式図である。第3実施形態は、両側ゲートの構造を示す。すなわち第1実施形態との違いは、走査線3が第1副画素10及び第2副画素20を囲むように配線されている。走査線3に冗長性を持たせることができ、仮に走査線3がどこかで断線したとしても、断線していない走査線3を迂回して走査信号を伝送することができる。
図11は第3実施形態の液晶表示装置のドット反転駆動時での隣接する画素部100の明暗の一例を示す模式図である。第3実施形態は、両側ゲートの構造を示す。すなわち第1実施形態との違いは、走査線3が第1副画素10及び第2副画素20を囲むように配線されている。走査線3に冗長性を持たせることができ、仮に走査線3がどこかで断線したとしても、断線していない走査線3を迂回して走査信号を伝送することができる。
また、図11においては、図7と同様に、符号+は、正の階調信号Vsが印加される副画素を示し、符号-は負の階調信号Vsが印加される副画素を示す。また、符号+、-を囲む丸印が付された副画素は明画素を示し、丸印が付されてない副画素は暗画素を示す。なお、第1副画素10及び第2副画素20の各部に印加される電圧波形は、図8の場合と同様であるので説明は省略する。
(第4実施形態)
図12は第4実施形態の液晶表示装置のソース反転駆動時での隣接する画素部100の明暗の一例を示す模式図である。第4実施形態は、第3実施形態と同様に、両側ゲートの構造を示す。すなわち第2実施形態との違いは、走査線3が第1副画素10及び第2副画素20を囲むように配線されている。走査線3に冗長性を持たせることができ、仮に走査線3がどこかで断線したとしても、断線していない走査線3を迂回して走査信号を伝送することができる。
図12は第4実施形態の液晶表示装置のソース反転駆動時での隣接する画素部100の明暗の一例を示す模式図である。第4実施形態は、第3実施形態と同様に、両側ゲートの構造を示す。すなわち第2実施形態との違いは、走査線3が第1副画素10及び第2副画素20を囲むように配線されている。走査線3に冗長性を持たせることができ、仮に走査線3がどこかで断線したとしても、断線していない走査線3を迂回して走査信号を伝送することができる。
また、図12においては、符号+は、正の階調信号Vsが印加される副画素を示し、符号-は負の階調信号Vsが印加される副画素を示す。また、符号+、-を囲む丸印が付された副画素は明画素を示し、丸印が付されてない副画素は暗画素を示す。なお、第1副画素10及び第2副画素20の各部に印加される電圧波形は、図10の場合と同様であるので説明は省略する。
上述の第1実施形態から第4実施形態の液晶表示装置では、対向基板60は、階調信号線4を有し、画素基板50は、第1駆動線1及び第2駆動線2を有する。仮に、階調信号線4を画素基板50に設けた場合には、画素基板50上で占有される配線領域が増加し、開口率が低下する。対向基板60上に階調信号線4を設けることにより、画素基板50上での画素領域を広くすることができ開口率の低下を防止することができる。
上述の各実施形態の液晶表示装置にあっては、例えば、TNモード又はVAモードにおける視野角特性を改善することができる。また、補助容量を具備しない液晶表示装置の視野角特性を改善することができる。
上述の実施形態では、透過型の液晶表示装置について説明したが、これに限定されるものではなく、反射型の液晶表示装置についても適用することができる。
本実施の形態の液晶表示装置は、画素基板及び対向基板の間に液晶層を挟持し、マトリクス状に配置された複数の画素及び2つの被制御端子間の導通状態が制御端子に印加される信号により制御される複数のスイッチング素子を備え、前記液晶層を間にして画素電極及び対向電極を有する第1副画素及び第2副画素により前記複数の画素それぞれが構成される液晶表示装置であって、前記第1副画素の画素電極に前記被制御端子の一方を接続した第1スイッチング素子と、前記第2副画素の画素電極に前記被制御端子の一方を接続した第2スイッチング素子と、前記第1スイッチング素子の他方の被制御端子に接続した第1駆動線と、前記第2スイッチング素子の他方の被制御端子に接続した第2駆動線と、前記第1副画素の対向電極及び前記第2副画素の対向電極それぞれに接続した階調信号線と、前記第1スイッチング素子及び第2スイッチング素子それぞれの制御端子に接続した走査線とを備え、前記第1駆動線に極性が反転する第1駆動信号を印加し、前記第2駆動線に前記第1駆動信号の極性と異なる極性の第2駆動信号を印加することを特徴とする。
本実施の形態の液晶表示装置にあっては、第1副画素の画素電極に被制御端子の一方を接続した第1スイッチング素子と、第2副画素の画素電極に被制御端子の一方を接続した第2スイッチング素子とを備える。すなわち、マトリクス状に配置された複数の画素それぞれは、第1副画素及び第1スイッチング素子並びに第2副画素及び第2スイッチング素子を備える。第1スイッチング素子の他方の被制御端子には第1駆動線を接続してある。また、第2スイッチング素子の他方の被制御端子には第2駆動線を接続してある。スイッチング素子をTFTとした場合、被制御端子の一方はドレイン端子とし、被制御端子の他方はソース端子とすることができる。
第1副画素の対向電極及び第2副画素の対向電極それぞれには階調信号線を接続してある。第1スイッチング素子及び第2スイッチング素子それぞれの制御端子には走査線を接続してある。スイッチング素子をTFTとした場合、制御端子はゲート端子とすることができる。
例えば、第1駆動線に第1のTFT(第1スイッチング素子)のソース端子を接続し、第1のTFTのドレイン端子には第1副画素の画素電極が接続され、第1副画素の対向電極には階調信号線を接続してある。また、第2駆動線に第2のTFT(第2スイッチング素子)のソース端子を接続し、第2のTFTのドレイン端子には第2副画素の画素電極が接続され、第2副画素の対向電極には階調信号線を接続してある。
第1駆動線に極性が反転する第1駆動信号を印加し、第2駆動線に第1駆動信号の極性と異なる極性の第2駆動信号を印加する。すなわち、第1駆動信号及び第2駆動信号は、お互いに極性が異なり、同じタイミングで極性が反転する信号である。例えば、第1駆動線に正の信号が印加された場合、第2駆動線には負の信号が印加され、第1駆動線に負の信号が印加された場合、第2駆動線には正の信号が印加される。
階調信号が正の場合に、第1駆動線に正の信号が印加され、第2駆動線に負の信号が印加されると、第1副画素に印加される電圧と第2副画素に印加される電圧とを異ならせることができる。階調信号が負の場合も同様である。これにより、複数の画素それぞれにおいて、第1副画素と第2副画素とで明暗の副画素を生成することができ、視野角特性を改善することができる。また、補助容量を具備しない構成であっても視野角特性を改善することができる。
本実施の形態の液晶表示装置は、前記第1スイッチング素子及び第2スイッチング素子が導通状態から非導通状態になった場合に、前記第1副画素の画素電極及び対向電極間の電圧と、前記第2副画素の画素電極及び対向電極間の電圧とが異なることを特徴とする。
本実施の形態の液晶表示装置にあっては、第1スイッチング素子及び第2スイッチング素子が導通状態から非導通状態になった場合に、第1副画素の画素電極及び対向電極間の電圧と、第2副画素の画素電極及び対向電極間の電圧とが異なる。
例えば、第1のTFTのゲート端子に電圧(走査信号)を印加して第1のTFTを導通状態にした場合、第1のTFTのソース端子の第1駆動信号がドレイン端子から出力されるので、第1副画素の画素電極には第1駆動信号が表れる。また、第2のTFTのゲート端子に電圧(走査信号)を印加して第2のTFTを導通状態にした場合、第2のTFTのソース端子の第2駆動信号がドレイン端子から出力されるので、第2副画素の画素電極には第2駆動信号が表れる。第1駆動信号と第2駆動信号とでは、極性が異なるので、第1副画素の画素電極及び対向電極間の電圧と、第2副画素の画素電極及び対向電極間の電圧とを異ならせることができる。そして、第1のTFT及び第2のTFTを非導通状態にすると、第1副画素の画素電極及び対向電極間の電圧と、第2副画素の画素電極及び対向電極間の電圧とで異なる電圧が印加された状態が保持され、第1副画素と第2副画素とで明暗の副画素を生成することができる。
本実施の形態の液晶表示装置は、前記対向基板は、前記階調信号線を有し、前記画素基板は、前記第1駆動線及び第2駆動線を有することを特徴とする。
本実施の形態の液晶表示装置にあっては、対向基板は、階調信号線を有し、画素基板は、第1駆動線及び第2駆動線を有する。仮に、階調信号線を画素基板に設けた場合には、画素基板上で占有される配線領域が増加し、開口率が低下する。対向基板上に階調信号線を設けることにより、画素基板上での画素領域を広くすることができ開口率の低下を防止することができる。
本実施の形態の液晶表示装置は、前記第1副画素及び第2副画素それぞれは、前記画素基板上で離隔した矩形状の第1副画素領域及び第2副画素領域を有し、前記画素基板上で前記第1副画素領域及び第2副画素領域の間に前記走査線を配置し、前記画素基板上で、前記第1副画素領域の前記走査線と直交する一辺及び前記走査線と平行であって前記第1副画素領域の前記走査線と反対側の他辺に沿って前記第1駆動線を配置し、前記画素基板上で、前記第2副画素領域の前記走査線と直交する一辺及び前記走査線と平行であって前記第2副画素領域の前記走査線と反対側の他辺に沿って前記第2駆動線を配置したことを特徴とする。
本実施の形態の液晶表示装置にあっては、第1副画素及び第2副画素それぞれは、画素基板上で離隔した矩形状の第1副画素領域及び第2副画素領域を有する。第1副画素領域及び第2副画素領域は、液晶層を間にして設けられた画素電極及び対向電極の基板面上の領域である。
画素基板上で第1副画素領域及び第2副画素領域の間に走査線を配置してある。そして、画素基板上で、第1副画素領域の走査線と直交する一辺及び走査線と平行であって第1副画素領域の走査線と反対側の他辺に沿って第1駆動線を配置する。また、画素基板上で、第2副画素領域の走査線と直交する一辺及び走査線と平行であって第2副画素領域の走査線と反対側の他辺に沿って第2駆動線を配置してある。
すなわち、走査線を間にして第1副画素領域及び第2副画素領域を対向配置し、第1副画素領域及び第2副画素領域の走査線側の角部付近に第1スイッチング素子及び第2スイッチング素子を配置し、第1副画素領域の走査線側と反対側に走査線と平行に第1駆動線を配置し、当該第1駆動線を第1副画素領域の第1スイッチング素子側と反対側の角部で走査線と直交するようにして第1スイッチング素子まで配線することができる。同様に、第2副画素領域の走査線側と反対側に走査線と平行に第2駆動線を配置し、当該第2駆動線を第2副画素領域の第2スイッチング素子側と反対側の角部で走査線と直交するようにして第2スイッチング素子まで配線することができる。これにより、画素基板上で第1駆動線及び第2駆動線を配置することができる。
本実施の形態の液晶表示装置は、前記第1副画素及び第2副画素で構成される1組の第1画素及び第2画素を前記走査線と直交する方向に配置し、前記第1画素の第1駆動線の前記走査線と平行な部分及び前記第2画素の第2駆動線の前記走査線と平行な部分を共通にしてあることを特徴とする。
本実施の形態の液晶表示装置にあっては、第1副画素及び第2副画素で構成される1組の第1画素及び第2画素を走査線と直交する方向に配置してある。第1画素の第1駆動線の走査線と平行な部分及び第2画素の第2駆動線の走査線と平行な部分を共通にしてある。第1駆動線及び第2駆動線のうち、走査線に平行な部分は、2つの副画素で共有することができるので、画素基板上で配線が占める領域を少なくして開口率を増加させることができる。
1 第1駆動線
2 第2駆動線
3 走査線
4 階調信号線
10 第1副画素
11、21 TFT
12、22 画素電極
13、23 対向電極
14 第1液晶容量
15 第1副画素領域
24 第2液晶容量
25 第2副画素領域
50 画素基板
51 ゲート絶縁膜
52 a-Si層
53 オーミックコンタクト層
54 配線
55 保護膜
56、61 絶縁性透明基板
60 対向基板
62 ブラックマトリクス層
63 カラーフィルタ層
70 液晶層
2 第2駆動線
3 走査線
4 階調信号線
10 第1副画素
11、21 TFT
12、22 画素電極
13、23 対向電極
14 第1液晶容量
15 第1副画素領域
24 第2液晶容量
25 第2副画素領域
50 画素基板
51 ゲート絶縁膜
52 a-Si層
53 オーミックコンタクト層
54 配線
55 保護膜
56、61 絶縁性透明基板
60 対向基板
62 ブラックマトリクス層
63 カラーフィルタ層
70 液晶層
Claims (5)
- 画素基板及び対向基板の間に液晶層を挟持し、マトリクス状に配置された複数の画素及び2つの被制御端子間の導通状態が制御端子に印加される信号により制御される複数のスイッチング素子を備え、前記液晶層を間にして画素電極及び対向電極を有する第1副画素及び第2副画素により前記複数の画素それぞれが構成される液晶表示装置であって、
前記第1副画素の画素電極に前記被制御端子の一方を接続した第1スイッチング素子と、
前記第2副画素の画素電極に前記被制御端子の一方を接続した第2スイッチング素子と、
前記第1スイッチング素子の他方の被制御端子に接続した第1駆動線と、
前記第2スイッチング素子の他方の被制御端子に接続した第2駆動線と、
前記第1副画素の対向電極及び前記第2副画素の対向電極それぞれに接続した階調信号線と、
前記第1スイッチング素子及び第2スイッチング素子それぞれの制御端子に接続した走査線と
を備え、
前記第1駆動線に極性が反転する第1駆動信号を印加し、前記第2駆動線に前記第1駆動信号の極性と異なる極性の第2駆動信号を印加することを特徴とする液晶表示装置。 - 前記第1スイッチング素子及び第2スイッチング素子が導通状態から非導通状態になった場合に、前記第1副画素の画素電極及び対向電極間の電圧と、前記第2副画素の画素電極及び対向電極間の電圧とが異なることを特徴とする請求項1に記載の液晶表示装置。
- 前記対向基板は、
前記階調信号線を有し、
前記画素基板は、
前記第1駆動線及び第2駆動線を有することを特徴とする請求項1又は請求項2に記載の液晶表示装置。 - 前記第1副画素及び第2副画素それぞれは、
前記画素基板上で離隔した矩形状の第1副画素領域及び第2副画素領域を有し、
前記画素基板上で前記第1副画素領域及び第2副画素領域の間に前記走査線を配置し、
前記画素基板上で、前記第1副画素領域の前記走査線と直交する一辺及び前記走査線と平行であって前記第1副画素領域の前記走査線と反対側の他辺に沿って前記第1駆動線を配置し、
前記画素基板上で、前記第2副画素領域の前記走査線と直交する一辺及び前記走査線と平行であって前記第2副画素領域の前記走査線と反対側の他辺に沿って前記第2駆動線を配置したことを特徴とする請求項1から請求項3までのいずれか1項に記載の液晶表示装置。 - 前記第1副画素及び第2副画素で構成される1組の第1画素及び第2画素を前記走査線と直交する方向に配置し、
前記第1画素の第1駆動線の前記走査線と平行な部分及び前記第2画素の第2駆動線の前記走査線と平行な部分を共通にしてあることを特徴とする請求項4に記載の液晶表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/052179 WO2017130293A1 (ja) | 2016-01-26 | 2016-01-26 | 液晶表示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/052179 WO2017130293A1 (ja) | 2016-01-26 | 2016-01-26 | 液晶表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017130293A1 true WO2017130293A1 (ja) | 2017-08-03 |
Family
ID=59397858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/052179 WO2017130293A1 (ja) | 2016-01-26 | 2016-01-26 | 液晶表示装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017130293A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113219743A (zh) * | 2021-04-20 | 2021-08-06 | 北海惠科光电技术有限公司 | 显示面板、显示设备以及显示面板的驱动方法 |
CN113219745A (zh) * | 2021-04-20 | 2021-08-06 | 北海惠科光电技术有限公司 | 显示面板、显示设备以及显示面板的驱动方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001051254A (ja) * | 1999-06-02 | 2001-02-23 | Sharp Corp | 液晶表示装置 |
WO2011122463A1 (ja) * | 2010-03-29 | 2011-10-06 | シャープ株式会社 | 液晶表示装置 |
WO2012077647A1 (ja) * | 2010-12-10 | 2012-06-14 | シャープ株式会社 | 液晶パネル、表示装置、及び、その駆動方法 |
-
2016
- 2016-01-26 WO PCT/JP2016/052179 patent/WO2017130293A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001051254A (ja) * | 1999-06-02 | 2001-02-23 | Sharp Corp | 液晶表示装置 |
WO2011122463A1 (ja) * | 2010-03-29 | 2011-10-06 | シャープ株式会社 | 液晶表示装置 |
WO2012077647A1 (ja) * | 2010-12-10 | 2012-06-14 | シャープ株式会社 | 液晶パネル、表示装置、及び、その駆動方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113219743A (zh) * | 2021-04-20 | 2021-08-06 | 北海惠科光电技术有限公司 | 显示面板、显示设备以及显示面板的驱动方法 |
CN113219745A (zh) * | 2021-04-20 | 2021-08-06 | 北海惠科光电技术有限公司 | 显示面板、显示设备以及显示面板的驱动方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10510308B2 (en) | Display device with each column of sub-pixel units being driven by two data lines and driving method for display device | |
JP5643422B2 (ja) | 液晶表示装置 | |
US20070097052A1 (en) | Liquid crystal display device | |
US8493523B2 (en) | Liquid crystal display with two sub-pixel regions and a storage capacitor | |
US10008163B1 (en) | Driver structure for RGBW four-color panel | |
KR20060106168A (ko) | 액정표시장치 | |
US9897870B2 (en) | Liquid crystal display | |
JP5290419B2 (ja) | アクティブマトリクス基板、液晶パネル、液晶表示装置、液晶表示ユニット、テレビジョン受像機 | |
US20110310075A1 (en) | Liquid crystal display and driving method thereof | |
KR101602091B1 (ko) | 액정 구동 방법 및 액정 표시 장치 | |
CN104714346B (zh) | 液晶显示器 | |
US9477125B2 (en) | Liquid crystal display device | |
US20170184928A1 (en) | Display apparatus | |
US10643566B2 (en) | Display device | |
US8339533B2 (en) | Vertical alignment mode liquid crystal display and method of manufacturing the same | |
KR101733150B1 (ko) | 액정 표시 장치 | |
US20140146255A1 (en) | Array substrate, liquid crystal display panel and display device | |
WO2017096706A1 (zh) | 液晶显示面板结构 | |
US8432501B2 (en) | Liquid crystal display with improved side visibility | |
US20170153468A1 (en) | Liquid crystal display device | |
US20140375535A1 (en) | Liquid crystal display device and method of driving the same | |
US9482895B2 (en) | Liquid crystal display device with different polarity signals provided to pixel electrodes facing a transparent filter and a green filter | |
WO2017130293A1 (ja) | 液晶表示装置 | |
US20150131019A1 (en) | Liquid crystal drive method and liquid crystal display device | |
US10754207B2 (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16887880 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16887880 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |