WO2014097388A1 - 成膜方法及び成膜装置 - Google Patents

成膜方法及び成膜装置 Download PDF

Info

Publication number
WO2014097388A1
WO2014097388A1 PCT/JP2012/082774 JP2012082774W WO2014097388A1 WO 2014097388 A1 WO2014097388 A1 WO 2014097388A1 JP 2012082774 W JP2012082774 W JP 2012082774W WO 2014097388 A1 WO2014097388 A1 WO 2014097388A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic layer
layer
inorganic
water vapor
forming chamber
Prior art date
Application number
PCT/JP2012/082774
Other languages
English (en)
French (fr)
Inventor
吉田 隆
松本 昌弘
谷 典明
進 池田
昌司 久保
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to PCT/JP2012/082774 priority Critical patent/WO2014097388A1/ja
Priority to US14/652,423 priority patent/US9903012B2/en
Priority to CN201280077793.6A priority patent/CN104870683B/zh
Priority to KR1020157018841A priority patent/KR101947861B1/ko
Publication of WO2014097388A1 publication Critical patent/WO2014097388A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0063Reactive sputtering characterised by means for introducing or removing gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target

Definitions

  • the present invention relates to a film forming method and a film forming apparatus.
  • a touch panel in which a human body directly operates on a panel surface is used.
  • the surface of the touch panel is provided with an antifouling layer (organic layer) because the human body is in direct contact with the panel surface and is easily damaged and dirty.
  • Fluorine resin is often used for the antifouling layer.
  • a vacuum deposition method is known (for example, see Patent Document 1).
  • Patent Document 1 it is possible to efficiently form a film having excellent film quality by a vacuum deposition method.
  • the adhesion between the antifouling layer and its lower layer may decrease as the number of uses increases, that is, as the number of contacts increases.
  • an object of the present invention is to solve the above-mentioned problems of the prior art, and even if the number of times of use is increased, a method for forming a film having high adhesion with an organic layer made of a fluorine-containing resin that has been formed, and It is to provide a film forming apparatus.
  • the film forming method of the present invention is a film forming method for forming an organic layer made of a fluorine-containing resin on an inorganic layer made of an inorganic material formed on a substrate to be processed, and a reaction is performed when the inorganic layer is formed. Reactive sputtering using water vapor as a reactive gas is performed to form an inorganic layer on a substrate to be processed, and then the organic layer is formed on the inorganic layer.
  • the inorganic layer is preferably a layer containing at least one selected from Si, Al, Ta, Nb, Ti, Zr, Sn, Zn, Mg, and In. By including any of these, the adhesiveness with the organic layer can be made preferable.
  • the inorganic layer is preferably formed by laminating two or more inorganic films, and at least the uppermost layer of the inorganic films is formed by reactive sputtering using water vapor as a reactive gas. Even when the inorganic layer is composed of a plurality of layers, the uppermost layer can be formed by performing reactive sputtering using water vapor as a reactive gas, whereby an inorganic layer having good adhesion to the organic layer can be formed.
  • the inorganic layer is preferably formed by performing reactive sputtering using water vapor as a reactive gas and then performing plasma treatment using water vapor. Even if comprised in this way, an inorganic layer with good adhesiveness with an organic layer can be formed similarly.
  • the film forming apparatus of the present invention includes an inorganic layer forming chamber provided with an inorganic layer forming means for forming an inorganic layer on a substrate to be processed, and an organic layer forming means for forming an organic layer made of a fluorine-containing resin.
  • a film forming apparatus comprising an organic layer forming chamber, wherein the inorganic layer forming means includes a water vapor introducing means for introducing water vapor into the inorganic layer forming chamber, a sputtering target, and a voltage application for applying a voltage to the sputtering target.
  • the inorganic layer forming chamber water vapor is introduced into the inorganic layer forming chamber by the water vapor introducing means, a voltage is applied by the voltage applying means to generate plasma, and the inorganic layer is formed on the substrate to be processed. Then, the organic layer is formed by the organic layer forming means on the substrate to be processed on which the inorganic layer is formed.
  • the film forming apparatus of the present invention it is possible to form a layer with high adhesion to the organic layer by introducing water vapor as a reactive gas by the water vapor introducing means and thereby forming an inorganic layer.
  • the inorganic layer forming chamber and the organic layer forming chamber each have a vacuum exhaust means and are arranged in series in this order.
  • a rotating drum is provided as the transfer means on the surface of which the substrate to be processed is provided at the center of the film forming apparatus. It is mentioned that the inorganic layer forming chamber and the organic layer forming chamber are partitioned and provided around the rotating drum.
  • the film forming method and film forming apparatus of the present invention there is an excellent effect that the adhesion between the organic layer made of the fluorine-containing resin and the inorganic layer is high regardless of the number of times of use.
  • FIG. 3 is a schematic cross-sectional view of a laminated structure obtained by the film forming method of Embodiment 1.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a film forming apparatus according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view of a laminated structure obtained by the film forming method of Embodiment 2.
  • FIG. 6 is a schematic diagram illustrating a schematic configuration of a film forming apparatus according to Embodiment 2.
  • FIG. 1 is a schematic cross-sectional view of the laminated structure 1.
  • the laminated structure 1 includes a transparent substrate 2, an inorganic layer 3 formed on the transparent substrate 2, and an antifouling layer 4 laminated on the inorganic layer 3.
  • the transparent substrate 2 constitutes a touch panel by protecting elements housed on one side (the side opposite to the inorganic layer 3).
  • Examples of the material of the transparent substrate 2 include a transparent resin film or glass. In this embodiment, it consists of glass.
  • the transparent substrate 2 in this embodiment is not limited to a thing with 100% of transmittance
  • the inorganic layer 3 is for improving the adhesion between the antifouling layer 4 and the transparent substrate 2. As will be described in detail later, the inorganic layer 3 is formed by reactive sputtering using water vapor at the time of film formation to improve the adhesion with the antifouling layer 4.
  • the inorganic layer 3 is formed from an inorganic material.
  • at least one selected from Si, Al, Ta, Nb, Ti, Zr, Sn, Zn, Mg, and In is used as the inorganic material in order to improve the adhesion to the antifouling layer as described above.
  • Examples include metal oxides, oxynitrides, and nitrides.
  • silicon oxide, silicon nitride, silicon nitride oxide, aluminum oxide, aluminum nitride, aluminum nitride oxide, titanium oxide, magnesium oxide, indium oxide, tin oxide, zinc oxide, tantalum oxide, niobium oxide, zirconium oxide and the like are preferable. These can be used alone or in any combination.
  • Si is included as an inorganic material. *
  • the thickness of the inorganic layer 3 can be appropriately set in the range of 1 to 1000 nm, preferably 5 to 150 nm. Adhesiveness cannot be expressed as the thickness of the inorganic layer 3 is less than said range. On the other hand, when the thickness of the inorganic layer 3 exceeds the above range, cracks due to stress or the like are liable to occur, and the time required for film formation becomes long. *
  • the antifouling layer 4 is an organic layer containing fluorine.
  • the surface of the touch panel is protected from scratches, fingerprints, and the like that can be caused by contact with the human body.
  • the fluororesin constituting the antifouling layer 4 in this embodiment has a silicon atom at the end of the polymer main chain, and the silicon atom located at the end of the polymer main chain has an alkoxy group. It is added by an oxygen-silicon bond.
  • the thickness of the antifouling layer 4 is not particularly limited, but can be appropriately set within a range of 0.0005 to 5 ⁇ m. This is because if it is less than 0.0005 ⁇ m, it will be difficult to exhibit a sufficient dirt adhesion preventing function, and if it exceeds 5 ⁇ m, the light transmittance will be lowered.
  • Such a laminated structure 1 is formed as follows.
  • the inorganic layer 3 is formed on the transparent substrate 2 which is a glass substrate.
  • the method for forming the inorganic layer 3 include a CVD method, a plasma CVD method, a sputtering method, and an ion plating method.
  • the sputtering method an ECR sputtering method, a reactive sputtering method, Examples thereof include a bias sputtering method and an orthogonal electromagnetic field type sputtering method. In this embodiment, it forms by the reactive sputtering method.
  • the film forming conditions by reactive sputtering include sputtering target: Si target, inert gas: Ar, reactive gas: water vapor (H 2 O), Ar gas flow rate: 10 to 200 sccm, water vapor flow rate: 100 to 400 sccm, input power. : 1 to 12 kW.
  • the film forming conditions of this embodiment are sputtering target: Si target, inert gas: Ar, reactive gas: water vapor (H 2 O), Ar gas flow rate: 30 sccm, water vapor flow rate: 300 sccm, and input power: 8 kW.
  • an inert gas you may use the inert gas which can be normally used in sputtering, for example, He, Ne, etc.
  • the inorganic layer 3 is formed by a reactive sputtering method using water vapor as a reactive gas, so that OH groups contained in the water vapor are bonded to the surface of the inorganic layer 3.
  • adhesion with the antifouling layer 4 is improved by bonding OH groups to the surface of the inorganic layer 3. That is, when the antifouling layer 4 is formed on the inorganic layer 3, an alkoxy group is added to the silicon atom located at the end of the polymer main chain constituting the fluororesin of the antifouling layer 4 through an oxygen-silicon bond. However, when this alkoxy group is hydrolyzed, it becomes a hydroxyl group.
  • the hydroxyl group and the OH group on the surface of the inorganic layer 3 undergo a dehydration condensation reaction to form a siloxane bond.
  • a siloxane bond By making a siloxane bond in this manner, the inorganic layer 3 and the antifouling layer 4 are more firmly connected, and the adhesion can be improved.
  • the inorganic layer 3 can also be formed by forming a silicon oxide layer by performing reactive sputtering using oxygen as a reactive gas and then performing plasma treatment in water vapor to bond OH groups to the surface of the silicon oxide layer. OH groups can be bonded to the surface.
  • reactive sputtering using water vapor as a reactive gas as in this embodiment to form the inorganic layer 3 one step can be reduced and the tact time can be reduced.
  • reactive sputtering is performed using only water vapor as a reactive gas, but it is possible to introduce another reactive gas.
  • Other reactive gases include O-containing gases such as oxygen and H-containing gases such as hydrogen.
  • an antifouling layer 4 is formed on the inorganic layer 3.
  • Examples of the method for forming the antifouling layer 4 include a coating method and a vapor deposition method. In this embodiment, the vapor deposition method is used. *
  • Examples of the vapor deposition method include a vacuum vapor deposition method, an ion beam vapor deposition method, and a resistance heating vapor deposition method.
  • a resistance heating vapor deposition method in which vapor deposition is performed by heating a vapor deposition source in a predetermined pressure state is used.
  • the predetermined pressure state is 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 2 Pa.
  • the product name OPTOOL DSX manufactured by Daikin Industries, Ltd.
  • a vapor deposition source is heated up to 220 ° C. by heating means while maintaining the pressure so as to be 2 ⁇ 10 ⁇ 3 to 4 ⁇ 10 ⁇ 4 Pa.
  • a vapor deposition film having a thickness of 2 nm is formed.
  • the film forming apparatus 10 is a so-called in-line film forming apparatus, in which processing chambers for performing predetermined processing on a substrate are connected in series.
  • the film forming apparatus 10 includes a load lock chamber 11, an inorganic layer forming chamber 12, and an antifouling layer forming chamber 13 in this order.
  • the transparent substrate 2 is supported and conveyed by the conveyance tray as a conveyance means.
  • the transport means includes a transport tray on which the transparent substrate 2 is placed and a moving means for moving the transport tray. *
  • the transparent substrate 2 is carried into the load lock chamber 11 from the atmosphere.
  • the load lock chamber 11 is provided with a vacuum pump (not shown) so that the inside of the load lock chamber 11 is evacuated to a predetermined vacuum level and the vacuum level can be maintained.
  • each processing chamber is provided with a vacuum pump so that each processing chamber can have a desired degree of vacuum.
  • the inorganic layer forming chamber 12 is for forming the inorganic layer 3 (see FIG. 1) on the transparent substrate 2 by sputtering.
  • the transparent substrate 2 transferred to the inorganic layer forming chamber 12 is set at the substrate setting position 121 by a transfer means (not shown).
  • a sputtering target 122 is supported and installed in the inorganic layer forming chamber 12 by a target support unit 123 so as to face the transparent substrate 2 installed at the substrate installation position 121.
  • a high frequency power supply 124 is connected to the target support portion 123 so that a voltage can be applied to the sputtering target 122. *
  • the material of the sputtering target 122 is appropriately set according to the inorganic layer.
  • a metal silicon target is installed as the sputtering target 122 in order to form a SiO 2 film as the inorganic layer.
  • the inorganic layer forming chamber 12 is provided with a first gas sealing part 125 filled with an inert gas via a first valve 126. By adjusting the opening degree of the first valve 126, a desired amount of inert gas can be introduced into the inorganic layer forming chamber 12 from the first gas sealing portion 125. In the present embodiment, Ar gas as an inert gas is sealed in the first gas sealing portion 125.
  • the inorganic layer forming chamber 12 is provided with a second gas sealing portion 127 filled with a reactive gas via a second valve 128. By adjusting the opening degree of the second valve 128, a desired amount of reactive gas can be introduced into the inorganic layer forming chamber 12 from the second gas sealing portion 127. H 2 O gas as a reactive gas is sealed in the second gas sealing portion 127.
  • the antifouling layer forming chamber 13 is for forming the antifouling layer 4 (see FIG. 1) on the inorganic layer of the transparent substrate 2 by vapor deposition.
  • the transparent substrate 2 transferred to the antifouling layer forming chamber 13 is set at the substrate setting position 131 by a transfer means (not shown).
  • vapor deposition means 132 is installed so as to face the installed transparent substrate 2.
  • the vapor deposition means 132 is based on a vapor deposition method, in this embodiment, the vapor deposition source which is not illustrated is installed in the crucible provided with the heating means. *
  • the film formation in the film forming apparatus 10 will be described.
  • the load lock chamber 11 is evacuated and is in a vacuum state.
  • the transparent substrate 2 is transferred to the inorganic layer forming chamber 12.
  • an inorganic layer is formed on the transparent substrate 2.
  • the opening degree of the first valve 126 and the second valve 128 is adjusted, and the inert gas and the reactive gas are respectively supplied from the first gas sealing portion 125 and the second gas sealing portion 127 to the inorganic layer forming chamber 12.
  • a voltage is applied from the high frequency power source 124 to the sputtering target 122 to start reactive sputtering, and the inorganic layer 3 is formed.
  • the transparent substrate 2 is transferred from the inorganic layer forming chamber 12 to the antifouling layer forming chamber 13.
  • the antifouling layer 4 is formed on the inorganic layer 3.
  • the crucible is heated by a heating means, and a heated vapor deposition source is attached to the inorganic layer 3 of the conveyed transparent substrate 2 to form the antifouling layer 4.
  • the transparent substrate 2 is transferred to the load lock chamber 11 and released from the film forming apparatus 10 after being released into the atmosphere in the load lock chamber 11.
  • the reactive sputtering is performed using the water vapor as the reactive gas in the inorganic layer forming chamber 12, so that the OH group in the water vapor is easily formed on the surface of the inorganic layer 3.
  • adhesion between the inorganic layer 3 and the antifouling layer 4 can be improved.
  • the laminated structure 1A according to this embodiment will be described with reference to FIG.
  • the laminated structure 1A according to this embodiment is different from the inorganic layer 3 (see FIG. 1) shown in Embodiment 1 in that the inorganic layer 3A is composed of a plurality of layers.
  • the inorganic layer 3A in the present embodiment a plurality of first inorganic layers 31 and second inorganic layers 32 are formed in this order, and this uppermost layer (that is, a layer in close contact with the antifouling layer 4) is formed.
  • the inorganic layer 3A in this embodiment functions as the above-described inorganic layer 3 (see FIG. 1) and also functions as an antireflection layer. Since the third inorganic layer 33 provided on the surface of the inorganic layer 3A is also formed by reactive sputtering using water vapor as a reactive gas, the adhesion with the antifouling layer 4 is high.
  • the same material as the inorganic layer 3 described above can be used, and examples thereof include Si, Al, Ta, Nb, Ti, Zr, Sn, Zn, Mg, and In.
  • the first inorganic layer 31 and the second inorganic layer 32 may include different materials including two or more kinds.
  • the third inorganic layer 33 and the first inorganic layer 31 or the second inorganic layer 32 may be the same material.
  • the first inorganic layer 31 includes silicon oxide, silicon nitride, silicon nitride oxide, aluminum oxide, aluminum nitride, aluminum nitride oxide, titanium oxide, magnesium oxide, indium oxide, tin oxide, zinc oxide, tantalum oxide, niobium oxide.
  • the first inorganic layer 31 examples include tantalum oxide (Ta 2 O 5 ), niobium oxide (Nb 2 O 5 ), and titanium oxide (TiO 2 ).
  • the first inorganic layer 31 is a Ta 2 O 5 film. It is preferable that About the 3rd inorganic layer 33, it forms on the same conditions as the inorganic layer 3 mentioned above, and is a silicon oxide in this embodiment.
  • the inorganic layer 3A is formed by sequentially stacking two types of films except for the third inorganic layer 33.
  • the present invention is not limited to this, and three or more types of films may be sequentially stacked.
  • examples of the film forming method for each layer include a CVD method, a plasma CVD method, a sputtering method, an ion plating method, and the like.
  • each layer is formed by a reactive sputtering method.
  • the formation conditions of the first inorganic layer 31 are sputtering target: Ta target, sputtering gas: Ar + O 2 , Ar gas flow rate: 50 to 500 sccm, O 2 gas flow rate: 50 to 500 sccm, input power: 1 to 10 kW.
  • the formation conditions of the second inorganic layer 32 are sputtering target: Si target, sputtering gas: Ar + O 2 , Ar gas flow rate: 50 to 500 sccm, O 2 gas flow rate: 50 to 500 sccm, and input power: 1 to 10 kW.
  • the formation conditions of the third inorganic layer 33 using water vapor as a reactive gas are as follows: sputtering target: Si target, inert gas: Ar, reactive gas: H 2 O, Ar gas flow rate: 10 to 200 sccm, H 2 O gas Flow rate: 100 to 400 sccm, input power: 1 to 12 kW.
  • the formation conditions of the first inorganic layer 31 are sputtering target: Ta target, sputtering gas: Ar + O 2 , Ar gas flow rate: 100 sccm, O 2 gas flow rate: 300 sccm, and input power: 8 kW.
  • the formation conditions of the second inorganic layer 32 are sputtering target: Si target, sputtering gas: Ar + O 2 , Ar gas flow rate: 50 sccm, O 2 gas flow rate: 200 sccm, and input power: 8 kW.
  • the formation conditions of the third inorganic layer 33 using water vapor as a reactive gas are as follows: sputtering target: Si target, inert gas: Ar, reactive gas: H 2 O, Ar gas flow rate: 30 sccm, H 2 O gas flow rate: 300 sccm, input power: 8 kW.
  • the film forming apparatus 20 is provided with a rotating drum 21 at the center.
  • the rotary drum 21 is provided with a plurality of transparent substrates 2. That is, in the film forming apparatus 20 in the present embodiment, the rotating drum 21 is configured to function as a substrate installation unit.
  • the rotating drum 21 is rotatable, and each process is performed on the plurality of transparent substrates 2 installed on the surface of the rotating drum 21.
  • the film forming apparatus 20 is provided with a vacuum pump (not shown), whereby the inside of the film forming apparatus 20 can be set to a desired degree of vacuum.
  • the film forming apparatus 20 is further divided into a plurality of processing chambers.
  • the film forming apparatus 20 is divided into a first layer forming chamber 22, a second layer forming chamber 23, and an antifouling layer forming chamber 24 in the circumferential direction.
  • the first layer forming chamber 22 and the second layer forming chamber 23 are in positions facing each other, and the antifouling layer forming chamber 24 is between the first layer forming chamber 22 and the second layer forming chamber 23.
  • Both the first layer forming chamber 22 and the second layer forming chamber 23 are configured such that the first inorganic layer 31 and the second inorganic layer 32 (see FIG. 3) can be formed by a sputtering method. That is, the first inorganic layer 31 is formed by the sputtering method in the first layer forming chamber 22, and the second inorganic layer 32 is formed by the sputtering method in the second layer forming chamber 23.
  • the 2nd layer formation chamber 23 it is comprised so that the 3rd inorganic layer 33 can be formed.
  • first layer forming chamber 22 a pair of first layer sputtering targets 221 are respectively supported by the target support portions 222.
  • a high frequency power source 223 is connected to each target support portion 222.
  • a voltage opposite to each other is applied to the pair of first layer sputtering targets 221.
  • the first layer forming chamber 22 is connected to a third gas sealing portion 224 filled with an inert gas via a third valve 225 and a fourth gas sealing portion filled with a reactive gas.
  • 226 is connected via a fourth valve 227.
  • Ar gas as an inert gas is sealed in the third gas sealing part 224
  • O 2 gas as a reactive gas is sealed in the fourth gas sealing part 226.
  • a pair of second-layer sputtering targets 231 are respectively supported by the target support portions 232.
  • a high frequency power source 233 is connected to the target support portion 232.
  • the second layer forming chamber 23 is connected with a fifth gas sealing portion 234 filled with an inert gas via a fifth valve 235 and a sixth gas sealed portion filled with a reactive gas. 236 is connected via a sixth valve 237.
  • Ar gas as an inert gas is sealed in the fifth gas sealing portion 234, and O 2 gas is sealed in the sixth gas sealing portion.
  • a seventh gas sealing part 238 in which water vapor as a reactive gas is sealed is connected to the second layer forming chamber 23 via a seventh valve 239. That is, in the present embodiment, in the second layer forming chamber 23, water vapor can be introduced as a reactive gas at the time of reactive sputtering, whereby the third inorganic layer 33 can be formed. Yes. *
  • a vapor deposition means 241 is installed in the antifouling layer forming chamber 24.
  • the vapor deposition means 241 is based on a vapor deposition method, in this embodiment, the vapor deposition source which is not illustrated is installed in the crucible provided with the heating means.
  • the film formation in the film forming apparatus 20 will be described.
  • a plurality of transparent substrates 2 are transported to the film forming apparatus 20, and the transported transparent substrates 2 are respectively installed on the rotary drum 21 with predetermined intervals.
  • the film forming apparatus 20 is evacuated to obtain a desired vacuum state.
  • the rotation of the rotary drum 21 is started.
  • the rotating drum 21 continues to rotate in one direction until all the films are formed on all the transparent substrates 2.
  • first layer forming chamber 22 reactive sputtering using oxygen is performed in the first layer forming chamber 22 to form the first inorganic layer 31 that is a Ta 2 O 5 film on the transparent substrate 2.
  • the rotary drum 21 is rotated to form the first inorganic layer 31 on another transparent substrate 2 installed on the rotary drum 21.
  • the rotary drum 21 is rotated again.
  • film formation is completed on the transparent substrate 2 on all the rotating drums 21 in this way, formation of the second inorganic layer 32 (see FIG. 3) starts. That is, the reactive sputtering method using water vapor is performed in the second layer forming chamber 23 to form the second inorganic layer 32 on the transparent substrate 2.
  • the third inorganic layer 33 is formed on the laminated portion of the inorganic layer 3A (see FIG. 3) formed by reactive sputtering using water vapor as the reactive gas. Thereby, the inorganic layer 3A is formed.
  • the antifouling layer 4 (see FIG. 3) is formed on the inorganic layer 3A. Specifically, heating of the vapor deposition source of the vapor deposition means 241 is started in the antifouling layer forming chamber 24, and the heated vapor deposition source adheres to the inorganic layer 3A of the transparent substrate 2 to form an antifouling layer. .
  • the film forming apparatus 20 is opened to the atmosphere, and the transparent substrate 2 on which the antifouling layer 4 is formed is unloaded from the film forming apparatus 20.
  • the second inorganic layer 33 is formed by performing the reactive sputtering using the water vapor as the reactive gas in the second layer forming chamber 23, so that the inorganic material can be easily obtained. OH groups in water vapor can be attached to the surface of the layer 3A, whereby the adhesion between the inorganic layer 3A and the antifouling layer 4 can be improved.
  • Example 1 The laminated structure 1 was formed by the film forming apparatus according to the first embodiment under the conditions shown in Table 1. The conditions not described are the same as those described in the first embodiment.
  • Example 1 The laminated structure was formed under the same conditions as in Example 1 except that oxygen was used instead of water vapor in reactive sputtering in the inorganic layer forming step.
  • Example 1 is that a silicon oxide film is formed using oxygen without using water vapor in reactive sputtering in the formation process of the inorganic layer, and a plasma treatment using water vapor is performed after reactive sputtering.
  • a laminated structure was formed under the same conditions except that OH groups were attached to the surface of the film.
  • the conditions for the plasma treatment are a water vapor flow rate: 150 sccm and an input power: 1500 kW.
  • Example 2 In Example 1, after the step of forming an inorganic layer by reactive sputtering using water vapor, plasma treatment using water vapor is performed while maintaining a vacuum (conditions are the same as in Comparative Example 2), and then an antifouling layer is provided.
  • the laminated structure was formed under the same conditions except for the above points.
  • Example 3 The third inorganic layer 33 was formed under the conditions shown in Table 1 by the film forming apparatus according to the second embodiment, and the laminated structure 1A was formed. The conditions not described are the same as those described in the second embodiment.
  • Example 3 The laminated structure was formed under the same conditions as in Example 3 except that water vapor was not used in reactive sputtering in the inorganic layer forming step (that is, the third inorganic layer was not formed).
  • Example 1 As shown in Table 1, it was found that in all examples, the number of sliding was larger than that of the comparative example, and the adhesion with the antifouling layer was improved.
  • Example 2 plasma treatment using water vapor was performed after forming the inorganic layer using water vapor as the reactive gas. The same results as in Example 1 were obtained. From this, it was found that a film having sufficiently high adhesion could be formed by using water vapor during the formation of the inorganic layer regardless of the presence or absence of the plasma treatment.
  • Example 1 and Comparative Example 2 are compared, the adhesion in Example 1 is higher than that in the case of performing the plasma treatment, and oxidation by reactive sputtering using water vapor as in Embodiment 1 is performed.
  • the present invention is not limited to the embodiment described above.
  • the film forming apparatus is not limited to those described in the first and second embodiments, and may be any apparatus that can perform the film forming method according to each embodiment.
  • the plasma processing means and the vapor deposition means provided in the plasma processing chamber in the present embodiment may be provided in one film forming apparatus, and the substrate may be installed so as to face these. Good.
  • reactive sputtering is performed using an inert gas and a reactive gas.
  • the present invention is not limited to this, and reactive sputtering may be performed by introducing only a reactive gas.
  • the first layer forming chamber 22 and the second layer forming chamber 23 are provided so as to face each other.
  • the present invention is not limited to this, and for example, provided so as to be adjacent to each other. Also good. *
  • the third inorganic layer 33 can be formed in the second layer forming chamber 23, but the present invention is not limited thereto, and the third inorganic layer 33 is formed in the first layer forming chamber 22. You may comprise so that it can form. That is, it is only necessary to configure so that water vapor can be introduced into a chamber in which a layer using the same material as the inorganic material of the third inorganic layer 33 is formed, and is not limited. It is also possible to provide a third layer formation chamber in which the third inorganic layer 33 can be formed. *
  • a high frequency voltage is applied between two sputtering targets.
  • the present invention is not limited to such a so-called dual type sputtering method.
  • a high frequency power source may be connected to a single sputtering target, and a high frequency voltage may be applied between the grounded substrate and the sputtering target.
  • the 3rd inorganic layer 33 was formed on the 2nd inorganic layer 32, it is not limited to this, A plurality of 1st inorganic layers 31 and the 2nd inorganic layer 32 are laminated one by one, and then the 1st inorganic layer The third inorganic layer 33 may be formed after the layer 31 is formed. *
  • the antifouling layer is formed as the organic layer, but the function of the organic layer is not limited to the antifouling property.

Abstract

 成膜方法は、被処理基板に成膜された無機物からなる無機層3上にフッ素含有樹脂からなる有機層を形成する成膜方法であって、無機層を形成する際に、反応性ガスとして水蒸気を用いた反応性スパッタリングを行って被処理基板上に無機層を形成し、次いで無機層上に有機層を形成する。成膜装置は、この成膜方法を実施できる。

Description

成膜方法及び成膜装置
 本発明は、成膜方法及び成膜装置に関する。
 現在、携帯端末などの各種端末では、人体が直接パネル表面に接触して操作するタッチパネルが多く用いられている。このタッチパネルの表面は、人体が直接パネル表面に接触することから、傷や汚れがつきやすいので防汚層(有機層)が設けられている。
 防汚層としては、フッ素系樹脂が用いられていることが多い。このようなフッ素系樹脂からなる膜の形成方法としては、真空蒸着法が知られている(例えば特許文献1参照)。
特開2010-106344号公報
 特許文献1によれば、真空蒸着法により、効率的に膜質の優れた膜を形成することが可能である。しかしながら、防汚層とその下層との間の密着性は、使用回数が多くなるにつれて、即ち接触回数が多くなるにつれて低下する場合がある。 
 そこで、本発明の課題は、上記従来技術の問題を解決することにあり、使用回数が多くなったとしても成膜したフッ素含有樹脂からなる有機層との密着性が高い膜の成膜方法及び成膜装置を提供することにある。
 本発明の成膜方法は、被処理基板に成膜された無機物からなる無機層上にフッ素含有樹脂からなる有機層を形成する成膜方法であって、前記無機層を形成する際に、反応性ガスとして水蒸気を用いた反応性スパッタリングを行って被処理基板上に無機層を形成し、次いで該無機層上に前記有機層を形成することを特徴とする。 
 本発明では無機層を形成する際に、反応性ガスとして水蒸気を用いた反応性スパッタリングを行って被処理基板上に無機層を形成することで、有機層との密着性の高い膜を形成することができる。 
 前記無機層が、Si、Al、Ta、Nb、Ti、Zr、Sn、Zn、Mg及びInから選ばれた少なくとも1種を含む層であることが好ましい。これらのうちのいずれかを含むことで、有機層との密着性を好ましいものとすることができる。 
 また、前記無機層を、2以上の無機膜を積層して形成し、該無機膜のうち、少なくとも最上層は反応性ガスとして水蒸気を用いた反応性スパッタリングを行って形成することが好ましい。複数層からなる無機層であっても、最上層は反応性ガスとして水蒸気を用いた反応性スパッタリングを行って形成することで、有機層との密着性の良い無機層を形成することができる。 
 前記無機層を、反応性ガスとして水蒸気を用いた反応性スパッタリングを行った後に、水蒸気を用いたプラズマ処理を行って形成することが好ましい。このように構成しても、同様に有機層との密着性の良い無機層を形成することができる。 
 本発明の成膜装置は、被処理基板上に無機層が形成される無機層形成手段を備えた無機層形成室と、フッ素含有樹脂からなる有機層が形成される有機層形成手段を備えた有機層形成室とを備えた成膜装置であって、前記無機層形成手段は、無機層形成室内に水蒸気を導入する水蒸気導入手段と、スパッタリングターゲットと、該スパッタリングターゲットに電圧を印加する電圧印加手段とを含み、前記無機層形成室では、前記水蒸気導入手段により無機層形成室内に水蒸気を導入し、前記電圧印加手段により電圧を印加してプラズマを生成して前記被処理基板上に無機層を形成し、その後、前記無機層が形成された被処理基板に前記有機層形成手段により前記有機層を形成することを特徴とする。本発明の成膜装置では、水蒸気導入手段により反応性ガスとして水蒸気を導入し、これにより無機層を形成することで、有機層との密着性の高い層を形成することが可能である。 
 本発明の好ましい実施形態としては、前記無機層形成室と前記有機層形成室とは、それぞれ真空排気手段を備えると共に、この順で直列に配されていることが挙げられる。 
 また、複数層を積層した無機層を形成する場合に好ましい実施形態としては、前記成膜装置の中央には、被処理基板がその表面に設置される前記搬送手段としての回転ドラムが設けられると共に、その回転ドラムの周囲には、前記無機層形成室と前記有機層形成室とが区画されて設けられていることが挙げられる。
 本発明の成膜方法及び成膜装置によれば、使用回数によらず成膜したフッ素含有樹脂からなる有機層と無機層との密着性が高いという優れた効果を奏する。
実施形態1の成膜方法で得られた積層構造の模式的断面図である。 実施形態1に係る成膜装置の概略構成を示す模式図である。 実施形態2の成膜方法で得られた積層構造の模式的断面図である。 実施形態2に係る成膜装置の概略構成を示す模式図である。
 (実施形態1)
 以下、本発明について図1を用いて説明する。図1は、積層構造1の模式的断面図である。積層構造1は、透明基板2と、透明基板2上に成膜された無機層3と、無機層3上に積層された防汚層4とからなる。 
 透明基板2は、一方面側(無機層3とは逆側)に収容された素子を保護してタッチパネルを構成するものである。このような透明基板2の材料としては、例えば、透明樹脂フィルム又はガラス等が挙げられる。本実施形態ではガラスからなる。なお、本実施形態における透明基板2は、透過率が100%のものに限定されず、いわゆる半透明も含むものである。 
 無機層3は、防汚層4と透明基板2との密着性を向上させるためのものである。詳しくは後述するが、この無機層3は成膜時に水蒸気を用いた反応性スパッタリングで形成することで防汚層4との密着性を高めたものである。
 無機層3は、無機材料から形成される。本実施形態では、上述のように防汚層との密着性を高めるべく、無機材料としては、Si、Al、Ta、Nb、Ti、Zr、Sn、Zn、Mg及びInから選ばれた少なくとも1種の金属の酸化物、酸化窒化物、窒化物が挙げられる。これらのうち、酸化ケイ素、窒化ケイ素、窒化酸化ケイ素、酸化アルミニウム、窒化アルミニウム、窒化酸化アルミニウム、酸化チタン、酸化マグネシウム、酸化インジウム、酸化スズ、酸化亜鉛、酸化タンタル、酸化ニオブ、酸化ジルコニウム等が好ましく、これらの1種を単独で、或いは、これらを任意に混合して使用することができる。本実施形態では、無機材料としてSiを含んでいる。 
 無機層3の厚みは1~1000nm、好ましくは5~150nmの範囲で適宜設定することができる。無機層3の厚みが上記の範囲未満であると、密着性を発現することができない。また、無機層3の厚みが上記の範囲を超えると、逆に応力等によるクラックが生じ易くなるとともに、成膜に要する時間が長くなり好ましくない。 
 防汚層4は、フッ素を含む有機層であり、この防汚層4が形成されていることで、例えば人体が接触したことでできる傷や指紋などからタッチパネルの表面を保護するものである。防汚層4を構成するフッ素系樹脂とは、高分子主鎖が、例えば、CF=,-CF-,-CFH-等の繰り返し単位を有するものが挙げられ、本実施形態では、直鎖構造のパーフルオロポリエーテル基を有するものを用いている。また、本実施形態における防汚層4を構成するフッ素系樹脂は、この高分子主鎖の末端にケイ素原子を有するものであり、高分子主鎖末端に位置するケイ素原子には、アルコキシ基が酸素-ケイ素結合により付加されている。 
 防汚層4の膜厚としては、特に制限するものではないが、0.0005~5μmの範囲で適宜設定することができる。0.0005μm未満であると、充分な汚れ付着防止機能を発現することが困難となり、また、5μmを超えると、光透過率の低下等が生じるからである。 
 かかる積層構造1は、以下のようにして形成される。
 初めに、ガラス基板である透明基板2上に、無機層3を形成する。このような無機層3の成膜方法としては、例えば、CVD法、プラズマCVD法、スパッタリング法、イオンプレーティング法などが挙げられ、スパッタリング法としては、さらに、ECRスパッタリング法、反応性スパッタリング法、バイアススパッタリング法、直交電磁界型スパッタリング法等が挙げられる。本実施形態では、反応性スパッタリング法により形成する。反応性スパッタリングによる成膜条件としては、スパッタリングターゲット:Siターゲット、不活性ガス:Ar、反応性ガス:水蒸気(HO)、Arガス流量:10~200sccm、水蒸気流量:100~400sccm、投入パワー:1~12kWである。本実施形態の成膜条件は、スパッタリングターゲット:Siターゲット、不活性ガス:Ar、反応性ガス:水蒸気(HO)、Arガス流量:30sccm、水蒸気流量:300sccm、投入パワー:8kWである。なお、不活性ガスとしては、スパッタリングにおいて通常用いることができる不活性ガス、例えばHe、Ne等を用いてもよい。 
 このように本実施形態では無機層3を反応性ガスとして水蒸気を用いた反応性スパッタリング法により形成することで、無機層3の表面に水蒸気に含有されるOH基が結合する。このように無機層3の表面にOH基が結合することで、防汚層4との密着性が向上する。即ち、無機層3上に防汚層4を形成した場合に、防汚層4のフッ素系樹脂を構成する高分子主鎖末端に位置するケイ素原子には、アルコキシ基が酸素-ケイ素結合により付加されているが、このアルコキシ基が加水分解されることによりヒドロキシル基となる。そして、このヒドロキシル基と、この無機層3表面のOH基とが脱水縮合反応してシロキサン結合を作る。このようにシロキサン結合を作ることで、より無機層3と防汚層4とが強固に結びつき、密着性を向上させることができる。 
 この場合、無機層3の表面にOH基を結合させるには、反応性スパッタリングを行う際に反応性ガスとして水蒸気を用いれば、簡易に、かつ、安価に処理を行うことができて好ましい。 
 例えば反応性ガスとして酸素を用いた反応性スパッタリングを行って酸化シリコン層を形成した後に、水蒸気中におけるプラズマ処理を行って酸化シリコン層の表面にOH基を結合させた場合にも無機層3の表面にOH基を結合させることができる。しかしながら、本実施形態のように反応性ガスとして水蒸気を用いた反応性スパッタリングを行って無機層3を形成することで、工程を一つ少なくすることができ、タクトタイムを減少させることができる。 
 本実施形態では、水蒸気のみを反応性ガスとして用いて反応性スパッタリングを行っているが、さらに他の反応性ガスを導入することも可能である。他の反応性ガスとしては、酸素等のO含有ガスや、水素等のH含有ガスである。 
 その後、この無機層3上に防汚層4を形成する。防汚層4の形成方法としては、塗布法、蒸着法等が挙げられるが、本実施形態では蒸着法を用いている。 
 蒸着法としては、真空蒸着法、イオンビーム蒸着法、抵抗加熱蒸着法が挙げられるが、本実施形態では所定の圧力状態で蒸着源を加熱して蒸着を行う抵抗加熱蒸着法を用いている。所定の圧力状態とは、1×10-4~1×10-2Paである。本実施形態では、2×10-3~4×10-4Paとなるように圧力を保持しながら、加熱手段により220℃まで蒸着源としての商品名オプツールDSX(ダイキン工業株式会社製)を加熱して、厚さ2nmの蒸着膜を形成している。 
 本実施形態にかかる成膜装置について、以下図2を用いて説明する。成膜装置10は、いわゆるインライン式の成膜装置であり、基板に対して所定の処理を行う処理室が直列に接続されているものである。成膜装置10は、ロードロック室11と、無機層形成室12と、防汚層形成室13とをこの順で備える。なお、成膜装置10内において、透明基板2は、搬送手段としての搬送トレイにより支持されて搬送される。なお、本実施形態において搬送手段とは、透明基板2を載置する搬送トレイと、搬送トレイを移動させる移動手段とからなるものである。 
 ロードロック室11には、大気中から透明基板2が搬入される。ロードロック室11には、図示しない真空ポンプが設けられ、ロードロック室11内を所定の真空度になるまで真空排気し、その真空度を保持することができるように構成されている。なお、図示しないが各処理室には真空ポンプが設けられて処理室毎に所望の真空度とすることができる。
 無機層形成室12は、透明基板2に対してスパッタリング法により無機層3(図1参照)を形成するためのものである。無機層形成室12に搬送された透明基板2は、図示しない搬送手段で基板設置位置121に設置される。無機層形成室12には、この基板設置位置121に設置された透明基板2に対向するように、スパッタリングターゲット122がターゲット支持部123により支持されて設置される。ターゲット支持部123には、高周波電源124が接続されていて、スパッタリングターゲット122に電圧を印加できるように構成されている。 
 スパッタリングターゲット122は、無機層に応じて材料を適宜設定する。本実施形態では、無機層としてSiO膜を形成するために、スパッタリングターゲット122として金属シリコンターゲットが設置されている。 
 また、無機層形成室12には、不活性ガスが封入された第1ガス封入部125が第1バルブ126を介して設置されている。第1バルブ126の開度を調整することで、第1ガス封入部125から所望量の不活性ガスを無機層形成室12内に導入することができる。本実施形態においては、第1ガス封入部125には不活性ガスとしてのArガスが封入されている。また、無機層形成室12には、反応性ガスが封入された第2ガス封入部127が第2バルブ128を介して設置されている。この第2バルブ128の開度を調整することで、第2ガス封入部127から所望量の反応性ガスを無機層形成室12内に導入することができる。第2ガス封入部127には反応性ガスとしてのHOガスが封入されている。 
 防汚層形成室13は、蒸着法により透明基板2の無機層上に防汚層4(図1参照)を形成するためのものである。防汚層形成室13に搬送された透明基板2は、図示しない搬送手段で基板設置位置131に設置される。防汚層形成室13には、設置された透明基板2に対向するように、蒸着手段132が設置されている。蒸着手段132は、蒸着方法によるが、本実施形態では、図示しない蒸着源が加熱手段を備えた坩堝中に設置されたものである。 
 かかる成膜装置10における成膜について説明する。ロードロック室11に透明基板2が搬送されると、ロードロック室11では排気が行われ、真空状態となる。所望の真空状態となった後に、透明基板2は無機層形成室12に搬送される。無機層形成室12では、透明基板2に対して無機層が形成される。具体的には、第1バルブ126、第2バルブ128の開度を調整して第1ガス封入部125及び第2ガス封入部127から、それぞれ不活性ガス及び反応性ガスを無機層形成室12に導入すると共に、高周波電源124からスパッタリングターゲット122に電圧を印加して反応性スパッタリングを開始して、無機層3を形成する。 
 次いで、透明基板2が無機層形成室12から防汚層形成室13へ搬送される。防汚層形成室13では、無機層3上に防汚層4が形成される。具体的には、坩堝を加熱手段により加熱して、搬送された透明基板2の無機層3に対して加熱された蒸着源を付着して防汚層4を形成する。 
 防汚層4が形成されたのち、透明基板2は、ロードロック室11に搬送され、ロードロック室11において大気開放された後に成膜装置10から搬出される。 
 このようにして、本実施形態の成膜装置10では、無機層形成室12で反応性ガスとして水蒸気を用いて反応性スパッタリングを行うことで、簡易に無機層3の表面に水蒸気中のOH基を付着させることができ、これにより無機層3と防汚層4との密着性を向上させることができる。 
(実施形態2)
 本実施形態にかかる積層構造について、図3を用いて説明する。図3に示すように、本実施形態にかかる積層構造1Aでは、無機層3Aが複数層からなる点が実施形態1に示す無機層3(図1参照)とは異なる。 
 本実施形態における無機層3Aは、第1無機層31と第2無機層32とが、この順で複数層形成されてなり、かつ、この最上層(即ち防汚層4に密着する層)には、上述した反応性ガスとして水蒸気を用いて反応性スパッタリングを行い形成した第3無機層33を有するものである。この本実施形態における無機層3Aは、上述した無機層3(図1参照)として機能すると共に、反射防止層としても機能するものである。この無機層3Aの表面に設けられた第3無機層33も、反応性ガスとして水蒸気を用いた反応性スパッタリングにより形成しているので、防汚層4との密着性が高いものである。 
 無機層3Aの材料としては、上述した無機層3と同一の材料を用いることができ、Si、Al、Ta、Nb、Ti、Zr、Sn、Zn、Mg及びInが挙げられ、このうちの一種又は2種以上を含むもので、かつ、第1無機層31と第2無機層32とで異なる材料であることが挙げられる。なお、第3無機層33と第1無機層31又は第2無機層32は同一材料であってもよい。また、第1無機層31としては、酸化ケイ素、窒化ケイ素、窒化酸化ケイ素、酸化アルミニウム、窒化アルミニウム、窒化酸化アルミニウム、酸化チタン、酸化マグネシウム、酸化インジウム、酸化スズ、酸化亜鉛、酸化タンタル、酸化ニオブ、酸化ジルコニウム等を挙げることができ、これらのうちの1種又は2種以上を混合してなるものである。特に、第1無機層31としては、酸化タンタル(Ta)、酸化ニオブ(Nb)、酸化チタン(TiO)が挙げられ、特に第1無機層31がTa膜であることが好ましい。第3無機層33については、上述した無機層3と同一の条件で形成されるものであり、本実施形態では酸化シリコンである。 
 なお、本実施形態では、無機層3Aは、第3無機層33を除いて2種の膜を順次重ねているが、これに限定されず、3種以上の膜を順次重ねてもよい。
 本実施形態における無機層3Aを形成する場合、各層の成膜方法としては、例えば、CVD法、プラズマCVD法、スパッタリング法、イオンプレーティング法などが挙げられ、スパッタリング法としては、さらに、ECRスパッタリング法、反応性スパッタリング法、バイアススパッタリング法、直交電磁界型スパッタリング法等が挙げられる。本実施形態では、各層を、それぞれ反応性スパッタリング法により形成する。 
 例えば、このような密着層3Aを形成する場合には、第1無機層31の形成条件は、スパッタリングターゲット:Taターゲット、スパッタリングガス:Ar+O、Arガス流量:50~500sccm、Oガス流量:50~500sccm、投入パワー:1~10kWである。第2無機層32の形成条件は、スパッタリングターゲット:Siターゲット、スパッタリングガス:Ar+O、Arガス流量:50~500sccm、Oガス流量:50~500sccm、投入パワー:1~10kWである。水蒸気を反応性ガスとして使用する第3無機層33の形成条件は、スパッタリングターゲット:Siターゲット、不活性ガス:Ar、反応性ガス:HO、Arガス流量:10~200sccm、HOガス流量:100~400sccm、投入パワー:1~12kWである。 
 本実施形態では、第1無機層31の形成条件は、スパッタリングターゲット:Taターゲット、スパッタリングガス:Ar+O、Arガス流量:100sccm、Oガス流量:300sccm、投入パワー:8kWである。第2無機層32の形成条件は、スパッタリングターゲット:Siターゲット、スパッタリングガス:Ar+O、Arガス流量:50sccm、Oガス流量:200sccm、投入パワー:8kWである。水蒸気を反応性ガスとして使用する第3無機層33の形成条件は、スパッタリングターゲット:Siターゲット、不活性ガス:Ar、反応性ガス:HO、Arガス流量:30sccm、HOガス流量:300sccm、投入パワー:8kWである。 
 このような積層構造1Aを形成する成膜装置について、図4を用いて説明する。
 本実施形態にかかる成膜装置20は、中央部に回転ドラム21が設けられている。この回転ドラム21には、複数枚の透明基板2が設けられる。即ち、本実施形態における成膜装置20では、回転ドラム21が基板設置部として機能するように構成されている。回転ドラム21は、回転可能であり、回転ドラム21の表面に設置された複数の透明基板2に対して、各処理が行われる。成膜装置20は、図示しない真空ポンプが設けられており、これにより成膜装置20内を所望の真空度とすることができる。 
 成膜装置20は、さらに内部が複数の処理室に区切られている。本実施形態では、成膜装置20は、その周方向に、第1層形成室22と、第2層形成室23と、防汚層形成室24とに区切られている。第1層形成室22と第2層形成室23とは互いに対向する位置にあり、防汚層形成室24は、第1層形成室22と第2層形成室23との間にある。 
 第1層形成室22と、第2層形成室23は、共にスパッタリング法により第1無機層31及び第2無機層32(図3参照)を形成することができるように構成されている。即ち、第1層形成室22ではスパッタリング法により第1無機層31を形成し、第2層形成室23では、スパッタリング法により第2無機層32を形成する。なお、詳しくは後述するが、第2層形成室23では、第3無機層33を形成することができるように構成されている。 
 第1層形成室22には、一対の第1層用スパッタリングターゲット221が、それぞれターゲット支持部222に支持されて設置されている。各ターゲット支持部222には、高周波電源223が接続されている。これにより、一対の第1層用スパッタリングターゲット221には、それぞれ互いに正負反対の電圧が印加される。また、第1層形成室22には、不活性ガスが封入された第3ガス封入部224が第3バルブ225を介して接続されていると共に、反応性ガスが封入された第4ガス封入部226が第4バルブ227を介して接続されている。本実施形態では、第3ガス封入部224には、不活性ガスとしてのArガスが封入されており、第4ガス封入部226には反応性ガスとしてのOガスが封入されている。 
 第2層形成室23には、一対の第2層用スパッタリングターゲット231が、それぞれターゲット支持部232に支持されて設置されている。ターゲット支持部232には、高周波電源233が接続されている。また、第2層形成室23には、不活性ガスが封入された第5ガス封入部234が第5バルブ235を介して接続されていると共に、反応性ガスが封入された第6ガス封入部236が第6バルブ237を介して接続されている。本実施形態では、第5ガス封入部234には、不活性ガスとしてのArガスが封入されており、第6ガス封入部にはOガスが封入されている。 
 さらにまた、第2層形成室23には、反応性ガスとしての水蒸気が封入された第7ガス封入部238が第7バルブ239を介して接続されている。即ち、本実施形態では、この第2層形成室23において、反応性スパッタリング時に反応性ガスとして水蒸気を導入することができ、これにより第3無機層33を形成することができるように構成されている。 
 防汚層形成室24には、蒸着手段241が設置されている。蒸着手段241は、蒸着方法によるが、本実施形態では、図示しない蒸着源が加熱手段を備えた坩堝に設置されたものである。 
 かかる成膜装置20における成膜について説明する。成膜装置20に複数の透明基板2が搬送され、搬送された透明基板2は、回転ドラム21にそれぞれ所定の間隔をあけて設置される。その後、成膜装置20内は排気が行われ、所望の真空状態となる。真空状態となった後に、回転ドラム21の回転が開始される。回転ドラム21は、全ての透明基板2に対して全ての膜の成膜が完了するまで一方向に回転し続ける。 
 初めに、第1層形成室22で酸素を用いた反応性スパッタリングが実施されて透明基板2にTa膜である第1無機層31を形成する。次いで、回転ドラム21を回転させて回転ドラム21上に設置された別の透明基板2上に第1無機層31を形成し、第1無機層31を形成すると再度回転ドラム21を回転させる。このようにして全ての回転ドラム21上の透明基板2に成膜が終了すると、次いで第2無機層32(図3参照)の形成が始まる。即ち、第2層形成室23で水蒸気を用いた反応性スパッタリング法が実施されて透明基板2に第2無機層32を形成する。 
 このようにして各透明基板2の第1無機層31上に第2無機層32を形成すると、再度第1層形成室22においてスパッタリングが開始されて、第2無機層32上に第1無機層31が形成される。そして、第1無機層31及び第2無機層32をこの順で順次積層していくことで、無機層3A(図3参照)の積層部分が形成される。 
 その後、第2層形成室23において、反応性ガスとして水蒸気を用いて反応性スパッタリングを行って形成された無機層3A(図3参照)の積層部分上に第3無機層33を形成する。これにより、無機層3Aが形成される。 
 最後に、無機層3A上に防汚層4(図3参照)が形成される。具体的には、防汚層形成室24において蒸着手段241の蒸着源の加熱を開始して、透明基板2の無機層3A上に、加熱された蒸着源が付着して防汚層を形成する。
 防汚層4が形成されたのち、成膜装置20は大気開放されて、防汚層4が成膜された透明基板2は、成膜装置20から搬出される。
 このようにして、本実施形態の成膜装置20では、第2層形成室23で反応性ガスとして水蒸気を用いて反応性スパッタリングを行って第3無機層33を形成することで、簡易に無機層3Aの表面に水蒸気中のOH基を付着させることができ、これにより無機層3Aと防汚層4との密着性を向上させることができる。 
 以下、実施例により本発明の実施形態についてより詳細に説明する。 
(実施例1)
 実施形態1にかかる成膜装置により表1に示す各条件で積層構造1を形成した。なお、記載のない条件については実施形態1に記載したものと同一である。 
(比較例1)
 実施例1とは、無機層の形成工程で反応性スパッタリングにおいて水蒸気を用いずに酸素を用いた点以外は全て同一の条件で積層構造を形成した。 
(比較例2)
 実施例1とは、無機層の形成工程で反応性スパッタリングにおいて水蒸気を用いずに酸素を用いて酸化シリコン膜を形成した点、及び反応性スパッタリング後に水蒸気を用いたプラズマ処理を行って酸化シリコン膜の表面にOH基をそれぞれ付着させた点以外は全て同一の条件で積層構造を形成した。プラズマ処理の条件は、水蒸気流量:150sccm、投入パワー:1500kWである。 
(実施例2)
 実施例1とは、水蒸気を用いた反応性スパッタリングによる無機層の形成工程後、真空を保持したまま水蒸気を用いたプラズマ処理を行い(条件は比較例2と同一)、その後防汚層を設けた点以外は全て同一の条件で積層構造を形成した。 
(実施例3)
 実施形態2にかかる成膜装置により表1に示す各条件で第3無機層33を形成し、積層構造1Aを形成した。なお、記載のない条件については実施形態2に記載したものと同一である。 
(比較例3)
 実施例3とは、無機層の形成工程で反応性スパッタリングにおいて水蒸気を用いなかった点(即ち第3無機層を形成しなかった点)以外は全て同一の条件で積層構造を形成した。 
 実施例1~3及び比較例1~3の積層構造に対して、それぞれ耐久試験を行い、密着性を確認した。耐久試験は、各積層構造の防汚層表面を、荷重(1000g/cm)をかけたスチールウールで摺動し、摩耗した後に防汚層表面に水滴を落とし、この水滴の接触角が105度以下になった場合の摺動回数を測定したものである。即ち、摺動回数が多いほど、防汚層が剥がれにくく、密着性が高いことを示す。結果を表1に併せて示す。 
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、全ての実施例で比較例に対して摺動回数が多く、防汚層との密着性が向上したことが分かった。実施例2では、反応性ガスとして水蒸気を用いて無機層を形成後に水蒸気を用いたプラズマ処理を行ったが、実施例1と同様の結果を得た。このことから、プラズマ処理の有無は問わず、無機層形成時に水蒸気を用いることで、十分に密着性の高い膜を形成することができたことが分かった。実施例1と比較例2とを比較すると、プラズマ処理を行う場合よりも実施例1の場合の方が密着性が高く、実施形態1のように水蒸気を用いた反応性スパッタリングを行う方が酸化シリコン膜を成膜後に水蒸気を用いたプラズマ処理を行うよりもより高い効果を得ることができることが分かった。なお、比較例2の場合であっても比較例1よりは効果を得ることができたので、無機層表面にOH基を付着させることで密着性が向上することは確認された。 
(他の実施形態)
 本発明は、上述した実施形態に限定されない。例えば、成膜装置は実施形態1及び2に挙げたものに限定されず、各実施形態にかかる成膜方法を実施することができるものであればよい。例えば、一つの成膜装置内に、本実施形態におけるプラズマ処理室に設けられたプラズマ処理手段、蒸着手段を設け、基板をこれらに対向するようにして設置することができるように構成してもよい。 
 上述した実施形態では、不活性ガスと反応性ガスとを用いて反応性スパッタリングを行ったが、これに限定されず、反応性ガスのみを導入して反応性スパッタリングを行ってもよい。 
 また、実施形態2にかかる成膜装置20では、第1層形成室22と第2層形成室23とが互いに対向するように設けたが、これに限定されず、例えば隣接するように設けてもよい。 
 さらに、成膜装置20では、第2層形成室23において第3無機層33を形成することができるように構成したがこれに限定されず、第1層形成室22において第3無機層33を形成することができるように構成してもよい。即ち、第3無機層33の無機材料と同一の材料を用いる層を形成する室内に水蒸気を導入できるように構成すればよく、限定されない。また、第3無機層33を形成することができる第3層形成室を設けることも可能である。 
 また、実施形態2では、二つのスパッタリングターゲット間に高周波電圧を印加したが、このようないわゆるデュアル式のスパッタリング方法に限られない。例えば、単一のスパッタリングターゲットに対して高周波電源を接続し、接地された基板とスパッタリングターゲットとの間で高周波電圧を印加してもよい。 
 実施形態2では、無機層3Aとして反射防止層としても機能する膜を挙げたがこれに限定されず、他の光学機能膜であってもよい。 
 実施形態2では、第2無機層32上に第3無機層33を形成したが、これに限定されず、複数の第1無機層31及び第2無機層32を順次積層し、その後第1無機層31を形成した後に第3無機層33を形成してもよい。 
 上述した各実施形態では、有機層として防汚層を形成したが、有機層の機能としては防汚性に限定されない。
1、1A      積層構造
2            透明基板
3、3A      無機層
4            防汚層
10          成膜装置
11          ロードロック室
12          無機層形成室
13          防汚層形成室
20          成膜装置
21          回転ドラム
22          第1層形成室
23          第2層形成室
24          防汚層形成室
31          第1無機層
32          第2無機層
33          第3無機層

Claims (7)

  1.  被処理基板に成膜された無機物からなる無機層上にフッ素含有樹脂からなる有機層を形成する成膜方法であって、
     前記無機層を形成する際に、反応性ガスとして水蒸気を用いた反応性スパッタリングを行って被処理基板上に無機層を形成し、次いで該無機層上に前記有機層を形成することを特徴とする成膜方法。
  2.  前記無機層が、Si、Al、Ta、Nb、Ti、Zr、Sn、Zn、Mg及びInから選ばれた少なくとも1種を含む層であることを特徴とする請求項1記載の成膜方法。
  3.  前記無機層を、2以上の無機膜を積層して形成し、
    該無機膜のうち、少なくとも最上層は反応性ガスとして水蒸気を用いた反応性スパッタリングを行って形成することを特徴とする請求項1又は2記載の成膜方法。
  4.  前記無機層を、反応性ガスとして水蒸気を用いた反応性スパッタリングを行った後に、水蒸気を用いたプラズマ処理を行って形成することを特徴とする請求項1~3のいずれかに記載の成膜方法。
  5.  被処理基板上に無機層が形成される無機層形成手段を備えた無機層形成室と、フッ素含有樹脂からなる有機層が形成される有機層形成手段を備えた有機層形成室とを備えた成膜装置であって、
     前記無機層形成手段は、無機層形成室内に水蒸気を導入する水蒸気導入手段と、スパッタリングターゲットと、該スパッタリングターゲットに電圧を印加する電圧印加手段とを含み、
     前記無機層形成室では、前記水蒸気導入手段により無機層形成室内に水蒸気を導入し、前記電圧印加手段により電圧を印加してプラズマを生成して前記被処理基板上に無機層を形成し、
     その後、前記無機層が形成された被処理基板に前記有機層形成手段により前記有機層を形成することを特徴とする成膜装置。
  6.  前記無機層形成室と前記有機層形成室とは、それぞれ真空排気手段を備えると共に、この順で直列に配されていることを特徴とする請求項5記載の成膜装置。
  7.  前記成膜装置の中央には、被処理基板がその表面に設置される搬送手段としての回転ドラムが設けられると共に、その回転ドラムの周囲には、前記無機層形成室と前記有機層形成室とが区画されて設けられていることを特徴とする請求項5記載の成膜装置。
PCT/JP2012/082774 2012-12-18 2012-12-18 成膜方法及び成膜装置 WO2014097388A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/082774 WO2014097388A1 (ja) 2012-12-18 2012-12-18 成膜方法及び成膜装置
US14/652,423 US9903012B2 (en) 2012-12-18 2012-12-18 Film formation method and film formation apparatus
CN201280077793.6A CN104870683B (zh) 2012-12-18 2012-12-18 成膜方法和成膜装置
KR1020157018841A KR101947861B1 (ko) 2012-12-18 2012-12-18 성막 방법 및 성막 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/082774 WO2014097388A1 (ja) 2012-12-18 2012-12-18 成膜方法及び成膜装置

Publications (1)

Publication Number Publication Date
WO2014097388A1 true WO2014097388A1 (ja) 2014-06-26

Family

ID=50977773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082774 WO2014097388A1 (ja) 2012-12-18 2012-12-18 成膜方法及び成膜装置

Country Status (4)

Country Link
US (1) US9903012B2 (ja)
KR (1) KR101947861B1 (ja)
CN (1) CN104870683B (ja)
WO (1) WO2014097388A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069642A1 (ja) 2017-10-03 2019-04-11 信越化学工業株式会社 撥水撥油部材及び撥水撥油部材の製造方法
KR20200040786A (ko) 2017-08-17 2020-04-20 신에쓰 가가꾸 고교 가부시끼가이샤 발수 부재 및 발수 부재의 제조 방법
WO2020230618A1 (ja) 2019-05-14 2020-11-19 信越化学工業株式会社 撥水撥油部材及び撥水撥油部材の製造方法
KR20210005117A (ko) 2018-04-24 2021-01-13 신에쓰 가가꾸 고교 가부시끼가이샤 실리콘 점착제용 박리 필름 및 그 제조 방법
KR20210048511A (ko) 2018-08-20 2021-05-03 신에쓰 가가꾸 고교 가부시끼가이샤 발수발유 부재 및 발수발유 부재의 제조 방법
WO2021085149A1 (ja) 2019-10-31 2021-05-06 信越化学工業株式会社 耐アルカリ性撥水部材及び該撥水部材の製造方法並びに撥水部材の耐アルカリ性と耐摩耗性の向上方法
KR20220047357A (ko) 2019-08-20 2022-04-15 신에쓰 가가꾸 고교 가부시끼가이샤 발수발유 부재 및 발수발유 부재의 제조 방법
WO2023013476A1 (ja) 2021-08-05 2023-02-09 信越化学工業株式会社 撥水撥油表面層を有する物品
WO2023013477A1 (ja) 2021-08-05 2023-02-09 信越化学工業株式会社 撥水撥油表面層を有する物品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017117330A1 (en) * 2015-12-30 2017-07-06 Corning Incorporated Methods and apparatuses to clamp cover substrates in a vacuum coating process with van der waals forces
DE102017204336A1 (de) 2017-03-15 2018-09-20 Wirtgen Gmbh Bodenbearbeitungsmaschine mit Schaltgetriebe zwischen Antriebsmotor und rotierbarer Arbeitsvorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004268311A (ja) * 2003-03-06 2004-09-30 Dainippon Printing Co Ltd 汚れ付着防止高耐擦過性フィルム
JP2011104781A (ja) * 2009-11-12 2011-06-02 Toppan Printing Co Ltd 透明バリアフィルム
JP2012031494A (ja) * 2010-08-02 2012-02-16 Ulvac Japan Ltd 成膜方法及び成膜装置
JP2012251193A (ja) * 2011-06-01 2012-12-20 Ulvac Japan Ltd 成膜方法及び成膜装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0519079B1 (en) * 1991-01-08 1999-03-03 Fujitsu Limited Process for forming silicon oxide film
JP2005301208A (ja) 2004-03-17 2005-10-27 Seiko Epson Corp 防汚性光学物品の製造方法
JP2006098239A (ja) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd 放射線像変換パネル
US20060159844A1 (en) * 2005-01-18 2006-07-20 Fuji Photo Film Co., Ltd. Process and apparatus for producing magnetic recording medium
CN101785088B (zh) * 2007-08-08 2013-06-05 株式会社爱发科 等离子处理方法和等离子处理装置
JPWO2009084441A1 (ja) * 2007-12-28 2011-05-19 株式会社アルバック 透明導電膜の成膜方法及び成膜装置
KR20170005154A (ko) * 2008-06-30 2017-01-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 무기 또는 무기/유기 혼성 장벽 필름 제조 방법
JP5230357B2 (ja) 2008-10-31 2013-07-10 株式会社アルバック 透明基材への防護層の蒸着方法及び成膜装置
JP2011063467A (ja) * 2009-09-16 2011-03-31 Sumitomo Electric Ind Ltd 酸化物セラミックスの製造方法、透光性スピネルセラミックス構造体およびカラー液晶プロジェクター用光学素子
CN102383098A (zh) * 2010-09-03 2012-03-21 中芯国际集成电路制造(上海)有限公司 形成金属化合物薄膜的方法
JP5126909B2 (ja) * 2010-10-08 2013-01-23 株式会社シンクロン 薄膜形成方法及び薄膜形成装置
WO2012060338A1 (ja) 2010-11-05 2012-05-10 株式会社アルバック 積層体
JP6244103B2 (ja) * 2012-05-04 2017-12-06 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. 反応性スパッタ堆積のための方法および反応性スパッタ堆積システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004268311A (ja) * 2003-03-06 2004-09-30 Dainippon Printing Co Ltd 汚れ付着防止高耐擦過性フィルム
JP2011104781A (ja) * 2009-11-12 2011-06-02 Toppan Printing Co Ltd 透明バリアフィルム
JP2012031494A (ja) * 2010-08-02 2012-02-16 Ulvac Japan Ltd 成膜方法及び成膜装置
JP2012251193A (ja) * 2011-06-01 2012-12-20 Ulvac Japan Ltd 成膜方法及び成膜装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11905368B2 (en) 2017-08-17 2024-02-20 Shin-Etsu Chemical Co., Ltd. Water-repellent member and method for manufacturing water-repellent member
KR20200040786A (ko) 2017-08-17 2020-04-20 신에쓰 가가꾸 고교 가부시끼가이샤 발수 부재 및 발수 부재의 제조 방법
KR20200062294A (ko) 2017-10-03 2020-06-03 신에쓰 가가꾸 고교 가부시끼가이샤 발수발유 부재 및 발수발유 부재의 제조 방법
WO2019069642A1 (ja) 2017-10-03 2019-04-11 信越化学工業株式会社 撥水撥油部材及び撥水撥油部材の製造方法
KR20210005117A (ko) 2018-04-24 2021-01-13 신에쓰 가가꾸 고교 가부시끼가이샤 실리콘 점착제용 박리 필름 및 그 제조 방법
KR20210048511A (ko) 2018-08-20 2021-05-03 신에쓰 가가꾸 고교 가부시끼가이샤 발수발유 부재 및 발수발유 부재의 제조 방법
WO2020230618A1 (ja) 2019-05-14 2020-11-19 信越化学工業株式会社 撥水撥油部材及び撥水撥油部材の製造方法
KR20220008874A (ko) 2019-05-14 2022-01-21 신에쓰 가가꾸 고교 가부시끼가이샤 발수발유 부재 및 발수발유 부재의 제조 방법
KR20220047357A (ko) 2019-08-20 2022-04-15 신에쓰 가가꾸 고교 가부시끼가이샤 발수발유 부재 및 발수발유 부재의 제조 방법
WO2021085149A1 (ja) 2019-10-31 2021-05-06 信越化学工業株式会社 耐アルカリ性撥水部材及び該撥水部材の製造方法並びに撥水部材の耐アルカリ性と耐摩耗性の向上方法
KR20220098149A (ko) 2019-10-31 2022-07-11 신에쓰 가가꾸 고교 가부시끼가이샤 내알칼리성 발수 부재, 이 발수 부재의 제조 방법 및 발수 부재의 내알칼리성과 내마모성의 향상 방법
WO2023013476A1 (ja) 2021-08-05 2023-02-09 信越化学工業株式会社 撥水撥油表面層を有する物品
WO2023013477A1 (ja) 2021-08-05 2023-02-09 信越化学工業株式会社 撥水撥油表面層を有する物品
KR20240042469A (ko) 2021-08-05 2024-04-02 신에쓰 가가꾸 고교 가부시끼가이샤 발수발유 표면층을 갖는 물품
KR20240044454A (ko) 2021-08-05 2024-04-04 신에쓰 가가꾸 고교 가부시끼가이샤 발수발유 표면층을 갖는 물품

Also Published As

Publication number Publication date
US20150337430A1 (en) 2015-11-26
US9903012B2 (en) 2018-02-27
KR20150095862A (ko) 2015-08-21
KR101947861B1 (ko) 2019-02-13
CN104870683B (zh) 2018-08-31
CN104870683A (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
WO2014097388A1 (ja) 成膜方法及び成膜装置
JP5504091B2 (ja) 成膜方法及び成膜装置
JP2007526601A (ja) 拡散バリア層および拡散バリア層の製造方法
JP2010511975A (ja) 薄膜バリアを有する可撓基板
JP5417698B2 (ja) 機能性フィルムの製造方法
JP2014043600A (ja) 成膜方法
CN111183373A (zh) 防反射薄膜及其制造方法、以及带防反射层的偏光板
JP2010184478A (ja) 多層フィルムおよびその製造方法
JP5800414B2 (ja) 成膜方法
JPWO2014030382A1 (ja) 成膜方法
JP2015082010A (ja) 無機光学素子
JP5504350B2 (ja) 積層体
WO2015163331A1 (ja) 被膜付きガラス基板および被膜付きガラス基板の製造方法
JP4106931B2 (ja) 透明ガスバリア薄膜被覆フィルム
JP5230357B2 (ja) 透明基材への防護層の蒸着方法及び成膜装置
JP2006076051A (ja) バリアフィルム及びその製造方法
KR20200040660A (ko) 반사 방지 유리
TWI576448B (zh) Film forming method
JP2008275918A (ja) 防汚層を備えた反射防止層の成膜方法及び同成膜を行うための成膜装置
JP2004042412A (ja) 透明ガスバリア性薄膜被覆フィルム
JPH06337406A (ja) 液晶表示素子
JP2019020721A (ja) Ndフィルタ及びその製造方法
CN108430944A (zh) 增透膜及其制备方法
US8388815B2 (en) Coated article and method of making the same
JPH11258583A (ja) 液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890354

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14652423

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157018841

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12890354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP