WO2014094319A1 - 一种可抑制转矩脉动的直接转矩控制方法 - Google Patents

一种可抑制转矩脉动的直接转矩控制方法 Download PDF

Info

Publication number
WO2014094319A1
WO2014094319A1 PCT/CN2012/087251 CN2012087251W WO2014094319A1 WO 2014094319 A1 WO2014094319 A1 WO 2014094319A1 CN 2012087251 W CN2012087251 W CN 2012087251W WO 2014094319 A1 WO2014094319 A1 WO 2014094319A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
vector
flux
value
voltage
Prior art date
Application number
PCT/CN2012/087251
Other languages
English (en)
French (fr)
Inventor
夏长亮
赵家欣
阎彦
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to US14/649,210 priority Critical patent/US9391546B2/en
Publication of WO2014094319A1 publication Critical patent/WO2014094319A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes

Definitions

  • the invention belongs to the field of power converter control of a drive motor, and particularly relates to a performance improvement method of a matrix converter-permanent magnet synchronous motor speed control system using direct torque control. Background technique
  • Matrix Converter is a compact, high power density AC-AC power converter without the need for large-volume electrical energy storage devices and low harmonic pollution to the power grid.
  • MC-fed motor speed control systems have been applied in many industrial fields such as elevator traction, wind power generation, and machine manufacturing.
  • Direct Torque Control was introduced in 1986 and was used to control the induction motor speed control system (VSI-DTC) fed by a Voltage Source Inverse (VSI). Because DTC has the advantages of simple structure, no dependence on motor parameters and no need to rotate coordinate transformation, it has attracted the attention of scholars. With the continuous maturity of MC control modulation technology, foreign researchers proposed a new type of DTC in 2001 and applied it to MC-induction motor speed control system (MC-DTC). This method not only directly controls the electromagnetic torque and stator flux linkage on the motor side, but also controls the input power factor angle on the grid side.
  • MC-DTC MC-induction motor speed control system
  • both MC-DTC and VSI-DTC use the hysteresis comparator and voltage vector selection table control structure, using only one voltage vector in each control cycle, resulting in excessive torque ripple and non-fixed switching frequency in the motor system.
  • a major flaw. In order to solve the above defects, many improved DTCs suitable for VSI are continuously proposed. Then, researchers from various countries optimize and transplant the improved DTC algorithm to the MC feed motor speed control system. The improved algorithm can do the following classification:
  • SVM voltage vector selection table
  • This method uses the torque and flux linkage deviation as the input quantity, and uses the PI controller, the deadbeat controller, the sliding mode controller, the predictive controller, etc. to obtain the motor stator voltage reference value, and finally obtains the actual value based on the reference value using SVM.
  • Voltage vector Some scholars apply this method to the MC, and the MC is equivalent to the virtual rectification side and the virtual inverter side.
  • the SVM is used to obtain the optimal input current or output voltage in the virtual rectification and reverse side. Since the SVM can generate a continuously rotating voltage vector in the complex plane, the method can accurately control the motor torque and flux linkage, but its control structure is more complex than the traditional DTC, and usually requires a rotating coordinate transformation and a large amount of calculation.
  • Adopt the duty cycle optimization calculation method uses the traditional DTC switch table to select the voltage vector, and calculates the voltage vector duty cycle through the torque optimization formula to minimize the amount of torque deviation in one cycle.
  • Such a method does not require a rotating coordinate transformation, can better suppress torque ripple and has a fixed switching frequency, but most optimization algorithms are complicated and have strong dependence on motor parameters.
  • the present invention provides a direct torque control method capable of suppressing torque ripple, which can effectively suppress torque ripple, obtain a fixed switching frequency, and also maintain DTC without rotating coordinate transformation, independent of motor parameters,
  • the invention has the advantages of simple calculation, strong robustness, and the like, and the invention establishes an MC voltage vector switch table which can visually display the effects of torque and flux linkage increase and decrease.
  • the present invention provides a direct torque control method capable of suppressing torque ripple, comprising the following steps:
  • Step 1 Establish a MC voltage vector switch table that visually displays the torque and flux linkage increase and decrease.
  • the spatial rotating coordinate system x_y is established, and the stator flux ⁇ ⁇ is positioned on the X-axis.
  • the relationship between the permanent magnet synchronous motor torque and the stator flux amplitude and the stator voltage is as follows: ⁇ 6
  • v x and y represent the xy-axis component of the stator voltage; the electrical angular velocity of the rotor;
  • is the stator flux amplitude; 7: is the electromagnetic Moment; ⁇ is time;
  • the torque evaluation function ⁇ and the flux evaluation function are binary periodic functions. In a period of ⁇ e[0,2 Ji ], ⁇ [0,2 ⁇ ], ⁇ ⁇ , ⁇ starts from 0 every ⁇ /6 is divided into an interval, which is represented by the stator flux linkage sector e[l, 12] and the stator voltage sector ⁇ e[l, l2], respectively, and the entire plane is divided into 12X 12 regions;
  • Equation (8) can calculate the value of V +1 vector in all regions, and summarize it into a table form to obtain a switch table for the effect of V +1 vector on torque increase and decrease; the V +1 vector pair torque
  • the horizontal head of the switch table with increasing or decreasing action is a stator flux linkage sector, and the vertical head is a stator voltage sector;
  • the torque evaluation function ⁇ and the flux evaluation function are the product of two functions, where the term is related to time, which is called the time expression; the term is related to the stator flux and the spatial position of the voltage vector, which is called spatial expression. Style
  • the torque evaluation function ⁇ of the 18 effective vectors of MC has the following situation: Case 1: ⁇ of the same vector, with the same time expression, the spatial expression lags behind the ⁇ space expression /2;
  • the MC voltage vector switch table capable of visually displaying the torque and the degree of flux increase or decrease is formed by translating the stator voltage section of the vertical head and the sector magnetic flux sector of the horizontal head;
  • Step 2 Query the torque evaluation value ⁇ in the above-mentioned MC voltage vector switch table which can visually display the degree of torque and flux linkage increase and decrease, and perform voltage vector duty cycle optimization calculation.
  • a matrix converter voltage vector is selected from the MC voltage vector switch table; the sector number of the stator flux vector is calculated; the sector number of the input voltage vector is calculated; the torque and the magnetic chain increase can be visually displayed through the above
  • the reduced MC voltage vector switch table obtains the MC vector torque evaluation value to calculate the back EMF evaluation value, and the offline torque coefficient is determined; the electromagnetic torque evaluation value, the back EMF evaluation value and the torque coefficient are substituted into the duty ratio calculation formula, and the calculation is performed. Air ratio optimization calculation.
  • the present invention is a novel MC-DTC duty cycle optimization strategy for torque quantization control. Based on the MC voltage vector switch table in the present invention, a novel MC-DTC duty cycle optimization strategy for torque quantization control is proposed. Compared with the traditional MC-DTC strategy, the method of the invention can effectively suppress the torque ripple of the PMSM speed control system, and the switching frequency is fixed.
  • the present invention combines the PMSM torque, the flux linkage equation, and the MC voltage vector to derive an analytical relationship between the voltage vector and the torque and flux linkage rate.
  • an MC voltage vector switch table that visually displays the torque and flux linkage increase and decrease is established. Due to the use of the MC voltage vector switch table in the present invention, the method of the present invention has the advantages of a simple algorithm, no dependence on motor parameters, and no need for rotational coordinate transformation, as compared to other improved MC-DTC strategies.
  • FIG. 1 is a table of values of torque increase and decrease of a matrix converter v +1 vector obtained by the present invention
  • FIG. 2 is an MC voltage vector switch capable of visually displaying torque and flux linkage increase and decrease established in the present invention
  • FIG. 3 is a flow chart of a direct torque control method capable of suppressing torque ripple according to the present invention.
  • Figure 4 is a schematic structural view of a matrix converter in the present invention.
  • Figure 5 is a torque, flux linkage, input power factor hysteresis comparator of the present invention
  • Figure 6 is a switch table for obtaining a virtual VSI vector
  • Figure 7 is an MC voltage vector switch table
  • FIG. 8 is a schematic diagram of an implementation process of a direct torque control method capable of suppressing torque ripple according to the present invention
  • FIG. 9(a) and FIG. 9(b) are a conventional control method and a method under the condition of a motor speed of 30 r/min and a load torque of 150 Nm.
  • Inventive control method experimental comparison waveform diagram wherein: Figure 9 (a) is the motor electromagnetic torque and stator A phase current waveform under the traditional control method; Figure 9 (b) is the motor electromagnetic torque and stator A phase under the control method of the present invention Current waveform
  • Figure 10 (a) and Figure 10 (b) show that the motor speed is 30r/min and the motor is suddenly loaded to 150Nm from no load (about 30Nm).
  • the conventional control method and the control method of the present invention are compared with the waveform diagram, wherein: Figure 10 (a) is the motor speed, electromagnetic torque, and A-phase winding current waveform under the conventional control method; Figure 10 (b) The motor speed under the control method of the present invention , electromagnetic torque, A phase winding current waveform;
  • Figure 11 (a) and Figure 11 (b) show that the motor rotates from 20 r/min to 30 r/min under no-load conditions.
  • the conventional control method and the control method of the present invention are compared with the waveform diagram, wherein: (11) is the motor rotation speed, the electromagnetic torque, and the stator flux linkage ⁇ _ ⁇ component waveform under the conventional control method;
  • FIG. 11 (b) is the control of the present invention.
  • the invention relates to a direct torque control method capable of suppressing torque ripple, which mainly comprises: establishing an MC voltage vector switch table for visually displaying torque and flux linkage increase and decrease, and displaying and increasing torque and flux linkage in the above-mentioned visual display The torque evaluation value of the MC voltage vector in the MC voltage vector switch table of the degree is finally performed. Voltage vector duty cycle optimization calculation.
  • Step 1 Establish an MC voltage vector switch table that visually displays the torque and flux linkage increase and decrease to establish a spatial rotating coordinate system x_y, and position the stator flux ⁇ ⁇ on the X axis, permanent magnet synchronous motor torque and stator flux linkage
  • the relationship between amplitude and stator voltage is as follows:
  • v x and y represent the xy-axis component of the stator voltage: the rotor electrical angular velocity
  • is the stator flux amplitude
  • 7 is the electromagnetic torque
  • is the time
  • +lx denotes V +1 On the x-axis projection, +ly means V +1 is projected on the y-axis; K is the maximum value of the MC input phase voltage; it is the angle between the X-axis and the motor A-phase winding; ⁇ is the MC input phase voltage vector angle;
  • the average value in each region is used to represent the torque and flux linkage evaluation functions ⁇ , ⁇ of the region, thereby defining the torque evaluation function ⁇ and the flux linkage evaluation function.
  • the mean value calculation function is:
  • Equation (8) can calculate the value of V +1 vector in all regions, and summarize it into a tabular form to obtain a switch table for the effect of V +1 vector on torque increase and decrease.
  • the V +1 vector on torque increase and decrease The horizontal head of the switch table is the stator flux sector sector, and the vertical head is the stator voltage sector ⁇ ;
  • the torque evaluation function ⁇ and the flux evaluation function are the product of two functions, where the term is related to time, which is called the time expression; the term is related to the stator flux and the spatial position of the voltage vector, which is called spatial expression. Style
  • the torque evaluation function ⁇ of the 18 effective vectors of MC has the following situation: Case 1: ⁇ of the same vector, with the same time expression, the spatial expression lags behind the ⁇ space expression /2;
  • Negative vector ⁇ , ⁇ _ 2 ⁇ ⁇ _ 9 and i, 2 ⁇ 9 values correspond to positive vectors ⁇ +1 , 7" +2 ⁇ 7" +9 and +1 ,
  • an MC voltage vector switch table can be formed which can visually display the degree of torque and flux linkage increase and decrease, as shown in FIG. 2 .
  • the left header area is the input voltage sector
  • the upper header area is the stator flux linkage sector for inquiry
  • the header area of the following table is the stator flux linkage sector for querying A.
  • Step 2 Through the MC voltage vector switch table established in the present invention, the degree of increase or decrease of the PMSM torque and the flux linkage of all the effective vectors of the MC can be queried, and the duty ratio optimization calculation is performed. Includes the following steps: Step 1: Select a matrix converter voltage vector according to the traditional MC-DTC control method. According to the average value of the sinusoidal function of the motor electromagnetic torque, the motor stator flux linkage, and the grid side input power factor angle, a matrix converter voltage vector is selected from the switch table by the conventional MC-DTC control method.
  • Step 2 Calculate the sector in which the stator flux vector is located.
  • the stator flux vector rotation path is started at 0, and every division is divided into twelve sectors. According to the phase angle of the stator flux vector, the sector number of the stator flux vector can be obtained.
  • Step 3 Calculate the sector in which the input voltage vector is located.
  • the input voltage vector rotation path starts at 0, and every time a sector is divided, the entire plane is divided into twelve sectors. According to the phase angle of the input voltage vector, the sector number of the input voltage vector can be obtained.
  • Step 4 Query the MC vector electromagnetic torque evaluation value.
  • the MC voltage vector switch table established in the first step is queried to obtain the MC vector. Electromagnetic torque evaluation value.
  • Step 5 Calculate the back EMF evaluation value.
  • the motor speed is sampled, and the back EMF evaluation value is calculated based on the rotational speed and back EMF evaluation functions.
  • Step 6 Set the torque factor offline.
  • the torque coefficient is set offline.
  • the torque coefficient is a positive real number.
  • the larger torque coefficient can suppress the torque ripple in steady state, but the transient response performance is slow.
  • the torque factor does not need to be adjusted online in real time, only need to be set offline.
  • Step 7 Perform voltage vector duty cycle optimization calculation.
  • the difference between the calculated value of the electromagnetic torque and the reference value, that is, the electromagnetic torque evaluation value obtained in the sixth step, the back EMF evaluation value obtained in the seventh step, and the torque coefficient obtained in the eighth step are substituted into the duty ratio calculation formula.
  • the invention is applicable to a permanent magnet synchronous motor speed control system fed by a matrix converter, and a novel MC-DTC duty ratio optimization method using torque quantization control.
  • FIG. 3 is a flowchart of an implementation of the present invention, and the method for implementing the present invention includes the following steps:
  • MC is shown in FIG. 4 the duty ratio of switch function 51 h, 0 73 ⁇ 4 h (i) l , ⁇ A, B, C ⁇ , ⁇ a, b, c ⁇ .
  • i iS is the duty cycle function of the MC switch as shown in Figure 4, 0 ⁇ lh (» ⁇ l, /e ⁇ A, B, C ⁇ , /ze ⁇ a , b, c ⁇ .
  • 3 ⁇ 4f is a permanent magnet flux linkage; it is the angle between the permanent magnet flux linkage and the motor A phase winding; it is the stator resistance.
  • the torque switching function C T , the flux linkage function C v , and the input power factor switching function Gp are obtained by a hysteresis comparator.
  • the torque, flux linkage, and input power factor hysteresis comparators are shown in Figure 5.
  • 37 is 0.5% ⁇ 5% of the torque
  • * are the electromagnetic torque reference value and the stator flux linkage amplitude reference value, respectively.
  • the MC voltage vector switch table obtains the torque evaluation value.
  • the MC voltage vector switch table of the present invention is obtained to obtain the torque evaluation value.
  • the MC voltage vector switch table of the present invention is shown in Fig. 2.
  • ⁇ ⁇ represents the motor torque.
  • the integer is between [7, 9]
  • A is an integer between [1, 4].
  • the commutation control circuit controls the opening and closing of MC9 bidirectional switching tubes to realize safe commutation. Drive motor system speed control.
  • the matrix converter direct torque control method of the present invention is implemented as shown in Fig. 8, wherein steps (1)-(11) are implemented by a floating point microprocessor TMS320F28335, and step (12) is implemented by an FPGA chip EP1C6.
  • the commutation control circuit program is prior art.
  • the direct torque control method of the matrix converter of the invention has been experimentally verified on a 10 kW prototype, the dynamic and static performance of the system is good, and the torque ripple is effectively suppressed.
  • the steady-state contrast test waveform diagram of the matrix converter direct torque control method and the conventional matrix converter direct torque control method is shown in Fig. 9 (a) and Fig. 9 (b).
  • the test conditions are motor speed 30r/min and load torque 150Nm.
  • the left picture shows the motor electromagnetic torque and the A-phase winding current waveform under the traditional control method
  • the right picture shows the motor electromagnetic torque and the A-phase winding current waveform under the control method of the present invention.
  • the traditional control method has a large torque ripple, and its transient peak-to-peak value can reach 63Nm.
  • the transient peak-to-peak value of the control method of the present invention is only 30 Nm.
  • the transient comparison test waveform diagram of the matrix converter direct torque control method and the conventional matrix converter direct torque control method is shown in Fig. 10 (a), Fig. 10 (b) and Fig. 11 (a), Fig. 11 (b) Shown.
  • the test conditions in Fig. 10 (a) and Fig. 10 (b) are that the motor speed is 30r/min, and the motor is suddenly loaded to 150Nm from no load (about 30Nm).
  • the left picture shows the motor speed, electromagnetic torque, and A-phase winding current waveform under the traditional control method.
  • the right figure shows the motor speed, electromagnetic torque, and A-phase winding current waveform under the control method of the present invention.
  • the control method of the present invention can realize motor speed and torque tracking, and the torque ripple is small.
  • the test conditions in Fig. 11(a) and Fig. 11(b) are that the motor rotates from 20r/min to 30r/min under no-load conditions.
  • the left picture shows the motor speed, electromagnetic torque and stator flux linkage ⁇ - ⁇ component waveform under the traditional control method.
  • the right figure shows the motor speed, electromagnetic torque and stator flux linkage ⁇ - ⁇ component waveform under the control method of the invention. .
  • the control method of the present invention inherits the characteristics of the torque response speed of the conventional control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种可抑制转矩脉动的直接转矩控制方法,主要包括:建立直观显示转矩、磁链增减程度的MC电压矢量开关表,并基于直观显示转矩、磁链增减程度的MC电压矢量开关表,提出了转矩量化控制的MC-DTC占空比计算策略。所述MC-DTC占空比计算策略能够抑制PMSM调速系统转矩脉动,且开关频率固定,使用直观显示转矩、磁链增减程度的MC电压矢量开关表,算法简单、不依赖于电机参数和无需旋转坐标变换。

Description

一种可抑制转矩脉动的直接转矩控制方法
技术领域
本发明属于驱动电机的功率变换器控制领域,具体涉及采用直接转矩控制的 矩阵变换器-永磁同步电机调速系统的性能改善方法。 背景技术
矩阵变换器 (Matrix Converter, MC) 无需大体积电能存储设备, 对电网谐 波污染小, 是一种结构紧凑、 高功率密度的交-交电力变换器。 近年来, 随着换 流技术、 系统稳定性及控制调制策略等方面的不断改善, 由 MC馈电的电机调速 系统已在电梯曳引、 风力发电、 机器制造等诸多工业领域获得应用。
直接转矩控制 (Direct Torque Control, DTC) 于 1986年提出, 早期用于 控制由电压型逆变器 (Voltage Source Inverse, VSI ) 馈电的感应电机调速系 统(VSI-DTC)。 由于 DTC具有结构简单、不依赖电机参数及无需旋转坐标变换等 优势, 而备受学者们关注。 随着 MC控制调制技术的不断成熟, 国外学者于 2001 年提出一种新型 DTC并应用于 MC馈电的感应电机调速系统(MC-DTC)。该方法不 仅可直接控制电机侧的电磁转矩和定子磁链, 而且可控制网侧的输入功率因数 角。 然而, MC-DTC和 VSI-DTC均采用滞环比较器和电压矢量选择表的控制结构, 在每个控制周期内只使用一个电压矢量,导致电机系统存在转矩脉动过大和开关 频率不固定两个主要缺陷。为解决上述缺陷,诸多适用于 VSI的改进型 DTC被不 断提出,随后各国学者将改进型 DTC算法优化并移植于 MC馈电的电机调速系统。 改进算法可做以下归类:
1、 使用多级滞环与多矢量细分。 对于 VSI, 其本身仅有 6个幅值、 方向固 定的有效电压矢量, 因此需采用离散空间矢量调制产生 56个幅值不等的虚拟电 压矢量,利用五级转矩滞环比较器,细分选择虚拟矢量,达到抑制转矩脉动目的。 对于 MC, 由于其本身具有多矢量的特点, 即有 18种分布在 6个方向上的幅值变 化矢量, 因此可根据幅值细分电压矢量为大、 小矢量, 采用五级转矩滞环比较器 选择电压矢量, 实现转矩脉动抑制。 研究表明, 这类方法保持了 DTC结构简单、 无需电机参数及旋转坐标变换等优势,转矩脉动抑制效果良好,但存在开关频率 不固定的缺陷。
2、 使用 SVM代替电压矢量选择表 (DTC-SVM)。 该类方法将转矩和磁链偏差 作为输入量, 采用 PI控制器、 无差拍控制器、 滑模控制器、 预测控制器等来获 得电机定子电压参考值,最后根据参考值使用 SVM获得实际电压矢量。部分学者 将此类方法应用于 MC, 将 MC等效为虚拟整流侧和虚拟逆变侧, 在虚拟整流及逆 变侧部分或全部应用 SVM获得最优输入电流或输出电压。由于 SVM可在复平面内 产生连续旋转的电压矢量,所以该方法可精确控制电机转矩和磁链,但是其控制 结构较传统 DTC复杂, 通常需要旋转坐标变换且计算量大。
3、 采用占空比优化计算法。 该类方法采用传统 DTC开关表选择电压矢量, 并通过转矩优化公式计算该电压矢量占空比, 使一个周期内转矩偏差量达到最 小。此类方法无需旋转坐标变换、可较好的抑制转矩脉动且开关频率固定, 但多 数优化算法复杂, 且对电机参数有较强的依赖性。
上述三类改进算法虽然达到抑制电机转矩脉动的目的,但却以牺牲直接转矩 控制的部分固有优势为代价, 这些算法或计算复杂、或依赖于电机参数、或需要 旋转坐标变换, 无法做到在巩固控制算法优势的基础上改进劣势。 发明内容
针对上述现有技术, 本发明提供一种可抑制转矩脉动的直接转矩控制方法, 可以有效抑制转矩脉动、获得固定开关频率,同时还保持 DTC无需旋转坐标变换、 不依赖于电机参数、计算简单、鲁棒性强等优势,本发明建立了可直观显示转矩、 磁链增减作用的 MC电压矢量开关表。
为了解决上述技术问题,本发明一种可抑制转矩脉动的直接转矩控制方法,包括 以下步骤:
步骤一: 建立直观显示转矩、 磁链增减程度的 MC电压矢量开关表
建立空间旋转坐标系 x_y, 且将定子磁链 Ψ δ定位在 X轴上, 永磁同步电机 转矩及定子磁链幅值与定子电压之间的关系如下: Γ65 (2) 式 (1) 和式 (2) 中, vxy表示定子电压的 x-y轴分量; 为转子电角速 度; | Ψ 为定子磁链幅值; 7:为电磁转矩; ί为时间;
对 +1开关组合下的电压矢量 V+1进行 x-y坐标分解, 可得:
V+lj = 213vab sin(-6>s ) = -21 ^>Vm cos ( + π / 6) sini9s ( 3 )
F+lx = 2 / 3vab cos (-9S ) = 21 SVm cos («t + π / 6) cos 9S (4) 式 (3) 和式 (4) 中, +lx表示 V+1在 x轴投影, +ly表示 V+1在 y轴投影; K 表示 MC输入相电压最大值; 为 X轴与电机 A相绕组夹角; ^表示 MC输入相 电压矢量角;
定义转矩评价函数 τ、 磁链评价函数 、 反电势评价函数 如下
、 (5)
Ί
Figure imgf000005_0001
将式 (3)和式 (4) 分别代入式 (5)和式 (6)可得 +1开关组合的转矩、 磁 链评价函数 r+1、 ^n:
τ =-cos(«; +π/6)8ΐη^ (8) λ = cos(«; + π/ 6)cos^s (9) 同理, 得出 MC所有电压矢量的转矩磁链评价函数;
转矩评价函数 τ、 磁链评价函数 为二元周期函数, 在 ^e[0,2 Ji ]、 ^Ε [0,2 π ]的一个周期中, 将 ΘΒ、 ^从 0开始每隔 π /6划分为一个区间, 分别用定子磁链扇区 e[l, 12]、 定子电压扇区厶 e[l,l2]表示, 则整个平面 被划分为 12X 12个区域;
用每个区域内的平均值来代表该区域的转矩评价函数 r 的值和磁链评价函 数 的值, 由此定义转矩评价函数 τ、 磁链评价函数 均值计算函数为: pz = round 6" \Υ τ d(9da, (10)
(π/6): (11)
式 (10) 和式 (11) 中, 厶 = {1, 2, 3···12}; 7β = {1, 2,3-12}; round()表示 就近取整函数; /^为转矩评价值, 为磁链评价值; 取系数 k=10, 则转矩评价 值 A、 磁链评价值 为介于 -9到 +9之间的整数;
将式 (5)、 式 (6) 和式 (7) 代入式 (1) 和式 (2) 可得转矩评价函数 τ、 磁链评价函数 、 反电势评价函数 与电机转矩变化率及磁链变化率函数关系 式为:
-e (12) :1 " (13) 由式 (10)、 式 (11)、 式 (12)和式 (13)可得 MC转矩评价值 、 MC磁链 评价值 与电机转矩变化率、 磁链变化率的函数关系式为:
±Te Teu (14) dt dt τ e
-^|Ψ8 |»^|Ψ8|-Α (15) at at
式 (14)和式(15) 中, 正比号左边部分表示电机转矩变化率和磁链变化率 在一个区域内的平均值; 其中, 反电势评价函数平均值
= round (10^) (16) 由式(14)和式(15)可见, 经离散、 平均化后的转矩、 磁链评价值 A、 p, 近似与电机转矩及磁链变化率成正比;
将式(8)代入式(10)可计算 V+1矢量在全部区域内 值, 汇总为表格形式 得出 V+1矢量对转矩增减作用的开关表; 该 V+1矢量对转矩增减作用的开关表的横 表头为定子磁链扇区, 纵表头为定子电压扇区;
转矩评价函数 τ、 磁链评价函数 为两个函数的乘积, 其中含 ^项与时 间有关, 这里称为时间表达式; 含 项与定子磁链和电压矢量空间位置有关, 这里称为空间表达式;
MC18个有效矢量的转矩评价函数 τ、 磁链评价函数 函数具有如下情形: 情形 1: 同一矢量的 τ、 具有相同的时间表达式, 空间表达式滞后于 τ空间表达式 /2;
情形 2: r+1、 r+2、 r+3具有相同的空间表达式,时间表达式依次滞后 2 π/3; 青形 3 : 具有相同的时间表达式,空间表达式依次滞后 2 π /3 ;
具有相同的时间表达式,空间表达式依次滞后 2 π /3 ; ,具有相同的时间表达式,空间表达式依次滞后 2 π /3; 情形 4: 负矢量 Τ.2-Τ.9禾口 1、 λ.2~λ.9值为对应正矢量 T+i、 Τ+2-Τ+9禾口 +1、
A+2 +9值的负数;
根据情形 2和情形 3分别对上述 V+1矢量对转矩增减作用的开关表的纵表头 定子电压扇区和横表头定子磁链扇区进行平移可得 MC全部正矢量对转矩增减作 用开关表; 再根据情形 1对上述 v+1矢量对转矩增减作用的开关表的横表头定子 磁链扇区进行平移可得 MC全部正矢量对磁链增减作用开关表; 最后根据情形 4 计算 MC全部负矢量对应 、 / ^值;
平移纵表头定子电压扇区和横表头定子磁链扇区后形成可直观显示转矩、磁 链增减程度的 MC电压矢量开关表;
步骤二: 在上述可直观显示转矩、 磁链增减程度的 MC电压矢量开关表中査 询转矩评价值 ^, 并进行电压矢量占空比优化计算
根据传统 MC-DTC控制方法从 MC电压矢量开关表中选择一个矩阵变换器 电压矢量; 计算定子磁链矢量所在扇区号; 计算输入电压矢量所在扇区号; 通过 上述可直观显示转矩、 磁链增减程度的 MC 电压矢量开关表获得 MC矢量转矩 评价值 计算反电势评价值 离线整定转矩系数; 将电磁转矩评价值 、 反 电势评价值 和转矩系数代入占空比计算公式, 进行占空比优化计算。
与现有技术相比, 本发明的有益效果是:
( 1 )本发明是一种转矩量化控制的新型 MC-DTC占空比优化策略, 基于本发 明中 MC电压矢量开关表, 提出了转矩量化控制的新型 MC-DTC占空比优化策略。 相比于传统 MC-DTC策略,本发明的方法可有效抑制 PMSM调速系统转矩脉动, 且 开关频率固定。
( 2 ) 本发明将 PMSM转矩、 磁链方程及 MC电压矢量相结合, 推导了电压矢 量与转矩、 磁链变化率间的解析关系。 通过离散、 平均方法, 建立了直观显示转 矩、磁链增减作用的 MC电压矢量开关表。 由于本发明中 MC电压矢量开关表的使 用, 相比于其他改进型 MC-DTC策略, 本发明的方法具有算法简单、 不依赖于电 机参数和无需旋转坐标变换的优势。 附图说明
图 1是本发明得到的矩阵变换器 v+1矢量对转矩增减程度的/^值表; 图 2是本发明中建立的可直观显示转矩、 磁链增减作用的 MC电压矢量开关 表;
图 3是本发明可抑制转矩脉动的直接转矩控制方法的流程图;
图 4是本发明中一矩阵变换器结构简图;
图 5本发明中一转矩、 磁链、 输入功率因数滞环比较器;
图 6是获得虚拟 VSI矢量的开关表;
图 7是 MC电压矢量开关表;
图 8是本发明可抑制转矩脉动的直接转矩控制方法实施过程示意图; 图 9 ( a) 和图 9 (b ) 是电机转速 30r/min, 负载转矩 150Nm条件下, 传统 控制方法与本发明控制方法实验对比波形图, 其中: 图 9 (a)是传统控制方法下 电机电磁转矩及定子 A相电流波形; 图 9 (b)是本发明控制方法下电机电磁转矩 及定子 A相电流波形;
图 10 ( a) 和图 10 (b ) 是电机转速 30r/min, 电机由空载 (约 30Nm) 突加 负载至 150Nm。传统控制方法与本发明控制方法实验对比波形图,其中: 图 10 (a) 是传统控制方法下电机转速、 电磁转矩、 A相绕组电流波形; 图 10 (b)本发明控 制方法下电机转速、 电磁转矩、 A相绕组电流波形;
图 11 ( a)和图 11 (b )是电机在空载状态下转速由 20r/min阶跃至 30r/min。 传统控制方法与本发明控制方法实验对比波形图, 其中: 图 11 (a)是传统控制方 法下电机转速、 电磁转矩、 定子磁链 α _ β 分量波形; 图 11 (b)是本发明控制方 法下电机转速、 电磁转矩、 定子磁链 α _ β 分量波形。 具体实施方式
下面结合具体实施方式对本发明作进一步详细地描述。
本发明一种可抑制转矩脉动的直接转矩控制方法, 主要包括: 建立直观显示 转矩、 磁链增减程度的 MC电压矢量开关表后, 通过在上述直观显示转矩、 磁链 增减程度的 MC电压矢量开关表中查询 MC电压矢量的转矩评价值 最终进行 电压矢量占空比优化计算。
具体步骤如下:
步骤一: 建立直观显示转矩、 磁链增减程度的 MC电压矢量开关表 建立空间旋转坐标系 x_y, 且将定子磁链 Ψδ定位在 X轴上, 永磁同步电机 转矩及定子磁链幅值与定子电压之间的关系如下:
- ¾ ¾ d
d
s l=vx
(1)
Γ65 (2) 式 (1) 和式 (2) 中, vxy表示定子电压的 x-y轴分量 :为转子电角速
Ψ 为定子磁链幅值; 7:为电磁转矩; ί为时间;
对 +1开关组合下的电压矢量 V+1进行 x-y坐标分解, 可得
F+lv = 213vab sin(— (¾ ) = -21 Vm cos ( + π / 6) sin6»s (3)
V+lx = 213νΛ cos (-6>s ) = 21 SVm cos («t + π / 6) cos 6>s (4) 式 (3) 和式 (4) 中, +lx表示 V+1在 x轴投影, +ly表示 V+1在 y轴投影; K 表示 MC输入相电压最大值; 为 X轴与电机 A相绕组夹角; ^表示 MC输入相 电压矢量角;
定义转矩评价函数 τ、 磁链评价函数 、 反电势评价函数 e如下
Figure imgf000009_0001
将式 (3)和式 (4) 分别代入式 (5)和式 (6)可得 +1开关组合的转矩、 磁 链评价函数 r+1、 ^n:
τ =-cos(«; +π/6)8ΐη^ (8) λ = cos(«; + π/ 6)cos^s (9) 同理, 得出 MC所有电压矢量的转矩磁链评价函数; 转矩评价函数 τ、 磁链评价函数 为二元周期函数, 在 ^e [0,2Ji ]、 ^Ε [0,2π ]的一个周期中, 将 ΘΒ、 ^从 0开始每隔 π/6划分为一个区间, 分别用定子磁链扇区 e [l, 12]、 定子电压扇区厶 e [l,l2]表示, 则整个平面 被划分为 12X12个区域;
用每个区域内的平均值来代表该区域的转矩、磁链评价函数 τ、 Λ, 由此定 义转矩评价函数 τ、 磁链评价函数 均值计算函数为:
k
ρτ = round \† \† τ άθά (10)
(π/6) ( - (4-
Px -- round [† [† λ d<9da, (11)
(π/6) 式 (10) 和式 (11) 中, 厶 = {1, 2, 3···12} ; 7β = {1, 2, 3-12}; round()表示 就近取整函数; A为转矩评价值, 为磁链评价值; 取系数 k=10, 则 A、 为 介于 -9到 +9之间的整数;
将式 (5)、 式 (6) 和式 (7) 代入式 (1) 和式 (2) 可得转矩评价函数 τ、 磁链评价函数 、 反电势评价函数 e与电机转矩变化率及磁链变化率函数关系 式为:
Figure imgf000010_0001
由式 (10)、 式 (11)、 式 (12) 和式 (13) 可得 MC电压矢量对应的转矩评 价值 ^、 磁链评价值 与电机转矩变化率、 磁链变化率的函数关系式为:
T^-Te^pz-Pe (14) dt dt τ e
-^|Ψ8 |»^|Ψ8 |-Α (15) at at
式 (14)和式(15) 中, 正比号左边部分表示电机转矩变化率和磁链变化率 在一个区域内的平均值; 其中, 反电势评价函数平均值
pe = round (10^) (16) 由式(14)和式(15)可见, 经离散、 平均化后的转矩、 磁链评价值 A、 近似与电机转矩及磁链变化率成正比;
将式(8)代入式(10)可计算 V+1矢量在全部区域内 值, 汇总为表格形式 得出 V+1矢量对转矩增减作用的开关表, 如图 1所示, 该 V+1矢量对转矩增减作用 的开关表的横表头为定子磁链扇区 Λ, 纵表头为定子电压扇区厶;
转矩评价函数 τ、 磁链评价函数 为两个函数的乘积, 其中含 ^项与时 间有关, 这里称为时间表达式; 含 项与定子磁链和电压矢量空间位置有关, 这里称为空间表达式;
MC18个有效矢量的转矩评价函数 τ、 磁链评价函数 函数具有如下情形: 情形 1: 同一矢量的 τ、 具有相同的时间表达式, 空间表达式滞后于 τ空间表达式 /2;
情形 2: r+1、 r+2、 r+3具有相同的空间表达式,时间表达式依次滞后 2 π/3;
情形 3: r+1、 r+4、 r+7具有相同的时间表达式, 空间表达式依次滞 后 231/3; r+2、 r+5Γ+8和 r+3、 r+6、 r+9也具有相同的规律; gp: r+2、 r+5、 具有相同的时间表达式, 空间表达式依次滞后 2 π/3; r+3、 r+6、 r+9具有相 同的时间表达式, 空间表达式依次滞后 2 π /3;
情形 4: 负矢量 ^、 Τ_2~Τ_9和 i、 29值为对应正矢量 Τ+1、 7"+2~7"+9+1
Α+2 +9值的负数;
根据情形 2和情形 3分别对上述 V+1矢量对转矩增减作用的开关表 (如图 1 所示) 的纵表头定子电压扇区和横表头定子磁链扇区进行平移可得 MC全部正矢 量对转矩增减作用开关表; 再根据情形 1对上述 V+1矢量对转矩增减作用的开关 表的横表头定子磁链扇区进行平移可得 MC全部正矢量对磁链增减作用开关表; 最后根据情形 4计算 MC全部负矢量对应 、 / ^值。
平移纵表头定子电压扇区和横表头定子磁链扇区后形成可直观显示转矩、磁 链增减程度的 MC电压矢量开关表, 如图 2所示。 图中左表头区为输入电压扇区, 上表头区为用于查询 的定子磁链扇区, 下表头区为用于查询 A的定子磁链扇 区。 举例说明查表方法: 若要查询 V+4矢量在 β=9、 7α=5区域内的/ ^值, 则如 图 2虚线箭头所示, 先在下表头区选定 V+4矢量, 然后在其对应行中选择 9, 对 应列中选择 5, 可查出结果有 =6; 若要查询 V-9矢量在 Λ=3、 7α=4区域内的 值, 则如图 2实线箭头所示, 在上表头区选定 V+9矢量, 查得结果有 ^=3, 然后 做取反运算, 得最终结果为 /^=-3。
步骤二:通过本发明中建立的上述 MC电压矢量开关表可查询 MC全部有效矢 量对 PMSM转矩、 磁链的增减程度, 并进行占空比优化计算。 包括以下步骤: 第一步: 根据传统 MC-DTC控制方法选择一个矩阵变换器电压矢量。 根据电 机电磁转矩、 电机定子磁链、 网侧输入功率因数角的正弦函数平均值, 采用传统 MC-DTC控制方法从开关表中选择一个矩阵变换器电压矢量。
第二步: 计算定子磁链矢量所在扇区。将定子磁链矢量旋转路径以 0为起始 角度, 每隔 划分一个扇区, 则整个平面被划分为十二个扇区。 根据定子磁 链矢量相角, 可得定子磁链矢量所在扇区号。
第三步: 计算输入电压矢量所在扇区。将输入电压矢量旋转路径以 0为起始 角度, 每隔 划分一个扇区, 则整个平面被划分为十二个扇区。 根据输入电 压矢量相角, 可得输入电压矢量所在扇区号。
第四步:查询 MC矢量电磁转矩评价值。根据上述第一步得到的 MC电压矢量, 第二步得到的定子磁链矢量扇区号,第三步得到的输入电压矢量扇区号, 查询在 步骤一中建立的 MC电压矢量开关表, 获得 MC矢量电磁转矩评价值。
第五步: 计算反电势评价值。对电机转速进行采样, 根据转速和反电势评价 函数计算反电势评价值。
第六步: 离线整定转矩系数。根据控制要求离线整定转矩系数, 转矩系数为 一个正实数,较大的转矩系数可抑制稳态下的转矩脉动,但转矩响应速度慢系统 暂态性能差。 转矩系数无需在线实时整定, 只需离线整定一次。
第七步:进行电压矢量占空比优化计算。将电磁转矩计算值与参考值的差值, 即将第六步得到的电磁转矩评价值,第七步得到的反电势评价值和第八步得到的 转矩系数, 代入占空比计算公式, 进行占空比优化计算。 实施例:
本发明适用于由矩阵变换器馈电的永磁同步电机调速系统,采用转矩量化控 制的新型 MC-DTC占空比优化方法。
下面结合具体的实例和附图对本发明做进一步详述。图 3为本发明实施流程 图, 本发明实施方法包括以下步骤:
(1)检测电机转速 , 设定速度参考值" , 采用比例-积分控制器获得电磁 转矩参考值。
(2)计算输入相电压相角 cq, 输出电流两相静止坐标系分量 。 α、 。β, 输出相 电压两相静止坐标系分量^ αΜ。β, 输入电流相角 。
(2.1)计算输入相电压相角 ί¾。 检测 MC输入侧三相相电压 ½、 ½、 uc, 并将其 变换为两相静止坐标系分量 通过 ¼σ¼s计算 ffi。 公式如下:
Figure imgf000013_0001
式中, arctan ()表示反正切三角变换函数。
o 1
(2.2)计算输出电流两相静止坐标系分量 ioa - ½。 检测 MC输出侧三相电 ί?A ¾ ic, 并将其变换为两相静止坐标系分量 I 公式如下:
(2.3)计算输出电压两相静止坐标系分量 ΜαΜ。β, 检测 MC输入侧三相相电 压 Ma、 Mb、 i , 通过 MC低频传输矩阵计算输出三相相电压 ½、 UB、 Uc, 通过三相 、 u。 公式如下:
Figure imgf000013_0002
式中, 为如图 4所示 MC开关管 51h的占空比函数, 0 7¾h(i) l, {A, B, C}, {a, b, c}。
Figure imgf000013_0003
(2.4)输入电流相角 , 检测 MC输出侧三相电流 A、 B ic 通过 MC低频 传输矩阵计算输出 Λ、 并将其变换为两相静止坐标系分
。 通过 、 iiS计算 。 公式如下:
Figure imgf000013_0004
式中, ih )为如图 4 所示 MC 开关管 的占空比函数, 0≤ lh(»≤l, /e{A,B,C}, /ze{a,b,c}。
Figure imgf000014_0001
(3)计算定子磁链幅值 |Ψδ|、 相角 , 电磁转矩 7;。
(3.1)计算定子磁链两相静止坐标分量 、 Ψβ。 公式如下:
=j
Figure imgf000014_0002
式中, ¾f为永磁体磁链; 为永磁体磁链与电机 A相绕组夹角; 为定子电 阻。
(3.2)计算定子磁链幅值 |Ψδ|、 相角 。 公式如下:
Figure imgf000014_0003
(3.2)计算电磁转矩 7;。 公式如下:
式中, P为电机极对数。
(4)计算输入功率因数角正弦函数平均值<3^^>。 其中 ^=6¾— 。 平均值通过 低通滤波器获得, 低通滤波器传递函数为 ps + 1
式中, 为时间常数, 一般取 10_4~10_3之间; s为微分算子。
(5)通过滞环比较器获得转矩开关函数 CT、 磁链开关函数 Cv、 输入功率因数 开关函数 Gp。 转矩、 磁链、 输入功率因数滞环比较器如图 5所示。 图中 BTe、 Β\Ψ&\, B<s >、分别为转矩、磁链、输入功率因数环宽。一般取 37 为 0.5%~5% 倍额度转矩, |Ψδ|为 0.1%~2%倍永磁体磁链、 < 为 0。 图中 re*、 |Ψδ|*分别 为电磁转矩参考值和定子磁链幅值参考值。 (6)对定子磁链和输入电压进行扇区划分, 所得定子磁链扇区号 /e, 输入电压 扇区号 /α。 整个平面划分为 12个扇区, 从 0开始每隔 π/6为一个扇区。 根据定 子磁链相角 、 输入电压相角 cq, 确定所处扇区号。
(7)查开关表获得虚拟 VSI矢量。 根据转矩开关函数 CT、 磁链开关函数 Cv、 定子磁链扇区号 /e, 查开关表获得虚拟 VSI矢量, 开关表如图 6所示。
(8)查 MC电压矢量开关表获得 MC矢量。 根据虚拟 VSI矢量、 输入功率因 数开关函数 Gp、 输入电压扇区号 , 查 MC电压矢量开关表获得 MC矢量, MC 电压矢量开关表如图 7所示。
(9)查本发明中 MC电压矢量开关表获得转矩评价值 。 根据 MC矢量、 定 子磁链扇区号 k、 输入电压扇区号 k, 查本发明中 MC电压矢量开关表获得转矩 评价值 。 本发明 MC电压矢量开关表如图 2所示。
(10)进行占空比优化计算, 获得占空比
(10.1)检测电机转速, 计算反电势评价值 。 采用公式如下: p。 = round (e) = round r ' s ' 式中, 表示电机转子电角速度; m表示 MC输入相电压最大值 (一般为 电网相电压幅值); roundC)表示就近取整函数。
(10.2)整定转矩系数 T, ΚΎ的设置需综合考虑控制系统的动态响应和稳态性 能。 较大的 能较好抑制稳态时的转矩脉动, 但转矩响应速度慢暂态性差。 Κτ 取值范围可取以下两不
Figure imgf000015_0001
式中, ΓΝ表示电机额度转矩。 一般设 Α为 [7,9]之间整数, A为 [1,4]之间整 数。
(10.3)进行占空比优化计算。 采用公式如下:
Figure imgf000015_0002
(10.4)进行占空比限幅处理。 占空比 d只能介于 [0, 1]之间, 对 d做限幅处理, 若 ί/> 1, 则 d=l ; 若 ί/<0, 则 d=0。
(11)根据占空比 及 MC矢量确定每个开关管的占空比函数 lh(t)。
(12)换流控制电路控制 MC9个双向开关管的开通和关断, 实现安全换流, 驱动电机系统调速。
本发明矩阵变换器直接转矩控制方法实施如图 8所示,其中步骤 (1)-(11)由浮 点微处理器 TMS320F28335实现, 步骤 (12)采用 FPGA芯片 EP1C6实现。 换流 控制电路程序为已有技术。
本发明矩阵变换器直接转矩控制方法已在一台 10kW样机上进行实验验证, 系统动、 静态性能良好, 且转矩脉动得到有效抑制。
本发明矩阵变换器直接转矩控制方法与传统矩阵变换器直接转矩控制方法 稳态对比试验波形图如图 9 ( a)和图 9 (b )所示。试验条件为电机转速 30r/min, 负载转矩 150Nm。 其中, 左图为传统控制方法下的电机电磁转矩、 A相绕组电 流波形, 右图为本发明控制方法下的电机电磁转矩、 A相绕组电流波形。 图中可 见, 传统控制方法转矩脉动较大, 其暂态峰-峰值可达 63Nm。本发明控制方法转 矩暂态峰-峰值仅为 30Nm。
本发明矩阵变换器直接转矩控制方法与传统矩阵变换器直接转矩控制方法 暂态对比试验波形图如图 10 ( a)、 图 10 (b) 及图 11 ( a)、 图 11 (b) 所示。 图 10 ( a) 和图 10 (b) 的试验条件为电机转速 30r/min, 电机由空载 (约 30Nm) 突加负载至 150Nm。 其中, 左图为传统控制方法下的电机转速、 电磁转矩、 A 相绕组电流波形, 右图为本发明控制方法下的电机转速、 电磁转矩、 A相绕组电 流波形。图中可见,本发明控制方法可实现电机速度、转矩跟踪,且转矩脉动小。 图 11(a)和图 11(b)试验条件为电机在空载状态下转速由 20r/min阶跃至 30r/min。 其中, 左图为传统控制方法下的电机转速、 电磁转矩、 定子磁链 α-β分量波形, 右图为本发明控制方法下的电机转速、 电磁转矩、 定子磁链 α-β分量波形。 图中 可见, 本发明控制方法继承传统控制方法转矩响应速度快的特点。
尽管上面结合图对本发明进行了描述,但是本发明并不局限于上述的具体实施方 式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本领域的普通技术 人员在本发明的启示下, 在不脱离本发明宗旨的情况下, 还可以作出很多变形, 这些均属于本发明的保护之内。

Claims

权利要求
1、 一种可抑制转矩脉动的直接转矩控制方法, 其特征在于, 包括以下步骤: 步骤一: 建立直观显示转矩、 磁链增减程度的 MC电压矢量开关表
建立空间旋转坐标系 x_y, 且将定子磁链 Ψδ定位在 X轴上, 永磁同步电机 转矩及定子磁链幅值与定子电压之间的关系如下:
Figure imgf000017_0001
式 (1) 和式 (2) 中, xy表示定子电压的 x-y轴分量 .为转子电角速
Ψ 为定子磁链幅值; 7:为电磁转矩; ί为时间;
对 +1开关组合下的电压矢量 V+1进行 x-y坐标分解, 可得
Kiy = 213vab sin(-6>s ) = -21 SVm cos ( + π / 6) sini9s (3) V+lx = 213vab cos (_<¾ ) = 21 vm cos ( + π / 6) cos 9S (4) 式 (3) 和式 (4) 中, +lx表示 V+1在 X轴投影, +ly表示 V+1在 y轴投影; K 表示 MC输入相电压最大值; 为 X轴与电机 A相绕组夹角; ^表示 MC输入相 电压矢量角;
定义转矩评价函数 τ、 磁链评价函数 、 反电势评价函数 e如下
Figure imgf000017_0002
将式 (3)和式 (4) 分别代入式 (5)和式 (6)可得 +1开关组合的转矩、 磁 链评价函数 r+1、 ^ :
T+l =_cos( + π/ 6)sin^s (8) λ = cos( + π/ 6)cos^s (9) 同理, 得出 MC所有电压矢量的转矩磁链评价函数; 转矩评价函数 τ、 磁链评价函数 为二元周期函数, 在 ^e [0,2Ji]、 ^Ε [0,2π]的一个周期中, 将 θε、 ^从 0开始每隔 π/6划分为一个区间, 分别用定子磁链扇区 e [l, 12]、 定子电压扇区厶 e [l,l2]表示, 则整个平面 被划分为 12X12个区域;
用每个区域内的平均值来代表该区域的转矩评价函数 r 的值和磁链评价函 数 的值, 由此定义转矩评价函数 τ、 磁链评价函数 均值计算函数为: Ρτ : round \† \f τ d<9da, (10)
(π/6) ¾- 1) ρλ = round \ \† λ d<9da, (11)
(π/6) ;( -1) J (4-i)
式 (10) 和式 (11) 中, 厶 = {1, 2, 3···12} ; 7β = {1, 2, 3-12}; round()表示 就近取整函数; /^为转矩评价值, 为磁链评价值; 取系数 k=10, 则转矩评价 值 A、 磁链评价值 为介于 -9到 +9之间的整数;
将式 (5)、 式 (6) 和式 (7) 代入式 (1) 和式 (2) 可得转矩评价函数 τ、 磁链评价函数 、 反电势评价函数 e与电机转矩变化率及磁链变化率函数关系 式为:
^-T T-e (12) (13) dt dt
由式 (10)、 式 (11)、 式 (12)和式 (13)可得 MC转矩评价值 、 MC磁链 评价值 与电机转矩变化率、 磁链变化率的函数关系式为:
d
(14) dt dt
ΙΨ Px (15) 式 (14)和式(15) 中, 正比号左边部分表示电机转矩变化率和磁链变化率
Figure imgf000018_0001
内的平均值; 其中, 反电势评价函数平均值
pe = round (10e (16) 由式(14)和式(15)可见, 经离散、 平均化后的转矩、 磁链评价值 A、 近似与电机转矩及磁链变化率成正比;
将式(8)代入式(10)可计算 V+1矢量在全部区域内 值, 汇总为表格形式 得出 V+1矢量对转矩增减作用的开关表; 该 V+1矢量对转矩增减作用的开关表的横 表头为定子磁链扇区, 纵表头为定子电压扇区;
转矩评价函数 τ、 磁链评价函数 为两个函数的乘积, 其中含 ^项与时 间有关, 这里称为时间表达式; 含 项与定子磁链和电压矢量空间位置有关, 这里称为空间表达式;
MC18个有效矢量的转矩评价函数 τ、 磁链评价函数 函数具有如下情形: 情形 1: 同一矢 t的 τ、 具有相同的时间表达式, 空间表达式滞后于 空间表达式 /2;
情形 2: r+: r+3具有相同的空间表达式,时间表达式依次滞后 2 n /3 情形 3: r + r+7具有相同的时间表达式,空间表达式依次滞后 2 π /3 r+8具有相同的时间表达式,空间表达式依次滞后 2 π /3 r+9具有相同的时间表达式,空间表达式依次滞后 2 π /3 情形 4: 负矢量 ^ - Τ.2-Τ.9禾口 1、 值为对应正矢量 T+i、 Τ+2-Τ+9禾口 +1、
A+2 +9值的负数;
根据情形 2和情形 3分别对上述 V+1矢量对转矩增减作用的开关表的纵表头 定子电压扇区和横表头定子磁链扇区进行平移可得 MC全部正矢量对转矩增减作 用开关表; 再根据情形 1对上述 V+1矢量对转矩增减作用的开关表的横表头定子 磁链扇区进行平移可得 MC全部正矢量对磁链增减作用开关表; 最后根据情形 4 计算 MC全部负矢量对应 、 / ^值;
平移纵表头定子电压扇区和横表头定子磁链扇区后形成可直观显示转矩、磁 链增减程度的 MC电压矢量开关表; 步骤二: 在上述可直观显示转矩、 磁链增减程度的 MC电压矢量开关表中査 询转矩评价值 ^, 并进行电压矢量占空比优化计算
根据传统 MC-DTC控制方法从 MC 电压矢量开关表中选择一个矩阵变换器电压矢 量; 计算定子磁链矢量所在扇区号; 计算输入电压矢量所在扇区号; 通过上述可 直观显示转矩、磁链增减程度的 MC电压矢量开关表获得 MC矢量转矩评价值/^ 计算反电势评价值 A; 离线整定转矩系数; 将电磁转矩评价值 A、 反电势评价 值 A和转矩系数代入占空比计算公式, 进行占空比优化计算。
PCT/CN2012/087251 2012-12-19 2012-12-24 一种可抑制转矩脉动的直接转矩控制方法 WO2014094319A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/649,210 US9391546B2 (en) 2012-12-19 2012-12-24 Direct torque control method for inhibiting torque ripples

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210555691.2A CN103066910B (zh) 2012-12-19 2012-12-19 一种可抑制转矩脉动的直接转矩控制方法
CN201210555691.2 2012-12-19

Publications (1)

Publication Number Publication Date
WO2014094319A1 true WO2014094319A1 (zh) 2014-06-26

Family

ID=48109401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087251 WO2014094319A1 (zh) 2012-12-19 2012-12-24 一种可抑制转矩脉动的直接转矩控制方法

Country Status (3)

Country Link
US (1) US9391546B2 (zh)
CN (1) CN103066910B (zh)
WO (1) WO2014094319A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2605458C1 (ru) * 2015-06-15 2016-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" Способ энергоэффективного двухзонного регулирования скорости асинхронного электропривода с гибким ограничением мощности
CN111987960A (zh) * 2019-05-22 2020-11-24 上海理工大学 异步电机混合控制方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006129B1 (fr) * 2013-05-27 2015-05-01 Renault Sa Procede de commande d'une machine electrique synchrone, systeme correspondant et vehicule automobile comprenant le systeme
CN103516286B (zh) * 2013-08-09 2015-09-30 天津大学 一种可改善输入输出性能的矩阵变换器直接转矩控制方法
CN103944471B (zh) * 2014-04-02 2017-09-19 天津大学 一种改善转矩及磁链性能的矩阵变换器直接转矩控制方法
CN103986398B (zh) * 2014-05-22 2017-01-25 国家电网公司 一种永磁同步发电机直接转矩控制方法
US9831812B2 (en) * 2015-02-27 2017-11-28 Nutech Ventures Direct torque control of AC electric machines
WO2017081977A1 (ja) * 2015-11-12 2017-05-18 三菱電機株式会社 モータ制御装置およびこれを用いたエレベータ
CN105356808A (zh) * 2015-11-18 2016-02-24 珠海格力电器股份有限公司 转矩控制方法及系统
CN106208880B (zh) * 2016-07-06 2019-01-08 浙江大学 用于直流无刷电机的单边矩阵变换器的直接转矩控制方法
CN106059432B (zh) * 2016-08-15 2019-02-05 大连海事大学 一种开关磁阻电机磁链无差拍直接转矩控制方法及系统
CN106533311B (zh) * 2016-11-09 2019-05-31 天津大学 一种基于磁链矢量的永磁同步电机转矩控制策略
CN107579682B (zh) * 2017-08-30 2020-03-06 天津大学 适用于无刷直流电机的变开关点的直接自控制方法
CN107528515A (zh) * 2017-09-30 2017-12-29 长安大学 一种基于预测控制的变幅值电压矢量选择方法
CN108418486B (zh) * 2018-05-14 2020-02-14 滨州学院 一种永磁控制电机
CN108923698B (zh) * 2018-07-04 2022-02-11 天津大学 一种预测电压矢量序列的电机控制方法
CN109217765B (zh) * 2018-09-17 2021-06-15 沈阳工业大学 一种双三相永磁同步电机直接转矩控制方法
CN109713920B (zh) * 2019-01-14 2021-07-23 哈尔滨工程大学 一种三相电压型pwm整流器直接功率控制方法
CN109787528B (zh) * 2019-02-28 2020-12-25 南京理工大学 基于转速调节占空比的异步电机直接转矩控制系统及方法
CN109871044B (zh) * 2019-03-19 2022-04-01 北京经纬恒润科技股份有限公司 一种转速跟踪方法及装置
CN110086398B (zh) * 2019-05-10 2021-03-30 华南理工大学 一种基于占空比控制的直接转矩控制方法
CN111200382B (zh) * 2020-01-10 2023-06-30 西安理工大学 一种非级联的永磁同步电动机无差拍预测控制方法
CN111342726B (zh) * 2020-03-26 2023-05-30 武汉科技大学 一种永磁同步电机直接转矩控制方法及系统
CN112260605B (zh) * 2020-09-21 2022-05-17 西安理工大学 五相永磁同步电机缺一相故障直接转矩控制方法
CN112821827B (zh) * 2021-01-12 2023-03-24 北京控制工程研究所 一种cmg框架系统谐波减速器扰动抑制系统
CN113904577B (zh) * 2021-10-08 2023-11-17 山东大学 一种多电平逆变器模型预测控制方法及系统
CN113965123B (zh) * 2021-11-16 2023-07-28 福州大学 一种基于三电平虚拟矢量的模型预测直接转矩控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833399A (ja) * 1994-07-14 1996-02-02 Sawafuji Electric Co Ltd 直接トルク制御インバータの方形波インバータ化方式
KR20030012363A (ko) * 2001-07-31 2003-02-12 현대중공업 주식회사 디티씨(dtc)로 구동되는 대용량 유도전동기의 토크제어 방법
EP2164165A1 (en) * 2008-09-16 2010-03-17 ABB Research Ltd. Method and apparatus for reducing torque ripple in permanent magnet synchronous machines
CN101931362A (zh) * 2010-05-19 2010-12-29 西安理工大学 一种永磁同步电机的直接转矩控制装置及控制方法
CN102035456A (zh) * 2010-12-14 2011-04-27 长春工业大学 基于终端滑模的永磁同步电机直接转矩控制系统
CN102790566A (zh) * 2012-08-02 2012-11-21 合肥工业大学 一种减小开关磁阻电机转矩跟踪误差的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235099A (ja) * 1997-12-08 1999-08-27 Meidensha Corp 誘導機のベクトル制御方式
JP2007082321A (ja) * 2005-09-14 2007-03-29 Fuji Electric Fa Components & Systems Co Ltd 電動機駆動装置
JP4029904B2 (ja) * 2006-04-28 2008-01-09 ダイキン工業株式会社 マトリックスコンバータおよびマトリックスコンバータの制御方法
CN100463355C (zh) * 2007-03-07 2009-02-18 今创集团有限公司 直接转矩无刷直流伺服控制系统及其工作方法
CN101442289B (zh) * 2008-12-17 2010-08-18 南京航空航天大学 阶梯波反电势无刷直流电机直接转矩控制方法
CN102710188B (zh) * 2012-05-25 2014-09-10 燕山大学 一种无刷直流电机的直接转矩控制方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833399A (ja) * 1994-07-14 1996-02-02 Sawafuji Electric Co Ltd 直接トルク制御インバータの方形波インバータ化方式
KR20030012363A (ko) * 2001-07-31 2003-02-12 현대중공업 주식회사 디티씨(dtc)로 구동되는 대용량 유도전동기의 토크제어 방법
EP2164165A1 (en) * 2008-09-16 2010-03-17 ABB Research Ltd. Method and apparatus for reducing torque ripple in permanent magnet synchronous machines
CN101931362A (zh) * 2010-05-19 2010-12-29 西安理工大学 一种永磁同步电机的直接转矩控制装置及控制方法
CN102035456A (zh) * 2010-12-14 2011-04-27 长春工业大学 基于终端滑模的永磁同步电机直接转矩控制系统
CN102790566A (zh) * 2012-08-02 2012-11-21 合肥工业大学 一种减小开关磁阻电机转矩跟踪误差的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2605458C1 (ru) * 2015-06-15 2016-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" Способ энергоэффективного двухзонного регулирования скорости асинхронного электропривода с гибким ограничением мощности
CN111987960A (zh) * 2019-05-22 2020-11-24 上海理工大学 异步电机混合控制方法
CN111987960B (zh) * 2019-05-22 2023-06-20 上海理工大学 异步电机混合控制方法

Also Published As

Publication number Publication date
CN103066910A (zh) 2013-04-24
US20150318807A1 (en) 2015-11-05
US9391546B2 (en) 2016-07-12
CN103066910B (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
WO2014094319A1 (zh) 一种可抑制转矩脉动的直接转矩控制方法
US10056857B2 (en) Optimized field oriented control strategies for permanent magnet synchronous motors
Xia et al. A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction
US8233295B2 (en) Methods, systems and apparatus for approximation of peak summed fundamental and third harmonic voltages in a multi-phase machine
JP2016119822A (ja) 電力変換装置、制御装置およびキャリア周波数の変更方法
CN106655936B (zh) 一种少稀土永磁电机零序电流抑制控制系统及方法
JP3809783B2 (ja) モータ制御装置
CN110165952B (zh) 一种无电解电容永磁同步电机矢量控制母线电压波动补偿方法
CN111277180B (zh) 一种方波永磁同步电机两轴旋转坐标系下的转速控制方法
Lin et al. Adaptive complementary sliding mode control for synchronous reluctance motor with direct-axis current control
Zhang et al. Multi-stage series model predictive control for PMSM drives
Ghaderi et al. An altered PWM scheme for single-mode seamless control of AC traction motors for electric drive vehicles
US20140210386A1 (en) Stator flux magnitude and direction control strategies for permanent magnet synchronous motors
CN107819418B (zh) 一种旋变初始角度合理性检测方法及装置
WO2022120772A1 (zh) 永磁同步电机的磁场定向校正方法、装置、设备及介质
JP2011234452A (ja) 同期電動機の制御装置
CN111327244A (zh) 一种基于占空比调制的五相永磁电机直接转矩控制方法
CN112865654B (zh) 永磁聚磁式同步磁阻电机转矩最大化利用控制系统及方法
CN113517829B (zh) 一种无刷直流电机最大转矩电流比控制方法和系统
Zhang et al. Research on a sensorless SVM-DTC strategy for induction motors based on modified stator model
Aihsan et al. Flexible Sector Detector-Based Mismatch Supply Voltage in Direct Torque Control Doubly Fed Induction Machine: An Experimental Validation
Datta et al. High-performance control of surface pm synchronous motor by power factor angle-based control of stator voltage vector
JP2015133793A (ja) 電動機駆動装置の制御装置および電動機駆動システム
Özçiflikçi et al. Investigations of hysteresis based direct torque controlled and field oriented controlled IPM drives for electric vehicle applications
CN116317753B (zh) 一种矩峰同位型电机弱磁控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890603

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14649210

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890603

Country of ref document: EP

Kind code of ref document: A1