WO2014092482A1 - 수증기-이산화탄소 개질에 의한 합성가스 제조용 란탄함유 촉매 및 이를 이용한 합성가스 제조방법 - Google Patents

수증기-이산화탄소 개질에 의한 합성가스 제조용 란탄함유 촉매 및 이를 이용한 합성가스 제조방법 Download PDF

Info

Publication number
WO2014092482A1
WO2014092482A1 PCT/KR2013/011531 KR2013011531W WO2014092482A1 WO 2014092482 A1 WO2014092482 A1 WO 2014092482A1 KR 2013011531 W KR2013011531 W KR 2013011531W WO 2014092482 A1 WO2014092482 A1 WO 2014092482A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reforming
lanthanum
carbon dioxide
reaction
Prior art date
Application number
PCT/KR2013/011531
Other languages
English (en)
French (fr)
Inventor
조원준
정종태
모용기
유혜진
Original Assignee
한국가스공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국가스공사 filed Critical 한국가스공사
Priority to CN201380071806.3A priority Critical patent/CN104955564A/zh
Priority to AU2013360537A priority patent/AU2013360537B2/en
Publication of WO2014092482A1 publication Critical patent/WO2014092482A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst for syngas production from natural gas using carbon dioxide, in particular a lanthanum-containing catalyst useful for syngas production by steam-carbon dioxide reforming (SCR) and a process for producing the same.
  • SCR steam-carbon dioxide reforming
  • the reforming process for producing a mixture of hydrogen and carbon monoxide, so-called syngas, from methane, which is the main component of natural gas, using a catalyst and an oxidant has been industrialized a long time ago and has become an important basic process of the chemical industry.
  • Synthetic gas produced by the methane reforming process is the basis of C1 chemistry and is applied to the process of producing methanol, hydrogen, ammonia, etc. Recently, the production of liquid fuels and oxygen-containing compounds through the synthesis gas production It is emerging as an important method of using natural gas.
  • Oxygen, water vapor, carbon dioxide, or a mixed gas thereof has been used as an oxidant for preparing synthesis gas from hydrocarbons, and many studies have been conducted to develop catalysts having different characteristics according to the type of oxidant.
  • Reforming methods for producing syngas from methane include steam reforming, carbon dioxide reforming, partial oxidation reforming, autothermal reforming, and triple reforming.
  • the steam reforming reaction proceeds according to the following Scheme 1, and mainly a nickel-based catalyst is used.
  • Some supported zirconia supported catalysts are known as steam reforming catalysts. That is, a zirconia-supported nickel catalyst in which cobalt is added to nickel has been disclosed as a steam reforming catalyst for hydrocarbons (US Pat. No. 4,026,823 (1975)). In another method, a titration of a metal such as lanthanum, cerium, and silver to a nickel catalyst A catalyst in which the ratio is added as a cocatalyst supported on common carriers such as alumina, silica, magnesia, zirconia and the like has been disclosed (US Pat. No. 4,060,498).
  • Korean Patent Registration No. 10-0394076 Ni-based reforming catalyst for syngas production and a method for producing syngas from natural gas by steam reforming using the same
  • the nickel-based reforming catalyst (Ni / Ce-Zr 2 ) for syngas production is characterized in that 5 to 20% by weight of nickel is supported on a zirconia carrier modified with cerium.
  • the catalyst was prepared by preparing a zirconia carrier or a zirconia carrier modified with cerium using a co-precipitation method or a sol-gel method and then supporting nickel by an impregnation method or a melting method.
  • the present invention provides a nickel-based reforming catalyst for syngas production which can produce syngas or hydrogen with high yield while maintaining long life by preventing catalyst deactivation due to coke formation because of excellent activity and stability of the steam-carbon dioxide reforming reaction catalyst. I would like to.
  • the present invention provides a method for producing a synthesis gas by steam-carbon dioxide reforming reaction using the catalyst.
  • the catalyst according to the present invention is effective in minimizing carbon deposition and producing synthetic petrochemical products (wax, naphtha, diesel, etc.) in preparing syngas by steam-carbon dioxide reforming reaction (SCR) of methane (2.0). Syngas having a ⁇ 0.2) can be produced, thereby reducing the production cost of the synthetic material.
  • the catalyst and the process using the same according to the present invention can be applied to gas to liquid (GTL) floating production, storage and offloading (FPSO), and moreover, DME FPSO to facilitate various industrial applications in the future. You can expect that.
  • GTL gas to liquid
  • FPSO floating production, storage and offloading
  • FIG. 1 is a graph showing the molar ratio of hydrogen and carbon monoxide in the components of the synthesis gas prepared according to the conditions of Examples 1 and 6 of the present invention.
  • Figure 2 is a graph showing the conversion rate of methane produced from natural gas during the synthesis gas manufacturing process according to Examples 1 and 6 conditions of the present invention.
  • the present invention relates to a nickel-based reforming catalyst prepared using nickel and lanthanum series which are relatively excellent in carbon deposition in a reforming catalyst by steam.
  • the reforming catalyst (NiO-La / Ce-ZrO 2 / Al 2 O 3 ) may be contained in the lanthanum and cerium-modified zirconia / alumina carrier 1 to 7% by weight of lanthanum.
  • the firing of step 2) can be carried out in air at a temperature of 700 ⁇ 1200 °C.
  • step 2) may be carried out by a dry ball mill or a wet mixing and then drying to extrude and extrude.
  • the reforming catalyst NiO-La / Ce-ZrO 2 / Al 2 O 3
  • the reforming catalyst is supported by 5 to 20% by weight of nickel in the lanthanum and cerium-modified zirconia / alumina support. If the supported amount is out of the above range, it may be difficult to produce a synthesis gas in which the hydrogen / carbon monoxide ratio is close to two.
  • the reforming catalyst may be a weight ratio of lanthanum and cerium 1: 2 to 10. Outside the above range, it may be difficult to produce a synthesis gas having a hydrogen / carbon monoxide ratio close to two.
  • the present invention is also characterized in that the reforming reaction is carried out by supplying carbon dioxide, water vapor and methane under the conditions of reaction temperature 700 ⁇ 950 °C, reaction pressure 10 ⁇ 20 bar, space velocity 3000 ⁇ 4000 h -1 using the catalyst It provides a method for producing a synthesis gas. It is preferable to supply at 0.4 mol mol of carbon dioxide and 1-3 mol mol of water with respect to 1 mol of methane. Since the molar ratio of hydrogen / carbon monoxide of the synthesis gas produced through the reforming reaction is 2.0 ⁇ 0.2, it is possible to easily provide an efficient synthesis gas for producing synthetic petrochemical products (wax, naphtha, diesel, etc.).
  • a nickel reforming catalyst is prepared by supporting nickel metal on a zirconia / alumina carrier modified with lanthanum and cerium to prepare a nickel reforming catalyst. Synthesis gas, which is a mixture of carbon monoxide and hydrogen, can be produced in high yield.
  • the nickel reforming catalyst used in the steam-carbon dioxide reforming reaction of methane natural gas according to the present invention is a reforming catalyst (NiO-La / Ce-ZrO 2 / Al 2 O 3 ). If the supported amount of nickel is out of the above range and less than 5% by weight, there is a problem of low activity. If the amount of nickel exceeds 20% by weight, deactivation of the catalyst due to the deposition of coke is undesirable.
  • the zirconia / alumina carrier modified lanthanum and cerium used as a carrier is a mixture of zirconia / alumina, lanthanum and cerium, and the weight ratio of lanthanum (La) and cerium (Ce) is contained in the range of 1: 2 to 10.
  • the content of, lanthanum and cerium is modified in excess in excess of the above range, there is a problem in that the activity of the catalyst is lowered.
  • a method of modifying lanthanum and cerium on a zirconia-based / alumina carrier or a method of supporting nickel may be a method of drying, kneading, extruding, and baking after dry or wet mixing. It is preferable to use distilled water as a solvent.
  • a zirconia / alumina carrier modified with lanthanum and cerium can be obtained by mixing lanthanum oxide (La 2 O 3 ), ceria, zirconia, nickel oxide, and alumina in a desired ratio.
  • the powder form of nickel oxide is mixed with a zirconia / alumina carrier modified with lanthanum and cerium, followed by kneading and baking after extrusion. It is preferable to perform baking for 5 to 8 hours in air at the temperature of 700-1200 degreeC.
  • the catalyst when measuring the reforming activity of the catalyst, a typical fixed bed catalyst reactor manufactured in a laboratory is used.
  • the catalyst is molded and pulverized to have a particle size of 1 to 2 mm as a pretreatment process before the reaction, and then charged in a reactor by a required amount, and then reduced with 5% hydrogen at 700 ° C. for 1 hour before use.
  • methane and water vapor are injected into the reactor as a reactant in a molar ratio of 1: 1 to 3 and carbon dioxide of 0.4 to 1, and nitrogen is added as a diluent gas if necessary.
  • the temperature of the reactor is controlled in the range of 700 ⁇ 950 °C by the electric heater and the programmable thermostat, the reaction pressure is 10 ⁇ 20 atm, the mass velocity so that the conditions of 3000 ⁇ 4000 hr -1 Synthetic gas may be prepared by continuously injecting a gas while controlling a flow rate of the gas with a mass flow controller.
  • the composition of the gas before and after the reaction is analyzed by gas chromatograph directly connected to the reactor, whereby a poropak column is used for separation of the gas.
  • the activity was measured at 750 ° C. over time, and the initial activity and the activity after 200 minutes were determined by the yield of hydrogen in the product and the conversion rate of methane. Measured through.
  • the method for producing syngas from natural gas using the reforming catalyst according to the present invention shows better activity than the activity of the conventional zirconia-supported nickel reforming catalyst, and also improves the activity of the catalyst to maintain high activity even at high gas space velocity. This suggests the possibility of using it as an industrial catalyst.
  • Alumina, ceria, zirconia, nickel oxide, and lanthanum oxide are mixed in the form of powder in the ratio as shown in Table 1, distilled water is added, stirred by using a stirrer, mixed well, and dried. After sufficient mixing, the temperature was raised to 700 to 950 ° C at a rate of 3 ° C / min and calcined for 6 hours to obtain a catalyst.
  • Ceria and zirconia are added to alumina in the form of a dry powder and mixed by ball milling.
  • the two powders are mixed and calcined at 700 to 950 ° C. for 6 hours to obtain NiO-La / Ce-ZrO 2 / Al 2 O 3 .
  • Example Methane Carbon Dioxide: Water Vapor CH 4 conversion (%) H 2 / CO
  • Example 1 1: 1-3 95.93 2.32
  • Example 2 1: 1: 1 to 2.5 94.69 2.11
  • Example 3 1: 1: 1 to 2 93.41 1.92
  • Example 4 1: 0.5 to 1: 1 to 2 93.31 2.08
  • Example 5 1: 0.4-1: 1-2 93.70 2.05
  • Example Methane Carbon Dioxide: Water Vapor CH 4 conversion (%) H 2 / CO
  • Example 6 1: 1: 1-3 97.07 2.11
  • Example 7 1: 1: 1 to 2.5 95.66 1.95
  • Example 8 1: 1: 1 to 2 95.50 1.91
  • Example 9 1: 0.5 to 1: 1 to 2 95.32 1.96
  • Example 10 1: 0.4-1: 1-2 95.57 2.02
  • the catalyst of the example is much larger than that of the comparative example. This means that the reactor size can be minimized so that the same CH 4 conversion can be achieved with the capacity of 1/3 to 1/5 in the design of the commercialization reactor, that is, the economic efficiency is high.
  • the CO 2 content in the reaction gas can be increased by more than two times compared to the comparative example. Therefore, it is advantageous to use a gas having a high CO 2 content in the reaction gas, and in addition, it is possible to recover a large amount of CO 2 generated after the reaction, there is an advantage that the CO 2 treatment capacity is higher than other processes.
  • the catalyst according to the present invention is effective in minimizing carbon deposition and producing synthetic petrochemical products (wax, naphtha, diesel, etc.) in preparing syngas by steam-carbon dioxide reforming reaction (SCR) of methane (2.0). Syngas having a ⁇ 0.2) can be produced, thereby reducing the production cost of the synthetic material.
  • the catalyst and the process using the same according to the present invention can be applied to gas to liquid (GTL) floating production, storage and offloading (FPSO), and moreover, DME FPSO to facilitate various industrial applications in the future. You can expect that.
  • GTL gas to liquid
  • FPSO floating production, storage and offloading

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 이산화탄소를 이용한 천연가스로부터 합성가스 제조용 촉매, 특히 수증기-이산화탄소 개질에 의한 합성가스 제조에 유용한 촉매에 관한 것으로, 본 발명에 따른 촉매는 1) 습식 또는 건식볼밀 방식으로 란탄 및 세륨으로 수식된 지르코니아 및 알루미나 담체를 제조하는 단계; 2) 단계 1)의 담체 분말과 니켈 분말을 혼합하여 소성하는 단계를 포함하는 방법에 의해 제조된다. 본 발명에 따른 촉매를 사용하여 제조된 합성가스의 수소/일산화탄소의 비율이 2.0±0.2 로 조절될 수 있어 합성석유화학제품(왁스, 나프타, 디젤 등)을 생산하는데 효율적인 합성가스를 용이하게 제공할 수 있다.

Description

수증기-이산화탄소 개질에 의한 합성가스 제조용 란탄함유 촉매 및 이를 이용한 합성가스 제조방법
본 발명은 이산화탄소를 이용한 천연가스로부터 합성가스 제조용 촉매, 특히 수증기-이산화탄소 개질(SCR)에 의한 합성가스 제조에 유용한 란탄 함유 촉매 및 그 제조방법에 관한 것이다.
촉매와 산화제를 사용하여 천연가스의 주성분인 메탄으로부터 수소와 일산화탄소의 혼합물, 이른바 합성가스를 제조하는 개질공정은 이미 오래전에 공업화되어 화학산업의 중요한 기초공정이 되고 있다.
메탄의 개질공정에 의해 제조되는 합성가스는 C1 화학의 근간이 되는 물질로서 메탄올, 수소, 암모니아 등을 제조하는 공정에 적용되고 있으며, 최근 들어서는 합성가스 제조를 통한 액체 연료나 산소함유 화합물의 생산이 천연가스의 중요한 활용 방법으로 등장하고 있다.
탄화수소로부터 합성가스를 제조하기 위한 산화제로서 산소, 수증기, 이산화탄소 또는 이들의 혼합기체가 사용되어 왔고, 이러한 산화제의 종류에 따라 각각 다른 특성의 촉매를 개발하는 연구가 많이 진행되어 왔다.
메탄으로부터 합성가스를 제조하는 개질 방법으로는 수증기 개질반응, 이산화탄소 개질반응, 부분산화 개질반응, 자열 개질반응, 삼중개질반응 등이 있다.
그 중에서 수증기 개질반응은 다음 반응식 1에 따라 진행되며, 주로 니켈계 촉매가 사용되고 있다.
반응식 1
CH4 + H2O → CO + 3H2, △H°298 = +206 kJ/mol
이러한 수증기 개질공정에서는 개질촉매의 탄소 침적에 의한 촉매 비활성화 방지가 가장 중요한 문제로 지적되고 있다. 상기 탄소 침적은 반응물 중의 수소원자 : 탄소원자의 몰비 및 산소원자 : 탄소원자의 몰비에 의해 열역학적으로 계산될 수 있기 때문에, 메탄의 수증기 개질공정에서는 탄소침적에 의한 촉매 비활성화를 막기 위해 수증기를 과량 첨가하여 수소원자 : 탄소원자의 몰비 및 산소원자 : 탄소원자의 몰비를 높여 사용하였다. 이에 따라, 수성가스화 반응이 상대적으로 촉진되어 수소 : 일산화탄소의 몰비가 3 : 1 이상인 합성가스가 얻어지는바, 높은 수소함량을 필요로 하는 암모니아 제조 공정 또는 고농도의 수소 제조를 위한 합성가스 공정에 적합하다. 현재 공업적으로 사용되는 메탄의 수증기 개질공정은 730 ~ 860 ℃, 20 ~ 40 기압에서 메탄 : 수증기의 몰비가 1 : 4 ~ 6인 조건에서 운전되고 있다.
한편, 수증기 개질반응에서 촉매로서 거의 대부분 니켈계 촉매가 사용되고 있다. 그러나 탄소침적에 의한 촉매 비활성화로 촉매수명이 단축된다는 문제가 있다 [S.H. Lee, W.C. Cho, W.S. Ju, B.H. Cho, Y.C. Lee, Y.S. Baek, Catal. Today 84 (2003) 133]. 기존의 수증기 개질 촉매보다 우수한 개질 촉매가 공업용 촉매로 개발되기 위해서는 코크 저항성뿐만 아니라 열안정성 및 기계적 안정성을 갖추어야 하는데, 이를 충족시키기 위해서는 수증기 개질 촉매의 α-알루미나 담체와 같이 적절한 담체의 선정이 매우 중요하다.
상기 수증기 개질 촉매로서 지르코니아 담지 촉매가 일부 알려져 있다. 즉, 탄화수소의 수증기 개질 촉매로서 니켈에 코발트를 첨가한 지르코니아 담지 니켈 촉매가 공개된바 있고[미국특허 제4,026,823호(1975)], 또 다른 방법으로 니켈 촉매에 란타늄, 세륨 등의 금속과 은의 적정 비율을 조촉매로 첨가한 것을 일반적인 담체인 알루미나, 실리카, 마그네시아, 지르코니아 등에 담지한 촉매가 공개된 바 있다[미국특허 제4,060,498호]. 그리고, 지르코니아와 알루미나의 혼합 담체에 이리듐을 담지한 탄화수소의 수증기 개질 촉매가 각각 공개된바 있다[미국특허 제4,297,205호(1980), 제4,240,934호(1978)]. 그러나, 상기 방법들의 경우 높은 공간속도에서 수증기 개질반응에 적용할 경우 활성이 낮아지거나 촉매가 비활성화되는 문제가 있어 지르코니아를 수증기 개질 반응에 이용하기 위해서는 반응의 활성 및 고온에서의 열안정성, 그리고 높은 기체 공간속도에서의 활성을 유지할 수 있도록 수식할 필요가 있다.
이와 관련하여 한국특허등록 제10-0394076호(합성가스제조용 니켈계 개질촉매 및 이를 이용하는 수증기 개질에 의한 천연가스로부터 합성가스의 제조방법)는 지르코니아 1 몰을 기준으로 세륨이 0.01 ~ 1.0 몰비로 함유된 세륨으로 수식된 지르코니아 담체 상에 니켈 5 ~ 20중량%가 담지된 것을 특징으로 하는 합성가스 제조용 니켈계 개질촉매(Ni/Ce-Zr2)를 제시한다. 상기 촉매는 공침법 또는 졸겔법을 사용하여 지르코니아 담체 또는 세륨으로 수식된 지르코니아 담체를 제조한 후 함침법 또는 용융법에 의해 니켈을 담지함으로써 제조되었다.
한편, 메탄의 이산화탄소 개질반응은 다음 반응식 2와 같이 진행되며, 메탄의 수증기 개질반응에서와 유사한 니켈계 촉매와 귀금속계 촉매가 주로 활용되고 있다.
반응식 2
CH4 + CO2 → 2CO + 2H2, △H°298 = +247.3 kJ/mol
이산화탄소를 이용한 메탄의 개질반응은 일산화탄소 함량이 매우 높은 합성가스 (H2 : CO = 1 : 1)를 제조할 수 있기 때문에 생성된 합성가스는 디메틸에테르(dimethyl ether, DME)의 제조공정에 활용이 가능하다. 그러나, 탄소침적에 의한 촉매 비활성화가 심하게 일어나기 때문에 탄소침적이 크게 문제가 되지 않는 고가의 귀금속계 촉매가 제시되었다. 일례로, 미국특허 제5,068,057호에서는 Pt/Al2O3 및 Pd/Al2O3 촉매가 공지되었고, 국제특허공개 WO 92/11,199호에서는 이리듐을 비롯한 로듐, 루테늄 등의 귀금속 담지 알루미나 촉매가 높은 활성과 긴 수명을 나타낸다고 제시된 바 있다. 그러나 귀금속계 촉매는 니켈계 촉매에 비해 탄소침적에 대한 저항성이 크고 활성이 좋은 반면에 값이 비싸기 때문에 공업적으로 이용하기에는 부적합하다.
이와 같이, 수증기와 이산화탄소를 이용한 메탄의 개질반응에서 탄소침적을 최소화하고, 공업적 활용이 용이하도록 생산 원가를 낮출 수 있는 촉매 개발이 꾸준히 시도되고 있다.
본 발명은 수증기-이산화탄소 개질 반응 촉매의 활성과 안정성이 뛰어나 코크 형성에 의한 촉매 비활성화를 방지하여 긴 수명을 유지하면서도 높은 수율로 합성가스 또는 수소를 제조할 수 있는 합성가스 제조용 니켈계 개질촉매를 제공하고자 한다.
상기 기술적 과제를 달성하기 위하여, 본 발명은
1) 습식혼합 또는 건식볼밀 방식으로 란탄 및 세륨으로 수식된 지르코니아 및 알루미나 담체를 제조하는 단계;
2) 단계 1)의 담체 분말과 니켈 분말을 혼합하여 소성하는 단계를 포함하는 방법에 의해 제조된, 합성가스를 제조하기 위한 개질반응용 촉매를 제공한다.
또한 본 발명은 상기 촉매를 이용하여 수증기-이산화탄소 개질반응에 의해 합성가스를 제조하는 방법을 제공한다.
본 발명에 따른 촉매는 메탄의 수증기-이산화탄소 개질반응(SCR)에 의한 합성가스를 제조함에 있어 탄소침적을 최소화 하고 합성석유화학제품(왁스, 나프타, 디젤 등)을 생산하는데 효율적인 합성가스 비율(2.0±0.2)을 갖는 합성가스를 제조할 수 있고, 이로 인해 합성물질의 생산비용을 절감할 수 있다. 본 발명에 따른 촉매 및 이를 이용한 공정은 GTL(gas to liquid) FPSO(floating production, storage and offloading; 부유식 생산저장하역설비), 더 나아가 DME FPSO에 적용할 수 있어 앞으로 다양한 공업적 활용이 용이해질 것을 기대할 수 있다.
도 1은 본 발명의 실시예 1 및 6 조건에 따라 제조된 합성가스의 구성성분 중 수소와 일산화탄소의 몰비를 나타낸 그래프이다.
도 2는 본 발명의 실시예 1 및 6 조건에 따른 합성가스 제조과정 중 천연가스로부터 생성된 메탄의 전환율을 나타낸 그래프이다.
본 발명은 수증기에 의한 개질촉매에서 탄소침적에 비교적 우수한 니켈 및 란탄계열을 이용하여 제조된 니켈계 개질 촉매에 관한 것이다.
구체적으로 본 발명은
1) 습식 또는 건식볼밀 방식으로 란탄 및 세륨으로 수식된 지르코니아 및 알루미나 담체를 제조하는 단계;
2) 단계 1)의 담체 분말과 니켈 분말을 혼합하여 소성하는 단계를 포함하는 방법에 의해 제조된, 합성가스를 제조하기 위한 개질반응용 촉매를 제공한다.
본 발명의 바람직한 실시예에 의하면, 상기 개질촉매(NiO-La/Ce-ZrO2/Al2O3)는 란탄 및 세륨 수식된 지르코니아/알루미나 담체 내에 란탄 1 ~ 7 중량% 함유될 수 있다.
본 발명의 바람직한 실시예에 의하면, 상기 단계 2)의 소성은 700 ~ 1200℃의 온도에서 공기 중에서 실시할 수 있다.
본 발명의 바람직한 실시예에 따르면, 상기 단계 2)의 혼합은 건식 볼밀 또는 습식혼합한 후 건조하여 반죽 및 압출하는 과정에 의해 실시될 수 있다.
본 발명의 바람직한 실시예에 의하면, 상기 개질촉매(NiO-La/Ce-ZrO2/Al2O3)는 란탄 및 세륨 수식된 지르코니아/알루미나 담체 내에 니켈이 5 ~ 20 중량% 로 담지된다. 담지량이 상기 범위를 벗어나면 수소/일산화탄소 비율이 2에 근접하는 합성가스를 제조하기 곤란할 수 있다.
본 발명의 바람직한 실시예에 의하면, 상기 개질촉매는 란탄과 세륨의 중량비가 1: 2 ~ 10 일 수 있다. 상기 범위를 벗어나면 수소/일산화탄소 비율이 2에 근접하는 합성가스를 제조하기 곤란할 수 있다.
본 발명은 또한 상기 촉매를 사용하여 반응온도 700 ~ 950 ℃, 반응압력 10 ~ 20 bar, 공간속도 3000 ~ 4000 h-1의 조건으로 이산화탄소, 수증기 및 메탄을 공급하여 개질반응을 수행하는 것을 특징으로 하는 합성가스의 제조방법을 제공한다. 메탄 1몰에 대하여 이산화탄소 0.4 ~ 1 몰비, 수증기 1 ~ 3 몰비로 공급하는 것이 바람직하다. 이러한 개질반응을 통하여 제조된 합성가스의 수소/일산화탄소의 몰비가 2.0±0.2이므로 합성석유화학제품(왁스, 나프타, 디젤 등)을 생산하는데 효율적인 합성가스를 용이하게 제공할 수 있다.
본 발명을 더욱 상세하게 설명하면 다음과 같다.
기존의 수증기-이산화탄소 개질 반응에 사용된 촉매의 경우 높은 공간속도에서 촉매의 비활성화가 관측되거나 활성이 낮아지는 문제점을 나타내었다. 반면에, 본 발명에 사용된 니켈 개질촉매의 경우 란탄 및 세륨으로 수식된 지르코니아/알루미나 담체상에 니켈 금속을 일정량 담지시켜 니켈 개질 촉매를 제조함으로써, 이를 이용한 메탄 천연가스의 수증기-이산화탄소 개질반응시 일산화탄소 및 수소의 혼합물인 합성가스를 고수율로 제조할 수 있는 특징이 있다.
본 발명에 따른 메탄 천연가스의 수증기-이산화탄소 개질반응에 사용하는 니켈 개질 촉매는 란탄 및 세륨 수식된 지르코니아/알루미나 담체 내에 활성성분인 니켈이 5 ~ 20 중량% 로 담지된 개질촉매(NiO-La/Ce-ZrO2/Al2O3)인 것이 바람직하다. 니켈의 담지량이 상기 범위를 벗어나 5 중량% 미만이면 낮은 활성을 나타내는 문제가 있고, 20 중량%를 초과하면 코크의 침적에 의한 촉매의 비활성화가 발생하여 바람직하지 못하다.
이때, 담체로서 사용된 란탄 및 세륨이 수식된 지르코니아/알루미나 담체는 지르코니아/알루미나와 란탄 및 세륨이 혼성되어 있는 것으로 란탄(La) 및 세륨(Ce)의 중량비가 1: 2 ~ 10 범위로 함유되며, 란탄 및 세륨의 함량이 상기 범위를 초과하여 과량으로 수식되면 촉매의 활성이 낮아지는 문제가 있다.
본 발명에 따른 니켈계 개질촉매를 제조함에 있어서 지르코니아계/알루미나 담체에 란탄 및 세륨을 수식하는 방법이나 니켈을 담지하는 방법은 건식 또는 습식 혼합 후 건조, 반죽, 압출, 소성하는 방법을 사용한다. 용매는 증류수를 사용하는 것이 바람직하다.
가장 바람직하게는 원하는 비율로 산화란탄(La2O3), 세리아, 지르코니아, 산화니켈, 알루미나를 혼합시킴으로써 란탄 및 세륨으로 수식된 지르코니아/알루미나 담체를 얻을 수 있다.
또한, 니켈산화물의 파우더 형태를, 란탄 및 세륨으로 수식된 지르코니아/알루미나 담체와 함께 혼합하여 반죽 및 압출후 소성하는 과정을 거친다. 소성은 700 ~ 1200 ℃의 온도에서 공기 중에서 5 ~ 8 시간 실시하는 것이 바람직하다.
본 발명에서 촉매의 개질 활성을 측정시에는 실험실에서 제작한 전형적인 고정층 촉매 반응장치를 사용한다. 그리고, 반응전의 전처리 과정으로 상기 촉매를 1 ~ 2 mm 입자크기를 갖도록 성형, 분쇄한 후 필요한 양만큼 반응기에 충진한 후 반응하기 전에 5% 수소로 700 ℃에서 1시간 동안 환원한 후 사용한다.
그런 다음, 반응물로서 메탄과 수증기를 1 : 1 ~ 3의 몰비, 이산화탄소 0.4 ~ 1의 몰비로 반응기에 주입하고 필요한 경우에 질소를 희석기체로 첨가한다. 이때, 반응기의 온도는 전기히터와 프로그램 가능한 자동온도 조절장치에 의해 700 ~ 950 ℃의 범위로 조절되며, 반응압력은 10 ~ 20 기압이고, 공간속도가 3000 ~ 4000 hr-1의 조건이 되도록 질량 유량 조절기(Mass Flow Controller)로 기체의 유량을 조절하면서 기체를 주입하여 연속적으로 반응시킴으로써, 합성가스를 제조할 수 있다. 반응전후 기체의 조성은 반응장치에 직접 연결된 기체 크로마토그래프로 분석하며, 이때 기체의 분리를 위해서 프로팍(poropak) 컬럼이 사용된다.
이상과 같은 방법에서 개질촉매의 고온에서의 활성과 열안정성을 측정하기 위하여 750 ℃에서 활성을 시간의 흐름에 따라 측정하고, 초기 활성과 200분 후의 활성을 생성물 중의 수소의 수율 및 메탄의 전환율을 통하여 측정하였다.
본 발명에 따른 개질촉매를 이용하여 천연가스로부터 합성가스를 제조하는 방법은 기존 지르코니아 담지 니켈 개질 촉매의 활성보다 더 나은 활성을 나타내고, 또한 촉매의 활성 개선으로 높은 기체 공간속도에서도 높은 활성을 유지할 수 있어 공업용 촉매로 활용할 수 있는 가능성을 제시할 수 있다.
이하, 본 발명을 다음의 실시예에 의거하여 더욱 상세히 설명하겠는바, 본 발명이 실시예에 의해 한정되는 것은 아니다.
제조예 1
알루미나, 세리아, 지르코니아, 산화니켈, 산화란탄을 파우더형태로 표 1과 같은 비율로 섞고 증류수를 넣고 교반기를 이용하여 교반하여 잘 혼합한 후 건조시킨다. 충분히 혼합한 후 3℃/min의 속도로 700~950℃까지 승온하여 6시간 동안 소성시켜 촉매를 얻었다.
제조예 2
알루미나에 세리아, 지르코니아를 건조된 파우더형태로 넣고 볼밀링을 하여 혼합시킨다. 또한, 산화니켈, 산화란탄, 알루미나를 같은 방식으로 혼합한 후 두 파우더를 혼합한 후 700~950℃에서 6시간동안 소성하여 NiO-La/Ce-ZrO2/Al2O3을 얻을 수 있다.
표 1
분석항목 재조예 1(wt%) 제조예 2 (wt%)
La2O3 1~8 1~13
CeO2 1~13 1~10
NiO 3~12 5~14
ZrO2 2~10 2~11
Al2O3 70~90 70~90
표 2
제조방법 강도 벌크밀도
L축(N) R축(N)
제조예 1 6125.0 114.7 1.531
제조예 2 6066.2 419.0 1.707
실시예 1 내지 5
제조예 1에서 제조한 촉매 7g 사용하여 SCR 공정(Steam Carbon dioxide Reforming)에 적용하였다. 운전조건은 온도 700 ~ 950℃, 압력 18 bar를 유지하였으며. 수증기, 이산화탄소, 메탄의 주입 유량을 하기 표 3과 같이 변경하여 3000 ~ 4000hr-1의 공간속도로 메탄의 개질반응을 수행하였다. 주입된 가스의 비율과 반응결과는 아래 표 3, 도 1 및 도 2와 같다.
표 3
실시예 메탄 : 이산화탄소 : 수증기 CH4 전환율 (%) H2/CO
실시예 1 1 : 1 : 1 ~ 3 95.93 2.32
실시예 2 1 : 1 : 1 ~ 2.5 94.69 2.11
실시예 3 1: 1: 1 ~ 2 93.41 1.92
실시예 4 1 : 0.5 ~ 1 : 1 ~ 2 93.31 2.08
실시예 5 1 : 0.4 ~ 1 : 1 ~ 2 93.70 2.05
상기 결과로부터, 공급가스의 범위를 1 : 0.4~1 : 1~3의 범위 내에서 변경하였을 때 메탄 전환율을 90% 이상을 유지하였고 합성가스의 비율 1.9~2.4를 만족하는 합성가스를 제조할 수 있음을 알 수 있다.
실시예 6 내지 10
제조예 2에서 제조한 촉매를 사용하여 실시예 1과 동일한 조건으로 개질반응을 수행하였다. 결과는 하기 표 4에 나타내었다.
표 4
실시예 메탄 : 이산화탄소 : 수증기 CH4 전환율 (%) H2/CO
실시예 6 1 : 1 : 1 ~ 3 97.07 2.11
실시예 7 1 : 1 : 1 ~ 2.5 95.66 1.95
실시예 8 1: 1: 1 ~ 2 95.50 1.91
실시예 9 1 : 0.5 ~ 1 : 1 ~ 2 95.32 1.96
실시예 10 1 : 0.4 ~ 1 : 1 ~ 2 95.57 2.02
제조예 2의 촉매를 사용한 경우에도, 공급가스의 범위를 1 : 0.4~1 : 1~3의 범위 내에서 변경하였을 때 메탄전환율을 95% 이상을 유지하였고 합성가스의 비율 1.9~2.2를 만족하는 합성가스를 제조할 수 있었다.
비교예 1
함침법을 이용하고 활성성분으로서 Ni을 지지체 Ce-Zr/MgAlOx 에 담지한 촉매(한국특허 출원 제2008-0075787호)를 사용하여 700 ~ 950℃, 압력 18bar의 반응 조건에서 혼합 개질반응을 수행한 결과는 표 5와 같다.
표 5
반응몰비 (CH4/STM/CO2) 공간속도 (hr-1) CH4 conv.
1/1.5/0.4 1300 95
1/1.5/0.39 1700 93
1/1.5/0.34 1700 97
상기 결과로부터, 동등한 수준의 메탄 전환율을 나타내는 공간속도를 비교해 볼 때, 실시예의 촉매가 비교예의 경우보다 훨씬 큰 것을 알 수 있다. 이는 반응기 크기를 최소화할 수 있어서 상용화 반응기 설계 시 1/3 ~ 1/5의 용량으로 같은 CH4 전환율을 나타낼 수 있다는 것, 즉 경제성이 높다는 것을 의미한다.
또한, 실시예의 촉매를 사용하는 경우 반응가스 중 CO2 함량을 비교예에 비해 2배 이상 높일 수 있음을 알 수 있다. 따라서 반응가스 중 CO2 함량이 높은 가스를 사용할 수 있어 유리하고, 또한, 반응 후 생성되는 CO2를 다량 회수할 수 있어 타 공정보다 CO2 처리능력이 높다는 장점이 있다.
본 발명에 따른 촉매는 메탄의 수증기-이산화탄소 개질반응(SCR)에 의한 합성가스를 제조함에 있어 탄소침적을 최소화 하고 합성석유화학제품(왁스, 나프타, 디젤 등)을 생산하는데 효율적인 합성가스 비율(2.0±0.2)을 갖는 합성가스를 제조할 수 있고, 이로 인해 합성물질의 생산비용을 절감할 수 있다. 본 발명에 따른 촉매 및 이를 이용한 공정은 GTL(gas to liquid) FPSO(floating production, storage and offloading; 부유식 생산저장하역설비), 더 나아가 DME FPSO에 적용할 수 있어 앞으로 다양한 공업적 활용이 용이해질 것을 기대할 수 있다.

Claims (10)

1) 습식 또는 건식볼밀 방식으로 란탄 및 세륨으로 수식된 지르코니아 및 알루미나 담체를 제조하는 단계;
2) 단계 1)의 담체 분말과 니켈 분말을 혼합하여 소성하는 단계를 포함하는 방법에 의해 제조된, 합성가스를 제조하기 위한 개질반응용 촉매.
제1항에 있어서,
상기 개질반응은 수증기-이산화탄소 개질반응인 것을 특징으로 하는 개질반응용 촉매.
제1항에 있어서,
상기 개질촉매는 란탄 및 세륨 수식된 지르코니아/알루미나 담체(La, Ce-ZrO2/Al2O3) 내에 란탄이 1 ~ 7 중량% 함유된 것을 특징으로 하는 개질반응용 촉매.
제1항에 있어서,
상기 단계 3)의 소성은 700 ~ 1200℃의 온도에서 공기 중에서 실시하는 것을 특징으로 하는 개질반응용 촉매.
제1항에 있어서,
상기 단계 2)의 혼합은 건식 볼밀 또는 습식혼합한 후 건조하여 반죽 및 압출하는 과정을 포함하는 것을 특징으로 하는 개질반응용 촉매.
제1항에 있어서,
상기 개질촉매는 란탄 및 세륨 수식된 지르코니아/알루미나 담체(La, Ce-ZrO2/Al2O3) 내에 니켈이 5 ~ 20 중량% 담지된 것을 특징으로 하는 개질촉매.
제1항에 있어서,
상기 개질촉매는 란탄과 세륨의 중량비가 1: 2 ~ 10 인 것을 특징으로 하는 개질반응용 촉매.
제1항 내지 제7항 중 어느 한 항의 촉매를 사용하여 반응온도 700 ~ 950℃, 반응압력 10 ~ 20 기압, 공간속도 3000~4000 h-1의 조건으로 이산화탄소, 수증기 및 메탄을 공급하여 개질반응을 수행하는 것을 특징으로 하는 합성가스의 제조방법.
제8항에 있어서, 메탄 1몰에 대하여 이산화탄소 0.4 ~ 1 몰비, 수증기 1 ~ 3 몰비로 공급하는 것을 특징으로 하는 방법.
제8항에 있어서,
상기 개질반응을 통하여 제조된 합성가스의 수소/일산화탄소의 비율이 2.0±0.2인 것을 특징으로 하는 방법.
PCT/KR2013/011531 2012-12-12 2013-12-12 수증기-이산화탄소 개질에 의한 합성가스 제조용 란탄함유 촉매 및 이를 이용한 합성가스 제조방법 WO2014092482A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380071806.3A CN104955564A (zh) 2012-12-12 2013-12-12 用于通过水蒸气-二氧化碳重整制造合成气的含镧催化剂及使用其制造合成气的方法
AU2013360537A AU2013360537B2 (en) 2012-12-12 2013-12-12 Catalyst containing lanthanum for manufacturing synthetic gas through steam-carbon dioxide reforming, and method for manufacturing synthetic gas by using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120144030A KR101401170B1 (ko) 2012-12-12 2012-12-12 수증기-이산화탄소 개질에 의한 합성가스 제조용 란탄함유 촉매 및 이를 이용한 합성가스 제조방법
KR10-2012-0144030 2012-12-12

Publications (1)

Publication Number Publication Date
WO2014092482A1 true WO2014092482A1 (ko) 2014-06-19

Family

ID=50895765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011531 WO2014092482A1 (ko) 2012-12-12 2013-12-12 수증기-이산화탄소 개질에 의한 합성가스 제조용 란탄함유 촉매 및 이를 이용한 합성가스 제조방법

Country Status (5)

Country Link
KR (1) KR101401170B1 (ko)
CN (1) CN104955564A (ko)
AU (1) AU2013360537B2 (ko)
MY (1) MY169114A (ko)
WO (1) WO2014092482A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101761829B1 (ko) * 2015-05-07 2017-07-26 성균관대학교산학협력단 합성가스 및 일산화탄소의 제조 방법
KR101825495B1 (ko) * 2015-11-24 2018-02-05 한국화학연구원 저온 개질반응용 코발트 담지촉매 및 이의 제조방법
CN105413734B (zh) * 2015-12-07 2020-05-26 西南化工研究设计院有限公司 一种用于甲烷-二氧化碳重整制还原气的镍系催化剂及其制备方法
KR102488300B1 (ko) * 2017-04-12 2023-01-13 (주)바이오프랜즈 매립지 가스를 이용한 전력 및 화학원료 병산 시스템

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080043161A (ko) * 2006-11-13 2008-05-16 고려대학교 산학협력단 액화천연가스의 수증기 개질반응에 의한 수소가스 제조용담지 촉매, 그 제조방법 및 상기 담지 촉매를 이용한수소가스 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3761947B2 (ja) * 1995-11-08 2006-03-29 石油資源開発株式会社 合成ガス製造用触媒組成物およびこれを用いて合成ガスを製造する方法
CN101637726A (zh) * 2008-07-31 2010-02-03 中国石油天然气股份有限公司 一种甲烷-二氧化碳重整制备合成气催化剂的制备方法
CN101352687B (zh) * 2008-08-29 2011-09-14 同济大学 可用于甲烷二氧化碳干重整的催化剂、其制备方法与应用
KR101068995B1 (ko) * 2008-12-08 2011-09-30 현대중공업 주식회사 메탄, 수증기 및 이산화탄소를 혼합 개질반응하여 생성된 합성가스를 이용한 메탄올의 합성방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080043161A (ko) * 2006-11-13 2008-05-16 고려대학교 산학협력단 액화천연가스의 수증기 개질반응에 의한 수소가스 제조용담지 촉매, 그 제조방법 및 상기 담지 촉매를 이용한수소가스 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M.C. SANCHEZ-SANCHEZ ET AL.: "Ethanol steam reforming over Ni/MxOy-A1203 (M=Ce, La, Ze and Mg) catalysts: Influence of support on the hydrogen production", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 32, 28 November 2006 (2006-11-28), pages 1462 - 1471 *
PRASHANT KUMAR ET AL.: "Comparative Study of Ni-based Mixed Oxide Catalyst for Carbon Dioxide Reforming of Methane", ENERGY & FUELS, vol. 22, 22 July 2008 (2008-07-22), pages 3575 - 3582 *
RUIQIN YANG ET AL.: "Promotional effect of La203 and Ce02 on Ni/y-A1203 catalysts for C02 reforming of CH 4", APPLIED CATALYSIS A: GENERAL, vol. 385, 15 July 2010 (2010-07-15), pages 92 - 100 *

Also Published As

Publication number Publication date
AU2013360537A1 (en) 2015-07-16
MY169114A (en) 2019-02-18
KR101401170B1 (ko) 2014-05-29
AU2013360537B2 (en) 2016-05-12
CN104955564A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2014092474A1 (ko) 수증기-이산화탄소 개질에 의한 합성가스 제조용 촉매 및 이를 이용한 합성가스 제조방법
US8834835B2 (en) Ultra high temperature shift catalyst with low methanation
CA2332964C (en) Ruthenium-containing catalyst and process for reforming organic feedstock using the catalyst
WO2010013958A2 (ko) 천연가스와 이산화탄소로부터 합성가스 제조를 위한 촉매 및 이의 제조방법
US6340437B1 (en) Process for preparing synthesis gas by autothermal reforming
US6878667B2 (en) Nickel-rhodium based catalysts for synthesis gas production
US6312660B1 (en) Process for preparing synthesis gas
US4743576A (en) Catalyst for the production of synthesis gas or hydrogen and process for the production of the catalyst
JP3345782B2 (ja) 合成ガス製造用触媒及び一酸化炭素の製造方法
WO2010067945A1 (ko) 천연가스와 이산화탄소의 혼합 개질 반응으로부터 생성된 합성가스를 이용한 메탄올 합성 방법
WO2010011101A2 (ko) 합성가스로부터 메탄올 합성용 촉매 및 이의 제조방법
WO2015183059A1 (ko) 활성 및 수명 특성이 향상된 피셔-트롭쉬 촉매의 제조방법
WO2014092278A1 (en) Process for preparing fisher-tropsch catalyst
CN1081998A (zh) 烃类的部分催化氧化方法
WO2014092482A1 (ko) 수증기-이산화탄소 개질에 의한 합성가스 제조용 란탄함유 촉매 및 이를 이용한 합성가스 제조방법
KR101480801B1 (ko) 이산화탄소 개질반응용 모노리스 촉매, 이의 제조방법 및 이를 이용한 합성가스의 제조방법
JP4759242B2 (ja) 合成ガス製造用触媒およびこれを用いた合成ガスの製造方法
KR20150129566A (ko) 천연가스의 복합 개질반응용 니켈계 촉매
WO2019050335A1 (ko) 니켈계 촉매 및 이를 이용한 합성가스 제조 시스템
KR100390774B1 (ko) 산소개질 또는 수증기-산소 혼합개질에 의한천연가스로부터 합성가스의 제조방법
KR20240080539A (ko) 건식개질반응용 촉매
KR101440193B1 (ko) 천연가스의 혼합개질용 촉매, 이의 제조방법 및 상기 촉매를 이용한 천연가스의 혼합개질방법
KR20120021799A (ko) 메탄의 이산화탄소 개질용 망간계 촉매, 이의 제조방법, 및 이를 이용한 합성가스의 제조방법
KR100732729B1 (ko) 메탄의 삼중개질반응에 의한 합성가스 제조용 니켈계 촉매및 이 촉매를 이용한 메탄의 삼중개질반응
CN1106357A (zh) 烃的催化部分氧化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013360537

Country of ref document: AU

Date of ref document: 20131212

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/08/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13862461

Country of ref document: EP

Kind code of ref document: A1