WO2015183059A1 - 활성 및 수명 특성이 향상된 피셔-트롭쉬 촉매의 제조방법 - Google Patents

활성 및 수명 특성이 향상된 피셔-트롭쉬 촉매의 제조방법 Download PDF

Info

Publication number
WO2015183059A1
WO2015183059A1 PCT/KR2015/005487 KR2015005487W WO2015183059A1 WO 2015183059 A1 WO2015183059 A1 WO 2015183059A1 KR 2015005487 W KR2015005487 W KR 2015005487W WO 2015183059 A1 WO2015183059 A1 WO 2015183059A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst precursor
fischer
tropsch synthesis
carrier
producing
Prior art date
Application number
PCT/KR2015/005487
Other languages
English (en)
French (fr)
Inventor
정종태
모용기
이종열
이지혜
Original Assignee
한국가스공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국가스공사 filed Critical 한국가스공사
Priority to MYPI2016704332A priority Critical patent/MY180334A/en
Priority to AU2015268204A priority patent/AU2015268204B2/en
Priority to CN201580032837.7A priority patent/CN106457221A/zh
Publication of WO2015183059A1 publication Critical patent/WO2015183059A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon

Definitions

  • the present invention relates to a process for preparing Fischer-Tropsch catalysts used to produce hydrocarbons from synthesis gas.
  • Fischer-Tropsch synthesis is known which produces hydrocarbons from a gas mixture comprising carbon monoxide and hydrogen (synthetic gas).
  • the technology of converting liquid hydrocarbons using syngas starts with the reaction of producing syngas through reforming of natural gas and gasification such as coal and biomass.
  • the Fisher-Tropsch synthesis (FTS) reaction is a reaction for generating hydrocarbon compounds from syngas, and is performed by the following main representative reactions on iron-based and cobalt-based catalysts.
  • the water-gas shift (WGS) reaction of the reaction formula (2) which is a competition reaction with the FTS reaction of the reaction formula (1), generates carbon dioxide and hydrogen by reacting carbon monoxide with water generated from the reaction formula (1). Done.
  • the water produced in Scheme (1) changes the ratio of hydrogen and carbon monoxide in the entire Fischer-Tropsch synthesis reaction.
  • catalysts of different components are used depending on reaction conditions and desired products.
  • a main active component of the catalyst one or more components selected from Group 8B (cobalt, ruthenium, iron or nickel) on the standard periodic table, and components used as additionally added enhancers or structural stabilizers, etc.
  • Fischer-Tot using elements of Groups 1A, 3A, 4A, 5A, etc. and at least one of Groups 1B, 2B, 3B, 4B, 5B, 6B, and 7B Ropsch catalysts have been reported to be manufactured and used (US Pat. No. 7,067,562).
  • the catalyst used in the Fischer-Tropsch synthesis reaction changes the product distribution according to the main active ingredient.
  • the Fischer-Tropsch synthesis reaction using the cobalt system has the predominant reaction in Scheme (1) and the water gas shift reaction.
  • the amount of hydrocarbon (HC) produced by the Anderson-Shulz-Flory (ASF) mechanism is maximized when the molar ratio of H 2 / CO is less than 2.0.
  • the reaction proceeds at a low temperature as compared with the iron-based catalyst, and thus, there is an advantage in generating paraffinic hydrocarbons such as liquid or wax. Accordingly, special attention has been given to catalysts containing cobalt as the catalytically active component.
  • U.S. Pat.No. 7,585,808 discloses a catalyst for Fischer Tropsch reaction prepared by using ruthenium as catalytically active metal and treating with triethanolamine.
  • U. S. Patent No. 5,928, 983 discloses a cobalt-based Fisherthropsch catalyst prepared by adding oxidizing alcohols, oxidizing aldehydes or oxidizing ketones, especially glyoxal.
  • U.S. Patent No. 5,968,991 discloses a process of activating a catalyst by impregnating and drying a solution comprising cobalt, multifunctional carboxylic acid represented by cobalt, HOOC- (CRR ') n-COOH, and rhenium to a refractory inorganic carrier. Doing.
  • the present invention ensures high catalytic activity and stability and improves the selectivity to high boiling point hydrocarbons and light hydrocarbons, compared to the cobalt-based catalysts generally reported as a catalyst for Fischer-Tropsch synthesis reactions. It is intended to provide a cobalt based catalyst.
  • the present invention provides a hydrocarbon synthesis method comprising the step of reducing and activating the catalyst precursor prepared by the method, and contacting it with a mixed gas containing hydrogen and carbon monoxide.
  • the catalyst according to the present invention is used in the Fischer-Tropsch synthesis reaction to improve the conversion of carbon monoxide and the selectivity to methane, the main by-product, has an effect of improving the yield of high boiling point hydrocarbons and light olefins.
  • Example 2 is a graph showing the activity of the catalyst precursor according to Example 1 and Comparative Example 1.
  • a method for preparing a catalyst precursor for Fischer-Tropsch synthesis which exhibits high carbon monoxide (CO) conversion and high activity.
  • the first transition metal compound is a cobalt compound.
  • the first transition metal compound is a cobalt compound.
  • the method may further include adding a second metal compound to the solution of step a).
  • the second metal compound is at least one compound of Group 1A, 2A, 3A, 4A, 5A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 8B to be.
  • the second metal compound may be a compound of zirconium, aluminum, zinc, nickel, copper, tungsten, boron, chromium, platinum, magnesium or manganese.
  • the second metal compound may be selected from the group consisting of nitrates, carbonates, organic acid salts, oxides, hydroxides, halides, cyanides, hydroxide salts, halide salts and cyanide salts.
  • the carrier used in the method for producing the catalyst precursor of the present invention is preferably silica, alumina, titania, SiO 2 ⁇ Al 2 O 3 , or mixtures thereof, activated carbon or ZrO 2 .
  • the glyoxylic acid is preferably used in a ratio of 0.01 to 2 mol per mol of the first transition metal.
  • Impregnating the solution of step b) to the carrier may be performed by spray drying or extrusion drying, but not limited to wet impregnation method, dry impregnation method, reduced pressure impregnation method or a mixture in the form of slurry. It doesn't happen.
  • the first transition metal compound may have an amount of metal of 5 to 60% by weight, for example, 5 to 30%, 5 to 20% by weight, after reducing the catalyst precursor. It may be supported on the carrier to 18 to 18% by weight, or 10 to 15% by weight.
  • the drying of the step c) may be carried out under conditions of normal pressure, room temperature to 200 ° C and 12 to 50 hours, and the firing of the step d) is 1 to 50 at 150 ° C to 300 to 500 ° C. It can be done under the condition of heating over time. It is preferable that baking is performed in inert gas atmosphere.
  • the present invention also provides a hydrocarbon synthesis method comprising the step of reducing and activating the catalyst precursor prepared as described above and contacting the activated catalyst with a mixed gas containing hydrogen and carbon monoxide.
  • a transition metal capable of hydrogenating carbon monoxide is used.
  • transition metal capable of hydrogenating the carbon monoxide examples include cobalt, nickel, iron, copper, chrome, manganese, zirconium, molybdenum, and tungsten. tungsten, rhenium, osmium, iridium, palladium, silver, ruthenium, rhodium, platinum, and the like. In particular, cobalt, iron and ruthenium are preferred for synthesizing high molecular weight hydrocarbons.
  • the transition metal is at least one selected from the group consisting of salts such as metal nitrates, carbonates, organic acid salts, oxides, hydroxides, halides, cyanides, oxide salts, hydroxide salts, halide salts, and cyanide salts. It can be used as a metal compound. Among these, nitrate or acetate is particularly preferable. You may use a metal compound individually or in mixture of 2 or more types.
  • the second metal compound may be a compound of zirconium, iron, calcium, aluminum, zinc, nickel, copper, tungsten, boron, chromium, platinum, magnesium or manganese.
  • Such second metal compounds may be in the form of salts such as nitrates, carbonates, organic salts, oxides, hydroxides, halides, cyanides, oxide salts, hydroxide salts, halide salts, or cyanide salts, among which nitrates in particular Or acetates are preferred. You may use a 2nd metal compound individually or as a mixture of 2 or more types.
  • a solution is prepared by dissolving the transition metal compound and glyoxylic acid in a solvent.
  • a solvent water, alcohols, ethers, ketones and aromatics can be used, and water, alcohols or mixtures of water and alcohols are particularly preferable.
  • the blending ratio of glyoxylic acid is preferably 0.01 to 2 mol, in particular 0.1 mol or more, per mol of the metal atom contained in the metal compound, but the molar ratio is the molecular weight of glyoxylic acid. You can adjust the amount according to.
  • a complex refers to a complex in which a ligand having two or more coordinating atoms forms a ring and is bonded to a central metal.
  • the hydrogen ion index (pH) of the solution is preferably adjusted within a predetermined range.
  • Appropriate pH is determined according to a metal, for example, when using a Co compound, it is preferable to exist in the range of pH 8-11, and 9-10 are more preferable. If the pH of the solution greatly deviates from the above-mentioned range, the dissolution becomes difficult, or there is a possibility that it becomes an unstable solution that can be precipitated in a short time after the primary dissolution.
  • the carrier may be silica, alumina, titania, SiO 2 Al 2 O 3 , activated carbon, ZrO 2 , mixtures thereof or other porous materials, most preferred being silica and / or alumina.
  • the kind, specific surface area, pore volume, and average pore size of the carrier are not particularly limited, but the specific surface area is 10 m 2 / g or more, the pore volume is 0.5 mL / g or more, and the average pore size is 10 nm or more. It is suitable for preparing a catalyst for carrying out the reaction.
  • the carrier may be 3 to 20 hours, preferably 5 to 15, at 300 to 1500 ° C, or 350 to 1000 ° C, or 300 to 600 ° C, or 400 to 600 ° C, prior to impregnation of the solution described above. It is preferable to remove the internal impurities by firing for a time.
  • the usage-amount of a solution is a volume amount corresponded to the volume of water small pore inherent to a porous body.
  • carrier is determined according to the kind of metal.
  • the carrier may be in the range of 5 to 60% by weight, for example 5 to 30%, 5 to 20%, 7 to 18%, or 10 to 15% by weight. It is preferable to be supported.
  • the supported amount is less than the lower limit of the above range, there is a fear that the rate of change of carbon monoxide may decrease during the reaction of a mixed gas of hydrogen and carbon monoxide described later.
  • carrying a large amount to exceed the upper limit it is not expected to improve the carbon monoxide conversion rate as much as the supported amount.
  • a second metal compound as described above may be used, and the second metal may be supported together with the transition metal, wherein the second metal is 0.03 mol to 0.3 mol or 0.3 mol to 3 mol per mol of the transition metal. It can be included in the ratio of.
  • Silica after impregnating a solution can be shape
  • Drying can be performed by an atmospheric pressure drying method, a vacuum drying method, or the like.
  • an atmospheric pressure drying method it can dry on conditions of 12 to 50 hours, 12 to 40 hours, or 12 to 24 hours at room temperature-200 degreeC or room temperature-150 degreeC in atmospheric pressure atmosphere.
  • the drying may be carried out by a method of maintaining a certain time while gradually raising the temperature.
  • the initial drying temperature is T1
  • the second stage drying temperature (T2) T1 + 10 ⁇ 50 °C
  • the third stage drying temperature T3 T2 + 10 ⁇ 50 °C
  • the second stage and the third The step drying temperature can be 1 to 30 hours or 1 to 24 hours. It is performed under conditions of normal pressure, room temperature to 200 ° C, 12 to 30 hours or room temperature to 150 ° C and 12 to 24 hours as a whole.
  • baking can be performed at 300-500 degreeC under conditions of air or inert gas for 1 to 50 hours, most preferably about 2 to 5 hours.
  • a catalyst in which cobalt oxide capable of hydrogenating carbon monoxide is highly dispersed on a carrier is prepared.
  • the obtained catalyst can be used for Fischer-Tropsch synthesis reaction after the activation treatment is carried out according to a certain rule.
  • the catalyst before the activation treatment is filled into the reaction column, and gradually flows to 200 to 600 ° C or to 200 to 500 ° C while circulating hydrogen, carbon monoxide or a synthesis gas of hydrogen and carbon monoxide as an activator.
  • prescribed operation temperature is mentioned.
  • Gasoline fuel oil component by reacting the mixed gas containing hydrogen and carbon monoxide in the presence of the catalyst manufactured by the method which concerns on embodiment of this invention at the temperature of 150-350 degreeC, and the pressure of 0.1-5 MPa.
  • the hydrogenation product containing the diesel fuel component is obtained.
  • the catalyst in powder form is filled into a cylindrical stainless steel high pressure reaction tube, and the reaction tube is heated, for example, with a heater arranged externally so that the internal temperature is 150 to 350 ° C.
  • a mixed gas (0.1-5 MPa) containing hydrogen and carbon monoxide is circulated to produce a hydrogenated product.
  • a slurry obtained by dispersing the powdered catalyst in a high boiling point organic solvent is contained in a high pressure tank having an entrance and the like, and the high pressure tank is heated by, for example, a heater disposed externally such that its internal temperature is 150 to 350 ° C. It is also possible to distribute a high pressure mixed gas (0.1-20 MPa) containing hydrogen and carbon monoxide in the state from the inlet into the slurry in one state to produce a hydrogenated product.
  • a high pressure mixed gas 0.1-20 MPa
  • the catalyst produced by the method according to the embodiment of the present invention may be used in the form of powder (for example, an average particle diameter of 50 to 150 microns) or in the form of granules such as pellets of the powder.
  • the component to be selected is a diesel fuel oil component
  • it is preferable to use a mixture of hydrogen (H 2 ): carbon monoxide (CO) 2: 1 as the mixed gas.
  • the flow rate at the time of supplying the mixed gas to the high pressure reaction tube affects the carbon monoxide conversion rate.
  • the flow rate of the mixed gas is slowed, the rate of change of carbon monoxide is increased, but the distribution of each component of the hydrogenated product to be produced also changes, and the yield of the desired component also changes.
  • it is preferable to adjust the flow velocity of the said mixed gas suitably at 0.1-20 MPa and 150-350 degreeC from a viewpoint of raising the yield of the target component, ie, improving selectivity.
  • Evonik's Aerolyst 3041 (SiO 2 , excluded type, 0.40 to 0.46 kg / L, 99 +%) was prepared.
  • the silica was calcined at 450 ° C. for 10 hours while raising the temperature at a rate of 2 ° C./min.
  • the silica was crushed to prepare a size of 100 to 300 mesh.
  • Silica having a BET specific surface area of about 150 m 2 / g, a pore volume of about 0.80 cm 3 / g, and an average pore size of about 20 nm was prepared.
  • alumina carrier for supporting the transition metal As an alumina carrier for supporting the transition metal, gamma-alumina ( ⁇ -Al 2 O 3 , 1/4 "x 1/4" white pellets, 15 mg / m 3 , 99 +%) of STREAM was prepared. The alumina was calcined at 1000 ° C. for 5 hours while raising the temperature at a rate of 5 ° C./min. Alumina having a BET specific surface area of about 100 m 2 / g, a pore volume of about 0.30 cm 3 / g, and an average pore size of about 15 nm was prepared.
  • Titania As a titania carrier for supporting a transition metal, Evonik's Aerolyst 7708 (TiO 2 , anatase: rutile'7: 3) was prepared. Titania was calcined for 5-8 hours at 560 °C raising the temperature at a rate of 2 °C / min, after firing it was prepared to a size of 100 ⁇ 300 mesh. Titania was prepared having a BET specific surface area of about 25 m 2 / g, a pore volume of about 0.15 cm 3 / g, and an average pore size of about 25 nm.
  • a catalyst precursor was prepared in the same manner as in Example 1 using glyoxylic acid, except that zirconium (Zr) was added as a second metal in an amount of 1/16 mole ratio with respect to 1 mole of the cobalt.
  • Ni nickel
  • a 12 wt% Co / SiO 2 catalyst precursor was obtained in the same manner as in Example 1 except that no organic compound including glyoxylic acid was added.
  • Table 12 shows the results of the 12 wt% Co / SiO 2 catalyst experiment of the examples and the comparative examples.
  • the activity is less than 0.07 mol / g Co hr, but according to Examples 1 to 3 of the present invention.
  • the catalyst exhibited a three times higher increase in activity above 0.2 mol / g Co hr.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 피셔-트롭쉬 합성용 촉매의 제조방법에 관한 것으로, a) 제1의 전이금속 화합물과 글리옥실산 화합물의 용액을 제조하는 단계, b) 상기 용액을 담체에 함침시키는 단계, c) 상기 용액이 함침된 담체를 건조하는 단계, 및 d) 건조 후의 담체를 소성하는 단계를 포함하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법을 제공한다.

Description

활성 및 수명 특성이 향상된 피셔-트롭쉬 촉매의 제조방법
본 발명은 합성 기체로부터 탄화수소를 제조하는데 사용되는 피셔-트롭쉬 촉매의 제조방법에 관한 것이다.
일산화탄소 및 수소(합성 기체)를 포함하는 기체 혼합물로부터 탄화수소를 제조하는 피셔-트롭쉬 (Fisher-Tropsch) 합성은 공지되어 있다.
합성가스를 이용한 액체탄화수소의 전환기술은 천연가스의 개질 및 석탄 및 바이오매스 등의 가스화를 통하여 합성가스를 제조하는 반응으로부터 시작된다. 일반적으로, 피셔-트롭쉬 합성(FTS: Fisher-Tropsch synthesis) 반응은 합성가스로부터 탄화수소 화합물들을 생성하는 반응으로서, 철계열 및 코발트 계열의 촉매상에서 다음의 주요 대표적인 반응에 의하여 진행되게 된다.
nCO + 2nH2 → (CH2)n + nH2O (1)
CO + H2O → CO2 + H2 (2)
상기 반응식 (1)의 FTS 반응과 경쟁반응인 상기 반응식 (2)의 수성가스 전환 (WGS: water-gas shift) 반응은 일산화탄소와 상기 반응식 (1)로부터 생성되는 물이 반응하여 이산화탄소와 수소를 발생하게 된다. 따라서, 상기 반응식 (1)에서 생성된 물은 전체 피셔-트롭쉬 합성 반응에서 수소와 일산화탄소의 비를 변화시키게 된다.
피셔-트롭쉬 공정에 사용되고 있는 촉매는 반응조건이나 원하는 생성물에 따라서 상이한 성분의 촉매가 사용되고 있다. 그 대표적 예로서, 촉매의 주된 활성 성분으로서 표준주기율표상의 8B족 (코발트, 루테늄, 철 또는 니켈) 중에서 선택된 1종 이상의 성분과, 부가적으로 첨가되는 증진제 또는 구조안정제 등으로 사용되는 성분으로서 표준주기율표상의 1A족, 3A족, 4A족, 5A족 등의 원소들과 1B족, 2B족, 3B족, 4B족, 5B족, 6B족, 7B족 원소들 중 적어도 하나 이상의 성분을 사용하여 피셔-트롭쉬 촉매가 제조되어 사용되는 것으로 보고되어 있다(미국 등록특허 제7,067,562호).
피셔-트롭쉬 합성 반응에 사용되는 촉매는 주요 활성 성분에 따라서 생성물의 분포가 변화하게 되지만, 일반적으로 코발트계를 이용하는 피셔-트롭쉬 합성 반응은 반응식 (1)의 반응이 우세하고 수성가스 전환반응에 대한 활성이 적어서 H2/CO의 몰비가 2.0인 경우에 ASF (Anderson-Shulz-Flory) 메커니즘에 의하여 생성되는 탄화수소(HC)의 양이 최대화 된다.
또한, 코발트계열의 촉매를 사용하는 경우에는 철계열의 촉매와 비교하여 저온에서 반응이 진행되므로 액체나 왁스와 같은 파라핀계열의 탄화수소의 생성에 보다 유리한 장점이 있다. 따라서, 촉매적 활성 성분으로서 코발트를 함유하는 촉매에 특별한 관심이 주어져 왔다.
또한, 피셔트롭쉬 촉매 제조시 유기첨가제를 첨가하여 촉매활성을 증가시키는 방법에 대한 다양한 연구 결과가 알려져 있다.
미국 등록특허 제7,585,808호는 촉매활성 금속으로 루테늄을 사용하고 트리에탄올아민으로 처리하여 제조한 피셔트롭쉬 반응용 촉매를 개시한다.
미국특허 제 5,928,983호는 산화성 알코올, 산화성 알데하이드 또는 산화성 케톤, 그 중에서도 특히 글리옥살을 첨가하여 제조된 코발트계 피셔트롭쉬 촉매를 개시한다.
미국특허 제5,968,991호는 내화성 무기 담체에 코발트, HOOC-(CRR')n-COOH로 표시되는 다관능성 카르복시산(multifunctional carboxylic acid), 레늄을 포함하는 용액을 함침시키고 건조하여 촉매를 활성화시키는 공정을 개시하고 있다.
본 발명은 종래의 피셔-트롭쉬 합성 반응용 촉매로서 일반적으로 보고되고 있는 코발트 계열의 촉매와 비교하여 높은 촉매 활성 및 안정성을 확보함과 동시에 고비점의 탄화수소 및 경질탄화수소로의 선택성을 향상시킨 새로운 코발트 계열의 촉매를 제공하고자 한다.
본 발명은 상기 기술적 과제를 달성하기 위하여,
a) 제1의 전이금속 화합물과 글리옥실산을 함유하는 것을 특징으로 하는 화합물의 용액을 제조하는 단계,
b) 상기 용액을 담체에 함침시키는 단계,
c) 상기 용액이 함침된 담체를 건조하는 단계, 및
d) 건조 후의 담체를 소성하는 단계;를 포함하는
피셔-트롭쉬 합성용 촉매 전구체의 제조 방법을 제공한다.
또한 본 발명은 상기 방법에 의해 제조된 촉매 전구체를 환원하여 활성화시킨 후, 이를 수소와 일산화탄소를 포함하는 혼합가스와 접촉시키는 단계를 포함하는 탄화수소 합성 방법을 제공한다.
본 발명에 따른 촉매는 피셔-트롭쉬 합성 반응에 사용되어 일산화탄소의 전환율 향상과 주요 부산물인 메탄으로의 선택성을 감소시켜서 고비점의 탄화수소 및 경질 올레핀으로의 수율을 향상시키는 효과가 탁월하다.
도 1은 실시예 1 내지 3에 따른 촉매 전구체의 활성을 나타내는 그래프이다.
도 2는 실시예 1 및 비교예 1에 따른 촉매 전구체의 활성을 나타내는 그래프이다.
본 발명에 의하면, 일산화탄소(CO) 전환율이 크고 높은 활성을 나타내는 피셔-트롭쉬 합성용 촉매 전구체를 제조하는 방법이 제공된다.
이하, 본 발명의 바람직한 실시 형태를 설명한다.
본 발명에 따른 피셔-트롭쉬(FT) 합성용 촉매 전구체의 제조 방법은
a) 제1의 전이금속 화합물과 글리옥실산을 포함하는 용액을 제조하는 단계,
b) 상기 용액을 담체에 함침시키는 단계,
c) 상기 용액이 함침된 담체를 건조하는 단계, 및
d) 건조 후의 담체를 소성하는 단계를 포함한다.
본 발명의 실시예에 따르면, 상기 제1의 전이금속 화합물이 코발트 화합물인 것이 바람직하다.
본 발명의 실시예에 따르면, 상기 제1의 전이금속 화합물이 코발트 화합물인 것이 바람직하다.
본 발명의 바람직한 실시예에 따르면, 상기 단계 a)의 용액에 제2의 금속화합물을 첨가하는 단계를 더 포함할 수 있다.
상기 제2의 금속화합물이 하나 이상의 1A족, 2A족, 3A족, 4A족, 5A족, 1B족, 2B족, 3B족, 4B족, 5B족, 6B족, 7B족, 8B족 원소의 화합물이다.
특히 바람직하게는 상기 제2의 금속화합물은 지르코늄, 알루미늄, 아연, 니켈, 구리, 텅스텐, 보론, 크롬, 백금, 마그네슘 또는 망간의 화합물일 수 있다.
상기 제2의 금속화합물은, 질산염, 탄산염, 유기산염, 산화물, 수산화물, 할로겐화물, 시안화물, 수산화물 염, 할로겐화물 염 및 시안화물 염으로 이루어지는 군으로부터 선택될 수 있다.
본 발명의 촉매 전구체의 제조방법에 사용되는 담체는 실리카, 알루미나, 티타니아, SiO2·Al2O3, 또는 이들의 혼합물, 활성탄 또는 ZrO2 인 것이 바람직하다.
본 발명에 있어서, 상기 글리옥실산은 제1 전이금속 1 몰당 0.01~2 몰의 비율로 사용되는 것이 바람직하다.
본 발명의 실시예에 있어서, 상기 용액을 상기 담체에 함침시키기 전에 상기 담체를 공기 중에서 400~1000℃로 소성하는 단계를 더 포함하는 것이 바람직하다.
상기 단계 b)의 용액을 상기 담체에 함침하는 단계는, 습식 함침법, 건식 함침법, 감압 함침법 또는 슬러리 형태의 혼합물을 분무건조(spray drying) 또는 압출건조에 의하여 행해질 수 있으나, 이들로 한정되는 것은 아니다.
본 발명의 실시예에 따르면, 상기 제1의 전이금속 화합물은 상기 촉매 전구체를 환원시킨 후에, 금속의 양이 5 내지 60 중량%, 예를 들어 5 내지 30중량%, 5 내지 20중량%, 7 내지 18중량%, 또는 10 내지 15중량%가 되도록 상기 담체에 담지될 수 있다.
본 발명에 있어서, 상기 c) 단계의 건조는, 상압, 실온~200℃, 12~50 시간의 조건으로 행해질 수 있고, 상기 d) 단계의 소성은, 150℃에서 300~500℃로 1~50 시간에 걸쳐 가열시키는 조건으로 행해질 수 있다. 소성이 불활성가스 분위기에서 행해지는 것이 바람직하다.
본 발명은 또한 상기와 같이 제조된 촉매 전구체를 환원하여 활성화시키고, 이 활성화된 촉매를 수소와 일산화탄소를 포함하는 혼합가스와 접촉시키는 단계를 포함하는 탄화수소 합성 방법을 제공한다.
이하 본 발명을 보다 구체적으로 설명한다.
FT 합성용 촉매 전구체의 제조 방법에 있어서 일산화탄소를 수소화할 수 있는 전이금속이 사용된다.
상기 일산화탄소를 수소화할 수 있는 전이금속으로서는, 예를 들면, 코발트(cobalt), 니켈(nickel), 철, 동, 크롬(chrome), 망간(manganese), 지르코늄(zirconium), 몰리브덴(molybdenum), 텅스텐(tungsten), 레늄(rhenium), 오스뮴, 이리듐(iridium), 팔라듐(palladium), 은, 루테늄(ruthenium), 로듐(rhodium), 및 백금 등을 이용할 수 있다. 특별히, 고분자량 탄화수소를 합성하기에는 코발트, 철 및 루테늄이 바람직하다.
이러한 전이금속은, 금속 질산염, 탄산염, 유기산염 등의 염, 산화물, 수산화물, 할로겐화물, 시안화물, 산화물 염, 수산화물 염, 할로겐화물 염, 및 시안화물 염으로 되는 군으로부터 선택되는 적어도 1종의 금속 화합물로서 이용할 수 있다. 이들 중, 특별히 질산염 또는 초산염이 바람직하다. 금속 화합물은 단독으로 또는 2종 이상의 혼합물로서 이용해도 좋다.
또한 촉매 활성을 증대시키기 위하여, 1A족, 2A족, 3A족, 4A족, 5A족, 1B족, 2B족, 3B족, 4B족, 5B족, 6B족, 7B족, 8B족 원소로부터 선택되는 제2의 금속 화합물을 추가로 첨가할 수 있다. 본 발명의 바람직할 실시예에 따르면, 상기 제2의 금속 화합물은 지르코늄, 철, 칼슘, 알루미늄, 아연, 니켈, 구리, 텅스텐, 보론, 크롬, 백금, 마그네슘 또는 망간의 화합물일 수 있다.
이러한 제2 금속 화합물은 질산염, 탄산염, 유기산염 등의 염, 산화물, 수산화물, 할로겐화물, 시안화물, 산화물 염, 수산화물 염, 할로겐화물 염, 또는 시안화물 염의 형태일 수 있으며, 이들 중, 특별히 질산염 또는 초산염이 바람직하다. 제2 금속 화합물은 단독으로 또는 2종 이상의 혼합물로서 이용해도 좋다.
상기 전이금속 화합물과 글리옥실산을 용매에 용해하여 용액(함침액)이 제조된다. 용매로서는, 물, 알코올(alcohol)류, 에테르(ether)류, 케톤(ketone)류 및 방향족류를 이용할 수 있고, 특히 물, 알코올류 또는 물과 알코올류의 혼합물이 바람직하다.
상기 글리옥실산을 금속 화합물에 작용시키는데 있어서, 글리옥실산의 배합 비율은, 금속 화합물에 포함되는 금속 원자 1 몰당 0.01~2몰, 특히 0.1몰 이상인 것이 바람직하나, 이 몰비는 글리옥실산의 분자량에 따라 그의 양을 조절할 수 있다.
금속 화합물과 글리옥실산을 함유하는 용액 중에서는, 금속 화합물은 이온화하여 금속 이온이 생기고, 이 금속 이온을 중심으로 글리옥실산이 배위하여 착체가 형성된다고 추정된다. 또한, 착체란 2개 이상의 배위 원자를 가지는 배위자가 고리를 형성하고 중심 금속에 결합한 착체를 말한다.
금속 이온을 용액 중에 안정되게 용해시키기 위해, 용액의 수소이온지수(pH)는 소정의 범위 내에서 조정하는 것이 바람직하다. 적절한 pH는, 금속에 따라 결정되고, 예를 들면, Co 화합물을 사용하는 경우에는, pH 8~11의 범위 내인 것이 바람직하고, 9~10이 보다 바람직하다. 용액의 pH가 상술한 범위를 크게 일탈한다면, 그 용해가 곤란해지거나, 또는 1차적인 용해 후, 단시간에 석출할 수 있는 불안정한 용액이 될 우려가 있다.
담체는 실리카, 알루미나, 티타니아, SiO2·Al2O3, 활성탄, ZrO2, 이들의 혼합물 또는 다른 다공성 물질일 수 있고, 가장 바람직한 것은 실리카 및/또는 알루미나이다.
담체의 종류, 비표면적, 공극부피, 및 평균 공극사이즈는 특별히 한정되는 것이 아니지만, 비표면적이 10 m2/g 이상, 공극부피가 0.5mL/g 이상, 평균 공극사이즈가 10nm 이상인 것이 일산화탄소의 수소화 반응을 행하기 위한 촉매를 제조하는데 적합하다.
담체는 전술한 용액을 함침시키기에 앞서, 공기 또는 불활성 가스 하에서 300~1500℃, 또는 350~1000℃, 또는 300~600℃, 또는 400~600℃로 3~20 시간, 바람직하게는 5~15시간 동안 소성하여 내부의 불순물을 제거해 두는 것이 바람직하다.
상기 제1의 전이금속 화합물과 글리옥실산을 포함하는 용액을 실리카에 함침시키는 방법에 있어서는, 예를 들면, 습식 함침법, 건식 함침법 및 감압 함침법 등을 채용할 수 있다. 이 때, 용액의 사용량은 다공체 고유의 수분 작은 구멍 용적량에 상당하는 체적량인 것이 바람직하다.
또한, 본 발명의 실시 형태에 관련되는 방법에 의하여 제조되는 촉매에 있어서는, 담체에 담지되는 전이 금속의 바람직한 양은, 금속의 종류에 따라 결정된다. 예를 들면, 코발트(cobalt)의 경우에는, 5 내지 60 중량%, 예를 들어 5 내지 30중량%, 5 내지 20중량%, 7 내지 18중량%, 또는 10 내지 15중량%의 범위에서 담체에 담지되는 것이 바람직하다. 담지량이 상기 범위의 하한 미만인 경우에는, 후술하는 수소와 일산화탄소와의 혼합 가스의 반응시 일산화탄소의 변화율이 저하될 우려가 있다. 한편, 상한치를 넘도록 다량으로 담지하는 경우에는 담지량 만큼 일산화탄소 전화율 향상을 기대할 수 없다.
최종적으로 상술한 양으로 전이 금속이 담지 되도록, 함침 공정의 횟수를 적절히 결정하는 것이 바람직하다. 1회의 함침만으로는 상술한 금속 담지량이 되지 않는 경우는, 함침 및 건조 공정을 여러 차례 반복하여 행해도 좋다.
필요시 상술한 바와 같은 제2 금속 화합물이 사용될 수 있으며, 상기 전이 금속과 함께 제2 금속이 담지될 수 있으며, 이때 제2 금속은 상기 전이금속 1몰당 0.03몰 내지 0.3몰 또는 0.3몰 내지 3몰의 비율로 포함될 수 있다.
용액을 함침시킨 뒤의 실리카는, 필요에 따라 원주상, 삼엽상, 사엽상, 구상 등의 형상으로 성형할 수 있다.
건조는 상압 건조법이나 감압 건조법 등에 의하여 행할 수 있다. 예를 들면,상압 건조법의 경우, 대기압 분위기 하, 실온~200℃ 또는 실온~150℃에서 12~50 시간 또는 12~40 시간 또는 12~24시간의 조건으로 건조할 수 있다.
본 발명의 바람직한 실시예에 따르면 상기 건조는 온도를 점진적으로 올리면서 일정시간 더 유지하는 방법으로 실시될 수 있다. 바람직하게는 초기 건조온도를 T1 이라고 했을 때, 제2단계 건조 온도(T2)=T1+10~50℃, 제3단계 건조 온도 T3=T2+10~50℃ 로 하고, 제 2 단계 및 제 3단계 건조 온도는 1~30 시간 또는 1~24시간으로 할 수 있다. 전체적으로 상압, 실온~200℃, 12~30 시간 또는 실온~150℃, 12~24시간의 조건으로 실시된다.
그 뒤, 공기 또는 불활성 가스 하에서 300~500℃로 1~50 시간, 가장 바람직하게는 2~5 시간 정도의 조건으로 소성을 행할 수 있다. 상술한 방법에 의하여, 일산화탄소를 수소화할 수 있는 코발트 산화물이 담체 상에 고분산된 촉매가 제조된다. 얻어진 촉매는, 일정한 규칙에 의하여 활성화 처리를 가한 뒤, 피셔-트롭쉬 합성 반응에 이용할 수 있다.
활성화 처리로서는, 예를 들면, 반응탑 내에 활성화 처리 전의 촉매를 충전하고, 활성화제로서 수소나 일산화탄소 또는 수소와 일산화탄소와의 합성 가스를 유통시키면서, 200~600℃까지, 또는 200~500℃까지 서서히 가열하고, 소정의 조작 온도로 4~12 시간 정도 유지하는 처리를 들 수 있다.
본 발명의 실시 형태에 관련되는 방법에 의하여 제조되는 촉매의 존재 하, 수소와 일산화탄소를 포함하는 혼합 가스를 150~350℃의 온도, 0.1~5 MPa의 압력에 반응시키는 것에 의해, 가솔린 연료유 성분, 디젤 연료 성분을 포함하는 수소화 생성물이 얻어진다.
구체적으로는, 원통상의 스테인리스제 고압 반응관 내에 상기 분말 형태의 촉매를 충전하고, 이 반응관을 예를 들면 외부에 배치한 히터로, 그 내부 온도가 150~350℃가 되도록 가열한다. 이 상태로, 수소와 일산화탄소를 포함하는 혼합 가스(0.1~5MPa)를 유통시켜 수소화 생성물을 제조한다.
이 밖에, 출입구를 가지는 고압 탱크 내에 고비등점 유기 용매에 분말상의 상기 촉매를 분산시킨 슬러리를 수용하고, 이 고압 탱크를 예를 들면 외부에 배치한 히터로 그 내부 온도가 150~350℃가 되도록 가열한 상태로 수소와 일산화탄소를 포함하는 고압 혼합 가스(0.1~20MPa)를 상기 입구로부터 상기 슬러리 내로 유통시켜 수소화 생성물을 제조하는 것도 가능하다.
본 발명의 실시 형태에 관련되는 방법에 의하여 제조되는 촉매는, 분말상(예를 들면, 평균 입경 50~150 미크론) 또는 이 분말의 펠릿(pellet)과 같은 과립상의 형태로 사용해도 좋다.
전술의 혼합 가스의 각 성분 비율은, 수소화 생성물 중에 선택되는 목적으로 하는 성분의 종류 등에 의존하기 때문에 한 마디로 규정할 수 없지만, 통상 수소(H2):일산화탄소(CO)=1~4:1로 하는 것이 바람직하다. 예를 들면, 선택하는 성분이 디젤 연료유 성분인 경우에는 상기 혼합 가스로서 수소(H2):일산화탄소(CO)=2:1의 혼합비율의 것을 이용하는 것이 바람직하다.
상기 촉매의 존재 하에서 상기 혼합 가스를 반응시키는 반응계에 있어서, 온도 및 압력을 상기 범위에 설정하는 것에 의해, 목적으로 하는 성분으로서 C1의 메탄으로부터 C4의 부탄과, C5~C9의 가솔린 연료유 성분 및 C10~C20의 디젤 연료유 성분과, 왁스와 같은 고비등점 파라핀을 임의로 선택하는 것이 가능해진다.
상기 혼합 가스를 상기 고압 반응관에 공급하는 때의 유속은, 일산화탄소 전환율에 영향을 미친다. 일반적으로, 상기 혼합 가스의 유속을 느리게 한다면, 일산화탄소의 변화율이 높아지지만, 제조되는 수소화 생성물의 각 성분의 분포도 변화하고 목적으로 하는 성분의 수확량도 변화한다. 이 때문에, 상기 혼합 가스의 유속은 목적으로 하는 성분의 수확량을 높이는, 즉 선택성을 높인다는 관점에서, 0.1~20 MPa, 150~350℃에서 적절히 조절하는 것이 바람직하다.
이하, 구체적인 예를 들어 본 발명을 더욱 상세히 설명한다. 하기 실시예는 예시일 뿐이므로 본 발명의 범위가 하기 실시예로 한정되는 것은 아니다.
담체
(1) 실리카 담체
전이 금속을 담지하기 위한 실리카 담체로서, Evonik사의 Aerolyst 3041 (SiO2, excluded type, 0.40~0.46kg/L, 99+%)를 준비하였다. 실리카는 2℃/min의 속도로 온도를 올리며 450℃에서 10시간 동안 소성시켰고, 소성 후 이를 파쇄하여 100~300mesh의 크기로 준비하였다. BET 비표면적 약 150 m2/g, 공극부피 약 0.80 cm3/g, 평균 공극사이즈 약 20 nm 인 실리카를 준비하였다.
(2) 알루미나 담체
전이 금속을 담지하기 위한 알루미나 담체로서, STREAM사의 감마-알루미나 (γ-Al2O3, 1/4"x1/4" white pellets, 15mg/m3, 99+%)를 준비하였다. 알루미나는 5℃/min의 속도로 온도를 올리며 1000℃에서 5시간 동안 소성시켰고, 소성 후 이를 파쇄하여 100~300mesh의 크기로 준비하였다. BET 비표면적 약 100 m2/g, 공극부피 약 0.30 cm3/g, 평균 공극사이즈 약 15 nm 인 알루미나를 준비하였다.
(3) 티타니아 담체
전이 금속을 담지하기 위한 티타니아 담체로서, Evonik사의 Aerolyst 7708 (TiO2, anatase:rutile≒7:3)를 준비하였다. 티타니아는 2℃/min의 속도로 온도를 올리며 560℃에서 5~8시간 동안 소성시켰고, 소성 후 이를 파쇄하여 100~300mesh의 크기로 준비하였다. BET 비표면적 약 25 m2/g, 공극부피 약 0.15 cm3/g, 평균 공극사이즈 약 25 nm 인 티타니아를 준비하였다.
<실시예 1>
글리옥실산과 코발트의 몰비가 1:1이 되도록, 글리옥실산과 Co(NO3)2·6H2O 를 증류수에 넣어 완벽하게 녹인 후 상기 실리카 8.8g에 함침시켰다. 함침 후 110℃ 온도로 24시간 동안 건조시켰다. 그 후 130℃로 1℃/min의 속도로 올려준 뒤 3시간 동안 유지시킨 후, 150℃로 0.5℃/min의 속도로 올려준 뒤 3시간 동안 유지시켰다. 그 후 다시 350℃로 0.5~1℃/min의 속도로 올려준 뒤 3시간 동안 유지시켜 소성시킴으로써 12wt% Co/SiO2 촉매 전구체를 얻었다.
<실시예 2>
제2의 금속으로서 지르코늄(Zr)을 상기 코발트 1몰에 대하여 1/16 몰비로 추가로 첨가한 것을 제외하고는 글리옥실산을 사용한 실시예 1과 동일한 방법으로 촉매 전구체를 제조하였다.
<실시예 3>
제2의 금속으로 니켈(Ni)을 코발트 1몰에 대하여 1/16 몰비로 추가로 첨가한 것을 제외하고는 추가로 첨가한 것을 제외하고는 글리옥실산을 사용한 실시예 1과 동일한 방법으로 촉매 전구체를 제조하였다.
<비교예 1>
글리옥실산을 포함한 유기화합물을 전혀 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 12wt% Co/SiO2 촉매 전구체를 얻었다.
[피셔 트롭쉬 반응 실험]
상기 실시예 1 내지 3 및 비교예 1에서 제조한 촉매 전구체 1g을 각각 3g의 촉매희석제(석영 분말)와 섞어서 고압 고정상 반응기에 수용하고, 수소 기류중 723K에서 활성화 처리를 가했다. 그 뒤, 수소와 일산화탄소를 포함하는 혼합 가스를 도입하고, 다음의 조건으로 FT 반응을 행하여 수소화 생성물을 제조했다.
반응 온도 200 ℃, 반응 압력 20 bar, H2/CO=2 (4% 질소를 GC 내부표준물질로 포함), SV=4000 hr-1 [standard cc syngas / hr · g catalyst (standard = 25 ℃, 1 atm 조건에서 측정)
반응 개시 15 시간 후 각 촉매의 활성이 안정된 후에 인라인 (in line) GC 분석을 통하여 활성(mol/g-Co/hr)을 조사하였다.
활성: 전환된 CO 몰(moles CO converted) / g Co hr
상기 실시예 1 내지 실시예 3의 실험 결과를 도 1에 도시하였다.
상기 비교예 1의 실험 결과를 도 2에 도시하였다.
실시예 및 비교예의 12wt% Co/SiO2 촉매실험결과를 표 1에 나타내었다.
표 1
구분 촉매 프로모터(제2 금속 종류) 활성(mol/g Co·hr)
실시예 1 글리옥실산 용액 - 0.225
실시예 2 글리옥실산 용액 지르코늄(Zr) 0.236
실시예 3 글리옥실산 용액 니켈(Ni) 0.240
비교예 1 - - 0.065
도 1, 도 2 및 표 1의 결과로부터 알 수 있는 바와 같이, 유기화합물을 사용하지 않은 비교예 1의 실험에서는 활성이 0.07mol/g Co hr 미만이지만, 본 발명에 따른 실시예 1 내지 3의 촉매는 0.2mol/g Co hr를 초과하여 3배 이상의 높은 활성 증가를 나타내었다.

Claims (18)

  1. a) 제1의 전이금속 화합물과 글리옥실산을 함유하는 용액을 제조하는 단계,
    b) 상기 용액을 담체에 함침시키는 단계,
    c) 상기 용액이 함침된 담체를 건조하는 단계, 및
    d) 건조 후의 담체를 소성하는 단계를 포함하는
    피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  2. 제1항에 있어서,
    상기 제1의 전이금속 화합물이 코발트 화합물인 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  3. 제1항에 있어서,
    상기 단계 a)의 용액에 제2의 금속화합물을 첨가하는 단계를 더 포함하는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  4. 제3항에 있어서,
    상기 제2의 금속화합물이 하나 이상의 1A족, 2A족, 3A족, 4A족, 5A족, 1B족, 2B족, 3B족, 4B족, 5B족, 6B족, 7B족, 8B족 원소의 화합물인 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  5. 제4항에 있어서,
    상기 제2의 금속화합물은 지르코늄, 알루미늄, 아연, 니켈, 구리, 텅스텐, 보론, 크롬, 백금, 마그네슘 또는 망간의 화합물인 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  6. 제4항에 있어서,
    상기 제2의 금속화합물은, 질산염, 탄산염, 유기산염, 산화물, 수산화물, 할로겐화물, 시안화물, 수산화물 염, 할로겐화물 염 및 시안화물 염으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  7. 제3항에 있어서,
    상기 제2의 금속화합물은, 상기 코발트 금속 1몰을 기준으로 0.03몰 내지 0.3몰의 비율로 첨가되는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  8. 제1항에 있어서,
    상기 담체가 실리카, 알루미나, 티타니아, SiO2·Al2O3, 활성탄, ZrO2 또는 이들의 혼합물인 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  9. 제1항에 있어서,
    상기 글리옥실산 화합물은 제1의 전이금속 1 몰당 0.01~2 몰의 비율로 사용되는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  10. 제1항에 있어서,
    상기 용액을 상기 담체에 함침 시키기 전에 상기 담체를 공기 중에서 300~1500℃로 소성하는 단계를 더 포함하는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  11. 제1항에 있어서,
    상기 단계 b) 용액을 상기 담체에 함침하는 단계는, 습식 함침법, 건식 함침법, 감압 함침법 또는 슬러리 형태의 혼합물을 분무건조(spray drying) 또는 압출건조에 의하여 행해지는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  12. 제1항에 있어서,
    상기 제1의 전이금속 화합물은 상기 촉매 전구체를 환원시킨 후에, 코발트 금속의 양이 5~60 중량%가 되도록 상기 담체에 담지되는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  13. 제1항에 있어서,
    상기 c) 단계의 건조는, 상압, 실온~200℃, 12~50 시간의 조건으로 행해지는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  14. 제1항에 있어서,
    상기 c) 단계의 건조는 3단계로 이루어지며, 초기 건조온도를 T1이라고 했을때,
    제2단계 건조온도 T2는 T2=T1+10~50℃ 이고,
    제3단계 건조 온도T3은 T3=T2+10~50℃ 이며,
    상기 각 단계에서 건조시간은 각각 1 내지 30시간인 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  15. 제1항에 있어서,
    상기 d) 단계의 소성은, 150℃에서 300~500℃로 1~50 시간에 걸쳐 가열시키는 조건으로 행해지는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  16. 제15항에 있어서,
    상기 소성이 불활성가스 분위기에서 행해지는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.
  17. 제1항 내지 제16항 중 어느 한 항의 방법에 의해 제조된 촉매 전구체.
  18. 제17항의 촉매 전구체를 환원하여 활성화시키고, 이 활성화된 촉매를 수소와 일산화탄소를 포함하는 혼합가스와 접촉시키는 단계를 포함하는 탄화수소 합성 방법.
PCT/KR2015/005487 2014-05-30 2015-06-01 활성 및 수명 특성이 향상된 피셔-트롭쉬 촉매의 제조방법 WO2015183059A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2016704332A MY180334A (en) 2014-05-30 2015-06-01 Method for preparing fischer-tropsch catalyst having improved activity and lifespan properties
AU2015268204A AU2015268204B2 (en) 2014-05-30 2015-06-01 Method for preparing Fischer-Tropsch catalyst having improved activity and lifespan properties
CN201580032837.7A CN106457221A (zh) 2014-05-30 2015-06-01 用于制备具有改善的活性和寿命性能的费托催化剂的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0066124 2014-05-30
KR1020140066124A KR101595181B1 (ko) 2014-05-30 2014-05-30 활성 및 수명 특성이 향상된 피셔-트롭쉬 촉매의 제조방법

Publications (1)

Publication Number Publication Date
WO2015183059A1 true WO2015183059A1 (ko) 2015-12-03

Family

ID=54699316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005487 WO2015183059A1 (ko) 2014-05-30 2015-06-01 활성 및 수명 특성이 향상된 피셔-트롭쉬 촉매의 제조방법

Country Status (5)

Country Link
KR (1) KR101595181B1 (ko)
CN (1) CN106457221A (ko)
AU (1) AU2015268204B2 (ko)
MY (1) MY180334A (ko)
WO (1) WO2015183059A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186405A1 (fr) 2016-04-29 2017-11-02 IFP Energies Nouvelles Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'acide oxalique ou d'oxalate
WO2017186407A1 (fr) 2016-04-29 2017-11-02 IFP Energies Nouvelles Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un acide dicarboxylique comportant au moins trois atomes de carbone
WO2017186408A1 (fr) 2016-04-29 2017-11-02 IFP Energies Nouvelles Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose ester
WO2018072921A1 (fr) 2016-10-17 2018-04-26 IFP Energies Nouvelles Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose hydrogenocarbone.
EP3643404A1 (fr) 2018-10-25 2020-04-29 IFP Energies nouvelles Catalyseur de cobalt a base d'un support comprenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d'un compose ether et procédé de fischer-tropsch utilisant celui-ci
EP3643401A1 (fr) 2018-10-25 2020-04-29 IFP Energies nouvelles Catalyseur de cobalt a base d'un support comprenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d'un compose dilactone
EP3643767A1 (fr) 2018-10-25 2020-04-29 IFP Energies nouvelles Procede de synthese fischer-tropsch comprenant un catalyseur prepare par addition d'un compose organique en phase gazeuse
FR3087672A1 (fr) 2018-10-25 2020-05-01 IFP Energies Nouvelles Catalyseur de cobalt a base d’un support comprenant une phase d’oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d’un compose organique de la famille des carboxyanhydrides
FR3119556A1 (fr) 2021-02-11 2022-08-12 IFP Energies Nouvelles Procédé de préparation d’un catalyseur de Fischer-Tropsch en présence d’un additif et d’une étape de calcination spécifique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001509433A (ja) * 1997-07-11 2001-07-24 エクソンモービル リサーチ アンド エンジニアリング カンパニー 高活性を有する一酸化炭素水素化触媒の調製方法、触媒組成物、およびそれらの使用
US7790648B2 (en) * 2004-12-23 2010-09-07 Shell Oil Company Process for preparing a catalyst
JP2013128861A (ja) * 2010-06-14 2013-07-04 Azuma Sansho:Kk フィッシャー・トロプシュ合成用触媒およびその製造方法ならびに炭化水素の製造方法
KR101298783B1 (ko) * 2012-12-14 2013-08-26 한국가스공사 피셔-트롭쉬 촉매의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8128811B2 (en) * 2008-04-11 2012-03-06 Exxonmobil Research And Engineering Company Hydroprocessing using rejuvenated supported hydroprocessing catalysts
CN101920201B (zh) * 2009-06-09 2012-09-12 中国石油化工股份有限公司 一种钴基费托合成催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001509433A (ja) * 1997-07-11 2001-07-24 エクソンモービル リサーチ アンド エンジニアリング カンパニー 高活性を有する一酸化炭素水素化触媒の調製方法、触媒組成物、およびそれらの使用
US7790648B2 (en) * 2004-12-23 2010-09-07 Shell Oil Company Process for preparing a catalyst
JP2013128861A (ja) * 2010-06-14 2013-07-04 Azuma Sansho:Kk フィッシャー・トロプシュ合成用触媒およびその製造方法ならびに炭化水素の製造方法
KR101298783B1 (ko) * 2012-12-14 2013-08-26 한국가스공사 피셔-트롭쉬 촉매의 제조방법

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186405A1 (fr) 2016-04-29 2017-11-02 IFP Energies Nouvelles Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'acide oxalique ou d'oxalate
WO2017186407A1 (fr) 2016-04-29 2017-11-02 IFP Energies Nouvelles Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un acide dicarboxylique comportant au moins trois atomes de carbone
WO2017186408A1 (fr) 2016-04-29 2017-11-02 IFP Energies Nouvelles Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose ester
WO2018072921A1 (fr) 2016-10-17 2018-04-26 IFP Energies Nouvelles Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose hydrogenocarbone.
EP3643404A1 (fr) 2018-10-25 2020-04-29 IFP Energies nouvelles Catalyseur de cobalt a base d'un support comprenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d'un compose ether et procédé de fischer-tropsch utilisant celui-ci
EP3643401A1 (fr) 2018-10-25 2020-04-29 IFP Energies nouvelles Catalyseur de cobalt a base d'un support comprenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d'un compose dilactone
EP3643767A1 (fr) 2018-10-25 2020-04-29 IFP Energies nouvelles Procede de synthese fischer-tropsch comprenant un catalyseur prepare par addition d'un compose organique en phase gazeuse
FR3087673A1 (fr) 2018-10-25 2020-05-01 IFP Energies Nouvelles Catalyseur de cobalt a base d’un support comprenant une phase d’oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d’un compose dilactone
FR3087671A1 (fr) 2018-10-25 2020-05-01 IFP Energies Nouvelles Catalyseur de cobalt a base d’un support comprenant une phase d’oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d’un compose ether
FR3087786A1 (fr) 2018-10-25 2020-05-01 IFP Energies Nouvelles Procede de synthese fischer-tropsch comprenant un catalyseur prepare par addition d’un compose organique en phase gazeuse
FR3087672A1 (fr) 2018-10-25 2020-05-01 IFP Energies Nouvelles Catalyseur de cobalt a base d’un support comprenant une phase d’oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d’un compose organique de la famille des carboxyanhydrides
FR3119556A1 (fr) 2021-02-11 2022-08-12 IFP Energies Nouvelles Procédé de préparation d’un catalyseur de Fischer-Tropsch en présence d’un additif et d’une étape de calcination spécifique
EP4043537A1 (fr) 2021-02-11 2022-08-17 IFP Energies nouvelles Procede de preparation d'un catalyseur de fischer-tropsch en presence d'un additif et d'une etape de calcination specifique

Also Published As

Publication number Publication date
KR20150137732A (ko) 2015-12-09
AU2015268204B2 (en) 2018-10-11
AU2015268204A1 (en) 2016-12-15
MY180334A (en) 2020-11-28
KR101595181B1 (ko) 2016-02-18
CN106457221A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2015183059A1 (ko) 활성 및 수명 특성이 향상된 피셔-트롭쉬 촉매의 제조방법
KR101298783B1 (ko) 피셔-트롭쉬 촉매의 제조방법
WO2015183061A1 (ko) 고활성 피셔-트롭쉬 촉매의 제조방법
US6749828B1 (en) Process for reforming hydrocarbon
JP4414951B2 (ja) 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法
RU2259988C2 (ru) Катализатор и способ получения углеводородов
JP2008207186A (ja) 炭化水素の改質触媒及びそれを用いた炭化水素の改質方法
KR101437072B1 (ko) 효율적인 이산화탄소 전환 촉매 및 이의 제조 방법
JP2000084410A (ja) オ―トサ―マルリフォ―ミング触媒および水素または合成ガスの製造方法
KR20170009776A (ko) 피셔-트롭쉬 합성 반응용 메조 기공 구조의 주골격을 갖는 코발트계 촉매 및 이의 제조방법
KR101816787B1 (ko) 활성화된 피셔-트롭시 합성용 촉매의 저장방법
JP4132295B2 (ja) 炭酸ガスを含む低級炭化水素ガスから液体炭化水素油を製造する方法
KR101421825B1 (ko) 수증기-이산화탄소 개질에 의한 합성가스 제조용 촉매 및 이를 이용한 합성가스 제조방법
US20110062387A1 (en) Method for the catalytic reduction of the tar content in gases from gasification processes using a catalyst based on noble metals
KR100858924B1 (ko) 액화천연가스의 수증기 개질반응에 의한 수소가스 제조용담지 촉매, 그 제조방법 및 상기 담지 촉매를 이용한수소가스 제조방법
KR101227447B1 (ko) 귀금속이 유사 하이드로탈사이트에 담지된 알콜류의 개질 반응용 촉매 및 이를 이용한 수소 제조 방법
US11213805B2 (en) Catalyst for the conversion of natural or associated gas into synthesis gas in an autothermal reforming process and method for preparing the same
JP2011088066A (ja) 改質用触媒、改質装置および水素製造装置
WO2014092482A1 (ko) 수증기-이산화탄소 개질에 의한 합성가스 제조용 란탄함유 촉매 및 이를 이용한 합성가스 제조방법
KR20140132893A (ko) 이산화탄소 개질반응용 모노리스 촉매, 이의 제조방법 및 이를 이용한 합성가스의 제조방법
KR20190135799A (ko) 산화마그네슘-알루미나 복합 지지체를 이용한 알코올의 이산화탄소 개질 반응용 촉매 및 이를 이용한 합성가스의 제조방법
KR101570943B1 (ko) 이중 세공구조의 알루미나 지지체에 담지된 혼합 개질반응용 페롭스카이트 촉매 및 이의 제조방법
KR20150129566A (ko) 천연가스의 복합 개질반응용 니켈계 촉매
KR20190079204A (ko) 고발열량의 합성천연가스 합성용 촉매 및 이를 이용한 합성천연가스의 제조방법
KR101440193B1 (ko) 천연가스의 혼합개질용 촉매, 이의 제조방법 및 상기 촉매를 이용한 천연가스의 혼합개질방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015268204

Country of ref document: AU

Date of ref document: 20150601

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15799000

Country of ref document: EP

Kind code of ref document: A1