WO2014091962A1 - 蓄電デバイス用負極活物質およびその製造方法 - Google Patents

蓄電デバイス用負極活物質およびその製造方法 Download PDF

Info

Publication number
WO2014091962A1
WO2014091962A1 PCT/JP2013/082413 JP2013082413W WO2014091962A1 WO 2014091962 A1 WO2014091962 A1 WO 2014091962A1 JP 2013082413 W JP2013082413 W JP 2013082413W WO 2014091962 A1 WO2014091962 A1 WO 2014091962A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode active
active material
electricity storage
storage device
Prior art date
Application number
PCT/JP2013/082413
Other languages
English (en)
French (fr)
Inventor
英郎 山内
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2013554741A priority Critical patent/JP6331395B2/ja
Publication of WO2014091962A1 publication Critical patent/WO2014091962A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a negative electrode active material used for an electricity storage device such as a lithium ion secondary battery used for portable electronic devices and electric vehicles, for example.
  • LiCoO 2 LiCo 1-x Ni x O 2 , LiNiO 2 , LiMn 2 O 4 and the like are widely used as positive electrode active materials for lithium ion secondary batteries.
  • a carbon material is generally used for the negative electrode active material. These materials function as an electrode active material that reversibly occludes and releases lithium ions by charging and discharging, and a so-called rocking chair type secondary battery that is electrochemically connected by a non-aqueous electrolyte or a solid electrolyte.
  • a binder or a conductive auxiliary agent is added to these electrode active materials, and the electrode active material is used as an electrode by applying it to the surface of a metal foil or the like that serves as a current collector.
  • Examples of the carbon material used for the negative electrode active material include graphitic carbon material, pitch coke, fibrous carbon, and soft carbon.
  • the carbon material has a problem that it is difficult to increase the capacity of the battery because only 0.17 lithium atoms can be occluded and released per carbon atom. Specifically, even if a stoichiometric amount of lithium insertion capacity can be realized, the battery capacity of the carbon material is limited to about 372 mAh / g.
  • a negative electrode active material that can occlude and release lithium ions and has a higher capacity density than a negative electrode active material made of a carbon material
  • a negative electrode active material containing Si or Sn exists.
  • the negative electrode active material containing Si and Sn has a remarkably large volume change due to the insertion and release reaction of lithium ions during charge and discharge, and therefore the structure of the negative electrode active material deteriorates and cracks when repeatedly charged and discharged. It tends to occur.
  • a cavity is formed in the negative electrode active material, which may be pulverized.
  • the electron conduction network is divided, there has been a problem of a decrease in discharge capacity (cycle characteristics) after repeated charge and discharge.
  • Patent Document 1 a negative electrode active material containing SiO as a negative electrode active material capable of inserting and extracting lithium ions and having excellent cycle characteristics as compared with a negative electrode active material containing Si or Sn. Has been proposed.
  • This negative electrode active material is produced by a gas phase synthesis method shown by the following procedure. First, Si powder and SiO 2 powder are mixed and granulated in advance, and heated and vaporized at 1250 to 1350 ° C. in a vacuum, so that SiO is deposited on the deposition substrate provided in the vacuum vessel, and the solid state of SiO Get things. Next, this solid matter is taken out from the vacuum vessel, pulverized and classified to produce powdery SiO.
  • the negative electrode active material made of SiO manufactured by this manufacturing method has a problem that the discharge capacity is lowered (for example, 400 to 501 mAh / g) although the cycle characteristics are improved.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a negative electrode active material for an electricity storage device having good cycle characteristics and high discharge capacity, and a method for producing the same.
  • the method for producing a negative electrode active material for an electricity storage device includes an oxide material containing SiO 2 and a non-oxide material containing at least one selected from Si, Al, Ti, Li, Mg, Zr, and Ca. And a step of subjecting the raw material containing the material to mechanical milling.
  • the oxide material in mass%, preferably contains more SiO 2 30%. Glass may be used as the oxide material. Furthermore, the raw material preferably contains a carbon material.
  • the raw material preferably contains, by mass%, 5 to 95% of an oxide material, 5 to 95% of a non-oxide material, and 0 to 20% of a carbon material.
  • the mechanical milling treatment is preferably performed in a non-oxidizing atmosphere.
  • the negative electrode active material for an electricity storage device of the present invention is preferably produced by the production method.
  • the negative electrode active material for an electricity storage device of the present invention is represented by a general formula SiM x O 2 (0 ⁇ x ⁇ 4, M is at least one selected from Si, Al, Ti, Li, Mg, Zr, and Ca). Including material.
  • the negative electrode active material for electrical storage devices of this invention contains a carbon material. Furthermore, it is preferable that a carbon material is dispersed in a material represented by the general formula SiM x O 2 .
  • the crystallite size of Si is preferably 100 nm or less.
  • the negative electrode active material for an electricity storage device of the present invention may contain a glass component other than SiO 2 .
  • the method for producing a negative electrode active material for an electricity storage device of the present invention is referred to as an oxide material containing SiO 2 and at least one selected from Si, Al, Ti, Li, Mg, Zr, and Ca (hereinafter referred to as M component). And a non-oxide material containing a material, and a mechanical milling process for the raw material.
  • the SiO 2 component contained in the oxide material reacts with the M component contained in the non-oxide material, and the SiO 2 component is efficiently reduced to contain the SiO component and the M x O component.
  • a negative electrode active material is formed.
  • the SiO component in the negative electrode active material plays a role of occluding and releasing Li ions and electrons
  • the M x O component plays a role of mitigating volume changes associated with the insertion and removal of Li ions and electrons of the SiO component.
  • the SiO 2 component is reduced to the SiO component at a very high rate, and the remaining SiO 2 component and M component are reduced, so that a negative electrode active material having good cycle characteristics and high discharge capacity can be obtained. .
  • M contained in the non-oxide raw material at least one selected from Si, Al, Ti, Li, Mg, Zr, and Ca, SiO 2 can be reduced. More preferred are Si, Al, Mg, and Zr that are easy to handle, and most preferred is Si that is inexpensive.
  • a general pulverizer such as a mortar, a raking machine, a ball mill, an attritor, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a jet mill, or a bead mill can be used.
  • a planetary ball mill it is preferable to use a planetary ball mill.
  • the planetary ball mill can efficiently generate very high impact energy by rotating the platform while the pot rotates.
  • the content of SiO 2 in the oxide material is preferably 30% or more, 50% or more, or 60% or more, and more preferably 95% or more, in mass%.
  • SiO 2 content is too low, SiO component is reduced to be formed in the negative electrode active material, negative electrode active material is difficult to obtain with a high discharge capacity.
  • SiO 2 in the oxide material may be either crystalline or amorphous. Crystals are preferred because they are less expensive.
  • glass may be used as the oxide material.
  • glass having a high SiO 2 content is preferable. Specifically, the content of SiO 2 in the glass is 30% by mass, preferably 30% or more, more preferably 40% or more, and particularly preferably 50% or more.
  • Specific examples of the glass include borosilicate glass, soda lime glass, aluminoborosilicate glass, alkali aluminosilicate glass, phosphosilicate glass, and tin silicate glass.
  • the shape of the oxide material and the non-oxide material is not particularly limited, and examples thereof include a bulk shape, a film shape, and a powder shape. Preferably, it is in powder form.
  • the raw material preferably contains a carbon material.
  • SiO 2 in the oxide material can be reduced in a shorter time.
  • carbon material highly conductive carbon black such as acetylene black or ketjen black, carbon powder such as graphite, carbon fiber, or the like can be used. Of these, acetylene black having a high electron conductivity is preferable.
  • the raw material contains, by mass%, an oxide material of 5 to 95%, a non-oxide material of 5 to 95%, and a carbon material of 0 to 20%. More preferably, the oxide material is 25 to 90%, the non-oxide material is 5 to 74%, and the carbon material is 1 to 10%. With this configuration, a negative electrode active material having good cycle characteristics and high discharge capacity can be obtained.
  • the mechanical milling treatment is preferably performed in a non-oxidizing atmosphere.
  • a non-oxidizing atmosphere By setting it as a non-oxidizing atmosphere, the oxidation of SiO formed by the mechanical milling process can be suppressed.
  • the non-oxidizing atmosphere includes a reducing atmosphere and an inert atmosphere.
  • the reducing gas is preferably 90% to 99.5% N 2 , 0.5 to 10% H 2 , particularly 92 to 99% N 2 and 1 to 4% H 2 in volume%.
  • an inert gas In order to obtain an inert atmosphere, it is preferable to supply an inert gas during the mechanical milling process.
  • the inert gas it is preferable to use any of nitrogen, argon, and helium.
  • the negative electrode active material for an electricity storage device manufactured by the above manufacturing method contains an amorphous phase.
  • the crystallinity of the oxide material is preferably 95% or less, 80% or less, 70% or less, 50% or less, particularly 30% or less. The smaller the degree of crystallinity (the larger the proportion of the amorphous phase), the more the volume change during repeated charge / discharge can be relaxed, and the better the cycle characteristics can be obtained.
  • the degree of crystallinity is obtained from a diffraction line profile of 10 to 60 ° in terms of 2 ⁇ values obtained by powder X-ray diffraction measurement using CuK ⁇ rays.
  • the integrated intensity obtained by peak-separating a broad diffraction line (amorphous halo) at 10 to 45 ° from the total scattering curve obtained by subtracting the background from the diffraction line profile is Ia, 10
  • the crystallite size of Si can be measured by powder X-ray diffraction measurement using CuK ⁇ rays.
  • the crystallite size of Si is preferably 100 nm or less, more preferably 80 nm or less, and particularly preferably 50 nm or less. By reducing the crystallite size of Si, cycle characteristics are improved.
  • the lower limit of the Si crystallite size is not particularly limited, but is generally preferably 0.3 nm or more.
  • the shape of the negative electrode active material for an electricity storage device is not particularly limited, but is preferably a powder.
  • the average particle size is preferably 0.1 to 20 ⁇ m, 0.3 to 15 ⁇ m, 0.5 to 10 ⁇ m, particularly 1 to 5 ⁇ m.
  • the maximum particle size is preferably 150 ⁇ m or less, 100 ⁇ m or less, 75 ⁇ m or less, particularly 55 ⁇ m or less. If the average particle size or the maximum particle size is too large, the volume change of the negative electrode active material associated with insertion and extraction of lithium ions during charge / discharge cannot be alleviated, and it tends to peel off from the current collector. As a result, repeated charge / discharge tends to significantly reduce the discharge capacity. On the other hand, if the average particle size is too small, the powder is in a poorly dispersed state when formed into a paste, and it tends to be difficult to produce a uniform electrode.
  • the average particle size and the maximum particle size are D50 (50% volume cumulative diameter) and D99 (99% volume cumulative diameter), respectively, as the median diameter of primary particles, and were measured by a laser diffraction particle size distribution analyzer. Value.
  • the negative electrode active material for an electricity storage device manufactured by the above-described manufacturing method using a raw material containing an oxide material and a non-oxide material has a general formula of SiM x O 2 (0 ⁇ x ⁇ 4, where M is Si , Al, Ti, Li, Mg, Zr, and Ca).
  • the negative electrode active material for an electricity storage device manufactured by the above manufacturing method includes a carbon material.
  • the negative electrode active material for an electricity storage device tends to have a configuration in which a carbon material is dispersed in a material represented by the general formula SiM x O 2 .
  • glass components other than SiO 2 include Al 2 O 3 , P 2 O 5 , B 2 O 3 , Bi 2 O 3 , MgO, CaO, SrO, BaO, TiO 2 , ZrO 2 , Li 2 O, and Na. 2 O, K 2 O, SnO, MnO, ZnO and the like can be mentioned.
  • the content of the glass component other than SiO 2 in the negative electrode active material is mass%, preferably 70% or less, more preferably 50% or less, and particularly preferably 40% or less.
  • the lower limit of the content of the glass component other than the SiO 2 of the negative electrode active material is not particularly limited, is generally 5% or more.
  • the negative electrode for an electricity storage device can be obtained by adding a binder or a conductive additive to the negative electrode active material for an electricity storage device obtained by the production method of the present invention.
  • binder examples include cellulose derivatives such as carboxymethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, ethylcellulose, hydroxymethylcellulose, and water-soluble polymers such as polyvinyl alcohol; thermosetting polyimide, phenolic resin, epoxy resin, urea Examples thereof include thermosetting resins such as resins, melamine resins, unsaturated polyester resins, and polyurethanes; polyvinylidene fluoride.
  • the conductive assistant examples include highly conductive carbon black such as acetylene black and ketjen black, carbon powder such as graphite, and carbon fiber.
  • the negative electrode active material for an electricity storage device can be used as an anode for an electricity storage device by applying it to the surface of a metal foil or the like that serves as a current collector.
  • metal lithium, lithium oxide an oxide, such as a silicic acid, phosphoric acid, boric acid, and a lithium atom are contained in a negative electrode active material.
  • Oxide including complex lithium composite oxide
  • the negative electrode active material produced by the method of the present invention is not only a lithium ion secondary battery, but also other non-aqueous secondary batteries, and further, a negative electrode active material for lithium ion secondary batteries and a non-aqueous electric double layer
  • the present invention can also be applied to a hybrid capacitor combined with a positive electrode active material for a capacitor.
  • a lithium ion capacitor which is a hybrid capacitor, is one type of asymmetric capacitor that has different charge / discharge principles for the positive and negative electrodes.
  • the lithium ion capacitor has a structure in which a negative electrode for a lithium ion secondary battery and a positive electrode for an electric double layer capacitor are combined.
  • the positive electrode forms an electric double layer on the surface and is charged / discharged by utilizing a physical action (electrostatic action), whereas the negative electrode has a lithium ion chemistry similar to the lithium ion secondary battery described above. Charge and discharge by reaction (occlusion and release).
  • a positive electrode active material made of carbonaceous powder having a high specific surface area such as activated carbon, polyacene, or mesophase carbon is used for the positive electrode of the lithium ion capacitor.
  • a negative electrode active material produced by the method of the present invention can be used for the negative electrode.
  • Examples 1 to 3 and Comparative Examples 1 to 3 (1) Production of negative electrode active material
  • the negative electrode active materials of Examples 1 to 3 were prepared by using a raw material composed of an oxide material containing SiO 2 , a non-oxide material, and acetylene black, which is a carbon material. And 30 g of the raw material and 1 kg of ⁇ 5 mm ZrO 2 balls are placed in a 500 mL ZrO 2 pot, and mechano-milling is performed under the processing conditions shown in Table 1 using a planetary ball mill (P6 made by Fritch). It was produced by.
  • a planetary ball mill P6 made by Fritch
  • the negative electrode active materials of Comparative Examples 1 to 3 were crystalline Si powder, metal Sn powder, and SiO powder produced by a vapor phase synthesis method, respectively.
  • the crystallinity and crystallite size of the negative electrode active material were measured by the above powder X-ray diffraction measurement, and the results are shown in Table 1.
  • the crystallite size is the crystallite size of Si.
  • the obtained slurry was coated on a 20 ⁇ m thick copper foil as a negative electrode current collector, vacuum-dried with a dryer at 70 ° C., and then between a pair of rotating rollers.
  • An electrode sheet was obtained by pressing through. This electrode sheet was punched to a diameter of 11 mm with an electrode punching machine and dried under reduced pressure at a temperature of 200 ° C. for 8 hours to obtain a circular working electrode (a negative electrode for a non-aqueous secondary battery).
  • test battery The working electrode was placed on the lower lid of the coin cell with the copper foil surface facing down, and dried on the top at 70 ° C. for 8 hours under reduced pressure for 16 hours in a polypropylene porous membrane (Hoechst Cera A separator comprising Cellguard # 2400 manufactured by Needs Co., Ltd. and metallic lithium as a counter electrode were laminated to prepare a test battery.
  • a polypropylene porous membrane Hoechst Cera A separator comprising Cellguard # 2400 manufactured by Needs Co., Ltd. and metallic lithium as a counter electrode were laminated to prepare a test battery.
  • the test battery was assembled in an environment with a dew point temperature of ⁇ 40 ° C. or lower.
  • the test battery is charged at a 0.2C rate from 1 V to 0 V with CC (constant current) charge (occlusion of lithium ions into the negative electrode active material) and charged in the unit weight of the negative electrode active material.
  • the charge amount (mAh / g) was calculated
  • the battery was discharged from 0 V to 1 V at a constant current of 0.2 C rate (release of lithium ions from the negative electrode active material), and the amount of electricity discharged in the unit weight of the negative electrode active material was determined to determine the discharge capacity (mAh / g )
  • Table 2 shows the results of the charge / discharge characteristics.
  • the discharge capacity retention rate is the ratio between the initial discharge capacity and the 50th cycle discharge capacity.
  • the negative electrode active materials produced in Examples 1 to 3 had a high initial discharge capacity of 670 to 752 mAh / g and a favorable discharge capacity maintenance rate of 94 to 96%.
  • the negative electrode active materials of Comparative Examples 1 and 2 had a high initial discharge capacity, but the discharge capacity retention rate was remarkably reduced to 21 to 31%.
  • the negative electrode active material of Comparative Example 3 had a discharge capacity retention rate as low as 79%, and the initial discharge capacity was as low as 483 mAh / g.
  • Example 4 to 9 and Comparative Examples 4 to 5 A raw material composed of an oxide material containing SiO 2 , a non-oxide material, and acetylene black as a carbon material was weighed so as to have the composition shown in Table 3, and in the same manner as in Examples 1 to 3, the negative electrode An active material was produced.
  • high-purity silica stone powder product name: Wacomzil: product number: HS6-3000, average particle size: 11 ⁇ m
  • glass was used as the oxide material.
  • Comparative Example 4 the same raw material as in Example 4 was used, and the raw material that was a mixture was used as the negative electrode active material without performing mechanical milling.
  • Comparative Example 5 Al 2 O 3 powder was used as the oxide material.
  • the crystallinity degree and crystallite size of the negative electrode active material were measured by said powder X-ray-diffraction measurement, and the result was shown in Table 3.
  • the negative electrode active materials produced in Examples 4 to 9 have a Si crystallite size of 100 nm or less, a high initial discharge capacity of 708 to 1466 mAh / g, and a discharge capacity retention ratio of 85 to 99. % And good.
  • the negative electrode active material of Comparative Example 4 had a low discharge capacity retention rate of 5% and a low initial discharge capacity of 506 mAh / g.
  • the negative electrode active material of Comparative Example 5 had a high initial discharge capacity, but the discharge capacity retention rate was significantly reduced to 53%.
  • the negative electrode active material for an electricity storage device obtained by the present invention can be used for applications such as a main power source for mobile communication devices, portable electronic devices, electric bicycles, electric motorcycles, electric vehicles and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 良好なサイクル特性と高い放電容量を有する蓄電デバイス用負極活物質およびその製造方法を提供する。 SiOを含有する酸化物材料とMを含有する非酸化物材料(MはSi、Al、Ti、Li、Mg、Zr、Caから選ばれる少なくとも1種)とを含む原料にメカニカルミリング処理する工程を含むことを特徴とする蓄電デバイス用負極活物質の製造方法とする。

Description

蓄電デバイス用負極活物質およびその製造方法
 本発明は、例えば、携帯型電子機器や電気自動車に用いられるリチウムイオン二次電池等の蓄電デバイスに用いられる負極活物質の製造方法に関する。
 近年、携帯型電子機器や電気自動車等の普及に伴い、リチウムイオン二次電池等の蓄電デバイスの高容量化と小サイズ化に対する要望が高まっている。蓄電デバイスの高容量化が進めば、電池の小サイズ化も容易となるため、蓄電デバイスの高容量化へ向けての開発が急務となっている。
 例えば、リチウムイオン二次電池用の正極活物質には、高電位型のLiCoO、LiCo1-xNi、LiNiO、LiMn等が広く用いられている。一方、負極活物質には、一般に炭素材料が用いられている。これらの材料は、充放電によってリチウムイオンを可逆的に吸蔵および放出する電極活物質として機能し、非水電解液または固体電解質によって電気化学的に連結された、いわゆるロッキングチェア型の二次電池を構成する。これらの電極活物質には、例えば結着剤や導電助剤が添加され、集電体としての役割を果たす金属箔等の表面に塗布することで電極として使用される。
 負極活物質に用いられる炭素材料には、黒鉛質炭素材料、ピッチコークス、繊維状カーボン、ソフトカーボンなどがある。しかしながら、炭素材料は、炭素1原子当たり0.17個しかリチウムを吸蔵および放出することができないため、電池の高容量化が困難であるという問題がある。具体的には、化学量論量のリチウム挿入容量を実現できたとしても、炭素材料の電池容量は約372mAh/gが限界である。
 リチウムイオンを吸蔵および放出することが可能であり、炭素材料からなる負極活物質を上回る高容量密度を有する負極活物質として、SiやSnを含有する負極活物質が存在する。しかしながら、SiやSnを含有する負極活物質は、充放電時におけるリチウムイオンの吸蔵および放出反応に起因する体積変化が著しく大きいため、繰り返し充放電した際に負極活物質が構造劣化して亀裂が生じやすくなる。亀裂が進行すると、場合によっては負極活物質中に空洞が形成され、微粉化してしまうこともある。その結果、電子伝導網が分断されるため、繰り返し充放電した後の放電容量(サイクル特性)の低下が問題となっていた。
 そこで、特許文献1では、リチウムイオンを吸蔵および放出することが可能であり、SiやSnを含有する負極活物質と比較してサイクル特性に優れた負極活物質として、SiOを含有する負極活物質が提案されている。
 この負極活物質は、次の手順で示される気相合成法により製造される。まず、予めSi粉末とSiO粉末を混合造粒し、これを真空中で1250~1350℃で加熱して気化させることにより、真空容器内に設けた析出基体にSiOを析出させ、SiOの固形物を得る。次に、この固形物を真空容器内から取り出し、粉砕、分級することで粉末状のSiOを製造している。
WO2006/011290号公報
 この製造方法で製造したSiOからなる負極活物質では、サイクル特性は向上したものの、放電容量が低くなる(例えば、400~501mAh/g)という問題があった。
 この原因は明らかにはなっていないが、SiOを析出させる際に一部のSiOが不均化反応を引き起こし、Si成分とSiO成分に分相することによるものと推察される。このとき、SiO成分は充放電反応に寄与しない成分であるため、この負極活物質の放電容量は低くなると考えられる。
 本発明は以上のような状況に鑑みてなされたものであり、良好なサイクル特性と高い放電容量を有する蓄電デバイス用負極活物質およびその製造方法を提供することを目的とする。
 本発明の蓄電デバイス用負極活物質の製造方法は、SiOを含有する酸化物材料と、Si、Al、Ti、Li、Mg、Zr、Caから選ばれる少なくとも1種を含有する非酸化物材料と、を含む原料をメカニカルミリング処理する工程を含むことを特徴とする。
 また、前記酸化物材料が、質量%で、SiO 30%以上を含有することが好ましい。酸化物材料として、ガラスを用いてもよい。
 さらに、前記原料が、炭素材料を含有することが好ましい。
 さらに、前記原料が、質量%で酸化物材料 5~95%、非酸化物材料 5~95%、炭素材料 0~20%を含有することが好ましい。
 さらに、前記メカニカルミリング処理は、非酸化性雰囲気中で行うことが好ましい。
 本発明の蓄電デバイス用負極活物質は、前記製造方法によって製造されることが好ましい。
 本発明の蓄電デバイス用負極活物質は、一般式SiM(0<x<4、MはSi、Al、Ti、Li、Mg、Zr、Caから選ばれる少なくとも1種)で表される材料を含むことを特徴とする。
 また、本発明の蓄電デバイス用負極活物質は、炭素材料を含むことが好ましい。
 さらに、一般式SiMで表される材料中に炭素材料が分散してなることが好ましい。
 Siの結晶子サイズは、100nm以下であることが好ましい。
 また、本発明の蓄電デバイス用負極活物質は、SiO以外のガラス成分を含んでいてもよい。
 本発明によれば、良好なサイクル特性と高い放電容量を有する蓄電デバイス用負極活物質を提供することが可能となる。
 本発明の蓄電デバイス用負極活物質の製造方法は、SiOを含有する酸化物材料と、Si、Al、Ti、Li、Mg、Zr、Caから選ばれる少なくとも1種(以下、M成分という。)を含有する非酸化物材料と、を含む原料をメカニカルミリング処理する工程を含むことを特徴とする。
 前記原料にメカニカルミリング処理することにより、原料に高い衝撃エネルギーを与えることができる。その高い衝撃エネルギーにより、酸化物材料に含有されるSiO成分と非酸化物材料に含まれるM成分が反応し、SiO成分が効率的に還元されて、SiO成分とMO成分を含む負極活物質が形成される。この負極活物質中のSiO成分が、Liイオンと電子を吸蔵・放出する役割を担い、MO成分は、SiO成分のLiイオンと電子の吸蔵・放出に伴う体積変化を緩和する役割を担う。結果として、SiO成分は、非常に高い割合でSiO成分に還元され、残存するSiO2成分とM成分が少なくなるので、良好なサイクル特性と高い放電容量を有する負極活物質が得られるようになる。
 前記非酸化物原料に含まれるMをSi、Al、Ti、Li、Mg、Zr、Caから選ばれる少なくとも1種とすることにより、SiOを還元することが可能となる。より好ましくは、取り扱いが容易であるSi、Al、Mg、Zrであり、最も好ましくは安価であるSiである。
 メカニカルミリング処理には、乳鉢、らいかい機、ボールミル、アトライター、振動ボールミル、衛星ボールミル、遊星ボールミル、ジェットミル、ビーズミルなどの一般的な粉砕機を用いることができる。特に、遊星型ボールミルを使用するのが好ましい。遊星型ボールミルは、ポットが自転回転しながら、台盤が公転回転し、非常に高い衝撃エネルギーを効率良く発生させることができる。
 酸化物材料中のSiOの含有量は、質量%で、30%以上、50%以上、60%以上であることが好ましく、特に95%以上であることが好ましい。SiO含有量が少なすぎると、負極活物質中に形成されるSiO成分が少なくなり、高い放電容量を有する負極活物質が得られ難くなる。
 酸化物材料中のSiOは結晶、非晶質のどちらでもよい。結晶の方が安価であるため好ましい。
 また、酸化物材料としてガラスを用いてもよい。ガラスとしては、SiOの含有量が多いガラスが好ましい。具体的には、ガラス中のSiOの含有量は、質量%で、30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることが特に好ましい。ガラスの具体例としては、例えば、ホウケイ酸ガラス、ソーダ石灰ガラス、アルミノホウケイ酸塩ガラス、アルカリアルミノケイ酸塩ガラス、リンケイ酸塩ガラス、スズケイ酸塩ガラスなどが挙げられる。
 前記酸化物材料、および前記非酸化物材料の形状は特に限定されないが、バルク状、フィルム状、粉末状等が挙げられる。好ましくは、粉末状である。
 さらに、前記原料が、炭素材料を含有することが好ましい。炭素材料を含有することにより、より短時間で酸化物材料中のSiOを還元することが可能となる。
 前記の炭素材料は、アセチレンブラックやケッチェンブラック等の高導電性カーボンブラック、グラファイト等のカーボン粉末、炭素繊維などを用いることができる。なかでも、電子伝導性が高いアセチレンブラックが好ましい。
 また、前記原料が、質量%で酸化物材料 5~95%、非酸化物材料 5~95%、炭素材料 0~20%を含有することが好ましい。より好ましくは酸化物材料 25~90%、非酸化物材料 5~74%、炭素材料 1~10%である。上記構成にすることにより、良好なサイクル特性と高い放電容量を有する負極活物質が得られるようになる。
 前記メカニカルミリング処理は、非酸化性雰囲気中で行うことが好ましい。非酸化性雰囲気とすることにより、メカニカルミリング処理によって形成されたSiOの酸化を抑制することができる。なお、非酸化性雰囲気は、還元性雰囲気と不活性雰囲気を含む。
 還元雰囲気とするためには、メカニカルミリング処理中に還元性ガスを供給することが好ましい。還元性ガスは、体積%で、N 90~99.5%、H 0.5~10%、特にN 92~99%、Hが1~4%が好ましい。
 不活性雰囲気とするためには、メカニカルミリング処理中に不活性ガスを供給することが好ましい。不活性ガスとしては、窒素、アルゴン、ヘリウムのいずれかを用いることが好ましい。
 前記の製造方法により製造された蓄電デバイス用負極活物質は、非晶質相を含有することが好ましい。この場合、酸化物材料の結晶化度は95%以下、80%以下、70%以下、50%以下、特に30%以下であることが好ましい。結晶化度が小さい(非晶質相の割合が大きい)ほど、繰り返し充放電時の体積変化を緩和でき、良好なサイクル特性が得られやすい。
 結晶化度は、CuKα線を用いた粉末X線回折測定によって得られる2θ値で10~60°の回折線プロファイルから求められる。具体的には、回折線プロファイルからバックグラウンドを差し引いて得られた全散乱曲線から、10~45°におけるブロードな回折線(非晶質ハロー)をピーク分離して求めた積分強度をIa、10~60°において検出される各結晶性回折線をピーク分離して求めた積分強度の総和をIcとした場合、結晶化度Xcは次式から求められる。
  Xc=[Ic/(Ic+Ia)]×100(%)
 CuKα線を用いた粉末X線回折測定によって、Siの結晶子サイズを測定することができる。Siの結晶子サイズは、100nm以下であることが好ましく、80nm以下であることがより好ましく、50nm以下であることが特に好ましい。Siの結晶子サイズを小さくすることにより、サイクル特性が向上する。Siの結晶子サイズの下限値は、特に限定されるものではないが、一般には0.3nm以上であることが好ましい。
 前記蓄電デバイス用負極活物質の形状は特に限定されないが、粉末状であることが好ましい。粉末状である場合、平均粒子径は、0.1~20μm、0.3~15μm、0.5~10μm、特に1~5μmであることが好ましい。また、最大粒子径は、150μm以下、100μm以下、75μm以下、特に55μm以下であることが好ましい。平均粒子径または最大粒子径が大きすぎると、充放電した際にリチウムイオンの吸蔵および放出に伴う負極活物質の体積変化を緩和できず、集電体から剥れやすくなる。その結果、繰り返し充放電を行うと、放電容量が著しく低下する傾向がある。一方、平均粒子径が小さすぎると、ペースト化した際に粉末の分散状態に劣り、均一な電極を製造することが困難になる傾向がある。
 ここで、平均粒子径と最大粒子径は、それぞれ一次粒子のメジアン径でD50(50%体積累積径)とD99(99%体積累積径)を示し、レーザー回折式粒度分布測定装置により測定された値をいう。
 なお、酸化物材料、非酸化物材料を含んだ原料を用いて、前記の製造方法により製造された蓄電デバイス用負極活物質は、一般式SiM(0<x<4、MはSi、Al、Ti、Li、Mg、Zr、Caから選ばれる少なくとも1種)で表される材料を含む構成となる。
 また、前記原料が、炭素材料を含むことにより、前記の製造方法により製造された蓄電デバイス用負極活物質は、炭素材料を含む構成となる。
 また、前記蓄電デバイス用負極活物質は、一般式SiMで表される材料中に炭素材料が分散した構成となりやすい。
 また、酸化物材料としてガラスを用いることにより、得られる負極活物質には、SiO以外のガラス成分が含まれる。SiO以外のガラス成分としては、例えば、Al、P、B、Bi、MgO、CaO、SrO、BaO、TiO、ZrO、LiO、NaO、KO、SnO、MnO、ZnOなどが挙げられる。負極活物質中のSiO以外のガラス成分の含有量は、質量%で、70%以下であることが好ましく、50%以下であることがより好ましく、40%以下であることが特に好ましい。負極活物質中のSiO以外のガラス成分の含有量の下限値は、特に限定されるものではないが、一般には5%以上である。
 本発明の製造方法により得られた蓄電デバイス用負極活物質に対し、結着剤や導電助剤を添加することにより蓄電デバイス用負極が得られる。
 結着剤としては、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ヒドロキシメチルセルロースなどのセルロース誘導体またはポリビニルアルコール等の水溶性高分子;熱硬化性ポリイミド、フェノール樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン等の熱硬化性樹脂;ポリフッ化ビニリデンなどが挙げられる。
 導電助剤としては、アセチレンブラックやケッチェンブラック等の高導電性カーボンブラック、グラファイト等のカーボン粉末、炭素繊維などが挙げられる。
 蓄電デバイス用負極活物質を、集電体としての役割を果たす金属箔等の表面に塗布することで蓄電デバイス用負極として用いることができる。
 なお、本発明の負極活物質を用いて作製した蓄電デバイスを充放電した後は、負極活物質中に金属リチウムやリチウム酸化物(ケイ酸、リン酸、ホウ酸等の酸化物とリチウム原子が複合化されたリチウム複合酸化物も含む)等の酸化物、Si金属等、Si-Li合金等を含有する場合がある。
 本発明の方法により製造される負極活物質は、リチウムイオン二次電池だけでなく、他の非水系二次電池や、さらには、リチウムイオン二次電池用の負極活物質と非水系電気二重層キャパシタ用の正極活物質とを組み合わせたハイブリットキャパシタ等にも適用できる。
 ハイブリットキャパシタであるリチウムイオンキャパシタは、正極と負極の充放電原理が異なる非対称キャパシタの1種である。リチウムイオンキャパシタは、リチウムイオン二次電池用の負極と電気二重層キャパシタ用の正極を組み合わせた構造を有している。ここで、正極は表面に電気二重層を形成し、物理的な作用(静電気作用)を利用して充放電するのに対し、負極は既述のリチウムイオン二次電池と同様にリチウムイオンの化学反応(吸蔵および放出)により充放電する。
 リチウムイオンキャパシタの正極には、活性炭、ポリアセン、メソフェーズカーボンなどの高比表面積の炭素質粉末などからなる正極活物質が用いられる。一方、負極には、本発明の方法により製造される負極活物質を用いることができる。
 [実施例]
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はかかる実施例に限定されるものではない。
 (実施例1~3及び比較例1~3)
 (1)負極活物質の作製
 実施例1~3の負極活物質は、SiOを含有する酸化物材料、非酸化物材料、炭素材料であるアセチレンブラックからなる原料を表1に記載の質量%になるように秤量し、その原料30gとφ5mmZrOボールを1kgとを500mL ZrOポットに入れ、遊星型ボールミル(Fritch社製P6)を用いて表1に記載の処理条件でメカノミリング処理することにより作製した。
 比較例1~3の負極活物質は、それぞれ、結晶性Si粉末、金属Sn粉末、気相合成法で製造されたSiO粉末とした。
 得られた負極活物質について、上記の粉末X線回折測定によって、負極活物質の結晶化度及び結晶子サイズを測定し、結果を表1に示した。なお、結晶子サイズは、Siの結晶子サイズである。
 (2)負極の作製
 得られた負極活物質と導電助剤と結着剤を重量パーセントで80:5:15の割合になるように秤量し、脱水したN-メチルピロリドンに分散した後、自転・公転ミキサーで十分に撹拌してスラリー化した。ここで、導電助剤としてはSuperC65(Timcal社製)、結着剤としては熱硬化性ポリイミド樹脂を用いた。
 次に、隙間75μmのドクターブレードを用いて、得られたスラリーを負極集電体である厚さ20μmの銅箔上にコートし、70℃の乾燥機で真空乾燥後、一対の回転ローラー間に通してプレスすることにより電極シートを得た。この電極シートを電極打ち抜き機で直径11mmに打ち抜き、温度200℃にて8時間、減圧下で乾燥させて円形の作用極(非水二次電池用負極)を得た。
 (3)試験電池の作製
 コインセルの下蓋に、前記作用極を銅箔面を下に向けて載置し、その上に70℃で8時間減圧乾燥した直径16mmのポリプロピレン多孔質膜(ヘキストセラニーズ社製 セルガード#2400)からなるセパレータ、および対極である金属リチウムを積層し、試験電池を作製した。電解液としては、1M LiPF溶液/EC:DEC=1:1(EC=エチレンカーボネート、DEC=ジエチルカーボネート)を用いた。なお試験電池の組み立ては露点温度-40℃以下の環境で行った。
 (4)充放電試験
 前記試験電池に対し、0.2Cレートで1Vから0VまでCC(定電流)充電(負極活物質へのリチウムイオンの吸蔵)を行い、負極活物質の単位重量中に充電された電気量を求め充電容量(mAh/g)を求めた。次に、0.2Cレートの定電流で0Vから1Vまで放電(負極活物質からのリチウムイオンの放出)させ、負極活物質の単位重量中に放電された電気量を求め放電容量(mAh/g)を求めた。表2に、充放電特性の結果を示す。なお、放電容量維持率は初回放電容量と50サイクル目の放電容量の割合をいう。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上のように、実施例1~3において作製された負極活物質は、初回放電容量が670~752mAh/gと高く、放電容量維持率94~96%と良好であった。一方、比較例1および2の負極活物質は、初回放電容量は高かったが、放電容量維持率が21~31%と著しく低下した。比較例3の負極活物質は、放電容量維持率が79%と低く、さらに初回放電容量も483mAh/gと低かった。
 (実施例4~9及び比較例4~5)
 SiOを含有する酸化物材料、非酸化物材料、炭素材料であるアセチレンブラックからなる原料を、表3に記載の組成になるように秤量し、上記実施例1~3と同様にして、負極活物質を製造した。なお、実施例4及び5においては、酸化物材料として、上記実施例1~3と同様の株式会社ニッチツ製の高純度珪石粉(商品名ワコムジル:品番HS6-3000,平均粒径11μm)を用いた。実施例6~9においては、酸化物材料として、ガラスを用いた。
 比較例4では、実施例4と同じ原料を用い、メカニカルミリング処理を行わずに、混合物である原料を負極活物質として用いた。比較例5では、酸化物材料として、Al粉末を用いた。
 得られた負極活物質について、上記の粉末X線回折測定によって、負極活物質の結晶化度及び結晶子サイズを測定し、結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
 得られた負極活物質を用いて、上記実施例1~3と同様にして、試験電池を作製し、充放電試験を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 以上のように、実施例4~9において作製された負極活物質は、Siの結晶子サイズが、100nm以下であり、初回放電容量が708~1466mAh/gと高く、放電容量維持率85~99%と良好であった。一方、比較例4の負極活物質は、放電容量維持率が5%と低く、さらに初回放電容量も506mAh/gと低かった。また、比較例5の負極活物質は、初回放電容量は高かったが、放電容量維持率が53%と著しく低下した。
 本発明により得られる蓄電デバイス用負極活物質は、例えば、移動体通信機器、携帯用電子機器、電動自転車、電動二輪車、電気自動車等の主電源等の用途に利用することが可能である。

Claims (12)

  1.  SiOを含有する酸化物材料と、Si、Al、Ti、Li、Mg、Zr、Caから選ばれる少なくとも1種を含有する非酸化物材料と、を含む原料をメカニカルミリング処理する工程を含むことを特徴とする蓄電デバイス用負極活物質の製造方法。
  2.  前記酸化物材料が、質量%で、SiO 30%以上を含有することを特徴とする請求項1に記載の蓄電デバイス用負極活物質の製造方法。
  3.  前記酸化物材料として、ガラスを用いることを特徴とする請求項1または2に記載の蓄電デバイス用負極活物質の製造方法。
  4.  前記原料が、炭素材料を含有することを特徴とする請求項1~3のいずれかに記載の蓄電デバイス用負極活物質の製造方法。
  5.  前記原料が、質量%で酸化物材料 5~95%、非酸化物材料 5~95%、炭素材料 0~20%を含有することを特徴とする請求項1~4のいずれかに記載の蓄電デバイス用負極活物質の製造方法。
  6.  前記メカニカルミリング処理は、非酸化性雰囲気中で行うことを特徴とする請求項1~5のいずれかに記載の蓄電デバイス用負極活物質の製造方法。
  7.  請求項1~6のいずれかの製造方法によって製造された蓄電デバイス用負極活物質。
  8.  一般式SiM(0<x<4、MはSi、Al、Ti、Li、Mg、Zr、Caから選ばれる少なくとも1種)で表される材料を含むことを特徴とする蓄電デバイス用負極活物質。
  9.  炭素材料を含むことを特徴とする請求項8に記載の蓄電デバイス用負極活物質。
  10.  一般式SiMで表される材料中に炭素材料が分散してなることを特徴とする請求項9に記載の蓄電デバイス用負極活物質。
  11.  Siの結晶子サイズが100nm以下であることを特徴とする請求項8~10のいずれかに記載の蓄電デバイス用負極活物質。
  12.  SiO以外のガラス成分を含むことを特徴とする請求項8~11のいずれかに記載の蓄電デバイス用負極活物質。
PCT/JP2013/082413 2012-12-12 2013-12-03 蓄電デバイス用負極活物質およびその製造方法 WO2014091962A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013554741A JP6331395B2 (ja) 2012-12-12 2013-12-03 蓄電デバイス用負極活物質およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-271290 2012-12-12
JP2012271290 2012-12-12

Publications (1)

Publication Number Publication Date
WO2014091962A1 true WO2014091962A1 (ja) 2014-06-19

Family

ID=50934254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082413 WO2014091962A1 (ja) 2012-12-12 2013-12-03 蓄電デバイス用負極活物質およびその製造方法

Country Status (2)

Country Link
JP (1) JP6331395B2 (ja)
WO (1) WO2014091962A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124783A (ja) * 2014-12-26 2016-07-11 株式会社半導体エネルギー研究所 珪素酸化物及び蓄電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097874A (ja) * 1996-08-02 1998-04-14 Fuji Photo Film Co Ltd 非水二次電池
JP2005243640A (ja) * 2004-02-25 2005-09-08 Samsung Sdi Co Ltd リチウム二次電池用負極活物質,その製造方法及びこの負極活物質を含むリチウム二次電池
JP2009070825A (ja) * 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011102864T8 (de) * 2010-08-31 2013-08-29 Toyota Jidosha Kabushiki Kaisha Anodenmaterial, Lithiumsekundärbatterie und Verfahren zum Herstellen von Anodenmaterial
JP2012178224A (ja) * 2011-01-31 2012-09-13 Dow Corning Toray Co Ltd 表面炭素被覆ケイ素含有炭素系複合材料の製造方法
JP2012169300A (ja) * 2012-06-06 2012-09-06 Hitachi Maxell Energy Ltd 非水二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097874A (ja) * 1996-08-02 1998-04-14 Fuji Photo Film Co Ltd 非水二次電池
JP2005243640A (ja) * 2004-02-25 2005-09-08 Samsung Sdi Co Ltd リチウム二次電池用負極活物質,その製造方法及びこの負極活物質を含むリチウム二次電池
JP2009070825A (ja) * 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124783A (ja) * 2014-12-26 2016-07-11 株式会社半導体エネルギー研究所 珪素酸化物及び蓄電池
JP2021095332A (ja) * 2014-12-26 2021-06-24 株式会社半導体エネルギー研究所 負極活物質、及びリチウムイオン二次電池

Also Published As

Publication number Publication date
JPWO2014091962A1 (ja) 2017-01-05
JP6331395B2 (ja) 2018-05-30

Similar Documents

Publication Publication Date Title
JP7288059B2 (ja) シリコン酸素複合負極材料、その調製方法及びリチウムイオン電池
JP6300176B2 (ja) ナトリウム二次電池用負極活物質
JP7178404B2 (ja) フッ化物イオン二次電池用負極活物質、当該活物質を用いた負極、およびフッ化物イオン二次電池、並びに当該活物質の製造方法
JP5645056B2 (ja) 蓄電デバイス用負極活物質ならびにこれを用いた蓄電デバイス用負極材料および蓄電デバイス用負極
WO2012063745A1 (ja) 蓄電デバイス用負極材料およびそれを用いた蓄電デバイス用負極
JP2012182115A (ja) 蓄電デバイス用負極活物質の製造方法
WO2011030486A1 (ja) 珪素酸化物およびリチウムイオン二次電池用負極材
JP2014130826A (ja) 蓄電デバイス用負極活物質及びその製造方法
JP6273868B2 (ja) 蓄電デバイス用負極活物質およびその製造方法
JP2015198000A (ja) 蓄電デバイス用負極活物質、蓄電デバイス用負極材料および蓄電デバイス
JP2020064701A (ja) 全固体電池、およびその製造方法
JP6331395B2 (ja) 蓄電デバイス用負極活物質およびその製造方法
JP2012204266A (ja) 蓄電デバイス用負極活物質、ならびに、それを用いた蓄電デバイス用負極材料および蓄電デバイス用負極
JP7405342B2 (ja) ナトリウムイオン二次電池用負極活物質及びその製造方法
JP6241130B2 (ja) 蓄電デバイス用負極活物質
JP6175906B2 (ja) 蓄電デバイス用負極活物質およびその製造方法
JP6183590B2 (ja) 蓄電デバイス用負極活物質およびその製造方法
WO2020058674A1 (en) Lithium metal phosphate, its preparation and use
JP6135156B2 (ja) 蓄電デバイス用負極活物質粉末、ならびに、それを用いた蓄電デバイス用負極材料および蓄電デバイス用負極
JP5597015B2 (ja) 蓄電デバイスの負極材料とその製造方法
JP2014146431A (ja) 蓄電デバイス用正極材料
JP5892364B2 (ja) 酸化物材料の製造方法
WO2024117146A1 (ja) 固体電解質、正極用固体電解質、複合体、蓄電素子用正極及び蓄電素子
WO2011049158A1 (ja) 蓄電デバイス用負極活物質及びその製造方法
WO2022176790A1 (ja) ナトリウムイオン二次電池用負極活物質

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013554741

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862240

Country of ref document: EP

Kind code of ref document: A1