WO2014087483A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2014087483A1
WO2014087483A1 PCT/JP2012/081393 JP2012081393W WO2014087483A1 WO 2014087483 A1 WO2014087483 A1 WO 2014087483A1 JP 2012081393 W JP2012081393 W JP 2012081393W WO 2014087483 A1 WO2014087483 A1 WO 2014087483A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
generator
torque
lower limit
engine
Prior art date
Application number
PCT/JP2012/081393
Other languages
English (en)
French (fr)
Inventor
大騎 佐藤
真人 中野
正隆 杉山
佑公 原田
佐藤 彰洋
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013535198A priority Critical patent/JP5668863B2/ja
Priority to PCT/JP2012/081393 priority patent/WO2014087483A1/ja
Priority to DE112012007199.9T priority patent/DE112012007199T5/de
Priority to US13/982,143 priority patent/US20150321659A1/en
Priority to CN201280010951.6A priority patent/CN104080674A/zh
Publication of WO2014087483A1 publication Critical patent/WO2014087483A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/40Torque distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/905Combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a control device applied to a hybrid vehicle including an engine and an electric motor as driving power sources.
  • a hybrid vehicle in which engine power is divided into a first electric motor and an output unit, and a second electric motor is connected to the output unit via a gear is well known.
  • the torque of the second electric motor is around 0 Nm
  • the pressing against the output part of the gear interposed between the output part and the second electric motor becomes loose.
  • the rotation fluctuation of the engine is transmitted to the output unit, so that the output unit and the gear collide with each other between the backlashes to generate a rattling sound. Therefore, in order to suppress such rattling noise, when the torque of the second electric motor falls within a predetermined range including 0, a control device that reduces engine rotation fluctuation by changing the operating point of the engine to the high rotation side. (Patent Document 1).
  • One method of changing the operating point of the engine is a method of switching to a non-differential state in which the function of the differential mechanism that divides the power of the engine is stopped by fixing a rotating element to which the first electric motor is connected. . If the operating point of the engine is changed by this method, the engine speed is transmitted to the output unit without being distributed to the first electric motor, and therefore the engine speed and the vehicle speed have a one-to-one correspondence. Therefore, when the differential mechanism is switched to the non-differential state, the change of the engine operating point is limited to the vehicle speed, so the engine operating point cannot be changed with equal power. Therefore, when the differential mechanism is non-differential, it is necessary to compensate for the lack of required driving force with the torque output by the second electric motor.
  • the torque that should be output by the second electric motor is reduced.
  • the torque of the second motor may fall within the range where the rattling noise is generated, and the rattling noise may not be suppressed.
  • an object of the present invention is to provide a control device for a hybrid vehicle that can suppress rattling noise that may occur when the differential mechanism is in a non-differential state.
  • the control device of the present invention includes an engine, a first motor / generator, an output unit for transmitting torque to drive wheels, and a difference for distributing the engine torque to the first motor / generator and the output unit.
  • the dynamic mechanism and the lock of the differential mechanism can be switched from a differential state in which the torque of the engine is distributed to the first motor / generator and the output unit to a non-differential state in which the distribution is stopped.
  • a control device applied to a hybrid vehicle including a second motor / generator coupled to the output unit via a gear when the differential mechanism is in the non-differential state.
  • Torque lower limit value setting means for setting a lower limit value of torque output by the second motor / generator, and the second motor / generator output when the differential mechanism is in the non-differential state.
  • Those comprising a motor control means for controlling said second motor-generator so that the magnitude of the torque equal to or greater than the magnitude of the lower limit value.
  • the magnitude of torque output from the second motor / generator is controlled to be equal to or greater than the magnitude of the lower limit value.
  • the gear interposed between the two parts and the output part are kept pressed against each other. Accordingly, it is possible to suppress the rattling noise generated when the gear and the output unit collide with each other between the backlashes.
  • the engine has a plurality of cylinders, and a partial cylinder operation in which some of the plurality of cylinders are deactivated and the remaining cylinders are operated, and the plurality of cylinders are operated. All-cylinder operation that operates all cylinders, and further includes engine control means for causing the engine to execute the partial cylinder operation and the full cylinder operation, wherein the torque lower limit value setting means includes the all cylinders.
  • the lower limit value may be set so that the lower limit value during operation is smaller than the lower limit value during partial cylinder operation.
  • the second motor / generator In order to suppress rattling noise, if the differential motor is in a non-differential state and the magnitude of the torque of the second motor / generator is controlled to be greater than or equal to the lower limit, the second motor / generator cannot generate power. Motor generator consumes power. For this reason, when a battery is provided as a power supply source for each motor / generator, the power stored in the battery is consumed in a state in which the battery is not charged. In order to suppress a decrease in the amount of electricity stored in the battery, it is desirable to reduce the power consumption by reducing the lower limit value of the torque output by the second motor / generator as much as possible. However, if the size of the lower limit value is reduced, the pressing force of the gear against the output portion becomes loose, so that the effect of suppressing the rattling noise is reduced.
  • the engine that can execute the partial cylinder operation and the full cylinder operation has different magnitudes of fluctuations in the engine speed when performing the partial cylinder operation and when performing the full cylinder operation. Since the fluctuation of the engine speed is transmitted as the fluctuation of the rotation speed of the output unit, the generation of the rattling noise and the magnitude thereof are affected by the magnitude of the fluctuation of the engine speed. The smaller the fluctuation of the engine speed, the more the rattling noise can be suppressed even if the force with which the gear is pressed against the output portion is small. The fluctuation of the engine speed is smaller in the full cylinder operation than in the partial cylinder operation.
  • the magnitude of the lower limit value of the torque of the second motor / generator is set in accordance with the magnitude of the fluctuation of the engine speed in each of the partial cylinder operation and the full cylinder operation.
  • the effect of suppressing the rattling noise can be obtained while suppressing the power consumption of the motor / generator as much as possible.
  • the vehicle further includes a battery as a power supply source to the first motor / generator and the second motor / generator
  • the motor control means includes: When the charged amount is high, a positive torque in the direction of transmission from the second motor / generator to the output unit is output at a level equal to or greater than the lower limit value, and when the charged amount of the battery is low, the output unit outputs the first torque.
  • the second motor / generator may be controlled such that a negative torque in a direction to be transmitted to the two-motor / generator is output at a value greater than or equal to the lower limit value.
  • the torque lower limit value setting means sets the first value as the lower limit value during the partial cylinder operation and the second value as the lower limit value during the full cylinder operation, and the engine.
  • the lower limit value is gradually changed from the first value to the second value or from the second value to the first value. It may be changed to.
  • the lower limit value changes before and after the switching.
  • the torque of the second motor / generator changes due to the change of the lower limit value, the required driving force can be satisfied by correcting the engine torque.
  • a response delay occurs with respect to the engine torque correction command, so that there is a possibility that the output with respect to the requested driving force becomes excessive and insufficient and a shock occurs.
  • the lower limit value of the torque of the second motor / generator gradually changes when the operation of the engine is switched, the change in the torque of the second motor / generator can be reduced. Therefore, it is possible to suppress the occurrence of shock at the time of transition of engine operation.
  • the torque lower limit value setting means sets the lower limit value so as to change according to a parameter that affects a rattling sound generated between the output unit and the gear. Also good.
  • the lower limit value can be made as small as possible. Thereby, the power consumption of the second motor / generator can be further suppressed.
  • the time chart which showed the change of the engine operating mode switching and the lower limit of motor torque. 6 is a flowchart illustrating an example of a control routine according to an embodiment of the present invention.
  • the vehicle 1 is configured as a hybrid vehicle in which a plurality of power sources are combined.
  • the vehicle 1 includes an engine 3 and two motor generators 4 and 5 as driving power sources.
  • the engine 3 is configured as an in-line four-cylinder internal combustion engine including four cylinders 10.
  • the engine 3 can execute a partial cylinder operation in which two of the four cylinders 10 are deactivated and the remaining two are operated in addition to the full cylinder operation in which all the four cylinders 10 are operated.
  • the engine 3 and the first motor / generator 4 are connected to a power split mechanism 6 as a differential mechanism.
  • the first motor / generator 4 has a stator 4a and a rotor 4b.
  • the first motor / generator 4 functions as a generator that generates power by receiving the power of the engine 3 distributed by the power split mechanism 6 and also functions as an electric motor driven by AC power.
  • the second motor / generator 5 includes a stator 5a and a rotor 5b, and functions as an electric motor and a generator, respectively.
  • Each motor / generator 4, 5 is connected to a battery 16 via a motor control device 15.
  • the motor control device 15 converts the electric power generated by each motor / generator 4, 5 into direct current and stores it in the battery 16, and converts the electric power of the battery 16 into alternating current and supplies it to each motor / generator 4, 5.
  • the power split mechanism 6 is configured as a single pinion type planetary gear mechanism.
  • the power split mechanism 6 is a planetary that holds a sun gear S as an external gear, a ring gear R as an internal gear arranged coaxially with the sun gear S, and a pinion P meshing with these gears S and R so as to be able to rotate and revolve.
  • Carrier C The engine torque output from the engine 3 is transmitted to the planetary carrier C of the power split mechanism 6.
  • the rotor 4 b of the first motor / generator 4 is connected to the sun gear S of the power split mechanism 6.
  • Torque output from the power split mechanism 6 via the ring gear R is transmitted to the output gear train 20.
  • the output gear train 20 functions as an output unit for transmitting torque to the drive wheels 18.
  • the output gear train 20 includes an output drive gear 21 that rotates integrally with the ring gear R of the power split mechanism 6, and an output driven gear 22 that meshes with the output drive gear 21.
  • a second motor / generator 5 is connected to the output driven gear 22 via a gear 23.
  • the gear 23 rotates integrally with the rotor 5 b of the second motor / generator 5. Torque output from the output driven gear 22 is distributed to the left and right drive wheels 18 via the differential device 24.
  • the power split mechanism 6 is provided with a motor lock mechanism 25 as a lock means.
  • the motor lock mechanism 25 divides the state of the power split mechanism 6 into a differential state in which the torque of the engine 3 is distributed to the first motor / generator 4 and the output gear train 20 and a non-differential state in which the distribution is stopped. You can switch between them.
  • the motor lock mechanism 25 is configured as a wet multi-plate type brake mechanism. The motor lock mechanism 25 is switched between an engaged state in which the rotation of the rotor 4b of the first motor / generator 4 is prevented and a released state in which the rotation of the rotor 4b is allowed. Switching between the engaged state and the released state of the motor lock mechanism 25 is performed by a hydraulic actuator (not shown).
  • Control of each part of the vehicle 1 is controlled by an electronic control unit (ECU) 30.
  • the ECU 30 performs various controls on the engine 3, the motor / generators 4 and 5, the motor lock mechanism 25, and the like.
  • main control performed by the ECU 30 in relation to the present invention will be described.
  • Various information on the vehicle 1 is input to the ECU 30.
  • the rotational speed and torque of each motor / generator 4, 5 are input to the ECU 30 via the motor control device 15.
  • the ECU 30 also receives an output signal of an accelerator opening sensor 32 that outputs a signal corresponding to the amount of depression of the accelerator pedal 31 and an output signal of a vehicle speed sensor 33 that outputs a signal corresponding to the vehicle speed of the vehicle 1. Is done.
  • the ECU 30 calculates the required driving force requested by the driver with reference to the output signal of the accelerator opening sensor 32 and the output signal of the vehicle speed sensor 33, and performs various operations so that the system efficiency for the required driving force is optimized.
  • the ECU 30 sets the state of the power split mechanism 6 to the operating state, and uses the power of the split engine 3 to generate power with the first motor / generator 4 and the power split mode.
  • the state of the mechanism 6 is switched to the non-differential state by operating the motor lock mechanism 25 to stop the distribution of the power of the engine 3 to the first motor / generator 4 and to output the power of the engine 3 to the output gear train 20.
  • Switch between differential operation mode according to the situation.
  • the engine 3 is controlled by the ECU 30 such that the operating point E defined by the engine speed and the engine torque moves on the preset normal line L.
  • the A curve Lp that intersects the normal line L is an equal power line.
  • the normal line L is determined in advance by a simulation or a test using an actual machine so that the fuel consumption of the engine 3 is optimal and noise can be reduced.
  • the switching to the non-differential operation mode is performed, for example, when the first motor / generator 4 exceeds the allowable limit and becomes high temperature or when the differential operation mode is performed, the rotation of the first motor / generator 4 is negative. This is performed when so-called power circulation that is rotating should be avoided.
  • the non-differential operation mode the engine speed and the vehicle speed have a one-to-one relationship. Therefore, the operating point of the engine 3 cannot be controlled on the normal line L without being restricted by the vehicle speed as in the differential operation mode.
  • the control of this embodiment is characterized by the control performed by the ECU 30 in the non-differential operation mode.
  • the required driving force is output as a sum of the engine torque and the motor torque, it is possible to cover all of the required driving force with the engine torque.
  • the non-differential operation mode fluctuations in the rotational speed of the engine 3 are transmitted as fluctuations in the rotational speed of the output gear train 20, so that if the magnitude of the motor torque of the second motor / generator 5 is small, the output Between the backlash between the output driven gear 22 and the gear 23 of the gear train 20, the gear portions of the gears 22 and 23 collide with each other to generate a rattling sound.
  • the ECU 30 sets a lower limit value for the motor torque, and the second motor / generator 5 is set so that the torque output from the second motor / generator 5 is equal to or greater than the lower limit value.
  • the ECU 30 does not cover all of the required driving force with the engine torque, but outputs the required driving force by causing the second motor / generator 5 to output a torque equal to or greater than the lower limit value.
  • the engine 3 is controlled such that the operating point E of the engine 3 is positioned on the lower torque side than the engine torque Te1 that can realize the required driving force.
  • the second motor / generator 5 is controlled such that the shortage te to be the engine torque Te1 is compensated by the motor torque Tm.
  • the engine 3 can perform full cylinder operation and partial cylinder operation.
  • the engine 3 has different output characteristics when the full cylinder operation is executed and when the partial cylinder operation is executed.
  • the partial cylinder operation the combustion of some cylinders 10 is stopped, so when the required driving force is low, the fuel efficiency is improved as compared with the case where the full cylinder operation is performed. Larger than in the case of all cylinder operation.
  • the ECU 30 sets the lower limit value of the motor torque in accordance with the output characteristics of the full cylinder operation and the partial cylinder operation. That is, the ECU 30 is set so that the lower limit value of the motor torque during all cylinder operation is smaller than the lower limit value of the motor torque during partial cylinder operation.
  • the ECU 30 sets the lower limit value of the motor torque to a small size. Switch from B to A with larger size.
  • the lower limit value of the motor torque is set so as to match the magnitude of fluctuations in the engine speeds of the partial cylinder operation and the full cylinder operation, so that the power consumption of the second motor / generator is suppressed as much as possible. It is possible to obtain a rattling noise suppressing effect.
  • step S1 the ECU 30 determines whether or not the power split mechanism 6 is in a non-differential state, that is, whether or not the first motor / generator 4 is locked by the motor lock mechanism 25. If it is in the non-differential state, the process proceeds to step S2. If it is not in the non-differential state, the subsequent processing is skipped and the current routine is terminated.
  • step S2 the ECU 30 determines whether or not the operation mode of the engine 3 is a partial cylinder operation. In the case of partial cylinder operation, the process proceeds to step S3. If it is not partial cylinder operation, that is, if it is all cylinder operation, the process proceeds to step S4.
  • step S3 the ECU 30 sets the lower limit value of the motor torque of the second motor / generator 5 to A.
  • step S4 the ECU 30 sets the lower limit value of the motor torque of the second motor / generator 5 to B.
  • the size of A is larger than the size of B.
  • the ECU 30 functions as a torque lower limit setting means according to the present invention.
  • Each of A and B may be a fixed value, but may be changed according to the situation as long as the absolute value, that is, the size relationship is maintained.
  • the motor torque may be a positive torque transmitted in the direction from the second motor / generator 5 to the output gear train 20 or a negative torque transmitted in the direction transmitted from the output gear train 20 to the second motor / generator 5. .
  • each of A and B includes a positive value and a negative value.
  • step S5 the ECU 30 corrects the engine torque of the engine 3 based on the lower limit value of the motor torque. This correction is performed using the following equation 1 when the lower limit value of the motor torque is Tm, the corrected engine torque is Te, the required driving force is Td, and the gear ratio of the gears 22 and 23 is ⁇ .
  • the ECU 30 corrects the engine torque as described above, and controls the engine 3 and the second motor / generator 5 so as to satisfy the required driving force. Torque is output. Thereby, ECU30 functions as a motor control means concerning the present invention.
  • the lower limit value of the motor torque is set so as to match the magnitude of fluctuations in the engine speeds of the partial cylinder operation and the full cylinder operation. It is possible to obtain a rattling noise suppression effect while suppressing the power consumption of the generator 5 as much as possible.
  • the motor torque of the second motor / generator 5 may be a positive torque or a negative torque.
  • the gear 23 presses the output driven gear 22.
  • the output driven gear 22 is in a state of pushing the gear 23. In any state, the gear 23 and the output driven gear 22 are held in contact with each other and the backlash is eliminated, so that rattling noise can be suppressed.
  • the case where the ECU 30 outputs positive torque from the second motor / generator 5 and the case where negative torque is output from the second motor / generator 5 are selectively used according to the amount of charge of the battery 16. .
  • the ECU 30 acquires the amount of power stored in the battery 16 by an SOC sensor (not shown).
  • the ECU 30 controls the second motor / generator 5 so that the positive torque is output at the magnitude of the lower limit value or more when the charged amount is higher than a predetermined threshold value.
  • the ECU 30 controls the second motor / generator 5 so that the negative torque is output with the magnitude of the lower limit value or more when the charged amount is equal to or less than the threshold value.
  • the setting of the lower limit value of the motor torque and the correction of the engine torque are performed in the same manner as in the first embodiment described above. That is, the magnitude of the lower limit value during all-cylinder operation is set to be smaller than the magnitude of the lower limit value during partial cylinder operation, and the engine torque is corrected based on the set lower limit value.
  • the second embodiment when changing the motor torque from the positive torque to the negative torque or from the negative torque to the positive torque, it is preferable to gradually change the motor torque according to a predetermined time change rate in order to suppress the shock.
  • the ECU 30 functions as a motor control unit according to the present invention by performing the above control.
  • the second embodiment when the storage amount of the battery 16 is high, a positive torque is output from the second motor / generator 5 and the power of the battery 16 is consumed. Occurs.
  • the storage amount of the battery 16 when the storage amount of the battery 16 is low, negative torque is output from the second motor / generator 5. In other words, torque is input to the second motor / generator 5 to enable power generation.
  • the amount of power stored in the battery 16 can be maintained in a state with a margin with respect to each of the upper limit and the lower limit. Therefore, the tolerance with respect to the change in the charged amount of the battery 16 is improved.
  • the third mode is characterized in that the lower limit value is gradually changed when the lower limit value of the motor torque is changed.
  • the torque of the second motor / generator 5 changes due to the change in the lower limit value of the motor torque, the required driving force can be satisfied by correcting the engine torque.
  • a response delay occurs with respect to the engine torque correction command, so that there is a possibility that the output with respect to the requested driving force becomes excessive and insufficient and a shock occurs. Therefore, the ECU 30 gradually changes the lower limit value of the motor torque when the operation mode is switched between the full cylinder operation and the partial cylinder operation.
  • the ECU 30 sets the lower limit value of the motor torque to the second value between time t1 and time t2. Gradually increase from B, which is, to A, which is the first value. Similarly, in the case of switching in the reverse direction, the ECU 30 gradually decreases the lower limit value of the motor torque from A to B within a predetermined period.
  • the third embodiment since the lower limit value of the motor torque gradually changes when the operation of the engine 3 is switched, the change in the torque of the second motor / generator 5 can be mitigated. Therefore, it is possible to suppress the occurrence of a shock at the time of switching operation of the engine 3.
  • the present invention is not limited to the above embodiments, and can be implemented in various forms within the scope of the gist of the present invention. It is only an example to make the lower limit of the motor torque different between the full cylinder operation and the partial cylinder operation.
  • a common lower limit value may be set for all cylinder operation and partial cylinder operation to suppress rattling noise.
  • the engine to which the present invention can be applied is not limited to an engine capable of performing full cylinder operation and partial cylinder operation.
  • the lower limit value of the motor torque may be one kind. Even when one kind of lower limit value is set, it is possible to selectively use positive torque and negative torque according to the amount of charge of the battery in combination with the second embodiment.
  • Gear noise is affected by parameters such as engine water temperature, transmission oil temperature, vehicle speed, and engine speed. Therefore, the lower limit value can be changed in accordance with a parameter that affects such rattling noise. Since the lower limit value can be made as small as possible by setting the lower limit value according to the parameter that affects the rattling noise, the power consumption of the second motor / generator can be further suppressed.
  • the first motor / generator 4 is locked by the motor lock mechanism 25 to switch the power split mechanism 6 as a differential mechanism from the differential state to the non-differential state.
  • the locking means for switching the differential mechanism from the differential state to the non-differential state is not limited to the case of preventing the rotation of the first motor / generator itself.
  • the power transmission path from the differential mechanism to the first motor / generator is separated by a clutch, and the locking mechanism is implemented in such a manner that the elements on the differential mechanism side are fixed, and the differential mechanism is in a differential state by the locking mechanism. It is also possible to switch from a non-differential state.

Abstract

 本発明の制御装置は、第2モータ・ジェネレータ(5)がギア(23)を介して出力ギア列(20)に連結された車両(1)に適用される。この制御装置は、第1モータ・ジェネレータ(4)がモータロック機構(25)にてロックされて動力分割機構(6)が非差動状態の場合に第2モータ・ジェネレータ(5)が出力するトルクの下限値を設定し、動力分割機構(6)が非差動状態の場合に第2モータ・ジェネレータ(5)が出力するトルクの大きさが下限値の大きさ以上となるように第2モータ・ジェネレータ(5)を制御する。

Description

ハイブリッド車両の制御装置
 本発明は、走行用動力源としてエンジンと電動機とを備えたハイブリッド車両に適用される制御装置に関する。
 エンジンの動力を第1電動機と出力部とに分割し、第2電動機がギアを介して出力部に連結されたハイブリッド車両が周知である。このタイプのハイブリッド車両は、第2電動機のトルクが0Nm付近となる場合、出力部と第2電動機との間に介在するギアの出力部に対する押し付けが緩くなる。その結果、エンジンの回転変動が出力部に伝達することによって出力部とギアとがバックラッシ間で互いに衝突して歯打ち音が発生する。そこで、このような歯打ち音を抑制するため、第2電動機のトルクが0を含む所定範囲に入る場合、エンジンの動作点を高回転側に変更することによってエンジンの回転変動を低下させる制御装置がある(特許文献1)。
特開2010-179856号公報
 エンジンの動作点を変更する方法の一つとして、第1電動機が連結される回転要素を固定する等によりエンジンの動力を分割する差動機構の機能を停止させる非差動状態に切り替える方法がある。この方法によってエンジンの動作点を変更すると、エンジンの動力が第1電動機に分配されずに出力部へ伝達されるためエンジン回転数と車速とが一対一に対応する。したがって、差動機構を非差動状態に切り替えた場合にはエンジンの動作点の変更が車速に制限されるので、エンジンの動作点を等パワーで変更できない。そのため、差動機構が非差動時の場合は要求駆動力の不足を第2電動機が出力するトルクで補う必要がある。要求駆動力の大部分をエンジントルクで賄える状況であると、第2電動機が出力すべきトルクは少なくなる。その結果、第2電動機のトルクが上述した歯打ち音を発生させる範囲内に入り歯打ち音を抑えることができないおそれがある。
 そこで、本発明は、差動機構が非差動状態の場合に発生し得る歯打ち音を抑制可能なハイブリッド車両の制御装置を提供することを目的とする。
 本発明の制御装置は、エンジンと、第1モータ・ジェネレータと、駆動輪にトルクを伝達するための出力部と、前記エンジンのトルクを前記第1モータ・ジェネレータと前記出力部とに分配する差動機構と、前記差動機構の状態を、前記エンジンのトルクを前記第1モータ・ジェネレータと前記出力部とに分配する差動状態から、その分配を停止する非差動状態へ切り替え可能なロック手段と、前記出力部にギアを介して連結された第2モータ・ジェネレータと、を備えたハイブリッド車両に適用された制御装置であって、前記差動機構が前記非差動状態の場合に前記第2モータ・ジェネレータが出力するトルクの下限値を設定するトルク下限値設定手段と、前記差動機構が前記非差動状態の場合に前記第2モータ・ジェネレータが出力するトルクの大きさが前記下限値の大きさ以上となるように前記第2モータ・ジェネレータを制御するモータ制御手段と、を備えるものである。
 この制御装置によれば、差動機構が非差動状態の場合に第2モータ・ジェネレータが出力するトルクの大きさが下限値の大きさ以上に制御されるので、第2モータ・ジェネレータと出力部との間に介在するギアと出力部とが互いに押し付けられた状態に維持される。したがって、このギアと出力部とがバックラッシ間で互いに衝突することによって発生する歯打ち音を抑制できる。
 本発明の制御装置の一態様において、前記エンジンは、複数の気筒を有し、前記複数の気筒のうちの一部の気筒を休止し残りの気筒を稼働する部分気筒運転と前記複数の気筒の全ての気筒を稼働する全気筒運転とを実行可能であり、前記部分気筒運転と前記全気筒運転とを前記エンジンに実行させるエンジン制御手段をさらに備え、前記トルク下限値設定手段は、前記全気筒運転時の前記下限値の大きさが前記部分気筒運転時の前記下限値の大きさに比べて小さくなるように、前記下限値を設定してもよい。
 歯打ち音を抑制するため、差動機構が非差動状態で第2モータ・ジェネレータのトルクの大きさを下限値の大きさ以上に制御すると、第1モータ・ジェネレータが発電できない状態で第2モータ・ジェネレータが電力を消費する。そのため、各モータ・ジェネレータへの電力供給源としてバッテリが設けられている場合はバッテリへ充電されない状態でバッテリに蓄えられた電力が消費されるので、バッテリの蓄電量が低下する。バッテリの蓄電量の低下を抑制するには第2モータ・ジェネレータが出力するトルクの下限値の大きさをできるだけ小さくして電力消費量を低下させることが望ましい。しかし、その下限値の大きさを小さくすると出力部へのギアの押し付けが緩くなるので歯打ち音の抑制効果が低下する。
 部分気筒運転と全気筒運転とを実行できるエンジンは、部分気筒運転を行う場合と、全気筒運転を行う場合とでエンジン回転数の変動の大きさが異なる。エンジン回転数の変動は出力部の回転数の変動として伝達されるため、エンジン回転数の変動の大きさによって歯打ち音の発生及びその大きさが影響を受ける。エンジン回転数の変動が小さければ小さいほど出力部にギアが押し付けられる力が小さくても歯打ち音を抑制できる。エンジン回転数の変動は全気筒運転を行う方が部分気筒運転を行うよりも小さい。したがって、上記態様によれば、部分気筒運転及び全気筒運転のそれぞれのエンジン回転数の変動の大きさに合わせて第2モータ・ジェネレータのトルクの下限値の大きさが設定されるので、第2モータ・ジェネレータの消費電力を可能な限り抑制しつつ歯打ち音の抑制効果を得ることができる。
 本発明の制御装置の一態様において、前記車両は、前記第1モータ・ジェネレータ及び前記第2モータ・ジェネレータへの電力供給源としてのバッテリを更に備えており、前記モータ制御手段は、前記バッテリの蓄電量が高い場合、前記第2モータ・ジェネレータから前記出力部へ伝達する方向の正トルクが前記下限値の大きさ以上で出力され、前記バッテリの蓄電量が低い場合、前記出力部から前記第2モータ・ジェネレータへ伝達する方向の負トルクが前記下限値の大きさ以上で出力されるように、前記第2モータ・ジェネレータを制御してもよい。
 第2モータ・ジェネレータから正トルクが出力される場合はギアが出力部を押す状態となる。逆に、第2モータ・ジェネレータから負トルクが出力される場合は出力部がギアを押す状態となる。いずれの状態もギアと出力部とが互いに接触した状態に保持されてバックラッシが解消するため歯打ち音を抑制できる。上記態様によれば、バッテリの蓄電量が高い場合は第2モータ・ジェネレータから正トルクが出力されてバッテリの電力が消費されるのでバッテリの蓄電量の上限に対して余裕が生じる。一方、バッテリの蓄電量が低い場合は第2モータ・ジェネレータから負トルクが出力される。つまり、第2モータ・ジェネレータにトルクが入力されて発電が可能な状態となる。これにより、バッテリの蓄電量の下限に対して余裕が生じる。したがって、上記態様の制御を行うことによってバッテリの蓄電量をその上限及び下限のそれぞれに対して余裕のある状態に維持できる。したがって、バッテリの蓄電量の変化に対する許容度が向上する。
 本発明の制御装置の一態様において、前記トルク下限値設定手段は、前記部分気筒運転時に第1の値を、前記全気筒運転時に第2の値を前記下限値としてそれぞれ設定するとともに、前記エンジンの運転が前記部分気筒運転と前記全気筒運転との間で切り替わった時に、前記下限値を前記第1の値から前記第2の値に又は前記第2の値から前記第1の値に徐々に変化させてもよい。
 エンジンの運転が部分気筒運転と全気筒運転との間で切り替わると、その切り替え前後で下限値が変化する。下限値の変化によって第2モータ・ジェネレータのトルクが変化した場合はエンジントルクの補正によって要求駆動力を満足させることができる。しかし、切り替え過渡時においては、エンジントルクの補正指令に対して応答遅れが生じることにより、要求駆動力に対する出力に過不足が生じてショックが発生する可能性がある。上記態様によれば、エンジンの運転の切り替え時に第2モータ・ジェネレータのトルクの下限値が徐々に変化するので、第2モータ・ジェネレータのトルクの変化を緩和できる。したがって、エンジンの運転の切り替え過渡時におけるショックの発生を抑制できる。
 本発明の制御装置の一態様において、前記トルク下限値設定手段は、前記出力部と前記ギアとの間で生じる歯打ち音に影響するパラメータに応じて変化するように前記下限値を設定してもよい。歯打ち音に影響するパラメータに応じて下限値を設定することによって下限値をできる限り小さくすることが可能になる。これにより、第2モータ・ジェネレータの消費電力をさらに抑制できる。
本発明の一形態の制御装置が適用された車両の全体構成を示した図。 ハイブリッドモード時のエンジンの動作点を説明する図。 要求駆動力に対するエンジントルクとモータトルクとの関係を示した図。 エンジンの運転モードの切り替えとモータトルクの下限値の変化を示したタイムチャート。 本発明の一形態に係る制御ルーチンの一例を示したフローチャート。 モータトルクの下限値を徐々に変化させる形態の一例を示したタイムチャート。
(第1の形態)
 図1に示すように、車両1は複数の動力源を組み合わせたハイブリッド車両として構成されている。車両1は、エンジン3と、2つのモータ・ジェネレータ4、5とを走行用の動力源として備えている。エンジン3は4つの気筒10を備えた直列4気筒型の内燃機関として構成されている。エンジン3は、4つの気筒10の全てを稼働する全気筒運転の他に、4つの気筒10のうちの2つを休止し、残りの2つを稼働する部分気筒運転を実行できる。
 エンジン3と第1モータ・ジェネレータ4とは差動機構としての動力分割機構6に連結されている。第1モータ・ジェネレータ4はステータ4aとロータ4bとを有する。第1モータ・ジェネレータ4は動力分割機構6にて分配されたエンジン3の動力を受けて発電する発電機として機能するとともに、交流電力にて駆動される電動機としても機能する。同様に、第2モータ・ジェネレータ5はステータ5aとロータ5bとを有し、電動機及び発電機としてそれぞれ機能する。各モータ・ジェネレータ4、5はモータ用制御装置15を介してバッテリ16に接続される。モータ用制御装置15は各モータ・ジェネレータ4、5が発電した電力を直流変換してバッテリ16に蓄電するとともにバッテリ16の電力を交流変換して各モータ・ジェネレータ4、5に供給する。
 動力分割機構6はシングルピニオン型の遊星歯車機構として構成されている。動力分割機構6は、外歯歯車のサンギアSと、サンギアSと同軸に配置された内歯歯車のリングギアRと、これらのギアS、Rに噛み合うピニオンPを自転及び公転可能に保持するプラネタリキャリアCとを有している。エンジン3が出力するエンジントルクは動力分割機構6のプラネタリキャリアCに伝達される。第1モータ・ジェネレータ4のロータ4bは動力分割機構6のサンギアSに連結されている。動力分割機構6からリングギアRを介して出力されたトルクは出力ギア列20に伝達される。出力ギア列20は駆動輪18にトルクを伝達するための出力部として機能する。出力ギア列20は動力分割機構6のリングギアRと一体回転する出力ドライブギア21と、出力ドライブギア21に噛み合う出力ドリブンギア22とを含む。出力ドリブンギア22には、第2モータ・ジェネレータ5がギア23を介して連結されている。ギア23は第2モータ・ジェネレータ5のロータ5bと一体回転する。出力ドリブンギア22から出力されたトルクは差動装置24を介して左右の駆動輪18に分配される。
 動力分割機構6には、ロック手段としてのモータロック機構25が設けられている。モータロック機構25は、動力分割機構6の状態を、エンジン3のトルクを第1モータ・ジェネレータ4と出力ギア列20とに分配する差動状態と、その分配を停止する非差動状態との間で切り替えることができる。モータロック機構25は湿式多板タイプのブレーキ機構として構成されている。モータロック機構25は第1モータ・ジェネレータ4のロータ4bの回転を阻止する係合状態と、ロータ4bの回転を許容する解放状態との間で切り替えられる。モータロック機構25の係合状態と解放状態との切り替えは不図示の油圧アクチュエータにて実施される。モータロック機構25が係合状態に操作されると第1モータ・ジェネレータ4のロータ4bの回転が阻止される。これにより、動力分割機構6のサンギアSの回転も阻止される。このため、エンジン2のトルクが第1モータ・ジェネレータ4へ分配されることが停止されて動力分割機構6が非差動状態となる。
 車両1の各部の制御は電子制御装置(ECU)30にて制御される。ECU30はエンジン3、各モータ・ジェネレータ4、5及びモータロック機構25等に対して各種の制御を行う。以下、本発明に関連してECU30が行う主要な制御について説明する。ECU30には、車両1の各種情報が入力される。例えば、ECU30には、各モータ・ジェネレータ4、5の回転数及びトルクがモータ用制御装置15を介して入力される。また、ECU30には、アクセルペダル31の踏み込み量に対応する信号を出力するアクセル開度センサ32の出力信号と、車両1の車速に応じた信号を出力する車速センサ33の出力信号とがそれぞれ入力される。ECU30は、アクセル開度センサ32の出力信号と車速センサ33の出力信号とを参照して運転者が要求する要求駆動力を計算し、その要求駆動力に対するシステム効率が最適となるように各種のモードを切り替えながら車両1を制御する。例えば、エンジン3の熱効率が低下する低負荷領域ではエンジン3の燃焼を停止して第2モータ・ジェネレータ5を駆動するEVモードが選択される。また、内燃機関3だけではトルクが不足する場合は、エンジン3とともに第2モータ・ジェネレータ5を走行用駆動源とするハイブリッドモードが選択される。この場合、要求駆動力はエンジン3のエンジントルクと、第2モータ・ジェネレータ5のモータトルクとの合算により出力される。すなわち、エンジントルクをTe、モータトルクをTmとした場合、要求駆動力Tdは、Td=Te+Tmで定義される。
 ハイブリッドモードが選択された場合、ECU30は、動力分割機構6の状態を作動状態とし、分割されたエンジン3の動力を利用して第1モータ・ジェネレータ4で発電させる差動運転モードと、動力分割機構6の状態をモータロック機構25の操作により非差動状態に切り替えて第1モータ・ジェネレータ4へのエンジン3の動力の分配を停止し、エンジン3の動力を出力ギア列20に出力させる非差動運転モードとを状況に応じて切り替える。図2に示すように、差動運転モードの場合、エンジン3はエンジン回転数とエンジントルクとで定義された動作点Eがあらかじめ設定された通常ラインL上を移動するようにECU30にて制御される。通常ラインLと交差する曲線Lpは等パワーラインである。通常ラインLはエンジン3の燃費が最適となり、かつ騒音が低減できるようにあらかじめシミュレーションや実機を用いた試験によって定められている。
 一方、非差動運転モードへの切り替えは、例えば、第1モータ・ジェネレータ4が許容限度を超えて高温になった場合や、差動運転モードを行うと第1モータ・ジェネレータ4の回転が負回転となるいわゆる動力循環を回避すべき場合などに実施される。非差動運転モードの場合、エンジン回転数と車速とが一対一の関係となる。そのため、差動運転モードのようにエンジン3の動作点を車速の制約を受けずに通常ラインL上で制御することはできない。
 本形態の制御は非差動運転モードの場合にECU30が行う制御に特徴がある。上述したように、要求駆動力はエンジントルクとモータトルクとの合算で出力されるため要求駆動力の全てをエンジントルクで賄うことも可能である。しかし、非差動運転モードの場合はエンジン3の回転数の変動が出力ギア列20の回転数の変動として伝達されるため、第2モータ・ジェネレータ5のモータトルクの大きさが小さいと、出力ギア列20の出力ドリブンギア22とギア23との間のバックラッシ間で、これらのギア22、23の歯部が互いに衝突して歯打ち音が発生する。そこで、この歯打ち音を抑制するため、ECU30はモータトルクに下限値を設定し、第2モータ・ジェネレータ5が出力するトルクがその下限値の大きさ以上となるように第2モータ・ジェネレータ5を制御する。換言すれば、非差動運転モードの場合、ECU30は要求駆動力の全てをエンジントルクで賄わずに、下限値の大きさ以上のトルクを第2モータ・ジェネレータ5から出力させることによって要求駆動力を満足させる。すなわち、図3に示すように、非差動運転モードの場合に、要求駆動力を実現可能なエンジントルクTe1よりも低トルク側にエンジン3の動作点Eが位置するようにエンジン3を制御する。そして、エンジントルクTe1にする不足teがモータトルクTmで補われるように第2モータ・ジェネレータ5を制御する。
 非差動運転モードの場合は第1モータ・ジェネレータ4が発電しないので充放電収支が0にならずにバッテリ16の蓄電量が低下する。バッテリ16の蓄電量の低下を抑制するためには、第2モータ・ジェネレータ5が出力するモータトルクをできるだけ小さくすることが望ましい。上述したように、エンジン3は全気筒運転と部分気筒運転とを実行可能である。エンジン3は全気筒運転を実行する場合と部分気筒運転を実行する場合とで出力特性が異なる。部分気筒運転は一部の気筒10の燃焼が休止されるので要求駆動力が低い場合には全気筒運転を実行する場合よりも燃費が向上するが、エンジントルクの変動やエンジン回転数の変動は全気筒運転の場合に比べて大きい。エンジン回転数の変動が小さければ小さいほど小さなモータトルクで歯打ち音を抑制できる。したがって、歯打ち音を抑制するために必要な第2モータ・ジェネレータ5のモータトルクは、全気筒運転時のほうが部分気筒運転時に比べて小さい。そのため、ECU30は全気筒運転及び部分気筒運転のそれぞれの出力特性に合わせてモータトルクの下限値を設定している。すなわち、ECU30は全気筒運転時のモータトルクの下限値の大きさを部分気筒運転時のモータトルクの下限値の大きさよりも小さくなるように設定している。
 例えば、図4に示したように、非差動運転モードでエンジン3の運転モードが時刻t1で全気筒運転から部分気筒運転に切り替えられた場合、ECU30はモータトルクの下限値を大きさの小さいBから大きさの大きいAに切り替える。これにより、部分気筒運転及び全気筒運転のそれぞれのエンジン回転数の変動の大きさに合うようにモータトルクの下限値が設定されるので、第2モータ・ジェネレータの消費電力を可能な限り抑制しつつ歯打ち音抑制効果を得ることができる。
 次に、図5を参照しながらECU30が行う制御ルーチンの一例を説明する。図5の制御ルーチンのプログラムはECU30に保持されており、適時に読み出されて所定間隔で繰り返し実行される。ステップS1において、ECU30は動力分割機構6が非差動状態か否か、すなわちモータロック機構25によって第1モータ・ジェネレータ4がロックされているか否かを判定する。非差動状態の場合はステップS2に進み、非差動状態でない場合は以後の処理をスキップして今回のルーチンを終了する。
 ステップS2において、ECU30はエンジン3の運転モードが部分気筒運転か否かを判定する。部分気筒運転の場合はステップS3に進む。部分気筒運転でない場合、すなわち全気筒運転の場合はステップS4に進む。
 ステップS3において、ECU30は第2モータ・ジェネレータ5のモータトルクの下限値をAに設定する。ステップS4において、ECU30は第2モータ・ジェネレータ5のモータトルクの下限値をBに設定する。Aの大きさはBの大きさよりも大きい。これらのステップS3及びステップS4の実行によりECU30は本発明に係るトルク下限値設定手段として機能する。A及びBはそれぞれ固定値でよいが、絶対値つまり大きさの大小関係を維持する限度でこれらを状況に応じて変化させることもできる。なお、モータトルクは第2モータ・ジェネレータ5から出力ギア列20へ伝達する方向の正トルクの場合と、出力ギア列20から第2モータ・ジェネレータ5へ伝達する方向の負トルクの場合とがある。したがってA及びBのそれぞれは正の値と負の値とを含む。
 ステップS5において、ECU30はエンジン3のエンジントルクをモータトルクの下限値に基づいて補正する。この補正は、モータトルクの下限値をTm、補正後のエンジントルクをTe、要求駆動力をTd、ギア22、23のギア比をρとした場合、次式1を利用して行われる。
  Te=Td-(Tm×ρ)………1
 ECU30がエンジントルクを上記のように補正し、要求駆動力を満足するようにエンジン3及び第2モータ・ジェネレータ5をそれぞれ制御することにより第2モータ・ジェネレータ5から少なくとも下限値の大きさ以上のトルクが出力される。これにより、ECU30は本発明に係るモータ制御手段として機能する。
 ECU30が図5の制御ルーチンを実行することにより、部分気筒運転及び全気筒運転のそれぞれのエンジン回転数の変動の大きさに合うようにモータトルクの下限値が設定されるので、第2モータ・ジェネレータ5の消費電力を可能な限り抑制しつつ歯打ち音抑制効果を得ることができる。
(第2の形態)
 上述したように、第2モータ・ジェネレータ5のモータトルクは正トルクの場合と負トルクの場合とがある。第2モータ・ジェネレータ5から正トルクが出力される場合はギア23が出力ドリブンギア22を押す状態となる。逆に、第2モータ・ジェネレータ5から負トルクが出力される場合は出力ドリブンギア22がギア23を押す状態となる。いずれの状態もギア23と出力ドリブンギア22とが互いに接触した状態に保持されてバックラッシが解消するので歯打ち音を抑制できる。
 第2の形態は、ECU30が第2モータ・ジェネレータ5から正トルクを出力させる場合と、第2モータ・ジェネレータ5から負トルクを出力させる場合とをバッテリ16の蓄電量に応じて使い分けるものである。具体的には、ECU30は不図示のSOCセンサによってバッテリ16の蓄電量を取得する。次に、ECU30は蓄電量が所定の閾値よりも高い場合、正トルクが下限値の大きさ以上で出力されるように第2モータ・ジェネレータ5を制御する。一方、ECU30は、蓄電量が上記閾値以下の場合、負トルクが下限値の大きさ以上で出力されるように第2モータ・ジェネレータ5を制御する。モータトルクの下限値の設定及びエンジントルクの補正は上述した第1の形態と同様に行われる。すなわち、全気筒運転時の下限値の大きさは部分気筒運転時の下限値の大きさに比べて小さな値に設定され、設定された下限値に基づいてエンジントルクが補正される。なお、第2の形態において、モータトルクを正トルクから負トルクへ又は負トルクから正トルクへ変化させる場合にはショックを抑制するため所定の時間変化率に従って徐々に変化させることが好ましい。ECU30が以上の制御を実施することにより本発明に係るモータ制御手段として機能する。
 第2の形態によれば、バッテリ16の蓄電量が高い場合は第2モータ・ジェネレータ5から正トルクが出力されてバッテリ16の電力が消費されるのでバッテリ16の蓄電量の上限に対して余裕が生じる。一方、バッテリ16の蓄電量が低い場合は第2モータ・ジェネレータ5から負トルクが出力される。つまり、第2モータ・ジェネレータ5にトルクが入力されて発電が可能な状態となる。これにより、バッテリ16の蓄電量の下限に対して余裕が生じる。したがって、第2の形態の制御を行うことによってバッテリ16の蓄電量をその上限及び下限のそれぞれに対して余裕のある状態に維持できる。したがって、バッテリ16の蓄電量の変化に対する許容度が向上する。
(第3の形態)
 第3の形態は、モータトルクの下限値を変更する場合に下限値を徐々に変化させることに特徴がある。モータトルクの下限値の変化によって第2モータ・ジェネレータ5のトルクが変化した場合はエンジントルクの補正によって要求駆動力を満足させることができる。しかし、切り替え過渡時においては、エンジントルクの補正指令に対して応答遅れが生じることにより、要求駆動力に対する出力に過不足が生じてショックが発生する可能性がある。そこで、ECU30は全気筒運転と部分気筒運転との間の運転モードの切り替え過渡時にモータトルクの下限値を徐々に変化させる。
 例えば、図6に示すように、時刻t1でエンジン3の運転が全気筒運転から部分気筒運転に切り替わった時に、ECU30はモータトルクの下限値を時刻t1から時刻t2までの間に第2の値であるBから第1の値であるAまで徐々に増加させる。なお、逆方向の切り替えの場合も同様に、ECU30は所定の期間内にモータトルクの下限値をAからBまで徐々に減少させる。
 第3の形態によれば、エンジン3の運転の切り替え時にモータトルクの下限値が徐々に変化するので、第2モータ・ジェネレータ5のトルクの変化を緩和できる。したがって、エンジン3の運転の切り替え過渡時におけるショックの発生を抑制できる。
 本発明は上記各形態に限定されず、本発明の要旨の範囲内において種々の形態にて実施できる。モータトルクの下限値を全気筒運転の場合と部分気筒運転の場合とで相違させることは一例にすぎない。全気筒運転の場合と部分気筒運転の場合とで共通の下限値を設定して歯打ち音を抑制してもよい。本発明を適用できるエンジンは全気筒運転と部分気筒運転とを実行可能なエンジンに限らない。通常のエンジンに対して本発明を適用した場合は、モータトルクの下限値は一種類でよい。一種類の下限値を設定した場合でも第2の形態と組み合わせて正トルクと負トルクとをバッテリの蓄電量に応じて使い分けることも可能である。
 歯打ち音はエンジン水温、トランスミッション油温、車速、エンジン回転数等のパラメータの影響を受ける。そこで、このような歯打ち音に影響するパラメータに応じて下限値を変化させることもできる。歯打ち音に影響するパラメータに応じて下限値を設定することによって下限値をできる限り小さくできるので第2モータ・ジェネレータの消費電力をさらに抑制できる。
 上記各形態では、第1モータ・ジェネレータ4をモータロック機構25にてロックすることにより、差動機構としての動力分割機構6を差動状態から非差動状態に切り替えている。しかし、差動機構を差動状態から非差動状態へ切り替えるロック手段としては、第1モータ・ジェネレータ自体の回転を阻止する場合に限らない。例えば、差動機構から第1モータ・ジェネレータまでの動力伝達経路をクラッチで切り離すとともに、差動機構側の要素を固定する形態でロック手段を実施し、そのロック手段によって差動機構を差動状態から非差動状態へ切り替えることも可能である。

Claims (5)

  1.  エンジンと、
     第1モータ・ジェネレータと、
     駆動輪にトルクを伝達するための出力部と、
     前記エンジンのトルクを前記第1モータ・ジェネレータと前記出力部とに分配する差動機構と、
     前記差動機構の状態を、前記エンジンのトルクを前記第1モータ・ジェネレータと前記出力部とに分配する差動状態から、その分配を停止する非差動状態へ切り替え可能なロック手段と、
     前記出力部にギアを介して連結された第2モータ・ジェネレータと、
    を備えたハイブリッド車両に適用された制御装置であって、
     前記差動機構が前記非差動状態の場合に前記第2モータ・ジェネレータが出力するトルクの下限値を設定するトルク下限値設定手段と、
     前記差動機構が前記非差動状態の場合に前記第2モータ・ジェネレータが出力するトルクの大きさが前記下限値の大きさ以上となるように前記第2モータ・ジェネレータを制御するモータ制御手段と、
    を備えるハイブリッド車両の制御装置。
  2.  前記エンジンは、複数の気筒を有し、前記複数の気筒のうちの一部の気筒を休止し残りの気筒を稼働する部分気筒運転と前記複数の気筒の全ての気筒を稼働する全気筒運転とを実行可能であり、
     前記部分気筒運転と前記全気筒運転とを前記エンジンに実行させるエンジン制御手段をさらに備え、
     前記トルク下限値設定手段は、前記全気筒運転時の前記下限値の大きさが前記部分気筒運転時の前記下限値の大きさに比べて小さくなるように、前記下限値を設定する請求項1の制御装置。
  3.  前記車両は、前記第1モータ・ジェネレータ及び前記第2モータ・ジェネレータへの電力供給源としてのバッテリを更に備えており、
     前記モータ制御手段は、前記バッテリの蓄電量が高い場合、前記第2モータ・ジェネレータから前記出力部へ伝達する方向の正トルクが前記下限値の大きさ以上で出力され、前記バッテリの蓄電量が低い場合、前記出力部から前記第2モータ・ジェネレータへ伝達する方向の負トルクが前記下限値の大きさ以上で出力されるように、前記第2モータ・ジェネレータを制御する請求項1又は2の制御装置。
  4.  前記トルク下限値設定手段は、前記部分気筒運転時に第1の値を、前記全気筒運転時に第2の値を前記下限値としてそれぞれ設定するとともに、前記エンジンの運転が前記部分気筒運転と前記全気筒運転との間で切り替わった時に、前記下限値を前記第1の値から前記第2の値に又は前記第2の値から前記第1の値に徐々に変化させる請求項2の制御装置。
  5.  前記トルク下限値設定手段は、前記出力部と前記ギアとの間で生じる歯打ち音に影響するパラメータに応じて変化するように前記下限値を設定する請求項1~4のいずれか一項の制御装置。
PCT/JP2012/081393 2012-12-04 2012-12-04 ハイブリッド車両の制御装置 WO2014087483A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013535198A JP5668863B2 (ja) 2012-12-04 2012-12-04 ハイブリッド車両の制御装置
PCT/JP2012/081393 WO2014087483A1 (ja) 2012-12-04 2012-12-04 ハイブリッド車両の制御装置
DE112012007199.9T DE112012007199T5 (de) 2012-12-04 2012-12-04 Steuervorrichtung für ein Hybridfahrzeug
US13/982,143 US20150321659A1 (en) 2012-12-04 2012-12-04 Control device for hybrid vehicle
CN201280010951.6A CN104080674A (zh) 2012-12-04 2012-12-04 混合动力车辆的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081393 WO2014087483A1 (ja) 2012-12-04 2012-12-04 ハイブリッド車両の制御装置

Publications (1)

Publication Number Publication Date
WO2014087483A1 true WO2014087483A1 (ja) 2014-06-12

Family

ID=50882934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081393 WO2014087483A1 (ja) 2012-12-04 2012-12-04 ハイブリッド車両の制御装置

Country Status (5)

Country Link
US (1) US20150321659A1 (ja)
JP (1) JP5668863B2 (ja)
CN (1) CN104080674A (ja)
DE (1) DE112012007199T5 (ja)
WO (1) WO2014087483A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140358340A1 (en) * 2013-05-28 2014-12-04 Vladimir Radev Hybrid electric vehicle
GB2548108B (en) * 2016-03-07 2018-07-18 Ford Global Tech Llc Method of controlling a vehicle
JP6568158B2 (ja) * 2017-07-28 2019-08-28 株式会社Subaru 車両用制御装置
US10647203B2 (en) * 2018-01-02 2020-05-12 Ge Global Sourcing Llc Vehicle battery charging system
JP7135476B2 (ja) * 2018-06-13 2022-09-13 三菱自動車工業株式会社 車両の発電制御装置
JP7396310B2 (ja) * 2021-02-03 2023-12-12 トヨタ自動車株式会社 ハイブリッド車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169842A (ja) * 2002-11-21 2004-06-17 Toyota Motor Corp 車両の動力伝達装置
JP2007296975A (ja) * 2006-04-28 2007-11-15 Honda Motor Co Ltd ハイブリッド車両の駆動制御装置
JP2010100145A (ja) * 2008-10-22 2010-05-06 Toyota Motor Corp 車両用動力伝達装置の制御装置
JP2011037322A (ja) * 2009-08-07 2011-02-24 Toyota Motor Corp ハイブリッド車両の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4144561B2 (ja) * 2004-05-10 2008-09-03 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP2006089002A (ja) * 2004-09-27 2006-04-06 Toyota Motor Corp 車両用駆動装置
US7278940B2 (en) * 2004-12-13 2007-10-09 General Motors Corporation Powertrain with electrically variable transmission providing improved gradeability
JP2010260392A (ja) * 2009-04-30 2010-11-18 Toyota Motor Corp 車両及びその制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169842A (ja) * 2002-11-21 2004-06-17 Toyota Motor Corp 車両の動力伝達装置
JP2007296975A (ja) * 2006-04-28 2007-11-15 Honda Motor Co Ltd ハイブリッド車両の駆動制御装置
JP2010100145A (ja) * 2008-10-22 2010-05-06 Toyota Motor Corp 車両用動力伝達装置の制御装置
JP2011037322A (ja) * 2009-08-07 2011-02-24 Toyota Motor Corp ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
CN104080674A (zh) 2014-10-01
JPWO2014087483A1 (ja) 2017-01-05
DE112012007199T5 (de) 2015-09-10
US20150321659A1 (en) 2015-11-12
JP5668863B2 (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5842937B2 (ja) ハイブリッド車の変速制御装置および変速制御方法
JP5668863B2 (ja) ハイブリッド車両の制御装置
JP6067698B2 (ja) ハイブリッド車両用駆動装置
JP5648984B2 (ja) ハイブリッド車両
WO2013190642A1 (ja) ハイブリッド車両の動力伝達装置及びハイブリッドシステム
CN101638091A (zh) 混合动力车辆的扭矩调节控制
JP5610090B1 (ja) ハイブリッド車両の制御装置
WO2010143030A1 (en) Control apparatus and control method for vehicle
US10260433B2 (en) Altitude compensation for target engine speed in hybrid electric vehicle
JP2005125876A (ja) ハイブリッド車の駆動装置
US9327718B2 (en) Hybrid vehicle control apparatus
JP5950036B2 (ja) ハイブリッド車両用駆動装置
JP5130799B2 (ja) ハイブリッド車両の駆動制御装置
JP2016208777A (ja) 車両の制御装置
JP4165461B2 (ja) ハイブリッド駆動装置
JP3651469B2 (ja) 変速機の制御装置
JP5660116B2 (ja) ハイブリッド車両の制御装置
JP5764915B2 (ja) ハイブリッド車両の制御装置
JP2012224203A (ja) ハイブリッド車両の駆動制御装置
JP5469039B2 (ja) ハイブリッド車両
JP2023121669A (ja) 車両
JP5704259B2 (ja) ハイブリッド車両の制御装置
JP2014159238A (ja) ハイブリッド車両の制御装置
JP2007022530A (ja) ハイブリッド車の駆動装置
JP2019064366A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13982143

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013535198

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012007199

Country of ref document: DE

Ref document number: 1120120071999

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889601

Country of ref document: EP

Kind code of ref document: A1