WO2014087450A1 - 充電制御装置、充電制御方法、コンピュータプログラム、記録媒体 - Google Patents

充電制御装置、充電制御方法、コンピュータプログラム、記録媒体 Download PDF

Info

Publication number
WO2014087450A1
WO2014087450A1 PCT/JP2012/007763 JP2012007763W WO2014087450A1 WO 2014087450 A1 WO2014087450 A1 WO 2014087450A1 JP 2012007763 W JP2012007763 W JP 2012007763W WO 2014087450 A1 WO2014087450 A1 WO 2014087450A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
battery
charging
engine
integrated value
Prior art date
Application number
PCT/JP2012/007763
Other languages
English (en)
French (fr)
Inventor
康平 栃木
伊藤 耕巳
亨裕 宮下
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP12889622.2A priority Critical patent/EP2930819B1/en
Priority to RU2015121292A priority patent/RU2619067C2/ru
Priority to US14/649,381 priority patent/US9742218B2/en
Priority to CN201280077531.XA priority patent/CN104838560B/zh
Priority to JP2014550807A priority patent/JP5854155B2/ja
Priority to PCT/JP2012/007763 priority patent/WO2014087450A1/ja
Priority to KR1020157014708A priority patent/KR101641847B1/ko
Publication of WO2014087450A1 publication Critical patent/WO2014087450A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present invention relates to battery charge control using a generator.
  • refresh is performed when the elapsed time from full charge exceeds a specified time in order to suppress deterioration of battery performance and life due to repeated charge and discharge that does not become full charge. Charging may occur.
  • the refresh charging is realized by, for example, setting the upper limit voltage at the time of charging higher than usual and continuously operating the engine.
  • start and stop control also referred to as “start and stop control”
  • start and stop control stops the engine when the vehicle speed becomes a predetermined value or less
  • the technique of performing pre-charging in advance before executing refresh charging if the period from the start of pre-charging to the start of refresh charging is long, the state where the SOC is high continues for a long time.
  • a generator is driven by an engine, and electric power generated by the generator is supplied to the battery to charge the battery.
  • the battery with a high SOC has a small additionally acceptable electric capacity, there is a problem that the electric power generated by the generator is not used for charging the battery and the fuel consumption is deteriorated.
  • the above-mentioned problem is not limited to a vehicle, and may occur in any system that includes an engine, a generator, and a battery, and that can be controlled to prohibit starting of the engine when the engine is stopped.
  • a generator for generating power
  • a battery for storing data
  • a generator for generating power
  • a battery for storing data
  • a battery for storing data
  • a generator for generating power
  • the present invention has been made to solve at least a part of the problems described above, and can be realized as the following forms.
  • a system including an engine, a generator driven by the engine, and a battery charged by electric power generated by the generator, and stopping the engine
  • a charge control device for controlling charging of the battery, which is used in a system in which stop control for prohibiting restart of the engine in a state can be executed.
  • the charge control device calculates a charge / discharge rate that is a ratio of the absolute value of the integrated value of the battery charging current to the absolute value of the integrated value of the battery discharge current after the battery is fully charged.
  • a charge / discharge rate calculation unit, and a precharge execution unit that executes precharge to increase the average remaining capacity of the battery, and when the calculated charge / discharge rate is high, the precharge execution period is shortened.
  • a pre-charge execution unit that performs refresh charge after the pre-charge is executed to charge the battery with electric power generated by the generator without executing the stop control, so that the battery is fully charged.
  • the charge control device of this embodiment when the charge / discharge rate is high, the pre-charging is executed for a short period of time, so that the duration of the state where the average remaining capacity of the battery is high can be shortened. Therefore, as compared with the configuration in which the pre-charging period is constant regardless of the charge / discharge rate, the battery can secure more electric capacity that can accept the electric power generated by the generator, and the fuel efficiency can be improved.
  • the period required for refresh charging can be shortened. For this reason, since the period when stop control is prohibited with execution of refresh charge can be shortened, fuel consumption can be improved.
  • the charging control device further includes an elapsed time measuring unit that measures an elapsed time after the battery is fully charged by the refresh charging, and the refresh charging execution unit includes the elapsed time
  • the first threshold time is reached, the refresh charge is performed, and the precharge execution unit calculates the calculated value after the battery is fully charged by the refresh charge.
  • the charge / discharge rate is high, the time for starting the pre-charge may be delayed as compared with the case where the calculated charge / discharge rate is low.
  • the charge control device if the charge / discharge rate is high, the pre-charge can be executed for a short period of time.
  • the start timing of the pre-charging and the refresh charging is determined based on the elapsed time after the battery is fully charged, the battery can be charged at an appropriate timing according to the deterioration of the battery.
  • the charge control device further comprising a threshold value setting unit, wherein the precharge execution unit has reached a second time shorter than the first threshold time.
  • the threshold value setting unit is configured such that when the calculated charge / discharge rate is high, the second threshold time is compared with a case where the calculated charge / discharge rate is low. May be set to a long value. According to this form of the charge control device, when the discharge rate is high, the time for starting the precharge can be delayed.
  • the threshold setting unit sets the second threshold integrated value to a larger value when the calculated charge / discharge rate is high than when the calculated charge / discharge rate is low. May be.
  • the pre-charge can be executed for a short period of time.
  • the refresh charge is executed when the total current integrated value reaches the predetermined first threshold integrated value, and the second threshold integrated value is increased when the charge / discharge rate is high. Since the value is set, the higher the charge / discharge rate, the smaller the difference between the first threshold integrated value and the second integrated value.
  • the longer the elapsed time the longer the charging or discharging period in the battery, so the total current integrated value becomes larger. Therefore, the smaller the difference between the first threshold integrated value and the second integrated value, the shorter the period in which pre-charging is performed.
  • the system is mounted on a vehicle using the engine as a power source, the stop control is idle stop control, and the stop state has a predetermined moving speed of the vehicle. It may be in a state where the speed is less than or equal to. According to this form of the charging control apparatus, fuel efficiency can be improved in a vehicle that executes idle stop control.
  • the present invention can be realized in various modes, for example, a system including a charging control device, a vehicle equipped with such a system, a method for controlling charging of a battery, a system or a method for controlling a vehicle,
  • the present invention can be realized in the form of a computer program for realizing these control methods, a non-temporary recording medium on which the computer program is recorded, and the like.
  • FIG. 1 is an explanatory diagram showing the configuration of a system equipped with a charge control device as an embodiment of the present invention. It is explanatory drawing which shows the detailed structure of the electronic control unit in 1st Embodiment. It is a flowchart which shows the procedure of the charge control process in 1st Embodiment. It is a flowchart which shows the procedure of the threshold time adjustment process in 1st Embodiment. It is explanatory drawing which shows typically the setting content of the charging period determination map shown in FIG. It is explanatory drawing which shows the relationship between a charging / discharging rate and the frequency of idle stop, and the relationship between a charging / discharging rate and the consumption current value of an auxiliary machine.
  • FIG. 1 is an explanatory diagram showing the configuration of a system equipped with a charge control device as an embodiment of the present invention.
  • the system 100 is mounted on a vehicle and can execute idle stop control (also referred to as start-and-stop control) that prohibits engine operation when the vehicle is stopped.
  • the system 100 can execute charging control of the mounted battery.
  • the system 100 includes an engine 40, a transmission 41, a drive wheel 65, a differential gear 60, a starter 42, a drive mechanism 43, an alternator 50, a battery 30, an auxiliary device 70, a battery current sensor 31, and the like.
  • the vehicle is an automobile.
  • Engine 40 is an internal combustion engine that generates power by burning fuel such as gasoline or light oil.
  • the output of the engine 40 is controlled by the electronic control unit 10 according to the amount of depression of an accelerator pedal (not shown) operated by the operator.
  • the transmission 41 executes a change in the gear ratio (so-called shift change).
  • the power (rotation speed) of the engine 40 is shifted by the transmission 41 and transmitted to the left and right drive wheels 65 through the differential gear 60 as the desired rotation speed and torque.
  • the power of the engine 40 is transmitted to the drive wheels 65 via the transmission 41 while being changed according to the depression amount of the accelerator pedal, and the vehicle is accelerated and decelerated.
  • the starter 42 is a cell motor that starts the engine 40 with electric power supplied from the battery 30. Normally, when starting an operation of a stopped vehicle, when an ignition switch (not shown) is turned on by an operator, the engine 40 is started by the starter 42.
  • the “idle stop state” means a state in which the engine 40 is stopped by the idle stop control.
  • the drive mechanism 43 transmits the power of the engine 40 to the alternator 50.
  • the drive mechanism 43 for example, a belt drive can be adopted.
  • the alternator 50 generates power (hereinafter referred to as “fuel power generation”) using the power of the engine 40 transmitted through the drive mechanism 43.
  • the electric power generated by such power generation is used for charging the battery 30 via an inverter (not shown).
  • the battery 30 is a lead storage battery as a DC power source with a voltage of 12 V, and supplies power to the auxiliary machine 70 in addition to the starter 42. In addition, it can replace with lead acid battery and can also employ
  • Auxiliary machine 70 is a peripheral device that operates with electric power supplied from battery 30.
  • a lighting system device including a head lamp and a tail lamp, a wiper, an air conditioner, an electric fan for a radiator, and the like are applicable.
  • Battery current sensor 31 detects the charge / discharge current of battery 30.
  • the alternator current sensor 51 detects the output current of the alternator 50.
  • the vehicle speed sensor 61 detects the rotational speed of the drive wheel 65.
  • the brake pedal sensor 80 detects the presence or absence of a predetermined depression amount in a brake pedal (not shown). Each of these sensors 31, 51, 61 and 80 is electrically connected to the electronic control unit 10.
  • FIG. 2 is an explanatory diagram showing a detailed configuration of the electronic control unit 10 in the first embodiment.
  • the electronic control unit 10 includes a CPU (Central Processing Unit) for executing a computer program, a ROM (Read Only Memory) for storing a computer program, an ASIC (Application Specific Integrated Circuit) for a specific application, and temporarily storing data.
  • RAM Random Access Memory
  • input / output ports connected to the aforementioned sensors, actuators (not shown), and the like.
  • the electronic control unit 10 shown in FIG. 2 performs engine drive and stop control, gear ratio control, idle stop control, battery 30 charge control, and the like.
  • precharging, refresh charging, and normal charging are executed as the charging process of the battery 30. Details of the precharge, the refresh charge, and the normal charge will be described later.
  • the electronic control unit 10 includes an engine control unit 11, a transmission control unit 12, an idle stop control unit 13, a target SOC setting unit 14, an SOC calculation unit 15, and a feedback control unit 18.
  • the charging control unit 20 is provided.
  • the engine control unit 11 detects the rotational speed of the drive wheel 65 detected by the vehicle speed sensor 61, the amount of depression of the brake pedal detected by the brake pedal sensor 80, and the notified accelerator detected by an accelerator opening sensor (not shown). Based on the opening (the amount of depression of an accelerator pedal not shown), the fuel injection amount, the throttle opening, etc. are adjusted to control the operating state of the engine 40. Further, the engine control unit 11 stops the fuel injection to the engine 40 and stops the engine 40 according to a request from the idle stop control unit 13, or controls the starter 42 according to a request from the idle stop control unit 13. Then, the stopped engine 40 is restarted.
  • the transmission control unit 12 includes the rotation speed of the driving wheel 65 notified from the vehicle speed sensor 61, the accelerator opening notified from an accelerator opening sensor (not shown), and shift position information notified from a shift position sensor (not shown). Based on the above, a hydraulic actuator (not shown) is controlled to control the gear ratio of the transmission 41.
  • the idle stop control unit 13 acquires, as idle stop control, the wheel speed detected by the vehicle speed sensor 61 and the access opening degree notified from an accelerator opening degree sensor (not shown), and gives an instruction to stop or start the engine 40. Output to the engine control unit 11. More specifically, the idle stop control unit 13 determines that the engine stop condition is satisfied when the wheel speed decreases and becomes less than a predetermined speed (for example, 10 km / h), and instructs to stop the engine. Is output to the engine control unit 11. The engine control unit 11 outputs an instruction to the starter 42 to stop the engine 40.
  • a predetermined speed for example, 10 km / h
  • the idle stop control unit 13 determines that the engine restart condition is satisfied, and gives an instruction to restart the engine 40 to the engine control. To the unit 11.
  • the engine control unit 11 outputs an instruction to restart the engine 40 to the starter 42. That is, the idle stop control unit 13 stops the engine 40 when the engine stop condition is satisfied, and restarts the engine 40 when the engine restart condition is satisfied after the engine is stopped.
  • the engine stop condition and the engine restart condition are not limited to the above-described contents.
  • the engine stop condition may be that the wheel speed is 0 km / h
  • the engine restart condition may be that the foot is released from the brake pedal.
  • the target SOC setting unit 14 sets the SOC (State Of Charge) of the battery 30 that is the target when performing normal control, pre-charging, or refresh charging, which will be described later.
  • the SOC means a value obtained by dividing the amount of electricity remaining in the battery 30 by the amount of electricity stored when the battery 30 is fully charged.
  • the target SOC setting unit 14 predicts the traveling environment based on the wheel speed, and sets the target SOC based on the predicted traveling environment. For example, the target SOC setting unit 14 estimates the traveling environment as an urban area or a suburb based on the ratio of the stop time within a predetermined period.
  • target SOC setting unit 14 receives instructions from charge control unit 20 during pre-charging and refresh charging, and sets a target SOC based on such instructions.
  • the SOC calculation unit 15 calculates the current SOC based on the charge / discharge current of the battery 30 detected by the battery current sensor 31. Specifically, the current SOC is calculated by integrating the charging current and the discharging current with the charging current of the battery 30 as a positive value and the discharging current of the battery 30 as a negative value. Instead of obtaining the current SOC based on the charge / discharge current of the battery 30 detected by the battery current sensor 31, the current SOC may be obtained based on the battery electrolyte specific gravity and the battery terminal voltage.
  • the feedback control unit 18 obtains a difference between the target SOC set by the target SOC setting unit 14 and the current SOC calculated by the SOC calculation unit 15, and calculates a voltage value such that the difference becomes 0 as a voltage instruction value. To the alternator 50. Upon receiving the voltage instruction value, the alternator 50 that has received the voltage instruction value controls the output voltage so that the indicated voltage value is obtained.
  • the charging control unit 20 controls charging to the battery 30 and discharging from the battery 30.
  • the charge control unit 20 includes a charge / discharge rate calculation unit 16, a threshold time setting unit 17, a charging period determination map mp1, an elapsed time measurement unit 19, a precharge execution unit 22, and a refresh charge execution unit 24. I have.
  • the charge / discharge rate calculation unit 16 calculates the charge / discharge rate based on the charge current and discharge current of the battery 30 detected by the battery current sensor 31.
  • the charge / discharge rate means the ratio of the absolute value of the integrated value of the charging current to the absolute value of the integrated value of the discharge current.
  • the threshold time setting unit 17 determines the precharge start timing using the charge period determination map mp1 in the charge control process described later.
  • the precharge start timing is specified by the elapsed time after the battery 30 is fully charged.
  • the details of the charging period determination map mp1 will be described later.
  • the elapsed time measuring unit 19 measures an elapsed time after the battery 30 is fully charged.
  • the precharge execution unit 22 performs precharge.
  • the pre-charging is a process for increasing the average SOC of the battery 30 to a predetermined value, and is executed before refresh charging as will be described later. In this pre-charging, execution of idle stop control is allowed. In the vehicle, the period required for refresh charging is shortened by executing pre-charging.
  • the refresh charge execution unit 24 performs refresh charge.
  • the refresh charge is a process of charging until the battery 30 is fully charged, and is executed after the pre-charge. In this refresh charge, execution of idle stop control is prohibited.
  • the system 100 when the refresh charging is executed, the battery 30 is fully charged, and the performance and life of the battery 30 are prevented from being lowered.
  • the charging control unit 20 has a function unit (not shown) that performs normal charging.
  • the usable SOC range is determined in advance from the request for longer life. For this reason, normal charging is performed so that the current SOC maintains the SOC range.
  • the power of the engine 40 is increased when the current SOC falls below the lower limit (fixed value) of the SOC range, and stored in the battery 30 when the current SOC exceeds the upper limit (target SOC) of the SOC range.
  • the consumed power is consumed.
  • a process of performing charging of the battery 30 by regenerative power generation in the alternator 50 during deceleration traveling is performed by suppressing charging of the battery 30 by fuel power generation. Since this process is a well-known process, detailed description is omitted.
  • the above-described charging control unit 20 corresponds to the charging control device in the claims.
  • the battery 30 is fully charged by executing a charge control process described later. Further, in the vehicle, a threshold time adjustment process, which will be described later, is executed, so that the period from the start of pre-charging to the start of refresh charging is suppressed, and fuel consumption due to the high SOC state continuing for a long period of time is suppressed. Can be suppressed.
  • a threshold time adjustment process which will be described later, is executed, so that the period from the start of pre-charging to the start of refresh charging is suppressed, and fuel consumption due to the high SOC state continuing for a long period of time is suppressed. Can be suppressed.
  • FIG. 3 is a flowchart showing the procedure of the charging control process in the first embodiment.
  • a charge control process is started, and this process is repeatedly executed until the ignition switch is turned off.
  • the charge control process is a process for periodically setting the battery 30 to a fully charged state.
  • the pre-charge execution unit 22 acquires the elapsed time (hereinafter simply referred to as “elapsed time”) from the elapsed time measurement unit 19 after the battery 30 is fully charged (step S105).
  • the precharge execution unit 22 determines whether or not the elapsed time acquired in step S105 is equal to or longer than the first threshold time (step S110).
  • the first threshold time is set by the time setting unit 17 executing threshold adjustment processing described later. Details of the threshold adjustment processing will be described later. When it is determined that the elapsed time is shorter than the first threshold time (the elapsed time has not reached the first threshold time), step S105 described above is executed.
  • the precharge execution unit 22 executes precharge (step S115). Specifically, the precharge execution unit 22 instructs the target SOC setting unit 14 to set a relatively high value (for example, 90%) close to full charge (100%) as the target SOC.
  • the target SOC setting unit 14 sets the instructed value as the target SOC regardless of the wheel speed. For example, if 90% is set as the target SOC and the target SOC is 80% before the elapsed time reaches the first threshold time, the target SOC increases by 10%. As a result, normal charging is executed so that the upper limit value of the current SOC becomes 90%, and the average SOC increases.
  • the refresh charge execution unit 24 acquires the elapsed time from the elapsed time measurement unit 19 and determines whether or not the elapsed time is equal to or longer than the second threshold time (step S120).
  • the second threshold time is the time from the end of the refresh charge to the start of the next refresh charge, and is a fixed value set in advance by the user.
  • step S120: NO When it is determined that the elapsed time is less than the second threshold time (step S120: NO), the above-described step S115 is executed. On the other hand, when it is determined that the elapsed time is equal to or longer than the second threshold time (step S120: YES), the refresh charge execution unit 24 executes the refresh charge. Specifically, the refresh charge execution unit 24 instructs the target SOC setting unit 14 to set 100% as the target SOC and prohibits the idle stop control unit 13 from executing the idle stop control. Instruct. By such processing, even when the engine stop condition is satisfied, the engine 40 is not stopped, and charging by fuel power generation is continuously executed.
  • the refresh charge execution unit 24 acquires the current SOC from the SOC calculation unit 15 and determines whether or not the battery 30 is fully charged (step S130). When it is determined that the battery 30 is not fully charged (step S130: NO), the above-described step S125 is executed (refresh charging is continued). On the other hand, when it is determined that the battery 30 is fully charged (step S130: YES), the refresh charge execution unit 24 ends the refresh charge, and the elapsed time measurement unit 19 resets the timer and measures again. Is started (step S135).
  • FIG. 4 is a flowchart showing a procedure of threshold time adjustment processing in the first embodiment.
  • a threshold time adjustment process is started, and this process is repeatedly performed until the ignition switch is turned off.
  • the threshold time adjustment process is a process for adjusting the first threshold time described above.
  • the threshold time setting unit 17 acquires the elapsed time from the elapsed time measuring unit 19 (step S205), and determines whether or not the elapsed time is equal to or greater than the third threshold time (step S210).
  • the third threshold time is a fixed value shorter than the aforementioned second threshold time, and is set in advance by the user. As the third threshold time, for example, a time shorter than the second threshold time by about 60 minutes can be set.
  • the charge / discharge rate calculation unit 16 calculates the charge / discharge rate (step S215). That is, the charge / discharge rate calculation unit 16 calculates the ratio of the absolute value of the integrated value of the charging current to the absolute value of the integrated value of the discharge current from when the ignition switch is turned on to when step S215 is executed. .
  • the threshold time setting unit 17 refers to the charging period determination map mp1 and determines a period for executing pre-charging (the above-described step S115) based on the charge / discharge rate calculated in step S215 (step S220).
  • FIG. 5 is an explanatory diagram schematically showing the setting contents of the charging period determination map mp1 shown in FIG.
  • the horizontal axis indicates the charge / discharge rate
  • the vertical axis indicates the charging period.
  • the charging / discharging rate is divided into five levels, and the same charging period is set for each level.
  • a shorter charging period is set for a higher charge / discharge rate level.
  • 50 minutes is set as the charging period for Level 1 where the charge / discharge rate is 0% or more and 20% or less.
  • FIG. 6 is an explanatory diagram showing the relationship between the charge / discharge rate and the idle stop frequency, and the relationship between the charge / discharge rate and the consumption current value of the auxiliary machine.
  • the horizontal axis indicates the frequency of idle stop.
  • the frequency of idle stop means the ratio of the period during which the idle stop control is executed with respect to a predetermined period.
  • the frequency of idle stop is lower as it is located on the right side.
  • the vertical axis indicates the current consumption value in the auxiliary machine 70. In the vertical axis of FIG. 6, the current consumption value is lower as the position is higher.
  • the lower the idling stop frequency the higher the charge / discharge rate.
  • the driving of the engine 40 is stopped, so that the charging current is reduced. Therefore, when the idling stop frequency is lower, the charging current is decreased less frequently and the charge / discharge rate is further increased.
  • the charge / discharge rate is higher as the consumption current amount of the auxiliary device 70 is lower.
  • the discharge current increases. Therefore, when the consumption current amount of the auxiliary machine 70 is lower, the discharge current is lower and the charge / discharge rate is higher.
  • the shorter the idling stop frequency the shorter the precharge period is set.
  • a shorter period is set as the pre-charging period as the consumption current amount of the auxiliary machine 70 is lower.
  • the threshold time setting unit 17 is obtained by subtracting the charging period obtained in step S220 from the second threshold time described above. This value (time) is set as the first threshold time (step S225). As described above, the higher the charging / discharging rate, the shorter the charging period is set. Therefore, a longer time is set as the first threshold time. For this reason, precharge (step S115) is started after a longer period has elapsed since the battery 30 is fully charged, as the charge / discharge rate is higher.
  • FIG. 7 is a timing chart showing changes in the SOC when the charge control process and the threshold time adjustment process of the first embodiment are executed.
  • FIG. 7A shows a timing chart when the charge / discharge rate is relatively low
  • FIG. 7B shows a timing chart when the charge / discharge rate is relatively high.
  • the horizontal axis indicates time (the elapsed time from when the battery 30 is fully charged)
  • the vertical axis indicates the SOC.
  • 7A and 7B the solid line shows the change in SOC when the charge control process and the threshold time adjustment process in the present embodiment are executed
  • the broken line shows the change in SOC in the comparative example. Show. In the comparative example, pre-charging is not executed, and refresh charging is performed when the elapsed time reaches a predetermined time.
  • pre-charging is performed before executing refresh charging, and the average SOC is increased from S1 to S2 during normal control. Therefore, after that, by executing refresh charging, the period required for setting the average SOC from S2 to Sf (full charge) (period from time T2 to T3) is the period required for refresh charging in the comparative example (time T2). To the period T4).
  • the refresh charge period is shortened compared to the comparative example, as in the case where the charge / discharge rate is relatively low.
  • the precharge period (T2-T1) when the charge / discharge rate is relatively high is shorter than the precharge period (T2-T0) when the charge / discharge rate is relatively low. Therefore, since the period during which the average SOC is kept at a relatively high value (S2) can be shortened, it is possible to secure a large capacity capable of receiving the electric power generated by the fuel power generation in the battery 30. For this reason, fuel consumption can be improved.
  • the charge control unit 20 of the first embodiment sets the first threshold time so that the pre-charging period is shortened when the charge / discharge rate is high, the charge / discharge rate is high.
  • the period during which the SOC of battery 30 is relatively high can be shortened. Therefore, as compared with the configuration in which the precharge period is constant regardless of the charge / discharge rate, it is possible to secure a larger capacity capable of receiving the electric power generated by the fuel power generation in the battery 30 and improve the fuel efficiency.
  • the precharge start timing and the refresh charge start timing are determined based on the elapsed time after the battery 30 is fully charged, the battery 30 is set at an appropriate timing according to the deterioration state of the battery 30. Can be fully charged.
  • the period required for refresh charging can be shortened. For this reason, since the period during which the idle stop control is prohibited can be shortened with the execution of the refresh charge, the fuel consumption can be improved.
  • FIG. 8 is an explanatory diagram showing a detailed configuration of the electronic control unit 10a in the second embodiment.
  • FIG. 9 is a flowchart showing the procedure of the charging control process in the second embodiment.
  • FIG. 10 is a flowchart illustrating a procedure of threshold adjustment processing according to the second embodiment.
  • the electronic control unit 10a of the second embodiment includes a charge control unit 20a instead of the charge control unit 20, a detailed procedure of the charge control process, and a threshold value adjustment process instead of the threshold time adjustment process.
  • the other configuration is the same as the electronic control unit 10 of the first embodiment.
  • the start timing of the pre-charging and the refresh charging is determined based on the elapsed time after the battery 30 is fully charged.
  • these triggers are determined based on the integrated value of the charge / discharge current of the battery.
  • the charging control unit 20a of the second embodiment includes a threshold value setting unit 17a instead of the threshold time setting unit 17, and a threshold value instead of the charging period determination map mp1.
  • the configuration of the first embodiment is different from that of the charge control unit 20 of the first embodiment in that the determination map mp2 is provided and the current integrated value calculation unit 21 is provided instead of the elapsed time measurement unit 19. It is the same as the charge control unit 20 of the form.
  • Threshold value setting unit 17a executes threshold value adjustment processing described later.
  • the current integrated value calculation unit 21 calculates a charge / discharge current integrated value. Details of the charge / discharge current integrated value and the threshold determination map mp2 will be described later.
  • step S105a is executed instead of step S105
  • step S110a is executed instead of step S110
  • step S120a is executed instead of step S120
  • step S135a is executed instead of step S135
  • the other procedures are the same as the charge control process of the first embodiment.
  • the current integrated value calculation unit 21 calculates the charge / discharge current integrated value (step S105a).
  • the charge / discharge current integrated value means a total value of the absolute value of the discharge current integrated value and the absolute value of the charge current integrated value after the battery 30 is fully charged.
  • Threshold value setting unit 17a determines whether the charge / discharge current integrated value calculated in step S105a is equal to or greater than the first threshold value (step S110a). When it is determined that the charge / discharge current integrated value is smaller than the first threshold value (step S110a: NO), the above-described step S105a is executed. When it is determined that the charge / discharge current integrated value is greater than or equal to the first threshold (step S110a: YES), the above-described step S115 (pre-charge) is executed.
  • the first threshold value is determined by a threshold adjustment process described later.
  • the refresh charge execution unit 24 acquires the charge / discharge current integrated value from the current integrated value calculation unit 21 and determines whether the charge / discharge current integrated value is equal to or greater than the second threshold value.
  • the second threshold value is a fixed value set in advance by the user as a charge / discharge current integrated value from the end of the refresh charge to the start of the next refresh charge.
  • the longer the elapsed time from the fully charged state the more chances of charging or discharging in the battery 30 increase, so the integrated charge / discharge current value increases. That is, the elapsed time from the fully charged state and the charge / discharge current integrated value are proportional to each other. Therefore, when a larger value is set as the second threshold value, refresh charging is performed with a longer time interval.
  • step S120a: NO When the charge / discharge current integrated value is less than the second threshold value (step S120a: NO), step S115 described above is executed (continued), and the charge / discharge current integrated value is greater than or equal to the second threshold value. In this case, step S125 (refresh charging) and step S130 described above are executed.
  • step S130 when it is determined that the battery 30 is fully charged (step S130: YES), the current integrated value calculation unit 21 resets the calculated charge / discharge current integrated value (step S135).
  • FIG. 10 is a flowchart showing a procedure of threshold adjustment processing in the second embodiment.
  • a threshold adjustment process is started when an ignition switch (not shown) is turned on, and such a process is repeatedly executed until the ignition switch is turned off.
  • the threshold adjustment process is a process for adjusting the first threshold described above.
  • the threshold value setting unit 17a acquires the charge / discharge current integrated value from the current integrated value calculating unit 21 (step S305), and determines whether the value is equal to or greater than a third threshold value (step S310).
  • the third threshold value is a fixed value that is smaller than the second threshold value, and is set in advance by the user. As the third threshold value, for example, a value smaller than the second threshold value by 60000 As (ampere seconds) can be set.
  • step S310: NO When it is determined that the charge / discharge current integrated value is less than the third threshold value (step S310: NO), the above-described step S305 is executed. On the other hand, when it determines with a charging / discharging electric current integrated value being more than a 3rd threshold value (step S310: YES), the charging / discharging rate calculation part 16 calculates a charging / discharging rate (step S315). This process is the same as step S215 shown in FIG.
  • the threshold value setting unit 17a refers to the threshold value determination map mp2, and based on the charge / discharge rate calculated in step S315, for the second threshold value (charge / discharge current integrated value at the start of refresh charge), An offset value of the first threshold value (charge / discharge current integrated value at the start of pre-charging) is determined (step S320).
  • FIG. 11 is an explanatory diagram schematically showing the setting contents of the threshold value determination map mp2 shown in FIG.
  • the horizontal axis represents the charge / discharge rate
  • the vertical axis represents the offset value (current integrated value) of the first threshold value with respect to the second threshold value.
  • the charge / discharge rate is divided into five levels, similarly to the charging period determination map mp1 shown in FIG.
  • the same offset value is set for each level. Specifically, 50000As is set as an offset value for level 1 where the charge / discharge rate is 0% or more and 20% or less.
  • 40000 As for level 2 where the charge / discharge rate is greater than 20% and 40% or less, and 30000 As for level 3 where the charge / discharge rate is greater than 40% and 60% or less are charged / discharged.
  • the offset value is set to 20000 As for level 4 where the rate is greater than 60% and 80% or less, and 10000 As for level 1 where the charge / discharge rate is greater than 80% and 100% or less. ing. Therefore, as shown in FIG. 11, a smaller offset value is set for a higher charge / discharge rate level.
  • the charge / discharge rate becomes higher as the frequency of idling stop is lower and the current consumption of the auxiliary machine 70 is lower. Therefore, in the second embodiment, a smaller value is set as the offset value as the idling stop frequency is lower and the current consumption of the auxiliary device 70 is lower.
  • the threshold value setting unit 17a is obtained by subtracting the offset value obtained in step S320 from the second threshold value.
  • the set value is set as the first threshold value (step S325).
  • the offset value is set to a smaller value as the charge / discharge rate is higher, a larger value is set as the first threshold value.
  • the elapsed time and the charge / discharge current value integrated value are in a proportional relationship. Therefore, as the charge / discharge rate is higher, the battery 30 is fully charged, and after a longer period of time has elapsed, pre-charging (step S115) is started.
  • the charge control unit 20a of the second embodiment described above has the same effect as the charge control unit 20 of the first embodiment.
  • a larger value is set as the first threshold value, and a fixed value is set as the second threshold value.
  • the precharge period can be shortened when the charge / discharge rate is higher.
  • the precharge start timing and the refresh charge start timing are determined based on the charge / discharge current integrated value, the battery 30 can be fully charged at an appropriate timing according to the deterioration state of the battery 30.
  • Modification 1 In each embodiment, the method of setting the target SOC (the upper limit value of the SOC range) to a high predetermined value regardless of the wheel speed has been adopted as a method of increasing the average SOC at the time of pre-charging and refresh charging.
  • the present invention is not limited to this.
  • a method of increasing the amount of charge per unit time by controlling the alternator 50 and increasing the voltage during charging may be employed.
  • a method of prohibiting suppression of charging of the battery 30 when the current SOC exceeds the target SOC may be employed. That is, in general, any process that can increase the average SOC of the battery 30 can be employed as the precharge of the present invention.
  • the SOC indicates a value obtained by dividing the amount of electricity remaining in the battery 30 by the amount of electricity stored when the battery 30 is fully charged (maximum storage capacity).
  • the period during which the pre-charging is performed is sufficiently shorter than the period during which the pre-charging is not performed, and thus the maximum storage capacity is not greatly reduced during the period. Therefore, increasing the average SOC by precharging means increasing the average remaining capacity of the battery 30 by precharging. Therefore, any process that can increase the average remaining capacity of the battery 30 can be employed as the pre-charging of the present invention.
  • the charging / discharging rate is divided into five levels, and the same charging period is set for each level.
  • the present invention is not limited to this.
  • the level may be omitted, and the power reception period may be set to monotonously decrease as the charge / discharge rate increases.
  • the threshold value determination map mp2 of the second embodiment the level may be omitted, and the offset value may be set to monotonously decrease as the charge / discharge rate increases.
  • the first threshold value is determined by determining an offset value for the second threshold value and subtracting the offset value from the first threshold value.
  • the present invention is not limited to this. Is not to be done.
  • the threshold value determination map mp2 a map in which the first threshold value is explicitly associated with the charge / discharge rate is used instead of the offset value.
  • a threshold may be determined.
  • the vehicle is an automobile, but the present invention can be applied to an arbitrary vehicle such as a motorcycle as well as an automobile. Furthermore, the present invention can be applied not only to vehicles but also to various moving bodies such as ships and robots. Further, the present invention can be applied to a power generation system that uses a battery and an engine as a stationary power source. That is, in general, a stop control that includes an engine, a generator driven by the engine, and a battery that is charged by the electric power generated by the generator and prohibits starting of the engine when the engine is stopped can be executed. The present invention can be applied to any device that is used in a system and controls charging of a battery.
  • the “engine stop state” described above is not limited to a state where the engine is completely stopped.
  • the moving speed of the vehicle is a predetermined speed (for example, 10 km / h) or less. It has a broad meaning including the state of the engine.
  • Modification 5 In the above embodiment, a part of the configuration realized by software may be replaced with hardware. On the contrary, a part of the configuration realized by hardware may be replaced with software.
  • the present invention is not limited to the above-described embodiments, examples, and modifications, and can be realized with various configurations without departing from the spirit of the invention.
  • the technical features in the embodiments and the modifications corresponding to the technical features in each embodiment described in the summary section of the invention are to solve some or all of the above-described problems, or In order to achieve part or all of the effects, replacement or combination can be performed as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

Abstract

 充電制御部は、エンジンと発電機と発電機により生じた電力により充電されるバッテリとを有するシステムであってエンジンの停止状態においてエンジンの再始動を禁止する停止制御が実行され得るシステムにおいて用いられる。充電制御装置は、バッテリが満充電状態となった以降における、バッテリの放電電流の積算値の絶対値に対するバッテリの充電電流の積算値の絶対値の割合である充放電率を算出する充放電率算出部と、停止制御の実行を許容し、かつ、発電機により生じた電力によりバッテリを充電し、バッテリの平均残存容量を増加させる事前充電を実行する事前充電実行部であって、算出された充放電率が高いと事前充電の実行期間を短くする事前充電実行部と、停止制御を実行させずに発電機により生じた電力によってバッテリを充電するリフレッシュ充電を、事前充電が実行された後に実行して、バッテリを満充電状態とするリフレッシュ充電実行部と、を備える。

Description

充電制御装置、充電制御方法、コンピュータプログラム、記録媒体
 本発明は、発電機を用いたバッテリの充電制御に関する。
 バッテリを搭載した自動車等の車両において、満充電にならない充放電を繰り返すことによるバッテリの性能及び寿命の低下を抑制するため、満充電からの経過時間が所定時間以上となった場合等に、リフレッシュ充電が行われることがある。リフレッシュ充電は、例えば、充電時の上限電圧が通常よりも高く設定され、エンジンを継続運転させることにより実現される。ここで、車速が所定値以下となった場合にエンジンを停止させるアイドルストップ制御(「スタートアンドストップ制御」とも呼ぶ)を実行可能な車両において、リフレッシュ充電が実行されると、エンジンの停止条件が成立した場合であってもエンジンを停止させることができず、燃費が低下するおそれがある。そこで、リフレッシュ充電の実行前に、事前充電を行ってバッテリのSOC(State Of Charge)を高めておき、リフレッシュ充電の期間を短縮する方法が提案されている(特許文献1)。この事前充電では、アイドルストップ制御の実行は許容される。
特開2004-328906号公報
 リフレッシュ充電の実行前に予め事前充電を実行する技術によると、事前充電開始からリフレッシュ充電開始までの期間が長いと、SOCが高い状態が長時間続くことになる。車両では、エンジンによって発電機が駆動され、発電機により生じた電力がバッテリに供給されてバッテリが充電される。しかしながら、SOCが高い状態のバッテリでは、追加して受け入れ可能な電気容量が少ないため、発電機により生じた電力がバッテリの充電に用いられず、燃費が悪化するという問題があった。
 上述問題は、車両に限らず、エンジンと発電機とバッテリとを有し、エンジンの停止状態におけるエンジンの始動を禁止する制御が行われ得る任意のシステムにおいて起こり得る。かかるシステムにおいては、上述した問題の他に、小型化、低コスト化、省資源化、製造の容易化、使い勝手の向上等が望まれていた。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
 (1)本発明の一形態によれば、エンジンと、前記エンジンにより駆動される発電機と、前記発電機により生じた電力により充電されるバッテリと、を有するシステムであって、前記エンジンの停止状態において前記エンジンの再始動を禁止する停止制御が実行され得るシステムにおいて用いられる、前記バッテリの充電を制御する充電制御装置が提供される。この充電制御装置は、前記バッテリが満充電状態となった以降における、前記バッテリの放電電流の積算値の絶対値に対する前記バッテリの充電電流の積算値の絶対値の割合である充放電率を算出する充放電率算出部と、前記バッテリの平均残存容量を増加させる事前充電を実行する事前充電実行部であって、前記算出された充放電率が高いと、前記事前充電の実行期間を短くする事前充電実行部と、前記停止制御を実行させずに前記発電機により生じた電力によって前記バッテリを充電するリフレッシュ充電を、前記事前充電が実行された後に実行して、前記バッテリを満充電状態とするリフレッシュ充電実行部と、を備える。この形態の充電制御装置によれば、充放電率が高いと、事前充電を短期間実行するので、バッテリの平均残容量が高い状態の継続期間を短くすることができる。したがって、充放電率に関わらず事前充電の期間が一定である構成に比べて、バッテリにおいて、発電機により生じた電力を受け入れ可能な電気容量をより多く確保することができ、燃費を向上できる。また、リフレッシュ充電の前に事前充電を行ってバッテリの平均残存容量を増加させるので、リフレッシュ充電に要する期間を短縮できる。このため、リフレッシュ充電の実行に伴って停止制御が禁止される期間を短縮できるので、燃費を向上できる。
 (2)上記形態の充電制御装置において、さらに、前記リフレッシュ充電により前記バッテリが満充電状態となってからの経過時間を計測する経過時間計測部を備え、前記リフレッシュ充電実行部は、前記経過時間が所定の第1のしきい時間に達した場合に、前記リフレッシュ充電を実行し、前記事前充電実行部は、前記リフレッシュ充電により前記バッテリが満充電状態となった以降において、前記算出された充放電率が高いと、前記算出された充放電率が低い場合に比べて前記事前充電を開始する時刻を遅延させてもよい。この形態の充電制御装置によれば、充放電率が高いと、事前充電を短期間実行させることができる。加えて、バッテリが満充電状態となってからの経過時間に基づき、事前充電及びリフレッシュ充電の開始タイミングを決定するので、バッテリの劣化に応じた適切なタイミングに、バッテリを充電させることができる。
 (3)上記形態の充電制御装置において、さらに、しきい値設定部を備え、前記事前充電実行部は、前記経過時間が前記第1のしきい時間よりも短い第2の時間に達した場合に、前記事前充電を実行し、前記しきい値設定部は、前記算出された充放電率が高いと、前記算出された充放電率が低い場合に比べて前記第2のしきい時間を長い値に設定してもよい。この形態の充電制御装置によれば、放電率が高いと、事前充電を開始する時刻を遅延させることができる。
 (4)上記形態の充電制御装置において、さらに、前記リフレッシュ充電により前記バッテリが満充電状態となった以降における前記充電電流の積算値の絶対値と前記放電電流の積算値の絶対値との合計電流積算値を求める電流積算値算出部と、しきい値設定部と、を備え、前記リフレッシュ充電実行部は、前記合計電流積算値が所定の第1のしきい積算値に達した場合に、前記リフレッシュ充電を実行し、前記事前充電実行部は、前記合計電流積算値が、前記第1のしきい積算値よりも小さい第2のしきい積算値に達した場合に、前記事前充電を実行し、前記しきい値設定部は、前記算出された充放電率が高いと、前記算出された充放電率が低い場合に比べて前記第2のしきい積算値を大きな値に設定してもよい。この形態の充電制御装置によれば、充放電率が高いと、事前充電を短期間実行させることができる。この形態の充電制御装置では、リフレッシュ充電は合計電流積算値が所定の第1のしきい積算値に達した場合に実行され、かつ、充放電率が高いと第2のしきい積算値を大きな値に設定するので、充放電率がより高いほど、第1のしきい積算値と第2の積算値との差分がより小さくなる。一般に、経過時間が長いほど、バッテリにおける充電又は放電の期間は増加するため、合計電流積算値は大きくなる。したがって、第1のしきい積算値と第2の積算値との差分がより小さくなるほど、事前充電が実行される期間はより短くなる。
 (5)上記形態の充電制御装置において、前記システムは、前記エンジンを動力源とする車両に搭載され、前記停止制御は、アイドルストップ制御であり、前記停止状態は、前記車両の移動速度が所定の速度以下となる状態であってもよい。この形態の充電制御装置によれば、アイドルストップ制御を実行する車両において燃費を向上できる。
 なお、本発明は、種々の態様で実現することが可能であり、例えば、充電制御装置を備えたシステム、かかるシステムを搭載した車両、バッテリの充電を制御する方法、システム又は車両の制御方法、これらの制御方法を実現するコンピュータプログラム、そのコンピュータプログラムを記録した一時的でない記録媒体等の形態で実現できる。
図1は、本発明の一実施形態としての充電制御装置を搭載したシステムの構成を示す説明図である。 第1実施形態における電子制御ユニットの詳細構成を示す説明図である。 第1実施形態における充電制御処理の手順を示すフローチャートである。 第1実施形態におけるしきい時間調整処理の手順を示すフローチャートである。 図2に示す充電期間決定マップの設定内容を模式的に示す説明図である。 充放電率とアイドルストップの頻度との関係及び充放電率と補機の消費電流値との関係を示す説明図である。 第1実施形態の充電制御処理及びしきい時間調整処理が実行された場合のSOCの変化を示すタイミングチャートである。 第2実施形態における電子制御ユニットの詳細構成を示す説明図である。 第2実施形態における充電制御処理の手順を示すフローチャートである。 第2実施形態のしきい値調整処理の手順を示すフローチャートである。 図8に示すしきい値決定マップの設定内容を模式的に示す説明図である。
A.第1実施形態:
A1.装置構成:
 図1は、本発明の一実施形態としての充電制御装置を搭載したシステムの構成を示す説明図である。システム100は、車両に搭載され、車両の停止時におけるエンジンの運転を禁止するアイドルストップ制御(スタートアンドストップ制御とも呼ぶ)を実行し得る。また、システム100は、搭載されたバッテリの充電制御を実行し得る。システム100は、エンジン40と、変速機41と、駆動輪65と、ディファレンシャルギア60と、スタータ42と、駆動機構43と、オルタネータ50と、バッテリ30と、補機70と、バッテリ電流センサ31と、オルタネータ電流センサ51と、車速センサ61と、ブレーキペダルセンサ80と、電子制御ユニット(ECU:Electrical Control Unit)10とを備えている。なお、本実施形態において、車両は、自動車である。
 エンジン40は、ガソリンや軽油などの燃料を燃焼させることによって動力を発生させる内燃機関である。エンジン40の出力は、操作者により操作される図示しないアクセルペダルの踏み込み量に応じて、電子制御ユニット10により制御される。
 変速機41は、変速比の変更(いわゆるシフトチェンジ)を実行する。エンジン40の動力(回転数)は、変速機41によって変速され、所望の回転数・トルクとして、ディファレンシャルギア60を介して左右の駆動輪65に伝達される。こうして、エンジン40の動力は、アクセルペダルの踏み込み量に応じて変更されつつ、変速機41を介して駆動輪65に伝達されて、車両の加速及び減速が行なわれる。
 スタータ42は、バッテリ30から供給される電力によってエンジン40を始動させるセルモータである。通常は、停止している車両の運転を開始する際に、操作者によって図示しないイグニッションスイッチがオンされると、スタータ42によってエンジン40が始動される。本実施例では、「アイドルストップ状態」とは、アイドルストップ制御によりエンジン40が停止している状態を意味する。
 駆動機構43は、エンジン40の動力をオルタネータ50に伝達する。駆動機構43としては、例えば、ベルトドライブを採用することができる。
 オルタネータ50は、駆動機構43を介して伝達されるエンジン40の動力を用いて発電(以下、「燃料発電」と呼ぶ)を行なう。かかる発電により生じた電力は、図示しないインバータを介してバッテリ30の充電に用いられる。
 バッテリ30は、電圧12Vの直流電源としての鉛蓄電池であり、スタータ42に加えて、補機70に電力を供給する。なお、鉛蓄電池に代えて、リチウムイオン蓄電池、ロッキングチェア型蓄電体等の他の種類のバッテリを採用することもできる。
 補機70は、バッテリ30から供給される電力により動作する周辺装置である。例えば、ヘッドランプやテールランプを含む灯火系装置や、ワイパや、空調装置や、ラジエータ用電動ファン等が該当する。
 バッテリ電流センサ31は、バッテリ30の充放電電流を検出する。オルタネータ電流センサ51は、オルタネータ50の出力電流を検出する。車速センサ61は、駆動輪65の回転速度を検出する。ブレーキペダルセンサ80は、図示しないブレーキペダルにおける所定の踏み込み量の有無を検出する。これらの各センサ31,51,61,80は、いずれも電子制御ユニット10と電気的に接続されている。
 図2は、第1実施形態における電子制御ユニット10の詳細構成を示す説明図である。電子制御ユニット10は、コンピュータプログラムを実行するCPU(Central Processing Unit)、コンピュータプログラム等を記憶するROM(Read Only Memory)、特定用途のためのASIC(Application Specific Integrated Circuit)、一時的にデータを記憶するRAM(Random Access Memory)、前述の各センサや図示しないアクチュエータ等に接続される入出力ポート等により構成されている。
 図2に示す電子制御ユニット10は、エンジンの駆動及び停止の制御や、変速比の制御や、アイドルストップの制御や、バッテリ30の充電の制御等を実行する。なお、本実施形態では、バッテリ30の充電処理として、事前充電と、リフレッシュ充電と、通常充電とが実行される。事前充電、リフレッシュ充電、及び通常充電の詳細については後述する。
 図2に示すように、電子制御ユニット10は、エンジン制御部11と、トランスミッション制御部12と、アイドルストップ制御部13と、目標SOC設定部14と、SOC算出部15と、フィードバック制御部18と、充電制御部20とを備えている。
 エンジン制御部11は、車速センサ61により検出された駆動輪65の回転速度と、ブレーキペダルセンサ80により検出されるブレーキペダルの踏み込み量と、図示しないアクセル開度センサにより検出される通知されるアクセル開度(図示しないアクセルペダルの踏み込み量)とに基づき、燃料噴射量、スロットル開度等を調整してエンジン40の運転状態を制御する。また、エンジン制御部11は、アイドルストップ制御部13からの要求に従って、エンジン40に対する燃料噴射を停止してエンジン40を停止させる、または、アイドルストップ制御部13からの要求に従って、スタータ42を制御して停止状態のエンジン40を再始動させる。
 トランスミッション制御部12は、車速センサ61から通知される駆動輪65の回転速度と、図示しないアクセル開度センサから通知されるアクセル開度と、図示しないシフトポジションセンサから通知されるシフトポジションの情報とに基づき、図示しない油圧アクチュエータを制御して、変速機41の変速比を制御する。
 アイドルストップ制御部13は、アイドルストップ制御として、車速センサ61により検出された車輪速と、図示しないアクセル開度センサから通知されるアクセス開度とを取得し、エンジン40を停止又は始動させる指示をエンジン制御部11に出力する。より詳細には、アイドルストップ制御部13は、車輪速が低下して所定速度(例えば、10km/h)未満となったときに、エンジン停止条件が成立したものと判断して、エンジン停止の指示をエンジン制御部11に出力する。エンジン制御部11は、スタータ42に対してエンジン40を停止する旨の指示を出力する。また、その後、アクセル開度に基づきアクセルペダルが踏み込まれたことを検出すると、アイドルストップ制御部13は、エンジン再始動条件が成立したものと判断してエンジン40の再始動の指示を、エンジン制御部11に出力する。エンジン制御部11は、スタータ42に対してエンジン40を再始動する旨の指示を出力する。すなわち、アイドルストップ制御部13は、エンジン停止条件が成立したときにエンジン40を停止させ、エンジン停止後においてエンジン再始動条件が成立したときにエンジン40を再始動させる。なお、エンジン停止条件及びエンジン再始動条件は、上述した内容に限定されるものではない。例えば、車輪速が0km/hとなることをエンジン停止条件としてもよく、また、ブレーキペダルから足が離れたことをエンジン再始動条件としてもよい。
 目標SOC設定部14は、後述する通常制御や、事前充電や、リフレッシュ充電を実行する際に目標とするバッテリ30のSOC(State Of Charge)を設定する。本実施形態において、SOCとは、バッテリ30に残存している電気量を、バッテリ30を満充電したときに蓄えられる電気量で除して得られる値を意味する。目標SOC設定部14は、車輪速に基づいて走行環境を予測し、予測された走行環境に基づき、目標SOCを設定する。例えば、目標SOC設定部14は、所定期間内における停車時間の割合に基づき、走行環境を、市街地又は郊外と推定する。例えば、走行環境が市街地の場合には、アイドルストップ制御が実行されてバッテリ30の電力がより多く消費され易いため、目標SOCは、比較的高い値に設定される。なお、目標SOC設定部14は、後述するように、事前充電及びリフレッシュ充電時において充電制御部20から指示を受信し、かかる指示に基づき目標SOCを設定する。
 SOC算出部15は、バッテリ電流センサ31によって検出されたバッテリ30の充放電電流に基づき、現在のSOCを算出する。具体的には、バッテリ30の充電電流をプラス値とし、バッテリ30の放電電流をマイナス値として充電電流及び放電電流を積算することにより、現在のSOCを算出する。なお、バッテリ電流センサ31によって検出されたバッテリ30の充放電電流に基づき現在のSOCを求めることに代えて、バッテリ電解液比重と、バッテリ端子電圧とに基づき、現在のSOCを求めてもよい。
 フィードバック制御部18は、目標SOC設定部14により設定された目標SOCと、SOC算出部15により算出された現在のSOCとの差分を求め、差分が0となるような電圧値を、電圧指示値としてオルタネータ50に出力する。電圧指示値を受信したオルタネータ50は、電圧指示値を受信すると、指示された電圧値となるように出力電圧を制御する。
 充電制御部20は、バッテリ30への充電及びバッテリ30からの放電を制御する。充電制御部20は、充放電率算出部16と、しきい時間設定部17と、充電期間決定マップmp1と、経過時間計測部19と、事前充電実行部22と、リフレッシュ充電実行部24とを備えている。
 充放電率算出部16は、バッテリ電流センサ31によって検出されたバッテリ30の充電電流及び放電電流に基づき、充放電率を算出する。本実施形態において、充放電率とは、放電電流の積算値の絶対値に対する充電電流の積算値の絶対値の割合を意味する。
 しきい時間設定部17は、後述する充電制御処理において、充電期間決定マップmp1を用いて事前充電の開始タイミングを決定する。本実施形態において、事前充電の開始タイミングは、バッテリ30が満充電状態となった以降の経過時間により特定される。なお、充電期間決定マップmp1の詳細については後述する。経過時間計測部19は、バッテリ30が満充電となってからの経過時間を計測する。
 事前充電実行部22は、事前充電を実行する。本実施形態において、事前充電とは、バッテリ30の平均SOCを所定の値にまで上昇させる処理であり、後述するように、リフレッシュ充電の前に実行される。この事前充電では、アイドルストップ制御の実行は許容される。車両では、事前充電が実行されることにより、リフレッシュ充電に要する期間が短縮される。
 リフレッシュ充電実行部24は、リフレッシュ充電を実行する。本実施形態において、リフレッシュ充電とは、バッテリ30が満充電となるまで充電する処理であり、事前充電の後に実行される。このリフレッシュ充電では、アイドルストップ制御の実行は禁止される。システム100では、リフレッシュ充電が実行されることにより、バッテリ30が満充電となり、バッテリ30の性能及び寿命の低下が抑制される。
 なお、充電制御部20は、通常充電を実行する図示しない機能部を有している。本実施形態のように、バッテリ30として鉛バッテリを使用する場合、長寿命化の要請から、使用可能なSOC範囲が予め定められている。このため、現在のSOCがかかるSOC範囲を維持するように通常充電が実行される。具体的には、現在のSOCがSOC範囲の下限(固定値)を下回るときにエンジン40の動力が増大され、現在のSOCがSOC範囲の上限(目標SOC)を上回るときに、バッテリ30に蓄えられた電力が消費される。また、通常充電として、燃料発電によるバッテリ30への充電を抑えることで燃料消費量を節約し、減速走行中にオルタネータ50における回生発電によりバッテリ30への充電を行う処理が実行される。かかる処理は周知の処理であることから、詳細な説明は省略する。
 上述した充電制御部20は、請求の範囲における充電制御装置に相当する。
 本実施形態のシステム100を搭載した車両では、後述する充電制御処理が実行されることにより、バッテリ30が満充電となる。また、車両では、後述するしきい時間調整処理が実行されることにより、事前充電の開始からリフレッシュ充電の開始までの期間が長くなることが抑制され、高SOC状態が長期間継続することによる燃費の低下を抑制できる。以下、充電制御処理及びしきい時間調整処理の詳細について説明する。
A2.充電制御処理:
 図3は、第1実施形態における充電制御処理の手順を示すフローチャートである。システム100では、図示しないイグニッションスイッチがオンになると充電制御処理が開始され、イグニッションスイッチがオフとなるまでかかる処理が繰り返し実行される。充電制御処理は、定期的にバッテリ30を満充電状態とするための処理である。
 事前充電実行部22は、経過時間計測部19から、バッテリ30が満充電となってからの経過時間(以下、単に「経過時間」と呼ぶ)を取得する(ステップS105)。事前充電実行部22は、ステップS105で取得した経過時間が第1のしきい時間以上であるか否かを判定する(ステップS110)。第1のしきい時間は、時間設定部17が後述のしきい値調整処理を実行することにより設定される。しきい値調整処理の詳細については後述する。経過時間が第1しきい時間よりも短い(経過時間が第1しきい時間に達していない)と判定された場合、前述のステップS105が実行される。
 経過時間が第1しきい時間以上であると判定された場合(ステップS110:YES)、事前充電実行部22は、事前充電を実行する(ステップS115)。具体的には、事前充電実行部22は、目標SOCとして満充電(100%)に近い比較的高い値(例えば90%)を設定するように、目標SOC設定部14に指示する。目標SOC設定部14は、車輪速に関わらず、指示された値を目標SOCとして設定する。例えば、目標SOCとして90%が設定され、経過時間が第1しきい時間に達する前において目標SOCが80%であった場合、目標SOCは10%増加することになる。この結果、現在のSOCの上限値が90%となるように通常充電が実行され、平均SOCは上昇する。
 事前充電が開始された後、リフレッシュ充電実行部24は、経過時間計測部19から経過時間を取得し、経過時間が第2しきい時間以上であるか否かを判定する(ステップS120)。第2しきい時間は、リフレッシュ充電の終了から次回のリフレッシュ充電の開始までの時間であり、予めユーザにより設定された固定値である。
 経過時間が第2しきい時間未満であると判定された場合には(ステップS120:NO)、前述のステップS115が実行される。これに対して、経過時間が第2しきい時間以上であると判定された場合には(ステップS120:YES)、リフレッシュ充電実行部24は、リフレッシュ充電を実行する。具体的には、リフレッシュ充電実行部24は、目標SOCとして100%を設定するように目標SOC設定部14に指示すると共に、アイドルストップ制御部13に対してアイドルストップ制御の実行を禁止するように指示する。このような処理により、エンジン停止条件が成立した場合であってもエンジン40は停止せず、燃料発電による充電が継続して実行される。
 リフレッシュ充電が開始された後、リフレッシュ充電実行部24は、SOC算出部15から現在のSOCを取得して、バッテリ30が満充電となったか否かを判定する(ステップS130)。バッテリ30が満充電でないと判定された場合(ステップS130:NO)、前述のステップS125が実行される(リフレッシュ充電が継続される)。これに対して、バッテリ30が満充電であると判定された場合(ステップS130:YES)、リフレッシュ充電実行部24はリフレッシュ充電を終了させ、経過時間計測部19は、タイマをリセットして改めて計時を開始する(ステップS135)。
A3.しきい時間調整処理:
 図4は、第1実施形態におけるしきい時間調整処理の手順を示すフローチャートである。システム100では、図示しないイグニッションスイッチがオンになるとしきい時間調整処理が開始され、イグニッションスイッチがオフとなるまでかかる処理が繰り返し実行される。しきい時間調整処理は、前述の第1しきい時間を調整するための処理である。
 しきい時間設定部17は、経過時間計測部19から経過時間を取得し(ステップS205)、経過時間が第3のしきい時間以上であるか否かを判定する(ステップS210)。第3のしきい時間は、前述の第2しきい時間よりも短い固定値であり、予めユーザにより設定される。この第3のしきい時間としては、例えば、第2しきい時間よりも60分ほど短い時間を設定することができる。
 充放電率算出部16は、充放電率を算出する(ステップS215)。すなわち、充放電率算出部16は、イグニッションスイッチがオンとなってからステップS215が実行されるまでの間における放電電流の積算値の絶対値に対する充電電流の積算値の絶対値の割合を算出する。
 しきい時間設定部17は、充電期間決定マップmp1を参照して、ステップS215により算出された充放電率に基づき、事前充電(前述のステップS115)を実行する期間を決定する(ステップS220)。
 図5は、図2に示す充電期間決定マップmp1の設定内容を模式的に示す説明図である。図5において、横軸は充放電率を示し、縦軸は充電期間を示す。図5に示すように、充電期間決定マップmp1では、充放電率が5つのレベルに区分けされ、各レベル毎に同じ充電期間が設定されている。また、充電期間決定マップmp1では、より高い充放電率のレベルに対しては、より短い充電期間が設定されている。具体的には、充放電率が0%以上かつ20%以下であるレベル1に対して、充電期間として50分が設定されている。また、充放電率が20%よりも大きくかつ40%以下であるレベル2に対して40分が、充放電率が40%よりも大きくかつ60%以下であるレベル3に対して30分が、充放電率が60%よりも大きくかつ80%以下であるレベル4に対して20分が、充放電率が80%よりも大きくかつ100%以下であるレベル1に対して10分が、それぞれ充電期間として設定されている。したがって、図5に示すように、より高い充放電率のレベルに対しては、より短い充電期間が設定されている。
 図6は、充放電率とアイドルストップの頻度との関係、及び充放電率と補機の消費電流値との関係を示す説明図である。図6において、横軸はアイドルストップの頻度を示す。アイドルストップの頻度とは、本実施形態では、所定期間に対するアイドルストップ制御が実行されている期間の割合を意味する。なお、図6の横軸では、より右側に位置するほど、アイドルストップの頻度はより低い。図6において、縦軸は、補機70における消費電流値を示す。図6の縦軸では、より上方に位置するほど、消費電流値はより低い。
 図6に示すように、アイドリングストップの頻度がより低いほど、充放電率はより高い。アイドリングストップ制御が実行されるとエンジン40の駆動が停止するため、充電電流が減る。したがって、アイドリングストップの頻度がより低いと、充電電流が減る頻度がより低くなり、充放電率はより高くなる。また、図6に示すように、補機70の消費電流量がより低いほど、充放電率はより高い。補機70の消費電流量が高いと、放電電流が増加する。したがって、補機70の消費電流量がより低いと、放電電流はより低くなり、充放電率はより高くなる。このような充放電率とアイドルストップの頻度との関係、及び充放電率と補機の消費電流値との関係から、アイドリングストップの頻度がより低いほど、事前充電の期間としてより短い期間が設定され、また、補機70の消費電流量がより低いほど、事前充電の期間としてより短い期間が設定される。
 図4に示すように、充電期間が決定された後(ステップS220の実行後)、しきい時間設定部17は、前述の第2しきい時間からステップS220で求めた充電期間を差し引いて得られた値(時間)を、第1のしきい時間として設定する(ステップS225)。前述のように、充放電率がより高いほど充電期間はより短い時間に設定されるので、第1のしきい時間としては、より長い時間が設定される。このため、充放電率がより高いほど、バッテリ30が満充電となってからより長い期間が経過した後に事前充電(ステップS115)が開始される。
 図7は、第1実施形態の充電制御処理及びしきい時間調整処理が実行された場合の、SOCの変化を示すタイミングチャートである。図7(a)は、充放電率が比較的低い場合のタイミングチャートを示し、図7(b)は、充放電率が比較的高い場合のタイミングチャートを示す。図7(a)及び図7(b)において、横軸は時刻(バッテリ30が満充電となった時点からの経過時間)を示し、縦軸はSOCを示す。また、図7(a)及び図7(b)において、実線は本実施形態における充電制御処理及びしきい時間調整処理を実行した場合のSOCの変化を示し、破線は比較例におけるSOCの変化を示す。比較例では、事前充電を実行せず、経過時間が所定の時間となった場合にリフレッシュ充電を行う。
 図7(a)に示すように、本実施形態では、リフレッシュ充電を実行する前に事前充電を行って、平均SOCを通常制御時のS1からS2まで上昇させている。したがって、その後、リフレッシュ充電を実行することにより、平均SOCをS2からSf(満充電)とするまでに要する期間(時刻T2からT3までの期間)を、比較例においてリフレッシュ充電に要する期間(時刻T2からT4までの期間)に比べて短縮することができる。
 図7(b)に示すように、充放電率が比較的高い場合においても、充放電率が比較的低い場合と同様に、リフレッシュ充電期間が比較例に比べて短縮されている。加えて、充放電率が比較的高い場合の事前充電期間(T2-T1)は、充放電率が比較的低い場合の事前充電期間(T2-T0)に比べて短い。したがって、平均SOCが比較的高い値(S2)の状態が継続される期間を短くすることができるため、バッテリ30において燃料発電により生じた電力を受け入れ可能な容量を多く確保することができる。このため、燃費を向上させることができる。
 以上説明したように、第1実施形態の充電制御部20は、充放電率が高いと事前充電の期間が短くなるように、第1しきい時間を設定するので、充放電率が高い場合においてバッテリ30のSOCが比較的高い状態が継続される期間を短くすることができる。したがって、充放電率に関わらず事前充電の期間が一定である構成に比べて、バッテリ30において燃料発電により生じた電力を受け入れ可能な容量をより多く確保することができ、燃費を向上できる。加えて、バッテリ30が満充電となってからの経過時間に基づき、事前充電の開始タイミングやリフレッシュ充電の開始タイミングを決定するので、バッテリ30の劣化状態に応じた適切なタイミングに、バッテリ30を満充電状態にすることができる。また、リフレッシュ充電の前に事前充電を行うことにより、バッテリ30の平均SOCを予め上昇させておくので、リフレッシュ充電に要する期間を短縮することができる。このため、リフレッシュ充電の実行に伴ってアイドルストップ制御が禁止される期間を短縮できるので、燃費を向上できる。
B.第2実施形態:
 図8は、第2実施形態における電子制御ユニット10aの詳細構成を示す説明図である。図9は、第2実施形態における充電制御処理の手順を示すフローチャートである。図10は、第2実施形態のしきい値調整処理の手順を示すフローチャートである。
 第2実施形態の電子制御ユニット10aは、充電制御部20に代えて充電制御部20aを備えている点、充電制御処理の詳細手順、及び、しきい時間調整処理に代えてしきい値調整処理を実行する点において、第1実施形態の電子制御ユニット10と異なり、他の構成は第1実施形態の電子制御ユニット10と同じである。上述した第1実施形態のシステム100では、事前充電及びリフレッシュ充電の開始契機は、バッテリ30が満充電となってからの経過時間に基づき決定されていた。これに対し、第2実施形態のシステム100では、これらの契機は、バッテリの充放電電流の積算値に基づき決定される。
 図8に示すように、第2実施形態の充電制御部20aは、しきい時間設定部17に代えてしきい値設定部17aを備えている点、充電期間決定マップmp1に代えてしきい値決定マップmp2を備えている点、経過時間計測部19に代えて電流積算値算出部21を備えている点において、第1実施形態の充電制御部20と異なり、他の構成は、第1実施形態の充電制御部20と同じである。
 しきい値設定部17aは、後述するしきい値調整処理を実行する。電流積算値算出部21は、充放電電流積算値を算出する。なお、充放電電流積算値及びしきい値決定マップmp2の詳細については後述する。
 図9に示す第2実施形態の充電制御処理は、ステップS105に代えてステップS105aを実行する点、ステップS110に代えてステップS110aを実行する点、ステップS120に代えてステップS120aを実行する点、ステップS135に代えてステップS135aを実行する点において、図3に示す第1実施形態の充電制御処理と異なり、他の手順は第1実施形態の充電制御処理と同じである。
 電流積算値算出部21は、充放電電流積算値を算出する(ステップS105a)。第2実施形態において、充放電電流積算値とは、バッテリ30が満充電となった以降における、放電電流の積算値の絶対値と充電電流の積算値の絶対値との合計値を意味する。
 しきい値設定部17aは、ステップS105aで算出された充放電電流積算値が第1しきい値以上であるか否かを判定する(ステップS110a)。充放電電流積算値が第1しきい値よりも小さいと判定された場合(ステップS110a:NO)、前述のステップS105aが実行される。充放電電流積算値が第1しきい値以上であると判定された場合(ステップS110a:YES)、前述のステップS115(事前充電)が実行される。第1しきい値は、後述するしきい値調整処理によって決定される。
 事前充電の開始された後、リフレッシュ充電実行部24は、電流積算値算出部21から充放電電流積算値を取得し、充放電電流積算値が第2しきい値以上であるか否かを判定する(ステップS120a)。第2しきい値は、リフレッシュ充電の終了から次回のリフレッシュ充電の開始までの充放電電流積算値として、予めユーザにより設定された固定値である。一般に、満充電状態からの経過時間が長いほど、バッテリ30における充電又は放電の機会は増加するため、充放電電流積算値は大きくなる。すなわち、満充電状態からの経過時間と充放電電流積算値とは、互いに比例関係である。したがって、第2しきい値としてより大きな値が設定された場合、より長い時間間隔を空けてリフレッシュ充電が実行されることとなる。
 充放電電流積算値が第2しきい値未満である場合には(ステップS120a:NO)、前述のステップS115が実行され(継続され)、充放電電流積算値が第2しきい値以上である場合には、前述のステップS125(リフレッシュ充電)及びステップS130が実行される。ステップS130において、バッテリ30が満充電であると判定された場合(ステップS130:YES)、電流積算値算出部21は、算出された充放電電流積算値をリセットする(ステップS135)。
 図10は、第2実施形態におけるしきい値調整処理の手順を示すフローチャートである。システム100では、図示しないイグニッションスイッチがオンになるとしきい値調整処理が開始され、イグニッションスイッチがオフとなるまでかかる処理が繰り返し実行される。しきい値調整処理は、前述の第1しきい値を調整するための処理である。
 しきい値設定部17aは、電流積算値算出部21から充放電電流積算値を取得し(ステップS305)、かかる値が第3しきい値以上であるか否かを判定する(ステップS310)。第3のしきい値は、前述の第2しきい値よりも小さい固定値であり、予めユーザによって設定される。第3しきい値としては、例えば、第2しきい値よりも60000As(アンペア秒)だけ小さな値を設定することができる。
 充放電電流積算値が第3しきい値未満であると判定された場合(ステップS310:NO)、前述のステップS305が実行される。これに対し、充放電電流積算値が第3しきい値以上であると判定された場合(ステップS310:YES)、充放電率算出部16は、充放電率を算出する(ステップS315)。この処理は、図4に示すステップS215と同じであるので、説明を省略する。
 しきい値設定部17aは、しきい値決定マップmp2を参照して、ステップS315により算出された充放電率に基づき、第2しきい値(リフレッシュ充電開始時の充放電電流積算値)に対する、第1しきい値(事前充電開始時の充放電電流積算値)のオフセット値を決定する(ステップS320)。
 図11は、図8に示すしきい値決定マップmp2の設定内容を模式的に示す説明図である。図11において、横軸は充放電率を示し、縦軸は第2しきい値に対する第1しきい値のオフセット値(電流積算値)を示す。図11に示すように、しきい値決定マップmp2は、図5に示す充電期間決定マップmp1と同様に、充放電率が5つのレベルに区分けされている。そして、しきい値決定マップmp2では、各レベル毎に同じオフセット値が設定されている。具体的には、充放電率が0%以上かつ20%以下であるレベル1に対して、オフセット値として50000Asが設定されている。また、充放電率が20%よりも大きくかつ40%以下であるレベル2に対して40000Asが、充放電率が40%よりも大きくかつ60%以下であるレベル3に対して30000Asが、充放電率が60%よりも大きくかつ80%以下であるレベル4に対して20000Asが、充放電率が80%よりも大きくかつ100%以下であるレベル1に対して10000Asが、それぞれオフセット値として設定されている。したがって、図11に示すように、より高い充放電率のレベルに対しては、より小さなオフセット値が設定されている。
 図6を用いて説明したように、アイドリングストップの頻度がより低いほど、また、補機70の消費電流量がより低いほど、充放電率はより高くなる。したがって、第2実施形態では、アイドリングストップの頻度がより低いほど、また、補機70の消費電流量がより低いほど、オフセット値としてより小さな値が設定される。
 図10に示すように、充電容量が決定された後(ステップS320の実行後)、しきい値設定部17aは、前述の第2しきい値からステップS320で求めたオフセット値を差し引いて得られた値を、第1のしきい値として設定する(ステップS325)。前述のように、充放電率がより高いほど、オフセット値はより小さな値に設定されるので、第1しきい値としては、より大きな値が設定される。上述したように、経過時間と充放電電流値積算値とは比例関係にある。したがって、充放電率がより高いほど、バッテリ30が満充電となってから、より長い期間が経過した後に事前充電(ステップS115)が開始される。
 以上説明した第2実施形態の充電制御部20aは、第1実施形態の充電制御部20と同様な効果を有する。第2実施形態では、充放電率がより高い場合に第1しきい値としてより大きな値が設定され、第2しきい値として固定値が設定される。ここで、経過時間と充放電電流積算値とは互いに比例関係にあるので、充放電率がより高い場合に事前充電の期間を短縮できる。また、充放電電流積算値に基づき、事前充電の開始タイミングや、リフレッシュ充電の開始タイミングを決定するので、バッテリ30の劣化状態に応じた適切なタイミングに、バッテリ30を満充電させることができる。
C.変形例:
C1.変形例1:
 各実施形態では、事前充電及びリフレッシュ充電の際に、平均SOCを上昇させる方法として、車輪速に関わらず目標SOC(SOC範囲の上限値)を高い所定値に設定する方法を採用していたが、本発明は、これに限定されない。例えば、オルタネータ50を制御して、充電時の電圧を上昇させることにより、単位時間当たりの充電量を上昇させる方法を採用してもよい。また、例えば、現在のSOCが目標SOCを上回った場合におけるバッテリ30への充電の抑制を禁止する方法を採用してもよい。すなわち、一般には、本発明の事前充電として、バッテリ30の平均SOCを増加可能な任意の処理を採用することができる。また、本実施形態では、SOCとは、バッテリ30に残存している電気量を、バッテリ30を満充電したときに蓄えられる電気量(最大蓄積容量)で除して得られる値を示している。ここで、事前充電が実行される期間は、事前充電が実行されていない期間に比べて十分に短いため、かかる期間において最大蓄積容量が大きく減少することはない。よって、事前充電により平均SOCを上昇させることは、事前充電によりバッテリ30の平均残存容量を上昇させることを意味する。したがって、本発明の事前充電として、バッテリ30の平均残存容量を増加可能な任意の処理を採用することができる。
C2.変形例2:
 第1実施形態において、充電期間決定マップmp1では、充放電率が5つのレベルに区分けされ、各レベル毎に同じ充電期間が設定されていたが、本発明は、これに限定されるものではない。例えば、レベルを省略し、充放電率の増加と共に受電期間が単調減少するように設定してもよい。同様に、第2実施形態のしきい値決定マップmp2においても、レベルを省略し、充放電率の増加と共にオフセット値が単調減少するように設定してもよい。
C3.変形例3:
 第2実施形態では、第1しきい値を、第2しきい値に対するオフセット値を決定し、かかるオフセット値を第1しきい値から差し引くことで決定していたが、本発明はこれに限定されるものではない。例えば、しきい値決定マップmp2として、オフセット値に代えて、第1しきい値を充放電率と明示的に対応付けたマップを用い、かかるマップを参照して充放電率に基づき第1しきい値を決定してもよい。
C4.変形例4:
 各実施形態では、車両は自動車であったが、自動車に限らず二輪車など、任意の車両に本発明を適用することができる。さらに、本発明は、車両のみならず、例えば、船舶やロボットなどの各種移動体に適用することもできる。また、バッテリ及びエンジンを定置型電源として用いる発電システム等にも適用することができる。すなわち、一般には、エンジンと、エンジンにより駆動される発電機と、発電機により生じた電力により充電されるバッテリとを有し、エンジンの停止状態においてエンジンの始動を禁止する停止制御が実行され得るシステムにおいて用いられ、バッテリの充電を制御する任意の装置に、本発明を適用することができる。なお、前述の「エンジンの停止状態」とは、エンジンが完全に停止した状態に限定されるものではなく、例えば、車両の移動速度が所定の速度(例えば、10km/h)以下となるようなエンジンの状態を含む広い意味を有する。
C5.変形例5:
 上記実施例において、ソフトウェアによって実現されていた構成の一部をハードウェアに置き換えるようにしてもよい。また、これとは逆に、ハードウェアによって実現されていた構成の一部をソフトウェアに置き換えるようにしてもよい。
 本発明は、上述の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
  10,10a…電子制御ユニット
  11…エンジン制御部
  12…トランスミッション制御部
  13…アイドルストップ制御部
  14…目標SOC設定部
  15…SOC算出部
  16…充放電率算出部
  17…しきい時間設定部
  17a…しきい値設定部
  18…フィードバック制御部
  19…経過時間計測部
  20,20a…充電制御部
  21…電流積算値算出部
  22…事前充電実行部
  24…リフレッシュ充電実行部
  30…バッテリ
  31…バッテリ電流センサ
  40…エンジン
  41…変速機
  42…スタータ
  43…駆動機構
  50…オルタネータ
  51…オルタネータ電流センサ
  60…ディファレンシャルギア
  61…車速センサ
  65…駆動輪
  70…補機
  80…ブレーキペダルセンサ
  100…システム
  mp1…充電期間決定マップ
  mp2…しきい値決定マップ

Claims (8)

  1.  エンジンと、前記エンジンにより駆動される発電機と、前記発電機により生じた電力により充電されるバッテリと、を有するシステムであって、前記エンジンの停止状態において前記エンジンの再始動を禁止する停止制御が実行され得るシステムにおいて用いられる、前記バッテリの充電を制御する充電制御装置であって、
     前記バッテリが満充電状態となった以降における、前記バッテリの放電電流の積算値の絶対値に対する前記バッテリの充電電流の積算値の絶対値の割合である充放電率を算出する充放電率算出部と、
     前記バッテリの平均残存容量を増加させる事前充電を実行する事前充電実行部であって、前記算出された充放電率が高いと、前記事前充電の実行期間を短くする事前充電実行部と、
     前記停止制御を実行させずに前記発電機により生じた電力によって前記バッテリを充電するリフレッシュ充電を、前記事前充電が実行された後に実行して、前記バッテリを満充電状態とするリフレッシュ充電実行部と、
     を備える、充電制御装置。
  2.  請求項1に記載の充電制御装置において、さらに、
     前記リフレッシュ充電により前記バッテリが満充電状態となってからの経過時間を計測する経過時間計測部を備え、
     前記リフレッシュ充電実行部は、前記経過時間が所定の第1のしきい時間に達した場合に、前記リフレッシュ充電を実行し、
     前記事前充電実行部は、前記リフレッシュ充電により前記バッテリが満充電状態となった以降において、前記算出された充放電率が高いと、前記算出された充放電率が低い場合に比べて前記事前充電を開始する時刻を遅延させる、充電制御装置。
  3.  請求項2に記載の充電制御装置において、さらに、
     しきい値設定部を備え、
     前記事前充電実行部は、前記経過時間が前記第1のしきい時間よりも短い第2の時間に達した場合に、前記事前充電を実行し、
     前記しきい値設定部は、前記算出された充放電率が高いと、前記算出された充放電率が低い場合に比べて前記第2のしきい時間を長い値に設定する、充電制御装置。
  4.  請求項1に記載の充電制御装置において、さらに、
     前記リフレッシュ充電により前記バッテリが満充電状態となった以降における前記充電電流の積算値の絶対値と前記放電電流の積算値の絶対値との合計電流積算値を求める電流積算値算出部と、
     しきい値設定部と、
     を備え、
     前記リフレッシュ充電実行部は、前記合計電流積算値が所定の第1のしきい積算値に達した場合に、前記リフレッシュ充電を実行し、
     前記事前充電実行部は、前記合計電流積算値が、前記第1のしきい積算値よりも小さい第2のしきい積算値に達した場合に、前記事前充電を実行し、
     前記しきい値設定部は、前記算出された充放電率が高いと、前記算出された充放電率が低い場合に比べて前記第2のしきい積算値を大きな値に設定する、充電制御装置。
  5.  請求項1から請求項4までのいずれか一項に記載の充電制御装置において、
     前記システムは、前記エンジンを動力源とする車両に搭載され、
     前記停止制御は、アイドルストップ制御であり、
     前記停止状態は、前記車両の移動速度が所定の速度以下となる状態である、充電制御装置。
  6.  エンジンと、前記エンジンにより駆動される発電機と、前記発電機により生じた電力により充電されるバッテリと、を有するシステムであって、前記エンジンの停止状態において前記エンジンの再始動を禁止する停止制御が実行され得るシステムにおいて、前記バッテリの充電を制御する充電制御方法であって、
     (a)前記バッテリが満充電状態となった以降における、前記バッテリの放電電流の積算値の絶対値に対する前記バッテリの充電電流の積算値の絶対値の割合である充放電率を算出する工程と、
     (b)前記バッテリの平均残存容量を増加させる事前充電を実行する工程であって、前記算出された充放電率が高いと、前記事前充電の実行期間を短くする工程と、
     (c)前記停止制御を実行させずに前記発電機により生じた電力によって前記バッテリを充電するリフレッシュ充電を、前記事前充電が実行された後に実行して、前記バッテリを満充電状態とする工程と、
     を備える、充電制御方法。
  7.  エンジンと、前記エンジンにより駆動される発電機と、前記発電機により生じた電力により充電されるバッテリと、を有するシステムであって、前記エンジンの停止状態において前記エンジンの再始動を禁止する停止制御が実行され得るシステムにおいて、前記バッテリの充電を制御するためのプログラムであって、
     前前記バッテリが満充電状態となった以降における、前記バッテリの放電電流の積算値の絶対値に対する前記バッテリの充電電流の積算値の絶対値の割合である充放電率を算出する機能と、
     前記バッテリの平均残存容量を増加させる事前充電を実行する機能であって、前記算出された充放電率が高いと、前記事前充電の実行期間を短くする機能と、
     前記停止制御を実行させずに前記発電機により生じた電力によって前記バッテリを充電するリフレッシュ充電を、前記事前充電が実行された後に実行して、前記バッテリを満充電状態とする機能と、
     をコンピュータに実現させるためのプログラム。
  8.  請求項7に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2012/007763 2012-12-04 2012-12-04 充電制御装置、充電制御方法、コンピュータプログラム、記録媒体 WO2014087450A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP12889622.2A EP2930819B1 (en) 2012-12-04 2012-12-04 Charging control device, charging control method, computer program, and recording medium
RU2015121292A RU2619067C2 (ru) 2012-12-04 2012-12-04 Устройство управления зарядкой, способ управления зарядкой, компьютерная программа и носитель записи
US14/649,381 US9742218B2 (en) 2012-12-04 2012-12-04 Charging control device, charging control method, computer program, and recording medium
CN201280077531.XA CN104838560B (zh) 2012-12-04 2012-12-04 充电控制装置、充电控制方法
JP2014550807A JP5854155B2 (ja) 2012-12-04 2012-12-04 充電制御装置、充電制御方法、コンピュータプログラム、記録媒体
PCT/JP2012/007763 WO2014087450A1 (ja) 2012-12-04 2012-12-04 充電制御装置、充電制御方法、コンピュータプログラム、記録媒体
KR1020157014708A KR101641847B1 (ko) 2012-12-04 2012-12-04 충전 제어 장치, 충전 제어 방법, 컴퓨터 프로그램을 기록한 기록 매체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/007763 WO2014087450A1 (ja) 2012-12-04 2012-12-04 充電制御装置、充電制御方法、コンピュータプログラム、記録媒体

Publications (1)

Publication Number Publication Date
WO2014087450A1 true WO2014087450A1 (ja) 2014-06-12

Family

ID=50882906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007763 WO2014087450A1 (ja) 2012-12-04 2012-12-04 充電制御装置、充電制御方法、コンピュータプログラム、記録媒体

Country Status (7)

Country Link
US (1) US9742218B2 (ja)
EP (1) EP2930819B1 (ja)
JP (1) JP5854155B2 (ja)
KR (1) KR101641847B1 (ja)
CN (1) CN104838560B (ja)
RU (1) RU2619067C2 (ja)
WO (1) WO2014087450A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107005075A (zh) * 2015-08-28 2017-08-01 华为技术有限公司 充电方法和电子设备
JP2017171261A (ja) * 2016-03-25 2017-09-28 ヤンマー株式会社 船舶

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6011578B2 (ja) * 2014-05-14 2016-10-19 トヨタ自動車株式会社 車両制御装置、車両および車両制御方法
US10118500B2 (en) 2016-03-09 2018-11-06 Ford Global Technologies, Llc Battery capacity estimation based on open-loop and closed-loop models
US10035426B2 (en) 2016-03-10 2018-07-31 Ford Global Technologies, Llc Battery power management in hybrid vehicles
WO2017158409A1 (en) * 2016-03-16 2017-09-21 Mahesh Mahajan A self power generating electric vehicle
KR101765639B1 (ko) * 2016-04-18 2017-08-07 현대자동차 주식회사 하이브리드 자동차의 충전 제어 장치 및 방법
JP6540722B2 (ja) * 2017-01-27 2019-07-10 トヨタ自動車株式会社 電源装置
CN112514196A (zh) * 2018-07-31 2021-03-16 赛昂能源有限公司 多路复用的充放电电池管理系统
US11056728B2 (en) 2019-10-31 2021-07-06 Sion Power Corporation System and method for operating a rechargeable electrochemical cell or battery
US11424492B2 (en) 2019-10-31 2022-08-23 Sion Power Corporation System and method for operating a rechargeable electrochemical cell or battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031267A (ja) * 2001-05-11 2003-01-31 Toyota Motor Corp リフレッシュ充電制御装置
JP2003052129A (ja) * 2001-08-03 2003-02-21 Matsushita Electric Ind Co Ltd 蓄電池の充電方法
JP2004328906A (ja) 2003-04-24 2004-11-18 Nissan Motor Co Ltd ハイブリッド車両の充電制御装置
JP2006336552A (ja) * 2005-06-02 2006-12-14 Denso Corp 内燃機関の発電制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2025862C1 (ru) * 1992-01-30 1994-12-30 Юлий Иосифович Майзенберг Устройство управления зарядом аккумуляторной батареи транспортного средства
JP3288928B2 (ja) * 1996-06-14 2002-06-04 日野自動車株式会社 車載電池の制御装置
US6654837B1 (en) * 1999-12-28 2003-11-25 Intel Corporation Dynamic priority external transaction system
JP3945384B2 (ja) 2002-11-14 2007-07-18 日産自動車株式会社 アイドルストップ車両のリフレッシュ充電制御装置
CN100438204C (zh) * 2002-12-05 2008-11-26 松下电器产业株式会社 电池组及其充放电方法
JP2004251234A (ja) 2003-02-21 2004-09-09 Mitsubishi Motors Corp アイドルストップ機能付車両の制御装置
JP4499810B2 (ja) * 2008-05-28 2010-07-07 株式会社日本自動車部品総合研究所 車載バッテリの状態推定装置
JP4497238B2 (ja) * 2008-09-16 2010-07-07 トヨタ自動車株式会社 車両制御システム
JP4962808B2 (ja) * 2009-02-24 2012-06-27 株式会社デンソー エンジン自動制御装置および蓄電池充電制御装置
JP2010252414A (ja) 2009-04-10 2010-11-04 Fujitsu Ten Ltd エコラン制御装置
JP5570782B2 (ja) * 2009-10-16 2014-08-13 三洋電機株式会社 電源装置及びこれを備える車両並びに電源装置の充放電制御方法
US20110140673A1 (en) * 2009-12-10 2011-06-16 Texas Insturments Incorporated Pulse width modulated battery charging
US9827925B2 (en) * 2011-11-18 2017-11-28 Toyota Jidosha Kabushiki Kaisha Driving environment prediction device, vehicle control device and methods thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031267A (ja) * 2001-05-11 2003-01-31 Toyota Motor Corp リフレッシュ充電制御装置
JP2003052129A (ja) * 2001-08-03 2003-02-21 Matsushita Electric Ind Co Ltd 蓄電池の充電方法
JP2004328906A (ja) 2003-04-24 2004-11-18 Nissan Motor Co Ltd ハイブリッド車両の充電制御装置
JP2006336552A (ja) * 2005-06-02 2006-12-14 Denso Corp 内燃機関の発電制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2930819A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107005075A (zh) * 2015-08-28 2017-08-01 华为技术有限公司 充电方法和电子设备
JP2017171261A (ja) * 2016-03-25 2017-09-28 ヤンマー株式会社 船舶
WO2017164392A1 (ja) * 2016-03-25 2017-09-28 ヤンマー株式会社 船舶
US11034425B2 (en) 2016-03-25 2021-06-15 Yanmar Power Technology Co., Ltd. Ship control

Also Published As

Publication number Publication date
US20150349581A1 (en) 2015-12-03
EP2930819B1 (en) 2017-02-15
US9742218B2 (en) 2017-08-22
RU2015121292A (ru) 2017-01-13
JPWO2014087450A1 (ja) 2017-01-05
CN104838560A (zh) 2015-08-12
JP5854155B2 (ja) 2016-02-09
KR20150086291A (ko) 2015-07-27
KR101641847B1 (ko) 2016-07-21
RU2619067C2 (ru) 2017-05-11
EP2930819A1 (en) 2015-10-14
CN104838560B (zh) 2017-06-09
EP2930819A4 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
JP5854155B2 (ja) 充電制御装置、充電制御方法、コンピュータプログラム、記録媒体
JP4394061B2 (ja) ベルト型ハイブリッド車両の回生制動制御方法
JP5048824B2 (ja) 車両用発電制御装置
JP5842927B2 (ja) 車両制御装置、車両、および車両制御方法
JP5729484B2 (ja) 走行環境予測装置および車両制御装置、並びにそれらの方法
JP5040065B2 (ja) バッテリ充放電制御装置
WO2013111178A1 (ja) 車両制御装置、車両、および車両制御方法
JP2006280161A (ja) ハイブリッド電気自動車用回生制御装置
US20140067241A1 (en) Power-source apparatus for vehicle and control method of the same
JP2010064679A (ja) ハイブリッド自動車の制御方法及びその装置
JP2019172102A (ja) 制御装置
JP2018131040A (ja) 車両用制御装置
JP3975937B2 (ja) 電池の充電制御装置および充電制御方法
JP5272562B2 (ja) 車両用発電装置
JP7021570B2 (ja) 車両の電力制御装置
JP6361684B2 (ja) ハイブリッド車両の制御装置
JP3826295B2 (ja) 車両用電源制御装置
WO2013132531A1 (ja) エンジン制御装置及びエンジン制御方法
JP2003153402A (ja) 二次電池制御装置
JP2016028198A (ja) 車両制御装置、車両、および車両制御方法
JP2014136535A (ja) 車両制御装置、車両、および車両制御方法
JP5699841B2 (ja) ハイブリッド自動車
JP5831400B2 (ja) 車両制御装置、車両、および車両制御方法
WO2020183960A1 (ja) ハイブリッド車両
JP2018093630A (ja) 電動車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550807

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157014708

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14649381

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012889622

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012889622

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015121292

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889622

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889622

Country of ref document: EP

Kind code of ref document: A1