WO2014083872A1 - チップ用樹脂膜形成用シート及び半導体装置の製造方法 - Google Patents

チップ用樹脂膜形成用シート及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2014083872A1
WO2014083872A1 PCT/JP2013/066471 JP2013066471W WO2014083872A1 WO 2014083872 A1 WO2014083872 A1 WO 2014083872A1 JP 2013066471 W JP2013066471 W JP 2013066471W WO 2014083872 A1 WO2014083872 A1 WO 2014083872A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
film forming
forming layer
sheet
chip
Prior art date
Application number
PCT/JP2013/066471
Other languages
English (en)
French (fr)
Inventor
祐一郎 吾妻
市川 功
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2014550042A priority Critical patent/JP6427791B2/ja
Priority to EP13858816.5A priority patent/EP2927952B1/en
Priority to CN201380061840.2A priority patent/CN104871310B/zh
Priority to KR1020157012275A priority patent/KR102140470B1/ko
Publication of WO2014083872A1 publication Critical patent/WO2014083872A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention provides a resin film forming sheet for a chip that can efficiently form a resin film having high adhesive strength and thermal conductivity on any surface of a semiconductor chip and can manufacture a highly reliable semiconductor device. About.
  • chip a semiconductor chip having electrodes such as bumps on a circuit surface
  • the electrodes are bonded to a substrate.
  • the surface (chip back surface) opposite to the circuit surface of the chip may be exposed.
  • the exposed chip back surface may be protected by an organic film.
  • a chip having a protective film made of an organic film is obtained by applying a liquid resin to the back surface of a wafer by spin coating, drying and curing, and cutting the protective film together with the wafer.
  • the thickness accuracy of the protective film formed in this way is not sufficient, the product yield may be lowered.
  • a protective film-forming sheet for chips having a support sheet and a protective film-forming layer formed on the support sheet and comprising a heat or energy ray-curable component and a binder polymer component is disclosed.
  • Patent Document 1 a protective film-forming sheet for chips having a support sheet and a protective film-forming layer formed on the support sheet and comprising a heat or energy ray-curable component and a binder polymer component is disclosed.
  • a semiconductor wafer manufactured in a large diameter state may be cut and separated (diced) into element pieces (semiconductor chips) and then transferred to the next bonding process.
  • the semiconductor wafer is subjected to dicing, cleaning, drying, expanding, and pick-up processes in a state of being adhered to the adhesive sheet in advance, and then transferred to the next bonding process.
  • Patent Document 2 various dicing / die bonding adhesive sheets having both a wafer fixing function and a die bonding function have been proposed in order to simplify the pickup process and the bonding process (for example, Patent Document 2). reference).
  • the adhesive sheet disclosed in Patent Document 2 enables so-called direct die bonding, and the application process of the die bonding adhesive can be omitted.
  • the adhesive sheet it is possible to obtain a semiconductor chip having an adhesive layer attached to the back surface, and direct die bonding such as between an organic substrate and a chip, between a lead frame and a chip, and between a chip and a chip is possible. It becomes.
  • Such an adhesive sheet achieves a wafer fixing function and a die bonding function by imparting fluidity to the adhesive layer, and heat or energy ray curing formed on the support sheet and the support sheet. It has an adhesive layer composed of an adhesive component and a binder polymer component.
  • an adhesive layer is applied to the bump formation surface, that is, the surface of the chip, Die bonding will be performed.
  • Patent Document 3 discloses a heat conductive adhesive film in which a magnetic field is applied to a film composition containing boron nitride powder and the boron nitride powder in the composition is oriented and solidified in a certain direction.
  • the heat conductive adhesive film formed using the film composition of patent document 3 has the process of applying a magnetic field in a manufacturing process as mentioned above, and the manufacturing process is complicated.
  • the resin film forming composition is thickened due to the small particle diameter.
  • the coating suitability of the resin film-forming composition is lowered, and it may be difficult to form a smooth resin film.
  • the addition amount of boron nitride powder is reduced in order to avoid thickening of the resin film forming composition, the high thermal conductivity of the resin film cannot be obtained.
  • Patent Document 4 describes that a compound obtained by adding and condensing a silane coupling agent to a polysiloxane oligomer is added to a resin composition in order to improve adhesiveness.
  • An object of the present invention is to provide a sheet capable of imparting heat dissipation characteristics to the obtained semiconductor device and having excellent adhesion.
  • the present inventors have added a specific inorganic filler and a silane coupling agent to a resin film forming layer formed on any surface of a semiconductor chip.
  • the inventors have conceived that adhesiveness to an adherend (semiconductor wafer, semiconductor chip, etc.) and heat dissipation characteristics of a semiconductor device can be improved, and the present invention has been completed.
  • the present invention includes the following gist. [1] having a support sheet and a resin film forming layer formed on the support sheet;
  • the resin film-forming layer contains a binder polymer component (A), a curable component (B), an inorganic filler (C), and a silane coupling agent (D),
  • the inorganic filler (C) contains nitride particles (C1), A resin film-forming sheet for chips, wherein the silane coupling agent (D) has a molecular weight of 300 or more.
  • the peeling strength and heat conduction can be achieved without applying any special treatment to the semiconductor wafer or chip by using the resin film forming sheet for chip according to the present invention.
  • a resin film having an excellent rate can be formed, and the reliability of the obtained semiconductor device can be improved.
  • the resin film forming sheet for chips according to the present invention includes a support sheet and a resin film forming layer formed on the support sheet.
  • the resin film forming layer includes a binder polymer component (A), a curable component (B), an inorganic filler (C), and a silane coupling agent (D).
  • Binder polymer component The binder polymer component (A) is used to impart sufficient adhesiveness (adhesiveness or transferability to a semiconductor wafer or the like) and film-forming property (sheet-forming property) to the resin film-forming layer.
  • the binder polymer component (A) conventionally known acrylic polymers, polyester resins, urethane resins, acrylic urethane resins, phenoxy resins, silicone resins, rubber-based polymers, polystyrene, and the like can be used. The presence or absence of such a functional group does not matter.
  • the weight average molecular weight (Mw) of the binder polymer component (A) is preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000. If the weight average molecular weight of the binder polymer component (A) is too low, the peeling force between the resin film-forming layer and the support sheet is increased, and a defect that the resin film-forming layer cannot be transferred may occur. On the other hand, if the weight average molecular weight of the binder polymer component (A) is too high, the adhesiveness of the resin film forming layer is lowered, and transfer to a chip or the like may not be possible, or the resin film may be peeled off from the chip or the like after transfer. Moreover, when the weight average molecular weight of a binder polymer component (A) is too low, the sheet
  • the glass transition temperature (Tg) of the acrylic polymer is preferably in the range of ⁇ 60 to 50 ° C., more preferably ⁇ 50 to 40 ° C., and particularly preferably ⁇ 40 to 30 ° C. If the glass transition temperature of the acrylic polymer is too low, the peeling force between the resin film forming layer and the support sheet becomes large, and a defect that the resin film forming layer cannot be transferred may occur. In addition, if the glass transition temperature of the acrylic polymer is too high, the adhesiveness of the resin film forming layer is lowered, and transfer to a chip or the like may not be possible, or the resin film may be peeled off from the chip or the like after transfer. Further, when the glass transition temperature of the acrylic polymer is too low or too high, an appropriate film forming property cannot be obtained when the resin forming layer is produced, and sheet formation may not be possible.
  • a (meth) acrylic acid ester monomer or its derivative (s) As a monomer which comprises the said acrylic polymer, a (meth) acrylic acid ester monomer or its derivative (s) is mentioned. Examples thereof include alkyl (meth) acrylates having an alkyl group having 1 to 18 carbon atoms, (meth) acrylates having a cyclic skeleton, (meth) acrylates having a hydroxyl group, and (meth) acrylates having an epoxy group.
  • alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and pentyl (meth) ) Acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, tetradecyl ( Examples include meth) acrylate and octadecyl (meth) acrylate.
  • the (meth) acrylate having a cyclic skeleton include cycloalkyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and dicyclopentenyl (meth) acrylate. , Dicyclopentenyloxyethyl (meth) acrylate, imide (meth) acrylate, and the like.
  • the (meth) acrylate having a hydroxyl group examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. It is done.
  • Specific examples of the (meth) acrylate having an epoxy group include glycidyl (meth) acrylate. In these, the acrylic polymer obtained by superposing
  • an acrylic polymer when used, an acrylic polymer can be easily bridge
  • the acrylic polymer may be copolymerized with acrylic acid, methacrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, or the like.
  • the mass ratio of the monomer having an epoxy group in the total mass of the monomers constituting the acrylic polymer is limited to be low. Is preferred. This tends to increase the adhesive strength between the resin film and the chip. The reason is presumed as follows. When the mass ratio of the monomer having an epoxy group is low in the total mass of monomers constituting the acrylic polymer, the compatibility between the epoxy resin and the acrylic polymer is lowered, and each of them is the main component in the resin film forming layer. A phase separation structure is formed.
  • the compounding amount of the monomer having an epoxy group in the total mass of the monomer constituting the acrylic polymer is such that the monomer constituting the acrylic polymer does not include the monomer having an epoxy group or is in the total mass of the monomer constituting the acrylic polymer.
  • the mass ratio of the monomer having an epoxy group is preferably more than 0% by mass and 10% by mass or less, and the monomer constituting the acrylic polymer does not include the monomer having the epoxy group, or the monomer constituting the acrylic polymer.
  • the mass ratio of the monomer having an epoxy group exceeds 0 mass% and is 7 mass% or less in the total mass.
  • a monomer which has an epoxy group the norbornene etc. which have an epoxy group other than (meth) acrylate which has epoxy groups, such as the above-mentioned glycidyl (meth) acrylate, are mentioned, for example.
  • An acrylic polymer containing a monomer having an epoxy group as a monomer constituting the polymer is included in the concept of the epoxy resin described later in terms of words, but in the present invention, such an acrylic polymer is not included in the epoxy resin.
  • thermosetting component in the curable component (B) when an epoxy compound that is a molecule other than the acrylic polymer and has two or more functions in the molecule is blended in the resin film forming layer, the acrylic polymer is used. The above-mentioned effect by using it will be acquired.
  • the binder polymer component (A) may be a mixture of two or more polymers. At this time, the polymers having the same weight average molecular weight may be used, or a difference may be given. By mixing polymers having different weight average molecular weights, it is possible to facilitate delamination between the support sheet and the resin film-forming layer, and to suppress generation of voids during transfer. Furthermore, by selecting the glass transition temperature of the polymer to be mixed with the acrylic polymer, the transfer failure of the resin film forming layer due to the increase in the peeling force with the support sheet and the decrease in the adhesive force between the resin film forming layer and the chip are reduced. It can also be suppressed.
  • binder polymer component (A) a polymer having an energy ray polymerizable group in the side chain (energy ray curable polymer) may be used.
  • energy ray curable polymer has a function as a binder polymer component (A) and a function as a curable component (B) described later.
  • an energy beam polymeric group what is necessary is just to have the same thing as the energy beam polymeric group which the energy beam polymeric compound mentioned later contains.
  • a polymer having an energy ray polymerizable group in the side chain for example, a polymer having a reactive functional group X in the side chain, a low molecular weight having a functional group Y capable of reacting with the reactive functional group X and an energy ray polymerizable group
  • Examples include polymers prepared by reacting compounds.
  • the curable component (B) may be a thermosetting component and a thermosetting agent or an energy beam polymerizable compound. Moreover, you may use combining these.
  • the thermosetting component for example, an epoxy resin is preferable.
  • epoxy resin a conventionally known epoxy resin can be used.
  • epoxy resins include polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, biphenyl type epoxy resins, and bisphenols.
  • epoxy compounds having two or more functional groups in the molecule such as A-type epoxy resin, bisphenol F-type epoxy resin, and phenylene skeleton-type epoxy resin. These can be used individually by 1 type or in combination of 2 or more types.
  • the thermosetting component in the resin film forming layer is preferably 1 with respect to 100 parts by mass of the binder polymer component (A). ⁇ 1500 parts by mass, more preferably 3 ⁇ 1200 parts by mass.
  • the content of the thermosetting component is less than 1 part by mass, sufficient adhesiveness may not be obtained.
  • the content exceeds 1500 parts by mass, the peeling force between the resin film-forming layer and the support sheet increases, and the resin film A transfer defect of the formation layer may occur.
  • thermosetting agent functions as a curing agent for thermosetting components, particularly epoxy resins.
  • a preferable thermosetting agent includes a compound having two or more functional groups capable of reacting with an epoxy group in one molecule.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxyl group, and an acid anhydride. Of these, phenolic hydroxyl groups, amino groups, acid anhydrides and the like are preferable, and phenolic hydroxyl groups and amino groups are more preferable.
  • phenolic curing agent having a phenolic hydroxyl group examples include polyfunctional phenolic resins, biphenols, novolac type phenolic resins, dicyclopentadiene type phenolic resins, zyloc type phenolic resins, and aralkylphenolic resins.
  • amine curing agent having an amino group is DICY (dicyandiamide). These can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the thermosetting agent is preferably 0.1 to 500 parts by mass and more preferably 1 to 200 parts by mass with respect to 100 parts by mass of the thermosetting component.
  • the content of the thermosetting agent is small, the adhesiveness may not be obtained due to insufficient curing, and when it is excessive, the moisture absorption rate of the resin film forming layer is increased and the reliability of the semiconductor device may be lowered.
  • the energy beam polymerizable compound contains an energy beam polymerizable group and is polymerized and cured when irradiated with energy rays such as ultraviolet rays and electron beams.
  • energy beam polymerizable compounds include trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, or 1,4-butylene glycol.
  • Examples include acrylate compounds such as diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate oligomer, epoxy-modified acrylate, polyether acrylate, and itaconic acid oligomer.
  • acrylate compounds such as diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate oligomer, epoxy-modified acrylate, polyether acrylate, and itaconic acid oligomer.
  • Such a compound has at least one polymerizable double bond in the molecule, and usually has a weight average molecular weight of about 100 to 30,000, preferably about 300 to 10,000.
  • the energy ray polymerizable compound is preferably used in an amount of 1 to 1500 in the resin film forming layer with respect to 100 parts by mass of the binder polymer component (A).
  • the inorganic filler (C) contains nitride particles (C1).
  • nitride particles (C1) By blending the inorganic filler (C) containing the nitride particles (C1) into the resin film forming layer, the thermal conductivity of the resin film forming layer is improved, and the semiconductor chip to which the resin film forming layer is attached is mounted. It becomes possible to efficiently diffuse the heat generated by the semiconductor device.
  • the coefficient of thermal expansion of the cured resin film can be adjusted, and the reliability of the semiconductor device can be improved using a semiconductor wafer, a semiconductor chip, a lead frame, an organic substrate, or the like as an adherend.
  • the moisture absorption rate of the cured resin film can be reduced, the adhesiveness as the resin film can be maintained during heating, and the reliability of the semiconductor device can be improved. Furthermore, by applying laser marking to the resin film, the inorganic filler (C) is exposed at the portion scraped off by the laser beam, and the reflected light diffuses to exhibit a color close to white. Thereby, when the resin film forming layer contains a colorant (E) described later, there is an effect that a contrast difference is obtained between the laser marking portion and other portions, and the printing becomes clear.
  • a colorant (E) described later there is an effect that a contrast difference is obtained between the laser marking portion and other portions, and the printing becomes clear.
  • the inorganic filler (C) preferably contains particles other than the nitride particles (C1) (hereinafter sometimes referred to as “other particles (C2)”).
  • the nitride particles (C1) improve the thermal conductivity of the resin film forming layer, but if the content ratio of the nitride particles (C1) in the resin film forming layer is too large, the adhesion of the resin film forming layer to the adherend May be reduced. Therefore, by using nitride particles (C1) and other particles (C2) in combination, sufficient thermal conductivity is imparted to the resin film forming layer while maintaining the adhesion of the resin film forming layer to the adherend. it can.
  • nitride particles (C1) Nitride particles
  • the nitride particles (C1) include particles of boron nitride, aluminum nitride, silicon nitride, and the like. Among these, boron nitride particles that can easily obtain a resin film-forming layer having high thermal conductivity are preferable.
  • the nitride particles (C1) are preferably anisotropic shaped particles.
  • the anisotropically shaped particles have anisotropy, and the specific shape thereof preferably has at least one shape selected from the group consisting of a plate shape, a needle shape and a scale shape.
  • the anisotropically shaped particles exhibit high thermal conductivity in the major axis direction. Therefore, in the resin film forming layer, the ratio of the anisotropically shaped particles in which the major axis direction and the thickness direction of the resin film forming layer are substantially the same increases, so that the heat generated in the semiconductor chip causes the resin film forming layer to It becomes easy to diverge through.
  • the major axis direction of the nitride particles (C1) and the thickness direction of the resin film forming layer are substantially the same” specifically means that the major axis direction of the nitride particles (C1) is resin.
  • the angle formed by the thickness direction of the resin film forming layer and the major axis direction of the nitride particles (C1) is in the range of ⁇ 45 to 45 °.
  • the average particle diameter of the nitride particles (C1) is preferably 20 ⁇ m or less, more preferably 5 to 20 ⁇ m, still more preferably 8 to 20 ⁇ m, and particularly preferably 10 to 15 ⁇ m. Moreover, it is preferable that the average particle diameter of nitride particle
  • the average particle diameter of the nitride particles (C1) is the number average particle diameter calculated as an arithmetic average value by measuring the major axis diameter of 20 nitride particles (C1) randomly selected with an electron microscope. .
  • the particle size distribution (CV value) of the nitride particles (C1) is preferably 5 to 40%, more preferably 10 to 30%. By setting the particle size distribution of the nitride particles (C1) within the above range, efficient and uniform thermal conductivity can be achieved.
  • the CV value is an index of particle size variation, and the larger the CV value, the larger the particle size variation.
  • the CV value is small, since the particle diameter is uniform, the amount of small-sized particles entering the gap between the particles is reduced, and it becomes difficult to pack the inorganic filler (C) more densely. A resin film forming layer having high thermal conductivity may be difficult to obtain.
  • the particle diameter of the inorganic filler (C) may be larger than the thickness of the formed resin film forming layer, resulting in unevenness on the surface of the resin film forming layer.
  • the adhesion of the film forming layer may be reduced.
  • CV value is too large, it may become difficult to obtain the heat conductive composition which has uniform performance.
  • the particle size distribution (CV value) of the nitride particles (C1) is observed with an electron microscope, the major axis diameter is measured for 200 particles, the standard deviation of the major axis diameter is obtained, and the above average particle diameter is determined. Can be obtained by calculating (standard deviation of major axis diameter) / (average particle diameter).
  • the aspect ratio of the nitride particles (C1) is preferably 5 or more, more preferably 5 to 30, further preferably 8 to 20, and particularly preferably 10 to 15.
  • the aspect ratio is expressed by (major axis number average diameter) / (minor axis number average diameter) of the nitride particles (C1).
  • the short axis number average diameter and long axis number average diameter are calculated as the arithmetic average value of the short axis diameter and long axis diameter of 20 nitride particles (C1) randomly selected in a transmission electron micrograph.
  • the major axis direction of the nitride particles (C1) and the direction parallel to the resin film forming layer are substantially the same due to the other particles (C2). This prevents the nitride particles (C1) from forming an efficient heat conduction path in the thickness direction of the resin film forming layer, thereby improving the heat conductivity.
  • the density of the nitride particles (C1) is preferably 2 to 4 g / cm 3 , more preferably 2.2 to 3 g / cm 3 .
  • the thermal conductivity in the major axis direction of the nitride particles (C1) is preferably 60 to 400 W / (m ⁇ K), and more preferably 100 to 300 W / (m ⁇ K).
  • the formed heat conduction path has high heat conductivity, and as a result, a resin film forming layer having high heat conductivity can be obtained.
  • the thermal conductivity in the major axis direction of the nitride particles (C1) can be measured by a periodic heating method.
  • the other particles (C2) include silica particles and alumina particles, and alumina particles are particularly preferable. By using alumina particles, the thermal conductivity is not impaired even in portions other than the thermal conduction path formed by the nitride particles, and as a result, a resin film forming layer having a high thermal conductivity is obtained.
  • the shape of the other particles (C2) is not particularly limited as long as the long axis direction of the nitride particles (C1) and the direction parallel to the resin film forming layer are prevented from being substantially the same.
  • the typical shape is preferably spherical.
  • the major axis direction of the nitride particles (C1) becomes substantially the same as the direction parallel to the resin film forming layer in the manufacturing process of the resin film forming layer.
  • the ratio of the nitride particles (C1) in which the major axis direction and the thickness direction of the resin film forming layer are substantially the same can be increased.
  • a resin film forming layer having excellent thermal conductivity in the thickness direction of the resin film forming layer is obtained. This is because the presence of other particles (C2) in the resin film forming layer causes the nitride particles (C1) to stand against the other particles (C2), resulting in the nitride particles (C1).
  • the major axis direction and the thickness direction of the resin film forming layer are substantially the same.
  • the major axis direction of the resin film is caused by stress or gravity applied to the nitride particles (C1) during the manufacturing process (for example, coating process) of the resin film forming layer.
  • the ratio of the nitride particles (C1) that are substantially the same as the direction parallel to the formation layer is increased, and it may be difficult to obtain a resin film formation layer having excellent thermal conductivity.
  • the average particle diameter of the other particles (C2) is preferably 20 ⁇ m or more, more preferably 20 to 50 ⁇ m, still more preferably 20 to 30 ⁇ m.
  • the average particle diameter of the other particles (C2) is preferably 20 ⁇ m or more, more preferably 20 to 50 ⁇ m, still more preferably 20 to 30 ⁇ m.
  • the thermal conductivity and film-forming property of the resin film forming layer are improved, and the filling rate of the other particles (C2) in the resin film forming layer is increased. Will improve.
  • the nitride particles (C1) have a large specific surface area per unit volume and are likely to increase the viscosity of the resin film-forming composition.
  • the average particle size of the other particles (C2) is the number average particle size calculated as the arithmetic average value of 20 major axis diameters of 20 other particles (C2) randomly selected with an electron microscope.
  • the average particle diameter of the other particles (C2) is preferably 0.01 to 0.65 times the thickness of the resin film forming layer described later.
  • the average particle diameter of the other particles (C2) is less than 0.01 times the thickness of the resin film-forming layer, nitride particles whose major axis direction is substantially the same as the direction parallel to the resin film-forming layer ( The ratio of C1) increases, it becomes difficult to form an efficient heat conduction path, and the heat conductivity of the resin film forming layer may be lowered.
  • the average particle diameter of the other particles (C2) exceeds 0.65 times the thickness of the resin film forming layer, the surface of the resin film forming layer is uneven, and the adhesion of the resin film forming layer to the adherend is caused. May decrease. Moreover, it may be difficult to obtain a thermally conductive resin film forming composition having uniform performance.
  • the particle size distribution (CV value) of the other particles (C2) is preferably 5 to 40%, more preferably 10 to 30%.
  • the particle size distribution of the other particles (C2) is preferably 5 to 40%, more preferably 10 to 30%.
  • the adhesion of the resin film forming layer to the adherend may be inferior. Moreover, when CV value is too large, it may become difficult to obtain the heat conductive composition which has uniform performance.
  • the particle size distribution (CV value) of other particles (C2) was observed with an electron microscope, the major axis diameter was measured for 200 particles, the standard deviation of the major axis diameter was determined, and the average particle diameter described above was obtained. Can be obtained by calculating (standard deviation of major axis diameter) / (average particle diameter).
  • the mass ratio of the inorganic filler (C) in the total mass of the resin film-forming layer is preferably 30 to 60% by mass, more preferably 40 to 60% by mass, based on the total solid content constituting the resin film-forming layer. Particularly preferred is 50 to 60% by mass.
  • the mass ratio of the nitride particles (C1) in the total mass of the resin film forming layer is preferably 40% by mass or less, more preferably 20 to 40% by mass, and particularly preferably 20 to 30% by mass.
  • the weight ratio (C1: C2) of the nitride particles (C1) and other particles (C2) is preferably 1: 5 to 5: 1, more preferably 1: 4 to 4: 1.
  • the weight ratio of the nitride particles (C1) and the other particles (C2) within the above range, the nitride particles (C1) whose major axis direction and the thickness direction of the resin film forming layer are substantially the same. The ratio of can be increased. As a result, the thermal conductivity of the resin film forming layer can be improved. Moreover, the thickening of the composition for resin film formation can be suppressed, and a smooth resin film can be formed.
  • the concentration of the inorganic filler (C) in the resin film forming layer is preferably 30 to 50% by volume, more preferably 35 to 45% by volume.
  • a silane coupling agent (D) having a molecular weight of 300 or more is blended in the resin film forming layer.
  • the adhesiveness of the resin film forming layer to the adherend can be improved.
  • the water resistance can be improved by using a silane coupling agent (D), without impairing the heat resistance of the resin film obtained by hardening
  • the “functional group that reacts with the inorganic substance” may be referred to as “reactive functional group A”
  • the “functional group that reacts with the organic functional group” may be referred to as “reactive functional group B”.
  • silane coupling agent (D) used in the present invention examples include oligomer type silane coupling agents having a molecular weight of 300 or more.
  • the molecular weight of the silane coupling agent (D) is preferably 300 to 5000, more preferably 1000 to 3000.
  • the alkoxy equivalent of the silane coupling agent (D) is preferably 10 to 40 mmol / g, more preferably 13 to 30 mmol / g.
  • the reactive functional group A an alkoxy group is preferable.
  • the reactive functional group B is preferably one that reacts with the functional group of the binder polymer component (A), the curable component (B), and the like, such as an epoxy group, an amino group, (meth) Examples thereof include an acryloyl group, a vinyl group excluding a vinyl group in the (meth) acryloyl group, and a mercapto group. Among these, an epoxy group is preferable.
  • alkoxy equivalent shows the absolute number of the alkoxy group contained per unit weight of a compound.
  • silane coupling agent (D) examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - ( Low molecular silane coupling agent having two or three alkoxy groups such as methacrylopropyl) trimethoxysilane; low molecular silane coupling agent having four alkoxy groups such as tetramethoxysilane, tetraethoxysilane; etc.
  • the oligomer type thing which is the product condensed by hydrolysis and dehydration condensation of group is mentioned.
  • a low molecular silane coupling agent having two or three alkoxy groups and a low molecular silane coupling agent having four alkoxy groups are condensed by dehydration condensation.
  • the oligomer which is a thing has the functional group which is rich in the reactivity of an alkoxy group, and reacts with a sufficient number of organic functional groups, it is preferable.
  • examples of such an oligomer include an oligomer which is a copolymer of 3- (2,3-epoxypropoxy) propylmethoxysiloxane and dimethoxysiloxane.
  • the mass ratio of the silane coupling agent (D) in the total mass of the resin film forming layer is preferably 0.3 to 2 mass%, more preferably 0.5 to 2 mass%, particularly preferably 1 to 2 mass%. It is.
  • the reactive functional group A of the silane coupling agent (D) is reactive with the inorganic filler (C) (particularly other particles (C2)).
  • Adhesion of the resin film forming layer by the nitride particles (C1) by causing a chemical reaction between the functional group B and the functional group of the binder polymer component (A) or the curable component (B) efficiently and forming a network. The decline in sex can be suppressed.
  • the resin film forming layer in the present invention has a silane compound (D ′) (hereinafter simply referred to as “silane compound”) having a molecular weight of 300 or more and an alkoxy equivalent of 10 mmol / g or more and having no reactive functional group B. D ′) ”) may be included. Since the silane compound (D ′) does not have the reactive functional group B, it does not react with the functional group of the binder polymer component (A) or the curable component (B), but has the reactive functional group A.
  • silane compound (hereinafter simply referred to as “silane compound”) having a molecular weight of 300 or more and an alkoxy equivalent of 10 mmol / g or more and having no reactive functional group B. D ′) ”). Since the silane compound (D ′) does not have the reactive functional group B, it does not react with the functional group of the binder polymer component (A) or the curable component (B), but has the reactive functional group A.
  • silane compound (D ′) examples include polymethoxysiloxane, polyethoxysiloxane, a copolymer of methoxysiloxane and dimethylsiloxane, and the like.
  • the other component resin film-forming layer can contain the following components in addition to the binder polymer component (A), the curable component (B), the inorganic filler (C), and the silane coupling agent (D).
  • a coloring agent (E) can be mix
  • the colorant organic or inorganic pigments or dyes are used.
  • the dye any dye such as an acid dye, a reactive dye, a direct dye, a disperse dye, and a cationic dye can be used.
  • the pigment is not particularly limited, and can be appropriately selected from known pigments. Among these, black pigments are preferable from the viewpoint of electromagnetic wave and infrared shielding properties.
  • black pigment examples include carbon black, iron oxide, manganese dioxide, aniline black, activated carbon, and the like, but are not limited thereto. Carbon black is particularly preferable from the viewpoint of increasing the reliability of the semiconductor device.
  • a coloring agent (E) may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the blending amount of the colorant (E) is preferably 0.1 to 35 parts by weight, more preferably 0.5 to 100 parts by weight of the total solid content constituting the resin film forming layer excluding the colorant (E). -25 parts by mass, particularly preferably 1-15 parts by mass.
  • the curing accelerator (F) is used to adjust the curing speed of the resin film forming layer.
  • the curing accelerator (F) is preferably used when an epoxy resin and a thermosetting agent are used in combination, particularly when at least a thermosetting component and a thermosetting agent are used as the curable component (B).
  • Preferred curing accelerators include tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole, 2-phenyl- Imidazoles such as 4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole; Organic phosphines such as tributylphosphine, diphenylphosphine and triphenylphosphine; And tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate and triphenylphosphinetetraphenylborate. These can be used individually by 1 type or in mixture of 2 or more types.
  • the curing accelerator (F) is preferably contained in an amount of 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the thermosetting component and the thermosetting agent. It is. By containing the curing accelerator (F) in an amount within the above range, it has excellent adhesion even when exposed to high temperatures and high humidity, and high reliability even when exposed to severe reflow conditions. Can be achieved. If the content of the curing accelerator (F) is small, sufficient adhesion cannot be obtained due to insufficient curing, and if it is excessive, the curing accelerator having a high polarity will adhere to the resin film forming layer at high temperature and high humidity. The reliability of the semiconductor device is lowered by moving to the side and segregating.
  • the photopolymerization initiator resin film-forming layer contains an energy beam polymerizable compound as the curable component (B)
  • energy beam polymerization is performed by irradiating energy rays such as ultraviolet rays when using the compound.
  • the active compound is cured.
  • the photopolymerization initiator (G) in the composition constituting the resin film forming layer, the polymerization curing time and the amount of light irradiation can be reduced.
  • photopolymerization initiator (G) examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, and benzoin dimethyl ketal.
  • a photoinitiator (G) can be used individually by 1 type or in combination of 2 or more types.
  • the blending ratio of the photopolymerization initiator (G) is preferably 0.1 to 10 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the energy beam polymerizable compound. If the amount is less than 0.1 parts by mass, satisfactory transferability may not be obtained due to insufficient photopolymerization. If the amount exceeds 10 parts by mass, a residue that does not contribute to photopolymerization is generated, and the curability of the resin film forming layer is not obtained. May be insufficient.
  • a crosslinking agent may be added to adjust the initial adhesive force and cohesive strength of the crosslinking agent resin film-forming layer.
  • examples of the crosslinking agent (H) include organic polyvalent isocyanate compounds and organic polyvalent imine compounds.
  • organic polyvalent isocyanate compounds include aromatic polyvalent isocyanate compounds, aliphatic polyvalent isocyanate compounds, alicyclic polyvalent isocyanate compounds, trimers of these organic polyvalent isocyanate compounds, and these organic polyvalent isocyanate compounds.
  • examples thereof include terminal isocyanate urethane prepolymers obtained by reacting with a polyol compound.
  • organic polyvalent isocyanate compounds include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4,4′-.
  • organic polyvalent imine compounds include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, tetramethylol. Mention may be made of methane-tri- ⁇ -aziridinylpropionate and N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine.
  • the crosslinking agent (H) is usually in a ratio of 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the binder polymer component (A). Used.
  • additives may be blended in the general-purpose additive resin film forming layer as necessary.
  • additives include leveling agents, plasticizers, antistatic agents, antioxidants, ion scavengers, gettering agents, chain transfer agents, and the like.
  • the resin film-forming layer composed of the above components has adhesiveness and curability, and adheres to the semiconductor chip or the like by pressing against a semiconductor chip or the like in an uncured state or by pressing while heating. Then, after curing, a resin film having high impact resistance can be provided, the peel strength is excellent, and a sufficient protective function can be maintained even under severe high temperature and high humidity conditions.
  • the resin film forming layer is preferably used as a film adhesive for fixing the semiconductor chip to the substrate or another semiconductor chip or as a protective film for the semiconductor chip.
  • the resin film forming layer may have a single layer structure, or may have a multilayer structure as long as one or more layers containing the above components are included.
  • the peel strength of the resin film forming layer is preferably 3.5 to 10 N / 10 mm, more preferably 5 to 10 N / 10 mm, and particularly preferably 7 to 10 N / 10 mm.
  • the peel strength of the resin film forming layer is within the above range, a semiconductor device having excellent reliability can be manufactured.
  • the measuring method of the peeling strength of a resin film formation layer is performed by the same method as an Example.
  • the thermal conductivity of the resin film forming layer is preferably 2 W / (m ⁇ K) or more, more preferably 3 W / (m ⁇ K) or more. Further, the thermal conductivity of the cured resin film forming layer (resin film) is preferably 2 W / (m ⁇ K) or more, more preferably 3 W / (m ⁇ K) or more. If the thermal conductivity of the resin film forming layer or the resin film is less than 2 W / (m ⁇ K), the semiconductor device may be deformed due to heat generation of the semiconductor device, causing failure or breakage, and calculation of the semiconductor device. This may cause a reduction in speed or malfunction, and may reduce the reliability of the semiconductor device.
  • the thermal conductivity of the resin film forming layer or the resin film By setting the thermal conductivity of the resin film forming layer or the resin film within the above range, the heat dissipation characteristics of the semiconductor device can be improved, and a semiconductor device having excellent reliability can be manufactured.
  • the measuring method of the heat conductivity of the resin film formation layer is performed by the same method as an Example.
  • thermal diffusivity can be used as an index of the heat dissipation characteristics of the resin film forming layer.
  • the thermal diffusivity of the cured resin film forming layer (resin film) is 9.7 ⁇ 10 ⁇ It is preferably 7 m 2 / s or more, and more preferably 1.5 ⁇ 10 ⁇ 6 m 2 / s or more.
  • the thermal diffusivity is a value obtained by dividing the thermal conductivity of the resin film forming layer or the resin film by the product of the specific heat and density of the resin film, and the greater the thermal diffusivity, the better the heat dissipation characteristics. .
  • the resin film forming layer is obtained by applying and drying a resin film forming composition obtained by mixing the above-described components at an appropriate ratio on a support sheet.
  • the composition for forming a resin film may be applied on a process film different from the support sheet and dried to form a film, which may be transferred onto the support sheet.
  • each component may be diluted with a dispersion medium or a solvent in advance, or a dispersion medium or a solvent may be added during mixing. It is preferable to use a solvent from the viewpoint of uniformly mixing the above components.
  • solvent examples include toluene, xylene, methanol, ethanol, isobutanol, n-butanol, ethyl acetate, methyl ethyl ketone, acetone, tetrahydrofuran, isopropanol, dimethylformamide, N-methylpyrrolidone and the like. These may be used alone or in combination of two or more.
  • the resin film forming sheet for chips according to the present invention is formed by releasably forming the resin film forming layer on a support sheet.
  • the shape of the resin film forming sheet for chips according to the present invention can take any shape such as a tape shape and a label shape.
  • the support sheet for example, polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film, Polyurethane film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer film, polystyrene film, polycarbonate film, polyimide film, fluorine A film such as a resin film is used. These crosslinked films are also used. Furthermore, these laminated films may be sufficient. Moreover, the film which colored these can also be used.
  • the support sheet is peeled off when used, and the resin film forming layer is transferred to a semiconductor wafer or chip.
  • the support sheet needs to withstand the heating during the heat curing of the resin film forming layer, and therefore, an annealed polyethylene terephthalate film having excellent heat resistance, polyethylene Naphthalate film, polymethylpentene film, and polyimide film are preferably used.
  • a release agent can be applied to the surface of the support sheet to perform a release treatment.
  • alkyd, silicone, fluorine, unsaturated polyester, polyolefin, wax, and the like are used as the release agent used for the release treatment.
  • alkyd, silicone, and fluorine release agents are heat resistant. This is preferable.
  • the release agent In order to release the surface of a film or the like as a substrate of a support sheet using the above release agent, the release agent is used without any solvent, or diluted or emulsified with a solvent, and then a gravure coater, Mayer bar coater, air knife coater.
  • the release agent layer may be formed by coating with a roll coater or the like, and subjecting the support sheet coated with the release agent to room temperature or heating, or curing with an electron beam.
  • a support sheet may be obtained by laminating films by wet lamination, dry lamination, hot melt lamination, melt extrusion lamination, coextrusion processing, or the like.
  • the resin film forming layer may be laminated on a releasable pressure-sensitive adhesive layer provided on the support sheet.
  • the re-peelable pressure-sensitive adhesive layer may be a weak-adhesive layer having an adhesive strength that can peel off the resin film-forming layer, or an energy-ray-curable layer whose adhesive strength is reduced by energy beam irradiation. May be used.
  • energy beam irradiation is performed in advance on a region where the resin film forming layer is laminated (for example, the inner periphery of the support sheet) to reduce the adhesiveness.
  • regions may not be irradiated with energy rays, and may be maintained with a high adhesive force for the purpose of bonding to a jig, for example.
  • an energy beam shielding layer may be provided by printing or the like in a region corresponding to the other region of the support sheet, and the energy beam irradiation may be performed from the support sheet side. .
  • Re-peelable pressure-sensitive adhesive layer is a variety of conventionally known pressure-sensitive adhesives (for example, general-purpose pressure-sensitive adhesives such as rubber-based, acrylic-based, silicone-based, urethane-based, vinyl ether-based, energy ray-curable pressure-sensitive adhesives, thermal expansion components) It may be an adhesive or the like, and the surface of the adhesive may be uneven.
  • the thickness of the releasable pressure-sensitive adhesive layer is not particularly limited, but is usually 1 to 50 ⁇ m, preferably 5 to 30 ⁇ m.
  • the support sheet in the chip-forming resin film forming sheet having such a configuration supports an adherend (semiconductor wafer or chip) in a dicing process, which is a semiconductor device manufacturing process described later, particularly when the resin film is used as a protective film. Therefore, the adhesiveness between the support sheet and the resin film forming layer can be maintained, so that the chip with the resin film forming layer can be prevented from being peeled off from the support sheet in the dicing process.
  • the thickness of the support sheet is usually 10 to 500 ⁇ m, preferably 15 to 300 ⁇ m, particularly preferably 20 to 250 ⁇ m.
  • the thickness of the resin film forming layer is preferably 25 to 50 ⁇ m, particularly preferably 30 to 45 ⁇ m. Moreover, it is preferable that the thickness of the resin film forming layer is larger than the average particle diameter of the other particles (C2).
  • a light peelable release film is laminated on the upper surface of the resin film forming layer separately from the support sheet. May be.
  • an adhesive layer or an adhesive tape may be separately provided on the outer peripheral portion of the surface of the resin film forming layer (the surface in contact with the adherend) in order to fix it to another jig such as a ring frame.
  • the resin film forming layer of such a resin film forming sheet for chips can function as a film adhesive.
  • a film adhesive is usually applied to any surface of a semiconductor wafer, cut into individual chips through a dicing process, and then placed on a substrate (die bond), and a semiconductor chip is bonded and fixed through a curing process. Used for Such a film adhesive is sometimes referred to as a die attachment film. Since the semiconductor device using the resin film forming layer in the present invention as a film adhesive is excellent in heat dissipation characteristics, it is possible to suppress a decrease in reliability.
  • the resin film forming layer of the chip resin film forming sheet can be a protective film.
  • the resin film forming layer is affixed to the back surface of the face-down chip semiconductor wafer or semiconductor chip, and has a function of protecting the semiconductor chip as an alternative to the sealing resin by being cured by an appropriate means.
  • the protective film has a function of reinforcing the wafer, so that damage to the wafer can be prevented.
  • the semiconductor device which used the resin film formation layer in this invention as the protective film is excellent in the thermal radiation characteristic, it can suppress the fall of the reliability.
  • a method of manufacturing a semiconductor device is a semiconductor device in which a resin film forming layer of the resin film forming sheet for a chip is pasted on the back surface of a semiconductor wafer having a circuit formed on the surface, and then the resin film is formed on the back surface. It is preferable to obtain a chip.
  • the resin film is preferably a protective film for a semiconductor chip.
  • the method for manufacturing a semiconductor device according to the present invention preferably further includes the following steps (1) to (3), wherein the steps (1) to (3) are performed in an arbitrary order. Step (1): peeling the resin film forming layer or resin film and the support sheet, Step (2): The resin film forming layer is cured to obtain a resin film. Step (3): dicing the semiconductor wafer and the resin film forming layer or resin film.
  • the semiconductor wafer may be a silicon wafer or a compound semiconductor wafer such as gallium / arsenic. Formation of a circuit on the wafer surface can be performed by various methods including conventionally used methods such as an etching method and a lift-off method. Next, the opposite surface (back surface) of the circuit surface of the semiconductor wafer is ground.
  • the grinding method is not particularly limited, and grinding may be performed by a known means using a grinder or the like. At the time of back surface grinding, an adhesive sheet called a surface protection sheet is attached to the circuit surface in order to protect the circuit on the surface.
  • the circuit surface side (that is, the surface protection sheet side) of the wafer is fixed by a chuck table or the like, and the back surface side on which no circuit is formed is ground by a grinder.
  • the thickness of the wafer after grinding is not particularly limited, but is usually about 20 to 500 ⁇ m.
  • the crushed layer generated during back grinding is removed.
  • the crushed layer is removed by chemical etching, plasma etching, or the like.
  • steps (1) to (3) are performed in an arbitrary order. Details of this process are described in detail in JP-A-2002-280329. As an example, the case where it performs in order of process (1), (2), (3) is demonstrated.
  • the resin film forming layer of the above-mentioned resin film forming sheet for chips is attached to the back surface of a semiconductor wafer having a circuit formed on the front surface.
  • the support sheet is peeled from the resin film forming layer to obtain a laminate of the semiconductor wafer and the resin film forming layer.
  • the resin film forming layer is cured to form a resin film on the entire surface of the wafer.
  • a thermosetting component and a thermosetting agent are used as the curable component (B) in the resin film forming layer
  • the resin film forming layer is cured by thermosetting.
  • the resin film forming layer can be cured by irradiation with energy rays, and the thermosetting component, the thermosetting agent, energy
  • the linear polymerizable compound is used in combination, curing by heating and energy beam irradiation may be performed simultaneously or sequentially.
  • the energy rays to be irradiated include ultraviolet rays (UV) and electron beams (EB), and preferably ultraviolet rays are used.
  • the outstanding heat dissipation characteristic is provided by forming the resin film with high heat conductivity. Further, compared with a coating method in which a coating solution for a resin film is directly applied to the back surface of a wafer or chip, the thickness of the resin film is excellent.
  • the laminated body of the semiconductor wafer and the resin film is diced for each circuit formed on the wafer surface. Dicing is performed so as to cut both the wafer and the resin film.
  • the wafer is diced by a conventional method using a dicing sheet. As a result, a semiconductor chip having a resin film on the back surface is obtained.
  • a semiconductor chip having a resin film on the back surface can be obtained.
  • the semiconductor device can be manufactured by mounting the semiconductor chip on a predetermined base by the face-down method.
  • a semiconductor device can be manufactured by bonding a semiconductor chip having a resin film on the back surface to another member (on a chip mounting portion) such as a die pad portion or another semiconductor chip.
  • a highly uniform resin film can be easily formed on the back surface of the chip, and cracks after the dicing process and packaging are less likely to occur.
  • excellent heat dissipation characteristics are imparted to the obtained semiconductor device, it is possible to suppress a decrease in reliability.
  • seat for resin film formation for chips is dicing.
  • the semiconductor wafer is attached to the inner periphery of the chip resin film forming sheet via the resin film forming layer, and the outer periphery of the chip resin film forming sheet is joined to another jig such as a ring frame.
  • the chip resin film forming sheet attached to the semiconductor wafer is fixed to the apparatus, and dicing is performed.
  • the resin film forming layer of the sheet is bonded to a semiconductor wafer, and the semiconductor wafer is diced into a semiconductor chip.
  • the resin film forming layer is fixedly left on either side of the semiconductor chip and peeled off from the support sheet, and the semiconductor chip is mounted on the die pad portion or another semiconductor chip via the resin film forming layer. It is preferable to include a step of placing. As an example, a manufacturing method for attaching a resin film forming layer to the back surface of a chip will be described below.
  • the ring frame and the back side of the semiconductor wafer are placed on the resin film forming layer of the chip resin film forming sheet according to the present invention, and lightly pressed to fix the semiconductor wafer.
  • the resin film forming sheet for chips according to the present invention has a resin film forming layer formed on the inner peripheral portion of the support sheet via the re-peeling adhesive layer, and the re-peeling adhesive layer on the outer peripheral portion of the support sheet.
  • the semiconductor wafer is fixed on the resin film forming layer, and the ring frame is fixed via the re-peeling adhesive layer on the outer peripheral portion of the support sheet.
  • the resin film forming layer does not have tackiness at room temperature, it may be appropriately heated (although it is not limited, 40 to 80 ° C. is preferable).
  • the resin film forming layer is irradiated with energy rays from the support sheet side, and the resin layer forming layer is preliminarily formed. It may be hardened to increase the cohesive force of the resin film forming layer and decrease the adhesive force between the resin film forming layer and the support sheet.
  • the semiconductor wafer is cut using a cutting means such as a dicing saw to obtain a semiconductor chip.
  • the cutting depth at this time is a depth that takes into account the sum of the thickness of the semiconductor wafer and the thickness of the resin film forming layer and the amount of wear of the dicing saw.
  • the energy beam irradiation may be performed at any stage after the semiconductor wafer is pasted and before the semiconductor chip is peeled off (pickup).
  • the irradiation may be performed after dicing or after the following expanding step. Although it is good, it is preferably performed after the semiconductor wafer is attached and before dicing. Further, the energy beam irradiation may be performed in a plurality of times.
  • the resin film forming sheet for chips is expanded, the interval between the semiconductor chips is expanded, and the semiconductor chips can be picked up more easily. At this time, a deviation occurs between the resin film forming layer and the support sheet, the adhesive force between the resin film forming layer and the support sheet is reduced, and the pick-up property of the semiconductor chip is improved. When the semiconductor chip is picked up in this manner, the cut resin film forming layer can be adhered to the back surface of the semiconductor chip and peeled off from the support sheet.
  • the semiconductor chip is placed on the die pad of the lead frame or on the surface of another semiconductor chip (lower chip) through the resin film forming layer (hereinafter, the die pad or lower chip surface on which the chip is mounted is referred to as “chip mounting portion”. ).
  • the chip mounting part may be heated before mounting the semiconductor chip or immediately after mounting.
  • the heating temperature is usually 80 to 200 ° C., preferably 100 to 180 ° C.
  • the heating time is usually 0.1 seconds to 5 minutes, preferably 0.5 seconds to 3 minutes.
  • the pressure is usually 1 kPa to 200 MPa.
  • the heating conditions at this time are in the above heating temperature range, and the heating time is usually 1 to 180 minutes, preferably 10 to 120 minutes.
  • the resin film forming layer may be cured by using a heat in resin sealing that is normally performed in package manufacturing, without temporarily performing the heat treatment after placement.
  • the resin film formation layer hardens
  • the resin film forming layer is fluidized under die bonding conditions, the resin film forming layer is sufficiently embedded in the unevenness of the chip mounting portion, and generation of voids can be prevented and the reliability of the semiconductor device is improved.
  • the thermal conductivity of the resin film forming layer is high, the semiconductor device has excellent heat dissipation characteristics, and it is possible to suppress a decrease in reliability.
  • the resin film-forming sheet for chips of the present invention can be used for bonding semiconductor compounds, glass, ceramics, metals, etc., in addition to the above-described usage methods.
  • the sample was heated and cured (130 ° C., 2 hours), and then the thermal conductivity of the sample was measured using a thermal conductivity measuring device (eye phase mobile 1u manufactured by ai-phase). .
  • the case where the thermal conductivity was 2 W / (m ⁇ K) or more was evaluated as “good”, and the other cases were evaluated as “bad”.
  • Binder polymer component copolymer of 85 parts by weight of methyl methacrylate and 15 parts by weight of 2-hydroxyethyl acrylate (weight average molecular weight: 400,000, glass transition temperature: 6 ° C.)
  • Curing component (B1) Bisphenol A type epoxy resin (epoxy equivalent 180 to 200 g / eq)
  • B2) Dicyclopentadiene type epoxy resin (Epiclon HP-7200HH manufactured by DIC Corporation)
  • B3) Dicyandiamide Adeka Hardener 3636AS manufactured by Asahi Denka
  • Inorganic filler (C1) Boron nitride particles (UHP-2 manufactured by Showa Denko KK, shape: plate, average particle diameter 11.8 ⁇ m, aspect ratio 11.2, major axis direction thermal conductivity 200 W / (m ⁇ K), Density 2.3 g / cm 3 ) (C2)
  • Examples and Comparative Examples The above components were blended in the amounts shown in Table 1 to obtain a resin film forming composition.
  • a methyl ethyl ketone solution (solid concentration: 61% by weight) of the obtained composition was dried on a release-treated surface of a support sheet (SP-PET 381031, thickness 38 ⁇ m manufactured by Lintec Co., Ltd.) that had been release-treated with silicone, to a thickness of 40 ⁇ m It was coated and dried (drying conditions: 110 ° C. for 1 minute in an oven) to form a resin film-forming layer on the support sheet to obtain a resin film-forming sheet for chips.
  • the resin film forming layer of the resin film forming sheet for a chip of the example exhibited excellent peel strength and thermal conductivity. Therefore, a highly reliable semiconductor device can be obtained by using the resin film forming sheet for chips according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Dicing (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

 【課題】半導体装置の製造工程において、工程数が増加し、プロセスが煩雑化するような特別な処理を、半導体ウエハ、チップに施すことなく、得られる半導体装置に放熱特性を付与することができ、また接着性に優れるシートを提供すること。 【解決手段】本発明に係るチップ用樹脂膜形成用シートは、支持シートと、該支持シート上に形成された樹脂膜形成層とを有し、該樹脂膜形成層が、バインダーポリマー成分(A)、硬化性成分(B)、無機フィラー(C)及びシランカップリング剤(D)を含み、該無機フィラー(C)が窒化物粒子(C1)を含有し、該シランカップリング剤(D)の分子量が300以上である。 

Description

チップ用樹脂膜形成用シート及び半導体装置の製造方法
 本発明は、半導体チップのいずれかの面に、接着強度及び熱伝導率の高い樹脂膜を効率良く形成でき、かつ信頼性の高い半導体装置を製造することが可能なチップ用樹脂膜形成用シートに関する。
 近年、いわゆるフェースダウン(face down)方式と呼ばれる実装法を用いた半導体装置の製造が行われている。フェースダウン方式においては、回路面上にバンプなどの電極を有する半導体チップ(以下、単に「チップ」ともいう。)が用いられ、該電極が基板と接合される。このため、チップの回路面とは反対側の面(チップ裏面)は剥き出しとなることがある。
 この剥き出しとなったチップ裏面は、有機膜により保護されることがある。従来、この有機膜からなる保護膜を有するチップは、液状の樹脂をスピンコート法によりウエハ裏面に塗布し、乾燥し、硬化してウエハとともに保護膜を切断して得られる。しかしながら、このようにして形成される保護膜の厚み精度は充分でないため、製品の歩留まりが低下することがあった。
 上記問題を解決するため、支持シートと、該支持シート上に形成された、熱またはエネルギー線硬化性成分とバインダーポリマー成分とからなる保護膜形成層を有するチップ用保護膜形成用シートが開示されている(特許文献1)。
 また、大径の状態で製造される半導体ウエハは、素子小片(半導体チップ)に切断分離(ダイシング)された後に、次工程であるボンディング工程に移されることもある。この際、半導体ウエハは予め接着シートに貼着された状態でダイシング、洗浄、乾燥、エキスパンディングおよびピックアップの各工程が加えられた後、次工程のボンディング工程に移送される。
 これらの工程の中で、ピックアップ工程およびボンディング工程のプロセスを簡略化するため、ウエハ固定機能とダイ接着機能とを同時に兼ね備えたダイシング・ダイボンディング用接着シートが種々提案されている(例えば特許文献2参照)。特許文献2に開示されている接着シートは、いわゆるダイレクトダイボンディングを可能にし、ダイ接着用接着剤の塗布工程を省略できるようになる。例えば、前記接着シートを用いることにより、裏面に接着剤層が貼付された半導体チップを得ることができ、有機基板-チップ間、リードフレーム-チップ間、チップ-チップ間などのダイレクトダイボンディングが可能となる。このような接着シートは、接着剤層に流動性を持たせることで、ウエハ固定機能とダイ接着機能を達成しており、支持シートと、該支持シート上に形成された、熱またはエネルギー線硬化性成分とバインダーポリマー成分とからなる接着剤層を有する。
 また、チップのバンプ(電極)形成面をチップ搭載部に対向させてダイボンドするフェースダウン方式のチップに接着シートを用いる場合には、接着剤層をバンプ形成面、すなわちチップの表面に貼付し、ダイボンドを行うこととなる。
 近年の半導体装置の高密度化および半導体装置の製造工程の高速化に伴い、半導体装置からの発熱が問題となってきている。半導体装置の発熱により、半導体装置が変形し、故障や破損の原因となることや、半導体装置の演算速度の低下や誤作動を招き、半導体装置の信頼性を低下させることがある。このため、高性能な半導体装置においては、効率的な放熱特性が求められており、熱伝導率が良好な充填剤を、保護膜形成層や接着剤層等の樹脂膜に用いることが検討されている。たとえば、特許文献3には、窒化ホウ素粉末を含むフィルム組成物に磁場を印加し、組成物中の窒化ホウ素粉末を一定方向に配向させて固化させた熱伝導性接着フィルムが開示されている。
特開2002-280329号公報 特開2007-314603号公報 特開2002-69392号公報 特開2000-17246号公報
 しかし、特許文献3に記載のフィルム組成物を用いて形成される熱伝導性接着フィルムは、上述したように製造工程において磁場を印加する工程を有し、その製造工程が煩雑である。また、特許文献3の実施例で開示された平均粒径1~2μmの窒化ホウ素粉末を用いて樹脂膜を形成すると、粒径が小さいことに起因して樹脂膜形成用組成物が増粘することがある。樹脂膜形成用組成物が増粘すると、樹脂膜形成用組成物の塗工適性が低下し、平滑な樹脂膜を形成することが困難になることがある。一方、樹脂膜形成用組成物の増粘を避けるために窒化ホウ素粉末の添加量を少なくした場合には、樹脂膜の高い熱伝導率が得られない。
 また、窒化ホウ素などの無機フィラーは、該シートを製造する際に用いる樹脂膜形成用組成物中において分散性が低く、濡れ性や接着性を向上させることが困難であった。その結果、半導体装置の信頼性が低下することがあった。
 なお、特許文献4には、接着性を改善するために樹脂組成物中に、ポリシロキサンオリゴマーにシランカップリング剤を付与、縮合させた化合物を添加することが記載されている。
 本発明は上記の事情に鑑みてなされたものであって、半導体装置の製造工程において、工程数が増加し、プロセスが煩雑化するような特別な処理を、半導体ウエハ、チップに施すことなく、得られる半導体装置に放熱特性を付与することができ、また接着性に優れるシートを提供することを目的としている。
 本発明者らは、上記課題の解決を目的として鋭意研究した結果、半導体チップのいずれかの面に形成される樹脂膜形成層に、特定の無機フィラーとシランカップリング剤とを添加することで、被着体(半導体ウエハや半導体チップ等)に対する接着性と半導体装置の放熱特性とを向上できることに着想し、本発明を完成させるに至った。
 本発明は、以下の要旨を含む。
〔1〕支持シートと、該支持シート上に形成された樹脂膜形成層とを有し、
 該樹脂膜形成層が、バインダーポリマー成分(A)、硬化性成分(B)、無機フィラー(C)及びシランカップリング剤(D)を含み、
 該無機フィラー(C)が窒化物粒子(C1)を含有し、
 該シランカップリング剤(D)の分子量が300以上であるチップ用樹脂膜形成用シート。
〔2〕該樹脂膜形成層の全質量中におけるシランカップリング剤(D)の質量割合が0.3~2質量%である〔1〕に記載のチップ用樹脂膜形成用シート。
〔3〕シランカップリング剤(D)のアルコキシ当量が10~40mmol/gである〔1〕または〔2〕に記載のチップ用樹脂膜形成用シート。
〔4〕該樹脂膜形成層の全質量中における窒化物粒子(C1)の質量割合が40質量%以下である〔1〕~〔3〕のいずれかに記載のチップ用樹脂膜形成用シート。
〔5〕該樹脂膜形成層の全質量中における無機フィラー(C)の質量割合が30~60質量%である〔1〕~〔4〕のいずれかに記載のチップ用樹脂膜形成用シート。
〔6〕無機フィラー(C)が窒化物粒子(C1)以外の他の粒子(C2)を含有する〔1〕~〔5〕のいずれかに記載のチップ用樹脂膜形成用シート。
〔7〕窒化物粒子(C1)が窒化ホウ素粒子である〔1〕~〔6〕のいずれかに記載のチップ用樹脂膜形成用シート。
〔8〕他の粒子(C2)の平均粒子径が20μm以上である〔6〕に記載のチップ用樹脂膜形成用シート。
〔9〕無機フィラー(C)における窒化物粒子(C1)と他の粒子(C2)との重量比率(C1:C2)が1:5~5:1である〔6〕または〔8〕に記載のチップ用樹脂膜形成用シート。
〔10〕他の粒子(C2)の平均粒子径が、樹脂膜形成層の厚みの0.01~0.65倍である〔6〕、〔8〕または〔9〕のいずれかに記載のチップ用樹脂膜形成用シート。
〔11〕樹脂膜形成層の剥離強度が3.5~10N/10mmである〔1〕~〔10〕のいずれかに記載のチップ用樹脂膜形成用シート。
〔12〕樹脂膜形成層の熱伝導率が2W/(m・K)以上である〔1〕~〔11〕のいずれかに記載のチップ用樹脂膜形成用シート。
〔13〕上記〔1〕~〔12〕のいずれかに記載のチップ用樹脂膜形成用シートを用いる半導体装置の製造方法。
 半導体チップのいずれかの面に樹脂膜を形成する際に、本発明に係るチップ用樹脂膜形成用シートを用いることで、半導体ウエハ、チップに特別な処理を施すことなく、剥離強度と熱伝導率に優れた樹脂膜を形成できると共に、得られる半導体装置の信頼性を向上させることができる。
 以下、本発明について、その最良の形態も含めてさらに具体的に説明する。本発明に係るチップ用樹脂膜形成用シートは、支持シートと、該支持シート上に形成された樹脂膜形成層とを有する。
(樹脂膜形成層)
 樹脂膜形成層は、バインダーポリマー成分(A)、硬化性成分(B)、無機フィラー(C)及びシランカップリング剤(D)を含む。
(A)バインダーポリマー成分
 樹脂膜形成層に十分な接着性(半導体ウエハ等への貼付性や転写性)および造膜性(シート形成性)を付与するためにバインダーポリマー成分(A)が用いられる。バインダーポリマー成分(A)としては、従来公知のアクリルポリマー、ポリエステル樹脂、ウレタン樹脂、アクリルウレタン樹脂、フェノキシ樹脂、シリコーン樹脂、ゴム系ポリマー、ポリスチレン等を用いることができ、熱硬化性の官能基のような官能基の有無は問わない。
 バインダーポリマー成分(A)の重量平均分子量(Mw)は、1万~200万であることが好ましく、10万~150万であることがより好ましい。バインダーポリマー成分(A)の重量平均分子量が低過ぎると樹脂膜形成層と支持シートとの剥離力が大きくなって樹脂膜形成層の転写ができないといった不良が起こることがある。また、バインダーポリマー成分(A)の重量平均分子量が高過ぎると樹脂膜形成層の接着性が低下し、チップ等に転写できなくなったり、あるいは転写後にチップ等から樹脂膜が剥離することがある。また、バインダーポリマー成分(A)の重量平均分子量が低過ぎると樹脂膜形成層のシート形成が難しくなることがある。
 バインダーポリマー成分(A)として、アクリルポリマーが好ましく用いられる。アクリルポリマーのガラス転移温度(Tg)は、好ましくは-60~50℃、さらに好ましくは-50~40℃、特に好ましくは-40~30℃の範囲にある。アクリルポリマーのガラス転移温度が低過ぎると樹脂膜形成層と支持シートとの剥離力が大きくなって樹脂膜形成層の転写ができないといった不良が起こることがある。また、アクリルポリマーのガラス転移温度が高過ぎると樹脂膜形成層の接着性が低下し、チップ等に転写できなくなったり、あるいは転写後にチップ等から樹脂膜が剥離したりすることがある。また、アクリルポリマーのガラス転移温度が低過ぎる場合や高すぎる場合には樹脂形成層を製造する際に適度な造膜性が得られず、シート形成ができなくなることがある。
 上記アクリルポリマーを構成するモノマーとしては、(メタ)アクリル酸エステルモノマーまたはその誘導体が挙げられる。例えば、アルキル基の炭素数が1~18であるアルキル(メタ)アクリレート、環状骨格を有する(メタ)アクリレート、水酸基を有する(メタ)アクリレートおよびエポキシ基を有する(メタ)アクリレートなどが挙げられる。
 アルキル基の炭素数が1~18であるアルキル(メタ)アクリレートとしては、具体的にはメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、へプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、オクタデシル(メタ)アクリレートなどが挙げられる。
 環状骨格を有する(メタ)アクリレートとしては、具体的にはシクロアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレートなどが挙げられる。
 水酸基を有する(メタ)アクリレートとしては、具体的にはヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどが挙げられる。
 エポキシ基を有する(メタ)アクリレートとしては、具体的にはグリシジル(メタ)アクリレートなどが挙げられる。
 これらの中では、水酸基を有しているモノマーを重合して得られるアクリルポリマーが、後述する硬化性成分(B)との相溶性が良いため好ましい。また、水酸基を有しているモノマーを含有しているアクリルポリマーを用いた場合には、後述する架橋剤(H)として有機多価イソシアネート化合物等を用いることによりアクリルポリマーを容易に架橋することができ、硬化前の樹脂膜形成層の凝集性を制御することができる。
 また、上記アクリルポリマーは、アクリル酸、メタクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレンなどが共重合されていてもよい。
 また、後述する硬化性成分(B)における熱硬化性成分としてエポキシ樹脂を採用した場合には、アクリルポリマーを構成するモノマーの全質量中の、エポキシ基を有するモノマーの質量割合を低く制限することが好ましい。これにより、樹脂膜とチップとの接着強度が高まる傾向がある。この理由は、以下の通りと推察する。アクリルポリマーを構成するモノマーの全質量中の、エポキシ基を有するモノマーの質量割合が低い場合には、エポキシ樹脂とアクリルポリマーの相溶性が低下し、樹脂膜形成層中でそれぞれを主成分とする相分離構造が形成される。その結果、アクリルポリマーを主成分とする構造が樹脂膜において、歪みを緩衝する役割を果たし、樹脂膜が熱履歴を経た後であっても樹脂膜の変形に起因した接着界面の局所的な剥離が生じにくいためと考えられる。アクリルポリマーを構成するモノマーの全質量中の、エポキシ基を有するモノマーの配合量としては、アクリルポリマーを構成するモノマーにエポキシ基を有するモノマーが含まれず、またはアクリルポリマーを構成するモノマーの全質量中、エポキシ基を有するモノマーの質量割合が0質量%を超え、10質量%以下であることが好ましく、アクリルポリマーを構成するモノマーにエポキシ基を有するモノマーが含まれず、またはアクリルポリマーを構成するモノマーの全質量中、エポキシ基を有するモノマーの質量割合が0質量%を超え、7質量%以下であることがより好ましい。
 エポキシ基を有するモノマーとしては、たとえば上述のグリシジル(メタ)アクリレート等のエポキシ基を有する(メタ)アクリレートの他に、エポキシ基を有するノルボルネン等が挙げられる。
 ポリマーを構成するモノマーとしてエポキシ基を有するモノマーを含むアクリルポリマーは、文言上後述するエポキシ樹脂の概念に含まれることになるが、本発明ではかかるアクリルポリマーはエポキシ樹脂に含まれないものとする。すなわち、硬化性成分(B)における熱硬化性成分として、かかるアクリルポリマー以外の分子であって、かかる分子中に2官能以上有するエポキシ化合物を樹脂膜形成層に配合する場合に、かかるアクリルポリマーを用いることによる上述の効果が得られることになる。
 また、バインダーポリマー成分(A)は2種以上のポリマーを混合して用いてもよい。このとき、各ポリマーの重量平均分子量は同程度のものを用いてもよいし、差を持たせてもよい。重量平均分子量の異なるポリマーを混合することにより、支持シートと樹脂膜形成層との層間剥離をしやすくしたり、転写時のボイドの発生を抑制することができる。
 さらに、アクリルポリマーと混合するポリマーのガラス転移温度を選択することにより、支持シートとの剥離力増大に起因する樹脂膜形成層の転写不良や、樹脂膜形成層とチップとの接着力の低下を抑制することも可能となる。
 また、バインダーポリマー成分(A)として、側鎖にエネルギー線重合性基を有するポリマー(エネルギー線硬化型重合体)を用いてもよい。このようなエネルギー線硬化型重合体は、バインダーポリマー成分(A)としての機能と、後述する硬化性成分(B)としての機能を兼ね備える。エネルギー線重合性基としては、後述するエネルギー線重合性化合物が含有するエネルギー線重合性基と同じものを有していればよい。側鎖にエネルギー線重合性基を有するポリマーとしては、たとえば側鎖に反応性官能基Xを有するポリマーに、反応性官能基Xと反応しうる官能基Yおよびエネルギー線重合性基を有する低分子化合物を反応させて調製したポリマーが挙げられる。
(B)硬化性成分
 硬化性成分(B)は、熱硬化性成分および熱硬化剤、またはエネルギー線重合性化合物を用いることができる。また、これらを組み合わせて用いてもよい。熱硬化性成分としては、たとえば、エポキシ樹脂が好ましい。
 エポキシ樹脂としては、従来公知のエポキシ樹脂を用いることができる。エポキシ樹脂としては、具体的には、多官能系エポキシ樹脂や、ビフェニル化合物、ビスフェノールAジグリシジルエーテルやその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂など、分子中に2官能以上有するエポキシ化合物が挙げられる。これらは1種単独で、または2種以上を組み合わせて用いることができる。
 硬化性成分(B)として熱硬化性成分および熱硬化剤を用いる場合には、樹脂膜形成層には、バインダーポリマー成分(A)100質量部に対して、熱硬化性成分が、好ましくは1~1500質量部含まれ、より好ましくは3~1200質量部含まれる。熱硬化性成分の含有量が1質量部未満であると十分な接着性が得られないことがあり、1500質量部を超えると樹脂膜形成層と支持シートとの剥離力が高くなり、樹脂膜形成層の転写不良が起こることがある。
 熱硬化剤は、熱硬化性成分、特にエポキシ樹脂に対する硬化剤として機能する。好ましい熱硬化剤としては、1分子中にエポキシ基と反応しうる官能基を2個以上有する化合物が挙げられる。その官能基としてはフェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシル基および酸無水物などが挙げられる。これらのうち好ましくはフェノール性水酸基、アミノ基、酸無水物などが挙げられ、さらに好ましくはフェノール性水酸基、アミノ基が挙げられる。
 フェノール性水酸基を有するフェノール系硬化剤の具体的な例としては、多官能系フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、ザイロック型フェノール樹脂、アラルキルフェノール樹脂が挙げられる。アミノ基を有するアミン系硬化剤の具体的な例としては、DICY(ジシアンジアミド)が挙げられる。これらは、1種単独で、または2種以上混合して使用することができる。
 熱硬化剤の含有量は、熱硬化性成分100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましい。熱硬化剤の含有量が少ないと硬化不足で接着性が得られないことがあり、過剰であると樹脂膜形成層の吸湿率が高まり半導体装置の信頼性を低下させることがある。
 エネルギー線重合性化合物は、エネルギー線重合性基を含み、紫外線、電子線等のエネルギー線の照射を受けると重合硬化する。このようなエネルギー線重合性化合物として具体的には、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレートあるいは1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ポリエチレングリコールジアクリレート、オリゴエステルアクリレート、ウレタンアクリレート系オリゴマー、エポキシ変性アクリレート、ポリエーテルアクリレートおよびイタコン酸オリゴマーなどのアクリレート系化合物が挙げられる。このような化合物は、分子内に少なくとも1つの重合性二重結合を有し、通常は、重量平均分子量が100~30000、好ましくは300~10000程度である。硬化性成分(B)としてエネルギー線重合性化合物を用いる場合には、樹脂膜形成層には、バインダーポリマー成分(A)100質量部に対して、エネルギー線重合性化合物が、好ましくは1~1500質量部含まれ、より好ましくは3~1200質量部含まれる。
(C)無機フィラー
 無機フィラー(C)は窒化物粒子(C1)を含有する。窒化物粒子(C1)を含有する無機フィラー(C)を樹脂膜形成層に配合することにより、樹脂膜形成層の熱伝導率を向上させ、樹脂膜形成層が貼付された半導体チップを実装した半導体装置の発した熱を効率的に拡散することが可能となる。また、硬化後の樹脂膜における熱膨張係数を調整することが可能となり、半導体ウエハ、半導体チップ、リードフレームや有機基板等を被着体として半導体装置の信頼性を向上させることができる。さらにまた、硬化後の樹脂膜の吸湿率を低減させることが可能となり、加熱時に樹脂膜としての接着性を維持し、半導体装置の信頼性を向上させることができる。さらに、樹脂膜にレーザーマーキングを施すことにより、レーザー光により削り取られた部分に無機フィラー(C)が露出して、反射光が拡散するために白色に近い色を呈する。これにより、樹脂膜形成層が後述する着色剤(E)を含有する場合、レーザーマーキング部分と他の部分にコントラスト差が得られ、印字が明瞭になるという効果がある。
 また、無機フィラー(C)は、窒化物粒子(C1)以外の粒子(以下において「他の粒子(C2)」と記載することがある。)を含有することが好ましい。窒化物粒子(C1)は樹脂膜形成層の熱伝導率を向上させるが、樹脂膜形成層における窒化物粒子(C1)の含有割合が多すぎると、樹脂膜形成層の被着体に対する接着性を低下させることがある。そのため、窒化物粒子(C1)と他の粒子(C2)とを併用することで、樹脂膜形成層の被着体に対する接着性を維持しつつ、樹脂膜形成層に十分な熱伝導率を付与できる。
 以下において、窒化物粒子(C1)と他の粒子(C2)について詳述する。
(C1)窒化物粒子
 窒化物粒子(C1)としては、窒化ホウ素、窒化アルミニウム、窒化珪素等の粒子が挙げられる。これらのうちでも高い熱伝導率を有する樹脂膜形成層が得られやすい窒化ホウ素粒子が好ましい。
 また、窒化物粒子(C1)は、異方形状粒子であることが好ましい。異方形状粒子は異方性を有し、その具体的な形状は、板状、針状及び鱗片状からなる群より選ばれる少なくとも1つの形状を有することが好ましい。異方形状粒子は、その長軸方向に高い熱伝導率を示す。そのため、樹脂膜形成層中において、その長軸方向と樹脂膜形成層の厚み方向とが略同一となる異方形状粒子の割合が高まることで、半導体チップに発生した熱が樹脂膜形成層を介して発散されやすくなる。
 なお、本発明において「窒化物粒子(C1)の長軸方向と樹脂膜形成層の厚み方向とが略同一」とは、具体的には、窒化物粒子(C1)の長軸方向が、樹脂膜形成層の厚み方向に平行な状態を0°としたとき、樹脂膜形成層の厚み方向と窒化物粒子(C1)の長軸方向とがなす角度が-45~45°の範囲にあることをいう。
 窒化物粒子(C1)の平均粒子径は、好ましくは20μm以下であり、より好ましくは5~20μm、さらに好ましくは8~20μm、特に好ましくは10~15μmである。また、窒化物粒子(C1)の平均粒子径は、後述する他の粒子(C2)の平均粒子径よりも小さいことが好ましい。窒化物粒子(C1)の平均粒子径を上記のように調整することにより、樹脂膜形成層の熱伝導率や製膜性が向上するとともに、樹脂膜形成層中における窒化物粒子(C1)の充填率が向上する。窒化物粒子(C1)の平均粒子径は、電子顕微鏡で無作為に選んだ窒化物粒子(C1)20個の長軸径を測定し、その算術平均値として算出される個数平均粒子径とする。
 窒化物粒子(C1)の粒子径分布(CV値)は、好ましくは5~40%、より好ましくは10~30%である。窒化物粒子(C1)の粒子径分布を上記範囲とすることで、効率的で均一な熱伝導性を達成することができる。CV値は粒子径のバラツキの指標であり、CV値が大きいほど、粒子径のバラツキが大きいことを意味する。CV値が小さい場合、粒子径が揃っているため、粒子と粒子の間隙に入るサイズの小さな粒子の量が少なくなり、無機フィラー(C)をより密に充填するのが困難になり、結果として高い熱伝導率を有する樹脂膜形成層が得にくくなることがある。逆に、CV値が大きい場合、無機フィラー(C)の粒子径が製膜された樹脂膜形成層の厚みよりも大きくなることがあり、結果として樹脂膜形成層の表面に凹凸が生じ、樹脂膜形成層の接着性が低下することがある。また、CV値が大きすぎると、均一な性能を有する熱伝導性組成物を得ることが困難になることがある。なお、窒化物粒子(C1)の粒子径分布(CV値)は、電子顕微鏡観察を行い、200個の粒子について長軸径を測定し、長軸径の標準偏差を求め、上述の平均粒子径を用いて、(長軸径の標準偏差)/(平均粒子径)を算出して求めることができる。
 窒化物粒子(C1)のアスペクト比は、好ましくは5以上、より好ましくは5~30、さらに好ましくは8~20、特に好ましくは10~15である。アスペクト比は、窒化物粒子(C1)の(長軸数平均径)/(短軸数平均径)で表される。短軸数平均径および長軸数平均径は、透過電子顕微鏡写真で無作為に選んだ窒化物粒子(C1)20個の短軸径および長軸径を測定し、それぞれの算術平均値として算出される個数平均粒子径とする。窒化物粒子(C1)のアスペクト比を上記範囲とすることで、他の粒子(C2)により、窒化物粒子(C1)の長軸方向と樹脂膜形成層と平行な方向とが略同一となることが妨げられ、窒化物粒子(C1)が樹脂膜形成層の厚み方向に効率的な熱伝導パスを形成し、熱伝導率を向上させることができる。
 窒化物粒子(C1)の密度は、好ましくは2~4g/cm、より好ましくは2.2~3g/cmである。
 窒化物粒子(C1)の長軸方向における熱伝導率は、60~400W/(m・K)であることが好ましく、100~300W/(m・K)であることがより好ましい。このような窒化物粒子(C1)を用いることで、形成された熱伝導パスが高い熱伝導性を有し、結果として熱伝導率の高い樹脂膜形成層が得られる。なお、窒化物粒子(C1)の長軸方向における熱伝導率は周期加熱法により測定することができる。
(C2)他の粒子
 他の粒子(C2)としては、シリカ粒子、アルミナ粒子などが挙げられ、アルミナ粒子が特に好ましい。アルミナ粒子を用いることで、窒化物粒子が形成する熱伝導パス以外の部分でも熱伝導性が損なわれず、結果として熱伝導率の高い樹脂膜形成層が得られる。
 他の粒子(C2)の形状は、窒化物粒子(C1)の長軸方向と、樹脂膜形成層と平行な方向とが略同一となることを妨げる形状であれば特に限定されず、その具体的な形状は、好ましくは球状である。このような形状の他の粒子(C2)を用いることで、樹脂膜形成層の製造工程において、窒化物粒子(C1)の長軸方向が樹脂膜形成層と平行な方向と略同一となることを抑制し、その長軸方向と樹脂膜形成層の厚み方向とが略同一となった窒化物粒子(C1)の割合を高めることができる。その結果、樹脂膜形成層の厚み方向に優れた熱伝導率を有する樹脂膜形成層が得られる。これは、樹脂膜形成層中に、他の粒子(C2)が存在することにより、窒化物粒子(C1)が他の粒子(C2)に立て掛かるように存在する結果、窒化物粒子(C1)の長軸方向と樹脂膜形成層の厚み方向とが略同一となることに起因する。異方形状の窒化物粒子(C1)のみを用いた場合、樹脂膜形成層の製造工程(例えば塗布工程)中に窒化物粒子(C1)にかかる応力や重力により、その長軸方向が樹脂膜形成層に平行な方向と略同一となる窒化物粒子(C1)の割合が高まり、優れた熱伝導率を有する樹脂膜形成層を得ることが困難になることがある。
 他の粒子(C2)の平均粒子径は、好ましくは20μm以上であり、より好ましくは20~50μm、さらに好ましくは20~30μmである。他の粒子(C2)の平均粒子径を上記範囲とすることにより、樹脂膜形成層の熱伝導率や製膜性が向上するとともに、樹脂膜形成層中における他の粒子(C2)の充填率が向上する。また、窒化物粒子(C1)は単位体積当たりの比表面積が大きく、樹脂膜形成用組成物の粘度を上昇させやすい。ここに、さらに比表面積の大きい、平均粒子径が20μm未満の窒化物粒子以外のフィラーを添加した場合、樹脂膜形成用組成物の粘度がいっそう上昇し、樹脂膜形成が困難になったり、多量の溶媒により希釈する必要が生じ、生産性が低下したりする懸念がある。なお、他の粒子(C2)の平均粒子径は、電子顕微鏡で無作為に選んだ他の粒子(C2)20個の長軸径を測定し、その算術平均値として算出される個数平均粒子径とする。
 また、他の粒子(C2)の平均粒子径は、後述する樹脂膜形成層の厚みの0.01~0.65倍であることが好ましい。他の粒子(C2)の平均粒子径が樹脂膜形成層の厚みの0.01倍未満であると、その長軸方向が樹脂膜形成層に平行な方向と略同一となった窒化物粒子(C1)の割合が高まり、効率的な熱伝導パスが形成されにくくなり、樹脂膜形成層の熱伝導率が低下することがある。また、他の粒子(C2)の平均粒子径が樹脂膜形成層の厚みの0.65倍を超えると、樹脂膜形成層の表面に凹凸が生じ、被着体に対する樹脂膜形成層の接着性が低下することがある。また、均一な性能を有する熱伝導性の樹脂膜形成用組成物を得ることが困難になることがある。
 他の粒子(C2)の粒子径分布(CV値)は、好ましくは5~40%、より好ましくは10~30%である。他の粒子(C2)の粒子径分布を上記範囲とすることで、効率的で均一な熱伝導性を達成することができる。CV値が小さい場合、粒子径が揃っているため、粒子と粒子の間隙に入るサイズの小さな粒子の量が少なくなり、無機フィラー(C)をより密に充填するのが困難になり、結果として高い熱伝導率を有する樹脂膜形成層が得にくくなることがある。逆に、CV値が大きい場合、無機フィラー(C)の粒子径が製膜された樹脂膜形成層の厚みよりも大きくなることがあり、結果として樹脂膜形成層の表面に凹凸が生じ、被着体に対する樹脂膜形成層の接着性に劣ることがある。また、CV値が大きすぎると、均一な性能を有する熱伝導性組成物を得ることが困難になることがある。なお、他の粒子(C2)の粒子径分布(CV値)は、電子顕微鏡観察を行い、200個の粒子について長軸径を測定し、長軸径の標準偏差を求め、上述の平均粒子径を用いて、(長軸径の標準偏差)/(平均粒子径)を算出して求めることができる。
 樹脂膜形成層の全質量中における無機フィラー(C)の質量割合は、樹脂膜形成層を構成する全固形分に対して、好ましくは30~60質量%、より好ましくは40~60質量%、特に好ましくは50~60質量%である。無機フィラー(C)の質量割合を上記範囲とすることで、効率的な熱伝導パスが形成され、樹脂膜形成層の熱伝導率を向上させることができる。
 また、樹脂膜形成層の全質量中における窒化物粒子(C1)の質量割合は、好ましくは40質量%以下、より好ましくは20~40質量%、特に好ましくは20~30質量%である。窒化物粒子(C1)の質量割合を上記範囲とすることで、効率的な熱伝導パスが形成され、樹脂膜形成層の熱伝導率を向上させることができる。
 無機フィラー(C)として窒化物粒子(C1)と他の粒子(C2)とを含む場合、窒化物粒子(C1)と他の粒子(C2)との重量比率(C1:C2)は、好ましくは1:5~5:1、より好ましくは1:4~4:1である。窒化物粒子(C1)と他の粒子(C2)との重量比率を上記範囲とすることで、その長軸方向と樹脂膜形成層の厚み方向とが略同一となった窒化物粒子(C1)の割合を高めることができる。その結果、樹脂膜形成層の熱伝導率を向上させることができる。また、樹脂膜形成用組成物の増粘を抑制し、平滑な樹脂膜を形成することができる。
 また、樹脂膜形成層中の無機フィラー(C)の濃度は、好ましくは30~50体積%、より好ましくは35~45体積%である。
(D)シランカップリング剤
 無機物と反応する官能基および有機官能基と反応する官能基を有し、分子量が300以上であるシランカップリング剤(D)を樹脂膜形成層に配合することで、樹脂膜形成層の被着体に対する接着性を向上させることができる。また、シランカップリング剤(D)を使用することで、樹脂膜形成層を硬化して得られる樹脂膜の耐熱性を損なうことなく、その耐水性を向上することができる。なお、以下において、上記「無機物と反応する官能基」を「反応性官能基A」と、上記「有機官能基と反応する官能基」を「反応性官能基B」と記載することがある。
 本発明に用いるシランカップリング剤(D)としては、分子量が300以上であるオリゴマータイプのシランカップリング剤が挙げられる。シランカップリング剤(D)の分子量は300~5000が好ましく、1000~3000がより好ましい。さらに、シランカップリング剤(D)のアルコキシ当量は、10~40mmol/gが好ましく、13~30mmol/gがより好ましい。
 反応性官能基Aとしては、アルコキシ基が好ましい。また、反応性官能基Bとしては、バインダーポリマー成分(A)や硬化性成分(B)などが有する官能基と反応するものが好ましく、このようなものとして、エポキシ基、アミノ基、(メタ)アクリロイル基、(メタ)アクリロイル基中のビニル基を除くビニル基、メルカプト基が挙げられ、これらの中でも、エポキシ基が好ましい。なお、アルコキシ当量は化合物の単位重量当たりに含まれるアルコキシ基の絶対数を示す。
 このようなシランカップリング剤(D)を用いることにより、樹脂膜形成層の熱伝導率を維持しつつ、所定の剥離強度を有する樹脂膜形成層を得ることが容易になる。
 このようなシランカップリング剤(D)として、具体的にはγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-(メタクリロプロピル)トリメトキシシラン等のアルコキシ基を2つまたは3つ有する低分子シランカップリング剤;テトラメトキシシラン、テトラエトキシシラン等のアルコキシ基を4つ有する低分子シランカップリング剤;などをアルコキシ基の加水分解および脱水縮合により縮合した生成物であるオリゴマータイプのものが挙げられる。特に、上記の低分子シランカップリング剤のうち、アルコキシ基を2つまたは3つ有する低分子シランカップリング剤と、アルコキシ基を4つ有する低分子シランカップリング剤とが脱水縮合により縮合した生成物であるオリゴマーが、アルコキシ基の反応性に富み、かつ、十分な数の有機官能基と反応する官能基を有しているので好ましい。このようなオリゴマーとしては、例えば、3-(2,3-エポキシプロポキシ)プロピルメトキシシロキサンとジメトキシシロキサンの共重合体であるオリゴマーが挙げられる。
 樹脂膜形成層の全質量中におけるシランカップリング剤(D)の質量割合は、好ましくは0.3~2質量%、より好ましくは0.5~2質量%、特に好ましくは1~2質量%である。シランカップリング剤(D)の質量割合を上記範囲とすることで、シランカップリング剤(D)の反応性官能基Aが無機フィラー(C)(特に他の粒子(C2))と、反応性官能基Bがバインダーポリマー成分(A)や硬化性成分(B)などが有する官能基と効率的に化学反応を起こし、ネットワークを形成することで窒化物粒子(C1)による樹脂膜形成層の接着性の低下を抑制できる。
 また、本発明における樹脂膜形成層は、分子量が300以上でかつアルコキシ当量が10mmol/g以上である、反応性官能基Bを有しないシラン化合物(D’) (以下において、単に「シラン化合物(D’)」と記載することがある。)を含有していてもよい。シラン化合物(D’)は、反応性官能基Bを有さないのでバインダーポリマー成分(A)や硬化性成分(B)などが有する官能基と反応しないが、反応性官能基Aを有するので、他の分子のアルコキシ基や、被着体表面や、無機フィラー(C)(特に他の粒子(C2))の表面と反応して樹脂膜形成層の硬化に関与する。シラン化合物(D’)としてはポリメトキシシロキサン、ポリエトキシシロキサン、メトキシシロキサンとジメチルシロキサンの共重合体等が挙げられる。
その他の成分
 樹脂膜形成層は、上記バインダーポリマー成分(A)、硬化性成分(B)、無機フィラー(C)及びシランカップリング剤(D)に加えて下記成分を含むことができる。
(E)着色剤
 樹脂膜形成層には、着色剤(E)を配合することができる。着色剤を配合することで、半導体装置を機器に組み込んだ際に、周囲の装置から発生する赤外線等による半導体装置の誤作動を防止することができる。このような効果は、特に樹脂膜を保護膜として用いた場合に有用である。着色剤としては、有機または無機の顔料または染料が用いられる。
 染料としては、酸性染料、反応染料、直接染料、分散染料、カチオン染料等のいずれの染料であっても用いることが可能である。また、顔料も、特に制限されず、公知の顔料から適宜選択して用いることができる。
 これらの中でも電磁波や赤外線遮蔽性の点から黒色顔料が好ましい。黒色顔料としては、カーボンブラック、酸化鉄、二酸化マンガン、アニリンブラック、活性炭等が用いられるが、これらに限定されることはない。半導体装置の信頼性を高める観点からは、カーボンブラックが特に好ましい。着色剤(E)は1種を単独で用いてもよいし、2種以上を併せて用いてもよい。
 着色剤(E)の配合量は、着色剤(E)を除く樹脂膜形成層を構成する全固形分100質量部に対して、好ましくは0.1~35質量部、さらに好ましくは0.5~25質量部、特に好ましくは1~15質量部である。
(F)硬化促進剤
 硬化促進剤(F)は、樹脂膜形成層の硬化速度を調整するために用いられる。硬化促進剤(F)は、特に、硬化性成分(B)として、少なくとも熱硬化性成分および熱硬化剤を用いる場合において、エポキシ樹脂と熱硬化剤とを併用するときに好ましく用いられる。
 好ましい硬化促進剤としては、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの3級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどのイミダゾール類;トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィンなどの有機ホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレートなどのテトラフェニルボロン塩などが挙げられる。これらは1種単独で、または2種以上混合して使用することができる。
 硬化促進剤(F)は、熱硬化性成分および熱硬化剤の合計量100質量部に対して、好ましくは0.01~10質量部、さらに好ましくは0.1~5質量部の量で含まれる。硬化促進剤(F)を上記範囲の量で含有することにより、高温度高湿度下に曝されても優れた接着性を有し、厳しいリフロー条件に曝された場合であっても高い信頼性を達成することができる。硬化促進剤(F)の含有量が少ないと硬化不足で十分な接着性が得られず、過剰であると高い極性をもつ硬化促進剤は高温度高湿度下で樹脂膜形成層中を接着界面側に移動し、偏析することにより半導体装置の信頼性を低下させる。
(G)光重合開始剤
 樹脂膜形成層が、硬化性成分(B)として、エネルギー線重合性化合物を含有する場合には、その使用に際して、紫外線等のエネルギー線を照射して、エネルギー線重合性化合物を硬化させる。この際、樹脂膜形成層を構成する組成物中に光重合開始剤(G)を含有させることで、重合硬化時間ならびに光線照射量を少なくすることができる。
 このような光重合開始剤(G)として具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、α-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、1,2-ジフェニルメタン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドおよびβ-クロールアンスラキノンなどが挙げられる。光重合開始剤(G)は1種類単独で、または2種類以上を組み合わせて用いることができる。
 光重合開始剤(G)の配合割合は、エネルギー線重合性化合物100質量部に対して0.1~10質量部含まれることが好ましく、1~5質量部含まれることがより好ましい。0.1質量部未満であると光重合の不足で満足な転写性が得られないことがあり、10質量部を超えると光重合に寄与しない残留物が生成し、樹脂膜形成層の硬化性が不十分となることがある。
(H)架橋剤
 樹脂膜形成層の初期接着力および凝集力を調節するために、架橋剤を添加することもできる。架橋剤(H)としては有機多価イソシアネート化合物、有機多価イミン化合物などが挙げられる。
 有機多価イソシアネート化合物としては、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物、脂環式多価イソシアネート化合物およびこれらの有機多価イソシアネート化合物の三量体、ならびにこれら有機多価イソシアネート化合物とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等を挙げることができる。
 有機多価イソシアネート化合物として、具体的には、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、トリメチロールプロパンアダクトトリレンジイソシアネートおよびリジンイソシアネートが挙げられる。
 有機多価イミン化合物として、具体的には、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネートおよびN,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等を挙げることができる。
 架橋剤(H)はバインダーポリマー成分(A)100質量部に対して通常0.01~20質量部、好ましくは0.1~10質量部、より好ましくは0.5~5質量部の比率で用いられる。
(I)汎用添加剤
 樹脂膜形成層には、上記の他に、必要に応じて各種添加剤が配合されてもよい。各種添加剤としては、レベリング剤、可塑剤、帯電防止剤、酸化防止剤、イオン捕捉剤、ゲッタリング剤、連鎖移動剤などが挙げられる。
 上記のような各成分からなる樹脂膜形成層は、接着性と硬化性とを有し、未硬化状態では半導体チップ等に押圧し、または加熱しながら押圧することで接着する。そして硬化を経て最終的には耐衝撃性の高い樹脂膜を与えることができ、剥離強度にも優れ、厳しい高温度高湿度条件下においても十分な保護機能を保持し得る。本発明においては、上記の樹脂膜形成層を、半導体チップを基板または他の半導体チップに固定するためのフィルム状接着剤や、半導体チップの保護膜として用いることが好ましい。なお、樹脂膜形成層は単層構造であってもよく、また上記成分を含む層を1層以上含む限りにおいて多層構造であってもよい。
 樹脂膜形成層の剥離強度は、好ましくは3.5~10N/10mm、より好ましくは5~10N/10mm、特に好ましくは7~10N/10mmである。樹脂膜形成層の剥離強度が上記範囲であると、優れた信頼性を有する半導体装置を製造することができる。なお、樹脂膜形成層の剥離強度の測定方法は実施例と同じ方法で行う。
 樹脂膜形成層の熱伝導率は、好ましくは2W/(m・K)以上、より好ましくは3W/(m・K)以上である。また、硬化後の樹脂膜形成層(樹脂膜)の熱伝導率は、好ましくは2W/(m・K)以上、より好ましくは3W/(m・K)以上である。樹脂膜形成層または樹脂膜の熱伝導率が2W/(m・K)未満であると、半導体装置の発熱により、半導体装置が変形し、故障や破損の原因となることや、半導体装置の演算速度の低下や誤作動を招き、半導体装置の信頼性を低下させることがある。樹脂膜形成層または樹脂膜の熱伝導率を上記範囲とすることで、半導体装置の放熱特性を向上させ、優れた信頼性を有する半導体装置を製造することができる。なお、樹脂膜形成層の熱伝導率の測定方法は実施例と同じ方法で行う。
 樹脂膜形成層の放熱特性の指標としては、熱伝導率のほか、熱拡散率を用いることができ、硬化後の樹脂膜形成層(樹脂膜)の熱拡散率は、9.7×10-7/s以上であることが好ましく、1.5×10-6/s以上であることがより好ましい。なお、熱拡散率とは、樹脂膜形成層または樹脂膜の熱伝導率を樹脂膜の比熱と密度の積で除算した値であり、熱拡散率が大きいほど優れた放熱特性を有することを示す。
(チップ用樹脂膜形成用シート)
 樹脂膜形成層は、上記各成分を適宜の割合で混合してなる樹脂膜形成用組成物を、支持シート上に塗布乾燥して得られる。また、支持シートとは別の工程フィルム上に樹脂膜形成用組成物を塗布、乾燥して成膜し、これを支持シート上に転写してもよい。混合に際しては、各成分を予め分散媒や溶媒を用いて希釈しておいてもよく、また混合時に分散媒や溶媒を加えてもよい。上記各成分を均一に混合できる観点から溶媒を用いることが好ましい。溶媒としては、例えば、トルエン、キシレン、メタノール、エタノール、イソブタノール、n-ブタノール、酢酸エチル、メチルエチルケトン、アセトン、テトラヒドロフラン、イソプロパノール、ジメチルホルムアミド、N-メチルピロリドンなどが挙げられる。これらは、1種単独で用いても、2種以上を組み合わせて用いてもよい。
 本発明に係るチップ用樹脂膜形成用シートは、上記樹脂膜形成層を支持シート上に剥離可能に形成してなる。本発明に係るチップ用樹脂膜形成用シートの形状は、テープ状、ラベル状などあらゆる形状をとり得る。
 支持シートとしては、たとえば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、フッ素樹脂フィルムなどのフィルムが用いられる。またこれらの架橋フィルムも用いられる。さらにこれらの積層フィルムであってもよい。また、これらを着色したフィルムを用いることもできる。
 本発明のチップ用樹脂膜形成用シートにおいては、その使用に際して支持シートを剥離し、樹脂膜形成層を半導体ウエハまたはチップに転写する。特に樹脂膜形成層の熱硬化後に支持シートを剥離する場合には、支持シートは樹脂膜形成層の熱硬化時の加熱に耐える必要があるため、耐熱性に優れたアニール処理ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリメチルペンテンフィルム、ポリイミドフィルムが好ましく用いられる。また、支持シートの表面に剥離剤を塗布して剥離処理を施すこともできる。
 剥離処理に用いられる剥離剤としては、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系、ワックス系などが用いられるが、特にアルキッド系、シリコーン系、フッ素系の剥離剤が耐熱性を有するので好ましい。
 上記の剥離剤を用いて支持シートの基体となるフィルム等の表面を剥離処理するためには、剥離剤をそのまま無溶剤で、または溶剤希釈やエマルション化して、グラビアコーター、メイヤーバーコーター、エアナイフコーター、ロールコーターなどにより塗布して、剥離剤が塗布された支持シートを常温下または加熱下に供するか、または電子線により硬化させて剥離剤層を形成すればよい。
 また、ウェットラミネーションやドライラミネーション、熱溶融ラミネーション、溶融押出ラミネーション、共押出加工などによりフィルムの積層を行って、支持シートを得てもよい。
 また、樹脂膜形成層は、支持シートに設けられた再剥離性粘着剤層上に積層されていてもよい。再剥離性粘着剤層は、樹脂膜形成層を剥離できる程度の粘着力を有する弱粘着性のものを使用してもよいし、エネルギー線照射により粘着力が低下するエネルギー線硬化性のものを使用してもよい。また、エネルギー線硬化性の再剥離性粘着剤層を用いる場合、樹脂膜形成層が積層される領域(例えば、支持シートの内周部)に予めエネルギー線照射を行い、粘着性を低減させておく一方、他の領域(例えば、支持シートの外周部)はエネルギー線照射を行わず、たとえば治具への接着を目的として、粘着力を高いまま維持しておいてもよい。他の領域のみにエネルギー線照射を行わないようにするには、たとえば支持シートの他の領域に対応する領域に印刷等によりエネルギー線遮蔽層を設け、支持シート側からエネルギー線照射を行えばよい。再剥離性粘着剤層は、従来より公知の種々の粘着剤(例えば、ゴム系、アクリル系、シリコーン系、ウレタン系、ビニルエーテル系などの汎用粘着剤、エネルギー線硬化型粘着剤、熱膨張成分含有粘着剤等であり、また、粘着剤表面に凹凸を有するものでもよい)により形成できる。再剥離性粘着剤層の厚みは特に限定されないが、通常は1~50μmであり、好ましくは5~30μmである。かかる構成のチップ用樹脂膜形成用シートにおける支持シートは、特に樹脂膜を保護膜として用いる場合に、後述する半導体装置の製造工程であるダイシング工程において被着体(半導体ウエハまたはチップ)を支持するためのダイシングシートとして機能し、支持シートと樹脂膜形成層との間の接着性を保つことができるため、ダイシング工程において樹脂膜形成層付チップが支持シートから剥がれることを抑制できる。
 支持シートの厚さは、通常は10~500μm、好ましくは15~300μm、特に好ましくは20~250μmである。
 樹脂膜形成層の厚みは、好ましくは25~50μm、特に好ましくは30~45μmである。また、樹脂膜形成層の厚みは、他の粒子(C2)の平均粒子径よりも大きいことが好ましい。
 なお、チップ用樹脂膜形成用シートの使用前に、樹脂膜形成層を保護するために、樹脂膜形成層の上面に、前記支持シートとは別に、軽剥離性の剥離フィルムを積層しておいてもよい。
 また、樹脂膜形成層の表面(被着体と接する面)の外周部には、リングフレーム等の他の治具に固定するために、別途接着剤層や粘着テープが設けられていてもよい。
 このようなチップ用樹脂膜形成用シートの樹脂膜形成層は、フィルム状接着剤として機能することができる。フィルム状接着剤は通常半導体ウエハのいずれかの面に貼付され、ダイシング工程を経て個々のチップに切断された後、基板などに載置(ダイボンド)され、硬化工程を経て半導体チップを接着固定するのに用いられる。このようなフィルム状接着剤はダイアタッチメントフィルムと呼ばれることがある。本発明における樹脂膜形成層をフィルム状接着剤として用いた半導体装置は、放熱特性に優れるため、その信頼性の低下を抑制できる。
 また、チップ用樹脂膜形成用シートの樹脂膜形成層は保護膜とすることができる。樹脂膜形成層はフェースダウン方式のチップ用半導体ウエハまたは半導体チップの裏面に貼付され、適当な手段により硬化されて封止樹脂の代替として半導体チップを保護する機能を有する。半導体ウエハに貼付した場合には、保護膜がウエハを補強する機能を有するためにウエハの破損等を防止しうる。また、本発明における樹脂膜形成層を保護膜とした半導体装置は、放熱特性に優れるため、その信頼性の低下を抑制できる。
(半導体装置の製造方法)
 次に本発明に係るチップ用樹脂膜形成用シートの利用方法について、該シートを半導体装置の製造方法に適用した場合を例にとって説明する。
 本発明に係る半導体装置の製造方法は、表面に回路が形成された半導体ウエハの裏面に、上記チップ用樹脂膜形成用シートの樹脂膜形成層を貼付し、その後、裏面に樹脂膜を有する半導体チップを得ることが好ましい。該樹脂膜は、半導体チップの保護膜であることが好ましい。また、本発明に係る半導体装置の製造方法は、好ましくは、以下の工程(1)~(3)をさらに含み、工程(1)~(3)を任意の順で行うことを特徴としている。
 工程(1):樹脂膜形成層または樹脂膜と、支持シートとを剥離、
 工程(2):樹脂膜形成層を硬化し樹脂膜を得る、
 工程(3):半導体ウエハと、樹脂膜形成層または樹脂膜とをダイシング。
 半導体ウエハはシリコンウエハであってもよく、またガリウム・砒素などの化合物半導体ウエハであってもよい。ウエハ表面への回路の形成はエッチング法、リフトオフ法などの従来より汎用されている方法を含む様々な方法により行うことができる。次いで、半導体ウエハの回路面の反対面(裏面)を研削する。研削法は特に限定はされず、グラインダーなどを用いた公知の手段で研削してもよい。裏面研削時には、表面の回路を保護するために回路面に、表面保護シートと呼ばれる粘着シートを貼付する。裏面研削は、ウエハの回路面側(すなわち表面保護シート側)をチャックテーブル等により固定し、回路が形成されていない裏面側をグラインダーにより研削する。ウエハの研削後の厚みは特に限定はされないが、通常は20~500μm程度である。
 その後、必要に応じ、裏面研削時に生じた破砕層を除去する。破砕層の除去は、ケミカルエッチングや、プラズマエッチングなどにより行われる。
 次いで、半導体ウエハの裏面に、上記チップ用樹脂膜形成用シートの樹脂膜形成層を貼付する。その後、工程(1)~(3)を任意の順で行う。このプロセスの詳細については、特開2002-280329号公報に詳述されている。一例として、工程(1)、(2)、(3)の順で行う場合について説明する。
 まず、表面に回路が形成された半導体ウエハの裏面に、上記チップ用樹脂膜形成用シートの樹脂膜形成層を貼付する。次いで樹脂膜形成層から支持シートを剥離し、半導体ウエハと樹脂膜形成層との積層体を得る。次いで樹脂膜形成層を硬化し、ウエハの全面に樹脂膜を形成する。樹脂膜形成層に、硬化性成分(B)として熱硬化性成分および熱硬化剤を用いた場合には、熱硬化により樹脂膜形成層を硬化する。硬化性成分(B)として、エネルギー線重合性化合物が配合されている場合には、樹脂膜形成層の硬化を、エネルギー線照射により行うことができ、熱硬化性成分および熱硬化剤と、エネルギー線重合性化合物を併用する場合には、加熱およびエネルギー線照射による硬化を同時に行ってもよく、逐次的に行ってもよい。照射されるエネルギー線としては、紫外線(UV)または電子線(EB)等が挙げられ、好ましくは紫外線が用いられる。この結果、ウエハ裏面に硬化樹脂からなる樹脂膜が形成され、ウエハ単独の場合と比べて強度が向上するので、薄くなったウエハの取扱い時の破損を低減できる。また、熱伝導率の高い樹脂膜が形成されることで、優れた放熱特性が付与される。また、ウエハやチップの裏面に直接樹脂膜用の塗布液を塗布・被膜化するコーティング法と比較して、樹脂膜の厚さの均一性に優れる。
 次いで、半導体ウエハと樹脂膜との積層体を、ウエハ表面に形成された回路毎にダイシングする。ダイシングは、ウエハと樹脂膜をともに切断するように行われる。ウエハのダイシングは、ダイシングシートを用いた常法により行われる。この結果、裏面に樹脂膜を有する半導体チップが得られる。
 最後に、ダイシングされたチップをコレット等の汎用手段によりピックアップすることで、裏面に樹脂膜を有する半導体チップが得られる。そして、半導体チップをフェースダウン方式で所定の基台上に実装することで半導体装置を製造することができる。また、裏面に樹脂膜を有する半導体チップを、ダイパッド部または別の半導体チップなどの他の部材上(チップ搭載部上)に接着することで、半導体装置を製造することもできる。このような本発明によれば、厚みの均一性の高い樹脂膜を、チップ裏面に簡便に形成でき、ダイシング工程やパッケージングの後のクラックが発生しにくくなる。さらに、得られる半導体装置には優れた放熱特性が付与されるため、その信頼性が低下することを抑制できる。
 なお、半導体ウエハの裏面に、上記チップ用樹脂膜形成用シートの樹脂膜形成層を貼付した後、工程(3)を工程(1)の前に行う場合、チップ用樹脂膜形成用シートがダイシングシートとしての役割を果たすことができる。つまり、ダイシング工程の最中に半導体ウエハを支持するためのシートとして用いることができる。この場合、チップ用樹脂膜形成用シートの内周部に樹脂膜形成層を介して半導体ウエハが貼着され、チップ用樹脂膜形成用シートの外周部がリングフレーム等の他の治具と接合することで、半導体ウエハに貼付されたチップ用樹脂膜形成用シートが装置に固定され、ダイシングが行われる。
 また、本発明に係るチップ用樹脂膜形成用シートを用いた別の半導体装置の製造方法は、該シートの樹脂膜形成層を半導体ウエハに貼着し、該半導体ウエハをダイシングして半導体チップとし、該半導体チップのいずれかの面に該樹脂膜形成層を固着残存させて支持シートから剥離し、該半導体チップをダイパッド部上、または別の半導体チップ上に該樹脂膜形成層を介して載置する工程を含むことが好ましい。一例として、チップの裏面に樹脂膜形成層を貼付する製造方法について以下説明する。
 まず、リングフレームおよび半導体ウエハの裏面側を本発明に係るチップ用樹脂膜形成用シートの樹脂膜形成層上に載置し、軽く押圧し、半導体ウエハを固定する。なお、本発明に係るチップ用樹脂膜形成用シートを、再剥離粘着剤層を介して支持シートの内周部に樹脂膜形成層が形成され、支持シートの外周部に再剥離粘着剤層が露出している構成とした場合には、半導体ウエハは樹脂膜形成層上に固定され、リングフレームは支持シートの外周部において再剥離粘着剤層を介して固定される。
 その際、樹脂膜形成層が室温ではタック性を有しない場合は適宜加温しても良い(限定するものではないが、40~80℃が好ましい)。
 次いで、樹脂膜形成層に硬化性成分(B)としてエネルギー線重合性化合物が配合されている場合には、樹脂膜形成層に支持シート側からエネルギー線を照射し、樹脂層形成層を予備的に硬化し、樹脂膜形成層の凝集力を上げ、樹脂膜形成層と支持シートとの間の接着力を低下させておいてもよい。
 その後、ダイシングソーなどの切断手段を用いて、上記の半導体ウエハを切断し半導体チップを得る。この際の切断深さは、半導体ウエハの厚みと、樹脂膜形成層の厚みとの合計およびダイシングソーの磨耗分を加味した深さにする。
 なお、エネルギー線照射は、半導体ウエハの貼付後、半導体チップの剥離(ピックアップ)前のいずれの段階で行ってもよく、たとえばダイシングの後に行ってもよく、また下記のエキスパンド工程の後に行ってもよいが、半導体ウエハの貼付後であってダイシング前に行うことが好ましい。さらにエネルギー線照射を複数回に分けて行ってもよい。
 次いで必要に応じ、チップ用樹脂膜形成用シートのエキスパンドを行うと、半導体チップ間隔が拡張し、半導体チップのピックアップをさらに容易に行えるようになる。この際、樹脂膜形成層と支持シートとの間にずれが発生することになり、樹脂膜形成層と支持シートとの間の接着力が減少し、半導体チップのピックアップ性が向上する。このようにして半導体チップのピックアップを行うと、切断された樹脂膜形成層を半導体チップ裏面に固着残存させて支持シートから剥離することができる。
 次いで樹脂膜形成層を介して半導体チップを、リードフレームのダイパッド上または別の半導体チップ(下段チップ)表面に載置する(以下、チップが搭載されるダイパッドまたは下段チップ表面を「チップ搭載部」と記載する)。チップ搭載部は、半導体チップを載置する前に加熱するか載置直後に加熱してもよい。加熱温度は、通常は80~200℃、好ましくは100~180℃であり、加熱時間は、通常は0.1秒~5分、好ましくは0.5秒~3分であり、載置するときの圧力は、通常1kPa~200MPaである。
 半導体チップをチップ搭載部に載置した後、必要に応じさらに加熱を行ってもよい。この際の加熱条件は、上記加熱温度の範囲であって、加熱時間は通常1~180分、好ましくは10~120分である。
 また、載置後の加熱処理は行わずに仮接着状態としておき、パッケージ製造において通常行われる樹脂封止での加熱を利用して樹脂膜形成層を硬化させてもよい。このような工程を経ることで、樹脂膜形成層が硬化し、半導体チップとチップ搭載部とが強固に接着された半導体装置を得ることができる。樹脂膜形成層はダイボンド条件下では流動化しているため、チップ搭載部の凹凸にも十分に埋め込まれ、ボイドの発生を防止でき半導体装置の信頼性が高くなる。また、樹脂膜形成層の熱伝導率が高いため、半導体装置は優れた放熱特性を有し、その信頼性が低下することを抑制できる。
 本発明のチップ用樹脂膜形成用シートは、上記のような使用方法の他、半導体化合物、ガラス、セラミックス、金属などの接着に使用することもできる。
 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の実施例および比較例において、<剥離強度測定>及び<熱伝導率測定>は次のように行った。
<剥離強度測定>
 チップ用樹脂膜形成用シートの樹脂膜形成層上に、厚み350μmのシリコンウエハを載置し、70℃で熱ラミネートした。次いで、チップ用樹脂膜形成用シートの支持シートを剥離した。その後、10mm幅の銅箔(厚み150μm)を樹脂膜形成層上に70℃で熱ラミネートし、加熱オーブン内で熱硬化(130℃、2時間)した後、汎用の引張試験機(SHIMADZU製 AG-IS MS)を用いて90°ピール試験を行い、銅箔の剥離強度を測定した。剥離強度が3.5~10N/10mmであった場合を「良好」、それ以外の場合を「不良」と評価した。
<熱伝導率測定>
(硬化前)
 樹脂膜形成層(厚さ:40μm)を、裁断して各片が1cmの正方形の試料を得た。次いで、熱伝導率測定装置(ai-phase社製 アイフェイズ・モバイル1u)を用いて、温度熱分析法で該試料の厚み方向における熱伝導率を測定した。熱伝導率が2W/(m・K)以上の場合を「良好」、それ以外の場合を「不良」と評価した。
(硬化後)
 樹脂膜形成層(厚さ:40μm)を、裁断して各片が1cmの正方形の試料を得た。次いで、該試料を加熱(130℃、2時間)して硬化させた後、熱伝導率測定装置(ai-phase社製 アイフェイズ・モバイル1u)を用いて、該試料の熱伝導率を測定した。熱伝導率が2W/(m・K)以上の場合を「良好」、それ以外の場合を「不良」と評価した。
<樹脂膜形成用組成物>
 樹脂膜形成層を構成する各成分を下記に示す。
(A)バインダーポリマー成分:メタクリル酸メチル85質量部とアクリル酸2-ヒドロキシエチル15質量部との共重合体(重量平均分子量:40万、ガラス転移温度:6℃)
(B)硬化性成分:
 (B1)ビスフェノールA型エポキシ樹脂(エポキシ当量180~200g/eq)
 (B2)ジシクロペンタジエン型エポキシ樹脂(DIC株式会社製 エピクロンHP-7200HH)
 (B3)ジシアンジアミド(旭電化製 アデカハードナー3636AS)
(C)無機フィラー:
 (C1)窒化ホウ素粒子(昭和電工(株)製 UHP-2、形状:板状、平均粒子径11.8μm、アスペクト比11.2、長軸方向の熱伝導率200W/(m・K)、密度2.3g/cm
 (C2)アルミナフィラー(昭和電工(株)製 CB-A20S、形状:球状、平均粒子径20μm、密度4.0g/cm
 (C3)シリカフィラー(溶融石英フィラー、平均粒子径3μm)
(D)シランカップリング剤:
 (D1)オリゴマータイプシランカップリング剤(信越化学工業株式会社製 X-41-1056 アルコキシ当量17.1mmol/g、分子量500~1500)
 (D2)モノマータイプシランカップリング剤(γ-グリシドキシプロピルメチルジエトキシシラン、信越化学工業株式会社製 KBE-402 アルコキシ当量10.8mmol/g、分子量248.4)
(E)着色剤:黒色顔料(カーボンブラック、三菱化学社製 #MA650、平均粒子径28nm)
(F)硬化促進剤:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製 キュアゾール2PHZ-PW)
(実施例および比較例)
 上記各成分を表1に記載の量で配合し、樹脂膜形成用組成物を得た。得られた組成物のメチルエチルケトン溶液(固形濃度61重量%)を、シリコーンで剥離処理された支持シート(リンテック株式会社製 SP-PET381031、厚さ38μm)の剥離処理面上に乾燥後40μmの厚みになるように塗布、乾燥(乾燥条件:オーブンにて110℃、1分間)して、支持シート上に樹脂膜形成層を形成し、チップ用樹脂膜形成用シートを得た。
Figure JPOXMLDOC01-appb-T000001
 得られたチップ用樹脂膜形成用シートについて、<剥離強度測定>及び<熱伝導率測定>を行った。結果を表2に示す。なお、比較例9のチップ用樹脂膜形成用シートについては、剥離強度が測定下限値以下であったため、剥離強度が測定不能であった。
Figure JPOXMLDOC01-appb-T000002
 実施例のチップ用樹脂膜形成用シートの樹脂膜形成層は、優れた剥離強度及び熱伝導率を示した。したがって、本発明に係るチップ用樹脂膜形成用シートを用いることで、高信頼性の半導体装置を得ることができる。
 

Claims (13)

  1.  支持シートと、該支持シート上に形成された樹脂膜形成層とを有し、
     該樹脂膜形成層が、バインダーポリマー成分(A)、硬化性成分(B)、無機フィラー(C)及びシランカップリング剤(D)を含み、
     該無機フィラー(C)が窒化物粒子(C1)を含有し、
     該シランカップリング剤(D)の分子量が300以上であるチップ用樹脂膜形成用シート。
  2.  該樹脂膜形成層の全質量中におけるシランカップリング剤(D)の質量割合が0.3~2質量%である請求項1に記載のチップ用樹脂膜形成用シート。
  3.  シランカップリング剤(D)のアルコキシ当量が10~40mmol/gである請求項1または2に記載のチップ用樹脂膜形成用シート。
  4.  該樹脂膜形成層の全質量中における窒化物粒子(C1)の質量割合が40質量%以下である請求項1~3のいずれかに記載のチップ用樹脂膜形成用シート。
  5.  該樹脂膜形成層の全質量中における無機フィラー(C)の質量割合が30~60質量%である請求項1~4のいずれかに記載のチップ用樹脂膜形成用シート。
  6.  無機フィラー(C)が窒化物粒子(C1)以外の他の粒子(C2)を含有する請求項1~5のいずれかに記載のチップ用樹脂膜形成用シート。
  7.  窒化物粒子(C1)が窒化ホウ素粒子である請求項1~6のいずれかに記載のチップ用樹脂膜形成用シート。
  8.  他の粒子(C2)の平均粒子径が20μm以上である請求項6に記載のチップ用樹脂膜形成用シート。
  9.  無機フィラー(C)における窒化物粒子(C1)と他の粒子(C2)との重量比率(C1:C2)が1:5~5:1である請求項6または8に記載のチップ用樹脂膜形成用シート。
  10.  他の粒子(C2)の平均粒子径が、樹脂膜形成層の厚みの0.01~0.65倍である請求項6、8または9のいずれかに記載のチップ用樹脂膜形成用シート。
  11.  樹脂膜形成層の剥離強度が3.5~10N/10mmである請求項1~10のいずれかに記載のチップ用樹脂膜形成用シート。
  12.  樹脂膜形成層の熱伝導率が2W/(m・K)以上である請求項1~11のいずれかに記載のチップ用樹脂膜形成用シート。
  13.  請求項1~12のいずれかに記載のチップ用樹脂膜形成用シートを用いる半導体装置の製造方法。
     
     
PCT/JP2013/066471 2012-11-30 2013-06-14 チップ用樹脂膜形成用シート及び半導体装置の製造方法 WO2014083872A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014550042A JP6427791B2 (ja) 2012-11-30 2013-06-14 チップ用樹脂膜形成用シート及び半導体装置の製造方法
EP13858816.5A EP2927952B1 (en) 2012-11-30 2013-06-14 Sheet for forming resin film for chips and method for manufacturing semiconductor device
CN201380061840.2A CN104871310B (zh) 2012-11-30 2013-06-14 芯片用树脂膜形成用片及半导体装置的制造方法
KR1020157012275A KR102140470B1 (ko) 2012-11-30 2013-06-14 칩용 수지막 형성용 시트 및 반도체 장치의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012263046 2012-11-30
JP2012-263046 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014083872A1 true WO2014083872A1 (ja) 2014-06-05

Family

ID=50827529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066471 WO2014083872A1 (ja) 2012-11-30 2013-06-14 チップ用樹脂膜形成用シート及び半導体装置の製造方法

Country Status (6)

Country Link
EP (1) EP2927952B1 (ja)
JP (1) JP6427791B2 (ja)
KR (1) KR102140470B1 (ja)
CN (1) CN104871310B (ja)
TW (1) TWI577775B (ja)
WO (1) WO2014083872A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027888A1 (ja) * 2014-08-22 2016-02-25 リンテック株式会社 保護膜形成用シートおよび保護膜付き半導体チップの製造方法
CN107429107B (zh) * 2015-04-08 2020-08-07 阿莫绿色技术有限公司 散热涂敷组合物及通过其形成的散热单元
JP7122622B2 (ja) * 2018-05-31 2022-08-22 パナソニックIpマネジメント株式会社 樹脂組成物、絶縁シート及びプリント配線板

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017246A (ja) 1998-07-06 2000-01-18 Lintec Corp 粘接着剤組成物および粘接着シート
JP2002069392A (ja) 2000-08-31 2002-03-08 Polymatech Co Ltd 熱伝導性接着フィルムおよびその製造方法ならびに電子部品
JP2002280329A (ja) 2001-03-21 2002-09-27 Lintec Corp チップ用保護膜形成用シートおよび半導体チップの製造方法
JP2007250970A (ja) * 2006-03-17 2007-09-27 Hitachi Chem Co Ltd 半導体素子裏面保護用フィルム及びそれを用いた半導体装置とその製造法
JP2007314603A (ja) 2006-05-23 2007-12-06 Lintec Corp 粘接着剤組成物、粘接着シートおよび半導体装置の製造方法
JP2008248128A (ja) * 2007-03-30 2008-10-16 Lintec Corp チップ用保護膜形成用シートおよび保護膜付半導体チップ
KR20110103321A (ko) * 2010-03-12 2011-09-20 린텍 가부시키가이샤 점착제 조성물, 점착제 및 점착 시트
US20120021174A1 (en) * 2010-07-20 2012-01-26 Nitto Denko Corporation Film for flip chip type semiconductor back surface, and dicing tape-integrated film for semiconductor back surface
US20120028050A1 (en) * 2010-07-28 2012-02-02 Nitto Denko Corporation Film for flip chip type semiconductor back surface, process for producing strip film for semiconductor back surface, and flip chip type semiconductor device
CN102618178A (zh) * 2011-01-28 2012-08-01 琳得科株式会社 半导体用粘接剂组合物、半导体用粘接片及半导体装置的制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3175979B2 (ja) * 1992-09-14 2001-06-11 株式会社東芝 樹脂封止型半導体装置
JP2011023607A (ja) * 2009-07-16 2011-02-03 Nitto Denko Corp 放熱性ダイボンドフィルム
JP5023179B2 (ja) * 2010-03-31 2012-09-12 リンテック株式会社 チップ用樹脂膜形成用シートおよび半導体チップの製造方法

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017246A (ja) 1998-07-06 2000-01-18 Lintec Corp 粘接着剤組成物および粘接着シート
JP2002069392A (ja) 2000-08-31 2002-03-08 Polymatech Co Ltd 熱伝導性接着フィルムおよびその製造方法ならびに電子部品
JP2002280329A (ja) 2001-03-21 2002-09-27 Lintec Corp チップ用保護膜形成用シートおよび半導体チップの製造方法
JP2007250970A (ja) * 2006-03-17 2007-09-27 Hitachi Chem Co Ltd 半導体素子裏面保護用フィルム及びそれを用いた半導体装置とその製造法
JP2007314603A (ja) 2006-05-23 2007-12-06 Lintec Corp 粘接着剤組成物、粘接着シートおよび半導体装置の製造方法
JP2008248128A (ja) * 2007-03-30 2008-10-16 Lintec Corp チップ用保護膜形成用シートおよび保護膜付半導体チップ
KR20110103321A (ko) * 2010-03-12 2011-09-20 린텍 가부시키가이샤 점착제 조성물, 점착제 및 점착 시트
CN102190966A (zh) * 2010-03-12 2011-09-21 琳得科株式会社 粘合剂组合物、粘合剂和粘合片
JP2011190302A (ja) * 2010-03-12 2011-09-29 Lintec Corp 粘着剤組成物、粘着剤および粘着シート
KR20120010124A (ko) * 2010-07-20 2012-02-02 닛토덴코 가부시키가이샤 플립칩형 반도체 이면용 필름 및 다이싱 테이프 일체형 반도체 이면용 필름
CN102376614A (zh) * 2010-07-20 2012-03-14 日东电工株式会社 倒装芯片型半导体背面用膜和半导体背面用切割带集成膜
TW201205660A (en) * 2010-07-20 2012-02-01 Nitto Denko Corp Film for flip chip type semiconductor back surface, and dicing tape-integrated film for semiconductor back surface
US20120021174A1 (en) * 2010-07-20 2012-01-26 Nitto Denko Corporation Film for flip chip type semiconductor back surface, and dicing tape-integrated film for semiconductor back surface
JP2012028404A (ja) * 2010-07-20 2012-02-09 Nitto Denko Corp フリップチップ型半導体裏面用フィルム、及び、ダイシングテープ一体型半導体裏面用フィルム
JP2012031234A (ja) * 2010-07-28 2012-02-16 Nitto Denko Corp フリップチップ型半導体裏面用フィルム、短冊状半導体裏面用フィルムの製造方法、及び、フリップチップ型半導体装置
TW201207082A (en) * 2010-07-28 2012-02-16 Nitto Denko Corp Film for flip chip type semiconductor back surface, process for producing strip film for semiconductor back surface, and flip chip type semiconductor device
US20120028050A1 (en) * 2010-07-28 2012-02-02 Nitto Denko Corporation Film for flip chip type semiconductor back surface, process for producing strip film for semiconductor back surface, and flip chip type semiconductor device
CN102382585A (zh) * 2010-07-28 2012-03-21 日东电工株式会社 倒装芯片型半导体背面用膜、半导体背面用条状膜的生产方法和倒装芯片型半导体器件
KR20120062606A (ko) * 2010-07-28 2012-06-14 닛토덴코 가부시키가이샤 플립 칩형 반도체 이면용 필름, 단책상 반도체 이면용 필름의 제조방법, 및 플립 칩형 반도체 장치
CN102618178A (zh) * 2011-01-28 2012-08-01 琳得科株式会社 半导体用粘接剂组合物、半导体用粘接片及半导体装置的制造方法
TW201231586A (en) * 2011-01-28 2012-08-01 Lintec Corp Adhesive Compositions for a Semiconductor, an Adhesive Sheet for a Semiconductor and a Production Method of a Semiconductor Device
US20120196404A1 (en) * 2011-01-28 2012-08-02 Lintec Corporation Adhesive Compositions for a Semiconductor, an Adhesive Sheet for a Semiconductor and a Production Method of a Semiconductor Device
KR20120087790A (ko) * 2011-01-28 2012-08-07 린텍 코포레이션 반도체용 접착제 조성물, 반도체용 접착 시트 및 반도체 장치의 제조 방법
JP2012156474A (ja) * 2011-01-28 2012-08-16 Lintec Corp 半導体用接着剤組成物、半導体用接着シートおよび半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2927952A4

Also Published As

Publication number Publication date
TWI577775B (zh) 2017-04-11
JP6427791B2 (ja) 2018-11-28
EP2927952A4 (en) 2016-08-03
EP2927952A1 (en) 2015-10-07
JPWO2014083872A1 (ja) 2017-01-05
CN104871310B (zh) 2018-03-09
KR102140470B1 (ko) 2020-08-03
KR20150092101A (ko) 2015-08-12
CN104871310A (zh) 2015-08-26
TW201420712A (zh) 2014-06-01
EP2927952B1 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
CN110041836B (zh) 树脂膜形成用复合片
TWI637439B (zh) Protective film forming film
JP6239498B2 (ja) チップ用樹脂膜形成用シート
JP2016219841A (ja) 保護膜形成層付ダイシングシートおよびチップの製造方法
KR102215668B1 (ko) 보호막 형성용 복합 시트, 보호막이 있는 칩 및 보호막이 있는 칩의 제조 방법
KR102224971B1 (ko) 경화성 수지막 형성층이 형성된 시트 및 그 시트를 사용한 반도체 장치의 제조 방법
JP6335173B2 (ja) 保護膜形成用複合シート、保護膜付きチップ、及び保護膜付きチップの製造方法
JP5893250B2 (ja) チップ用保護膜形成用シート、半導体チップの製造方法および半導体装置
JPWO2014155756A1 (ja) 粘着シートおよび保護膜形成用複合シートならびに保護膜付きチップの製造方法
JP6334197B2 (ja) 保護膜形成用複合シート、保護膜付きチップ、及び保護膜付きチップの製造方法
JP6262717B2 (ja) 保護膜付チップの製造方法
JP6427791B2 (ja) チップ用樹脂膜形成用シート及び半導体装置の製造方法
WO2020189447A1 (ja) 保護膜形成用シートおよび基板装置の製造方法
WO2016002080A1 (ja) 保護膜形成用フィルム
JP5743638B2 (ja) 保護膜形成用フィルム、およびチップ用保護膜形成用シート
WO2016002079A1 (ja) 保護膜形成用フィルム
JP6038919B2 (ja) 保護膜形成層、保護膜形成用シート及び半導体装置の製造方法
TW202039728A (zh) 切晶帶一體型半導體背面密接膜
JP7453208B2 (ja) 第1保護膜付きワーク加工物の製造方法
CN113169082A (zh) 热固性树脂膜、第一保护膜形成用片、套件、及带第一保护膜的工件加工物的制造方法
JPWO2020175421A1 (ja) 熱硬化性樹脂フィルム及び第1保護膜形成用シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550042

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157012275

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013858816

Country of ref document: EP