WO2014080805A1 - 作業機械および作業機械の作業量計測方法 - Google Patents

作業機械および作業機械の作業量計測方法 Download PDF

Info

Publication number
WO2014080805A1
WO2014080805A1 PCT/JP2013/080603 JP2013080603W WO2014080805A1 WO 2014080805 A1 WO2014080805 A1 WO 2014080805A1 JP 2013080603 W JP2013080603 W JP 2013080603W WO 2014080805 A1 WO2014080805 A1 WO 2014080805A1
Authority
WO
WIPO (PCT)
Prior art keywords
excavation
time
loading
work
unit
Prior art date
Application number
PCT/JP2013/080603
Other languages
English (en)
French (fr)
Inventor
厚 永戸
雅通 上田
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to US14/438,980 priority Critical patent/US9783952B2/en
Priority to DE112013005544.9T priority patent/DE112013005544T5/de
Priority to CN201380058762.0A priority patent/CN104781477B/zh
Priority to IN3938DEN2015 priority patent/IN2015DN03938A/en
Priority to KR1020157012094A priority patent/KR101747010B1/ko
Publication of WO2014080805A1 publication Critical patent/WO2014080805A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0816Indicating performance data, e.g. occurrence of a malfunction
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data

Definitions

  • the present invention relates to a work machine capable of measuring the number of operations of a series of excavation and loading mechanisms performed during excavation and loading work and the like, and a work amount measurement method for the work machine.
  • excavation and loading work When a work machine such as a hydraulic excavator operating at a civil engineering construction site performs work such as excavating earth and sand and loading it on a transport vehicle such as a dump truck (hereinafter referred to as excavation and loading work), the progress of construction at that site
  • a work machine such as a hydraulic excavator operating at a civil engineering construction site performs work such as excavating earth and sand and loading it on a transport vehicle such as a dump truck (hereinafter referred to as excavation and loading work)
  • work management such as the above, it is necessary to manage the work volume of the daily excavation and loading work, the progress of the excavation and loading work, or the work efficiency of the excavation and loading work.
  • Manual measurement of the amount of work such as excavation and loading work performed on a work machine such as a hydraulic excavator is burdensome for an operator and is troublesome, and automation thereof has been proposed.
  • Patent Document 1 an operation signal and an operation time of an actuator of a construction machine are detected, and this is compared with a plurality of prestored conditions, and an operation signal and an operation time that match the plurality of conditions are detected.
  • this matching condition is extracted and the number of loading operations is counted based on the extracted value.
  • Patent Document 1 a complicated condition weighting processing program and work determination processing program are required.
  • the number of operations of a series of work machines or upper revolving bodies such as excavation and loading work in which excavation, going-turning, earthing, return turning are sequentially repeated between hydraulic excavators of different sizes etc.
  • the work amount measuring device disclosed in Patent Document 1 has poor versatility.
  • the present invention has been made in view of the above, and is an easy and accurate work machine capable of measuring the number of operations of a series of excavation and loading mechanisms performed during excavation and loading operations, and the like. It is an object to provide a method for measuring a work amount of a work machine.
  • a work machine includes an operation state detection unit that detects a physical quantity that is output in response to an operation of an operation lever, and a time integration that time-integrates the physical quantity.
  • the time integration unit for calculating the value the time integration value and the predetermined operating angle of the excavation loading mechanism unit associated with the operation of the operation lever are matched, and the time integration value is equal to or greater than the predetermined integration value
  • the operation is performed in the predetermined order
  • a counting unit that counts the number of times of excavation and loading work with one operation of the excavation and loading mechanism.
  • the operation of the excavation and loading mechanism unit is an excavation and loading operation performed in the order of an excavation operation, a turn turning operation, a soil removal operation, and a return turning operation. It is characterized by.
  • the determination unit determines the excavation operation
  • the time integral value is equal to or greater than a predetermined integral value
  • the physical quantity is equal to or less than a predetermined operation end value. If it is, it is determined that the excavation operation has been performed.
  • the determination unit determines the excavation operation
  • the time integral value is equal to or greater than a predetermined integral value
  • the physical quantity is equal to or less than a predetermined operation end value. In this case, it is determined that the excavation operation is performed when a predetermined time has elapsed.
  • the state is such that the physical quantity is equal to or less than the integration start value after the start of time integration.
  • the time integral value is reset when the time integral value holding time has elapsed.
  • the work machine according to the present invention is characterized in that, in the above-mentioned invention, the operation lever is a pilot type or an electric type, and the physical quantity is a pilot pressure or an electric signal.
  • the work machine according to the present invention is characterized in that, in the above-mentioned invention, the work machine further includes a display device or an output unit for outputting the number of times of the excavation loading work counted by the counting unit.
  • the work machine according to the present invention is characterized in that, in the above-described invention, a setting change unit for changing various setting values is provided.
  • the work amount measuring method for a work machine includes an operation state detecting step for detecting a physical quantity output in response to an operation of an operation lever, and a time integration step for calculating a time integral value obtained by time-integrating the physical quantity. And the time integral value and a predetermined operating angle of the excavation and loading mechanism unit associated with the operation of the operation lever, and the operation lever is operated when the time integral value is equal to or greater than the predetermined integral value.
  • a determination step for determining that the operation has been performed, and operations of the excavation and loading mechanism section determined in the determination step when the operations of the excavation and loading mechanism section are performed in a predetermined order. And a counting step of counting the number of excavation and loading operations as one time.
  • a physical quantity output according to the operation of the operation lever is detected, a time integration value obtained by time-integrating the physical quantity is calculated, and an excavation loading mechanism accompanying the operation of the time integration value and the operation lever is calculated.
  • a predetermined operating angle of each part and when the time integral value is equal to or greater than a predetermined integral value, it is determined that the operation lever is operated, and each of the determined excavation and loading mechanism parts is determined.
  • the operations are performed in a predetermined order, the number of operations of the excavation and loading mechanism unit performed in the predetermined order is counted once. For this reason, the number of operations of a series of excavation and loading mechanisms performed during excavation and loading operations or the like can be measured easily and accurately.
  • FIG. 1 is a perspective view showing a schematic configuration of a hydraulic excavator according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the hydraulic excavator shown in FIG.
  • FIG. 3 is an explanatory diagram showing the relationship between the operation direction of the operation lever and the movement of the work implement or the upper swing body.
  • FIG. 4 is an explanatory diagram for explaining excavation and loading work by a hydraulic excavator.
  • FIG. 5 is a time chart for explaining the process for counting the number of times of loading.
  • FIG. 6 is a diagram showing the relationship between the spool stroke, the pilot pressure, and the spool opening.
  • FIG. 7 is a time chart showing the reset processing of the time integral value at the time of excavation operation.
  • FIG. 1 is a perspective view showing a schematic configuration of a hydraulic excavator according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the hydraulic excavator shown in FIG.
  • FIG. 8 is a state transition diagram showing basic measurement processing of the number of times of loading.
  • FIG. 9 is a time chart for explaining the time integrated value holding time during the excavation operation.
  • FIG. 10 is a time chart showing a relationship between an erroneous determination and a normal determination of the next return turning operation when an excavation operation is performed during the return turning operation.
  • FIG. 11 is a graph showing changes in pilot pressure over time.
  • FIG. 12 is a state transition diagram illustrating a basic measurement process of the number of times of loading including a deemed counting process and an auxiliary work operation excluding process.
  • FIG. 13 is a state transition diagram showing a basic measurement process of the number of times of loading including an assumed counting process, an exclusion process of incidental work operations, and an exclusion process according to the external state.
  • FIG. 14 is a block diagram showing a detailed configuration of the monitor.
  • FIG. 15 is a diagram illustrating a display example of work management using the basic excavation loading time.
  • FIG. 16 is a diagram illustrating a schematic configuration of a work management system including a hydraulic excavator.
  • FIG. 1 and FIG. 2 have shown the whole structure of the hydraulic shovel 1 which is an example as a working machine.
  • the hydraulic excavator 1 includes a vehicle main body 2 and a work implement 3.
  • the vehicle main body 2 includes a lower traveling body 4 and an upper swing body 5.
  • the lower traveling body 4 has a pair of traveling devices 4a.
  • Each traveling device 4a has a crawler belt 4b.
  • Each traveling device 4a travels or turns the excavator 1 by driving the crawler belt 4b with a right hydraulic traveling motor and a left hydraulic traveling motor (hydraulic traveling motor 21).
  • the upper turning body 5 is provided on the lower traveling body 4 so as to be turnable, and turns when the turning hydraulic motor 22 is driven.
  • the upper swing body 5 is provided with a cab 6.
  • the upper swing body 5 includes a fuel tank 7, a hydraulic oil tank 8, an engine room 9, and a counterweight 10.
  • the fuel tank 7 stores fuel for driving the engine 17.
  • the hydraulic oil tank 8 stores hydraulic oil that is discharged from the hydraulic pump 18 to a hydraulic cylinder such as the boom cylinder 14, hydraulic equipment such as the swing hydraulic motor 22, and the hydraulic travel motor 21.
  • the engine room 9 houses devices such as the engine 17 and the hydraulic pump 18.
  • the counterweight 10 is disposed behind the engine chamber 9.
  • the work machine 3 is attached to the front center position of the upper swing body 5 and includes a boom 11, an arm 12, a bucket 13, a boom cylinder 14, an arm cylinder 15, and a bucket cylinder 16.
  • a base end portion of the boom 11 is rotatably connected to the upper swing body 5. Further, the distal end portion of the boom 11 is rotatably connected to the proximal end portion of the arm 12.
  • the tip of the arm 12 is rotatably connected to the bucket 13.
  • the boom cylinder 14, the arm cylinder 15, and the bucket cylinder 16 are hydraulic cylinders that are driven by hydraulic oil discharged from the hydraulic pump 18.
  • the boom cylinder 14 operates the boom 11.
  • the arm cylinder 15 operates the arm 12.
  • the bucket cylinder 16 is connected to the bucket 13 via a link member, and can operate the bucket 13.
  • the bucket 13 operates as the cylinder rod of the bucket cylinder 16 expands and contracts.
  • the cylinder rod of the bucket cylinder 16 when excavating and scooping up earth and sand with the bucket 13, the cylinder rod of the bucket cylinder 16 is extended, the bucket 13 operates while rotating backward from the front of the excavator 1, and then the scooped earth and sand are discharged. At this time, the cylinder rod of the bucket cylinder 16 is contracted, and the bucket 13 operates while rotating forward from the rear of the excavator 1.
  • the excavator 1 includes an engine 17 and a hydraulic pump 18 as drive sources.
  • a diesel engine is used as the engine 17, and a variable displacement hydraulic pump (for example, a swash plate hydraulic pump) is used as the hydraulic pump 18.
  • a hydraulic pump 18 is mechanically coupled to the output shaft of the engine 17, and the hydraulic pump 18 is driven by driving the engine 17.
  • the hydraulic drive system drives the boom cylinder 14, the arm cylinder 15, the bucket cylinder 16, and the turning hydraulic motor 22 according to the operation of the operation levers 41 and 42 provided in the cab 6 provided in the vehicle body 2. Further, the hydraulic traveling motor 21 is driven in accordance with the operation of the traveling levers 43 and 44.
  • the operation levers 41 and 42 are arranged on the left and right sides of an operator seat (not shown) in the cab 6, and the travel levers 43 and 44 are arranged in front of the operator seat.
  • the operation levers 41 and 42 and the travel levers 43 and 44 are pilot-type levers, and a pilot pressure is generated according to the operation of each lever.
  • the magnitudes of the pilot pressures of the operation levers 41 and 42 and the travel levers 43 and 44 are detected by the pressure sensor 55, and an output voltage corresponding to the magnitude of the pilot pressure is output as an electrical signal.
  • An electric signal corresponding to the pilot pressure detected by the pressure sensor 55 is sent to the pump controller 31. Pilot pressure from the operation levers 41 and 42 is input to the control valve 20, and the hydraulic pump 18 and the boom cylinder 14, the arm cylinder 15, the bucket cylinder 16, and the swing hydraulic motor 22 are connected within the control valve 20. Control the opening of the main valve.
  • the pilot pressure from the travel levers 43 and 44 is input to the control valve 20 to control the opening of the main valve that connects between the corresponding hydraulic travel motor 21 and the hydraulic pump 18.
  • a fuel adjustment dial 29, a monitor 32, and a turning lock portion 33 are provided in the vicinity of the operator seat in the cab 6 and are easily operated by the operator.
  • the fuel adjustment dial 29 is a dial (setting device) for setting the fuel supply amount to the engine 17.
  • the set value of the fuel adjustment dial 29 is converted into an electrical signal and output to the engine controller 30.
  • the fuel adjustment dial 29 may be incorporated in the display / setting unit 27 of the monitor 32 so that the fuel supply amount can be set by operating the display / setting unit 27.
  • the monitor 32 is a display device and includes a display / setting unit 27 that performs various displays and settings.
  • the monitor 32 has a work mode switching unit 28.
  • the display / setting unit 27 and the work mode switching unit 28 include, for example, a liquid crystal panel and a switch.
  • the display / setting unit 27 and the work mode switching unit 28 may be configured as a touch panel.
  • the P mode and the E mode are modes for performing normal excavation and loading work. In the E mode, the output of the engine 17 is suppressed as compared with the P mode.
  • the L mode is switched when an unillustrated hook is attached to, for example, a mounting pin for connecting the bucket 13 and the link member, and arm crane operation (lifting work) is performed to lift the load suspended by the hook.
  • the L mode is a fine operation mode in which the engine speed is controlled to keep the output of the engine 17 constant and the work implement 3 can be moved slowly.
  • the B mode is a mode that can be switched when attaching a breaker for crushing rocks or the like as an attachment instead of the bucket 13, so that the output of the engine 17 can be kept constant by suppressing the engine speed.
  • the ATT mode is a spare mode that can be switched when a special attachment such as a crusher is attached instead of the bucket 13, and hydraulic equipment is controlled.
  • the discharge amount of hydraulic oil of the hydraulic pump 18 is controlled. Mode.
  • a work mode signal generated when the operator operates the work mode switching unit 28 is sent to the engine controller 30 and the pump controller 31.
  • the turning lock unit 33 is a switch for turning on / off a turning parking brake (not shown).
  • the turning parking brake applies a brake to the turning hydraulic motor 22 so that the upper turning body 5 does not turn.
  • an electromagnetic solenoid (not shown) is driven, and a brake for pressing a rotating component of the turning hydraulic motor 22 is operated in conjunction with the movement of the electromagnetic solenoid.
  • the turning parking brake ON / OFF signal in the turning lock unit 33 is also input to the pump controller 31 by monitoring.
  • the engine controller 30 includes an arithmetic device such as a CPU (numerical arithmetic processor) and a memory (storage device).
  • a fuel injection device 80 is attached to the engine 17.
  • a common rail fuel injection device is used as the fuel injection device 80.
  • the engine controller 30 generates a control command signal based on the set value of the fuel adjustment dial 29, sends a signal to the fuel injection device 80, and adjusts the fuel injection amount to the engine 17.
  • the pump controller 31 receives signals transmitted from the engine controller 30, the monitor 32, the operation levers 41 and 42, and the travel levers 43 and 44, controls the tilt of the swash plate angle of the hydraulic pump 18, and controls from the hydraulic pump 18. A control command signal for adjusting the discharge amount of the hydraulic oil is generated.
  • the pump controller 31 receives a signal from a swash plate angle sensor 18 a that detects the swash plate angle of the hydraulic pump 18. When the swash plate angle sensor 18a detects the swash plate angle, the pump displacement of the hydraulic pump 18 can be calculated.
  • the pump controller 31 receives signals transmitted from the monitor 32, the pressure sensors 55 attached to the operation levers 41 and 42 and the travel levers 43 and 44, and the turning lock unit 33, and determines the work amount of the excavator 1. Process to measure. Specifically, processing is performed to calculate the number of excavation loading operations (hereinafter referred to as the number of loadings) and the basic excavation loading time, which are the basis for measuring the work amount. Details of the number of times of loading and the basic excavation loading time will be described later.
  • the pump controller 31 includes an operation state detection unit 31a, a time integration unit 31b, a determination unit 31c, a counting unit 31d, a mode detection unit 31e, a travel operation detection unit 31f, and a turning lock detection unit 31g.
  • the operation state detection unit 31a receives a signal output from the pressure sensor 55 and detects a pilot pressure that is a physical quantity output according to the operation of the operation levers 41 and 42.
  • the pilot pressure that drives the bucket cylinder 16 and the swing hydraulic motor 22 is detected in order to capture that excavation and loading work is being performed.
  • the physical quantity output in response to the operation of the operation levers 41 and 42 is used as the pilot pressure. This is because the operation levers 41 and 42 are pilot-type levers.
  • the physical quantity is an electric signal such as a voltage output by a potentiometer or a rotary encoder.
  • the stroke amount of each cylinder is directly detected by a stroke sensor attached to the cylinder rods of the boom cylinder 14, the arm cylinder 15 and the bucket cylinder 16, for example, a rotary encoder.
  • Data may be handled as a physical quantity that is output according to the operation of the operation levers 41 and 42.
  • a stroke sensor that detects the operation amount of the valve spool may be used to detect the stroke amount of the spool, and the detected data may be handled as a physical quantity that is output according to the operation of the operation levers 41 and 42.
  • a flow rate sensor that detects the flow rate of hydraulic oil from the main valve may be used, and this flow rate may be used as a physical quantity.
  • an angle sensor is provided on each rotation shaft of the work machine 3 such as the boom 11, the arm 12, and the bucket 13, and an angle sensor that detects the angle of the upper swing body 5 is provided. The operating angle of the upper swing body 5 may be detected, and the detected data of the operating angle of the work machine 3 and the upper swing body 5 may be handled as physical quantities output in accordance with the operation of the operation levers 41 and 42.
  • the bucket 13 and the upper swing body 5 are referred to as an excavation and loading mechanism unit.
  • the time integration unit 31b calculates a time integration value obtained by integrating the pilot pressure with time.
  • the determination unit 31c associates the time integration value with a predetermined operating angle of the excavation loading mechanism unit associated with the operation of the operation levers 41 and 42, and when the time integration value is equal to or greater than the predetermined integration value, It is determined that the levers 41 and 42 have been operated.
  • the counting unit 31d performs the operation of the excavation and loading mechanism unit performed in the predetermined order as one time.
  • the number of operations of the excavation and loading mechanism section (the number of excavation and loading operations, that is, the number of loading operations) is counted.
  • This series of operations of the excavation and loading mechanism section is excavation and loading work, and is an operation performed in the order of excavation, going-turning, earth removal, and return-turning.
  • the operation performed in this order is used as a pattern for excavation loading work, and the number of times this pattern is performed is counted as the number of loading operations. Details of excavation and loading work will be described later.
  • the mode detection unit 31e detects the work mode instructed to be switched by the work mode switching unit 28.
  • the traveling operation detection unit 31f determines whether or not the traveling operation by the traveling levers 43 and 44 has been performed based on a signal indicating the pilot pressure output from the pressure sensor 55.
  • the turning lock detection unit 31g detects whether or not the turning lock unit 33 is turning on the turning lock.
  • the operation state detector 31a detects whether or not the pressure sensor 55 that detects the pilot pressure is in an abnormal state.
  • the abnormal state is, for example, a case where the output voltage value of the pressure sensor 55 outputs an abnormal voltage value out of the normal voltage value range for several seconds. Accordingly, the disconnection of the pressure sensor 55 is also in an abnormal state.
  • the operation levers 41 and 42 are disposed on the left and right sides of an operator seat (not shown) in the cab 6, the operation lever 41 is disposed on the left hand side when the operator is seated on the operator seat, and the operation lever 42 is , Arranged on the right hand side opposite to that.
  • the swing hydraulic motor 22 can be driven to turn the upper swing body 5 left and right.
  • the arm cylinder 15 can be driven to extend and retract to perform arm earthing and arm excavation.
  • the arm earth removal is an operation performed when the tip of the arm 12 is moved while rotating forward from the rear of the hydraulic excavator 1 and the earth and sand contained in the bucket 13 is discharged.
  • the arm excavation is an operation performed when the tip of the arm 12 is moved while rotating from the front to the rear of the excavator 1 and the bucket 13 scoops the earth and sand.
  • the operation lever 42 is tilted left and right in the figure, the bucket cylinder 16 can be driven to perform bucket excavation and bucket soiling.
  • the boom cylinder 14 can be driven to lower the boom and raise the boom.
  • the operation levers 41 and 42 can be tilted over the entire circumference.
  • the arm can be removed while turning left.
  • the traveling lever 43 can perform traveling right forward and traveling right backward according to an operation.
  • the traveling lever 44 can perform traveling left forward and traveling left backward in accordance with an operation. That is, if only the traveling lever 43 is operated, the right crawler belt 4b is driven, if only the traveling lever 44 is operated, the left crawler belt 4b is driven, and if the traveling levers 43 and 44 are operated simultaneously, the left and right crawler belts 4b are driven. Drive simultaneously.
  • the relationship between the operation direction of the operation lever shown in FIG. 3 and the movement of the work implement 3 or the upper swing body 5 is shown as an example. Therefore, the relationship between the operation direction of the operation lever and the movement of the work implement 3 or the upper swing body 5 may be different from that in FIG.
  • FIG. 4 shows a case where the dump truck 50 is waiting on the left side of the excavator 1. That is, this is a case where the dump truck 50 stands by on the side close to the cab 6 when the excavator 1 is directed in a direction in which the excavation position E1 is located.
  • the excavation and loading operation is a series of operations performed in the order of excavation, going-turning, earth removal, and return-turning.
  • the operation lever 42 is tilted to the left at the excavation position E1 to excavate soil and the like with the bucket 13.
  • the operation lever 41 is tilted to the left and the operation lever 42 is tilted to the rear side to the position of the dump truck 50 that carries the earth and sand to be loaded.
  • the boom 11 is raised while turning.
  • the operation lever 42 is tilted to the right at the position of the dump truck 50 to remove earth and sand scooped in the bucket 13.
  • the operation lever 41 in the return turn, is tilted to the right from the position of the dump truck 50 to the excavation position E1, and the operation lever 42 is further tilted to the front side, while turning the upper swing body 5 to the right.
  • the boom 11 is lowered.
  • the excavation position E1 is located on the left side of the dump truck 50, the going turn is a right turn and the return turn is a left turn.
  • the dump truck 50 stands by on the side opposite to the operator cab 6. That is, the going turn is an operation for turning from the excavation position E1 to the earth discharging position of the dump truck 50, and the return turning is an operation for turning from the earth discharging position to the excavation position E1.
  • the predetermined integral value is determined by the excavation and loading mechanism unit that is the bucket 13 or the upper swing body 5 with each operation. This corresponds to the case of moving by an angle of.
  • the predetermined angle that is, the predetermined operating angle corresponds to an angle at which the excavation and loading mechanism unit operates when each operation is performed.
  • an angle corresponding to the movement of the bucket 13 when excavation or soil removal is performed is a predetermined operation angle.
  • an angle corresponding to the turning movement at the time of excavation loading work is a predetermined operating angle.
  • These predetermined operating angles are the same value even in the hydraulic excavators 1 having different vehicle grades, and the time integration values corresponding to the predetermined operating angles differ depending on the vehicle grades. Therefore, even if the excavator 1 has different vehicle grades, the time integration value obtained by time integration of the pilot pressure and the excavation loading mechanism that accompanies the operation of the operation levers 41 and 42 are obtained for each vehicle case. As long as the correspondence with the predetermined operating angle of the part is determined, the number of loadings for each vehicle case can be measured.
  • the pilot pressure generated when the operation lever 42 is tilted to the left to move the bucket 13 is detected, and this pilot pressure is equal to or higher than the integration start pressure P1.
  • time integration of the pilot pressure is started, and it is determined that excavation operation has been performed when the time integration value becomes S1 or more.
  • This time integral value S1 is the excavation time integral value S1, and corresponds to a predetermined operating angle of the bucket 13 when excavation is performed.
  • time integration of each pilot pressure is started when each pilot pressure becomes equal to or higher than the integration start pressure P1.
  • the pilot pressure generated when the operation lever 41 is tilted to the left or right is detected to obtain the time integral value S2 or S4.
  • the pilot pressure generated when the operating lever 42 is tilted to the right is detected, and the time integrated value S3 is obtained.
  • the time integral value S2 for the outgoing turn, the time integral value S3 for the earth removal, and the time integral value S4 for the return turn also correspond to the predetermined operating angles of the upper swing body 5, the bucket 13, and the upper swing body 5, respectively. .
  • the fact that the time integration unit 31b has obtained each of the time integration values S1 to S4 means that the bucket 13 or the upper swing body 5 has operated over a predetermined operating angle.
  • the loading number is counted as one and the loading number is cumulatively calculated.
  • the information on the accumulated number of times of loading is transmitted to the monitor 32, for example, and the monitor 32 measures the amount of work.
  • the measurement of the work amount is obtained by multiplying the cumulative number of times of loading by a preset bucket capacity. This result is displayed on the display unit of the monitor 32, for example.
  • the operation time required for a series of excavation and loading operations is accumulated, and the accumulated operation time is output as the basic excavation loading time, for example, to the monitor 32, and the display / setting unit of the monitor 32 is displayed. 27.
  • the amount of work may be measured using a computer or a portable computer installed outside the hydraulic excavator 1, for example, in a remote place. In other words, information on the accumulated number of loadings is transmitted to the outside wirelessly or by wire, the accumulated number of loadings is received by a receiving device provided outside, and the bucket capacity stored in the external storage device is used. The amount of work may be measured.
  • FIG. 6 is a diagram showing changes in the pilot pressure and the size of the spool opening with respect to the spool stroke.
  • the spool stroke of the main valve (not shown) is zero. For this reason, time integration is started when the pilot pressure becomes equal to or higher than the above-described integration start pressure P1.
  • FIG. 7 is a time chart showing the reset processing of the time integral value at the time of excavation operation.
  • the upper part of FIG. 7 shows the change of the pilot pressure with time, and the shaded area corresponds to the time integrated value of the pilot pressure.
  • the lower diagram of FIG. 7 shows changes in the spool opening over time, and the hatched portion corresponds to the integral value of the spool opening area. As shown in FIG.
  • this reset process is based on the time when the pilot pressure becomes lower than the integral start pressure P1, but after the pilot pressure becomes lower than the integral start pressure P1 in order to eliminate the influence of noise and the like.
  • the operation is performed after a predetermined time ⁇ t2. That is, the integration start pressure P1 is an integration start pressure and a predetermined operation end value that is a threshold for determining that the operation has ended.
  • the predetermined time ⁇ t2 is provided for the excavation operation and the soil removal operation, and the value is different for each operation.
  • the state stay time TT is set to 0, and the turning direction flag FA is set to 0.
  • the state shifts to the excavation state ST1 (S01).
  • Condition 01 is that the elapsed time after the excavation time integrated value is S1 or more, the pilot pressure is P2 or less, and the pilot pressure is P2 or less is ⁇ TS or more.
  • the pilot pressure P2 is a threshold value used for determining that the excavation operation is finished and the state transition of FIG. 8 is possible. Details of the state transition diagram of FIG. 8 will be described later.
  • FIG. 9 is a time chart for explaining the time integration value holding time during excavation operation.
  • a full lever operation that tilts the operation lever 42 to a tiltable stroke may not be performed. That is, in order to excavate, the excavation operation may be performed while tilting or raising the operation lever 42.
  • Intermittent lever operation may occur, such as going up or down at the border. Therefore, the elapsed time ⁇ t2 (time integrated value holding time) after the pilot pressure becomes equal to or less than the integration start pressure P1 is set to a sufficiently large value corresponding to the excavation operation, and intermittent excavation operation is performed as one excavation operation. Can be determined as.
  • the time integration process is continued if the time integration value holding time ⁇ t2 has not elapsed. Since the turning operation is basically a full lever operation, when the integration start pressure P1 or less is reached, the time integration process is terminated and the held time integration value is erased (reset).
  • the lower part of FIG. 9 shows the change in the magnitude of the excavation time integrated value over time.
  • the time integration is reset immediately at time t2 when the pilot pressure becomes equal to or lower than the integration start pressure P1
  • the broken line extending upward from time t2 in the lower diagram of FIG. Only the integrated excavation time value of the size indicated by the intersection SS with the solid line SL shown is obtained.
  • the excavation time integrated value as shown by the solid line SL in the lower diagram of FIG. 9 should be obtained, and it should be determined that the excavation operation has been performed when the excavation time integrated value exceeds S1. is there.
  • the next excavation operation may be entered during the return turning operation, and when the end of the excavation operation determination is performed with the time integration value, the next return turning operation may be erroneously determined. That is, the bucket excavation operation of the operation lever 42 is performed while returning the operation lever 41 and performing an operation for turning after the earth has been discharged. In such a case, the excavator 1 moves in such a manner that the bucket 13 is excavated while the upper swing body 5 returns and swivels in the swiveling direction.
  • FIG. 10 is a time chart showing a relationship between an erroneous determination and a normal determination of the next return turning operation when an excavation operation is performed during the return turning operation. In the upper diagram of FIG.
  • the pilot pressure PP1 is shown, but this has the same meaning only by changing the notation of the pilot pressure P1 described above. Further, although the pilot pressure PP2 is shown in the upper diagram of FIG. 10, it has the same significance only by changing the notation of the pilot pressure P2 described above. Curves L0 to L4 shown in the lower part of FIG. 10 are shown as straight lines for convenience. Depending on how the lever is operated, the time integration value may or may not increase monotonically in a linear function. In the following description, it is expressed as a curve.
  • the time integral value of the curve L0 is obtained in the first return turning operation, and the point P0 (time point t0) on the curve L0 is obtained.
  • the time integral value of the curve L1 is obtained, and at the point P1 (time point t1) on the curve L1, the time integral value reaches S1. Therefore, the end of the excavation operation is determined.
  • the pump controller 31 acquires the time integral value of the next turn (going turn), but since the pilot pressure of the return turn is not lower than PP1, the time integral value of the curve L0 is not reset.
  • the time integral value of the point P2 on the curve L0 is acquired as the time integral value of the going turn.
  • it may be a right turn or a left turn
  • in the case of a return turn when the outgoing turn is a right turn
  • a pilot pressure for turning right or a pilot pressure for turning left is generated.
  • the pressure sensor 55 for detecting the pilot pressure for the right turn and the pressure sensor 55 for detecting the pilot pressure for the left turn are provided.
  • the turn direction flag FA is set in a signal output from the pressure sensor 55 that detects a right turn pilot pressure
  • a left turn lever operation is performed, a left turn The turning direction flag FA is set in a signal output from the pressure sensor 55 that detects the pilot pressure of the rotation.
  • the left turn or the right turn is performed after excavation depends on the positional relationship among the excavation position E1, the hydraulic excavator 1, and the dump truck 50. Therefore, it is assumed that the left and right are not handled separately in the basic measurement processing of the number of times of loading with respect to the turning turn.
  • the turning direction is always opposite between the going turn and the returning turn, the above rule is provided.
  • the pump controller 31 attempts to acquire a time integration value of the soil removal operation that is an operation after the turn. Therefore, although the time integral value of the normal going-turning exists in the curve L2, the state transition to the going-turning is skipped, and further the soil removal operation is performed, and the time integration value on the curve L3, which is the time integral value of the soil removal operation. Since the time integration value has reached S3 at the point P3, the end of the soil removal operation is determined. The pump controller 31 goes further to acquire the time integral value of the return turning operation.
  • the reason why this erroneous determination occurs is that the time integral value of the previous turning operation remains without being reset immediately after the time t1 when the end determination of the excavation operation is performed at the point P1. Therefore, in this embodiment, the end determination of the excavation operation is delayed, and the time integration value of the return turning operation is reset when the end determination of the excavation operation is completed.
  • the pilot pressure becomes PP2 or less, and further, from the time when the pilot pressure becomes PP2 or less in order to eliminate the influence of noise or the like.
  • the end of the excavation operation is determined after a predetermined time ⁇ TS has elapsed.
  • the predetermined time ⁇ TS is, for example, twice the sampling period (see FIG.
  • FIG. 11 is a graph showing changes in pilot pressure over time. That is, as shown in FIG. 11, the predetermined time ⁇ TS is twice the period for sampling the pilot pressure, and is a time obtained by doubling the time between two consecutive sampling points SP. By doing in this way, the end determination of excavation operation is not performed when the pilot pressure which fell instantaneously was detected, and erroneous determination is prevented. As described above and with reference to FIG. 9, when the time integrated value holding time ⁇ t2 elapses from the time t1 ′ when the pilot pressure generated by the excavation operation becomes equal to or less than the integration start pressure PP1, the time integration of the excavation Processing is reset. Although it is preferable to provide the predetermined time ⁇ TS as in the present embodiment, it is not necessarily provided.
  • the end of the soil removal operation is determined. Furthermore, since the time integral value of the return turn reaches S4 at the point P4 of the curve L4, the end determination of the return turn can be normally performed.
  • the state stay time TT of the excavation state ST1 is measured.
  • the state stay time TT is T1.
  • the turning state ST2 S12
  • the turning time integral value is S2 or more.
  • the turning direction of the going turn may be either left or right.
  • the pilot pressure generated according to the tilting direction of the operation lever 41 as described above, that is, the electric signal output from the pressure sensor 55 is used to make a right turn. It is determined whether the vehicle is turning left.
  • the turning direction flag FA is set to the right, and if turning left, the turning direction flag FA is set to the left. Moreover, the state stay time TT is reset to 0 at the time of transition to the going-turning state ST2.
  • the state stay time TT of the turn turning state ST2 is counted.
  • the state stay time TT is T2.
  • the soil removal time integrated value is S3 or more, and the left-right turn time integrated value is less than ⁇ S.
  • the state stay time TT is reset to 0 at the time of transition to the soil removal state ST3. The reason why the condition 23 is set as to whether or not the left / right turn time integration value is less than ⁇ S will be described. When earth is being dumped, it should not turn.
  • the left / right turn time integral value is a time integral value of pilot pressure generated by the right turn or left turn operation of the operation lever 41. It is possible to shift the state transition to the soil removal state ST3 by determining whether or not the turning is performed so that the left-right turn time integrated value exceeds a predetermined value ( ⁇ S) in the going-turn state (ST2). It is judged whether it can be done. If the left / right turning time integration value exceeds ⁇ S, an operation of turning while discharging the soil is assumed, for example, an operation in which the earth and sand are scattered within a predetermined range. In this case, in the initial state ST0 (S20) so that the count of the number of loadings is not erroneously determined.
  • the state staying time TT of the earthing state ST3 is counted.
  • the state stay time TT is T3.
  • the turning time integral value is S4 or more.
  • the turn time integral value is the time integral value of the left turn when the turn direction is opposite to the turn direction, that is, the turn direction flag FA is right, and the right turn when the turn direction flag FA is left. It is a condition that the time integral value of. Further, the state stay time TT is reset to 0 at the time of transition to the return state ST4.
  • condition 30 If the state stay time T3 in the soil removal state ST3 is equal to or longer than the predetermined time TT3 (condition 30), the process proceeds to the initial state ST0 (S30).
  • the state stay time TT of the return turning state ST4 is counted.
  • the state stay time TT is T4.
  • the process proceeds to the completion state ST5 (S45).
  • the condition 45 is that when the turning direction flag FA is right, the turning time integrated value of left turning is 0, when the turning direction flag FA is left, the turning time integrated value of right turning is 0, and
  • the state stay time T4 is equal to or longer than the predetermined time TT4.
  • condition 40 If the state stay time T4 in the return turning state ST4 is less than the predetermined time TT4 (condition 40), the process proceeds to the initial state ST0 (S40).
  • the number of loadings is counted only once and cumulatively added. If there is a number of loadings accumulated in the past, 1 is added to the number of loadings.
  • the obtained loading number is stored in a storage device (not shown) provided in the pump controller 31.
  • the pump controller 31 incorporates a timer function (not shown), and measures the time required from the start of excavation to the completion of return turning when the number of times of loading is counted as one. That is, when it is detected that the pilot pressure of excavation has exceeded a predetermined integral start pressure P1 as shown in FIG.
  • the timer starts counting, after the going turn, the earth is discharged, the return turn is performed.
  • the process shifts to the completion state ST5 the timer count is ended, and the time from the start to the end is obtained as the basic excavation loading time.
  • the obtained basic excavation loading time is stored in a storage device (not shown) provided in the pump controller 31. Thereafter, the process proceeds to the initial state ST0 (S50).
  • the state transition transition condition shown in FIG. 12 is added, and a specific operation that may be performed during a series of excavation loading work operations is performed once. Deemed counting processing is performed.
  • the no-operation time ⁇ t ⁇ after turning is set in advance.
  • the process proceeds to the completion state ST5, and the loading number is counted once (S25).
  • the condition 25 is that no operation time other than excavation or turning is ⁇ t ⁇ or more, and the deemed completion flag F ⁇ is 0, that is, the deemed counting process has never been performed.
  • the non-operation time other than excavation or turning means that the bucket earthing no operation time, boom raising no operation time, boom lowering no operation time, arm excavation no operation time, arm excavation no operation time.
  • the operation time is ⁇ t ⁇ or more.
  • the reason for excluding the no-operation time for excavation or turning is that the operation may be performed by moving the bucket 13 in small increments when stopping during the turning operation or while stationary. This is because the bucket 13 clogged with earth and sand may naturally descend due to its own weight, and it is necessary to perform an operation (the operation lever 42 is tilted to the left side, that is, the bucket excavation side) to lift the lowered bucket 13. Because.
  • the deemed counting process according to the condition 25 is necessary, for example, when the excavator 1 performs five excavation and loading operations in order to load the dump truck 50 with the earth and sand. That is, the count processing is necessary for the first (first) series of excavation and loading operations or the last (fifth) series of excavation and loading operations in five excavation and loading operations. Therefore, when the condition 25 is satisfied, the deemed completion flag F ⁇ is set to 1, and the condition 25 is based on the condition that the deemed completion flag F ⁇ is 0. That is, it is a condition that the assumed counting process has never been performed. If the earth removal operation is performed next, the deemed completion flag F ⁇ is set to 0.
  • the no-operation time ⁇ t ⁇ after earthing is set in advance.
  • the specific state such as the condition 35 is satisfied in the soil removal state ST3
  • the process proceeds to the completion state ST5, and the loading count is cumulatively counted once (S35).
  • the condition 35 is that the non-operation time other than excavation is equal to or longer than the no-operation time ⁇ t ⁇ after earth removal. That is, the count processing is performed when a specific state occurs in which the operation order of the excavation and loading mechanism section is stagnant and not advanced.
  • the reason why the no-operation time for excavation is excluded is that there is a case where the operation of moving the bucket in small increments is performed during the stationary state as described above.
  • incidental work may enter during a series of excavation and loading work in actual work.
  • a soil removal operation may be performed immediately after the excavation operation, or a reverse turning operation may be performed immediately after the turning operation.
  • This incidental work is a work in which the order of operations of the excavation and loading mechanism part constituting the series of excavation and loading work is different, and is an operation similar to the series of excavation and loading work. Therefore, in this embodiment, such incidental work is regarded as a specific state and is positively excluded to eliminate erroneous determination. That is, when a specific state in which the order of operations of the excavation and loading mechanism unit is skipped, that is, when an incidental work occurs, the incidental work exclusion process is performed so that the number of loadings is not counted.
  • a condition 10a is added in which the soil removal time integrated value is equal to or greater than the soil removal time integrated value S3a after excavation in the excavation state ST1.
  • the process proceeds to the initial state ST0 (S10).
  • the soil removal time integration value S3a after excavation is a preset value.
  • a condition 20a is added in which the turning time integrated value in the direction opposite to the turning direction indicated by the current turning direction flag FA is equal to or greater than the value S4a in the going turning state ST2.
  • the process proceeds to the initial state ST0 (S20).
  • the turning time integrated value S4a after turning is a value set in advance.
  • the operation mode is a mode in which a series of excavation and loading operations are not performed, if this is not taken into consideration, the number of times of loading is counted as long as the operation of the operation levers 41 and 42 is detected by the pilot pressure. There is.
  • the turning lock unit 33 when the turning lock unit 33 is operated to lock the upper turning body 5, there is no intention to turn, but if this is not taken into consideration, the operation of the operation levers 41 and 42 is controlled by the pilot pressure. As long as it detects, the number of loading may be counted.
  • These states are states in which the operation of the excavation and loading mechanism part related to the operation of a series of excavation and loading work is possible, and a specific operation unrelated to the operation of the series of excavation and loading mechanism parts is performed (Specific operation state). In this specific operation state, it is necessary to reset the counting process of the number of times of loading to prevent erroneous determination.
  • an exclusion condition is further added as shown in the state transition diagram shown in FIG.
  • the operator may accidentally touch the traveling levers 43 and 44 without intending to perform the traveling operation.
  • resetting the process of counting the number of times of loading results in an erroneous determination.
  • whether or not the vehicle is in the traveling operation state is determined by acquiring the traveling time integral value of the pilot pressure of the traveling levers 43 and 44 as in the case of the excavation, turning and earthing operations. Is determined to be in the traveling operation state when the traveling time integrated value S ⁇ is greater than or equal to.
  • the travel time integration value S ⁇ for travel determination is a preset value.
  • Condition 01b is that the travel time integrated value is less than the travel time integrated value S ⁇ for travel determination, and the work mode is not set to the ATT mode, the B mode, or the L mode (ATT / B / L mode).
  • Signal is OFF)
  • the pressure sensor 55 for detecting the pilot pressure is not abnormal (the pilot pressure sensor abnormality flag is OFF)
  • the upper swing body 5 can be turned without the turning lock portion 33 being operated (the turning lock flag). Is OFF).
  • conditions 10, 10a and 20 and 20a are OR conditions
  • conditions 10b, 20b, 30b and 40b are added as OR conditions.
  • Conditions 10b, 20b, 30b, and 40b are set such that the travel time integral value is equal to or greater than the travel time integral value S ⁇ for travel determination, or the work mode is set to either ATT / B / L mode (ATT / B / L mode signal is ON), or an abnormality has occurred in the pressure sensor 55 that detects the pilot pressure (the pilot pressure sensor abnormality flag is ON), or the turning lock unit 33 is operated and the upper turning body 5 is The turning is impossible (the turning lock flag is ON).
  • the specific operation state described above instead of resetting the counting process of the number of loading as described above, in the specific operation state, for the time being, cumulative addition of the number of loading, The number of occurrences of the specific operation state may be separately counted. Then, an operation for subtracting the number of occurrences of the specific operation state from the obtained number of loadings, that is, a correction process may be performed to obtain the correct number of loadings. This subtraction process is performed, for example, after the daily work is finished, so that the obtained correct loading number can be used for the daily work management. Even if there is a specific operation state as described above, the erroneous determination of the number of loadings can be prevented by resetting or correcting the counting process of the number of excavation loading operations.
  • the monitor 32 acquires at least the number of times of loading and the basic excavation loading time from a storage device (not shown) of the pump controller 31 described above. As shown in FIG. 14, the monitor 32 includes a loading number acquisition unit 60, a basic excavation loading time acquisition unit 61, a default value setting unit 62, a work amount calculation unit 63, a soil amount calculation unit 64, and a work rate calculation unit 65. An input / output unit 66 and a storage unit 67. Further, the monitor 32 includes an operator identification unit 70 and a setting change unit 71.
  • the default value setting unit 62 stores in the storage unit 67 data indicating the bucket capacity, the number of dump trucks, and the dump truck load capacity of the excavator 1 that are input and set from the input / output unit 66.
  • the dump truck load is the amount of earth and sand that can be loaded per dump truck. In the present embodiment, the case where earth and sand are loaded onto the dump truck 50 has been described. However, instead of the dump truck 50, when the excavator 1 loads earth and sand on a transport ship having a loading platform used for dredging work at a port. In addition, work management processing as described below can be executed.
  • the storage unit 67 holds the loading capacity of the carrier carrier and the number of carrier ships.
  • work management processing can be executed by storing necessary data in the storage unit 67 when excavating and loading soil or the like on a train or a carriage instead of the dump truck 50. That is, this embodiment can be applied when loading earth and sand into various collection bodies such as the dump truck 50, a transport ship, a train, and a carriage.
  • the work amount calculation unit 63 calculates a work amount obtained by adding the bucket capacity to the number of loadings acquired by the loading number acquisition unit 60, and holds the obtained work amount in the storage unit 67, for example, every day.
  • the soil volume calculation unit 64 calculates a soil volume obtained by multiplying the number of dump trucks by the dump truck load, and holds the determined soil volume in the storage unit 67, for example, every day.
  • the work rate calculation unit 65 calculates a value obtained by dividing the amount of soil by the work amount as a work rate, and holds the obtained work rate in the storage unit 67, for example, every day.
  • the work volume is regarded as the sum of soil volume and counted work.
  • the counted work means a work that is not an actual excavation and loading work by the excavator 1.
  • the counted work means a work that is not an actual excavation and loading work by the excavator 1.
  • the bucket 13 is operated without actually excavating earth and sand and the upper swing body 5 is turned, such an operation is determined as one excavation and loading operation (the number of times of loading).
  • the number of loadings acquired by the loading number acquisition unit 60 is greater than the number of loadings corresponding to the amount of soil.
  • the work amount and the soil amount may be exactly the same, but the work amount otherwise is a larger value than the soil amount. Therefore, if the work rate is obtained, it is possible to grasp the ratio of the counted work, and conversely, the ratio of the excavation and loading work.
  • the monitor 32 for example, graphs each data such as the work amount, the soil amount, and the work rate, for example, every day and outputs the graph from the input / output unit 66.
  • a graph using each data may be displayed on the display / setting unit 27 of the monitor 32.
  • the monitor 32 may output each data such as the work amount, the soil amount, and the work rate to the outside of the excavator 1.
  • the monitor 32 uses, for example, the basic excavation loading time acquired by the basic excavation loading time acquisition unit 61, the moving body information such as the traveling time and idling time obtained from the engine controller 30, etc., for example, FIG. As shown, the ratio of the excavation loading work time to the operating time of the excavator 1 is displayed and output every day.
  • Each data explained above work volume, soil volume, work rate, ratio of excavation loading work time to working time of hydraulic excavator 1 is obtained outside hydraulic excavator 1 by a work management system as described later. Also good.
  • each data required by the excavator 1 such as loading count, basic excavation loading time, traveling time, idling time, and operating time is externally wired or wirelessly from the storage device (not shown) of the input / output unit 66 or the pump controller 31.
  • the ratio of the excavation loading work time to the amount of soil, work load, work rate, and operation time may be obtained by a computer provided outside and graphed and displayed on a display device connected to the computer.
  • a mobile terminal may be used instead of the computer provided outside, and a display device of the mobile terminal may be used instead of the display device.
  • FIG. 15 shows the daily excavation loading time ratio of a certain excavator 1, but not limited to this, the excavation loading time ratio is similarly obtained for a plurality of excavators 1 and compared for each excavator. You can also
  • the operator identification unit 70 identifies operator identification information (hereinafter referred to as identification information), and associates the identified identification information with the number of loadings and basic excavation loading time for each operator and causes the storage unit 67 to hold them.
  • identification information operator identification information
  • the excavator 1 may be equipped with an immobilizer device.
  • the engine of the excavator 1 can be started by the ID key in which individual identification information is stored.
  • the immobilizer device reads the identification information of the ID key, the identification information is associated with the number of loadings for a predetermined period, for example, one day, and the associated information (number of loadings for each operator) is associated with the input / output unit 66.
  • the work amount management for each operator can be performed for the one hydraulic excavator 1. Further, if it is set so that a plurality of hydraulic excavators 1 can be started with a single ID key, vehicle identification information data for identifying each vehicle of the plurality of hydraulic excavators 1, an ID key By outputting the identification information and the data of the number of loadings to the outside, it is possible to manage how much work is performed by which one operator with which hydraulic excavator.
  • the above-described operator is provided with an ID number identification device for individually identifying an operator by inputting an individual ID number from the input / output unit 66 of the monitor 32 without using an immobilizer device, and an ID card reader. May be individually recognized and the above management may be performed.
  • a fingerprint authentication device may be used as a device for individually recognizing an operator. That is, by providing the operator identification unit 70, the operator's work management can be performed.
  • the setting change unit 71 can change various setting values (parameters) necessary for determining a series of excavation loading operations such as the time integration values S1 to S4 and the integration start pressure P1.
  • the setting change unit 71 uses an external communication device capable of wireless or wired communication, and can change various setting values from the outside via the input / output unit 66. Note that various setting values may be changed via the input / output unit 66 using an input unit such as a switch provided in the display / setting unit 27 of the monitor 32.
  • the setting changing unit 71 can change various setting values (parameters) such as the integration start pressure P1 by teaching for each work site or operator. Specifically, the bucket excavation operation is actually performed, and the bucket is operated from the excavation start posture to the excavation end posture. A predetermined memory button (not shown) is operated in the excavation start posture, and a predetermined memory button (not shown) is further operated in the excavation end posture. As a result, the time integrated value S1 of the pilot pressure at the time of each operation generated between the operation of the memory button is acquired, and this time integrated value is used as a set value.
  • This memory button may be provided on the operation levers 41 and 42 or on the monitor 32. Further, other setting values can be set by the same teaching.
  • FIG. 16 is a diagram illustrating a schematic configuration of a work management system including the hydraulic excavator 1.
  • a plurality of mobile bodies such as hydraulic excavators 1 are geographically dispersed, and each hydraulic excavator 1 and management server 104 are connected to an external communication device such as a communication satellite 102, a ground station 103, and a network N such as the Internet. Communication connection is established via The network N is connected to a work management server 105 and a user terminal 106 which are servers of an administrator of the excavator 1.
  • the excavator 1 shows the operation status such as the work information including the number of loadings and the basic excavation loading time described above, the position information and operating time of the excavator 1, travel time, idling time, vehicle identification information, and operator identification information.
  • the mobile body information that is vehicle information including the information is transmitted to the management server 104.
  • the management server 104 transfers the above-described work information and moving body information to the corresponding work management server 105 for each manager.
  • the hydraulic excavator 1 has a moving body monitoring device 110, and the moving body monitoring device 110 is connected to a GPS sensor 116 and a transceiver 117.
  • the GPS sensor 116 detects its own position based on information sent from a plurality of GPS satellites 107 via the antenna 116a, generates self-position information, and the mobile monitoring device 110 acquires this self-position information.
  • the transceiver 117 is communicably connected to the communication satellite 102 via the antenna 117 a and performs information transmission / reception processing between the mobile monitoring device 110 and the management server 104.
  • the work management server 105 has the same configuration and function as the monitor 32.
  • the input / output unit 66 of the monitor 32 corresponds to the user terminal 106. Therefore, by accessing the work management server 105 from the user terminal 106, work management similar to the monitor 32 can be performed, and a wide range of work management can be performed. In other words, fleet management can be performed at a location away from the work site with respect to work progress, work efficiency, and the like.
  • the work management server 105 does not have to have the same configuration and function as the monitor 32, and the monitor 32 may have the configuration and function shown in FIG.
  • the setting change of various setting values can be performed on the setting change unit 71 of the monitor 32 via the work management server 105 and the management server 104 by the user terminal 106 accessing the work management server 105.
  • a part of the configuration and functions of the monitor 32 may be provided on the management server 104 or the work management server 105 side.
  • the hydraulic excavator 1 has a satellite communication function, but is not limited thereto, and may be various communication functions such as a wireless LAN communication function and a mobile communication function. That is, the excavator 1 has an external communication function.
  • a wire for data communication is connected to the excavator 1 so that the external communication function is achieved by wire.
  • a possible connector may be provided, and the work information and the moving body information may be downloaded via the wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

 容易かつ精度高く、掘削積込作業などの一連の掘削積込機構部の操作の回数を計測するため、操作レバー41,42の操作に応じて出力される物理量を検出する操作状態検出部31aと、前記物理量を時間積分した時間積分値を算出する時間積分部31bと、前記時間積分値と操作レバー41,42の操作に伴う掘削積込機構部の所定動作角とを対応させておき、前記時間積分値が所定積分値以上となった場合に、操作レバー41,42の操作が行われたと判定する判定部31cと、判定部31cによって判定された掘削積込機構部の各操作が所定の順序で行われた場合、該所定の順序で行われた掘削積込機構部の操作を一回として該一連の掘削積込作業の回数を計数する計数部31dと、を備える。

Description

作業機械および作業機械の作業量計測方法
  この発明は、容易かつ精度高く、掘削積込作業などの際に行われる、一連の掘削積込機構部の操作の回数を計測することができる作業機械及び作業機械の作業量計測方法に関する。
 土木施工の現場で稼働する油圧ショベル等の作業機械が、例えば土砂を掘削してダンプトラックなどの運搬車両に積み込むような作業(以下、掘削積込作業)を行う際、その現場の工事の進捗などの作業管理を行う者にとっては、日々の掘削積込作業による作業量の出来高や掘削積込作業の進捗、あるいは掘削積込作業の作業効率を管理する必要がある。油圧ショベルなどの作業機械で行われる掘削積込作業等の作業量を手動計測することはオペレータ等の負担がかかるとともに煩わしいため、その自動化が提案されている。
 例えば、特許文献1では、建設機械のアクチュエータの動作信号及び動作時間を検出し、これと予め格納されている複数の条件とを対比し、複数の条件に合致する動作信号及び動作時間が検出された場合、この合致した条件を抽出し、この抽出された値をもとに積込作業の作業回数をカウントするものが記載されている。
特開2000-129727号公報
 しかしながら、特許文献1では、複雑な条件重み付け処理プログラムや作業判断処理プログラムが必要となる。また、例えば、大きさなどが異なる油圧ショベルの車格間で掘削、行き旋回、排土、戻り旋回が順次繰り返し行われる掘削積込作業などの一連の作業機あるいは上部旋回体の操作の回数を精度高く計測するためには、車格間でそれぞれ異なる設定を行う必要がある。したがって、特許文献1に開示された作業量計測装置は汎用性に乏しい。
 この発明は、上記に鑑みてなされたものであって、容易かつ精度高く、掘削積込作業などの際に行われる一連の掘削積込機構部の操作の回数を計測することができる作業機械及び作業機械の作業量計測方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、この発明にかかる作業機械は、操作レバーの操作に応じて出力される物理量を検出する操作状態検出部と、前記物理量を時間積分した時間積分値を算出する時間積分部と、前記時間積分値と前記操作レバーの操作に伴う掘削積込機構部の所定動作角とを対応させておき、前記時間積分値が所定積分値以上となった場合に、前記操作レバーの操作が行われたと判定する判定部と、前記判定部によって判定された掘削積込機構部の各操作が所定の順序で行われた場合、該所定の順序で行われた掘削積込機構部の操作を一回として掘削積込作業の回数を計数する計数部と、を備えたことを特徴とする。
 また、この発明にかかる作業機械は、上記の発明において、前記掘削積込機構部の操作は、掘削操作、行き旋回操作、排土操作、戻り旋回操作の順に行われる掘削積込操作であることを特徴とする。
 また、この発明にかかる作業機械は、上記の発明において、前記判定部は、前記掘削操作を判定する場合、前記時間積分値が所定積分値以上であり、かつ、前記物理量が操作終了所定値以下である場合に、前記掘削操作が行われたと判定することを特徴とする。
 また、この発明にかかる作業機械は、上記の発明において、前記判定部は、前記掘削操作を判定する場合、前記時間積分値が所定積分値以上であり、かつ、前記物理量が操作終了所定値以下となった後、所定時間経過した場合に、前記掘削操作が行われたと判定することを特徴とする。
 また、この発明にかかる作業機械は、上記の発明において、前記時間積分部は、前記掘削操作あるいは前記排土操作を判定する場合、時間積分開始後、前記物理量が積分開始値以下となる状態を時間積分値保持時間経過した場合に前記時間積分値をリセットすることを特徴とする。
 また、この発明にかかる作業機械は、上記の発明において、前記操作レバーは、パイロット式または電気式であって、前記物理量は、パイロット圧または電気信号であることを特徴とする。
 また、この発明にかかる作業機械は、上記の発明において、前記計数部が計数した前記掘削積込作業の回数を表示装置または外部に出力する出力部を備えることを特徴とする。
 また、この発明にかかる作業機械は、上記の発明において、各種設定値を変更する設定変更部を備えたことを特徴とする。
 また、この発明にかかる作業機械の作業量計測方法は、操作レバーの操作に応じて出力される物理量を検出する操作状態検出ステップと、前記物理量を時間積分した時間積分値を算出する時間積分ステップと、前記時間積分値と前記操作レバーの操作に伴う掘削積込機構部の所定動作角とを対応させておき、前記時間積分値が所定積分値以上となった場合に、前記操作レバーの操作が行われたと判定する判定ステップと、前記判定ステップによって判定された掘削積込機構部の各操作が所定の順序で行われた場合、該所定の順序で行われた掘削積込機構部の操作を一回として掘削積込作業の回数を計数する計数ステップと、を含むことを特徴とする。
 この発明によれば、操作レバーの操作に応じて出力される物理量を検出し、前記物理量を時間積分した時間積分値を算出し、前記時間積分値と前記操作レバーの操作に伴う掘削積込機構部の所定動作角とを対応させておき、前記時間積分値が所定積分値以上となった場合に、前記操作レバーの操作が行われたと判定し、この判定された掘削積込機構部の各操作が所定の順序で行われた場合、該所定の順序で行われた掘削積込機構部の操作を一回として該掘削積込機構部の操作の回数を計数するようにしている。このため、容易かつ精度高く、掘削積込作業などの際に行われる、一連の掘削積込機構部の操作の回数を計測することができる。
図1は、この発明の実施の形態である油圧ショベルの概要構成を示す斜視図である。 図2は、図1に示した油圧ショベルの構成を示すブロック図である。 図3は、操作レバーの操作方向と作業機あるいは上部旋回体の動きとの関係を示す説明図である。 図4は、油圧ショベルによる掘削積込作業を説明する説明図である。 図5は、積込回数の計数処理を説明するタイムチャートである。 図6は、スプールストロークとパイロット圧及びスプール開口との関係を示す図である。 図7は、掘削操作時における時間積分値のリセット処理を示すタイムチャートである。 図8は、積込回数の基本計測処理を示す状態遷移図である。 図9は、掘削操作時における時間積分値保持時間を説明するタイムチャートである。 図10は、戻り旋回操作中に掘削操作を行った場合における次の戻り旋回操作の誤判定と正常な判定との関係を示すタイムチャートである。 図11は、時間経過に対するパイロット圧の変化を示すグラフである。 図12は、みなし計数処理及び付帯作業操作の除外処理を含めた積込回数の基本計測処理を示す状態遷移図である。 図13は、みなし計数処理、付帯作業操作の除外処理、及び外部状態に応じた除外処理を含めた積込回数の基本計測処理を示す状態遷移図である。 図14は、モニタの詳細構成を示すブロック図である。 図15は、基本掘削積込時間を用いた作業管理の表示例を示す図である。 図16は、油圧ショベルを含む作業管理システムの概要構成を示す図である。
 以下、添付図面を参照してこの発明を実施するための形態について説明する。
[全体構成]
 まず、図1および図2は、作業機械としての一例である油圧ショベル1の全体構成を示している。この油圧ショベル1は、車両本体2と作業機3とを備えている。車両本体2は、下部走行体4と上部旋回体5とを有する。下部走行体4は、一対の走行装置4aを有する。各走行装置4aは、履帯4bを有する。各走行装置4aは、右油圧走行モータと左油圧走行モータ(油圧走行モータ21)とによって履帯4bを駆動することによって油圧ショベル1を走行あるいは旋回させる。
 上部旋回体5は、下部走行体4上に旋回可能に設けられ、旋回油圧モータ22が駆動することによって旋回する。また、上部旋回体5には、運転室6が設けられる。上部旋回体5は、燃料タンク7と作動油タンク8とエンジン室9とカウンタウェイト10とを有する。燃料タンク7は、エンジン17を駆動するための燃料を貯留する。作動油タンク8は、油圧ポンプ18からブームシリンダ14などの油圧シリンダや旋回油圧モータ22、油圧走行モータ21などの油圧機器へ吐出される作動油を貯留する。エンジン室9は、エンジン17や油圧ポンプ18などの機器を収納する。カウンタウェイト10は、エンジン室9の後方に配置される。
 作業機3は、上部旋回体5の前部中央位置に取り付けられ、ブーム11、アーム12、バケット13、ブームシリンダ14、アームシリンダ15、およびバケットシリンダ16を有する。ブーム11の基端部は、上部旋回体5に回転可能に連結される。また、ブーム11の先端部は、アーム12の基端部に回転可能に連結される。アーム12の先端部は、バケット13に回転可能に連結される。ブームシリンダ14、アームシリンダ15、およびバケットシリンダ16は、油圧ポンプ18から吐出された作動油によって駆動する油圧シリンダである。ブームシリンダ14は、ブーム11を動作させる。アームシリンダ15は、アーム12を動作させる。バケットシリンダ16は、リンク部材を介してバケット13に連結されており、バケット13を動作させることができる。バケットシリンダ16のシリンダロッドが伸縮動作することでバケット13が動作する。つまり、バケット13で土砂を掘削してすくいあげる際は、バケットシリンダ16のシリンダロッドを伸ばして、バケット13が油圧ショベル1の前方から後方に回転しながら動作し、その後、すくいあげた土砂を排出する際は、バケットシリンダ16のシリンダロッドを縮めて、バケット13が油圧ショベル1の後方から前方に回転しながら動作する。
 図2において、油圧ショベル1は、駆動源としてのエンジン17、油圧ポンプ18を有する。エンジン17としてディーゼルエンジンが用いられ、油圧ポンプ18として可変容量型油圧ポンプ(例えば斜板式油圧ポンプ)が用いられる。エンジン17の出力軸には、油圧ポンプ18が機械的に結合されており、エンジン17を駆動することで、油圧ポンプ18が駆動する。
 油圧駆動系は、車両本体2に設けられた運転室6に設けられる操作レバー41,42の操作に応じてブームシリンダ14、アームシリンダ15、バケットシリンダ16、及び旋回油圧モータ22を駆動する。また、走行レバー43,44の操作に応じて油圧走行モータ21を駆動する。操作レバー41,42は、運転室6内の図示しないオペレータシートの左右に配置され、走行レバー43,44はオペレータシートの前方に並んで配置されている。操作レバー41,42、及び走行レバー43,44は、パイロット方式レバーであって、各レバーの操作に応じてパイロット圧が発生する。操作レバー41,42、及び走行レバー43,44のパイロット圧の大きさは、圧力センサ55によって検出されパイロット圧の大きさに応じた出力電圧が電気信号として出力される。圧力センサ55によって検出されたパイロット圧に相当する電気信号は、ポンプコントローラ31に送られる。操作レバー41,42からのパイロット圧は、コントロールバルブ20に入力され、コントロールバルブ20内で油圧ポンプ18と、ブームシリンダ14,アームシリンダ15,バケットシリンダ16,旋回油圧モータ22との間を接続するメインバルブの開口を制御する。一方、走行レバー43,44からのパイロット圧は、コントロールバルブ20に入力され、それぞれ対応する油圧走行モータ21と油圧ポンプ18との間を接続するメインバルブの開口を制御する。
 運転室6内には、燃料調整ダイヤル29、モニタ32、旋回ロック部33が設けられる。これらは、運転室6内のオペレータシートの近傍にあって、オペレータにより操作が容易な位置に配置されている。燃料調整ダイヤル29は、エンジン17への燃料供給量を設定するためのダイヤル(設定器)である。燃料調整ダイヤル29の設定値は、電気信号に変換されてエンジンコントローラ30に出力される。なお、燃料調整ダイヤル29をモニタ32の表示/設定部27に組み込み、表示/設定部27を操作することで燃料供給量を設定することができるようにしてもよい。モニタ32は、表示装置であり各種の表示及び設定を行う表示/設定部27を有する。また、モニタ32は、作業モード切替部28を有する。表示/設定部27や作業モード切替部28は、例えば液晶パネルとスイッチとで構成される。また、表示/設定部27や作業モード切替部28は、タッチパネルとして構成してもよい。作業モード切替部28が切り替える作業モードには、例えば、Pモード(パワーモード)、Eモード(エコノミーモード)、Lモード(アームクレーンモード=吊り荷モード)、Bモード(ブレーカモード)、ATTモード(アタッチメントモード)がある。PモードやEモードは、通常の掘削や積込の作業などを行うときのモードである。Eモードは、Pモードに比してエンジン17の出力が抑えられている。Lモードは、図示しないフックを例えばバケット13とリンク部材とを連結するための取り付けピンに取り付け、そのフックに吊り下げられた荷をリフティングするアームクレーン操作(吊り荷作業)が行われる場合に切り替えられるモードである。Lモードは、エンジン回転数を抑えてエンジン17の出力が一定に保たれるように制御され、作業機3をゆっくり動かすことが可能な微操作モードである。Bモードは、バケット13に代えて、岩石などを砕くブレーカをアタッチメントとして付けて作業する際に切り替えられるモードであり、やはりエンジン回転数を抑えて、エンジン17の出力が一定に保たれるように制御されるモードである。ATTモードは、バケット13に代えて、クラッシャーなどのような特殊なアタッチメントを取り付ける場合に切り替えられる予備のモードであり、油圧機器の制御が行われ、例えば油圧ポンプ18の作動油の吐出量が制御されるモードである。オペレータが、作業モード切替部28を操作することで生成される作業モード信号は、エンジンコントローラ30及びポンプコントローラ31に送られる。また、旋回ロック部33は、図示しない旋回駐車ブレーキをON/OFFするスイッチである。旋回駐車ブレーキとは、旋回油圧モータ22にブレーキをかけて、上部旋回体5が旋回しないようにするものである。旋回ロック部33を操作することで、図示しない電磁ソレノイドが駆動し、電磁ソレノイドの動きに連動して、旋回油圧モータ22の回転部品を押さえるブレーキが作動する。旋回ロック部33における旋回駐車ブレーキのON/OFF信号は、ポンプコントローラ31にもモニタ入力される。
 エンジンコントローラ30は、CPU(数値演算プロセッサ)などの演算装置やメモリ(記憶装置)で構成される。エンジン17には、燃料噴射装置80が取り付けられている。例えば、燃料噴射装置80として、コモンレール式燃料噴射装置が用いられる。エンジンコントローラ30は、燃料調整ダイヤル29の設定値に基づいて、制御指令の信号を生成し、燃料噴射装置80へ信号を送り、エンジン17への燃料噴射量を調整する。
 ポンプコントローラ31は、エンジンコントローラ30、モニタ32、操作レバー41,42、走行レバー43,44から送信された信号を受信して、油圧ポンプ18の斜板角を傾倒制御して油圧ポンプ18からの作動油の吐出量を調整するための制御指令の信号を生成する。なお、ポンプコントローラ31には、油圧ポンプ18の斜板角を検出する斜板角センサ18aからの信号が入力される。斜板角センサ18aが斜板角を検出することで、油圧ポンプ18のポンプ容量を演算することができる。
 また、ポンプコントローラ31は、モニタ32、操作レバー41,42や走行レバー43,44に取り付けられた圧力センサ55、旋回ロック部33から送信された信号を受信して、油圧ショベル1の作業量を計測する処理を行う。具体的には、この作業量の計測のもとになる掘削積込作業の回数(以下、積込回数)及び基本掘削積込時間を算出する処理を行う。積込回数及び基本掘削積込時間の詳細については後述する。
 ポンプコントローラ31は、操作状態検出部31a、時間積分部31b、判定部31c、計数部31d、モード検出部31e、走行操作検出部31f、及び旋回ロック検出部31gを有する。操作状態検出部31aは、圧力センサ55から出力される信号を受けて操作レバー41,42の操作に応じて出力される物理量であるパイロット圧を検出する。この実施の形態では、掘削積込作業が行われていることを捉えるために、バケットシリンダ16及び旋回油圧モータ22を駆動させるパイロット圧を検出する。なお、この実施の形態では、操作レバー41,42の操作に応じて出力される物理量をパイロット圧としているが、これは、操作レバー41,42がパイロット方式レバーであるからである。操作レバー41,42が電気式レバーである場合、物理量は、ポテンショメータやロータリーエンコーダなどによって出力される電圧などの電気信号となる。また、パイロット圧を検出する替わりに、直接、ブームシリンダ14,アームシリンダ15,バケットシリンダ16のシリンダロッドに取り付けられたストロークセンサ、例えばロータリーエンコーダなどによって各シリンダのストローク量を検出して、検出したデータを操作レバー41,42の操作に応じて出力される物理量として扱ってもよい。あるいは、バルブのスプールの動作量を検出するストロークセンサを用い、スプールのストローク量を検出して、検出したデータを操作レバー41,42の操作に応じて出力される物理量として扱ってもよい。また、メインバルブからの作動油の流量を検出する流量センサを用い、この流量を物理量としてもよい。さらに、ブーム11、アーム12、バケット13などの作業機3の回転軸にそれぞれ角度センサを設け、上部旋回体5の角度を検出する角度センサを設け、それぞれの角度センサによって直接、作業機3及び上部旋回体5の動作角を検出し、検出された作業機3及び上部旋回体5の動作角のデータを操作レバー41,42の操作に応じて出力される物理量として扱ってもよい。なお、以下、バケット13及び上部旋回体5を掘削積込機構部と称する。
 時間積分部31bは、パイロット圧を時間積分した時間積分値を算出する。判定部31cは、この時間積分値と操作レバー41,42の操作に伴う掘削積込機構部の所定動作角とを対応させておき、時間積分値が所定積分値以上となった場合に、操作レバー41,42の操作が行われたと判定する。計数部31dは、判定部31cによって判定された掘削積込機構部の各操作が所定の順序で行われた場合、該所定の順序で行われた掘削積込機構部の操作を一回として該掘削積込機構部の操作の回数(掘削積込作業の回数、すなわち積込回数)を計数する。この一連の掘削積込機構部の操作は、掘削積込作業であり、掘削、行き旋回、排土、戻り旋回の順序で行われる操作である。このような順序で行われる操作を掘削積込作業のパターンとして、このパターンが行われる回数を積込回数として計数する。掘削積込作業の詳細については後述する。
 モード検出部31eは、作業モード切替部28で切替指示された作業モードを検出する。走行操作検出部31fは、走行レバー43,44による走行操作が行われたか否かを圧力センサ55が出力したパイロット圧を示す信号によって判断する。旋回ロック検出部31gは、旋回ロック部33が旋回ロックをONにしているか否かを検出する。なお、操作状態検出部31aは、パイロット圧を検出する圧力センサ55が異常状態か否かを検出する。異常状態とは、例えば、圧力センサ55の出力電圧の値が、正常電圧値の範囲を外れた異常電圧値を数秒間出力する場合である。したがって、圧力センサ55の断線も異常状態となる。
 上記のように、操作レバー41,42は、運転室6内の図示しないオペレータシートの左右に配置され、操作レバー41は、オペレータがオペレータシートに着座した時に左手側に配置され、操作レバー42は、その反対側の右手側に配置される。なお、操作レバー41は、図3に示すように、図上、左右に傾倒すれば、旋回油圧モータ22を駆動して上部旋回体5の左旋回及び右旋回を行うことができる。また、操作レバー41は、図上、前後(上下)に傾倒すれば、アームシリンダ15を伸縮駆動させてアーム排土及びアーム掘削を行うことができる。アーム排土は、アーム12の先端を油圧ショベル1の後方から前方に回転させながら動かし、バケット13に入っている土砂を排出する時に行われる動作である。また、アーム掘削は、アーム12の先端を油圧ショベル1の前方から後方に回転させながら動かし、バケット13で土砂をすくう時に行われる動作である。一方、操作レバー42は、図上、左右に傾倒すれば、バケットシリンダ16を駆動してバケット掘削及びバケット排土を行うことができる。また、操作レバー42は、図上、前後(上下)に傾倒すれば、ブームシリンダ14を駆動してブームを下降及びブームを上昇させることができる。なお、操作レバー41,42は、全周にわたって傾倒することが可能である。したがって、1つのレバー操作で、複合操作が可能であって、例えば、左旋回しつつアーム排土の作業が可能である。なお、走行レバー43は、操作に応じて走行右前進と走行右後進とを行うことができる。また、走行レバー44は、操作に応じて走行左前進と走行左後進とを行うことができる。つまり、走行レバー43のみを操作すれば、右側の履帯4bが駆動し、走行レバー44のみを操作すれば、左側の履帯4bが駆動し、走行レバー43,44を同時に操作すれば左右の履帯4bが同時に駆動する。なお、図3に示した操作レバーの操作方向と作業機3あるいは上部旋回体5の動きとの関係は、例示的に示したものである。したがって、操作レバーの操作方向と作業機3あるいは上部旋回体5の動きとの関係は、図3と異なる関係であってもよい。
[掘削積込作業における積込回数の計測処理]
 まず、図4及び図5を参照して、油圧ショベル1による掘削積込作業について説明する。図4は、油圧ショベル1の左側にダンプトラック50が待機している場合を示す。すなわち、油圧ショベル1が掘削位置E1のある方向に向いた際、運転室6に近い側にダンプトラック50が待機している場合である。図4及び図5(a),図5(b)に示すように、掘削積込作業は、掘削、行き旋回、排土、戻り旋回の順序で行われる一連の操作である。掘削は、掘削位置E1において、操作レバー42を左に傾倒してバケット13により土砂等を掘削する。図4の場合では、行き旋回は、積み込まれる土砂等を運搬するダンプトラック50の位置まで、操作レバー41を左に傾倒し、さらに操作レバー42を後側に傾倒し、上部旋回体5を左旋回させながらブーム11を上昇させる。排土は、ダンプトラック50の位置で、操作レバー42を右に傾倒してバケット13にすくわれている土砂等を排土する。図4の場合では、戻り旋回は、ダンプトラック50の位置から掘削位置E1まで、操作レバー41を右に傾倒し、さらに操作レバー42を前側に傾倒し、上部旋回体5を右旋回させながらブーム11を下降させる。なお、掘削位置E1がダンプトラック50の左側に位置する場合、行き旋回は、右旋回となり、戻り旋回は、左旋回となる。この場合、油圧ショベル1が掘削位置E1がある方向に向いた際、運転室6とは反対側にダンプトラック50が待機している場合である。すなわち、行き旋回は、掘削位置E1からダンプトラック50の排土位置まで旋回させる操作であり、戻り旋回は、排土位置から掘削位置E1まで旋回させる操作である。
[積込回数の基本計測処理]
 この積込回数を計測する場合、掘削、行き旋回、排土、戻り旋回の各操作が行われたことを精度良く検出しなければならない。このため、この実施の形態では、上述したように、時間積分部31bによってパイロット圧を時間積分した時間積分値と、操作レバー41,42の操作に伴う掘削積込機構部である、バケット13および上部旋回体5の所定動作角とを対応させておき、時間積分値が所定積分値以上となった場合に、操作レバー41,42による掘削などの操作が行われたと判定するようにしている。つまり、掘削積込作業の各操作(掘削、行き旋回、排土、戻り旋回)が行われたことが、パイロット圧の時間積分値を用いて判断される。その判断は、求められた時間積分値が所定積分値以上か否かで行われるが、その所定積分値は、各操作に伴い、バケット13あるいは上部旋回体5である掘削積込機構部が所定の角度だけ動いた場合に相当する。所定の角度、すなわち所定の動作角は、各操作が行われる際に掘削積込機構部が動作する角度に相当するものである。バケット13についていえば、掘削あるいは排土の動作が行われる際のバケット13の動きに相当する角度が、所定の動作角である。上部旋回体5についていえば、掘削積込作業の際の旋回の動きに相当する角度が、所定の動作角である。それら所定の動作角は、車格が異なる油圧ショベル1であっても同一の値であり、所定動作角に対応する時間積分値が車格によって異なる。よって、車格が異なる油圧ショベル1であっても、車格毎に時間積分部31bによって求められる、パイロット圧を時間積分した時間積分値と、操作レバー41,42の操作に伴う掘削積込機構部の所定動作角との対応を定めておきさえすれば車格毎の積込回数を計測できる。
 たとえば、掘削では、図5(c)に示すように、バケット13を動かすために操作レバー42が左に傾倒される際に発生するパイロット圧を検出し、このパイロット圧が積分開始圧P1以上となった場合に、パイロット圧の時間積分を開始し、時間積分値がS1以上となった時点で、掘削操作が行われたと判定する。この時間積分値S1は、掘削時間積分値S1であり、掘削が行われた場合におけるバケット13の所定動作角に対応するものである。行き旋回、排土、戻り旋回といった操作も、各パイロット圧が積分開始圧P1以上となった場合に各パイロット圧の時間積分を開始する。行き旋回および戻り旋回は、操作レバー41が左側あるいは右側に傾倒される際に発生するパイロット圧を検出して、時間積分値S2あるいはS4を求める。排土は、操作レバー42が右側に傾倒される際に発生するパイロット圧を検出して、時間積分値S3を求める。行き旋回の時間積分値S2、排土の時間積分値S3、及び、戻り旋回の時間積分値S4も、それぞれ上部旋回体5、バケット13、上部旋回体5の所定動作角に対応するものである。時間積分部31bが、各時間積分値S1~S4を得たことは、バケット13あるいは上部旋回体5が、所定動作角以上動作したことを意味する。
 すなわち、この実施の形態では、上部旋回体5およびバケット13、すなわち掘削積込機構部の所定動作角で規定した、パイロット圧の時間積分値を閾値として、各操作が行われたか否かを判定している。そして、掘削、行き旋回、排土、戻り旋回の順序で掘削積込機構部の操作が行われたと判定された場合、積込回数を1回と計数し、積込回数を累積演算する。この掘削積込機構部の所定動作角で規定した時間積分値を用いることにより、既存の油圧ショベル1に搭載されている圧力センサ55が検知するパイロット圧を利用することが可能なため、簡易でありながら、積込回数の演算を行うことができる。しかも所定動作角で規定しているため、異なる車格間でも、同一の所定動作角を用いて、車格間で異なる各時間積分値を予め求めておくだけでよく、各時間積分値を操作判定の閾値として用いることができる。つまり、このような積込回数の計測処理は、汎用性の高いものである。また、このような積込回数の基本計測処理を用いれば、作業現場に依存するような設定などを行う必要がないため、各油圧ショベル1が稼働する作業現場がどこであるかを考慮する必要なく積込回数を計測できる。
 累積された積込回数の情報は、例えばモニタ32に送信され、モニタ32は、作業量の計測を行う。この作業量の計測は、累積演算された積込回数に、予め設定されたバケット容量を乗算することによって求められる。この結果は、例えば、モニタ32の表示部に表示される。なお、この実施の形態では、一連の掘削積込作業にかかる操作時間を累積し、この累積した操作時間を基本掘削積込時間として、例えば、モニタ32に出力し、モニタ32の表示/設定部27に表示する。作業量の計測を油圧ショベル1の外部、例えば遠隔地に設置されたコンピュータあるいは携帯型コンピュータを利用して行ってもよい。つまり、累積された積込回数の情報を外部に無線あるいは有線で送信し、外部に備えた受信装置で当該累積された積込回数を受信し、外部の記憶装置に記憶されたバケット容量を用いて作業量の計測を行ってもよい。
 図6は、スプールストロークに対する、パイロット圧及びスプール開口の大きさの変化を示す図である。ここで、図6に示すように、パイロット圧が小さい領域では、図示しないメインバルブのスプールストロークはゼロである。このため、パイロット圧が、上述した積分開始圧P1以上となった場合に、時間積分を開始するようにしている。
 また、各操作の時間積分処理は、同時並行して処理される。このため、各操作の時間積分値S1~S4が求められた際、各操作での時間積分処理をリセットし、掘削積込作業が繰り返し行われることにより、繰り返して時間積分処理を行う必要がある。図7は、掘削操作時における時間積分値のリセット処理を示すタイムチャートである。図7の上図は、時間経過に対するパイロット圧の変化を示し、斜線部は、パイロット圧の時間積分値に相当する。また、図7の下図は、時間経過に対するスプール開口の変化を示し、斜線部はスプール開口面積の積分値に相当する。このリセット処理は、図7に示すように、パイロット圧が積分開始圧P1より低くなったときを基準とするが、ノイズ等の影響をなくすため、パイロット圧が積分開始圧P1より低くなった後、所定時間Δt2経過後に行うようにしている。つまり、積分開始圧P1は、積分開始圧であるとともに、操作が終了したことを判定するための閾値である、操作終了所定値である。この所定時間Δt2は、掘削操作及び排土操作に対して設けられ、各操作毎に値が異なる。
 ここで、図8に示した状態遷移図をもとに、積込回数の基本計測処理について説明する。積込回数の基本計測処理では、初期状態ST0、掘削状態ST1、行き旋回状態ST2、排土状態ST3、戻り旋回状態ST4、及び完了状態ST5がある。
 まず、初期状態ST0では、状態滞在時間TTを0に設定するとともに、旋回方向フラグFAを0に設定する。この初期状態ST0で、条件01を満足すると、掘削状態ST1に移行する(S01)。条件01は、掘削時間積分値がS1以上、かつ、パイロット圧がP2以下、かつ、パイロット圧がP2以下となった後の経過時間がΔTS以上となることである。このパイロット圧P2とは、掘削の操作が終わり、図8の状態遷移が可能なことを判断するために用いる閾値である。図8の状態遷移図の詳細については後述する。
 図9は、掘削操作時における時間積分値保持時間を説明するタイムチャートである。ここで、掘削操作において、操作レバー42を傾倒可能なストロークまで傾倒させるようなフルレバー操作が行われないことがある。つまり、掘削するために、操作レバー42を倒したり起こしたりしながら掘削操作が行われることがあり、その結果、図9の上図に示すように、時間経過に対するパイロット圧が、積分開始圧P1を境に上昇したり下降したりするような、断続的なレバー操作が行われることがある。したがって、パイロット圧が積分開始圧P1以下となった後の経過時間Δt2(時間積分値保持時間)を、掘削操作に対応して十分大きな値に設定し、断続的な掘削操作を1つの掘削操作として判定できるようにしている。パイロット圧が積分開始圧P1以下となっても、時間積分値保持時間Δt2が経過していなければ、時間積分処理を継続する。なお、旋回操作は、基本的にフルレバー操作であるので、積分開始圧P1以下となった時点で、時間積分処理を終え、保持している時間積分値を消去(リセット)する。
 図9の下図は、時間経過に対する掘削時間積分値の大きさの変化を示している。図9に示すように、パイロット圧が積分開始圧P1以下となった時点t2で直ちに、時間積分をリセットすると、図9の下図の時点t2から上方に伸ばした破線と掘削時間積分値の増加を示す実線SLとの交点SSが示す大きさの掘削時間積分値しか得られないことになる。実際には、時点t4の時点で、図9下図の実線SLで示すような掘削時間積分値を得て、掘削時間積分値がS1を超えることで掘削操作が行われたことを判定すべきである。つまり、パイロット圧が積分開始圧P1以下となった時点t2で直ちに、時間積分をリセットすると、時点t2までの時間積分値が失われ、時点t3から新たに時間積分値を求め、破線BLに示すように時点t4に至っても、掘削時間積分値がS1以上とならず、実際には時点t4までの期間、掘削操作をしているにもかかわらず、掘削状態ST1に移行することができない。このため、所定の長さの時間をもった時間積分値保持時間Δt2を設定している。
 ところで、掘削積込作業では、戻り旋回操作中に、次の掘削操作に入ることがあり、掘削操作の判定終了を時間積分値で行う場合、次の戻り旋回操作を誤判定する場合がある。つまり、排土が終わった後に、操作レバー41を戻り旋回のための操作をしながら、操作レバー42のバケット掘削の操作を行なうような場合である。このような場合の油圧ショベル1の動作は、上部旋回体5が戻り旋回の方向に旋回しながらバケット13が掘削の動きをする。図10は、戻り旋回操作中に掘削操作を行った場合における次の戻り旋回操作の誤判定と正常な判定との関係を示すタイムチャートである。なお、図10の上図においてはパイロット圧PP1と示したが、これは上記に説明したパイロット圧P1の表記を変えただけで同じ意義である。また、図10の上図においてはパイロット圧PP2と示したが、上記に説明したパイロット圧P2の表記を変えただけで同じ意義である。図10の下図に示す曲線L0~L4は、便宜上、直線で示している。レバー操作の仕方によっては時間積分値が一次関数的に単調増加する場合もあればそうでない場合もある。以下の説明では、曲線として表現する。
 例えば、図10に示すように、戻り旋回操作中の半ばから次の掘削操作に入る場合、最初の戻り旋回操作では、曲線L0の時間積分値が得られ、曲線L0上の点P0(時点t0)で戻り旋回操作の終了判定が行われ、次の掘削操作は、曲線L1の時間積分値が得られており、曲線L1上の点P1(時点t1)で、時間積分値がS1に達していることから掘削操作の終了判定が行われる。すると、ポンプコントローラ31は、次の旋回(行き旋回)の時間積分値を取得するが、戻り旋回のパイロット圧は、PP1より低くなっていないため、曲線L0の時間積分値がリセットされておらず、曲線L0上の点P2の時間積分値を、行き旋回の時間積分値として取得してしまう。積込回数の基本計測処理において、行き旋回の場合には、右旋回であっても左旋回であってもよく、戻り旋回の場合には、行き旋回が右旋回のとき、逆の左旋回でなくてはならず、行き旋回が左旋回のとき、逆の右旋回でなくてはならないという規則を設けている。操作レバー41が左右のいずれかに傾倒された場合、右旋回のパイロット圧あるいは左旋回のパイロット圧が発生する。旋回の操作に伴うパイロット圧を検出する圧力センサ55は、2つ設けてあり、右旋回のパイロット圧を検出するための圧力センサ55と左旋回のパイロット圧を検出するための圧力センサ55がある。例えば右旋回のレバー操作が行われた際、右旋回のパイロット圧を検出する圧力センサ55が出力する信号に旋回方向フラグFAが設定され、左旋回のレバー操作が行われた際、左旋回のパイロット圧を検出する圧力センサ55が出力する信号に旋回方向フラグFAが設定される。ただし、掘削積込作業において、掘削後に左旋回が行われるのか右旋回が行われるのかは、掘削位置E1、油圧ショベル1、ダンプトラック50の位置関係によって決まる。よって、行き旋回については、積込回数の基本計測処理においては、左右を区別して扱わないこととしている。ただし、行き旋回と戻り旋回は、旋回方向が必ず逆であるから、上記の規則を設けている。
 ここで、点P2は、右旋回時に発生するパイロット圧から求められた時間積分値であるから、行き旋回を右旋回であるとして判定している。その後、ポンプコントローラ31は、行き旋回の後の操作である排土操作の時間積分値を取得しようとする。したがって、正常な行き旋回の時間積分値は曲線L2に存在するが、行き旋回への状態遷移はスキップされ、さらに排土の操作が行われ、排土操作の時間積分値である曲線L3上の点P3で時間積分値がS3に達していることから排土操作の終了判定を行う。ポンプコントローラ31は、さらに、戻り旋回操作の時間積分値を取得しに行くが、曲線L4の点P4は、時間積分値がS4に達していることから、戻り旋回の操作が行われ、戻り旋回の操作がされたことを判断するための時間積分値としては満足しているものの、先に行き旋回を右旋回として判定しているのに、旋回方向が左旋回でなく右旋回であるため、この戻り旋回がスキップされるという誤判定が行われる。
 この誤判定が起きる原因は、点P1で掘削操作の終了判定を行った時点t1の直後に、前回の旋回操作の時間積分値がリセットされずに残っているからである。したがって、この実施の形態では、掘削操作の終了判定を遅らせ、掘削操作の終了判定時に、戻り旋回操作の時間積分値がリセットされている状態となるようにしている。この状態を作るために、掘削操作の時間積分値がS1以上であることに加え、パイロット圧がPP2以下となり、さらに、ノイズ等の影響をなくすために、パイロット圧がPP2以下となった時点から所定時間ΔTS経過後に、掘削操作の終了判定を行うようにしている。この所定時間ΔTSは、例えば、サンプリング期間の2倍の時間である(図11参照)。図11は、時間経過に対するパイロット圧の変化を示すグラフである。つまり、所定時間ΔTSは、図11に示すように、パイロット圧をサンプリングする周期の2倍であり、連続した2つのサンプリング点SPの間の時間を2倍した時間である。このようにすることで、瞬間的に低下したパイロット圧が検出されたことをもって、掘削操作の終了判定が行われず、誤判定を防いでいる。なお、上記及び図9で説明したように、掘削の操作により発生したパイロット圧が、積分開始圧PP1以下になった時点t1´から時間積分値保持時間Δt2が経過した時点で、掘削の時間積分処理がリセットされる。なお、本実施形態のように所定時間ΔTSを設けるほうが好ましいが、必ず設けなければならないものではない。
 このような処理を行うと、具体的に、図10に示すように、戻り旋回の終了判定を点P0(時点t0)で行った後、掘削の時間積分値の曲線L1の点P1´(時点t1´)で掘削操作の終了判定が仮に行われ、さらに点P1´から所定時間ΔTS経過後の点P1´´で掘削操作の終了判定が行われる。その後、行き旋回の時間積分値を示す曲線L2の点P2´で行き旋回の時間積分値がS2に達していることから行き旋回の終了判定が行われる。さらに曲線L3上の点P3で排土の時間積分値がS3に達していることから排土操作の終了判定が行われる。さらに、曲線L4の点P4で戻り旋回の時間積分値がS4に達していることから戻り旋回の終了判定を正常に行うことができる。
 さて、図8に戻り、掘削状態ST1になると、この掘削状態ST1の状態滞在時間TTを計時する。ここで、状態滞在時間TTがT1であるとする。この掘削状態ST1で、条件12を満足すると、行き旋回状態ST2に移行する(S12)。この条件12は、旋回時間積分値がS2以上である。なお、上述したように、積込回数の基本計測処理において行き旋回の旋回方向は、左右どちらでもよい。ただし、後の戻り旋回状態ST4への移行判定時のために、上記のように操作レバー41の傾倒方向に応じて発生するパイロット圧、すなわち圧力センサ55から出力される電気信号により右旋回か左旋回かを判断し、その結果、右旋回である場合、旋回方向フラグFAを右に設定し、左旋回である場合、旋回方向フラグFAを左に設定する。また、行き旋回状態ST2への移行時、状態滞在時間TTを0にリセットする。
 また、掘削状態ST1の状態滞在時間T1が所定時間TT1以上である場合(条件10)、初期状態ST0に移行する(S10)。
 行き旋回状態ST2になると、この行き旋回状態ST2の状態滞在時間TTを計時する。ここで、状態滞在時間TTがT2であるとする。この行き旋回状態ST2で、条件23を満足すると、排土状態ST3に移行する(S23)。この条件23は、排土時間積分値がS3以上であり、かつ、左右旋回時間積分値がΔS未満である。また、排土状態ST3への移行時、状態滞在時間TTを0にリセットする。左右旋回時間積分値がΔS未満であるか否かを条件23に設けた理由を説明する。排土が行われている時には、旋回しないはずである。左右旋回時間積分値は、操作レバー41の右旋回あるいは左旋回の操作によって発生するパイロット圧の時間積分値である。行き旋回状態(ST2)において、左右旋回時間積分値が所定の値(ΔS)を超えるような旋回が行われているか否かを判断することで、排土状態ST3へ状態遷移を移行することができるか否かを判断するのである。仮に左右旋回時間積分値がΔSを超えるような場合は、排土しながら旋回するような作業が想定され、例えば土砂を所定の範囲に撒いているような作業であり、この場合、初期状態ST0に移行(S20)して、積込回数の計数が誤判定されないようにする。
 また、行き旋回状態ST2の状態滞在時間T2が所定時間TT2以上である場合(条件20)、初期状態ST0に移行する(S20)。
 排土状態ST3になると、この排土状態ST3の状態滞在時間TTを計時する。ここで、状態滞在時間TTがT3であるとする。この排土状態ST3で、条件34を満足すると、戻り旋回状態ST4に移行する(S34)。この条件34は、旋回時間積分値がS4以上である。なお、旋回時間積分値は、旋回方向が行き旋回方向と逆方向、すなわち、旋回方向フラグFAが右の場合、左旋回の時間積分値であり、旋回方向フラグFAが左の場合、右旋回の時間積分値であることが条件となる。また、戻り状態ST4への移行時、状態滞在時間TTを0にリセットする。
 また、排土状態ST3の状態滞在時間T3が所定時間TT3以上である場合(条件30)、初期状態ST0に移行する(S30)。
 戻り旋回状態ST4になると、この戻り旋回状態ST4の状態滞在時間TTを計時する。ここで、状態滞在時間TTがT4であるとする。この戻り旋回状態ST4で、条件45を満足すると、完了状態ST5に移行する(S45)。この条件45は、旋回方向フラグFAが右の場合、左旋回の旋回時間積分値が0であり、旋回方向フラグFAが左の場合、右旋回の旋回時間積分値が0であり、かつ、状態滞在時間T4が所定時間TT4以上である。
 また、戻り旋回状態ST4の状態滞在時間T4が所定時間TT4未満である場合(条件40)、初期状態ST0に移行する(S40)。
 完了状態ST5になると、積込回数を1回だけ計数し、累積加算する。過去に累積された積込回数があれば、その積込回数に1を加算する。求められた積込回数は、ポンプコントローラ31に備えた、図示しない記憶装置に記憶する。ポンプコントローラ31には図示しないタイマー機能が組み込まれており、積込回数が1回として計数される場合の掘削開始から戻り旋回完了までに要した時間を計測している。つまり、掘削のパイロット圧が図5に示すような所定の積分開始圧P1を超えたことを検出した時からタイマーの計時を開始し、行き旋回後に排土が行われ、戻り旋回が行われ、完了状態ST5に移行した時にタイマーの計時を終了させ、その開始から終了までの時間を基本掘削積込時間として求める。求められた基本掘削積込時間は、ポンプコントローラ31に備えた、図示しない記憶装置に記憶する。その後、初期状態ST0に移行する(S50)。
[みなし計数処理]
 ところで、上述した一連の掘削積込作業では、1回目の掘削積込作業で、掘削操作から行き旋回操作まで行って、ダンプトラック50の待ち状態で静止している場合がある。また、排土後、戻り旋回せずに、そのまま、次のダンプトラック50が来るのを待つ場合がある。この場合、計時された状態滞在時間T2が所定時間TT2を超えてしまい、初期状態に移行してしまうため(S20)、積込回数が1回分、累積加算されず積込回数を誤判定する場合がある。また、排土後、戻り旋回操作をせずに静止して、ダンプトラック50を待っている場合がある。この場合も、計時された状態滞在時間T3が所定時間TT3を超えてしまい、初期状態に移行してしまうため(S30)、積込回数が1回分、累積加算されず積込回数を誤判定する場合がある。
 すなわち、積込回数の基本計測処理では、一連の掘削積込作業を構成する掘削操作などの掘削積込機構部の操作があったか否かを判定する際、次の掘削積込機構部の操作に遷移する条件を満足せずに、同一の掘削積込機構部の操作の状態である状態滞在時間が所定時間経過すると、初期状態に移行して積込回数の計測処理をリセットしてしまう。しかし、このようなリセット処理を行う場合でも、積込回数として計数すべき特定状態があり、この特定状態を見逃すことは、誤判定を招くことになる。
 そこで、この実施の形態では、図12に示す状態遷移移行条件を追加して、一連の掘削積込作業操作の際に行われることがある特定操作を、一回の掘削積込作業がなされたとする、みなし計数処理を行うようにしている。
 まず、旋回後の無操作時間Δtαを、予め設定しておく。行き旋回状態ST2のときに、条件25のような特定状態を満足する場合に、完了状態ST5に移行して、積込回数を一回、累積計数する(S25)。条件25は、掘削又は旋回以外の無操作時間がΔtα以上であることと、みなし完了フラグFαが0、すなわち、みなし計数処理を一度も行っていないことである。掘削又は旋回以外の無操作時間とは、バケット排土無操作時間、ブーム上げ無操作時間、ブーム下げ無操作時間、アーム掘削無操作時間、アーム排土無操作時間の全てが、旋回後の無操作時間Δtα以上となることである。なお、掘削又は旋回の無操作時間を除外しているのは、旋回操作の途中で止める場合や、静止中に、バケット13を小刻みに動かして、操作を行う場合があるからである。なぜならば、土砂等がつまったバケット13が自重によって自然に下降することがあり、下降したバケット13を持ち上げるような操作(操作レバー42を左側、すなわちバケット掘削側に傾倒操作)を行う必要があるからである。
 なお、条件25による、みなし計数処理が必要なのは、例えば、油圧ショベル1が一台のダンプトラック50へ土砂を満載するために、5回の掘削積込作業を行うような場合である。つまり、5回の掘削積込作業における最初(1回目)の一連の掘削積込作業、あるいは最後(5回目)の一連の掘削積込作業にみなし計数処理が必要である。このため、条件25を満足する場合に、みなし完了フラグFαを1に設定し、条件25の中に、みなし完了フラグFαが0であることを条件としている。すなわち、一度も、みなし計数処理を行わなかったことを条件としている。なお、次に排土操作がされれば、みなし完了フラグFαを0とする。
 さらに、排土後の無操作時間Δtβを、あらかじめ設定しておく。そして、排土状態ST3のとき、条件35のような特定状態を満足する場合に、完了状態ST5に移行して、積込回数を一回、累積計数する(S35)。条件35は、掘削以外の無操作時間が排土後の無操作時間Δtβ以上であることである。つまり、掘削積込機構部の操作の順序が、停滞して先に進んでいないという特定状態が発生した場合にみなし計数処理を行う。なお、掘削の無操作時間を除外しているのは、上記のように静止中に、バケットを小刻みに動かす操作を行う場合があるからである。
[付帯作業の除外処理]
 ところで、実作業における一連の掘削積込作業中に、付帯作業が入ることがある。例えば、掘削操作直後に排土操作を行ったり、旋回操作直後に逆旋回操作を行う場合がある。この付帯作業は、一連の掘削積込作業を構成する掘削積込機構部の操作の順序が異なる作業であり、一連の掘削積込作業に類似した作業となるため、誤判定する場合がある。したがって、この実施の形態では、このような付帯作業を、特定状態としてとらえ積極的に除外し、誤判定をなくすようにしている。つまり、掘削積込機構部の操作の順序を飛び越すような特定状態、すなわち付帯作業が発生した場合、積込回数として計数しないよう、付帯作業の除外処理を行う。
 すなわち、掘削状態ST1のときに、排土時間積分値が掘削後の排土時間積分値S3a以上となる条件10aを付加する。この条件10aを満足する場合、初期状態ST0に移行する(S10)。掘削後の排土時間積分値S3aは、あらかじめ設定されている値である。また、行き旋回状態ST2のときに、現在の旋回方向フラグFAが示す旋回方向とは逆方向の旋回時間積分値が値S4a以上となる条件20aを付加する。この条件20aを満足する場合、初期状態ST0に移行する(S20)。旋回後の旋回時間積分値S4aは、あらかじめ設定されている値である。
[外部状態に応じた除外処理]
 ところで、走行レバー43,44が操作され走行操作が混在する一連の操作は、一連の掘削積込操作でない場合があるが、これを考慮しないと、操作レバー41,42の操作をパイロット圧で検出する限り、積込回数が計数されてしまう場合がある。このような誤判定をなくす必要がある。
 また、作業モードが一連の掘削積込作業を行わないモードである場合でも、これを考慮しないと、操作レバー41,42の操作をパイロット圧で検出する限り、積込回数を計数してしまう場合がある。
 さらに、旋回ロック部33が操作され上部旋回体5の旋回ロックを行っている場合は、旋回する意思がない場合であるが、これを考慮しないと、操作レバー41,42の操作をパイロット圧で検出する限り、積込回数を計数してしまう場合がある。
 また、パイロット圧を検出する圧力センサ55が故障している場合、あるいは圧力センサ55とポンプコントローラ31とを結ぶ通信線が断線している場合、このような異常状態を考慮しなければ、誤った時間積分値が求められることとなり、誤判定が発生する。このような場合の誤判定をなくしたい。
 これらの状態は、一連の掘削積込作業の操作に関係する掘削積込機構部の操作が可能な状態で、該一連の掘削積込機構部の操作とは関連のない特定動作が行われる状態(特定動作状態)である。この特定動作状態のときには、積込回数の計数処理をリセットして誤判定を防ぐ必要がある。
 そこで、図13に示した状態遷移図のように、さらに除外条件を付加する。ただし、走行操作に関しては、オペレータが走行操作をさせることを意図せずに、誤って走行レバー43,44に触れてしまう場合がある。この場合に、積込回数の計数処理をリセットすることは、逆に、誤判定となる。したがって、走行操作状態であるか否かは、掘削、旋回、排土の各操作と同様に、走行レバー43,44のパイロット圧の走行時間積分値を取得し、走行時間積分値が走行判定用の走行時間積分値Sα以上となる場合に、走行操作状態であると判定する。走行判定用の走行時間積分値Sαは、あらかじめ設定されている値である。オペレータが明らかに走行操作をさせることを意図して走行レバー43,44を操作すると、ある程度大きな走行時間積分値が得られるはずである。そのある程度大きな走行時間積分値としてSαを設定している。これによって、一連の掘削積込作業中に、オペレータが走行レバー43,44に触れてしまう場合であっても、正常に、積込回数の計数処理を行うことができる。
 すなわち、図13に示すように、初期状態ST0のときに、条件01にAND条件で、条件01bを付加する。条件01bは、走行時間積分値が走行判定用の走行時間積分値Sα未満であり、かつ、作業モードがATTモード、またはBモード、またはLモードに設定されておらず(ATT/B/Lモード信号がOFF)、かつ、パイロット圧を検出する圧力センサ55に異常がなく(パイロット圧センサ異常フラグがOFF)、かつ、旋回ロック部33が操作されず上部旋回体5が旋回可能(旋回ロックフラグがOFF)であることである。
 また、条件10,10a、条件20,20aの各条件は、OR条件であるが、さらにOR条件として、条件10b、20b、30b、40bを付加する。条件10b、20b、30b、40bは、走行時間積分値が走行判定用の走行時間積分値Sα以上であり、または、作業モードがATT/B/Lモードのいずれかが設定されており(ATT/B/Lモード信号がON)、または、パイロット圧を検出する圧力センサ55に異常が発生しており(パイロット圧センサ異常フラグがON)、または、旋回ロック部33が操作され上部旋回体5が旋回不可能(旋回ロックフラグがON)であることである。なお、以上に述べた特定動作状態のときに、上記に説明したような積込回数の計数処理をリセットするのではなく、特定動作状態のときに、とりあえず積込回数を累積加算しておき、特定動作状態の発生回数を別途、計数処理しておいてもよい。そして、求められた積込回数から特定動作状態の発生回数を減算処理する演算、すなわち補正処理を行い、正しい積込回数を求めるようにしてもよい。この減算処理は、例えば日々の作業が終了した後に行うことで、求められた正しい積込回数を日々の作業管理に用いることができる。以上のように特定動作状態があっても、掘削積込作業の回数の計数処理をリセット処理あるいは補正処理することで積込回数の誤判定を防ぐことができる。
[作業管理処理]
 モニタ32は、上述したポンプコントローラ31の図示しない記憶装置から、少なくとも、積込回数及び基本掘削積込時間を取得する。図14に示すように、モニタ32は、積込回数取得部60、基本掘削積込時間取得部61、既定値設定部62、仕事量算出部63、土量算出部64、仕事率算出部65、入出力部66、及び記憶部67を有する。さらに、モニタ32は、オペレータ識別部70、設定変更部71を有する。
 既定値設定部62は、入出力部66から入力設定される、油圧ショベル1のバケット容量、ダンプトラック台数、ダンプトラック積載量を示すデータを記憶部67に保持する。ダンプトラック積載量とは、ダンプトラック一台あたりに積載可能な土砂の量である。なお、本実施形態ではダンプトラック50に土砂を積み込む場合を説明したが、ダンプトラック50に替えて、港湾の浚渫工事に用いられる荷台を備えた運搬船に、油圧ショベル1が土砂等を積み込む場合にも、以下に説明するような作業管理処理が実行できる。運搬船の荷台の積載量、運搬船の台数を記憶部67に保持しておく。あるいはダンプトラック50に替えて、列車や台車に土砂等を掘削積込する際にも、必要なデータを記憶部67に記憶しておくことで作業管理処理が実行できる。つまり、ダンプトラック50や運搬船、列車、台車といった、種々の収集体に土砂等を積み込む際に本実施形態は適用できる。
 仕事量算出部63は、積込回数取得部60が取得した積込回数に、バケット容量を積算した仕事量を算出し、例えば日毎に、求めた仕事量を記憶部67に保持する。土量算出部64は、ダンプトラック台数にダンプトラック積載量を乗算した土量を算出し、例えば日毎に、求めた土量を記憶部67に保持する。仕事率算出部65は、土量を仕事量で除算した値を仕事率として算出し、例えば日毎に、求めた仕事率を記憶部67に保持する。
 ここで、仕事量は、土量と被計数作業との合算値とみなしている。被計数作業とは、油圧ショベル1による実際の掘削積込作業ではない作業を意味する。例えば、実際に土砂を掘削しないでバケット13を操作して上部旋回体5を旋回操作させたような場合、そのような操作が、一回の掘削積込作業(積込回数)として判定されることがある。そのように、実際の掘削積込作業ではないような掘削積込機構部の動作が行われた場合(被計数作業が行われた場合)に、バケット13の中に土砂があるか否かを検知しているわけではないため、積込回数は計数される。よって、積込回数取得部60が取得した積込回数は、土量に相当する積込回数より多い回数となる。つまり、仕事量と土量とは全く同一である場合もあり得るが、そうでない場合の仕事量は、土量に対し多めの値となる。故に、仕事率を求めれば、被計数作業がどの程度の割合で行われたかが把握でき、逆に掘削積込作業がどの程度の割合で行われたかを把握できる。
 モニタ32は、例えばこれら仕事量、土量、仕事率などの各データを、例えば日毎にグラフ化して入出力部66から出力する。各データを用いたグラフをモニタ32の表示/設定部27に表示してもよい。また、モニタ32は、これら仕事量、土量、仕事率などの各データを、油圧ショベル1の外部に出力してもよい。
 また、モニタ32は、基本掘削積込時間取得部61で取得された基本掘削積込時間や、エンジンコントローラ30などから得られる走行時間、アイドリング時間などの移動体情報を用いて、例えば、図15に示すように、油圧ショベル1の稼動時間に対する掘削積込作業時間の比率を日毎に表示出力する。以上に説明した、各データ(仕事量、土量、仕事率、油圧ショベル1の稼動時間に対する掘削積込作業時間の比率)を、後述するような作業管理システムによって油圧ショベル1の外部で求めてもよい。例えば、積込回数、基本掘削積込時間、走行時間、アイドリング時間、稼働時間といった油圧ショベル1で求められる各データを入出力部66あるいはポンプコントローラ31の図示しない記憶装置から有線あるいは無線にて外部に出力し、外部に備えたコンピュータで、土量、仕事量、仕事率、稼動時間に対する掘削積込作業時間の比率を求めグラフ化して、コンピュータに接続された表示装置に表示させてもよい。この外部に備えたコンピュータの代わりに携帯端末を用いてもよいし、表示装置の代わりに携帯端末の表示装置を用いてもよい。図15は、ある油圧ショベル1の日毎の掘削積込時間の比率を示しているが、これに限らず複数の油圧ショベル1について同様に掘削積込時間の比率を求めて油圧ショベル毎に比較することもできる。
 なお、オペレータ識別部70は、オペレータ識別情報(以下、識別情報)を識別し、識別された識別情報とオペレータ毎の積込回数や基本掘削積込時間とを関連付けて記憶部67に保持させる。
 ここで、油圧ショベル1はイモビライザー装置を搭載してもよい。個別の識別情報が記憶されたIDキーによって、油圧ショベル1のエンジン始動が可能になる。イモビライザー装置がIDキーの識別情報を読み取ると、その識別情報と、所定期間、例えば1日分の積込回数とを関連付け、この関連付けされた情報(オペレータ毎の積込回数)を入出力部66を介して外部に出力することで、どのオペレータが、どれだけの作業(掘削積込作業)を行ったかを管理するオペレータ管理が可能となる。
 また、1台の油圧ショベル1を複数のオペレータが使用する場合、複数のIDキーが用いられるため、その1台の油圧ショベル1についてオペレータ毎の作業量管理を行うことができる。また、一つのIDキーで複数の油圧ショベル1のエンジン始動を可能とするように設定しているのであれば、その複数の油圧ショベル1の各々の車両を識別する車両識別情報のデータ、IDキーの識別情報、積込回数のデータなどを外部に出力することによって、1人のオペレータが、どの油圧ショベルで、どの程度の作業量をこなしたのかを管理することができる。
 また、イモビライザー装置を用いずに、モニタ32の入出力部66から、個別のID番号を入力して、オペレータを個別認識するID番号識別装置や、IDカードの読取装置を備えて、上述したオペレータを個別認識して、上記管理を行ってもよい。なお、オペレータを個別に認識する装置として指紋認証装置を用いてもよい。すなわち、オペレータ識別部70を備えることによって、オペレータの作業管理を行うことができる。
 また、設定変更部71は、時間積分値S1~S4や積分開始圧P1などの一連の掘削積込操作を判定するために必要な各種設定値(パラメータ)を変更することができる。設定変更部71は、無線あるいは有線による通信が可能な外部通信装置を用い、入出力部66を介して外部から各種設定値の変更が可能である。なお、モニタ32の表示/設定部27に設けたスイッチ等の入力手段を用い入出力部66を介して各種設定値の変更を可能としてもよい。
 なお、この各種設定値は、ティーチングや統計処理によって設定することができる。例えば、設定変更部71は、各作業現場やオペレータ毎に、積分開始圧P1などの各種設定値(パラメータ)をティーチングによって設定変更可能である。具体的に、バケット掘削の動作を実際に行い、バケットの掘削開始姿勢から掘削終了姿勢まで動作させる。その掘削開始姿勢の際に、所定の図示しないメモリボタンを操作し、さらに掘削終了姿勢の際に、所定の図示しないメモリボタンを操作する。これによって、メモリボタンの操作間に発生した各操作時のパイロット圧の時間積分値S1を取得し、この時間積分値を用いて設定値として利用する。このメモリボタンは、操作レバー41,42に設けてもよいし、モニタ32に設けてもよい。また、他の設定値についても、同様なティーチングによって設定することができる。
 一方、統計処理によって各種設定値を変更する場合、事前に所定回数の掘削積込作業を実施し、この結果を用いて統計的に掘削積込機構部の所定動作角、あるいは各操作時のパイロット圧の時間積分値S1~S4といったデータを求め、それらのデータの平均値を求めるなどの統計処理を行い、得られた結果を設定値として利用してもよい。
[作業管理システム]
 図16は、油圧ショベル1を含む作業管理システムの概要構成を示す図である。この作業管理システムは、複数の油圧ショベル1などの移動体が地理的に分散され、各油圧ショベル1と管理サーバ104とが通信衛星102、地上局103、およびインターネットなどのネットワークNといった外部通信装置を介して通信接続される。ネットワークNには、油圧ショベル1の管理者のサーバである作業管理サーバ105及びユーザ端末106が接続される。油圧ショベル1は、上述した積込回数や基本掘削積込時間を含む作業情報、油圧ショベル1の位置情報および稼働時間、走行時間、アイドリング時間、車両識別情報、オペレータの識別情報といった稼働状況を示す情報を含む車両情報である移動体情報を管理サーバ104に送信する。管理サーバ104は、各管理者毎の対応する作業管理サーバ105に、上述した作業情報及び移動体情報を転送する。
 油圧ショベル1は、移動体監視装置110を有し、移動体監視装置110はGPSセンサ116および送受信器117に接続される。GPSセンサ116は、アンテナ116aを介して複数のGPS衛星107から送られる情報をもとに自己位置を検知し、自己位置情報を生成し、移動体監視装置110は、この自己位置情報を取得する。送受信器117は、アンテナ117aを介して通信衛星102に通信接続され、移動体監視装置110と管理サーバ104との間で情報の送受信処理を行う。
 作業管理サーバ105は、モニタ32と同じ構成及び機能を有する。モニタ32の入出力部66は、ユーザ端末106に相当する。したがって、ユーザ端末106から作業管理サーバ105にアクセスすることによって、モニタ32と同様な、作業管理を行うことができるとともに、広範かつ多数の作業管理を行うことができる。すなわち、作業の進捗や作業の効率などに関して作業現場から離れた場所でフリート管理を行うことができる。
 なお、作業管理サーバ105には、モニタ32と同じ構成及び機能を持たせる必要はなく、モニタ32に図14に示した構成及び機能を持たせたままであってもよい。この場合、各種設定値の設定変更は、ユーザ端末106が作業管理サーバ105にアクセスし、作業管理サーバ105、管理サーバ104を介して、モニタ32の設定変更部71に対して行うことができる。さらに、モニタ32の構成及び機能の一部を管理サーバ104あるいは作業管理サーバ105側に持たせても良い。
 また、油圧ショベル1は、衛星通信機能を有するが、これに限らず、例えば、無線LAN通信機能や、携帯通信機能などの各種の通信機能であってもよい。すなわち、油圧ショベル1は、外部通信機能を有している。また、無線通信に関連するインフラが整っていないような場所で無線通信が不可能な場合は、外部通信機能を有線で達成するような構成として、油圧ショベル1にデータ通信のための有線を接続可能なコネクタを設け、その有線を介して作業情報及び移動体情報をダウンロードするようにしてもよい。
   1 油圧ショベル
   2 車両本体
   3 作業機
   4 下部走行体
   5 上部旋回体
  11 ブーム
  12 アーム
  13 バケット
  14 ブームシリンダ
  15 アームシリンダ
  16 バケットシリンダ
  17 エンジン
  18 油圧ポンプ
  18a 斜板角センサ
  20 コントロールバルブ
  21 油圧走行モータ
  22 旋回油圧モータ
  27 表示/設定部
  28 作業モード切替部
  29 燃料調整ダイヤル
  30 エンジンコントローラ
  31 ポンプコントローラ
  31a 操作状態検出部
  31b 時間積分部
  31c 判定部
  31d 計数部
  31e モード検出部
  31f 走行操作検出部
  31g 旋回ロック検出部
  32 モニタ
  33 旋回ロック部
  41,42 操作レバー
  43,44 走行レバー
  50 ダンプトラック
  55 圧力センサ
  60 積込回数取得部
  61 基本掘削積込時間取得部
  62 既定値設定部
  63 仕事量算出部
  64 土量算出部
  65 仕事率算出部
  66 入出力部
  67 記憶部
  70 オペレータ識別部
  71 設定変更部
  80 燃料噴射装置
 102 通信衛星
 103 地上局
 104 管理サーバ
 105 作業管理サーバ
 106 ユーザ端末
 107 GPS衛星
 110 移動体監視装置
 116 GPSセンサ
 116a,117a アンテナ
 117 送受信器
   N ネットワーク
  P1 積分開始圧
  S1~S4 時間積分値

Claims (9)

  1.  操作レバーの操作に応じて出力される物理量を検出する操作状態検出部と、
     前記物理量を時間積分した時間積分値を算出する時間積分部と、
     前記時間積分値と前記操作レバーの操作に伴う掘削積込機構部の所定動作角とを対応させておき、前記時間積分値が所定積分値以上となった場合に、前記操作レバーの操作が行われたと判定する判定部と、
     前記判定部によって判定された掘削積込機構部の各操作が所定の順序で行われた場合、該所定の順序で行われた掘削積込機構部の操作を一回として掘削積込作業の回数を計数する計数部と、
     を備えたことを特徴とする作業機械。
  2.  前記掘削積込機構部の操作は、掘削操作、行き旋回操作、排土操作、戻り旋回操作の順に行われる掘削積込操作であることを特徴とする請求項1に記載の作業機械。
  3.  前記判定部は、前記掘削操作を判定する場合、前記時間積分値が所定積分値以上であり、かつ、前記物理量が操作終了所定値以下である場合に、前記掘削操作が行われたと判定することを特徴とする請求項2に記載の作業機械。
  4.  前記判定部は、前記掘削操作を判定する場合、前記時間積分値が所定積分値以上であり、かつ、前記物理量が操作終了所定値以下となった後、所定時間経過した場合に、前記掘削操作が行われたと判定することを特徴とする請求項3に記載の作業機械。
  5.  前記時間積分部は、前記掘削操作あるいは前記排土操作を判定する場合、時間積分開始後、前記物理量が積分開始値以下となる状態を時間積分値保持時間経過した場合に前記時間積分値をリセットすることを特徴とする請求項2に記載の作業機械。
  6.  前記操作レバーは、パイロット式または電気式であって、
     前記物理量は、パイロット圧または電気信号であることを特徴とする請求項1~5のいずれか一つに記載の作業機械。
  7.  前記計数部が計数した前記掘削積込作業の回数を表示装置または外部に出力する出力部を備えることを特徴とする請求項1~6のいずれか一つに記載の作業機械。
  8.  各種設定値を変更する設定変更部を備えたことを特徴とする請求項1~7のいずれか一つに記載の作業機械。
  9.  操作レバーの操作に応じて出力される物理量を検出する操作状態検出ステップと、
     前記物理量を時間積分した時間積分値を算出する時間積分ステップと、
     前記時間積分値と前記操作レバーの操作に伴う掘削積込機構部の所定動作角とを対応させておき、前記時間積分値が所定積分値以上となった場合に、前記操作レバーの操作が行われたと判定する判定ステップと、
     前記判定ステップによって判定された掘削積込機構部の各操作が所定の順序で行われた場合、該所定の順序で行われた掘削積込機構部の操作を一回として掘削積込作業の回数を計数する計数ステップと、
     を含むことを特徴とする作業機械の作業量計測方法。
PCT/JP2013/080603 2012-11-20 2013-11-12 作業機械および作業機械の作業量計測方法 WO2014080805A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/438,980 US9783952B2 (en) 2012-11-20 2013-11-12 Working machine and method of measuring work amount of working machine
DE112013005544.9T DE112013005544T5 (de) 2012-11-20 2013-11-12 Arbeitsmaschine und Verfahren zum Messen einer Arbeitsleistung einer Arbeitsmaschine
CN201380058762.0A CN104781477B (zh) 2012-11-20 2013-11-12 作业机械以及作业机械的作业量计量方法
IN3938DEN2015 IN2015DN03938A (ja) 2012-11-20 2013-11-12
KR1020157012094A KR101747010B1 (ko) 2012-11-20 2013-11-12 작업 기계 및 작업 기계의 작업량 계측 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012254694A JP5529241B2 (ja) 2012-11-20 2012-11-20 作業機械および作業機械の作業量計測方法
JP2012-254694 2012-11-20

Publications (1)

Publication Number Publication Date
WO2014080805A1 true WO2014080805A1 (ja) 2014-05-30

Family

ID=50775988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080603 WO2014080805A1 (ja) 2012-11-20 2013-11-12 作業機械および作業機械の作業量計測方法

Country Status (7)

Country Link
US (1) US9783952B2 (ja)
JP (1) JP5529241B2 (ja)
KR (1) KR101747010B1 (ja)
CN (1) CN104781477B (ja)
DE (1) DE112013005544T5 (ja)
IN (1) IN2015DN03938A (ja)
WO (1) WO2014080805A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431596B (zh) * 2014-06-04 2017-08-25 株式会社小松制作所 建筑机械的控制系统、建筑机械及建筑机械的控制方法
DE102015108473A1 (de) * 2015-05-28 2016-12-01 Schwing Gmbh Großmanipulator mit schnell ein- und ausfaltbarem Knickmast
JP6619163B2 (ja) * 2015-06-17 2019-12-11 日立建機株式会社 作業機械
JP6407132B2 (ja) * 2015-11-30 2018-10-17 日立建機株式会社 作業機械の操作支援装置
EP3223208A1 (en) * 2016-03-22 2017-09-27 Hexagon Technology Center GmbH Self control
CN105780842A (zh) * 2016-04-26 2016-07-20 汤谷科技发展(天津)股份有限公司 一种带定位功能的液压属具工况监控系统
US10023450B2 (en) * 2016-08-22 2018-07-17 Joseph Jeffries Boom truck bucket remote control assembly
JP6550358B2 (ja) * 2016-09-16 2019-07-24 日立建機株式会社 建設機械の施工時間予測システム
JP6807293B2 (ja) * 2017-09-26 2021-01-06 日立建機株式会社 作業機械
EP3739129A4 (en) * 2018-01-10 2021-03-03 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. SHOVEL AND SHOVEL MANAGEMENT SYSTEM
JP6782271B2 (ja) * 2018-03-15 2020-11-11 日立建機株式会社 作業機械
US10870968B2 (en) * 2018-04-30 2020-12-22 Deere & Company Work vehicle control system providing coordinated control of actuators
JP7206985B2 (ja) * 2019-02-08 2023-01-18 コベルコ建機株式会社 損害推定装置及び機械学習装置
JP7306191B2 (ja) * 2019-09-26 2023-07-11 コベルコ建機株式会社 輸送車位置判定装置
CN110866994A (zh) * 2019-12-02 2020-03-06 三一重机有限公司 装车记录方法、装置、挖掘机和计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216417B2 (ja) * 1982-11-22 1990-04-17 Komatsu Seisakusho Kk
JPH11140910A (ja) * 1997-11-06 1999-05-25 Hitachi Constr Mach Co Ltd 建設機械の作業管理装置
JP2000129727A (ja) * 1998-10-26 2000-05-09 Hitachi Constr Mach Co Ltd 建設機械の作業量計測装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035621A (en) * 1973-12-03 1977-07-12 General Electric Company Excavator data logging system
GB2251232B (en) * 1990-09-29 1995-01-04 Samsung Heavy Ind Automatic actuating system for actuators of excavator
DE4030954C2 (de) * 1990-09-29 1994-08-04 Danfoss As Verfahren zur Steuerung der Bewegung eines hydraulisch bewegbaren Arbeitsgeräts und Bahnsteuereinrichtung zur Durchführung des Verfahrens
US5446980A (en) * 1994-03-23 1995-09-05 Caterpillar Inc. Automatic excavation control system and method
US5999872A (en) * 1996-02-15 1999-12-07 Kabushiki Kaisha Kobe Seiko Sho Control apparatus for hydraulic excavator
WO1998036132A1 (fr) * 1997-02-17 1998-08-20 Hitachi Construction Machinery Co., Ltd. Dispositif de commande du fonctionnement d'une excavatrice du type a trois articulations
US5924493A (en) * 1998-05-12 1999-07-20 Caterpillar Inc. Cycle planner for an earthmoving machine
US6167336A (en) * 1998-05-18 2000-12-26 Carnegie Mellon University Method and apparatus for determining an excavation strategy for a front-end loader
KR100530454B1 (ko) * 2000-03-31 2005-11-22 히다치 겡키 가부시키 가이샤 고장대처법 출력시스템
EP1445386B1 (en) 2001-10-18 2012-05-23 Hitachi Construction Machinery Co., Ltd. Hydraulic shovel work amount detection apparatu; work amount detection method; work amount detection result display apparatus
US8014974B2 (en) * 2001-12-19 2011-09-06 Caterpillar Inc. System and method for analyzing and reporting machine operating parameters
US7395184B2 (en) * 2004-01-15 2008-07-01 Komatsu, Ltd. Loaded weight measurement method and loaded weight measurement device for dump truck
JP4468047B2 (ja) 2004-04-02 2010-05-26 コベルコ建機株式会社 作業機械の非常時旋回制動装置
US7894961B2 (en) * 2004-11-12 2011-02-22 Caterpillar Inc Dump cycle counting and monitoring system
US8065060B2 (en) * 2006-01-18 2011-11-22 The Board Of Regents Of The University And Community College System On Behalf Of The University Of Nevada Coordinated joint motion control system with position error correction
JP5125048B2 (ja) 2006-09-29 2013-01-23 コベルコ建機株式会社 作業機械の旋回制御装置
KR100916638B1 (ko) * 2007-08-02 2009-09-08 인하대학교 산학협력단 구조광을 이용한 토공량 산출 장치 및 방법
US8602153B2 (en) * 2007-08-06 2013-12-10 Extendquip Llc Extendable frame work vehicle
US8103418B2 (en) * 2007-08-06 2012-01-24 Extendquip Llc Extendable frame work vehicle having lift member movable in a true vertical fashion
JP5011141B2 (ja) * 2008-01-30 2012-08-29 日立建機株式会社 異常動作検知装置
JP4938153B2 (ja) 2009-02-23 2012-05-23 ナブテスコ株式会社 作業機械の旋回制御装置、制御プログラム及び作業機械
US8739906B2 (en) * 2009-06-19 2014-06-03 Sumitomo Heavy Industries, Ltd. Hybrid-type construction machine and control method for hybrid-type construction machine
JP5752350B2 (ja) 2009-11-02 2015-07-22 住友重機械工業株式会社 建設機械の作業方法及び建設機械
JP5222895B2 (ja) * 2010-05-07 2013-06-26 株式会社小松製作所 作業車両及び作業車両の制御方法
JP5542016B2 (ja) * 2010-09-15 2014-07-09 川崎重工業株式会社 作業機械の駆動制御方法
JP5548113B2 (ja) * 2010-12-17 2014-07-16 川崎重工業株式会社 作業機械の駆動制御方法
JP5356436B2 (ja) * 2011-03-01 2013-12-04 日立建機株式会社 建設機械の制御装置
JP5562285B2 (ja) 2011-04-15 2014-07-30 日立建機株式会社 作業機械の表示装置
JP5653844B2 (ja) * 2011-06-07 2015-01-14 住友建機株式会社 ショベル
JP5959874B2 (ja) * 2012-02-15 2016-08-02 日立建機株式会社 ハイブリッド式作業車両
JP5552523B2 (ja) * 2012-11-20 2014-07-16 株式会社小松製作所 作業機械および作業機械の作業量計測方法
JP5529242B2 (ja) * 2012-11-20 2014-06-25 株式会社小松製作所 作業機械および作業機械の作業量計測方法
JP5529949B2 (ja) * 2012-11-20 2014-06-25 株式会社小松製作所 作業機械及び作業管理システム
US9469972B2 (en) * 2014-07-07 2016-10-18 Caterpillar Inc. Adaptive control system for cyclic excavation machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216417B2 (ja) * 1982-11-22 1990-04-17 Komatsu Seisakusho Kk
JPH11140910A (ja) * 1997-11-06 1999-05-25 Hitachi Constr Mach Co Ltd 建設機械の作業管理装置
JP2000129727A (ja) * 1998-10-26 2000-05-09 Hitachi Constr Mach Co Ltd 建設機械の作業量計測装置

Also Published As

Publication number Publication date
JP5529241B2 (ja) 2014-06-25
US9783952B2 (en) 2017-10-10
CN104781477A (zh) 2015-07-15
DE112013005544T5 (de) 2015-08-06
KR101747010B1 (ko) 2017-06-14
CN104781477B (zh) 2016-08-17
KR20150063570A (ko) 2015-06-09
IN2015DN03938A (ja) 2015-10-02
US20150292178A1 (en) 2015-10-15
JP2014101695A (ja) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5529949B2 (ja) 作業機械及び作業管理システム
JP5552523B2 (ja) 作業機械および作業機械の作業量計測方法
JP5529241B2 (ja) 作業機械および作業機械の作業量計測方法
JP5529242B2 (ja) 作業機械および作業機械の作業量計測方法
CN109790704B (zh) 挖土机
JP2014148891A (ja) 作業機械
JP6329060B2 (ja) 建設機械の稼働状態記録装置
KR20180054638A (ko) 쇼벨
CN114174597B (zh) 挖土机
KR101994132B1 (ko) 작업 기계의 관리 장치
JP6163126B2 (ja) 建設機械の稼働状態記録装置及び稼働状態記録方法
CN117561358A (zh) 工程机械系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857646

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14438980

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157012094

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130055449

Country of ref document: DE

Ref document number: 112013005544

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857646

Country of ref document: EP

Kind code of ref document: A1