WO2014077237A1 - アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 - Google Patents
アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 Download PDFInfo
- Publication number
- WO2014077237A1 WO2014077237A1 PCT/JP2013/080522 JP2013080522W WO2014077237A1 WO 2014077237 A1 WO2014077237 A1 WO 2014077237A1 JP 2013080522 W JP2013080522 W JP 2013080522W WO 2014077237 A1 WO2014077237 A1 WO 2014077237A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sacrificial anode
- aluminum alloy
- less
- endothelial
- tube
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/004—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using protective electric currents, voltages, cathodes, anodes, electric short-circuits
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0233—Sheets, foils
- B23K35/0238—Sheets, foils layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/28—Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
- B23K35/286—Al as the principal constituent
- B23K35/288—Al as the principal constituent with Sn or Zn
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/016—Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
- F28F19/06—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/084—Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/089—Coatings, claddings or bonding layers made from metals or metal alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
Definitions
- the present invention relates to an aluminum alloy clad material, more specifically, an aluminum alloy clad material capable of obtaining a heat exchanger tube having excellent outer surface corrosion resistance when molded into a tube, and a heat assembled with the tube formed from the clad material. Regarding the exchanger.
- a refrigerant passage tube of an aluminum heat exchanger joined and integrated by brazing an aluminum alloy extruded tube or a tube formed by bending an aluminum alloy plate material is applied.
- these refrigerant passage tubes are subjected to Zn spraying on the extrusion tube on the outer surface side of the refrigerant passage tube, and Al—
- the Zn-based alloy sacrificial anode material
- the design is aimed at the sacrificial anode effect by the Zn diffusion layer.
- the potential of the sacrificial anode material becomes noble due to the influence, and if the amount of Zn is reduced, it is difficult to reduce the Zn content of the sacrificial anode material because a sufficient potential difference for obtaining the sacrificial anode effect cannot be secured ( FIG. 3). Also, regarding the increase in the thickness of the sacrificial anode layer, it is difficult to increase the cladding rate from the viewpoint of manufacturing cost.
- a brazing sheet designed to be noble has been proposed, the potential layer formed by Cu diffused from the brazing material is thin, and the potential difference between the noble layer and the core material is small, so that the core material is corroded by corrosion. In the state immediately before the through hole is generated, the effect of suppressing the generation of the through hole is not sufficient.
- an aluminum alloy clad material that has an inner surface layer that does not melt during brazing has been proposed, with the Si content of the inner surface layer on the inner side of the heat exchanger in contact with the refrigerant being 1.5% or less. Since the amount is large, Cu diffuses to the outer surface layer during brazing heating, and the sacrificial anode effect of the outer surface layer is lowered, and the potential of the core material is too noble for the outer surface layer. There is a problem that wearout is accelerated.
- the inventors have tested a tube formed by bending an aluminum alloy plate material, the structure of the aluminum alloy clad material constituting the tube, and the relationship between the alloy composition of each layer of the clad material and the corrosion resistance.
- the aluminum alloy clad material constituting the tube is composed of a core material and a sacrificial anode material, and a three-layer structure in which an endothelial material made of an Al—Mn—Cu alloy having a higher potential than the core material is arranged.
- the present invention was made as a result of further testing and examination based on the above knowledge, and its purpose is to obtain a heat exchanger tube having excellent corrosion resistance on the outer surface when formed into a tube.
- an aluminum alloy clad material according to claim 1 is an aluminum alloy clad material in which a core material is clad with an endothelial material and a sacrificial anode material is clad with the other surface.
- Mn 0.6 to 2.0%
- Cu 0.4% or less
- the endothelial material is Mn: 0.6-2.
- the aluminum alloy clad material according to claim 2 is characterized in that, in claim 1, the core material further contains one or two of Si: 1.5% or less and Fe: 0.7% or less.
- the aluminum alloy cladding material according to claim 3 is characterized in that, in claim 1 or 2, the core material further contains Ti: 0.01 to 0.3%.
- the aluminum alloy clad material according to claim 4 according to any one of claims 1 to 3, wherein the endothelium material further contains one or two of Si: 1.5% or less and Fe: 0.7% or less. It is characterized by that.
- the aluminum alloy cladding material according to claim 5 is characterized in that in any one of claims 1 to 4, the endothelial material further contains Ti: 0.01 to 0.3%.
- the aluminum alloy clad material according to claim 6 is any one of claims 1 to 5, wherein the sacrificial anode material is further Si: 1.5% or less, Fe: 0.7% or less, Mn: 1.5% or less 1 type or 2 types or more are contained.
- the aluminum alloy clad material according to claim 7 is the aluminum alloy clad material according to any one of claims 1 to 6, wherein the core material further contains 0.2% or less and Cu of 0.4% or less than the Cu content of the endothelial material. It is characterized by doing.
- the aluminum alloy clad material according to claim 8 is characterized in that in any one of claims 1 to 7, the sacrificial anode material contains Zn: 1.0 to 4.0%.
- a heat exchanger according to claim 9 is formed by forming the aluminum alloy clad material according to any one of claims 1 to 8 into a tube so that the endothelial material is on the refrigerant passage side and the sacrificial anode material is on the atmosphere side. It is characterized by being assembled by brazing aluminum fins.
- the aluminum alloy clad material which is excellent in corrosion resistance of the outer surface and can be suitably used as a material of a heat exchanger, in particular, a heat exchanger tube for automobiles, and the aluminum alloy clad
- a heat exchanger is provided that incorporates a tube formed from a material.
- FIG. 5 is a diagram showing a diffusion state of Zn from a sacrificial anode material (Al—Zn alloy) after brazing, a diffusion state of Cu from a core material layer (Al—Mn—Cu alloy), and a potential distribution.
- FIG. 4 is a diagram showing a diffusion state of Zn from a sacrificial anode material (Al—Zn alloy) after brazing, a diffusion state of Cu from a core material layer (Al—Mn—Cu alloy) and an endothelial material layer, and a potential distribution. .
- the aluminum alloy clad material of the present invention has a three-layer structure in which the core material and the sacrificial anode material, as well as the endothelial material having a higher potential than the core material, are arranged, and the endothelial material is provided on one surface of the core material. And the other surface is clad with a sacrificial anode material.
- the core material contains Mn: 0.6 to 2.0%, Cu: 0.4% or less, the remaining aluminum and an inevitable impurity Al—Mn alloy, and the endothelial material includes Mn: An Al—Mn—Cu alloy containing 0.6 to 2.0%, Cu: 0.2 to 1.5%, and the balance aluminum and inevitable impurities, as a sacrificial anode material, Zn: 0.5 to An Al—Zn alloy containing 10.0% and the balance aluminum and inevitable impurities is applied.
- the core material can contain one or two of Si: 1.5% or less and Fe: 0.7% or less, and Ti: 0.01 to 0.3%.
- the endothelium material can contain one or two of Si: 1.5% or less and Fe: 0.7% or less, and Ti: 0.01 to 0.3%.
- the sacrificial anode material may contain one or more of Si: 1.5% or less, Fe: 0.7% or less, and Mn: 1.5% or less.
- the core material can contain Cu that is 0.2% or less and 0.4% or less than the Cu content of the endothelial material.
- (Sacrificial anode material) Zn Zn in the sacrificial anode material functions to make the potential noble, and is contained for adjusting the potential balance with the core material and the endothelial material.
- the preferable content of Zn is in the range of 0.5 to 10.0%. If the content is less than 0.5%, the effect is not sufficient. If the content exceeds 10.0%, the self-corrosion rate increases and the corrosion resistance life is shortened. descend.
- a more preferable content range of Zn is 1.0 to 7.0%, and a more preferable content range is 1.0 to 4.0%.
- Si functions to improve strength.
- the preferable content of Si is in the range of 1.5% or less, and when it exceeds 1.5%, the self-corrosion rate increases.
- the more preferable range of Si is 0. 5% or less.
- the Si content is less than 0.05%, the effect of improving the strength is small.
- Fe functions to improve strength.
- the preferable content of Fe is in the range of 0.7% or less, and when it exceeds 0.7%, the self-corrosion rate increases. If the Fe content is less than 0.05%, the effect of improving the strength is small.
- Mn functions to improve strength.
- the preferable content of Mn is in the range of 1.5% or less, and when it exceeds 1.5%, the self-corrosion rate increases. A more preferable content range of Mn is 0.5% or less. If the Mn content is less than 0.1%, the effect of improving the strength is small. Even if the sacrificial anode material contains 0.3% or less of In, Sn, Ti, V, Cr, Zr and B, the effects of the present invention are not impaired.
- Mn functions to improve strength.
- the preferable content of Mn is in the range of 0.6 to 2.0%. If it is less than 0.6%, the effect is not sufficient, and if it exceeds 2.0%, rolling becomes difficult.
- a more preferable content range of Mn is 1.0 to 2.0%.
- Si functions to improve strength.
- the preferable content of Si is in the range of 1.5% or less, and if it exceeds 1.5%, the melting point is lowered and it becomes easy to melt during brazing.
- a more preferable content range of Si is 0.8% or less. When the Si content is less than 0.05%, the effect of improving the strength is small.
- Fe functions to improve strength.
- the preferable content of Fe is in the range of 0.7% or less, and when it exceeds 0.7%, the self-corrosion rate increases. If the Fe content is less than 0.05%, the effect of improving the strength is small.
- Ti is divided into a high-concentration region and a low region in the thickness direction of the core material, and the layers are alternately distributed. As a result, the low-concentration region corrodes preferentially compared to the high region, resulting in a layered corrosion form. This prevents the progress of corrosion in the thickness direction, thereby improving the corrosion resistance.
- the preferable content of Ti is in the range of 0.01 to 0.3%. If the content is less than 0.01%, the effect is not sufficient. Sex is harmed.
- Cu functions to make the potential of the core material noble and can be contained for adjusting the potential balance with the endothelial material.
- Cu in the core material diffuses into the sacrificial anode material during brazing heating, reduces the potential difference from the sacrificial anode material and increases the corrosion rate of the core material itself, so the Cu content is 0.4% or less. Is preferred.
- the difference between the Cu content in the core material and the Cu content in the endothelial material is less than 0.2%, the potential difference between the endothelial material and the core material cannot be secured, so the Cu content in the core material is the Cu content in the endothelial material. It is desirable to make it 0.2% or less.
- the more preferable content range of Cu is less than 0.05%. Further, even if the core material contains 0.3% or less of V, Cr, Zr and B, the effect of the present invention is not impaired.
- Mn functions to improve strength.
- the preferable content of Mn is in the range of 0.6 to 2.0%. If it is less than 0.6%, the effect is not sufficient, and if it exceeds 2.0%, rolling becomes difficult.
- a more preferable content range of Mn is 1.0 to 2.0%.
- Si functions to improve strength.
- the preferable content of Si is in the range of 1.5% or less, and if it exceeds 1.5%, the melting point is lowered and it becomes easy to melt during brazing. When the Si content is less than 0.05%, the effect of improving the strength is small.
- Fe functions to improve strength.
- the preferable content of Fe is in the range of 0.7% or less, and when it exceeds 0.7%, the self-corrosion rate increases. If the Fe content is less than 0.05%, the effect of improving the strength is small.
- Cu functions to make the potential of the endothelial material noble and is contained for adjusting the balance of the potential with the core material.
- the preferable content of Cu is in the range of 0.2 to 1.5%. If the content is less than 0.2%, the effect is not sufficient. It becomes easy. A more preferable content range of Cu is 0.2 to 0.8%.
- Ti is divided into a high-concentration region and a low region in the plate thickness direction of the endothelium material, and they are layered alternately.
- the low-Ti concentration region corrodes preferentially compared to the high region, resulting in a corrosive form. It has the effect of layering, thereby preventing the progress of corrosion in the thickness direction and improving the corrosion resistance.
- the preferable content of Ti is in the range of 0.01 to 0.3%. If the content is less than 0.01%, the effect is not sufficient. Sex is harmed. In addition, even if 0.3% or less of V, Cr, Zr and B are contained in the endothelial material, the effect of the present invention is not impaired.
- both the Si and Fe contents are less than 0.03%. Is not preferable.
- the clad rate of the sacrificial anode material is 5 to 30% and the clad rate of the endothelial material is 5 to 30%. If the clad rate of the sacrificial anode material is less than 5%, the amount of Zn in the sacrificial anode material decreases due to diffusion during brazing, making it difficult to obtain a sufficient sacrificial anode effect. If the clad rate of the sacrificial anode material exceeds 30%, clad rolling becomes difficult. A more preferable sacrificial anode material has a cladding ratio of 10 to 30%.
- the clad rate of the endothelial material is less than 5%, the Cu concentration in the endothelial material decreases due to diffusion during brazing, the potential difference from the core material becomes small, and the sacrificial anode effect of the core material becomes difficult to obtain. If the clad rate of the endothelial material exceeds 30%, clad rolling becomes difficult. A more preferable cladding ratio of the endothelial material is 10 to 30%.
- the aluminum alloy clad material of the present invention is formed into a tube so that the endothelial material is on the refrigerant passage side and the sacrificial anode material is on the atmosphere side (outside surface side), and on the outside surface side (atmosphere side) of this tube or on the outside surface side.
- Aluminum fins are assembled on the inner surface side (refrigerant flow path side) and brazed to form a heat exchanger.
- the tube material 1 is produced by forming an aluminum alloy clad material 2 into a tube, and then inserting inner fins 3 made of a brazing sheet with brazing material disposed on both sides, and connecting the tube joint 4
- a paste brazing 5 is applied to the sacrificial anode material side of the aluminum alloy clad material 2 in advance to form a tube, or as shown in FIG. After molding, a paste brazing 5 is applied, and the joint 4 is brazed and joined by the paste brazing 5.
- the aluminum alloy clad material of the present invention is formed into a tube so that the endothelial material is on the refrigerant passage side and the sacrificial anode material is on the atmosphere side (outer surface side).
- the potential of the sacrificial anode material, core material and endothelial material in the assembled tube is (potential of sacrificial anode material ⁇ potential of core material ⁇ potential of endothelium material)
- the sacrificial anode material exerts a sacrificial anode effect on the core material
- the core material exerts a sacrificial anode effect on the endothelium material.
- the thickness of the sacrificial anode layer is increased, and even when both the sacrificial anode material and the core material are consumed by corrosion, the noble endothelial material remains. It is possible to suppress the generation of holes, the improvement of corrosion resistance of the outer surface (air side) is achieved.
- Example 1 Alloys for sacrificial anode materials (S1 to S11) having compositions shown in Table 1 and alloys for core materials and endothelial materials (C1 to C19, C25 to C27) having compositions shown in Table 2 are ingoted by semi-continuous casting.
- the alloy ingot for sacrificial anode material was homogenized at 500 ° C. for 8 hours, and then hot-rolled at a starting temperature of 500 ° C. to obtain a predetermined thickness.
- the core ingot for core material was chamfered, and the alloy ingot for endothelial material was hot-rolled at a starting temperature of 500 ° C. to a predetermined thickness. did.
- each aluminum alloy was superposed in the combination shown in Table 3, and hot rolled to a thickness of 3 mm at a starting temperature of 500 ° C., Further, after cold rolling, intermediate annealing was performed at a temperature of 400 ° C., and then cold rolling was performed to obtain an aluminum alloy clad plate material (test materials 1 to 28) having a thickness of 0.2 mm.
- Comparative Example 1 An alloy for sacrificial anode material (S12 to S16) having the composition shown in Table 1 by semi-continuous casting, an alloy for core material and an alloy for endothelial material (C20 to C24) having the composition shown in Table 2 were further ingoted.
- the alloy for sacrificial anode material (S1), the alloy for core material and the alloy for endothelium material (C1, C9, C25) ingot in Example 1 among these ingots, the alloy ingot for sacrificial anode material After homogenization treatment at 500 ° C. for 8 hours, hot rolling was performed at a starting temperature of 500 ° C.
- the alloy ingot for core material and endothelial material was subjected to homogenization treatment at 500 ° C. for 8 hours. Thereafter, the alloy ingot for core material was chamfered, and the alloy ingot for endothelial material was hot-rolled at a starting temperature of 500 ° C. to a predetermined thickness.
- Tables 1 and 2 those outside the conditions of the present invention are underlined.
- the hot rolled material of the sacrificial anode material alloy and the endothelial material alloy was cut into predetermined dimensions, and the aluminum alloys were superposed in the combinations shown in Table 4 and hot rolled up to a thickness of 3 mm at a starting temperature of 500 ° C.
- intermediate annealing was performed at a temperature of 400 ° C., and then cold rolling was performed to obtain 0.2 mm thick aluminum alloy clad plate materials (test materials 101 to 112).
- the potential of the test material was measured at room temperature in a 5% NaCl aqueous solution adjusted to pH 3 with acetic acid.
- the potential of the sacrificial anode material was measured by masking other than the sacrificial anode material side surface, and the potential of the endothelial material was measured by masking the surface other than the endothelial material side surface.
- the potential of the core material was measured by grinding the test material from the sacrificial anode material surface side to the center of the core material thickness and masking other than the ground surface.
- Test material was molded into a JIS-5 test piece, and a tensile test was performed in accordance with JIS Z2241, and a 3003 alloy having a tensile strength equal to or higher than the O material equivalent strength (95 MPa) was regarded as acceptable.
- the potentials of the sacrificial anode material, the core material, and the endothelial material are (the potential of the sacrificial anode material ⁇ the potential of the heart material ⁇ the potential of the endothelium material).
- these aluminum alloy clad materials are formed into a tube so that the endothelial material is on the refrigerant passage side and the sacrificial anode material is on the atmosphere side (outer surface side), and an aluminum fin is assembled to the tube at a temperature of 600 ° C.
- a heat exchanger was manufactured by brazing and heating for 3 minutes and joining both, it was confirmed that improved corrosion resistance of the outer surface (atmosphere side) was obtained.
- the test material 101 has a large amount of Si in the sacrificial anode material
- the test material 102 has a large amount of Fe in the sacrificial anode material
- the test material 103 has Mn as the sacrificial anode material. Because of the large amount, the amount of self-corrosion of the sacrificial anode material increased, and through holes were generated in the SWAAT test.
- the test material 104 had a small amount of Zn in the sacrificial anode material, the sacrificial anode effect was not sufficient, and a through hole was generated in the SWAAT test.
- the test material 105 had a large amount of Zn in the sacrificial anode material, the amount of self-corrosion of the sacrificial anode material increased, and through holes were generated in the SWAAT test.
- test material 106 Since the test material 106 has a large amount of Si in the core material, the core material melted during brazing heating. Since the test material 107 had a large amount of Fe in the core material, the self-corrosion amount of the core material increased, and a through hole was generated in the SWAAT test. The test material 108 had a low tensile strength because the amount of Mn in the core material was small.
- the test material 111 is a conventional aluminum alloy clad material composed only of a core material and a sacrificial anode material, and a through hole was generated in the SWAAT test.
- the potential difference between the core material and the sacrificial anode material is small, and the difference between the Cu content in the core material and the Cu content in the endothelial material is 0.2. Therefore, the potential difference between the heart material and the endothelial material could not be secured, and a through hole was generated in the SWAAT test.
- Tube material 2 Aluminum alloy clad material 3
- Inner fin 4 Seam 5 Paste brazing
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Prevention Of Electric Corrosion (AREA)
- Laminated Bodies (AREA)
Abstract
Description
(犠牲陽極材)
Zn:
犠牲陽極材中のZnは電位を貴にするよう機能し、心材、内皮材との電位のバランス調整のために含有させる。Znの好ましい含有量は0.5~10.0%の範囲であり、0.5%未満ではその効果が十分でなく、10.0%を超えると、自己腐食速度が増大して耐食寿命が低下する。Znのより好ましい含有量範囲は1.0~7.0%であり、さらに好ましい含有量範囲は1.0~4.0%である。
Siは強度を向上させるよう機能する。Siの好ましい含有量は1.5%以下の範囲であり、1.5%を超えると自己腐食速度が増大する。Siのさらに好ましい含有範囲は0.
5%以下である。Si含有量が0.05%未満では強度向上の効果が小さい。
Feは強度を向上させるよう機能する。Feの好ましい含有量は0.7%以下の範囲であり、0.7%を超えると自己腐食速度が増大する。Fe含有量が0.05%未満では強度向上の効果が小さい。
Mnは強度を向上させるよう機能する。Mnの好ましい含有量は1.5%以下の範囲であり、1.5%を超えると自己腐食速度が増大する。Mnのさらに好ましい含有範囲は0.5%以下である。Mn含有量が0.1%未満では強度向上の効果が小さい。なお、犠牲陽極材には、それぞれ0.3%以下のIn、Sn、Ti、V、Cr、ZrおよびBが含有されていても本発明の効果が損なわれることはない。
Mn:
Mnは強度を向上させるよう機能する。Mnの好ましい含有量は0.6~2.0%の範囲であり、0.6%未満ではその効果が十分でなく、2.0%を超えると圧延が困難となる。Mnのさらに好ましい含有範囲は1.0~2.0%である。
Siは強度を向上させるよう機能する。Siの好ましい含有量は1.5%以下の範囲であり、1.5%を超えると融点が低下して、ろう付け時に溶融し易くなる。Siのさらに好ましい含有範囲は0.8%以下である。Si含有量が0.05%未満では強度向上の効果が小さい。
Feは強度を向上させるよう機能する。Feの好ましい含有量は0.7%以下の範囲であり、0.7%を超えると自己腐食速度が増大する。Fe含有量が0.05%未満では強度向上の効果が小さい。
Tiは、心材の板厚方向に濃度の高い領域と低い領域とに分かれ、それらが交互に分布する層状となり、Ti濃度の低い領域が高い領域に比べ優先的に腐食する結果、腐食形態を層状にする効果を有し、それにより板厚方向への腐食の進行を妨げて耐食性を向上させる。Tiの好ましい含有量は0.01~0.3%の範囲であり、0.01%未満ではその効果が十分でなく、0.3%を超えると、巨大な晶出物が生成して成形性が害される。
Cuは心材の電位を貴にするよう機能し、内皮材との電位のバランス調整のために含有させることができる。心材中のCuはろう付け加熱時に犠牲陽極材中に拡散し、犠牲陽極材との電位差を小さくするとともに、心材自体の腐食速度が速くなるので、Cuの含有量は0.4%以下とするのが好ましい。また、心材中のCu含有量と内皮材のCu含有量の差が0.2%より少なくなると、内皮材と心材の電位差が確保できないため、心材中のCu含有量は内皮材のCu含有量より0.2%以上少なくすることが望ましい。Cuのさらに好ましい含有範囲は0.05%未満である。また、心材には、それぞれ0.3%以下のV、Cr、ZrおよびBが含有されていても本発明の効果が損なわれることはない。
Mn:
Mnは強度を向上させるよう機能する。Mnの好ましい含有量は0.6~2.0%の範囲であり、0.6%未満ではその効果が十分でなく、2.0%を超えると圧延が困難となる。Mnのさらに好ましい含有範囲は1.0~2.0%である。
Siは強度を向上させるよう機能する。Siの好ましい含有量は1.5%以下の範囲であり、1.5%を超えると融点が低下して、ろう付け時に溶融し易くなる。Si含有量が0.05%未満では強度向上の効果が小さい。
Feは強度を向上させるよう機能する。Feの好ましい含有量は0.7%以下の範囲であり、0.7%を超えると自己腐食速度が増大する。Fe含有量が0.05%未満では強度向上の効果が小さい。
Cuは内皮材の電位を貴にするよう機能し、心材との電位のバランス調整のために含有させる。Cuの好ましい含有量は0.2~1.5%の範囲であり、0.2%未満ではその効果が十分でなく、1.5%を超えると融点が低下して、ろう付け時に溶融し易くなる。Cuのさらに好ましい含有範囲は0.2~0.8%である。
Tiは、内皮材の板厚方向に濃度の高い領域と低い領域とに分かれ、それらが交互に分布する層状となり、Ti濃度の低い領域が高い領域に比べ優先的に腐食する結果、腐食形態を層状にする効果を有し、それにより板厚方向への腐食の進行を妨げて耐食性を向上させる。Tiの好ましい含有量は0.01~0.3%の範囲であり、0.01%未満ではその効果が十分でなく、0.3%を超えると、巨大な晶出物が生成して成形性が害される。なお、内皮材には、それぞれ0.3%以下のV、Cr、ZrおよびBが含有されていても本発明の効果が損なわれることはない。
半連続鋳造により表1に示す組成を有する犠牲陽極材用合金(S1~S11)、表2に示す組成を有する心材用合金および内皮材用合金(C1~C19、C25~C27)を造塊し、得られた鋳塊のうち、犠牲陽極材用合金鋳塊については500℃で8時間の均質化処理を行った後、開始温度500℃で熱間圧延して所定厚さとし、心材および内皮材用合金鋳塊については500℃で8時間の均質化処理を行った後、心材用合金鋳塊は面削し、内皮材用合金鋳塊は開始温度500℃で熱間圧延して所定厚さとした。
半連続鋳造により表1に示す組成を有する犠牲陽極材用合金(S12~S16)、表2に示す組成を有する心材用合金および内皮材用合金(C20~C24)を造塊し、さらに、実施例1で造塊された犠牲陽極材用合金(S1)、心材用合金および内皮材用合金(C1、C9、C25)を用い、これらの鋳塊のうち、犠牲陽極材用合金鋳塊については500℃で8時間の均質化処理を行った後、開始温度500℃で熱間圧延して所定厚さとし、心材および内皮材用合金鋳塊については500℃で8時間の均質化処理を行った後、心材用合金鋳塊は面削し、内皮材用合金鋳塊は開始温度500℃で熱間圧延して所定厚さとした。なお、表1~2において、本発明の条件を外れたものには下線を付した。
(電位測定)
試験材の電位は、酢酸を用いてpH3に調整した5%NaCl水溶液中で室温にて測定した。犠牲陽極材の電位は、犠牲陽極材側表面以外をマスキングして測定し、内皮材の電位は内皮材側表面以外をマスキングして測定した。また、心材の電位は、犠牲陽極材面側より心材厚さ中央まで試験材を研削し、研削面以外をマスキングして測定した。
試験材をJIS-5号試験片に成形し、JIS Z2241に準拠して引張試験を行い、3003合金のO材相当強度(95MPa)以上の引張強さを有するものを合格とした。
マスキングにより犠牲陽極材面を露出させた試験片について、SWAAT試験(ASTM
G85)を行って耐食性を評価し、1200時間経過時点で貫通孔が生じず、腐食深さが0.10mm未満のものを優良(◎)、1200時間経過時点で貫通孔が生じなかったが、腐食深さが0.10mm以上のものを良好(○)、1200時間未満で貫通孔を生じたものを不良(×)と評価した。
2 アルミニウム合金クラッド材
3 インナーフィン
4 継ぎ目
5 ペーストろう
Claims (9)
- 心材の一方の面に内皮材をクラッドし、他方の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材であって、心材が、Mn:0.6~2.0%(質量%、以下同じ)、Cu:0.4%以下を含有し、残部アルミニウムおよび不可避的不純物からなるAl-Mn合金であり、内皮材が、Mn:0.6~2.0%、Cu:0.2~1.5%を含有し、残部アルミニウムおよび不可避的不純物からなるAl-Mn-Cu合金であり、犠牲陽極材が、Zn:0.5~10.0%を含有し、残部アルミニウムおよび不可避的不純物からなるAl-Zn合金であることを特徴とするアルミニウム合金クラッド材。
- 前記心材が、さらにSi:1.5%以下、Fe:0.7%以下の1種または2種を含有することを特徴とする請求項1記載のアルミニウム合金クラッド材。
- 前記心材が、さらにTi:0.01~0.3%を含有することを特徴とする請求項1または2記載のアルミニウム合金クラッド材。
- 前記内皮材が、さらにSi:1.5%以下、Fe:0.7%以下の1種または2種を含有することを特徴とする請求項1~3のいずれかに記載のアルミニウム合金クラッド材。
- 前記内皮材が、さらにTi:0.01~0.3%を含有することを特徴とする請求項1~4のいずれかに記載のアルミニウム合金クラッド材。
- 前記犠牲陽極材が、さらにSi:1.5%以下、Fe:0.7%以下、Mn:1.5%以下の1種または2種以上を含有することを特徴とする請求項1~5のいずれかに記載のアルミニウム合金クラッド材。
- 前記心材が、さらに、前記内皮材のCu含有量より0.2%以上少なく且つ0.4%以下のCuを含有することを特徴とする請求項1~6のいずれかに記載のアルミニウム合金クラッド材。
- 前記犠牲陽極材が、Zn:1.0~4.0%を含有することを特徴とする請求項1~7のいずれかに記載のアルミニウム合金クラッド材。
- 請求項1~8のいずれかに記載のアルミニウム合金クラッド材を、内皮材が冷媒通路側、犠牲陽極材が大気側になるようにチューブに成形し、該チューブにアルミニウムフィンを組み付け、ろう付けしてなることを特徴とする熱交換器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380058877.XA CN104822855B (zh) | 2012-11-13 | 2013-11-12 | 铝合金包覆材料以及由对该包覆材料进行成型而成的管组装成的热交换器 |
EP13854258.4A EP2921566B1 (en) | 2012-11-13 | 2013-11-12 | Aluminum alloy clad material and heat exchanger provided with tube that is molded from aluminum alloy clad material |
US14/442,520 US10094629B2 (en) | 2012-11-13 | 2013-11-12 | Aluminum alloy clad material and heat exchanger that includes tube obtained by forming the clad material |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012249030 | 2012-11-13 | ||
JP2012-249030 | 2012-11-13 | ||
JP2013-231059 | 2013-11-07 | ||
JP2013231059A JP6236290B2 (ja) | 2012-11-13 | 2013-11-07 | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014077237A1 true WO2014077237A1 (ja) | 2014-05-22 |
Family
ID=50731148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080522 WO2014077237A1 (ja) | 2012-11-13 | 2013-11-12 | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10094629B2 (ja) |
EP (1) | EP2921566B1 (ja) |
JP (1) | JP6236290B2 (ja) |
CN (1) | CN104822855B (ja) |
WO (1) | WO2014077237A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014141702A (ja) * | 2013-01-23 | 2014-08-07 | Uacj Corp | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 |
JP2017057503A (ja) * | 2016-10-31 | 2017-03-23 | 株式会社Uacj | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 |
WO2017163905A1 (ja) * | 2016-03-24 | 2017-09-28 | 株式会社神戸製鋼所 | アルミニウム合金ブレージングシート |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10661395B2 (en) | 2014-07-30 | 2020-05-26 | Uacj Corporation | Aluminum-alloy brazing sheet |
JP6483412B2 (ja) * | 2014-11-21 | 2019-03-13 | 株式会社デンソー | 熱交換器用アルミニウム合金クラッド材 |
JP6564620B2 (ja) * | 2015-06-02 | 2019-08-21 | 株式会社ケーヒン・サーマル・テクノロジー | 熱交換器およびその製造方法 |
JP2017029989A (ja) * | 2015-07-29 | 2017-02-09 | 株式会社Uacj | アルミニウム構造体の製造方法 |
CN107346807A (zh) * | 2016-05-08 | 2017-11-14 | 谢彦君 | 长寿命软包电池热控制装置 |
JP7058176B2 (ja) * | 2018-05-21 | 2022-04-21 | 株式会社Uacj | アルミニウム合金製熱交換器 |
JP7058175B2 (ja) * | 2018-05-21 | 2022-04-21 | 株式会社Uacj | アルミニウム合金製熱交換器 |
CN110257671B (zh) * | 2019-07-03 | 2021-05-28 | 张家港市宏基精密铝材科技有限公司 | 一种铝合金、铝扁管和铝扁管生产工艺 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000026931A (ja) * | 1998-05-01 | 2000-01-25 | Mitsubishi Alum Co Ltd | ろう付け管形成用アルミニウム合金ブレージングシートおよびろう付け管 |
JP2004225062A (ja) * | 2003-01-20 | 2004-08-12 | Denso Corp | 耐食性に優れたアルミニウム合金クラッドチューブ材および該クラッドチューブ材を組付けた熱交換器 |
JP2007247021A (ja) | 2006-03-17 | 2007-09-27 | Shinko Alcoa Yuso Kizai Kk | 熱交換器用アルミニウム合金製ブレージングシート |
JP2008240084A (ja) | 2007-03-28 | 2008-10-09 | Kobe Steel Ltd | 熱交換器用アルミニウム合金クラッド材およびブレージングシート |
JP2009127121A (ja) | 2007-11-28 | 2009-06-11 | Kobe Steel Ltd | 熱交換器用アルミニウム合金ブレージングシート |
JP2009155673A (ja) * | 2007-12-25 | 2009-07-16 | Kobe Steel Ltd | アルミニウム合金製ブレージングシート |
JP2011224656A (ja) | 2010-03-31 | 2011-11-10 | Kobe Steel Ltd | アルミニウム合金ブレージングシートおよび熱交換器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0320594A (ja) * | 1989-06-19 | 1991-01-29 | Honda Motor Co Ltd | 熱交換器 |
JP5049488B2 (ja) * | 2005-12-08 | 2012-10-17 | 古河スカイ株式会社 | アルミニウム合金ブレージングシートの製造方法 |
JP4111456B1 (ja) * | 2006-12-27 | 2008-07-02 | 株式会社神戸製鋼所 | 熱交換器用アルミニウム合金ブレージングシート |
-
2013
- 2013-11-07 JP JP2013231059A patent/JP6236290B2/ja active Active
- 2013-11-12 WO PCT/JP2013/080522 patent/WO2014077237A1/ja active Application Filing
- 2013-11-12 EP EP13854258.4A patent/EP2921566B1/en active Active
- 2013-11-12 US US14/442,520 patent/US10094629B2/en active Active
- 2013-11-12 CN CN201380058877.XA patent/CN104822855B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000026931A (ja) * | 1998-05-01 | 2000-01-25 | Mitsubishi Alum Co Ltd | ろう付け管形成用アルミニウム合金ブレージングシートおよびろう付け管 |
JP2004225062A (ja) * | 2003-01-20 | 2004-08-12 | Denso Corp | 耐食性に優れたアルミニウム合金クラッドチューブ材および該クラッドチューブ材を組付けた熱交換器 |
JP2007247021A (ja) | 2006-03-17 | 2007-09-27 | Shinko Alcoa Yuso Kizai Kk | 熱交換器用アルミニウム合金製ブレージングシート |
JP2008240084A (ja) | 2007-03-28 | 2008-10-09 | Kobe Steel Ltd | 熱交換器用アルミニウム合金クラッド材およびブレージングシート |
JP2009127121A (ja) | 2007-11-28 | 2009-06-11 | Kobe Steel Ltd | 熱交換器用アルミニウム合金ブレージングシート |
JP2009155673A (ja) * | 2007-12-25 | 2009-07-16 | Kobe Steel Ltd | アルミニウム合金製ブレージングシート |
JP2011224656A (ja) | 2010-03-31 | 2011-11-10 | Kobe Steel Ltd | アルミニウム合金ブレージングシートおよび熱交換器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2921566A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014141702A (ja) * | 2013-01-23 | 2014-08-07 | Uacj Corp | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 |
WO2017163905A1 (ja) * | 2016-03-24 | 2017-09-28 | 株式会社神戸製鋼所 | アルミニウム合金ブレージングシート |
JP2017179582A (ja) * | 2016-03-24 | 2017-10-05 | 株式会社神戸製鋼所 | アルミニウム合金ブレージングシート |
JP2017057503A (ja) * | 2016-10-31 | 2017-03-23 | 株式会社Uacj | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 |
Also Published As
Publication number | Publication date |
---|---|
EP2921566A1 (en) | 2015-09-23 |
EP2921566A4 (en) | 2016-07-27 |
JP6236290B2 (ja) | 2017-11-22 |
US20160290743A1 (en) | 2016-10-06 |
CN104822855B (zh) | 2017-03-08 |
US10094629B2 (en) | 2018-10-09 |
CN104822855A (zh) | 2015-08-05 |
JP2014114506A (ja) | 2014-06-26 |
EP2921566B1 (en) | 2018-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6236290B2 (ja) | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 | |
JP6132330B2 (ja) | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 | |
WO2015056669A1 (ja) | アルミニウム合金製熱交換器 | |
EP3222738B1 (en) | Aluminum alloy cladding material for heat exchanger | |
JP5334086B2 (ja) | 耐食性に優れたアルミニウム製熱交器およびその製造方法 | |
JP2008240084A (ja) | 熱交換器用アルミニウム合金クラッド材およびブレージングシート | |
EP3222739B1 (en) | Aluminum alloy cladding material for heat exchanger | |
JP5180565B2 (ja) | 熱交換器用アルミニウム合金ブレージングシート | |
JP6351206B2 (ja) | 高耐食性アルミニウム合金ブレージングシート及び自動車用熱交換器の流路形成部品 | |
JP2012057183A (ja) | アルミニウム合金製クラッド材およびそれを用いた熱交換器 | |
JP5498213B2 (ja) | ろう付け性に優れた高強度熱交換器用アルミニウム合金クラッド材 | |
JP7058176B2 (ja) | アルミニウム合金製熱交換器 | |
JP5632175B2 (ja) | ろう付け性に優れた高強度熱交換器用アルミニウム合金クラッド材および熱交換器 | |
JP5084490B2 (ja) | アルミニウム合金クラッド材 | |
JP5498214B2 (ja) | ろう付け性に優れた高強度熱交換器用アルミニウム合金クラッド材 | |
JP4263160B2 (ja) | アルミニウム合金クラッド材並びにそれを用いた熱交換器用チューブ及び熱交換器 | |
JP2014062296A (ja) | 耐食性に優れたアルミニウム合金ブレージングシート | |
JP6446015B2 (ja) | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 | |
JP2011000610A (ja) | 熱交換器用チューブ向けアルミニウム合金クラッド材およびそれを用いた熱交換器コア | |
JP7058175B2 (ja) | アルミニウム合金製熱交換器 | |
JP2017171955A (ja) | アルミニウム合金製ブレージングシート | |
JP6272930B2 (ja) | アルミニウム合金製ブレージングシート | |
WO2017159356A1 (ja) | アルミニウム合金製ブレージングシート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13854258 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013854258 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14442520 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015010825 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015010825 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150512 |