WO2014077131A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2014077131A1
WO2014077131A1 PCT/JP2013/079423 JP2013079423W WO2014077131A1 WO 2014077131 A1 WO2014077131 A1 WO 2014077131A1 JP 2013079423 W JP2013079423 W JP 2013079423W WO 2014077131 A1 WO2014077131 A1 WO 2014077131A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
speed
clutch
predetermined
state
Prior art date
Application number
PCT/JP2013/079423
Other languages
English (en)
French (fr)
Inventor
俊介 重元
守洋 長嶺
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/434,419 priority Critical patent/US9415771B1/en
Priority to EP13854867.2A priority patent/EP2921361B1/en
Priority to CN201380059487.4A priority patent/CN104797475B/zh
Priority to JP2014546932A priority patent/JP5835500B2/ja
Publication of WO2014077131A1 publication Critical patent/WO2014077131A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/105Infinitely variable gearings of electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0822Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to action of the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/10Parameters used for control of starting apparatus said parameters being related to driver demands or status
    • F02N2200/102Brake pedal position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/947Characterized by control of braking, e.g. blending of regeneration, friction braking

Definitions

  • the present invention is a hybrid equipped with an engine and an electric motor as a power source and capable of selecting an electric travel mode (EV mode) that travels only by the electric motor and a hybrid travel mode (HEV mode) that travels by the electric motor and engine.
  • EV mode electric travel mode
  • HEV mode hybrid travel mode
  • the present invention relates to a vehicle control device.
  • a hybrid vehicle as described in Patent Document 1 is known as such a hybrid vehicle.
  • This hybrid vehicle is of a type in which an engine that is one power source is drivably coupled to a wheel through a continuously variable transmission and a clutch sequentially, and an electric motor that is the other power source is always coupled to the wheel. Is.
  • the present invention pays attention to the above problem, and controls a hybrid vehicle that can avoid a sense of incongruity given to the driver even when the brake pedal is operated when the clutch between the engine and the drive wheel is released and decelerated.
  • An object is to provide an apparatus.
  • the clutch interposed between the engine and the drive wheel is released.
  • the fuel cut recovery control is switched to the operating state before releasing the clutch, and the engine speed is maintained at a predetermined speed or higher.
  • FIG. 1 is a schematic system diagram showing a drive system of a hybrid vehicle including a mode switching control device according to a first embodiment of the present invention and an overall control system thereof.
  • FIG. 2 shows another type of hybrid vehicle to which the regenerative braking control device of the present invention can be applied, wherein (a) is a schematic system diagram showing a drive system of the hybrid vehicle and its overall control system, and (b) FIG. 4 is a fastening logic diagram of a shift friction element in a sub-transmission built in a V-belt type continuously variable transmission in a drive system of a hybrid vehicle.
  • 3 is a time chart illustrating a control process in an EV deceleration regeneration mode according to the first embodiment.
  • FIG. 6 is a time chart illustrating a control process in an EV deceleration regeneration mode according to the second embodiment.
  • 10 is a time chart illustrating a control process in an EV deceleration regeneration mode according to a third embodiment.
  • 10 is a time chart illustrating a control process in an EV deceleration regeneration mode according to a fourth embodiment.
  • FIG. 1 is a schematic system diagram illustrating a drive system of a hybrid vehicle including the hybrid vehicle control device of the first embodiment and an overall control system thereof.
  • the hybrid vehicle of FIG. 1 is mounted with an engine 1 and an electric motor 2 as power sources, and the engine 1 is started by a starter motor 3.
  • the engine 1 is drive-coupled to the drive wheel 5 through a V-belt type continuously variable transmission 4 so as to be appropriately disengageable.
  • the V-belt type continuously variable transmission 4 is as outlined below.
  • the V-belt type continuously variable transmission 4 is a continuously variable transmission mechanism CVT composed of a variator including a primary pulley 6, a secondary pulley 7, and a V-belt 8 spanned between the pulleys 6 and 7.
  • the primary pulley 6 is coupled to the crankshaft of the engine 1 via a torque converter T / C with a lockup clutch
  • the secondary pulley 7 is coupled to the drive wheel 5 via the clutch CL and the final gear set 9 in order.
  • the clutch CL engaged, the power from the engine 1 is input to the primary pulley 6 via the torque converter T / C, and then sequentially passes through the V belt 8, the secondary pulley 7, the clutch CL and the final gear set 9 to drive wheels 5 To be used for running a hybrid vehicle.
  • the pulley V groove width of the secondary pulley 7 is increased while the pulley V groove width of the primary pulley 6 is reduced, so that the V-belt 8 wraps around the primary pulley 6 with a larger arc diameter.
  • the winding arc diameter with the secondary pulley 7 is reduced, and the V-belt type continuously variable transmission 4 can upshift to a high pulley ratio (high gear ratio).
  • the gear ratio is set to the maximum gear ratio.
  • the V belt 8 is wound around the primary pulley 6 and the arc diameter of the secondary pulley 6 is reduced at the same time.
  • the V-belt continuously variable transmission 4 can be downshifted to a low pulley ratio (low gear ratio).
  • the gear shift is set to the minimum gear ratio.
  • the continuously variable transmission 4 has an input rotation sensor 6a that detects the rotation speed of the primary pulley 6 and an output rotation sensor 7a that detects the rotation speed of the secondary pulley 7, and the rotation speed detected by these both rotation sensors.
  • the actual gear ratio is calculated based on the above, and hydraulic control of each pulley is performed so that the actual gear ratio becomes the target gear ratio.
  • the electric motor 2 is always coupled to the drive wheel 5 via the final gear set 11, and the electric motor 2 is driven via the inverter 13 by the power of the battery 12.
  • the inverter 13 converts the DC power of the battery 12 into AC power and supplies it to the electric motor 2, and controls the driving force and the rotation direction of the electric motor 2 by adjusting the power supplied to the electric motor 2.
  • the electric motor 2 functions as a generator in addition to the motor drive described above, and is also used for regenerative braking described in detail later. During this regenerative braking, the inverter 13 applies a power generation load corresponding to the regenerative braking force to the electric motor 2 so that the electric motor 2 acts as a generator, and the generated power of the electric motor 2 is stored in the battery 12.
  • the brake disk 14 that rotates together with the drive wheels 5 is clamped by the caliper 15 to achieve the purpose.
  • the caliper 15 is connected to the master cylinder 18 that outputs brake fluid pressure corresponding to the brake pedal depression force under the boost of the negative pressure brake booster 17 (corresponding to the booster) in response to the depression force of the brake pedal 16 that the driver steps on.
  • the brake disc 14 is braked by operating the caliper 15 with this brake fluid pressure.
  • the negative pressure type brake booster 17 uses the intake negative pressure of the engine 1 to assist the driver's brake pedal depression force. When the negative pressure detected by the negative pressure sensor 17a exceeds a predetermined value, the negative pressure type brake booster 17 is sufficiently doubled. The power function can be demonstrated. In both the EV mode and the HEV mode, the hybrid vehicle is driven with the driving force command according to the driver's request by driving the wheel 5 with the torque according to the driving force command that the driver depresses the accelerator pedal 19.
  • Hybrid vehicle travel mode selection engine 1 output control, electric motor 2 rotation direction control and output control, continuously variable transmission 4 shift control, clutch CL engagement / release control, and battery 12 charge
  • the discharge control is performed by the hybrid controller 21, respectively.
  • the hybrid controller 21 performs these controls via the corresponding engine controller 22, motor controller 23, transmission controller 24, and battery controller 25.
  • the hybrid controller 21 has a signal from the brake switch 26, which is a normally open switch that switches from OFF to ON when the brake pedal 16 is depressed, a signal from the stroke sensor 16a that detects the stroke amount of the brake pedal 16, and an accelerator.
  • a signal from an accelerator opening sensor 27 for detecting the pedal depression amount (accelerator opening) APO is input.
  • the hybrid controller 21 further exchanges internal information with the engine controller 22, the motor controller 23, the transmission controller 24, and the battery controller 25.
  • the engine controller 22 controls the output of the engine 1 in response to a command from the hybrid controller 21, and the motor controller 23 controls the rotational direction of the electric motor 2 via the inverter 13 in response to the command from the hybrid controller 21.
  • the transmission controller 24 responds to a command from the hybrid controller 21 and controls the transmission of the continuously variable transmission 4 (V-belt continuously variable transmission mechanism CVT) using oil from the oil pump O / P driven by the engine as a medium.
  • the clutch CL is engaged and released.
  • the battery controller 25 performs charge / discharge control of the battery 12 in response to a command from the hybrid controller 21.
  • the V-belt continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5 are detachably connected to each other, so that the continuously variable transmission 4 has a dedicated clutch CL.
  • the continuously variable transmission 4 includes the auxiliary transmission 31 between the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5,
  • the friction element (clutch, brake, etc.) that controls the speed change of the transmission 31 can be diverted so that the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5 can be detachably coupled.
  • the sub-transmission 31 in FIG. 2 (a) includes composite sun gears 31s-1 and 31s-2, an inner pinion 31pin, an outer pinion 31pout, a ring gear 31r, and a carrier 31c that rotatably supports the pinion 31pin and 31pout. It consists of a Ravigneaux type planetary gear set consisting of
  • the sun gear 31s-1 is coupled to the secondary pulley 7 so as to act as an input rotating member, and the sun gear 31s-2 is arranged coaxially with respect to the secondary pulley 7, but freely rotates. To get.
  • the inner pinion 31pin is engaged with the sun gear 31s-1, and the inner pinion 31pin and the sun gear 31s-2 are respectively engaged with the outer pinion 31pout.
  • the outer pinion 31pout meshes with the inner periphery of the ring gear 31r, and is coupled to the final gear set 9 so that the carrier 31c acts as an output rotating member.
  • the carrier 31c and the ring gear 31r can be appropriately connected by the high clutch H / C, the ring gear 31r can be appropriately fixed by the reverse brake R / B, and the sun gear 31s-2 can be appropriately fixed by the low brake L / B. .
  • the sub-transmission 31 fastens the high clutch H / C, reverse brake R / B, and low brake L / B, which are shift friction elements, in a combination indicated by a circle in FIG.
  • the first forward speed, the second speed, and the reverse gear position can be selected by releasing as shown by x in (b).
  • the sub-transmission 31 is in a neutral state where no power is transmitted.
  • the auxiliary transmission 31 When the transmission 31 is in the first forward speed selection (deceleration) state and the high clutch H / C is engaged, the auxiliary transmission 31 is in the second forward speed selection (direct connection) state and when the reverse brake R / B is engaged, The transmission 31 is in a reverse selection (reverse) state.
  • the continuously variable transmission 4 in FIG. 2 (a) is a V-belt type continuously variable by releasing all the variable friction elements H / C, R / B, L / B and making the auxiliary transmission 31 neutral.
  • the transmission mechanism CVT (secondary pulley 7) and the drive wheel 5 can be disconnected. Therefore, the continuously variable transmission 4 in FIG. 2 (a) has the shift friction elements H / C, R / B, L / B of the auxiliary transmission 31 used for the clutch CL in FIG.
  • the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5 can be detachably coupled without additional CL.
  • the continuously variable transmission 4 in FIG. 2 (a) is controlled using oil from an oil pump O / P driven by the engine as a working medium.
  • the transmission controller 24 includes a line pressure solenoid 35, a lockup solenoid 36, The control of the continuously variable transmission 4 is controlled as follows through the primary pulley pressure solenoid 37, the low brake pressure solenoid 38, the high clutch pressure & reverse brake pressure solenoid 39, and the switch valve 41.
  • the transmission controller 24 receives a signal from the vehicle speed sensor 32 that detects the vehicle speed VSP and a signal from the acceleration sensor 33 that detects the vehicle acceleration / deceleration G.
  • the line pressure solenoid 35 responds to a command from the transmission controller 24 and regulates the oil from the oil pump O / P to the line pressure PL corresponding to the vehicle required driving force, and this line pressure PL is always secondary to the secondary pulley 7. By supplying the pulley pressure as the pulley pressure, the secondary pulley 7 clamps the V-belt 8 with a thrust according to the line pressure PL so as not to slip.
  • the lockup solenoid 36 responds to a lockup command from the transmission controller 24 and directs the line pressure PL to the torque converter T / C as appropriate, so that the torque converter T / C is connected between the input and output elements as required. Set to a directly connected lockup state.
  • the primary pulley pressure solenoid 37 adjusts the line pressure PL to the primary pulley pressure in response to the CVT gear ratio command from the transmission controller 24, and supplies this to the primary pulley 6, whereby the V groove width of the primary pulley 6 And the V-groove width of the secondary pulley 7 to which the line pressure PL is supplied are controlled so that the CVT gear ratio matches the command from the transmission controller 24, thereby realizing the CVT gear ratio command from the transmission controller 24.
  • the low brake pressure solenoid 38 is engaged by supplying the line pressure PL to the low brake L / B as the low brake pressure when the transmission controller 24 issues the first speed selection command for the sub-transmission 31.
  • the first speed selection command is realized.
  • the high clutch pressure & reverse brake pressure solenoid 39 is a switch valve that uses the line pressure PL as the high clutch pressure & reverse brake pressure when the transmission controller 24 issues the second speed selection command or reverse selection command for the sub-transmission 31. Supply to 41.
  • the switch valve 41 uses the line pressure PL from the solenoid 39 as the high clutch pressure to the high clutch H / C, and by engaging this, the second speed selection command of the auxiliary transmission 31 is issued. Realize.
  • the switch valve 41 uses the line pressure PL from the solenoid 39 as the reverse brake pressure to the reverse brake R / B and fastens it, thereby realizing the reverse selection command of the auxiliary transmission 31.
  • ⁇ EV deceleration regeneration mode> The EV deceleration regeneration mode of the hybrid vehicle of the first embodiment will be described below based on the vehicle drive system of FIG.
  • the accelerator pedal 19 When the accelerator pedal 19 is released during HEV driving and the vehicle shifts to coasting (inertia) driving, or when the vehicle is braked by depressing the brake pedal 16 thereafter, regenerative braking control that performs regenerative braking by the electric motor 2 is performed. . Thereby, the kinetic energy of the vehicle is converted into electric power, which is stored in the battery 12, thereby improving the energy efficiency.
  • the clutch CL is in the engaged state, so the regenerative braking energy is reduced by the reverse drive force (engine brake) of the engine 1 and the friction of the continuously variable transmission 4.
  • the energy regeneration efficiency is poor. Therefore, when the vehicle speed falls below the predetermined vehicle speed, the clutch CL is disengaged, the engine 1 and the continuously variable transmission 4 are disconnected from the drive wheels 5 and shifted to EV driving, and the EV regeneration state is thereby established. Further, by eliminating the rotation of the continuously variable transmission 4, the EV deceleration regeneration mode for obtaining the corresponding energy regeneration amount is selected.
  • the engine 1 is stopped from unnecessary viewpoint from the viewpoint of fuel consumption.
  • the engine 1 is stopped when the clutch CL is released by prohibiting the restart of fuel injection (fuel cut recovery) to the engine 1 so that the fuel injection stop (fuel cut) is continued even when the clutch CL is released.
  • the fuel cut recovery control is to restart the fuel injection when the engine speed is lower than the lowest speed at which the engine 1 can rotate independently (for example, the idle speed) in a state where the fuel injection is stopped. As a result, the engine start by the starter motor 3 is avoided and the engine operating state is secured. If it is desired to stop the operation of the engine 1 in the EV mode, the engine 1 is stopped by prohibiting the operation of the fuel cut recovery control.
  • the negative pressure brake booster 17 may not be able to secure a sufficient assist force due to the negative pressure being consumed. There was a risk of uncomfortable feeling to the driver because of the so-called iron plate brake that could not be stepped on deeply. That is, the negative pressure brake booster 17 has a structure in which the negative pressure disappears when the piston position in the master cylinder is returned after the brake pedal 16 is depressed. Therefore, in the first embodiment, the clutch CL is in a released state, and during the regenerative deceleration by the electric motor 2, the engine speed is secured at a predetermined speed or more in order to secure negative pressure.
  • FIG. 3 is a time chart showing the control process in the EV deceleration regeneration mode of the first embodiment.
  • the initial state is a state in which the accelerator pedal 19 is released and coasting traveling is being performed in the HEV traveling mode at a predetermined vehicle speed Vnew or higher at which the lockup clutch is engaged.
  • Vnew a predetermined vehicle speed
  • the predetermined vehicle speed is set to Vold on the lower vehicle speed side than Vnew and the engine 1 is not operated when the clutch CL is released.
  • the fuel cut recovery control is started, and then both the clutch CL and the lockup clutch are released. Therefore, even if the engine speed decreases rapidly to the vicinity of the idle speed due to the release of the clutch CL and the lockup clutch, the fuel injection is restarted by the fuel cut recovery control, the engine is secured at the idle speed, and the predetermined torque is The output idling state is set. Thereby, since a negative pressure can be secured, an assist function by the negative pressure brake booster 17 can be secured. In addition, since the operation of the oil pump O / P that supplies hydraulic pressure to the continuously variable transmission 4 can be ensured, the gear ratio control of the continuously variable transmission 4 can be continuously performed to achieve the desired gear ratio. it can. Since the engine friction torque is insufficient due to the release of the clutch CL, the braking torque is secured by increasing the regenerative torque by the electric motor 2.
  • the predetermined vehicle speed since the engine 1 is not operated when the clutch is released, and the negative pressure is not secured, the predetermined vehicle speed must be set to the low vehicle speed side and the state where the clutch CL is released must be shortened. Absent. Therefore, the predetermined vehicle speed is set to Vold lower than Vnew, and the clutch CL is released only when it falls to Vold at time t2. That is, in the case of the comparative example, the clutch CL cannot be released and the regenerative energy cannot be ensured until it decreases from Vnew to Vold, but in the case of Example 1, sufficient regenerative energy is ensured during this time. can do.
  • continuously variable transmission 4 (transmission) coupled to the output shaft of engine 1, A clutch CL interposed between the continuously variable transmission 4 and the drive wheels; An electric motor 2 (electric motor) coupled to the drive wheels; A negative pressure brake booster 17 (a booster) that assists the driver's brake pedal 16 with the negative pressure of the engine 1; A hybrid controller 21 (control means) that controls the output state of the engine 1 and the electric motor 2, the transmission ratio of the continuously variable transmission 4, and the engagement / release of the clutch CL, according to the operating state, With The hybrid controller 21 has a fuel cut recovery control in which the engine speed is higher than the idle speed (predetermined speed) and the fuel supply is reduced from the state where the fuel supply is stopped to the idle speed and the fuel supply is started to maintain the engine speed above the idle speed.
  • the EV deceleration regeneration mode (deceleration regeneration mode) is set, in which the clutch CL is switched from the engaged state to the released state and the electric motor 2 applies regenerative torque to the drive wheels.
  • the fuel cut recovery control is switched to the operating state to maintain the engine speed at or above the idle speed (predetermined speed). In other words, it is possible to secure negative pressure by maintaining the engine speed at or above the idle speed. For example, even if the driver repeatedly operates the brake pedal before stopping, the assist by the negative pressure brake booster 17 Therefore, the brake pedal 16 can be depressed. Therefore, braking can be performed without causing the driver to feel uncomfortable.
  • the fuel cut recovery control by operating the fuel cut recovery control before releasing the clutch CL, the engine speed does not decrease with the release of the clutch CL, and the self-rotating state of the engine 1 can be secured. If the fuel cut recovery control is already functioning before reaching the predetermined vehicle speed, the fuel cut recovery control may be continued as it is. Further, since the negative pressure is secured, the predetermined vehicle speed Vnew can be set higher, and the regenerative energy can be recovered more efficiently. Furthermore, since the rotation state of the continuously variable transmission 4 can be maintained and the hydraulic pressure supply by the oil pump O / P operation can be secured, the continuously variable transmission 4 can be shifted to a desired gear ratio, Appropriate gear ratio can be ensured at the time of restart.
  • Example 2 Next, Example 2 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described.
  • the engine 1 when the EV deceleration regeneration mode is selected, the engine 1 is set in an idling state.
  • the negative pressure of the negative pressure brake booster 17 is detected by the negative pressure sensor 17a, and whether or not a predetermined value (negative pressure necessary for braking) is ensured. Judging. If the predetermined value is not secured, a negative pressure request is output and the operating state of the engine 1 is maintained. On the other hand, when the negative pressure is secured, the negative pressure request is stopped, that is, the fuel cut recovery control is prohibited.
  • the negative pressure required for braking is a value that enables rapid deceleration to a vehicle stop state, for example.
  • FIG. 4 is a time chart showing the control process in the EV deceleration regeneration mode of the second embodiment.
  • the first state is a state where the accelerator pedal 19 is released, the brake pedal 16 is depressed and a brake request is output, and the vehicle is decelerating in the HEV traveling mode at a predetermined vehicle speed Vnew or higher when the lockup clutch is engaged. .
  • Example 3 Next, Example 3 will be described. Since the basic configuration is the same as that of the second embodiment, only different points will be described.
  • the required braking force value is determined based on whether or not the stroke amount detected by the brake stroke sensor 16a is greater than or equal to a predetermined value.
  • a configuration for detecting the master cylinder pressure, the pedal effort, and the like may be used, and there is no particular limitation.
  • FIG. 5 is a time chart showing the control process in the EV deceleration regeneration mode of the third embodiment.
  • the first state is a state where the accelerator pedal 19 is released, the brake pedal 16 is depressed and a brake request is output, and the vehicle is decelerating in the HEV traveling mode at a predetermined vehicle speed Vnew or higher when the lockup clutch is engaged. . Since the process until time t11 is the same as that in the second embodiment, the subsequent steps will be described.
  • the hybrid controller 21 disengages the clutch CL from the released state. It was decided to switch to. Therefore, the engine speed can be increased without using the starter motor 3 or the like, and the negative pressure can be secured while improving the durability of the starter motor 3. Further, it is not necessary to perform fuel injection, and fuel consumption can be improved.
  • the negative pressure of the engine 1 is used. However, for example, a pump that can generate a negative pressure is provided in the continuously variable transmission 4 so that the negative pressure can be ensured. Good. In this case, even when the lockup clutch is released, the negative pressure can be efficiently secured by engaging the clutch CL.
  • Example 4 Next, Example 4 will be described. Since the basic configuration is the same as that of the second embodiment, only different points will be described.
  • the fuel cut recovery control is switched to the operating state, and the starter motor 3 The engine 1 is cranked and the engine is started to ensure a negative pressure.
  • FIG. 6 is a time chart showing control processing in the EV deceleration regeneration mode of the fourth embodiment.
  • the first state is a state where the accelerator pedal 19 is released, the brake pedal 16 is depressed and a brake request is output, and the vehicle is decelerating in the HEV traveling mode at a predetermined vehicle speed Vnew or higher when the lockup clutch is engaged. . Since the process until time t11 is the same as that in the second embodiment, the subsequent steps will be described.
  • the hybrid controller 21 stops the engine 1 (the engine speed is lower than the idle speed) and the driver's brake request is equal to or greater than a predetermined braking force, the hybrid controller 21 sets the engine speed to the idle speed. It was decided to raise it to the above. Therefore, the engine 1 can be maintained at the idling speed, and a negative pressure can be secured. In addition, since the engine 1 is operating, even if the driver makes a reacceleration request or a restart request, the torque can be secured quickly, and the responsiveness to the reacceleration request or the restart request can be improved. It can be improved.
  • the present invention has been described based on the respective embodiments, the present invention is not limited to the above configuration, and other configurations are also included in the present invention.
  • the starter motor is not performed without performing fuel injection.
  • the engine speed may be secured by 3 etc.
  • the engine speed is secured based on the negative pressure request and the braking force request.
  • the engine speed may be secured based on the power generation request of the alternator. .
  • the configuration in which the clutch CL is engaged and the engine is restarted by the starter motor 3 is shown, but other configurations may be used.
  • a vehicle with an idling stop function has been replaced by replacing the alternator with a motor / generator, adding an alternator function to the motor / generator and adding an engine start function to restart the engine from an idling stop.
  • a technique for restarting the engine with this motor / generator instead of the starter motor has been put into practical use.
  • the present invention may also be configured to restart the engine by the motor / generator as described above.
  • the determination of whether or not the braking state is determined based on ON or OFF of the brake switch, but is not limited thereto, and is determined based on the output value of the brake pedal stroke sensor. Alternatively, the determination may be made based on an output value of a brake fluid pressure sensor that detects a master cylinder pressure or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 本発明では、エンジンの負圧により運転者のブレーキペダルの踏力をアシストする負圧ブレーキブースタを備えたハイブリッド車両において、エンジンと駆動輪との間に介装されたクラッチを解放し、電動モータにより駆動輪に回生トルクを付与するときは、クラッチを解放する前にフューエルカットリカバー制御を作動状態に切り替えてエンジン回転数を所定回転数以上に維持することとした。

Description

ハイブリッド車両の制御装置
 本発明は、エンジンおよび電動モータを動力源として搭載され、電動モータのみにより走行する電気走行モード(EVモード)と、電動モータおよびエンジンにより走行するハイブリッド走行モード(HEVモード)とを選択可能なハイブリッド車両の制御装置に関する。
 このようなハイブリッド車両としては従来、例えば特許文献1に記載のようなものが知られている。このハイブリッド車両は、一方の動力源であるエンジンが無段変速機およびクラッチを順次介して車輪に切り離し可能に駆動結合され、他方の動力源である電動モータが当該車輪に常時結合された型式のものである。
 かかるハイブリッド車両は、アクセルペダルが解放され、かつ、車速が所定車速以下のときは、エンジンを停止すると共に上記のクラッチを解放することで電動モータのみによるEVモードでの回生走行(EV走行)が可能である。なお、EV走行中にクラッチを上記のごとく解放することで、停止状態のエンジンが(変速機が存在している場合は変速機も)車輪から切り離されていることとなり、当該エンジン(変速機)をEVモードでの回生走行時に連れ回す(引き摺る)ことがなく、その分のエネルギー損失を回避し得てエネルギー効率を高めることができる。
特開2002-139136号公報
 特許文献1に記載の技術において、エンジンを停止する閾値である所定車速を高車速領域に設定すると、車両が停車するまでに時間がかかるため、その間に運転者がブレーキ踏み込み操作と踏み戻し操作とを繰り返し行う可能性がある。このとき、エンジンが停止した状態でブレーキ操作を繰り返すと、倍力手段であるブレーキマスターバックの負圧が低下するため、ブレーキペダルが深く踏み込めない、いわゆる鉄板ブレーキの状態(石踏み状態とも言う)となり、運転者に違和感を与えるおそれがあった。
 本発明は上記課題に着目し、エンジンと駆動輪との間のクラッチを解放して減速しているときにブレーキペダル操作を行ったとしても、運転者に与える違和感を回避可能なハイブリッド車両の制御装置を提供することを目的とする。
 この目的のため、本発明では、エンジンの負圧により運転者のブレーキペダルの踏力をアシストする負圧ブレーキブースタを備えたハイブリッド車両において、エンジンと駆動輪との間に介装されたクラッチを解放し、電動モータにより駆動輪に回生トルクを付与するときは、クラッチを解放する前にフューエルカットリカバー制御を作動状態に切り替えてエンジン回転数を所定回転数以上に維持することとした。
 すなわち、エンジン回転数が所定回転数以上に維持されることで負圧を確保することが可能となり、例え、停車までに運転者がブレーキペダル操作を繰り返したとしても、倍力手段によるアシストが得られるため、ブレーキペダルを踏み込むことができる。よって、運転者に違和感を与えることなく制動できる。また、負圧が確保されるため、所定車速Vnewを高めに設定することができ、より回生エネルギーを効率よく回収できる。更に、無段変速機4の回転状態を維持し、オイルポンプO/P作動による油圧供給を確保可能なため、無段変速機4を所望の変速比に変速させることができ、再加速要求や再発進時等において適切な変速比を確保できる。
本発明の第1実施例になるモード切り替え制御装置を具えたハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図である。 本発明の回生制動制御装置を適用可能な他の型式のハイブリッド車両を示し、 (a)は、当該ハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図であり、 (b)は、当該ハイブリッド車両の駆動系におけるVベルト式無段変速機に内蔵された副変速機内における変速摩擦要素の締結論理図である。 実施例1のEV減速回生モードの制御処理を表すタイムチャートである。 実施例2のEV減速回生モードの制御処理を表すタイムチャートである。 実施例3のEV減速回生モードの制御処理を表すタイムチャートである。 実施例4のEV減速回生モードの制御処理を表すタイムチャートである。
 1 エンジン(動力源)
 2 電動モータ(動力源)
 3 スタータモータ
 4 Vベルト式無段変速機
 5 駆動輪
 6 プライマリプーリ
 7 セカンダリプーリ
 8 Vベルト
 CVT 無段変速機構
 T/C トルクコンバータ
 CL クラッチ
 9,11 ファイナルギヤ組
 12 バッテリ
 13 インバータ
 14 ブレーキディスク
 15 キャリパ
 16 ブレーキペダル
 16a ストロークセンサ
 17 負圧式ブレーキブースタ
 17a 負圧センサ17a
 18 マスタシリンダ
 19 アクセルペダル
 21 ハイブリッドコントローラ
 22 エンジンコントローラ
 23 モータコントローラ
 24 変速機コントローラ
 25 バッテリコントローラ
 26 ブレーキスイッチ
 27 アクセル開度センサ
 O/P オイルポンプ
 31 副変速機
 H/C ハイクラッチ
 R/B リバースブレーキ
 L/B ローブレーキ
 32 車速センサ
 〔実施例1〕
  図1は、実施例1のハイブリッド車両の制御装置を具えたハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図である。図1のハイブリッド車両は、エンジン1および電動モータ2を動力源として搭載され、エンジン1は、スタータモータ3により始動する。エンジン1は、Vベルト式無段変速機4を介して駆動輪5に適宜切り離し可能に駆動結合し、Vベルト式無段変速機4は、概略を以下に説明するようなものとする。
 Vベルト式無段変速機4は、プライマリプーリ6と、セカンダリプーリ7と、これらプーリ6,7間に掛け渡したVベルト8とからなるバリエータから構成された無段変速機構CVTである。プライマリプーリ6はロックアップクラッチ付きのトルクコンバータT/Cを介してエンジン1のクランクシャフトに結合し、セカンダリプーリ7はクラッチCLおよびファイナルギヤ組9を順次介して駆動輪5に結合する。かくしてクラッチCLの締結状態で、エンジン1からの動力はトルクコンバータT/Cを経てプライマリプーリ6へ入力され、その後Vベルト8、セカンダリプーリ7、クラッチCLおよびファイナルギヤ組9を順次経て駆動輪5に達し、ハイブリッド車両の走行に供される。
 かかるエンジン動力伝達中、プライマリプーリ6のプーリV溝幅を小さくしつつ、セカンダリプーリ7のプーリV溝幅を大きくすることで、Vベルト8がプライマリプーリ6との巻き掛け円弧径を大きくされると同時にセカンダリプーリ7との巻き掛け円弧径を小さくされ、Vベルト式無段変速機4はハイ側プーリ比(ハイ側変速比)へのアップシフトを行うことができる。ハイ側変速比へのアップシフトを限界まで行った場合、変速比は最高変速比に設定される。
 逆にプライマリプーリ6のプーリV溝幅を大きくしつつ、セカンダリプーリ7のプーリV溝幅を小さくすることで、Vベルト8がプライマリプーリ6との巻き掛け円弧径を小さくされると同時にセカンダリプーリ7との巻き掛け円弧径を大きくされ、Vベルト式無段変速機4はロー側プーリ比(ロー側変速比)へのダウンシフトを行うことができる。ロー側変速比へのダウンシフトを限界まで行った場合、変速は最低変速比に設定される。
 無段変速機4は、プライマリプーリ6の回転数を検出する入力回転センサ6aと、セカンダリプーリ7の回転数を検出する出力回転センサ7aとを有し、これら両回転センサにより検出された回転数に基づいて実変速比を算出し、この実変速比が目標変速比となるように各プーリの油圧制御等が行われる。
 電動モータ2はファイナルギヤ組11を介して駆動輪5に常時結合し、この電動モータ2は、バッテリ12の電力によりインバータ13を介して駆動する。
 インバータ13は、バッテリ12の直流電力を交流電力に変換して電動モータ2へ供給すると共に、電動モータ2への供給電力を加減することにより、電動モータ2を駆動力制御および回転方向制御する。
 なお電動モータ2は、上記のモータ駆動のほかに発電機としても機能し、後で詳述する回生制動の用にも供する。この回生制動時はインバータ13が、電動モータ2に回生制動力分の発電負荷をかけることにより、電動モータ2を発電機として作用させ、電動モータ2の発電電力をバッテリ12に蓄電する。
 実施例1のハイブリッド車両は、クラッチCLを解放すると共にエンジン1を停止させた状態で電動モータ2を駆動することで、電動モータ2の動力のみがファイナルギヤ組11を経て駆動輪5に達し、電動モータ2のみによる電気走行モード(EVモード)で走行を行う。この間、クラッチCLを解放していることで、停止状態のエンジン1を連れ回すことがなく、EV走行中の無駄な電力消費を抑制する。
 上記のEV走行状態においてエンジン1をスタータモータ3により始動させると共にクラッチCLを締結させると、エンジン1からの動力がトルクコンバータT/C、プライマリプーリ6、Vベルト8、セカンダリプーリ7、クラッチCLおよびファイナルギヤ組9を順次経て駆動輪5に達するようになり、ハイブリッド車両はエンジン1および電動モータ2によるハイブリッド走行モード(HEVモード)で走行を行う。
 ハイブリッド車両を上記の走行状態から停車させる、もしくは、この停車状態に保つに際しては、駆動輪5と共に回転するブレーキディスク14をキャリパ15により挟圧して制動することで目的を達する。キャリパ15は、運転者が踏み込むブレーキペダル16の踏力に応動して負圧式ブレーキブースタ17(倍力手段に相当)による倍力下でブレーキペダル踏力対応のブレーキ液圧を出力するマスタシリンダ18に接続し、このブレーキ液圧でキャリパ15を作動させてブレーキディスク14の制動を行う。負圧式ブレーキブースタ17は、エンジン1の吸気負圧を利用して運転者のブレーキペダル踏力をアシストするものであり、負圧センサ17aにより検出された負圧が所定値以上の場合は十分に倍力機能を発揮可能とされている。ハイブリッド車両はEVモードおよびHEVモードのいずれにおいても、運転者がアクセルペダル19を踏み込んで指令する駆動力指令に応じたトルクで車輪5を駆動され、運転者の要求に応じた駆動力をもって走行される。
 ハイブリッド車両の走行モード選択と、エンジン1の出力制御と、電動モータ2の回転方向制御および出力制御と、無段変速機4の変速制御と、クラッチCLの締結、解放制御と、バッテリ12の充放電制御とは、それぞれハイブリッドコントローラ21が行う。このとき、ハイブリッドコントローラ21は、対応するエンジンコントローラ22、モータコントローラ23、変速機コントローラ24、およびバッテリコントローラ25を介してこれら制御を行うものとする。
 そのためハイブリッドコントローラ21には、ブレーキペダル16を踏み込む制動時にOFFからONに切り替わる常開スイッチであるブレーキスイッチ26からの信号と、ブレーキペダル16のストローク量を検出するストロークセンサ16aからの信号と、アクセルペダル踏み込み量(アクセル開度)APOを検出するアクセル開度センサ27からの信号とを入力する。ハイブリッドコントローラ21は更に、エンジンコントローラ22、モータコントローラ23、変速機コントローラ24、およびバッテリコントローラ25との間で、内部情報のやり取りを行う。
 エンジンコントローラ22は、ハイブリッドコントローラ21からの指令に応答して、エンジン1を出力制御し、モータコントローラ23は、ハイブリッドコントローラ21からの指令に応答してインバータ13を介し電動モータ2の回転方向制御および出力制御を行う。変速機コントローラ24は、ハイブリッドコントローラ21からの指令に応答し、エンジン駆動されるオイルポンプO/Pからのオイルを媒体として、無段変速機4(Vベルト式無段変速機構CVT)の変速制御およびクラッチCLの締結、解放制御を行う。バッテリコントローラ25は、ハイブリッドコントローラ21からの指令に応答し、バッテリ12の充放電制御を行う。
 なお図1では、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動輪5との間を切り離し可能に結合するため、無段変速機4に専用のクラッチCLを設けたが、
 図2(a)に例示するごとく無段変速機4が、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動輪5との間に副変速機31を内蔵している場合は、副変速機31の変速を司る摩擦要素(クラッチや、ブレーキなど)を流用して、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動輪5との間を切り離し可能に結合することができる。この場合、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動輪5との間を切り離し可能に結合する専用のクラッチを追設する必要がなくてコスト上有利である。
 図2(a)の副変速機31は、複合サンギヤ31s-1および31s-2と、インナピニオン31pinと、アウタピニオン31poutと、リングギヤ31rと、ピニオン31pin, 31poutを回転自在に支持したキャリア31cとからなるラビニョオ型プラネタリギヤセットで構成する。
 複合サンギヤ31s-1および31s-2のうち、サンギヤ31s-1は入力回転メンバとして作用するようセカンダリプーリ7に結合し、サンギヤ31s-2はセカンダリプーリ7に対し同軸に配置するが自由に回転し得るようにする。
 サンギヤ31s-1にインナピニオン31pinを噛合させ、このインナピニオン31pinおよびサンギヤ31s-2をそれぞれアウタピニオン31poutに噛合させる。
 アウタピニオン31poutはリングギヤ31rの内周に噛合させ、キャリア31cを出力回転メンバとして作用するようファイナルギヤ組9に結合する。
 キャリア31cとリングギヤ31rとをハイクラッチH/Cにより適宜結合可能となし、リングギヤ31rをリバースブレーキR/Bにより適宜固定可能となし、サンギヤ31s-2をローブレーキL/Bにより適宜固定可能となす。
 副変速機31は、変速摩擦要素であるハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを、図2(b)に○印により示す組み合わせで締結させ、それ以外を図2(b)に×印で示すように解放させることにより前進第1速、第2速、後退の変速段を選択することができる。ハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを全て解放すると、副変速機31は動力伝達を行わない中立状態であり、この状態でローブレーキL/Bを締結すると、副変速機31は前進第1速選択(減速)状態となり、ハイクラッチH/Cを締結すると、副変速機31は前進第2速選択(直結)状態となり、リバースブレーキR/Bを締結すると、副変速機31は後退選択(逆転)状態となる。
 図2(a)の無段変速機4は、全ての変速摩擦要素H/C, R/B, L/Bを解放して副変速機31を中立状態にすることで、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動輪5との間を切り離すことができる。従って図2(a)の無段変速機4は、副変速機31の変速摩擦要素H/C, R/B, L/Bが図1におけるクラッチCLの用をなし、図1におけるようにクラッチCLを追設することなく、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動輪5との間を切り離し可能に結合することができる。
 図2(a)の無段変速機4は、エンジン駆動されるオイルポンプO/Pからのオイルを作動媒体として制御されるもので、変速機コントローラ24がライン圧ソレノイド35、ロックアップソレノイド36、プライマリプーリ圧ソレノイド37、ローブレーキ圧ソレノイド38、ハイクラッチ圧&リバースブレーキ圧ソレノイド39およびスイッチバルブ41を介し、無段変速機4の当該制御を以下のように制御する。尚、変速機コントローラ24には、図1につき前述した信号に加えて、車速VSPを検出する車速センサ32からの信号、および車両加減速度Gを検出する加速度センサ33からの信号を入力する。
 ライン圧ソレノイド35は、変速機コントローラ24からの指令に応動し、オイルポンプO/Pからのオイルを車両要求駆動力対応のライン圧PLに調圧し、このライン圧PLを常時セカンダリプーリ7へセカンダリプーリ圧として供給することにより、セカンダリプーリ7がライン圧PLに応じた推力でVベルト8をスリップしないよう挟圧する。
 ロックアップソレノイド36は、変速機コントローラ24からのロックアップ指令に応動し、ライン圧PLを適宜トルクコンバータT/Cに向かわせることで、トルクコンバータT/Cを所要に応じて入出力要素間が直結されたロックアップ状態にする。
 プライマリプーリ圧ソレノイド37は、変速機コントローラ24からのCVT変速比指令に応動してライン圧PLをプライマリプーリ圧に調圧し、これをプライマリプーリ6へ供給することにより、プライマリプーリ6のV溝幅と、ライン圧PLを供給されているセカンダリプーリ7のV溝幅とを、CVT変速比が変速機コントローラ24からの指令に一致するよう制御して変速機コントローラ24からのCVT変速比指令を実現する。
 ローブレーキ圧ソレノイド38は、変速機コントローラ24が副変速機31の第1速選択指令を発しているとき、ライン圧PLをローブレーキ圧としてローブレーキL/Bに供給することによりこれを締結させ、第1速選択指令を実現する。
 ハイクラッチ圧&リバースブレーキ圧ソレノイド39は、変速機コントローラ24が副変速機31の第2速選択指令または後退選択指令を発しているとき、ライン圧PLをハイクラッチ圧&リバースブレーキ圧としてスイッチバルブ41に供給する。
 第2速選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをハイクラッチ圧としてハイクラッチH/Cに向かわせ、これを締結することで副変速機31の第2速選択指令を実現する。
 後退選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをリバースブレーキ圧としてリバースブレーキR/Bに向かわせ、これを締結することで副変速機31の後退選択指令を実現する。
 <EV減速回生モード>
 実施例1のハイブリッド車両のEV減速回生モードを、図1の車両の駆動系に基づいて以下に説明する。HEV走行中にアクセルペダル19を釈放してコースティング(惰性)走行へ移行した場合や、その後ブレーキペダル16を踏み込んで車両を制動する場合、電動モータ2による回生制動を行う回生減速制御が行われる。これにより、車両の運動エネルギーを電力に変換し、これをバッテリ12に蓄電しておくことでエネルギー効率の向上を図る。
 ところでHEV走行のままの回生制動(HEV回生)は、クラッチCLが締結状態であるため、エンジン1の逆駆動力(エンジンブレーキ)分および無段変速機4のフリクション分だけ回生制動エネルギーの低下を招くこととなり、エネルギー回生効率が悪い。
 そのため、車速が所定車速を下回ると、クラッチCLを解放状態とし、エンジン1および無段変速機4を駆動輪5から切り離してEV走行へと移行することでEV回生状態となし、これによりエンジン1および無段変速機4の連れ回しを排除することで、その分のエネルギー回生量を稼ぐEV減速回生モードが選択される。
 上記のようにクラッチCLを解放している時は、燃費の観点からエンジン1を無用な運転が行われないよう停止させておくため、上記のコースティング走行中に実行されていたエンジン1への燃料噴射の中止(フューエルカット)がクラッチCLの上記解放時も継続されるよう、エンジン1への燃料噴射の再開(フューエルカットリカバー)を禁止することで、クラッチCLの解放時にエンジン1を停止させる。ここで、フューエルカットリカバー制御とは、燃料噴射を中止している状態でエンジン回転数がエンジン1の自立回転可能な最低回転数(例えばアイドル回転数等)よりも下回る場合、燃料噴射を再開することで、スタータモータ3によるエンジン始動を回避してエンジン作動状態を確保する制御である。尚、EVモードでエンジン1の作動を停止させたい場合には、フューエルカットリカバー制御の作動を禁止することでエンジン1が停止される。
 しかし、上述のようにエンジン1を停止させた場合は、エンジン1の負圧を確保できないため、負圧式ブレーキブースタ17によるアシスト機能を確保できないという問題が有った。
 例えば、HEV走行中のコースティング走行において、所定車速を下回ったときにEV走行へと移行するように走行モードの切り替えを行う構成において、所定車速が高車速側に設定されるほど回生エネルギーを確保できるため、高車速側に設定することが望ましいとも言える。しかしながら、減速度を一定と仮定した場合、高車速側に設定するほど停車までの時間が長くなることから、その間に運転者がブレーキペダル16の踏み込み操作と踏み戻し操作とを繰り返す機会が増える。
 負圧式ブレーキブースタ17は、エンジン1の作動が停止した状態で、ブレーキペダル16の操作が繰り返されると、負圧が消費されることで十分なアシスト力を確保できないおそれがあり、ブレーキペダル16が深く踏み込めない、いわゆる鉄板ブレーキの状態となり、運転者に違和感を与えるおそれがあった。すなわち、負圧式ブレーキブースタ17は、ブレーキペダル16を踏み込んだ後、マスタシリンダ内のピストン位置を戻す際、負圧が無くなる構造となっているからである。
 そこで、実施例1では、クラッチCLを解放状態とし、電動モータ2による回生減速中は、負圧を確保するべくエンジン回転数を所定回転数以上に確保することとした。
 図3は実施例1のEV減速回生モードの制御処理を表すタイムチャートである。最初の状態は、ロックアップクラッチが締結された所定車速Vnew以上において、アクセルペダル19が解放され、HEV走行モードによるコースティング走行している状態である。尚、所定車速をVnewより低車速側のVoldに設定し、クラッチCL解放時にエンジン1を作動させない比較例と共に説明する。
 時刻t1において、車速が所定車速Vnewを下回ると、フューエルカットリカバー制御が開始され、その後、クラッチCL及びロックアップクラッチの両方を解放する。よって、クラッチCL及びロックアップクラッチの解放によりエンジン回転数がアイドル回転数付近まで一気に低下したとしても、フューエルカットリカバー制御によって燃料噴射が再開され、エンジンはアイドル回転数が確保され、所定のトルクが出力されたアイドリング状態となる。これにより、負圧を確保することができるため、負圧ブレーキブースタ17によるアシスト機能を確保できる。加えて、無段変速機4に油圧を供給するオイルポンプO/Pの作動を確保することができるため、無段変速機4の変速比制御を継続的に実施でき、所望の変速比を達成できる。
 尚、クラッチCLの解放によりエンジンフリクショントルク分が不足することから、電動モータ2による回生トルクを増大させることで制動トルクが確保される。
 一方、比較例の場合、クラッチ解放時にエンジン1を作動しないため、負圧が確保されないことから、所定車速を低車速側に設定し、クラッチCLが解放されている状態を短縮化せざるを得ない。よって、所定車速はVnewよりも低いVoldに設定されており、時刻t2においてVoldまで低下して初めてクラッチCLの解放が行われる。すなわち、比較例の場合は、VnewからVoldに低下するまでの間、クラッチCLを解放できず、回生エネルギーを確保することができないが、実施例1の場合は、この間に十分な回生エネルギーを確保することができる。
 以上説明したように実施例1にあっては下記に列挙する作用効果が得られる。
 (1)エンジン1の出力軸に結合された無段変速機4(変速機)と、
 無段変速機4と駆動輪との間に介装されたクラッチCLと、
 駆動輪に結合された電動モータ2(電動機)と、
 エンジン1の負圧により運転者のブレーキペダル16の踏力をアシストする負圧ブレーキブースタ17(倍力手段)と、
 運転状態に応じて、エンジン1及び電動モータ2の出力状態と、無段変速機4の変速比と、クラッチCLの締結・解放とを制御するハイブリッドコントローラ21(制御手段)と、
 を備え、
 ハイブリッドコントローラ21は、エンジン回転数がアイドル回転数(所定回転数)より高く燃料供給を停止した状態からアイドル回転数まで低下し燃料供給を開始することでアイドル回転数以上に維持するフューエルカットリカバー制御を作動状態もしくは非作動状態に切り替え可能であり、クラッチCLを締結状態から解放状態に切り替えて電動モータ2により駆動輪に回生トルクを付与するEV減速回生モード(減速回生モード)が設定されたときは、クラッチCLを締結状態から解放状態に切り替える前に、フューエルカットリカバー制御を作動状態に切り替えてエンジン回転数をアイドル回転数(所定回転数)以上に維持することとした。
 すなわち、エンジン回転数がアイドル回転数以上に維持されることで負圧を確保することが可能となり、例え、停車までに運転者がブレーキペダル操作を繰り返したとしても、負圧ブレーキブースタ17によるアシストが得られるため、ブレーキペダル16を踏み込むことができる。よって、運転者に違和感を与えることなく制動できる。
 また、クラッチCLの解放前にフューエルカットリカバー制御を作動させることで、クラッチCLの解放に伴ってエンジン回転数が低下することがなく、エンジン1の自立回転状態を確保できる。尚、フューエルカットリカバー制御が所定車速に到達する前に既に機能していた場合には、そのままフューエルカットリカバー制御を継続すればよい。
 また、負圧が確保されるため、所定車速Vnewを高めに設定することができ、より回生エネルギーを効率よく回収できる。更に、無段変速機4の回転状態を維持し、オイルポンプO/P作動による油圧供給を確保可能なため、無段変速機4を所望の変速比に変速させることができ、再加速要求や再発進時等において適切な変速比を確保できる。
 〔実施例2〕
 次に、実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。実施例1では、EV減速回生モードが選択されたときは、エンジン1をアイドリング状態とした。これに対し、実施例2では、運転者のブレーキ要求として、負圧ブレーキブースタ17の負圧を負圧センサ17aにより検出し、所定値(制動に必要な負圧)が確保されているか否かを判断する。所定値が確保されていない場合は負圧要求を出力して、エンジン1の作動状態を維持する。一方、負圧が確保されている場合は負圧要求を停止する、すなわちフューエルカットリカバー制御を禁止するものである。尚、制動に必要な負圧とは、例えば車両停止状態までの急減速を行うことが可能な値である。
 図4は実施例2のEV減速回生モードの制御処理を表すタイムチャートである。最初の状態は、ロックアップクラッチが締結された所定車速Vnew以上において、アクセルペダル19が解放され、ブレーキペダル16が踏み込まれてブレーキ要求が出力され、HEV走行モードにより減速走行している状態である。
 時刻t1において、車速が所定車速Vnewを下回ると、フューエルカットリカバー制御が開始され、その後、クラッチCL及びロックアップクラッチの両方を解放する。よって、クラッチCL及びロックアップクラッチの解放によりエンジン回転数がアイドル回転数付近まで一気に低下したとしても、フューエルカットリカバー制御によって燃料噴射が再開され、エンジンはアイドル回転数が確保され、所定のトルクが出力されたアイドリング状態となる。これにより、負圧を確保することができるため、負圧ブレーキブースタ17によるアシスト機能を確保できる。
 時刻t11において、制動に必要な負圧が確保されると、負圧を確保する必要が無いため、フューエルカットリカバー制御を禁止し、これによりエンジン1の作動を停止する。これにより、無駄な燃料消費を抑制することができる。
 以上説明したように、実施例2にあっては下記の作用効果が得られる。
(2)負圧(運転者のブレーキ要求を満足するか否か)を検出する負圧センサ17a(ブレーキ要求検出手段)を有し、ハイブリッドコントローラ21は、エンジン回転数をアイドル回転数以上に維持しているときに、ブレーキ要求を満足すると検出されたときは、エンジン回転数をアイドル回転数より低下させる。
 これにより、無駄な燃料消費を抑制することができ、燃費を改善することができる。
 〔実施例3〕
 次に、実施例3について説明する。基本的な構成は実施例2と同じであるため、異なる点についてのみ説明する。実施例3では、実施例2のようにエンジン1の作動を停止した後に、運転者の制動力要求が所定値以上となった場合には、クラッチCLを締結することで負圧を確保するものである。尚、制動力要求値として、実施例3ではブレーキストロークセンサ16aにより検出されたストローク量が所定値以上か否かに基づいて判断するものとする。ただし、運転者のブレーキ要求を検出できるものであれば、マスタシリンダ圧や踏力等を検出する構成であってもよく、特に限定しない。
 図5は実施例3のEV減速回生モードの制御処理を表すタイムチャートである。最初の状態は、ロックアップクラッチが締結された所定車速Vnew以上において、アクセルペダル19が解放され、ブレーキペダル16が踏み込まれてブレーキ要求が出力され、HEV走行モードにより減速走行している状態である。時刻t11までは、実施例2と同じであるため、それ以降について説明する。
 時刻t12において、運転者がブレーキペダル16を踏み込み、所定値以上の要求制動力が検出されると、クラッチCLが解放状態から締結状態に切り替えられる。すると、エンジン回転数が車速と変速比に応じて決定される回転数まで上昇し、負圧を発生することが可能となる。このとき、エンジンフリクション分が増加するため、その分、電動モータ2の回生トルクは小さくされる。このとき、フューエルカットリカバー制御はOFFのままとされるため、燃料噴射による燃費の悪化を回避しつつ、負圧を確保できる。
 以上説明したように、実施例3にあっては下記の作用効果が得られる。
(3)ハイブリッドコントローラ21は、エンジン停止時(エンジン回転数をアイドル回転数より低下させているとき)に、運転者の要求制動力が所定値以上のときは、クラッチCLを解放状態から締結状態に切り替えることとした。
 よって、スタータモータ3等を使用することなくエンジン回転数を上昇させることができ、スタータモータ3の耐久性を向上しつつ、負圧を確保できる。また、燃料噴射を行う必要がなく、燃費を改善することができる。
 尚、実施例3では、エンジン1の負圧を用いているが、例えば、無段変速機4に負圧を発生可能なポンプ等を設け、それによって負圧を確保するように構成してもよい。この場合、ロックアップクラッチを解放したままであっても、クラッチCLの締結により効率よく負圧を確保できる。
 〔実施例4〕
次に、実施例4について説明する。基本的な構成は実施例2と同じであるため、異なる点についてのみ説明する。実施例4では、実施例2のようにエンジン1の作動を停止した後に、運転者の制動力要求が所定値以上となった場合には、フューエルカットリカバー制御を作動状態に切り替え、スタータモータ3によりエンジン1をクランキングし、エンジン始動を行うことで負圧を確保するものである。
 図6は実施例4のEV減速回生モードの制御処理を表すタイムチャートである。最初の状態は、ロックアップクラッチが締結された所定車速Vnew以上において、アクセルペダル19が解放され、ブレーキペダル16が踏み込まれてブレーキ要求が出力され、HEV走行モードにより減速走行している状態である。時刻t11までは、実施例2と同じであるため、それ以降について説明する。
 時刻t13において、運転者がブレーキペダル16を踏み込み、所定値以上の要求制動力が検出されると、フューエルカットリカバー制御を禁止状態から許可状態に切り替えると共に、スタータモータ3によりエンジンクランキングを行ってエンジン1を始動する。これにより、エンジン1はアイドル回転数を維持することが可能となり、負圧を確保することができる。尚、クラッチCLは解放されたままであり、電動モータ2の回生トルク等には影響はないため、制動時における制動トルク変動等を回避できる。
 加えて、エンジン1が作動していることから、この場面において運転者がアクセルペダル19を踏み込んで再加速要求や再発進要求を出した場合であっても、十分なトルクを素早く確保することが可能となり、再加速要求や再発進要求に対する応答性を向上できる。
 以上説明したように、実施例4にあっては下記の作用効果が得られる。
 (4)ハイブリッドコントローラ21は、エンジン1を停止(エンジン回転数をアイドル回転数より低下)させているときに、運転者のブレーキ要求が所定制動力以上のときは、エンジン回転数をアイドル回転数以上に上昇させることとした。
 よって、エンジン1をアイドル回転数に維持することが可能となり、負圧を確保することができる。また、エンジン1が作動しているため、運転者が再加速要求や再発進要求を行った場合であっても、素早くトルクを確保することができ、再加速要求や再発進要求に対する応答性を向上できる。
 以上、本発明を各実施例に基づいて説明したが、上記構成に限られるものではなく、他の構成であっても本発明に含まれる。
 実施例1では、エンジン1のフューエルカットリカバーによりエンジン回転数を所定回転数以上に確保する例を示したが、単にエンジン回転数を確保するという観点からすれば、燃料噴射を行わずにスタータモータ3等によってエンジン回転数を確保してもよい。
 また、実施例では、負圧要求や制動力要求に基づいてエンジン回転数を確保することとしたが、例えば、オルタネータの発電要求等に基づいてエンジン回転数を確保するように構成してもよい。
 更に、実施例ではクラッチCLの締結やスタータモータ3によりエンジン再始動を行う構成を示したが、他の構成であっても構わない。具体的には、近年、アイドリングストップ機能付き車両であって、オルタネータをモータ・ジェネレータに置き換え、このモータ・ジェネレータにオルタネータ機能を加えてエンジン始動機能を付加することにより、アイドリングストップからのエンジン再始動時に、スタータモータではなく、このモータ・ジェネレータによりエンジン再始動を行う技術が実用化されている。本願発明も上記のようなモータ・ジェネレータによりエンジン再始動を行う構成としてもよい。
 また、実施例では、制動状態か否かの判断をブレーキスイッチのONもしくはOFFに基づいて判断したが、これに限定されるものではなく、ブレーキペダルのストロークセンサの出力値に基づいて判断する、もしくはマスタシリンダ圧等を検出するブレーキ液圧センサの出力値に基づいて判断するようにしてもよい。

Claims (4)

  1.  エンジンの出力軸に結合された無段変速機と、
     前記変速機と駆動輪との間に介装されたクラッチと、
     前記駆動輪に結合された電動機と、
     前記エンジンの負圧により運転者のブレーキペダルの踏力をアシストする倍力手段と、
     運転状態に応じて、前記エンジン及び前記電動機の出力状態と、前記変速機の変速比と、前記クラッチの締結・解放とを制御する制御手段と、
     を備え、
     前記制御手段は、エンジン回転数が所定回転数より高く燃料供給を停止した状態から前記所定回転数まで低下し燃料供給を開始することで前記所定回転数以上に維持するフューエルカットリカバー制御を作動状態もしくは非作動状態に切り替え可能であり、前記クラッチを締結状態で所定車速より高車速状態から減速して前記所定車速以下になったときに前記クラッチを締結状態から解放状態に切り替えて前記電動機により前記駆動輪に回生トルクを付与する減速回生モードが設定されたときは、前記クラッチを締結状態から解放状態に切り替える前に、前記フューエルカットリカバー制御を作動状態に切り替えてエンジン回転数を前記所定回転数以上に維持することを特徴とするハイブリッド車両の制御装置。
  2.  請求項1に記載のハイブリッド車両の制御装置において、
     運転者のブレーキ要求を満足するか否かを検出するブレーキ要求検出手段を有し、
     前記制御手段は、エンジン回転数を前記所定回転数以上に維持しているときに、前記ブレーキ要求を満足すると検出されたときは、エンジン回転数を前記所定回転数より低下させることを特徴とするハイブリッド車両の制御装置。
  3.  請求項2に記載のハイブリッド車両の制御装置において、
     前記制御手段は、エンジン回転数を前記所定回転数より低下させているときに、運転者の要求制動力が所定値以上のときは、前記クラッチを解放状態から締結状態に切り替えることを特徴とするハイブリッド車両の制御装置。
  4.  請求項2に記載のハイブリッド車両の制御装置において、
     前記制御手段は、エンジン回転数を前記所定回転数より低下させているときに、運転者のブレーキ要求が所定制動力以上のときは、エンジン回転数を前記所定回転数以上に上昇させることを特徴とするハイブリッド車両の制御装置。
PCT/JP2013/079423 2012-11-16 2013-10-30 ハイブリッド車両の制御装置 WO2014077131A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/434,419 US9415771B1 (en) 2012-11-16 2013-10-30 Control device for a hybrid vehicle
EP13854867.2A EP2921361B1 (en) 2012-11-16 2013-10-30 Control device for hybrid vehicle
CN201380059487.4A CN104797475B (zh) 2012-11-16 2013-10-30 混合动力车辆的控制装置
JP2014546932A JP5835500B2 (ja) 2012-11-16 2013-10-30 ハイブリッド車両の制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-251776 2012-11-16
JP2012251776 2012-11-16

Publications (1)

Publication Number Publication Date
WO2014077131A1 true WO2014077131A1 (ja) 2014-05-22

Family

ID=50731049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079423 WO2014077131A1 (ja) 2012-11-16 2013-10-30 ハイブリッド車両の制御装置

Country Status (5)

Country Link
US (1) US9415771B1 (ja)
EP (1) EP2921361B1 (ja)
JP (1) JP5835500B2 (ja)
CN (1) CN104797475B (ja)
WO (1) WO2014077131A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150136404A (ko) * 2014-05-27 2015-12-07 현대자동차주식회사 하이브리드 차량의 엔진 클러치 제어 장치 및 방법
CN105365810A (zh) * 2014-09-01 2016-03-02 现代自动车株式会社 用于释放混合动力车辆的发动机离合器的系统和方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2977649B1 (en) * 2013-03-22 2020-06-24 Jatco Ltd Belt-type continuously variable transmission
JP5929866B2 (ja) * 2013-10-03 2016-06-08 トヨタ自動車株式会社 移動支援装置、移動支援方法、及び運転支援システム
JP6418373B2 (ja) * 2014-04-04 2018-11-07 日立オートモティブシステムズ株式会社 車両制御装置及び車両制御方法
CN105383280A (zh) * 2015-11-24 2016-03-09 中科动力(福建)新能源汽车有限公司 一种微型电动汽车用混合动力系统及其控制方法
EP3514028B1 (en) * 2016-09-15 2020-12-02 Nissan Motor Co., Ltd. Vehicle control method and vehicle control apparatus
KR102270990B1 (ko) * 2017-12-15 2021-07-01 닛산 지도우샤 가부시키가이샤 하이브리드 차량의 제어 방법 및 제어 장치
KR20190073182A (ko) * 2017-12-18 2019-06-26 현대자동차주식회사 Isg 기능을 포함하는 차량의 제어 방법 및 그 제어 장치
FR3079486B1 (fr) * 2018-03-29 2021-09-24 Renault Sas Procede de commande automatique de changements d’etats d’un groupe motopropulseur par echange d’informations inter systemes
DE102018206050B4 (de) * 2018-04-20 2020-01-16 Audi Ag Verfahren zum Betrieb eines Kraftfahrzeugs
WO2020026621A1 (ja) * 2018-08-02 2020-02-06 ボッシュ株式会社 車両の制御装置
CN111619350A (zh) * 2019-02-27 2020-09-04 北京宝沃汽车有限公司 整车控制方法、整车控制系统和一种车辆
JP7211536B2 (ja) * 2019-12-06 2023-01-24 日産自動車株式会社 ハイブリッド車両制御方法及びハイブリッド車両制御装置
US11560133B2 (en) * 2020-09-29 2023-01-24 GM Global Technology Operations LLC Systems and methods for limiting engine torque and controlling a clutch

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139136A (ja) 2000-11-02 2002-05-17 Toyota Motor Corp 無段変速機構付きハイブリッド駆動機構の制御装置
JP2005212519A (ja) * 2004-01-27 2005-08-11 Toyota Motor Corp ハイブリッド車の駆動制御装置
JP2006193139A (ja) * 2004-12-14 2006-07-27 Toyota Motor Corp 自動車およびその制御方法
WO2012086088A1 (ja) * 2010-12-24 2012-06-28 トヨタ自動車株式会社 ハイブリッド車両

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4446485C2 (de) * 1994-12-23 2003-06-26 Daimler Chrysler Ag Verfahren und Vorrichtung zum Abbremsen eines Kraftfahrzeuges mit Hybridantrieb
JP3129204B2 (ja) * 1995-10-18 2001-01-29 トヨタ自動車株式会社 ハイブリッド駆動装置
JP2000310133A (ja) * 1999-04-26 2000-11-07 Toyota Motor Corp エンジンの自動停止始動装置
US6122588A (en) * 1999-10-19 2000-09-19 Ford Global Technologies, Inc. Vehicle speed control with continuously variable braking torque
JP5095955B2 (ja) 2006-05-11 2012-12-12 トヨタ自動車株式会社 車両およびその制御方法
JP4591471B2 (ja) * 2007-04-13 2010-12-01 トヨタ自動車株式会社 ハイブリッド車両用駆動装置の制御装置
JP5199765B2 (ja) * 2008-07-17 2013-05-15 トヨタ自動車株式会社 車両用制動装置
US8484961B2 (en) 2009-04-10 2013-07-16 Ford Global Technologies, Llc Vacuum accumulator system and method for regenerative braking system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139136A (ja) 2000-11-02 2002-05-17 Toyota Motor Corp 無段変速機構付きハイブリッド駆動機構の制御装置
JP2005212519A (ja) * 2004-01-27 2005-08-11 Toyota Motor Corp ハイブリッド車の駆動制御装置
JP2006193139A (ja) * 2004-12-14 2006-07-27 Toyota Motor Corp 自動車およびその制御方法
WO2012086088A1 (ja) * 2010-12-24 2012-06-28 トヨタ自動車株式会社 ハイブリッド車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2921361A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150136404A (ko) * 2014-05-27 2015-12-07 현대자동차주식회사 하이브리드 차량의 엔진 클러치 제어 장치 및 방법
KR102074746B1 (ko) 2014-05-27 2020-02-07 현대자동차 주식회사 하이브리드 차량의 엔진 클러치 제어 장치 및 방법
CN105365810A (zh) * 2014-09-01 2016-03-02 现代自动车株式会社 用于释放混合动力车辆的发动机离合器的系统和方法
CN105365810B (zh) * 2014-09-01 2019-02-19 现代自动车株式会社 用于释放混合动力车辆的发动机离合器的系统和方法

Also Published As

Publication number Publication date
EP2921361B1 (en) 2017-04-05
US9415771B1 (en) 2016-08-16
EP2921361A1 (en) 2015-09-23
JP5835500B2 (ja) 2015-12-24
JPWO2014077131A1 (ja) 2017-01-05
EP2921361A4 (en) 2016-02-24
US20160229391A1 (en) 2016-08-11
CN104797475A (zh) 2015-07-22
CN104797475B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5835500B2 (ja) ハイブリッド車両の制御装置
JP5936703B2 (ja) ハイブリッド車両のモード切り替え制御装置
JP6113910B2 (ja) ハイブリッド車両の制御装置
JP6052775B2 (ja) ハイブリッド車両の制御装置
WO2014087856A1 (ja) ハイブリッド車両のモード切り替え制御装置
JP6115978B2 (ja) ハイブリッド車両の制御装置
WO2013146175A1 (ja) ハイブリッド車両の電気走行減速時変速制御装置
JP6569095B2 (ja) ハイブリッド車両の制御装置
JP6340605B2 (ja) ハイブリッド車両の制御装置
WO2014065302A1 (ja) ハイブリッド車両のモード切り替え制御装置
JP6113478B2 (ja) ハイブリッド車両の制御装置
JP6303783B2 (ja) ハイブリッド車両の制御装置
JP6409363B2 (ja) ハイブリッド車両の制御装置
JP2014113902A (ja) ハイブリッド車両のモード切り替え制御装置
JP6273505B2 (ja) ハイブリッド車両の制御装置
WO2014087819A1 (ja) ハイブリッド車両のモード切り替え制御装置
WO2014091838A1 (ja) ハイブリッド車両の制御装置
WO2014069527A1 (ja) ハイブリッド車両の回生制動制御装置
WO2014073435A1 (ja) ハイブリッド車両の制御装置
JP2014091438A (ja) ハイブリッド車両の変速制御装置
JP2013241100A (ja) ハイブリッド車両の制御装置
JP2014094595A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014546932

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14434419

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013854867

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013854867

Country of ref document: EP