WO2014076964A1 - 収容容器、収容容器の製造方法、半導体の製造方法、及び半導体製造装置 - Google Patents

収容容器、収容容器の製造方法、半導体の製造方法、及び半導体製造装置 Download PDF

Info

Publication number
WO2014076964A1
WO2014076964A1 PCT/JP2013/006721 JP2013006721W WO2014076964A1 WO 2014076964 A1 WO2014076964 A1 WO 2014076964A1 JP 2013006721 W JP2013006721 W JP 2013006721W WO 2014076964 A1 WO2014076964 A1 WO 2014076964A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
sic substrate
crystal sic
container
tantalum
Prior art date
Application number
PCT/JP2013/006721
Other languages
English (en)
French (fr)
Inventor
聡 鳥見
紀人 矢吹
暁 野上
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to EP13855882.0A priority Critical patent/EP2922084B1/en
Priority to KR1020157015949A priority patent/KR102067313B1/ko
Priority to CN201380059730.2A priority patent/CN104854678B/zh
Priority to US14/434,864 priority patent/US9704733B2/en
Publication of WO2014076964A1 publication Critical patent/WO2014076964A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • C23C10/20Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions only one element being diffused
    • C23C10/22Metal melt containing the element to be diffused
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/12Etching in gas atmosphere or plasma
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0025Especially adapted for treating semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Definitions

  • the present invention mainly relates to a storage container for storing a single crystal SiC substrate when the surface of the single crystal SiC substrate is etched.
  • SiC is attracting attention as a new semiconductor material because it is superior in heat resistance, mechanical strength and the like as compared with Si and the like. Note that crystal defects or the like may initially exist on the surface of the single crystal SiC substrate.
  • Patent Document 1 discloses a surface flattening method for flattening (repairing) the surface of this single crystal SiC substrate.
  • a carbonized layer and a sacrificial growth layer are formed on a single crystal SiC substrate housed in a container, and the surface is flattened by etching the sacrificial growth layer. Thereby, a high-quality seed substrate for epitaxial growth can be produced.
  • the storage container 90 in which the single crystal SiC substrate 94 is stored includes an upper container 91 and a lower container 92 that can be fitted to each other.
  • Si93 is fixed to the wall surface of the portion constituting the internal space. With this configuration, Si 93 evaporates during the heat treatment, and Si vapor pressure can be formed in the internal space of the container 90.
  • the seed crystal produced as described above is subjected to processes such as epitaxial growth, ion implantation, and ion activation.
  • Patent Document 2 discloses a method of suppressing sublimation of Si and SiC during ion activation by forming a carbon layer (graphene cap) on the surface of a single crystal SiC substrate and performing the above-described ion activation. To do. Thereafter, in this method, the surface of the single crystal SiC substrate is etched at the Si vapor pressure in order to remove the carbon layer and remove the insufficient ion implantation portion.
  • positioning Si pellet to a storage container is disclosed.
  • the Si when Si is fixed to the wall surface of the internal space as in Patent Document 1, the Si may melt during the heat treatment. In particular, when Si fixed to the upper wall surface of the internal space is melted, Si falls on the single crystal SiC substrate. In addition, when Si is not fixed to the upper wall surface of the internal space, the pressure distribution of Si is not uniform, and the heat treatment cannot be performed appropriately.
  • Patent Document 2 Si pellets are arranged inside the storage container, but even with this method, the Si pressure distribution is non-uniform and the heat treatment cannot be performed properly. Therefore, in Patent Document 1 and Patent Document 2, etching cannot be performed uniformly.
  • Patent Document 2 since a process of forming a carbon layer and a process of removing the carbon layer are necessary, the process becomes complicated.
  • the present invention has been made in view of the above circumstances, and its main purpose is to accommodate Si that does not drop onto the single crystal SiC substrate and can make the pressure distribution of Si in the internal space uniform. To provide a container.
  • the following configuration is provided in a storage container that stores a single crystal SiC substrate to be etched by a heat treatment under the vapor pressure of Si. That is, the container is made of tantalum metal, and a tantalum carbide layer is provided on the inner space side, and a tantalum silicide layer is further provided on the inner space side of the tantalum carbide layer.
  • the structure in which Si is fixed to the inner surface of the container as in the prior art and Si is supplied may adversely affect the single-crystal SiC substrate due to the melting of Si.
  • the adverse effect can be prevented by supplying Si to the space.
  • the tantalum silicide layer is provided on at least an upper wall surface of the stored single crystal SiC substrate.
  • the tantalum silicide layer is provided over the entire wall surface forming the internal space.
  • the container is used for accommodating the single crystal SiC substrate in an etching process for removing a portion of the surface of the single crystal SiC substrate into which ions have been implanted that are insufficient for ion implantation.
  • the storage container is used for storing the single crystal SiC substrate in an etching process performed on the single crystal SiC substrate before forming an epitaxial layer.
  • the tantalum silicide layer is preferably provided with a thickness of 1 ⁇ m to 300 ⁇ m.
  • tantalum silicide layer having this thickness, it is possible to appropriately prevent cracking of the storage container while sufficiently securing Si to be supplied to the internal space.
  • container of the said tantalum silicide layer is preferably made of TaSi 2.
  • the tantalum silicide layer can be formed simply by bringing the molten Si into contact with heating.
  • this manufacturing method includes a step of forming a tantalum silicide layer by heating the tantalum carbide layer constituting a part of the container in a state where the molten Si is in contact with the tantalum carbide layer.
  • a semiconductor manufacturing method in which etching is performed by a heat treatment under the vapor pressure of Si using the container.
  • a semiconductor manufacturing apparatus provided with the above container.
  • summary of the high temperature vacuum furnace used for the surface treatment method of this invention The figure which shows the structure of a crucible. Phase diagram of Ta, Si, C at 1000 ° C. and 1 atm. The graph which shows the partial pressure of heating temperature and Si vapor pressure sublimated from tantalum silicide. The figure which shows the mode of the board
  • FIG. 1 is a diagram for explaining the outline of a high-temperature vacuum furnace used in the surface treatment method of the present invention.
  • FIG. 2 is a diagram illustrating the configuration of the crucible 30.
  • the high-temperature vacuum furnace 10 includes a main heating chamber 21 and a preheating chamber 22.
  • the main heating chamber 21 can heat the single crystal SiC substrate to a temperature of 1000 ° C. or higher and 2300 ° C. or lower.
  • the preheating chamber 22 is a space for performing preheating before heating the single crystal SiC substrate in the main heating chamber 21.
  • a vacuum forming valve 23, an inert gas injection valve 24, and a vacuum gauge 25 are connected to the main heating chamber 21.
  • the degree of vacuum in the main heating chamber 21 can be adjusted by the vacuum forming valve 23.
  • the pressure of the inert gas (for example, Ar gas) in the main heating chamber 21 can be adjusted by the inert gas injection valve 24.
  • the vacuum gauge 25 the degree of vacuum in the main heating chamber 21 can be measured.
  • a heater 26 is provided inside the heating chamber 21. Further, a heat reflecting metal plate (not shown) is fixed to the side wall and ceiling of the main heating chamber 21, and the heat reflecting metal plate reflects the heat of the heater 26 toward the central portion of the main heating chamber 21. It is configured. Thereby, a single-crystal SiC substrate can be heated strongly and uniformly, and can be heated up to the temperature of 1000 degreeC or more and 2300 degrees C or less.
  • a resistance heating type heater or a high frequency induction heating type heater can be used as the heater 26, for example.
  • the single crystal SiC substrate is heated while being accommodated in a crucible (accommodating container) 30.
  • the crucible 30 is placed on an appropriate support base or the like, and is configured to be movable at least from the preheating chamber to the main heating chamber by moving the support base.
  • the crucible 30 includes an upper container 31 and a lower container 32 that can be fitted to each other.
  • the crucible 30 includes a tantalum layer (Ta), a tantalum carbide layer (TaC and Ta 2 C), and a tantalum silicide layer (TaSi 2 ) in order from the outer side to the inner space side of the crucible 30. ) Is provided.
  • a crucible composed of a tantalum layer and a tantalum carbide layer is conventionally known, but the crucible 30 of the present embodiment further includes a tantalum silicide layer.
  • This tantalum silicide layer is for making the internal space of the crucible 30 have Si vapor pressure, and corresponds to Si fixed to the inner wall in Patent Document 1 and Si pellet in Patent Document 2.
  • the tantalum silicide layer is formed by bringing molten Si into contact with the inner wall surface of the crucible and heating at about 1800 ° C. or more and 2000 ° C. or less. Thereby, a tantalum silicide layer composed of TaSi 2 can be realized.
  • a tantalum silicide layer having a thickness of about 30 ⁇ m to 50 ⁇ m is formed. However, the thickness may be, for example, 1 ⁇ m to 300 ⁇ m depending on the volume of the internal space.
  • a tantalum silicide layer can be formed.
  • TaSi 2 is formed as tantalum silicide.
  • tantalum silicide represented by another chemical formula for example, tantalum silicide shown in the phase diagram of FIG. 3
  • a plurality of tantalum silicides may be formed to overlap each other.
  • FIG. 4 shows a graph showing the heating temperature and the partial pressure of the Si vapor pressure sublimated from tantalum silicide.
  • the Si vapor pressure sublimated from tantalum silicide shows a relatively high pressure.
  • the tantalum silicide layer is formed over the entire wall surface (including the upper wall surface of single crystal SiC substrate 40) constituting the internal space. Thereby, the pressure distribution of Si in the internal space can be made uniform.
  • the crucible 30 When heat-treating a single crystal SiC substrate, first, as shown by a chain line in FIG. 1, the crucible 30 is disposed in the preheating chamber 22 of the high-temperature vacuum furnace 10 and is heated at an appropriate temperature (for example, about 800 ° C.). Preheat. Next, the crucible 30 is moved to the main heating chamber 21 that has been heated to a preset temperature (for example, about 1800 ° C.) in advance, and the single crystal SiC substrate is heated.
  • a preset temperature for example, about 1800 ° C.
  • FIG. 5 is a diagram schematically showing the state of the substrate in each step.
  • an epitaxial layer 41 is formed on a single crystal SiC substrate 40.
  • the method for forming the epitaxial layer is arbitrary, and a known vapor phase epitaxial method, metastable solvent epitaxial method, or the like can be used. Furthermore, when the single crystal SiC substrate 40 is an OFF substrate, a CVD method for forming an epitaxial layer by step flow control can also be used.
  • ion implantation is performed on the single crystal SiC substrate 40 on which the epitaxial layer 41 is formed.
  • This ion implantation is performed using an ion doping apparatus having a function of irradiating an object with ions. Ions are selectively implanted into the entire surface or part of the surface of the epitaxial layer 41 by an ion doping apparatus. Then, a desired region of the semiconductor element is formed based on the ion implanted portion 42 into which ions are implanted.
  • the surface of the epitaxial layer 41 including the ion-implanted portion 42 is roughened by the ion implantation (the surface of the single crystal SiC substrate 40 is damaged and flattened). Degree gets worse).
  • both processes are performed in one step. Specifically, heat treatment (annealing) is performed in an environment of 1500 to 2200 ° C., preferably 1600 to 2000 ° C. under Si vapor pressure. Thereby, the implanted ions can be activated. Further, the roughened portion of the ion implantation portion 42 is flattened by etching the surface of the single crystal SiC substrate 40 (see FIG. 5D).
  • the internal space of the crucible 30 can make the pressure distribution of Si uniform.
  • the tantalum silicide layer is formed on the wall surface constituting the internal space, for example, even if Si is reduced according to the equations (3) and (4), Si is immediately supplied. Is always the vapor pressure of Si. Therefore, equations (1) and (2) are less likely to occur, and etching can be performed while suppressing carbonization of the surface of single crystal SiC substrate 40.
  • a semiconductor element surface having flatness and sufficient electrical activity is formed.
  • a semiconductor can be manufactured using the surface of the semiconductor element.
  • the crucible 30 of the present embodiment accommodates the single crystal SiC substrate 40 that is etched by the heat treatment under the vapor pressure of Si.
  • the crucible 30 is made of tantalum metal, a tantalum carbide layer is provided on the inner space side, and a tantalum silicide layer is further provided on the inner space side of the tantalum carbide layer.
  • the crucible 30 of the present embodiment is provided with a tantalum silicide layer on at least the upper wall surface of the accommodated single crystal SiC substrate 40.
  • the tantalum silicide layer is provided over the entire wall surface forming the internal space.
  • the crucible 30 of the present embodiment is used to accommodate the single crystal SiC substrate 40 in an etching process for removing a portion of the surface of the single crystal SiC substrate 40 into which ions have been implanted.
  • the above-mentioned effect can be exhibited in the etching process for removing the ion implantation insufficient portion.
  • the pressure of Si in the internal space is uniform, carbonization of the single crystal SiC substrate 40 can be suppressed, so that the ion activation process is performed without forming a carbon layer (graphene cap). It can be carried out.
  • the crucible 30 is used for etching after ion implantation.
  • the above control can be applied to various processes as long as uniform etching or the like is required.
  • a method for planarizing a substrate for planarizing a substrate (a substrate having crystal defects or the like) before epitaxial growth
  • a method of etching a sacrificial growth layer by forming a carbonized layer and a sacrificial growth layer is known as disclosed in Patent Document 1. It has been.
  • the crucible 30 of this embodiment can be used. In this case, the sacrificial growth layer can be removed uniformly.
  • the process of forming the carbon layer is not performed, but this process may be performed. Moreover, after performing the process of forming a carbon layer, a carbon layer can be removed by said Formula (4). Therefore, the process of removing the carbon layer, the process of activating ions, and the process of etching the single crystal SiC substrate can be performed in one step.
  • the method for forming the tantalum silicide layer is not limited to the method described in the above embodiment, and any method can be used as long as the crucible 30 having the configuration (composition) described above can be formed.
  • the processing environment and the single crystal SiC substrate used are examples, and can be applied to various environments and single crystal SiC substrates.
  • the heating temperature is not limited to the temperature mentioned above, and the etching rate can be further reduced by lowering the heating temperature.
  • the inner space of the storage container is formed, and the shape is arbitrary as long as it has the configuration (composition) described above.
  • the outer shape may be a cylindrical shape, a cubic shape or a rectangular parallelepiped shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 この出願は、Siが単結晶SiC基板上に落下せず、内部空間内のSiの圧力分布を均一とすることが可能な収容容器を提供することを課題とする。この収容容器は、Siの蒸気圧下での加熱処理によりエッチングされる単結晶SiC基板を収容する。この収容容器は、タンタル金属からなるとともに、内部空間側に炭化タンタル層が設けられ、当該炭化タンタル層の更に内部空間側にタンタルシリサイド層が設けられる。タンタルシリサイド層は、内部空間にSiを供給する。また、タンタルシリサイド層は、固着したSiと異なり、溶融して落下することがない。

Description

収容容器、収容容器の製造方法、半導体の製造方法、及び半導体製造装置
 本発明は、主要には、単結晶SiC基板の表面をエッチングする際に当該単結晶SiC基板を収容する収容容器に関する。
 SiCは、Si等と比較して耐熱性及び機械的強度等に優れるため、新たな半導体材料として注目されている。なお、単結晶SiC基板の表面には、初めは結晶欠陥等が存在していることがある。
 特許文献1は、この単結晶SiC基板の表面を平坦化する(修復する)表面平坦化方法を開示する。この表面平坦化方法では、収容容器に収容された単結晶SiC基板に炭化層及び犠牲成長層を形成し、この犠牲成長層をエッチングすることで、表面を平坦化する。これにより、エピタキシャル成長のための高品質な種基板を生産することができる。
 また、犠牲成長層の形成時等では、Si蒸気圧での加熱処理が必要となる。特許文献1では、Si蒸気圧を実現するために、図6に示すような収容容器を用いている。図6に示すように、単結晶SiC基板94が収容される収容容器90は、互いに嵌合可能な上容器91及び下容器92を備えている。上容器91及び下容器92のうち、内部空間を構成する部分の壁面には、Si93が固着されている。この構成により、加熱処理時にSi93が蒸発し、収容容器90の内部空間にSi蒸気圧を形成することができる。
 一般的には、上記のようにして生産された種結晶に対して、エピタキシャル成長、イオン注入、及びイオン活性化等の処理が行われる。
 特許文献2は、単結晶SiC基板の表面にカーボン層(グラフェンキャップ)を形成した上で、上記のイオン活性化を行うことで、イオン活性化時のSi及びSiCの昇華を抑制する方法を開示する。その後、この方法では、カーボン層を除去するとともに、イオン注入不足部分を除去するために、Si蒸気圧において単結晶SiC基板の表面をエッチングする。なお、特許文献2では、Si蒸気圧を実現するために、収容容器にSiペレットを配置する方法を開示する。
特開2008-230944号公報 特開2011-233780号公報
 しかし、特許文献1のように内部空間の壁面にSiを固着した場合、加熱処理時に当該Siが溶融することがある。特に、内部空間の上側の壁面に固着されたSiが溶融すると、単結晶SiC基板上にSiが落下してしまう。なお、内部空間の上側の壁面にSiを固着しない場合、Siの圧力分布が不均一となり加熱処理を適切に行うことができない。
 また、特許文献2では収容容器の内部にSiペレットを配置するが、この方法でもSiの圧力分布が不均一となり加熱処理を適切に行うことができない。従って、特許文献1及び特許文献2では、エッチングを均一に行うことができない。
 なお、特許文献2では、カーボン層を形成する工程、及びカーボン層を除去する工程が必要であるため、工程が繁雑になってしまう。
 本発明は以上の事情に鑑みてされたものであり、その主要な目的は、Siが単結晶SiC基板上に落下せず、内部空間内のSiの圧力分布を均一とすることが可能な収容容器を提供することにある。
課題を解決するための手段及び効果
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
 本発明の第1の観点によれば、Siの蒸気圧下での加熱処理によりエッチングされる単結晶SiC基板を収容する収容容器において、以下の構成が提供される。即ち、この収容容器は、タンタル金属からなるとともに、内部空間側に炭化タンタル層が設けられ、当該炭化タンタル層の更に内部空間側にタンタルシリサイド層が設けられる。
 従来のように収容容器の内面にSiを固着させてSiを供給する構成は、Siが溶融することで単結晶SiC基板に悪影響を与えることがあるが、本願のように、タンタルシリサイド層によって内部空間にSiを供給することで、その悪影響を防止できる。
 前記の収容容器においては、収容された前記単結晶SiC基板の少なくとも上方の壁面において、前記タンタルシリサイド層が設けられていることが好ましい。
 これにより、溶融したSiが単結晶SiC基板上に落下することを防止しつつ、Si蒸気圧を実現できる。
 前記の収容容器においては、前記タンタルシリサイド層は、内部空間を形成する壁面の全体にわたって設けられていることが好ましい。
 これにより、内部空間内のSiの圧力を均一にすることができるので、エッチングを均一に行うことができる。
 前記の収容容器は、イオンが注入された前記単結晶SiC基板の表面のイオン注入不足部分を除去するエッチング工程において、前記単結晶SiC基板を収容するために用いられることが好ましい。
 これにより、イオン注入不足部分を除去するエッチング工程において、上記の効果を発揮させることができる。また、内部空間のSiの圧力を均一にすることで、単結晶SiC基板の炭化を抑制することができるので、カーボン層(グラフェンキャップ)を形成することなく、イオン活性化処理を行うことができる。
 前記の収容容器においては、エピタキシャル層を形成する前の前記単結晶SiC基板に行われるエッチング工程において、前記単結晶SiC基板を収容するために用いられることが好ましい。
 これにより、エピタキシャル層の形成前のエッチング時において、上記の効果を発揮させることができる。
 前記の収容容器においては、前記タンタルシリサイド層は、1μmから300μmの厚みで設けられていることが好ましい。
 この厚みのタンタルシリサイド層が設けられることで、内部空間に供給するSiを十分に確保しつつ、収容容器の割れを適切に防止することができる。
 前記の収容容器においては、前記タンタルシリサイド層は、TaSi2からなることが好ましい。
 これにより、溶融したSiを接触させて加熱するだけで、タンタルシリサイド層を形成できる。
 本発明の第2の観点によれば、Siの蒸気圧下での加熱処理によりエッチングされる単結晶SiC基板を収容する収容容器の製造方法が提供される。即ち、この製造方法は、収容容器の一部を構成する炭化タンタル層に、溶融したSiを接触させた状態で加熱することで、タンタルシリサイド層を形成する工程を含む。
 これにより、加熱処理時にSiが溶融しない収容容器を簡単かつ低コストに作成することができる。
 本発明の第3の観点によれば、前記の収容容器を用いて、Siの蒸気圧下での加熱処理によりエッチングを行う半導体の製造方法が提供される。
 これにより、上記の効果を発揮させつつエッチングを行って半導体を製造することができる。
 本発明の第4の観点によれば、前記の収容容器を備えた半導体製造装置が提供される。
 これにより、上記の効果を発揮できる半導体製造装置が提供される。
本発明の表面処理方法に用いる高温真空炉の概要を説明する図。 坩堝の構成を示す図。 1000℃で1atmにおけるTa,Si,Cのフェーズダイアグラム。 加熱温度と、タンタルシリサイドから昇華するSi蒸気圧の分圧を示すグラフ。 各工程における基板の様子を概略的に示す図。 従来例における、収容容器の構成を概略的に示す図。
 次に、図面を参照して本発明の実施の形態を説明する。
 初めに、図1を参照して、本実施形態の加熱処理で用いる高温真空炉(半導体製造装置)10及び坩堝30について説明する。図1は、本発明の表面処理方法に用いる高温真空炉の概要を説明する図である。図2は、坩堝30の構成を示す図である。
 図1に示すように、高温真空炉10は、本加熱室21と、予備加熱室22と、を備えている。本加熱室21は、単結晶SiC基板を1000℃以上2300℃以下の温度に加熱することができる。予備加熱室22は、単結晶SiC基板を本加熱室21で加熱する前に予備加熱を行うための空間である。
 本加熱室21には、真空形成用バルブ23と、不活性ガス注入用バルブ24と、真空計25と、が接続されている。真空形成用バルブ23により、本加熱室21の真空度を調整することができる。不活性ガス注入用バルブ24により、本加熱室21内の不活性ガス(例えばArガス)の圧力を調整することができる。真空計25により、本加熱室21内の真空度を測定することができる。
 本加熱室21の内部には、ヒータ26が備えられている。また、本加熱室21の側壁や天井には図略の熱反射金属板が固定されており、この熱反射金属板によって、ヒータ26の熱を本加熱室21の中央部に向けて反射させるように構成されている。これにより、単結晶SiC基板を強力且つ均等に加熱し、1000℃以上2300℃以下の温度まで昇温させることができる。なお、ヒータ26としては、例えば、抵抗加熱式のヒータや高周波誘導加熱式のヒータを用いることができる。
 また、単結晶SiC基板は、坩堝(収容容器)30に収容された状態で加熱される。坩堝30は、適宜の支持台等に載せられており、この支持台が動くことで、少なくとも予備加熱室から本加熱室まで移動可能に構成されている。
 坩堝30は、互いに嵌合可能な上容器31と下容器32とを備えている。また、坩堝30には、図2に示すように、坩堝30の外部側から内部空間側の順に、タンタル層(Ta)、タンタルカーバイド層(TaC及びTa2C)、及びタンタルシリサイド層(TaSi2)が設けられている。
 タンタル層及びタンタルカーバイド層から構成される坩堝は従来から知られているが、本実施形態の坩堝30は、更にタンタルシリサイド層が形成されている。このタンタルシリサイド層は、坩堝30の内部空間をSi蒸気圧にするためのものであり、特許文献1における内壁に固着させたSi、特許文献2におけるSiペレットに該当する。
 以下、タンタルシリサイド層の形成方法について説明する。タンタルシリサイド層は、溶融させたSiを坩堝の内壁面に接触させて、1800℃以上2000℃以下程度で加熱することで形成される。これにより、TaSi2から構成されるタンタルシリサイド層が実現できる。なお、本実施形態では、30μmから50μm程度のタンタルシリサイド層を形成するが、内部空間の体積等に応じて、例えば1μmから300μmの厚みであっても良い。
 以上のように処理を行うことで、タンタルシリサイド層を形成することができる。
 なお、本実施形態ではタンタルシリサイドとしてTaSi2が形成される構成であるが、他の化学式で表されるタンタルシリサイド(例えば図3のフェーズダイアグラムに示されているタンタルシリサイド)が形成されていても良い。また、複数のタンタルシリサイドが重ねて形成されていても良い。
 図4には、加熱温度と、タンタルシリサイドから昇華するSi蒸気圧の分圧を示すグラフが示されている。図4に示すように、タンタルシリサイドから昇華するSi蒸気圧は比較的高い圧力を示している。更に、タンタルシリサイド層は、内部空間を構成する壁面(当然、単結晶SiC基板40の上側の壁面を含む)の全体にわたって形成される。これにより、内部空間のSiの圧力分布を均一にすることができる。
 単結晶SiC基板を加熱処理する際には、初めに、図1の鎖線で示すように坩堝30を高温真空炉10の予備加熱室22に配置して、適宜の温度(例えば約800℃)で予備加熱する。次に、予め設定温度(例えば、約1800℃)まで昇温させておいた本加熱室21へ坩堝30を移動させ、単結晶SiC基板を加熱する。
 次に、上記の高温真空炉10を利用して単結晶SiC基板40から半導体素子を製造する処理について図5を参照して説明する。図5は、各工程における基板の様子を概略的に示す図である。
 初めに、図5(a)に示すように、単結晶SiC基板40にエピタキシャル層41を形成する。エピタキシャル層を形成する方法は、任意であり、公知の気相エピタキシャル法や準安定溶媒エピタキシャル法等を用いることができる。更には、単結晶SiC基板40がOFF基板である場合、ステップフロー制御によってエピタキシャル層を形成するCVD法を用いることもできる。
 次に、図5(b)に示すように、エピタキシャル層41が形成された単結晶SiC基板40にイオン注入を行う。このイオン注入は、対象物にイオンを照射する機能を有するイオンドーピング装置を用いて行う。イオンドーピング装置によって、エピタキシャル層41の表面の全面又は一部に選択的にイオンが注入される。そして、イオンが注入されたイオン注入部分42に基づいて半導体素子の所望の領域が形成されることになる。
 また、イオンが注入されることによって、図5(c)に示すように、イオン注入部分42を含むエピタキシャル層41の表面が荒れた状態になる(単結晶SiC基板40の表面が損傷し、平坦度が悪化する)。
 次に、注入したイオンの活性化、及び、イオン注入部分42等へのエッチングを行う。本実施形態では、両方の処理を1つの工程で行う。具体的には、Si蒸気圧下で1500℃以上2200℃以下、望ましくは1600℃以上2000℃以下の環境で加熱処理(アニール処理)を行う。これにより、注入されたイオンを活性化することができる。また、単結晶SiC基板40の表面がエッチングされることで、イオン注入部分42の荒れた部分が平坦化されていく(図5(d)を参照)。
 この平坦化の際には、以下に示す反応が行われる。
(1) SiC(s)           → Si(v)I + C(s)
(2) 2SiC(s)          → Si(v)II + SiC2(v)
(3) SiC(s) + Si(v)I+II → Si2C(v)
(4) C(s)I + 2Si(v) → Si2C(v)
 ここで、上述のように本実施形態では坩堝30の内部空間は、Siの圧力分布を均一にすることができる。また、この内部空間を構成する壁面にタンタルシリサイド層が形成されているため、例えば式(3)及び(4)によりSiが減少した場合であっても即座にSiが供給されるので、内部空間が常にSiの蒸気圧となる。従って、式(1)及び式(2)が起こりにくくなり、単結晶SiC基板40の表面の炭化を抑制しつつエッチングすることができる。
 従って、本実施形態の坩堝30を用いることにより、特許文献2のようにカーボン層(グラフェンキャップ)を形成する必要がない。従って、カーボン層を形成及び除去する工程を省略することができるので、処理を簡素化することができる。
 また、イオン注入後における単結晶SiC基板40の表面から数十nm程度には、イオン濃度が不足する部分(イオン注入不足部分)が表れることが知られている。そのため、上記のエッチングは、このイオン注入不足部分が除去されるまで継続される(図5(e)を参照)。
 以上の処理を行うことで、平坦度及び十分な電気的活性を有する半導体素子表面が形成される。この半導体素子表面を利用して、半導体を製造することができる。
 以上に説明したように、本実施形態の坩堝30は、Siの蒸気圧下での加熱処理によりエッチングされる単結晶SiC基板40を収容する。この坩堝30は、タンタル金属からなるとともに、内部空間側に炭化タンタル層が設けられ、当該炭化タンタル層の更に内部空間側にタンタルシリサイド層が設けられる。
 これにより、Siを固着させる構成と異なり、Siが溶融することがないので、Siが単結晶SiC基板40に悪影響を与えることを防止できる。
 また、本実施形態の坩堝30には、収容された単結晶SiC基板40の少なくとも上方の壁面において、タンタルシリサイド層が設けられている。
 これにより、溶融したSiが単結晶SiC基板40上に落下することを防止しつつ、Si蒸気圧を実現できる。
 また、本実施形態の坩堝30において、タンタルシリサイド層は、内部空間を形成する壁面の全体にわたって設けられている。
 これにより、内部空間内のSiの圧力を均一にすることができるので、エッチングを均一に行うことができる。
 また、本実施形態の坩堝30は、イオンが注入された単結晶SiC基板40の表面のイオン注入不足部分を除去するエッチング工程において、単結晶SiC基板40を収容するために用いられる。
 これにより、イオン注入不足部分を除去するエッチング工程において、上記の効果を発揮させることができる。また、本実施形態では内部空間のSiの圧力が均一であるので、単結晶SiC基板40の炭化を抑制することができるので、カーボン層(グラフェンキャップ)を形成することなく、イオン活性化処理を行うことができる。
 以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
 なお、本実施形態では、坩堝30をイオン注入後のエッチングのために用いたが、均一なエッチング等が要求される工程であれば、様々な工程に上記の制御を適用することができる。
 例えば、エピタキシャル成長を行う前の基板(結晶欠陥等を有する基板)を平坦化する方法として、特許文献1に示すように、炭化層及び犠牲成長層を形成して犠牲成長層をエッチングする方法が知られている。この犠牲成長層のエッチングを行う際に本実施形態の坩堝30を用いることができる。この場合、犠牲成長層を均一に除去することができる。
 上記実施形態では、カーボン層(グラフェンキャップ)を形成する処理を行わないが、この処理を行っても良い。また、カーボン層を形成する工程を行った後は、上記の式(4)によりカーボン層を除去することができる。従って、カーボン層を除去する処理と、イオンを活性化する処理と、単結晶SiC基板をエッチングする処理と、を1つの工程で行うことができる。
 タンタルシリサイド層を形成する方法は上記実施形態で示した方法に限られず、上記で説明した構成(組成)の坩堝30が形成できるのであれば、任意の方法を用いることができる。
 処理を行った環境及び用いた単結晶SiC基板等は一例であり、様々な環境及び単結晶SiC基板に対して適用することができる。例えば、加熱温度は上記で挙げた温度に限られず、より低温とすることでエッチング速度を一層低下させることができる。また、上述した高温真空炉以外の加熱装置を用いても良い。
 収容容器は、内部空間が形成されており、上記で説明した構成(組成)であれば形状は任意である。例えば、外形が円柱状であっても良いし、立方体状又は直方体状であっても良い。
 10 高温真空炉(半導体製造装置)
 21 本加熱室
 22 予備加熱室
 30 坩堝(収容容器)
 40 単結晶SiC基板
 41 エピタキシャル層
 42 イオン注入部分

Claims (10)

  1.  Siの蒸気圧下での加熱処理によりエッチングされる単結晶SiC基板を収容する収容容器であって、
     前記収容容器は、タンタル金属からなるとともに、内部空間側に炭化タンタル層が設けられ、当該炭化タンタル層の更に内部空間側にタンタルシリサイド層が設けられることを特徴とする収容容器。
  2.  請求項1に記載の収容容器であって、
     収容された前記単結晶SiC基板の少なくとも上方の壁面において、前記タンタルシリサイド層が設けられていることを特徴とする収容容器。
  3.  請求項1に記載の収容容器であって、
     前記タンタルシリサイド層は、内部空間を形成する壁面の全体にわたって設けられていることを特徴とする収容容器。
  4.  請求項1に記載の収容容器であって、
     イオンが注入された前記単結晶SiC基板の表面のイオン注入不足部分を除去するエッチング工程において、前記単結晶SiC基板を収容するために用いられることを特徴とする収容容器。
  5.  請求項1に記載の収容容器であって、
     エピタキシャル層を形成する前の前記単結晶SiC基板に行われるエッチング工程において、前記単結晶SiC基板を収容するために用いられることを特徴とする収容容器。
  6.  請求項1に記載の収容容器であって、
     前記タンタルシリサイド層は、1μmから300μmの厚みで設けられていることを特徴とする収容容器。
  7.  請求項1に記載の収容容器であって、
     前記タンタルシリサイド層は、TaSi2からなることを特徴とする収容容器。
  8.  Siの蒸気圧下での加熱処理によりエッチングされる単結晶SiC基板を収容する収容容器の製造方法であって、
     収容容器の一部を構成する炭化タンタル層に、溶融したSiを接触させた状態で加熱することで、タンタルシリサイド層を形成する工程を含むことを特徴とする収容容器の製造方法。
  9.  請求項1に記載の収容容器を用いて、Siの蒸気圧下での加熱処理によりエッチングを行う半導体の製造方法。
  10.  請求項1に記載の収容容器を備えた半導体製造装置。
PCT/JP2013/006721 2012-11-16 2013-11-15 収容容器、収容容器の製造方法、半導体の製造方法、及び半導体製造装置 WO2014076964A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13855882.0A EP2922084B1 (en) 2012-11-16 2013-11-15 Storing container, storing container manufacturing method, semiconductor manufacturing method, and semiconductor manufacturing apparatus
KR1020157015949A KR102067313B1 (ko) 2012-11-16 2013-11-15 수용 용기, 수용 용기의 제조 방법, 반도체의 제조 방법, 및 반도체 제조 장치
CN201380059730.2A CN104854678B (zh) 2012-11-16 2013-11-15 收容容器、收容容器的制造方法、半导体的制造方法以及半导体制造装置
US14/434,864 US9704733B2 (en) 2012-11-16 2013-11-15 Storing container, storing container manufacturing method, semiconductor manufacturing method, and semiconductor manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012252754A JP6093154B2 (ja) 2012-11-16 2012-11-16 収容容器の製造方法
JP2012-252754 2012-11-16

Publications (1)

Publication Number Publication Date
WO2014076964A1 true WO2014076964A1 (ja) 2014-05-22

Family

ID=50730895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006721 WO2014076964A1 (ja) 2012-11-16 2013-11-15 収容容器、収容容器の製造方法、半導体の製造方法、及び半導体製造装置

Country Status (7)

Country Link
US (1) US9704733B2 (ja)
EP (1) EP2922084B1 (ja)
JP (1) JP6093154B2 (ja)
KR (1) KR102067313B1 (ja)
CN (1) CN104854678B (ja)
TW (1) TWI627671B (ja)
WO (1) WO2014076964A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079983A1 (ja) * 2014-11-18 2016-05-26 東洋炭素株式会社 SiC基板のエッチング方法及び収容容器
CN107004585A (zh) * 2014-11-18 2017-08-01 东洋炭素株式会社 碳化硅基板处理方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247566B2 (ja) * 2014-02-28 2017-12-13 東洋炭素株式会社 加熱処理容器、加熱処理容器集合体、及び、半導体素子製造装置
JP6643029B2 (ja) * 2015-10-06 2020-02-12 東洋炭素株式会社 単結晶炭化ケイ素基板の加熱処理容器及びエッチング方法
EP3892762A1 (en) * 2016-04-28 2021-10-13 Kwansei Gakuin Educational Foundation Vapour-phase epitaxial growth method, and method for producing substrate equipped with epitaxial layer
CN112930422A (zh) * 2018-09-21 2021-06-08 东洋炭素株式会社 器件制作用晶圆的制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247258A (ja) * 1988-08-05 1990-02-16 Hitachi Ltd 薄膜形成用蒸発源
JPH1187257A (ja) * 1997-09-11 1999-03-30 Fuji Electric Co Ltd 炭化けい素基板の熱処理方法
JP2003234313A (ja) * 2002-02-07 2003-08-22 Kansai Tlo Kk SiC基板表面の平坦化方法
JP2008016691A (ja) * 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
JP2008034464A (ja) * 2006-07-26 2008-02-14 New Japan Radio Co Ltd 半導体装置の製造方法
JP2008230944A (ja) 2007-03-23 2008-10-02 Kwansei Gakuin 単結晶炭化ケイ素基板の表面平坦化方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板
JP2009146997A (ja) * 2007-12-12 2009-07-02 Sumitomo Electric Ind Ltd 半導体装置の製造方法および半導体装置
JP2009272328A (ja) * 2008-04-30 2009-11-19 Toshiba Corp 炭化珪素半導体素子の製造方法および製造装置
JP2010265126A (ja) * 2009-05-12 2010-11-25 Kwansei Gakuin 単結晶SiC基板、エピタキシャル成長層付き単結晶SiC基板、SiC基板、炭素供給フィード基板及び炭素ナノ材料付きSiC基板
JP2011233780A (ja) 2010-04-28 2011-11-17 Kwansei Gakuin Univ 半導体素子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547877B2 (en) * 1996-01-22 2003-04-15 The Fox Group, Inc. Tantalum crucible fabrication and treatment
US20060249073A1 (en) * 2003-03-10 2006-11-09 The New Industry Research Organization Method of heat treatment and heat treatment apparatus
KR100822302B1 (ko) 2006-10-13 2008-04-16 한국과학기술연구원 TaSi₂-SiC 나노 복합 피복층의 제조방법
US8986466B2 (en) * 2009-06-01 2015-03-24 Toyo Tanso Co., Ltd. Method for carburizing tantalum member, and tantalum member

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247258A (ja) * 1988-08-05 1990-02-16 Hitachi Ltd 薄膜形成用蒸発源
JPH1187257A (ja) * 1997-09-11 1999-03-30 Fuji Electric Co Ltd 炭化けい素基板の熱処理方法
JP2003234313A (ja) * 2002-02-07 2003-08-22 Kansai Tlo Kk SiC基板表面の平坦化方法
JP2008016691A (ja) * 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
JP2008034464A (ja) * 2006-07-26 2008-02-14 New Japan Radio Co Ltd 半導体装置の製造方法
JP2008230944A (ja) 2007-03-23 2008-10-02 Kwansei Gakuin 単結晶炭化ケイ素基板の表面平坦化方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板
JP2009146997A (ja) * 2007-12-12 2009-07-02 Sumitomo Electric Ind Ltd 半導体装置の製造方法および半導体装置
JP2009272328A (ja) * 2008-04-30 2009-11-19 Toshiba Corp 炭化珪素半導体素子の製造方法および製造装置
JP2010265126A (ja) * 2009-05-12 2010-11-25 Kwansei Gakuin 単結晶SiC基板、エピタキシャル成長層付き単結晶SiC基板、SiC基板、炭素供給フィード基板及び炭素ナノ材料付きSiC基板
JP2011233780A (ja) 2010-04-28 2011-11-17 Kwansei Gakuin Univ 半導体素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2922084A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079983A1 (ja) * 2014-11-18 2016-05-26 東洋炭素株式会社 SiC基板のエッチング方法及び収容容器
CN107004585A (zh) * 2014-11-18 2017-08-01 东洋炭素株式会社 碳化硅基板处理方法
EP3223303A4 (en) * 2014-11-18 2018-05-30 Toyo Tanso Co., Ltd. Etching method for sic substrate and holding container
EP3223302A4 (en) * 2014-11-18 2018-07-25 Toyo Tanso Co., Ltd. Sic substrate treatment method
TWI659463B (zh) * 2014-11-18 2019-05-11 日商東洋炭素股份有限公司 碳化矽基板之蝕刻方法及收容容器
US10388536B2 (en) 2014-11-18 2019-08-20 Toyo Tanso Co., Ltd. Etching method for SiC substrate and holding container

Also Published As

Publication number Publication date
TWI627671B (zh) 2018-06-21
EP2922084B1 (en) 2018-01-10
JP6093154B2 (ja) 2017-03-08
TW201426864A (zh) 2014-07-01
KR20150087310A (ko) 2015-07-29
JP2014103180A (ja) 2014-06-05
EP2922084A1 (en) 2015-09-23
US20150255314A1 (en) 2015-09-10
CN104854678B (zh) 2017-06-23
KR102067313B1 (ko) 2020-01-16
EP2922084A4 (en) 2016-06-15
CN104854678A (zh) 2015-08-19
US9704733B2 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2014076964A1 (ja) 収容容器、収容容器の製造方法、半導体の製造方法、及び半導体製造装置
WO2014076963A1 (ja) 単結晶SiC基板の表面処理方法及び単結晶SiC基板
JP5564682B2 (ja) 半導体素子の製造方法
CN107004592B (zh) 碳化硅基板的蚀刻方法及收容容器
JP6247566B2 (ja) 加熱処理容器、加熱処理容器集合体、及び、半導体素子製造装置
JP6751875B2 (ja) SiC基板の表面処理方法
WO2015151413A1 (ja) SiC基板の表面処理方法、SiC基板、及び半導体の製造方法
JP6310571B2 (ja) SiC基板処理方法
US20150225844A1 (en) Thin graphene film formation
JP6151581B2 (ja) 単結晶SiC基板の表面処理方法及び単結晶SiC基板の製造方法
JP5934633B2 (ja) 単結晶SiC基板の表面処理方法及び単結晶SiC基板の製造方法
WO2017104133A1 (ja) 溶液成長法、台座、及び単結晶SiCの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855882

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14434864

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013855882

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157015949

Country of ref document: KR

Kind code of ref document: A