WO2014076935A1 - 作業機械の緩停止装置 - Google Patents

作業機械の緩停止装置 Download PDF

Info

Publication number
WO2014076935A1
WO2014076935A1 PCT/JP2013/006637 JP2013006637W WO2014076935A1 WO 2014076935 A1 WO2014076935 A1 WO 2014076935A1 JP 2013006637 W JP2013006637 W JP 2013006637W WO 2014076935 A1 WO2014076935 A1 WO 2014076935A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
boom
slow stop
swing width
load swing
Prior art date
Application number
PCT/JP2013/006637
Other languages
English (en)
French (fr)
Inventor
俊彦 三木
Original Assignee
株式会社タダノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タダノ filed Critical 株式会社タダノ
Priority to JP2014546869A priority Critical patent/JP5827421B2/ja
Priority to CN201380060262.0A priority patent/CN104797517B/zh
Priority to DE112013005508.2T priority patent/DE112013005508T5/de
Priority to US14/441,604 priority patent/US9434581B2/en
Publication of WO2014076935A1 publication Critical patent/WO2014076935A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/64Jibs
    • B66C23/70Jibs constructed of sections adapted to be assembled to form jibs or various lengths
    • B66C23/701Jibs constructed of sections adapted to be assembled to form jibs or various lengths telescopic
    • B66C23/705Jibs constructed of sections adapted to be assembled to form jibs or various lengths telescopic telescoped by hydraulic jacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F11/00Lifting devices specially adapted for particular uses not otherwise provided for
    • B66F11/04Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
    • B66F11/044Working platforms suspended from booms
    • B66F11/046Working platforms suspended from booms of the telescoping type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/006Safety devices, e.g. for limiting or indicating lifting force for working platforms

Definitions

  • the present invention relates to a slow stop device for a work machine. More specifically, the present invention relates to a slow stop device for a work machine for suppressing a load swing when stopping the operation of the work machine in a work machine having a boom such as an aerial work vehicle or a crane.
  • Patent Document 2 discloses a technique for calculating the load swing period time in consideration of the bending of the boom, and braking and stopping the boom operation speed at the load swing period time with a constant acceleration. ing. According to this technique, when the operation of the boom is stopped, it is possible to suppress the load shaking including the bending of the boom.
  • the amount of bending of the boom is proportional to the acceleration and mass (weight) of the load supported by the boom. More specifically, the bending of the boom can be approximated to the bending of the cantilever beam, and the bending amount ⁇ of the cantilever beam is expressed by the following equation (1).
  • F is the force applied to the free end of the beam in the vertical direction
  • l is the length of the beam
  • E is the Young's modulus of the beam
  • I is the moment of inertia of the cross section of the beam. That is, the deflection amount ⁇ is proportional to the force F applied to the beam.
  • the boom acceleration increases and the load acceleration increases as the operation speed immediately before the sudden stop increases. Become. Therefore, the amount of bending of the boom is proportional to the operating speed immediately before the sudden stop. That is, when the boom operating speed is fast, the boom is greatly bent and the load swaying width is increased when the boom is suddenly stopped. On the other hand, when the operating speed of the boom is slow, even if the boom is stopped suddenly, the amount of bending of the boom is small and the width of the load swing is small. In contrast, the load swing cycle time does not depend on the boom operating speed.
  • JP 2000-103596 A Japanese Patent Laid-Open No. 7-69584
  • an object of the present invention is to provide a slow stop device for a work machine that can shorten a stop time while suppressing a swing of a load.
  • a slow stop device for a work machine is a slow stop device provided in a work machine having a boom for supporting a load, an actuator that operates the work machine, and a control unit that controls driving of the actuator.
  • An operation unit that instructs the control unit to operate the work machine, and the control unit receives the stop signal that instructs the operation unit to stop the operation of the work machine.
  • the load swing prediction means predicts that the load swing width of the load exceeds an allowable value
  • the first slow stop means stops the actuator
  • the load swing prediction means allows the load swing width of the load to be allowed.
  • switching means for stopping the actuator by the second slow stop means when it is predicted that the value will not be exceeded.
  • the slow stop device for a work machine is the slow stop device for a work machine according to the first aspect, wherein the first slow stop means receives the stop signal for instructing the stop of the operation of the boom from the operation section.
  • the load swing period of the load is calculated based on the posture and the weight of the load, and the actuator is braked and stopped over a half period of the load swing period.
  • the work machine slow stop device according to the first aspect, wherein the work machine includes a hook that is suspended from the boom and hangs the load, and the first slow stop means is connected to the boom from the operation portion.
  • the load swing period of the load is calculated based on the boom posture, the hook suspension distance, and the load weight.
  • the actuator is braked and stopped over a half cycle time.
  • the work machine slow stop device wherein the work machine includes a hook that is suspended from the boom and hangs the load, and the first slow stop means operates the hook from the operation portion.
  • the load sway predicting means is configured to load the load based on a posture of the boom, an operating speed of the boom, and a weight of the load.
  • a swing width is calculated, and when the load swing width exceeds a threshold value, it is determined that the load swing width of the load exceeds an allowable value.
  • the load swing width does not exceed the threshold value, the load swing width of the load is allowable. It is determined that the value is not exceeded.
  • a slow stop device for a work machine is the first or third aspect of the invention, wherein the work machine includes a hook that is suspended from the boom and hangs the load, and the load sway predicting means is the posture of the boom,
  • the load swing width of the load is calculated based on the hook suspension distance, the boom operating speed, and the weight of the load, and the load swing width of the load is an allowable value when the load swing width exceeds a threshold value.
  • the load swing width does not exceed a threshold value, it is determined that the load swing width of the load does not exceed an allowable value.
  • the work machine includes a hook that is hung from the boom and hangs the load
  • the load sway predicting means includes the posture of the boom
  • the load swing width of the load is calculated based on the operating speed of the hook and the weight of the load, and when the load swing width exceeds a threshold, it is determined that the load swing width of the load exceeds an allowable value, When the load swing width does not exceed a threshold, it is determined that the load swing width of the load does not exceed an allowable value.
  • a slow stop device for a work machine is the first, second, third or fourth aspect of the invention, further comprising a speed detector for detecting an operation speed of the work machine, wherein the load sway predicting means includes the speed When the detection result of the detector exceeds the threshold value, it is determined that the load swing width of the load exceeds the allowable value, and when the detection result of the speed detector does not exceed the threshold value, the load swing width of the load exceeds the allowable value. It is characterized by judging that it does not exceed.
  • a slow stop device for a work machine is the first, second, third or fourth aspect of the present invention, further comprising a posture detector for detecting the posture of the boom, wherein the load sway predicting means is the posture detector.
  • the detection result of the load exceeds the threshold, it is determined that the load swing width of the load exceeds the allowable value.
  • the detection result of the attitude detector does not exceed the threshold value, the load swing width of the load does not exceed the allowable value. It is characterized by judging.
  • a slow stop device for a work machine is the first, second, third or fourth aspect of the present invention, further comprising a weight detector for detecting the weight of the load, wherein the load sway predicting means is the weight detector.
  • the detection result of the load exceeds the threshold, it is determined that the load swing width of the load exceeds the allowable value.
  • the load swing width of the load does not exceed the allowable value. It is characterized by judging.
  • the actuator is stopped by the first slow stop means when the load swing width is predicted to exceed the allowable value
  • the load swing when the operation of the work machine is stopped can be suppressed.
  • the actuator is stopped by the second slow stop means when it is predicted that the swing width does not exceed the allowable value
  • the time required to stop the operation of the work machine can be shortened.
  • the load sway width can be suppressed to an allowable range. Therefore, the stop time can be shortened while suppressing the swing of the load.
  • the load swing period is calculated based on the posture of the boom and the weight of the load, so the load swing period can be accurately predicted and the load swing is sufficiently suppressed. it can.
  • the load swing period is calculated based on the boom posture, the hook suspension distance, and the weight of the load. Predictable and can sufficiently suppress load swings.
  • the load swing period is calculated based on the posture of the boom and the weight of the load, so the load swing period can be accurately predicted, and the load swing is sufficiently suppressed. it can.
  • the load swing width is calculated based on the posture of the boom, the boom operating speed, and the weight of the load, and the allowable value is exceeded based on the load swing width.
  • the load swing width is calculated on the basis of the posture of the boom, the hook suspension distance, the boom operating speed, and the weight of the load. Since it is predicted whether or not the allowable value is exceeded based on the swing width, the load swing can be accurately predicted, and the first slow stop means and the second slow stop means can be appropriately switched.
  • the load swing width is calculated on the basis of the posture of the boom, the operation speed of the hook, and the weight of the load, and the allowable value is exceeded based on the load swing width.
  • the eighth aspect of the invention it is predicted by comparing the detection result of the speed detector and the threshold value whether or not the load swaying width exceeds the allowable value. Therefore, the first slow stop means is operated according to the operating speed of the boom or hook. And the second slow stop means are switched. Therefore, it is possible for the worker to predict which slow stop means will stop the boom or hook, and the operability is improved.
  • the detection result of the posture detector and the threshold value are compared to predict whether or not the load swing width exceeds the allowable value. Therefore, the first slow stop means and the second one depending on the posture of the boom. The slow stop means is switched.
  • the worker to predict which slow stop means will stop the boom or hook, and the operability is improved.
  • the tenth invention by comparing the detection result of the weight detector and the threshold value, it is predicted whether or not the load sway width exceeds the allowable value. The slow stop means is switched. Therefore, it is possible for the worker to predict which slow stop means will stop the boom or hook, and the operability is improved.
  • FIG. 1 is a block diagram of a slow stop device according to a first embodiment of the present invention.
  • A The figure is a graph which shows the time change of the operation amount of an operation part
  • (b) The figure is a graph which shows the time change of the operating speed of a boom or a hook at the time of making it stop by a 1st slow stop means
  • (C) is a graph which shows the time change of the operating speed of a boom or a hook at the time of making it stop by a 2nd slow stop means.
  • It is a side view of an aerial work vehicle.
  • It is a block diagram of the slow stop apparatus which concerns on 2nd Embodiment of this invention. It is a side view of a mobile crane.
  • a slow stop device for a work machine according to the present invention is provided in any work machine having a boom that supports a load, such as an aerial work vehicle or a crane, and suppresses a load swing when stopping the operation of the work machine. Used for.
  • a load such as an aerial work vehicle or a crane
  • the case of an aerial work vehicle and a mobile crane will be described as an example.
  • the slow stop device 1 is provided in an aerial work vehicle.
  • reference numeral 110 denotes a vehicle
  • a swivel base 120 is mounted behind the loading platform of the vehicle 110.
  • the turning operation of the turntable 120 is performed by a turning motor.
  • a multistage boom 130 is attached to the swivel base 120 so as to be raised and lowered.
  • the boom 130 is extended and retracted by an extendable cylinder, and the hoisting action is performed by a hoisting cylinder.
  • a bowl-shaped bucket 140 on which an operator can ride is provided at the tip of the boom 130.
  • the bucket 140 is always kept horizontal regardless of the change in the undulation angle of the boom 130, and can be swiveled in a horizontal plane.
  • the slow stop device 1 is used to suppress the swing of the bucket 140 when stopping the turning or undulation of the boom 130 of the aerial work vehicle 100.
  • the “load” described in the claims means a bucket 140 provided at the tip of the boom 130 and a load such as an operator loaded on the bucket 140 (hereinafter, referred to as “load”).
  • the weight of the load means the weight of the bucket 140 including the load (hereinafter simply referred to as “the weight of the bucket 140”)
  • the load swing means the weight of the bucket 140. Means shaking.
  • the slow stop device 1 includes an actuator 10 that operates an aerial work vehicle 100, a control unit 20 that controls driving of the actuator 10, and instructs the control unit 20 to operate the aerial work vehicle 100. And an attitude detector 40 that detects the attitude of the boom 130.
  • the actuator 10 is a turning motor for turning the boom 130 or a hoisting cylinder for raising and lowering the boom 130.
  • the control unit 20 is an in-vehicle computer configured with a CPU, a memory, and the like, and is means for controlling the driving of the actuator 10 in accordance with an instruction from the operation unit 30.
  • the actuator 10 of the aerial work vehicle 100 is a hydraulic actuator, and includes a hydraulic circuit that supplies hydraulic oil to the hydraulic actuator.
  • the control unit 20 controls the driving direction and the driving speed of the actuator 10 by switching the valves and the like constituting the hydraulic circuit and controlling the direction and flow rate of the hydraulic oil supplied to the actuator 10.
  • the operation unit 30 is an operation lever, an operation pedal, a switch, or the like provided in the vehicle 110 or the bucket 140 of the aerial work vehicle 100.
  • the control unit 20 controls the driving speed of the actuator 10 according to the operation amount of the operation unit 30 (such as the amount of tilting of the operation lever). Specifically, as the operation amount of the operation unit 30 is larger, the actuator 10 is controlled so that the driving speed becomes faster, and the turning speed or the raising / lowering speed of the boom 130 becomes faster. Further, as the operation amount of the operation unit 30 is smaller, the actuator 10 is controlled so that the driving speed becomes slower, and the turning speed or the undulation speed of the boom 130 becomes slower. Further, when the operation unit 30 is not operated (the operation amount is 0), a stop signal instructing to stop the operation of the boom 130 is input from the operation unit 30 to the control unit 20.
  • the posture detector 40 includes various sensors that measure the turning angle, the undulation angle, and the extension / contraction length of the boom 130.
  • the detection result of the attitude detector 40 is input to the control unit 20.
  • the control unit 20 includes a first slow stop means 21, a second slow stop means 22, a load sway predicting means 23, and a switching means 24, which cooperate to stop the driving actuator 10. It is configured as follows.
  • the first slow stop means 21, the second slow stop means 22, the load sway predicting means 23, and the switching means 24 are realized by the control unit 20 executing a program.
  • the control unit 20 has a function of driving the actuator 10 in accordance with the operation amount of the operation unit 30 in addition to the function of stopping the actuator 10, but means for realizing this function is omitted in FIG.
  • the first slow stop means 21 stops the actuator 10 by the following slow stop method when a stop signal instructing the stop of the operation of the boom 130 is input from the operation unit 30.
  • the first slow stop means 21 loads the load period T of the bucket 140 based on the detection result of the attitude detector 40 and the weight of the bucket 140 stored in advance. Is calculated.
  • the load swing period T is a period of natural vibration of the bucket 140 that occurs when the operation of the boom 130 is suddenly stopped. It is known that the load swing period T of the bucket 140 is uniquely determined by the posture of the boom 130 (the undulation angle and the extension / contraction length) and the weight of the bucket 140.
  • the first slow stop means 21 stores in advance information such as its own weight, structure and rigidity of the boom 130, and based on the information, the detection result of the attitude detector 40 (the attitude of the boom 130), and the weight of the bucket 140. It is configured to dynamically calculate the load swing period T. Further, a load swinging period T for each posture of the boom 130 is obtained in a test in advance, and is stored in the first slow stop means 21. The first slow stop means 21 stores the load for each stored posture of the boom 130. You may comprise so that the load fluctuation period T corresponding to the detection result of the attitude
  • a weight detector that detects the weight of the bucket 140 may be provided, and the load swing period T may be calculated based on the detection results of the posture detector 40 and the weight detector.
  • the weight of the bucket 140 itself is constant, and the weight of the load such as an operator does not fluctuate greatly. Therefore, even if the weight of the bucket 140 is a fixed value as in this embodiment, the error of the calculated load swing period T is small.
  • the second slow stop means 22 stops the actuator 10 by the following slow stop method when a stop signal is input from the operation unit 30.
  • the second slow stop means 22 When the stop signal is input from the operation unit 30, the second slow stop means 22 outputs a control signal so as to brake and stop the actuator 10 over a previously stored time T2. More specifically, as shown in FIG. 2, when the operation amount of the operation unit 30 is changed from p to 0 (non-operation state) at time t (FIG. 2A), the second slow stop means 22 is The actuator 10 is braked so that the operating speed of the boom 130 becomes zero when the time T2 elapses from the time t (FIG. 2C).
  • the time T2 is set to a time shorter than the time T1 of a half cycle of the load swinging period T. For this reason, when the actuator 10 is stopped by the second slow stop means 22, the load is swayed by a time shorter than the time T1.
  • the value of time T2 is determined in advance by a test. Specifically, for each posture of the boom 130, a time required to stop the vehicle so that the swing width is within a predetermined range is obtained, and this is set as a time T2.
  • the “load swing width” means the amplitude of the load swing.
  • the second slow stop means 22 calls the time T2 corresponding to the detection result of the posture detector 40 from the stored time T2 for each posture of the boom 130, and stops the actuator 10 over the time T2. Output a control signal.
  • the time T2 may be set as a constant value regardless of the posture of the boom 130.
  • the detection result of the posture detector 40 is not input to the second slow stop means 22.
  • the second slow stop means 22 outputs a control signal so as to stop the actuator 10 over a previously stored time T2, regardless of the posture of the boom 130.
  • the load swing prediction means 23 is the load swing width when the operation of the boom 130 is suddenly stopped based on the operation amount of the operation unit 30, the detection result of the attitude detector 40, and the weight of the bucket 140 stored in advance. Predict whether or not will exceed the tolerance.
  • the load sway predicting means 23 performs prediction by the following method.
  • the load swing prediction means 23 calculates the load swing width A of the bucket 140 based on the operation amount of the operation unit 30, the detection result of the posture detector 40, and the weight of the bucket 140. It is known that the load swing width A of the bucket 140 is determined by the posture of the boom 130 (the undulation angle and the expansion / contraction length), the operating speed of the boom 130, and the weight of the bucket 140 (including the weight of the load). .
  • the operating speed of the boom 130 is acquired from the operation amount of the operation unit 30. Specifically, as illustrated in FIG. 2A, the operation amount p immediately before the operation amount of the operation unit 30 becomes 0 is set as the operating speed of the boom 130. That is, in the present embodiment, the operation unit 30 also serves as a speed detector that detects the operating speed of the boom 130. Note that the operating speed of the boom 130 may be calculated from the time change of the detection result of the posture detector 40 (the posture of the boom 130). In addition to the operation unit 30, a speed detector that detects the operating speed of the boom 130 may be provided.
  • the “speed detector” described in the claims is not limited to means for directly detecting the operating speed of the boom 130, and the operation of the boom 130, such as the operation unit 30 and the attitude detector 40. It is a concept including means for indirectly detecting the speed.
  • the load sway predicting means 23 stores information such as the structure and rigidity of the boom 130 in advance, the information, the operation amount of the operation unit 30 (the operating speed of the boom 130), and the detection result (the boom of the boom 130). 130 posture) and the weight of the bucket 140 are configured to dynamically calculate the load swing width A. Also, the load swing width A for each posture and operation speed of the boom 130 is obtained in a test in advance and stored in the load swing prediction means 23.
  • the load swing prediction means 23 stores the posture and operation of the stored boom 130. You may comprise so that the load swing width A corresponding to the operation amount of the operation part 30 and the detection result of the attitude
  • the load swing prediction means 23 determines that the load swing width A exceeds the allowable value when the calculated load swing width A exceeds a prestored threshold value, and the calculated load swing width A does not exceed the threshold value. In this case, it is determined that the load swing width A does not exceed the allowable value.
  • the threshold value is determined in advance as the maximum allowable swing width A. For example, it is determined as the maximum value of the load swing width A that is not uncomfortable for a worker on the bucket 140.
  • the switching means 24 receives the control signals output from the first slow stop means 21 and the second slow stop means 22, respectively, and selects one of these control signals and outputs it to the actuator 10.
  • the switching unit 24 is connected to the load fluctuation prediction unit 23, and outputs a control signal of the first slow stop unit 21 to the actuator 10 when the load fluctuation prediction unit 23 predicts that the load fluctuation width A exceeds an allowable value. Then, the actuator 10 is stopped by the first slow stop means 21. Further, when the load swing prediction means 23 predicts that the load swing width A does not exceed the allowable value, the control signal of the second slow stop means 22 is output to the actuator 10 and the actuator 10 is stopped by the second slow stop means 22. Let
  • the first The slow stop means 21 outputs a control signal so as to stop the actuator 10 over a half period T1 of the load swing period T (FIG. 2B).
  • the second slow stop means 22 outputs a control signal so as to stop the actuator 10 over a time T2 shorter than the time T1 (FIG. 2 (c)).
  • the load swing prediction means 23 predicts whether the load swing width A exceeds an allowable value based on the operation amount p immediately before the operation unit 30, the detection result of the posture detector 40, and the weight of the bucket 140. To do.
  • the load swing prediction means 23 predicts that the load swing width A exceeds an allowable value.
  • the switching means 24 outputs the control signal of the first slow stop means 21 to the actuator 10, and the actuator 10 is stopped by the first slow stop means 21. Therefore, it is possible to suppress the load swing when the operation of the boom 130 is stopped.
  • the load swing prediction means 23 predicts that the load swing width A does not exceed the allowable value.
  • the switching unit 24 outputs the control signal of the second slow stop unit 22 to the actuator 10 and stops the actuator 10 by the second slow stop unit 22. Therefore, the time required for stopping the operation of the boom 130 can be shortened.
  • the load swing width A is predicted not to exceed the allowable value, even if the actuator 10 is stopped by the second slow stop means 22, the load swing width A can be suppressed to an allowable range. As described above, according to the slow stop device 1, the stop time can be shortened while suppressing the shaking of the load.
  • the load sway predicting unit 23 when the operation of the boom 130 is stopped, the load sway predicting unit 23 according to the present embodiment operates the operation amount of the operation unit 30 (the operation speed of the boom 130), and the detection result of the attitude detector 40 (the attitude of the boom 130). , And the load swing width A is predicted based on the weight of the bucket 140, and based on the load swing width A, it is predicted whether or not the allowable value is exceeded, so the load swing can be accurately predicted. Therefore, the switching between the first slow stop means 21 and the second slow stop means 22 can be performed appropriately, and the stop time can be shortened while reliably suppressing load fluctuation.
  • the slow stop device 2 is provided in a mobile crane.
  • reference numeral 210 denotes a traveling vehicle body, and a swivel base 220 is mounted on the upper surface of the traveling vehicle body 210.
  • the turning operation of the turntable 220 is performed by a turning motor.
  • a multistage boom 230 is attached to the swivel base 220 so as to be raised and lowered.
  • the expansion / contraction operation of the boom 230 is performed by the expansion / contraction cylinder, and the undulation operation is performed by the undulation cylinder.
  • a wire rope 241 provided with a hook 240 is suspended from the tip of the boom 230, and the wire rope 241 is guided to the root of the boom 230 and wound around a winch.
  • the hook 240 can be moved up and down by rotating the winch and winding and unwinding the wire rope 241.
  • a suspended load 250 can be hung on the hook 240.
  • the slow stop device 2 is used to suppress the swing of the suspended load 250 when stopping the turning, undulation, or expansion / contraction of the boom 230 of the mobile crane 200.
  • the “load” described in the claims means the suspended load 250 suspended from the hook 240
  • the “weight” means the weight of the hook 240 and the weight of the suspended load 250. (Hereinafter, simply referred to as “the weight of the suspended load 250”)
  • “sway of the load” means the swing of the suspended load 250.
  • the slow stop device 2 has a configuration in which a weight detector 50 that detects the weight of the suspended load 250 is added to the slow stop device 1 according to the first embodiment.
  • the actuator 10 is a turning motor for turning the boom 230, a hoisting cylinder for raising and lowering the boom 230, or an extension cylinder for extending and retracting the boom 230.
  • the operation unit 30 is an operation lever, an operation pedal, a switch, or the like provided in the driver's seat of the mobile crane 200.
  • the control unit 20 controls the driving speed of the actuator 10 according to the operation amount of the operation unit 30 (such as the amount of tilting of the operation lever).
  • the operation amount is 0
  • a stop signal instructing to stop the operation of the boom 230 is input from the operation unit 30 to the control unit 20.
  • the posture detector 40 measures various turning angles, undulation angles, telescopic lengths of the boom 230, and distances from the tip of the boom 230 to the suspended load 250 (hereinafter referred to as “hanging distance of the hook 240”). It consists of sensors. The detection result of the attitude detector 40 is input to the control unit 20.
  • the weight detector 50 includes various sensors that measure the weight of the suspended load 250. The detection result of the weight detector 50 is input to the control unit 20.
  • the control unit 20 includes a first slow stop means 21, a second slow stop means 22, a load sway predicting means 23, and a switching means 24, which cooperate to stop the driving actuator 10. It is configured as follows.
  • the first slow stop means 21 stops the actuator 10 by the following slow stop method when a stop signal instructing the stop of the operation of the boom 230 is input from the operation unit 30.
  • the first slow stop means 21 calculates the load swing period T of the suspended load 250 based on the detection results of the posture detector 40 and the weight detector 50.
  • the load swing period T is a period of natural vibration of the suspended load 250 generated when the operation of the boom 230 is suddenly stopped. It is known that the load cycle T of the suspended load 250 is uniquely determined by the posture of the boom 230 (the undulation angle and the length of expansion / contraction), the hanging distance of the hook 240, and the weight of the suspended load 250.
  • the first slow stop means 21 stores in advance information such as the weight, structure, and rigidity of the boom 230, and the information and the detection results of the posture detector 40 and the weight detector 50 (the posture of the boom 230, the hook 240).
  • the load swing period T is dynamically calculated from the suspension distance and the weight of the suspended load 250). Also, the posture of the boom 230, the hanging distance of the hook 240, and the load swinging period T for each weight of the suspended load 250 are obtained by a test and stored in the first slow stop means 21 to obtain the first slow stop.
  • the stopping means 21 corresponds to the detection results of the attitude detector 40 and the weight detector 50 from the stored attitude of the boom 230, the hanging distance of the hook 240, and the load swing period T for each weight of the suspended load 250. It may be configured to call the load swing period T.
  • the second slow stop means 22 stops the actuator 10 by the same slow stop method as the second slow stop means 22 of the first embodiment when a stop signal is input from the operation unit 30.
  • time T2 is set to a time shorter than the time T1 of a half cycle of the load swinging period T. For this reason, when the actuator 10 is stopped by the second slow stop means 22, the load is swayed by a time shorter than the time T1.
  • the value of time T2 is determined in advance by a test. Specifically, for each posture of the boom 130, the hanging distance of the hook 240, and the weight of the suspended load 250, the time required for stopping so that the swing width of the load falls within a predetermined range is obtained, and this is defined as time T2. .
  • the second slow stop means 22 uses the stored posture of the boom 130, the suspension distance of the hook 240, and the time T2 for each weight of the suspended load 250 as the detection result of the posture detector 40 and the weight detector 50.
  • the corresponding time T2 is called, and a control signal is output so as to stop the actuator 10 over the time T2.
  • the time T2 may be determined as a constant value regardless of the posture of the boom 130, the hanging distance of the hook 240, and the weight of the suspended load 250.
  • the detection results of the posture detector 40 and the weight detector 50 are not input to the second slow stop means 22.
  • the second slow stop means 22 outputs a control signal so as to stop the actuator 10 over a pre-stored time T2, regardless of the posture of the boom 130, the hanging distance of the hook 240, and the weight of the suspended load 250. To do.
  • the load swing prediction unit 23 Based on the operation amount of the operation unit 30 and the detection results of the posture detector 40 and the weight detector 50, the load swing prediction means 23 has a load swing width exceeding an allowable value when the operation of the boom 230 is suddenly stopped. Predict whether or not.
  • the load sway predicting means 23 performs prediction by the following method.
  • the load swing prediction means 23 calculates the load swing width A of the suspended load 250 based on the operation amount of the operation unit 30 and the detection results of the posture detector 40 and the weight detector 50. It is known that the swing width A of the suspended load 250 is determined by the posture of the boom 230 (the undulation angle and the extension / contraction length), the hanging distance of the hook 240, the operating speed of the boom 230, and the weight of the suspended load 250. Yes.
  • the operating speed of the boom 230 is acquired from the operation amount of the operation unit 30.
  • the operating speed of the boom 230 may be calculated from the time change of the detection result of the posture detector 40 (the posture of the boom 230).
  • a speed detector that detects the operating speed of the boom 230 may be provided.
  • the load sway predicting means 23 stores in advance information such as the structure and rigidity of the boom 230, the information, the operation amount of the operation unit 30 (operation speed of the boom 230), the attitude detector 40 and the weight detector.
  • the load swing width A is dynamically calculated from the 50 detection results (the posture of the boom 230, the hanging distance of the hook 240, and the weight of the suspended load 250). Further, the posture of the boom 230, the hanging distance of the hook 240, the operating speed of the boom 230, and the load swing width A for each weight of the suspended load 250 are obtained by a test, and are stored in the load swing prediction means 23.
  • the load swing prediction means 23 operates the operation unit 30 from the stored posture of the boom 230, the hanging distance of the hook 240, the operating speed of the boom 230, and the load swing width A for each weight of the suspended load 250. You may comprise so that the amount and the load swing width A corresponding to the detection result of the attitude
  • the load swing prediction means 23 determines that the load swing width A exceeds the allowable value when the calculated load swing width A exceeds a prestored threshold value, and the calculated load swing width A does not exceed the threshold value. In this case, it is determined that the load swing width A does not exceed the allowable value.
  • the threshold value is determined in advance as the maximum allowable swing width A.
  • the load swing of the suspended load 250 is determined as the maximum value of the load swing width A that can ensure safety.
  • the switching means 24 outputs a control signal of the first slow stop means 21 to the actuator 10 when the load swing prediction means 23 predicts that the load swing width A exceeds an allowable value, and the first slow stop means 21 causes the actuator 10 to Stop. Further, when the load swing prediction means 23 predicts that the load swing width A does not exceed the allowable value, the control signal of the second slow stop means 22 is output to the actuator 10 and the actuator 10 is stopped by the second slow stop means 22.
  • the first The slow stop means 21 outputs a control signal so as to stop the actuator 10 over a half period T1 of the load swing period T (FIG. 2B).
  • the second slow stop means 22 outputs a control signal so as to stop the actuator 10 over a time T2 shorter than the time T1 (FIG. 2 (c)).
  • the load swing prediction means 23 predicts whether the load swing width A exceeds the allowable value based on the operation amount p immediately before the operation unit 30 and the detection results of the posture detector 40 and the weight detector 50. To do.
  • the switching means 24 outputs the control signal of the first slow stop means 21 to the actuator 10, and the actuator 10 is stopped by the first slow stop means 21. Therefore, it is possible to suppress the load swing when the operation of the boom 230 is stopped.
  • the load sway predicting means 23 It is predicted that the load swing width A does not exceed the allowable value.
  • the switching unit 24 outputs the control signal of the second slow stop unit 22 to the actuator 10 and stops the actuator 10 by the second slow stop unit 22. Therefore, the time required for stopping the operation of the boom 230 can be shortened.
  • the load swing width A is predicted not to exceed the allowable value, even if the actuator 10 is stopped by the second slow stop means 22, the load swing width A can be suppressed to an allowable range. As described above, according to the slow stop device 2, the stop time can be shortened while suppressing the shaking of the load.
  • the load sway predicting means 23 of the present embodiment operates the operation amount of the operation unit 30 (operation speed of the boom 230), the detection result of the attitude detector 40 (boom 230, the suspension distance of the hook 240), and the weight of the suspended load 250, the load swing width A is predicted, and based on the load swing width A, it is predicted whether or not the allowable value is exceeded. Predicts shaking accurately. Therefore, the switching between the first slow stop means 21 and the second slow stop means 22 can be performed appropriately, and the stop time can be shortened while reliably suppressing load fluctuation.
  • a slow stop device 3 according to a third embodiment of the present invention will be described.
  • the load swings when stopping the lifting / lowering of the hook 240. More specifically, when the hook 240 is raised and lowered, and the raising and lowering is suddenly stopped, the boom 230 is bent by the inertial force of the hanging load 250, and the hanging load 250 is shaken in the vertical direction by the bending.
  • the slow stop device 3 according to the present embodiment is used to suppress the swing of the suspended load 250 when stopping the lifting and lowering of the hook 240 of the mobile crane 200.
  • the configuration of the slow stop device 3 is the same as the configuration of the slow stop device 2 according to the second embodiment (see FIG. 4).
  • the actuator 10 is a winch that moves the hook 240 up and down.
  • the operation unit 30 is an operation lever, an operation pedal, a switch, or the like provided in the driver's seat of the mobile crane 200.
  • the control unit 20 controls the driving speed of the actuator 10 according to the operation amount of the operation unit 30 (such as the amount of tilting of the operation lever).
  • the operation amount is 0
  • a stop signal instructing to stop the operation of the hook 240 is input from the operation unit 30 to the control unit 20.
  • the first slow stop means 21 stops the actuator 10 by the following slow stop method when a stop signal instructing the stop of the operation of the hook 240 is input from the operation unit 30.
  • the first slow stop means 21 calculates the load swing period T of the suspended load 250 based on the detection results of the posture detector 40 and the weight detector 50.
  • the load swing period T is a period of natural vibration of the suspended load 250 generated when the operation of the hook 240 is suddenly stopped. It is known that the load swing period T of the suspended load 250 is uniquely determined by the posture of the boom 230 (the undulation angle and the length of expansion / contraction) and the weight of the suspended load 250.
  • the first slow stop means 21 is configured to dynamically calculate the load swing period T or is configured to call a previously stored load swing period T.
  • the second slow stop means 22 stops the actuator 10 by the same slow stop method as the second slow stop means 22 of the first embodiment when a stop signal is input from the operation unit 30.
  • time T2 is set to a time shorter than the time T1 of a half cycle of the load swinging period T. For this reason, when the actuator 10 is stopped by the second slow stop means 22, the load is swayed by a time shorter than the time T1.
  • the value of time T2 is determined in advance by a test. Specifically, for each posture of the boom 130 and the weight of the suspended load 250, a time required to stop the vehicle so that the swing width is within a predetermined range is obtained, and is set as a time T2.
  • the second slow stop means 22 calls the time T2 corresponding to the detection result of the posture detector 40 and the weight detector 50 from the stored posture of the boom 130 and the time T2 for each weight of the suspended load 250, A control signal is output so as to stop the actuator 10 over the time T2.
  • the time T2 may be set as a constant value regardless of the posture of the boom 130 and the weight of the suspended load 250.
  • the detection results of the posture detector 40 and the weight detector 50 are not input to the second slow stop means 22.
  • the second slow stop means 22 outputs a control signal so as to stop the actuator 10 over a previously stored time T2, regardless of the posture of the boom 130 and the weight of the suspended load 250.
  • the load swing prediction unit 23 Based on the operation amount of the operation unit 30 and the detection results of the posture detector 40 and the weight detector 50, the load swing prediction means 23 has a load swing width exceeding an allowable value when the operation of the hook 240 is suddenly stopped. Predict whether or not.
  • the load sway predicting means 23 performs prediction by the following method.
  • the load swing prediction means 23 calculates the load swing width A of the suspended load 250 based on the operation amount of the operation unit 30 and the detection results of the posture detector 40 and the weight detector 50. It is known that the swing width A of the suspended load 250 is determined by the posture of the boom 230 (the undulation angle and the length of expansion / contraction), the operating speed of the boom 230, and the weight of the suspended load 250.
  • the load sway predicting means 23 is configured to dynamically calculate the load sway width A or to call a pre-stored load sway width A.
  • the operating speed of the hook 240 is obtained from the operation amount of the operation unit 30.
  • the operating speed of the hook 240 may be calculated from the time change of the detection result of the posture detector 40 (the hanging distance of the hook 240).
  • a speed detector that detects the operating speed of the hook 240 may be provided.
  • the load swing prediction means 23 determines that the load swing width A exceeds the allowable value when the calculated load swing width A exceeds a prestored threshold value, and the calculated load swing width A does not exceed the threshold value. In this case, it is determined that the load swing width A does not exceed the allowable value.
  • the switching means 24 outputs a control signal of the first slow stop means 21 to the actuator 10 when the load swing prediction means 23 predicts that the load swing width A exceeds an allowable value, and the first slow stop means 21 causes the actuator 10 to Stop. Further, when the load swing prediction means 23 predicts that the load swing width A does not exceed the allowable value, the control signal of the second slow stop means 22 is output to the actuator 10 and the actuator 10 is stopped by the second slow stop means 22.
  • the first The slow stop means 21 outputs a control signal so as to stop the actuator 10 over a half period T1 of the load swing period T (FIG. 2B).
  • the second slow stop means 22 outputs a control signal so as to stop the actuator 10 over a time T2 shorter than the time T1 (FIG. 2 (c)).
  • the load swing prediction means 23 predicts whether the load swing width A exceeds the allowable value based on the operation amount p immediately before the operation unit 30 and the detection results of the posture detector 40 and the weight detector 50. To do.
  • the load swing prediction means 23 predicts that the load swing width A exceeds the allowable value.
  • the switching means 24 outputs the control signal of the first slow stop means 21 to the actuator 10, and the actuator 10 is stopped by the first slow stop means 21. Therefore, it is possible to suppress the load swing when the operation of the boom 230 is stopped.
  • the switching unit 24 outputs the control signal of the second slow stop unit 22 to the actuator 10 and stops the actuator 10 by the second slow stop unit 22. Therefore, the time required for stopping the operation of the boom 230 can be shortened. Moreover, since the load swing width A is predicted not to exceed the allowable value, even if the actuator 10 is stopped by the second slow stop means 22, the load swing width A can be suppressed to an allowable range. As described above, according to the slow stop device 3, the stop time can be shortened while suppressing the shaking of the load.
  • the load sway predicting means 23 of the present embodiment when the operation of the hook 240 is stopped, the load sway predicting means 23 of the present embodiment, the operation amount of the operation unit 30 (operation speed of the hook 240), the detection result of the posture detector 40 (the posture of the boom 230). Since the load swing width A is predicted based on the weight of the suspended load 250 and whether or not the allowable value is exceeded based on the load swing width A, the load swing can be accurately predicted. Therefore, the switching between the first slow stop means 21 and the second slow stop means 22 can be performed appropriately, and the stop time can be shortened while reliably suppressing load fluctuation.
  • a slow stop device 4 according to a fourth embodiment of the present invention will be described.
  • the slow stop device 4 according to this embodiment is different from the above embodiment in the prediction method of the load sway prediction means 23. Since the rest of the configuration is the same as that of the slow stop devices 1, 2, and 3 according to the first, second, or third embodiment, the description thereof is omitted.
  • the load swing prediction means 23 of the present embodiment determines that the load swing width A exceeds the allowable value when the operation amount p immediately before the operation unit 30 (the operating speed of the booms 130, 230 or the hook 240) exceeds a threshold value.
  • the threshold value is determined in advance for each posture of the booms 130 and 230, a suspension distance of the hook 240 (when the boom 230 having the hook 240 is stopped), and a weight of the load (bucket 140 or suspension load 250).
  • the load sway predicting means 23 selects from the stored postures of the booms 130 and 230, the hanging distance of the hook 240 (when the boom 230 having the hook 240 is stopped), and the threshold values for the weights of the loads 140 and 250. Then, a threshold value corresponding to the detection results of the posture detector 40 and the weight detector 50 is called, and the threshold value is compared with the operation amount p immediately before the operation unit 30 to determine whether the load swing width A exceeds the allowable value. Judging.
  • the threshold value may be determined for each weight of the luggage 140, 250 regardless of the posture of the booms 130, 230 and the hanging distance of the hooks 240.
  • the detection result of the attitude detector 40 is not input to the load sway prediction means 23.
  • the load sway predicting means 23 calls out the threshold corresponding to the detection result of the weight detector 50 from the stored thresholds for the respective weights of the loads 140 and 250, and obtains the threshold and the operation amount p immediately before the operation unit 30. In comparison, it is determined whether or not the load swing width A exceeds an allowable value.
  • the threshold value may be determined for each posture of the booms 130 and 230 and the hanging distance of the hook 240 (when the boom 230 having the hook 240 is stopped) regardless of the weight of the luggage 140 and 250.
  • the detection result of the weight detector 50 is not input to the load fluctuation prediction means 23.
  • the load sway predicting means 23 uses the stored posture of the booms 130 and 230 and the threshold value for each hanging distance of the hook 240 (when the boom 230 having the hook 240 is stopped) as the detection result of the posture detector 40.
  • the corresponding threshold value is called and the threshold value is compared with the operation amount p immediately before the operation unit 30 to determine whether or not the load swing width A exceeds the allowable value.
  • the threshold value may be determined as a constant value regardless of the posture of the booms 130 and 230, the hanging distance of the hook 240, and the weight of the loads 140 and 250.
  • the detection results of the posture detector 40 and the weight detector 50 are not input to the load fluctuation prediction means 23.
  • the load sway predicting means 23 compares the threshold value stored in advance with the operation amount p immediately before the operation unit 30 regardless of the posture of the booms 130 and 230, the hanging distance of the hook 240, and the weight of the loads 140 and 250. Then, it is determined whether or not the load swing width A exceeds an allowable value.
  • the first operation speed of the booms 130 and 230 is determined.
  • the slow stop means 21 and the second slow stop means 22 are switched. Therefore, it is possible for the worker to predict which of the slow stop means 21 and 22 will stop the booms 130 and 230, and the operability is improved.
  • the detection result of the speed detector that detects the operating speed of the booms 130 and 230 or the hook 240 may be used instead of the operation amount p immediately before the operation unit 30.
  • the operating speed of the boom 230 or the hook 240 may be calculated from the time change of the detection result of the posture detector 40 (the posture of the boom 230 or the hanging distance of the hook 240).
  • the load sway predicting means 23 may be configured as follows.
  • the load swing prediction means 23 determines that the load swing width A exceeds the allowable value when the detection result of the posture detector 40 exceeds the threshold, and the load swing width when the detection result of the posture detector 40 does not exceed the threshold. Judge that A does not exceed the allowable value.
  • the threshold value is predetermined for each operating speed of the booms 130 and 230 or the hooks 240 and the weight of the loads 140 and 250.
  • the load sway predicting means 23 selects the operation amount p (boom 130, 230 or just before the operation unit 30) from the stored operating speed of the boom 130, 230 or hook 240 and the threshold value for each weight of the load 140, 250.
  • the threshold corresponding to the detection speed of the hook 240 and the detection result of the weight detector 50 is called, and the threshold and the detection result of the attitude detector 40 are compared to determine whether the load swing width A exceeds the allowable value. to decide.
  • the threshold value may be determined for each weight of the luggage 140, 250 regardless of the operating speed of the booms 130, 230 or the hooks 240.
  • the operation amount of the operation unit 30 is not input to the load fluctuation prediction unit 23.
  • the load swing prediction means 23 calls a threshold value corresponding to the detection result of the weight detector 50 from the stored threshold values for the weights of the loads 140 and 250, and compares the threshold value with the detection result of the attitude detector 40. Thus, it is determined whether or not the load swing width A exceeds an allowable value.
  • the threshold value may be determined for each operating speed of the booms 130 and 230 or the hook 240 regardless of the weight of the luggage 140 and 250.
  • the detection result of the weight detector 50 is not input to the load fluctuation prediction means 23.
  • the load swing prediction means 23 corresponds to the operation amount p immediately before the operation unit 30 (the operation speed of the boom 130, 230 or the hook 240) from the stored threshold values for each operation speed of the boom 130, 230 or the hook 240.
  • the threshold value is called and the threshold value is compared with the detection result of the attitude detector 40 to determine whether or not the load swing width A exceeds an allowable value.
  • the threshold value may be set as a constant value regardless of the operating speed of the boom 130, 230 or the hook 240 and the weight of the load 140, 250.
  • the operation amount of the operation unit 30 and the detection result of the weight detector 50 are not input to the load fluctuation prediction unit 23.
  • the load swing prediction means 23 compares the threshold value stored in advance with the detection result of the attitude detector 40 regardless of the operating speed of the boom 130, 230 or the hook 240 and the weight of the load 140, 250, and the load swing width. Determine whether A exceeds the tolerance.
  • the first slow stop means according to the posture of the booms 130 and 230. 21 and the second slow stop means 22 are switched. Therefore, it is possible for the worker to predict which of the slow stop means 21 and 22 will stop the booms 130 and 230 or the hook 240, and the operability is improved.
  • the load sway predicting means 23 may be configured as follows.
  • the load fluctuation prediction means 23 determines that the load fluctuation width A exceeds the allowable value when the detection result of the weight detector 50 exceeds the threshold value, and the load fluctuation width when the detection result of the weight detector 50 does not exceed the threshold value. Judge that A does not exceed the allowable value.
  • the threshold is determined in advance for each posture of the booms 130 and 230, a hanging distance of the hook 240 (when the boom 230 having the hook 240 is stopped), and an operating speed of the boom 130, 230 or the hook 240.
  • the load sway predicting means 23 stores the stored attitudes of the booms 130 and 230, the suspension distance of the hook 240 (when the boom 230 having the hook 240 is stopped), and the operating speed of the boom 130, 230 or the hook 240.
  • the threshold value corresponding to the detection result of the posture detector 40 and the operation amount p immediately before the operation unit 30 (the operating speed of the boom 130, 230 or the hook 240) is called out from the threshold value, and the threshold value and the weight detector 50 are detected. By comparing with the result, it is determined whether or not the load swing width A exceeds an allowable value.
  • the threshold value may be determined for each operating speed of the booms 130 and 230 or the hook 240 regardless of the posture of the booms 130 and 230 and the hanging distance of the hooks 240.
  • the detection result of the attitude detector 40 is not input to the load sway prediction means 23.
  • the load swing prediction means 23 corresponds to the operation amount p immediately before the operation unit 30 (the operation speed of the boom 130, 230 or the hook 240) from the stored threshold values for each operation speed of the boom 130, 230 or the hook 240.
  • the threshold value is called, and the threshold value is compared with the detection result of the weight detector 50 to determine whether or not the load swing width A exceeds an allowable value.
  • the threshold value may be determined for each posture of the booms 130 and 230 and the hanging distance of the hooks 240 (when the boom 230 having the hooks 240 is stopped) regardless of the operating speed of the booms 130 and 230 or the hooks 240. .
  • the operation amount of the operation unit 30 is not input to the load fluctuation prediction unit 23.
  • the load sway predicting means 23 uses the stored posture of the booms 130 and 230 and the threshold value for each hanging distance of the hook 240 (when the boom 230 having the hook 240 is stopped) as the detection result of the posture detector 40. A corresponding threshold value is called, and the threshold value is compared with the detection result of the weight detector 50 to determine whether or not the load swing width A exceeds an allowable value.
  • the threshold value may be determined as a constant value regardless of the posture of the booms 130 and 230, the hanging distance of the hook 240, and the operating speed of the booms 130, 230, or the hook 240.
  • the detection result of the posture detector 40 and the operation amount of the operation unit 30 are not input to the load fluctuation prediction unit 23.
  • the load sway predicting means 23 does not depend on the posture of the booms 130 and 230, the hanging distance of the hooks 240, and the operating speed of the booms 130, 230 or the hooks 240, and the threshold value stored in advance and the detection result of the weight detector 50. Are compared to determine whether the load swing width A exceeds the allowable value.
  • the first slow stop means is based on the weight of the load 140, 250. 21 and the second slow stop means 22 are switched. Therefore, it is possible for the worker to predict which of the slow stop means 21 and 22 will stop the booms 130 and 230 or the hook 240, and the operability is improved.
  • the load sway predicting means 23 is set to the operation amount p immediately before the operation unit 30 (the operating speed of the boom 130, 230 or the hook 240).
  • the detection result of the posture detector 40 and the weight detector 50 may be compared with a threshold value stored in advance to determine whether or not the load swing width A exceeds an allowable value.
  • the detection result of the speed detector that detects the operating speed of the booms 130 and 230 or the hook 240 may be used instead of the operation amount p immediately before the operation unit 30.
  • the operating speed of the boom 230 or the hook 240 may be calculated from the time change of the detection result (the attitude of the boom 230 or the hanging distance of the hook 240) of the attitude detector 40.
  • a display unit may be provided for displaying whether the actuator 10 is slowly stopped by the first slow stop unit 21 or the second slow stop unit 22.
  • This display means may be configured to switch the display based on the prediction result of the load fluctuation prediction means 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Control And Safety Of Cranes (AREA)
  • Jib Cranes (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

 荷揺れを抑制しつつ、停止時間を短くできる作業機械の緩停止装置を提供する。停止信号が入力された場合に、荷揺れ周期Tを算出し、荷揺れ周期Tの半周期の時間T1をかけてアクチュエータ10を停止させる第1緩停止手段21と、荷揺れ周期Tの半周期の時間T1より短い時間T2をかけてアクチュエータ10を停止させる第2緩停止手段22と、荷揺れ幅Aが許容値を超えるか否かを予測する荷揺れ予測手段23と、荷揺れ予測手段23の予測に従い、第1緩停止手段21と第2緩停止手段22とを切り替える切替手段24とを備える。作業機械の作動を停止させる際の荷揺れを抑制でき、作業機械の作動の停止に要する時間を短くできる。

Description

作業機械の緩停止装置
 本発明は、作業機械の緩停止装置に関する。さらに詳しくは、高所作業車やクレーンなどのブームを有する作業機械において、作業機械の作動を停止させる際の荷揺れを抑制するための作業機械の緩停止装置に関する。
 作業機械の緩停止装置として、操作レバーによりブームの作動を急停止させた場合に、ブームの作動速度を一定の加速度で制動して停止させる装置が知られている(例えば、特許文献1)。一定の加速度で減速させることにより、ブームを緩やかに停止でき荷揺れを抑制できる。
 しかし、この従来の緩停止装置は、ブームの撓みを考慮していないため、特定のブーム姿勢、特にブームを伸長させている状態では、ブームの作動を停止させる際にブームが撓み、その撓みにより荷揺れが生じるという問題がある。
 これに対して、特許文献2には、ブームの撓みを考慮して荷揺れ周期時間を算出し、ブームの作動速度を加速度一定のもと荷揺れ周期時間で制動して停止させる技術が開示されている。この技術によれば、ブームの作動を停止させる際にブームの撓みも含めた荷揺れを抑制できる。
 ところで、ブームの撓み量はブームが支持する荷物の加速度および質量(重量)に比例することが知られている。より詳細には、ブームの撓みは片持ち梁の撓みと近似でき、片持ち梁の撓み量δは以下の数1で表される。
Figure JPOXMLDOC01-appb-M000001
ここで、Fは梁の自由端に垂直方向に加わる力、lは梁の長さ、Eは梁のヤング率、Iは梁の断面2次モーメントである。すなわち、撓み量δは梁に加わる力Fに比例する。ブームの作動を急停止させた場合に生じる撓みの場合、力Fはブームに支持された荷物の慣性力(F=ma)である。そのため、ブームの撓み量はブームが支持する荷物の加速度aおよび質量mに比例する。
 ブームの作動を急停止させた場合、ブームの作動速度にかかわらず一定時間で作動速度が0になると仮定すると、急停止直前の作動速度が速いほどブームの加速度が大きくなり、荷物の加速度が大きくなる。そのため、ブームの撓み量は急停止直前の作動速度に比例する。すなわち、ブームの作動速度が速い場合には、急停止させるとブームの撓みが大きく、荷揺れ幅が大きくなる。一方、ブームの作動速度が遅い場合には、急停止させてもブームの撓み量が小さく、荷揺れ幅は小さい。これに対して、荷揺れ周期時間はブームの作動速度に依存しない。
 上記特許文献2に記載された技術では、ブームの作動速度によらず荷揺れ周期時間をかけて停止させるため、ブームの作動速度が遅く、荷揺れが問題とならない場合でも停止に要する時間が長くなるという問題がある。
特開2000-103596号公報 特開平7-69584号公報
 本発明は上記事情に鑑み、荷揺れを抑制しつつ、停止時間を短くできる作業機械の緩停止装置を提供することを目的とする。
 第1発明の作業機械の緩停止装置は、荷物を支持するブームを有する作業機械に備えられる緩停止装置であって、前記作業機械を作動させるアクチュエータと、該アクチュエータの駆動を制御する制御部と、該制御部に前記作業機械の作動を指示する操作部と、を備え、前記制御部は、前記操作部から前記作業機械の作動の停止を指示する停止信号が入力された場合に、前記荷物の荷揺れ周期を算出し、該荷揺れ周期の半周期の時間をかけて前記アクチュエータを制動して停止させる第1緩停止手段と、前記操作部から前記停止信号が入力された場合に、前記荷揺れ周期の半周期の時間より短い時間をかけて前記アクチュエータを制動して停止させる第2緩停止手段と、前記荷物の荷揺れ幅が許容値を超えるか否かを予測する荷揺れ予測手段と、前記荷揺れ予測手段が前記荷物の荷揺れ幅が許容値を超えると予測した場合に前記第1緩停止手段により前記アクチュエータを停止させ、前記荷揺れ予測手段が前記荷物の荷揺れ幅が許容値を超えないと予測した場合に前記第2緩停止手段により前記アクチュエータを停止させる切替手段と、を備えることを特徴とする。
 第2発明の作業機械の緩停止装置は、第1発明において、前記第1緩停止手段は、前記操作部から前記ブームの作動の停止を指示する停止信号が入力された場合に、前記ブームの姿勢、および前記荷物の重量を基に該荷物の荷揺れ周期を算出し、該荷揺れ周期の半周期の時間をかけて前記アクチュエータを制動して停止させることを特徴とする。
 第3発明の作業機械の緩停止装置は、第1発明において、前記作業機械は前記ブームから吊り下げられ前記荷物を掛けるフックを備え、前記第1緩停止手段は、前記操作部から前記ブームの作動の停止を指示する停止信号が入力された場合に、前記ブームの姿勢、前記フックの吊下距離、および前記荷物の重量を基に該荷物の荷揺れ周期を算出し、該荷揺れ周期の半周期の時間をかけて前記アクチュエータを制動して停止させることを特徴とする。
 第4発明の作業機械の緩停止装置は、第1発明において、前記作業機械は前記ブームから吊り下げられ前記荷物を掛けるフックを備え、第1緩停止手段は、前記操作部から前記フックの作動の停止を指示する停止信号が入力された場合に、前記ブームの姿勢、および前記荷物の重量を基に該荷物の荷揺れ周期を算出し、該荷揺れ周期の半周期の時間をかけて前記アクチュエータを制動して停止させることを特徴とする。
 第5発明の作業機械の緩停止装置は、第1または第2発明において、前記荷揺れ予測手段は、前記ブームの姿勢、前記ブームの作動速度、および前記荷物の重量を基に該荷物の荷揺れ幅を算出し、該荷揺れ幅が閾値を超える場合に前記荷物の荷揺れ幅が許容値を超えると判断し、該荷揺れ幅が閾値を超えない場合に前記荷物の荷揺れ幅が許容値を超えないと判断することを特徴とする。
 第6発明の作業機械の緩停止装置は、第1または第3発明において、前記作業機械は前記ブームから吊り下げられ前記荷物を掛けるフックを備え、前記荷揺れ予測手段は、前記ブームの姿勢、前記フックの吊下距離、前記ブームの作動速度、および前記荷物の重量を基に該荷物の荷揺れ幅を算出し、該荷揺れ幅が閾値を超える場合に前記荷物の荷揺れ幅が許容値を超えると判断し、該荷揺れ幅が閾値を超えない場合に前記荷物の荷揺れ幅が許容値を超えないと判断することを特徴とする。
 第7発明の作業機械の緩停止装置は、第1または第4発明において、前記作業機械は前記ブームから吊り下げられ前記荷物を掛けるフックを備え、前記荷揺れ予測手段は、前記ブームの姿勢、前記フックの作動速度、および前記荷物の重量を基に該荷物の荷揺れ幅を算出し、該荷揺れ幅が閾値を超える場合に前記荷物の荷揺れ幅が許容値を超えると判断し、該荷揺れ幅が閾値を超えない場合に前記荷物の荷揺れ幅が許容値を超えないと判断することを特徴とする。
 第8発明の作業機械の緩停止装置は、第1、第2、第3または第4発明において、前記作業機械の作動速度を検出する速度検出器を備え、前記荷揺れ予測手段は、前記速度検出器の検出結果が閾値を超える場合に前記荷物の荷揺れ幅が許容値を超えると判断し、前記速度検出器の検出結果が閾値を超えない場合に前記荷物の荷揺れ幅が許容値を超えないと判断することを特徴とする。
 第9発明の作業機械の緩停止装置は、第1、第2、第3または第4発明において、前記ブームの姿勢を検出する姿勢検出器を備え、前記荷揺れ予測手段は、前記姿勢検出器の検出結果が閾値を超える場合に前記荷物の荷揺れ幅が許容値を超えると判断し、前記姿勢検出器の検出結果が閾値を超えない場合に前記荷物の荷揺れ幅が許容値を超えないと判断することを特徴とする。
 第10発明の作業機械の緩停止装置は、第1、第2、第3または第4発明において、前記荷物の重量を検出する重量検出器を備え、前記荷揺れ予測手段は、前記重量検出器の検出結果が閾値を超える場合に前記荷物の荷揺れ幅が許容値を超えると判断し、前記重量検出器の検出結果が閾値を超えない場合に前記荷物の荷揺れ幅が許容値を超えないと判断することを特徴とする。
 第1発明によれば、荷揺れ幅が許容値を超えると予測した場合に第1緩停止手段によりアクチュエータを停止させるので、作業機械の作動を停止させる際の荷揺れを抑制できる。荷揺れ幅が許容値を超えないと予測した場合に第2緩停止手段によりアクチュエータを停止させるので、作業機械の作動の停止に要する時間を短くできる。しかも、荷揺れ幅を許容しうる範囲に抑制できる。そのため、荷揺れを抑制しつつ、停止時間を短くできる。
 第2発明によれば、ブームの作動を停止させる場合に、ブームの姿勢、および荷物の重量を基に荷揺れ周期を算出するので、荷揺れ周期を正確に予測でき、荷揺れを十分に抑制できる。
 第3発明によれば、フックを有するブームの作動を停止させる場合に、ブームの姿勢、フックの吊下距離、および荷物の重量を基に荷揺れ周期を算出するので、荷揺れ周期を正確に予測でき、荷揺れを十分に抑制できる。
 第4発明によれば、フックの作動を停止させる場合に、ブームの姿勢、および荷物の重量を基に荷揺れ周期を算出するので、荷揺れ周期を正確に予測でき、荷揺れを十分に抑制できる。
 第5発明によれば、ブームの作動を停止させる場合に、ブームの姿勢、ブームの作動速度、および荷物の重量を基に荷揺れ幅を算出し、その荷揺れ幅を基に許容値を超えるか否かを予測するので、荷揺れを正確に予測でき、第1緩停止手段と第2緩停止手段の切り替えを適切に行うことができる。
 第6発明によれば、フックを有するブームの作動を停止させる場合に、ブームの姿勢、フックの吊下距離、ブームの作動速度、および荷物の重量を基に荷揺れ幅を算出し、その荷揺れ幅を基に許容値を超えるか否かを予測するので、荷揺れを正確に予測でき、第1緩停止手段と第2緩停止手段の切り替えを適切に行うことができる。
 第7発明によれば、フックの作動を停止させる場合に、ブームの姿勢、フックの作動速度、および荷物の重量を基に荷揺れ幅を算出し、その荷揺れ幅を基に許容値を超えるか否かを予測するので、荷揺れを正確に予測でき、第1緩停止手段と第2緩停止手段の切り替えを適切に行うことができる。
 第8発明によれば、速度検出器の検出結果と閾値とを比較することで、荷揺れ幅が許容値を超えるか否かを予測するので、ブームまたはフックの作動速度により第1緩停止手段と第2緩停止手段とが切り替えられる。そのため、作業員にとって、いずれの緩停止手段でブームまたはフックが停止するかが予想でき、操作性が良くなる。
 第9発明によれば、姿勢検出器の検出結果と閾値とを比較することで、荷揺れ幅が許容値を超えるか否かを予測するので、ブームの姿勢により第1緩停止手段と第2緩停止手段とが切り替えられる。そのため、作業員にとって、いずれの緩停止手段でブームまたはフックが停止するかが予想でき、操作性が良くなる。
 第10発明によれば、重量検出器の検出結果と閾値とを比較することで、荷揺れ幅が許容値を超えるか否かを予測するので、荷物の重量により第1緩停止手段と第2緩停止手段とが切り替えられる。そのため、作業員にとって、いずれの緩停止手段でブームまたはフックが停止するかが予想でき、操作性が良くなる。
本発明の第1実施形態に係る緩停止装置のブロック図である。 (a)図は操作部の操作量の時間変化を示すグラフであり、(b)図は第1緩停止手段で停止させた場合のブームまたはフックの作動速度の時間変化を示すグラフであり、(c)図は第2緩停止手段で停止させた場合のブームまたはフックの作動速度の時間変化を示すグラフである。 高所作業車の側面図である。 本発明の第2実施形態に係る緩停止装置のブロック図である。 移動式クレーンの側面図である。
 つぎに、本発明の実施形態を図面に基づき説明する。
 本発明に係る作業機械の緩停止装置は、高所作業車やクレーンなどの、荷物を支持するブームを有するあらゆる作業機械に備えられ、作業機械の作動を停止させる際の荷揺れを抑制するために用いられる。以下、高所作業車および移動式クレーンの場合を例に説明する。
(第1実施形態)
 本発明の第1実施形態に係る緩停止装置1は高所作業車に備えられる。まず、図3に基づき高所作業車100の基本的構造を説明する。
 図3において符号110は車両であり、車両110の荷台の後方には旋回台120が搭載されている。旋回台120の旋回動作は旋回モータで行われる。旋回台120には多段式のブーム130が起伏自在に取り付けられている。ブーム130の伸縮動作は伸縮シリンダで行われ、起伏動作は起伏シリンダで行われる。ブーム130の先端には、作業員が乗ることのできる籠状のバケット140が設けられている。バケット140は、ブーム130の起伏角の変化に拘わらず常に水平に維持され、かつ水平面内で旋回可能となっている。
 この様な高所作業車100においてブーム130を旋回させ、その旋回を急停止させると、バケット140の慣性力によりブーム130が撓み、その撓みによりバケット140が水平方向に揺れる。また、ブーム130を起伏させ、その起伏を急停止させるとバケット140の慣性力によりブーム130が撓み、その撓みによりバケット140が垂直方向に揺れる。
 本実施形態に係る緩停止装置1は、高所作業車100のブーム130の旋回、または起伏を停止させる際に、バケット140の揺れを抑制するために用いられる。
 高所作業車100においては、特許請求の範囲に記載の「荷物」とはブーム130の先端に設けられたバケット140、およびバケット140に積載された作業員などの積載物を意味し(以下、単に「バケット140」という。)、「荷物の重量」とは積載物を含むバケット140の重量を意味し(以下、単に「バケット140の重量」という。)、「荷揺れ」とはバケット140の揺れを意味する。
 つぎに、緩停止装置1の構成を説明する。
 図1に示すように、緩停止装置1は、高所作業車100を作動させるアクチュエータ10と、アクチュエータ10の駆動を制御する制御部20と、制御部20に高所作業車100の作動を指示する操作部30と、ブーム130の姿勢を検出する姿勢検出器40とを備える。
 本実施形態においてアクチュエータ10は、ブーム130を旋回させる旋回モータ、またはブーム130を起伏させる起伏シリンダである。
 制御部20は、CPUやメモリなどで構成された車載コンピュータなどであり、操作部30の指示に従いアクチュエータ10の駆動を制御する手段である。一般に、高所作業車100のアクチュエータ10は油圧アクチュエータであり、油圧アクチュエータに作動油を供給する油圧回路が備えられる。制御部20は、油圧回路を構成するバルブなどを切り替えて、アクチュエータ10に供給する作動油の方向や流量を制御することにより、アクチュエータ10の駆動方向や駆動速度を制御する。
 操作部30は、高所作業車100の車両110やバケット140に備えられた操作レバーや操作ペダル、スイッチなどである。制御部20は、操作部30の操作量(操作レバーの傾倒量など)に従い、アクチュエータ10の駆動速度を制御する。具体的には、操作部30の操作量が大きいほど、アクチュエータ10は駆動速度が速くなるように制御され、ブーム130の旋回速度、または起伏速度が速くなる。また、操作部30の操作量が小さいほど、アクチュエータ10は駆動速度が遅くなるように制御され、ブーム130の旋回速度、または起伏速度が遅くなる。また、操作部30が非操作(操作量が0)の場合には、ブーム130の作動の停止を指示する停止信号が操作部30から制御部20に入力される。
 姿勢検出器40は、ブーム130の旋回角度、起伏角度、および伸縮長さを測定する各種センサなどで構成される。姿勢検出器40の検出結果は制御部20に入力されている。
 制御部20は、第1緩停止手段21、第2緩停止手段22、荷揺れ予測手段23、および切替手段24を備えており、これらが協働して、駆動しているアクチュエータ10を停止させるよう構成されている。第1緩停止手段21、第2緩停止手段22、荷揺れ予測手段23、および切替手段24は、制御部20がプログラムを実行することで実現される。
 なお、制御部20は、アクチュエータ10を停止させる機能のほかに、操作部30の操作量に従ってアクチュエータ10を駆動させる機能も有するが、図1においてこの機能を実現する手段は省略している。
 第1緩停止手段21には、操作部30および姿勢検出器40からの信号が入力されている。第1緩停止手段21は、操作部30からブーム130の作動の停止を指示する停止信号が入力された場合に、以下の緩停止方法でアクチュエータ10を停止させる。
 まず、第1緩停止手段21は、操作部30から停止信号が入力された場合に、姿勢検出器40の検出結果と、予め記憶されたバケット140の重量を基にバケット140の荷揺れ周期Tを算出する。ここで、荷揺れ周期Tは、ブーム130の作動を急停止させた場合に生ずるバケット140の固有振動の周期である。バケット140の荷揺れ周期Tは、ブーム130の姿勢(起伏角度、および伸縮長さ)、およびバケット140の重量により一意に定まることが知られている。
 第1緩停止手段21は、ブーム130の自重や構造、剛性などの情報を予め記憶しておき、それらの情報と姿勢検出器40の検出結果(ブーム130の姿勢)、およびバケット140の重量から力学的に荷揺れ周期Tを算出するよう構成されている。
 また、予めブーム130の姿勢ごとの荷揺れ周期Tを試験で求めて、それを第1緩停止手段21に記憶させておき、第1緩停止手段21は、記憶したブーム130の姿勢ごとの荷揺れ周期Tの中から、姿勢検出器40の検出結果に対応する荷揺れ周期Tを呼び出すように構成してもよい。
 なお、バケット140の重量を検出する重量検出器を備え、姿勢検出器40および重量検出器の検出結果を基に荷揺れ周期Tを算出するように構成してもよい。ただし、高所作業車100においては、バケット140自体の重量は一定であり、作業員などの積載物の重量も大きく変動しないため、バケット140の重量の変動は小さい。そのため、本実施形態のようにバケット140の重量を固定値とした構成であっても、算出された荷揺れ周期Tの誤差は小さい。
 つぎに、第1緩停止手段21は、算出した荷揺れ周期Tの半周期の時間T1(=T/2)をかけてアクチュエータ10を制動して停止させるように制御信号を出力する。より詳細には、図2に示すように、操作部30の操作量がpの場合のブーム130の作動速度をvとする。時刻tにおいて操作部30の操作量をpから0(非操作状態)に変化させた場合(図2(a))、第1緩停止手段21は時刻tからT1時間経過時にブーム130の作動速度が0となるようにアクチュエータ10を制動する(図2(b))。
 このように、荷揺れ周期Tの半周期の時間T1をかけてアクチュエータ10を制動して停止させることで、ブーム130の作動を停止させる際の荷揺れを抑制できることが知られている。なお、図2(b)においては、減速時の加速度を一定としているが、加速度を一定としなくてもよい。
 第2緩停止手段22には、操作部30および姿勢検出器40からの信号が入力されている。第2緩停止手段22は、操作部30から停止信号が入力された場合に、以下の緩停止方法でアクチュエータ10を停止させる。
 第2緩停止手段22は、操作部30から停止信号が入力された場合に、予め記憶された時間T2をかけてアクチュエータ10を制動して停止させるように制御信号を出力する。より詳細には、図2に示すように、時刻tにおいて操作部30の操作量をpから0(非操作状態)に変化させた場合(図2(a))、第2緩停止手段22は時刻tからT2時間経過時にブーム130の作動速度が0となるようにアクチュエータ10を制動する(図2(c))。
 ここで、時間T2は、荷揺れ周期Tの半周期の時間T1より短い時間に設定される。そのため、第2緩停止手段22によりアクチュエータ10を停止させると、時間T1より短い分だけ荷揺れが生じる。時間T2の値は予め試験により定められる。具体的には、ブーム130の姿勢ごとに、荷揺れ幅が所定の範囲に収まるように停止に要する時間を求め、それを時間T2とする。ここで、「荷揺れ幅」とは荷揺れの振幅を意味する。
 第2緩停止手段22は、記憶したブーム130の姿勢ごとの時間T2の中から、姿勢検出器40の検出結果に対応する時間T2を呼び出し、その時間T2をかけてアクチュエータ10を停止させるように制御信号を出力する。
 なお、時間T2を、ブーム130の姿勢によらず一定の値として定めてもよい。この場合は、第2緩停止手段22には姿勢検出器40の検出結果が入力されない。第2緩停止手段22は、ブーム130の姿勢によらず、予め記憶された時間T2をかけてアクチュエータ10を停止させるように制御信号を出力する。
 荷揺れ予測手段23には、操作部30および姿勢検出器40からの信号が入力されている。荷揺れ予測手段23は、操作部30の操作量と、姿勢検出器40の検出結果と、予め記憶されたバケット140の重量を基に、ブーム130の作動を急停止させた場合の荷揺れ幅が許容値を超えるか否かを予測する。本実施形態において荷揺れ予測手段23は以下の方法で予測を行う。
 まず、荷揺れ予測手段23は、操作部30の操作量と、姿勢検出器40の検出結果と、バケット140の重量を基に、バケット140の荷揺れ幅Aを算出する。バケット140の荷揺れ幅Aは、ブーム130の姿勢(起伏角度、および伸縮長さ)、ブーム130の作動速度、およびバケット140の重量(積載物の重量も含む)により定まることが知られている。
 本実施形態において、ブーム130の作動速度は、操作部30の操作量から取得する。具体的には、図2(a)に示すように、操作部30の操作量が0になる直前の操作量pをブーム130の作動速度とする。すなわち、本実施形態において操作部30はブーム130の作動速度を検出する速度検出器としての役割も担う。
 なお、姿勢検出器40の検出結果(ブーム130の姿勢)の時間変化からブーム130の作動速度を算出してもよい。また、操作部30とは別に、ブーム130の作動速度を検出する速度検出器を設けてもよい。このように、特許請求の範囲に記載の「速度検出器」とは、ブーム130の作動速度を直接的に検出する手段に限られず、操作部30や姿勢検出器40のようにブーム130の作動速度を間接的に検出する手段も含む概念である。
 荷揺れ予測手段23は、ブーム130の構造や剛性などの情報を予め記憶しておき、それらの情報と操作部30の操作量(ブーム130の作動速度)、姿勢検出器40の検出結果(ブーム130の姿勢)、およびバケット140の重量から力学的に荷揺れ幅Aを算出するよう構成される。
 また、予めブーム130の姿勢、作動速度ごとの荷揺れ幅Aを試験で求めて、それを荷揺れ予測手段23に記憶させておき、荷揺れ予測手段23は、記憶したブーム130の姿勢、作動速度ごとの荷揺れ幅Aの中から、操作部30の操作量、および姿勢検出器40の検出結果に対応する荷揺れ幅Aを呼び出すように構成してもよい。
 つぎに、荷揺れ予測手段23は、算出した荷揺れ幅Aが予め記憶された閾値を超える場合に荷揺れ幅Aが許容値を超えると判断し、算出した荷揺れ幅Aが閾値を超えない場合に荷揺れ幅Aが許容値を超えないと判断する。
 ここで、閾値は荷揺れ幅Aの許容できる最大値として予め定められる。例えば、バケット140に乗った作業員が不快に感じない荷揺れ幅Aの最大値として定められる。
 切替手段24は、第1緩停止手段21および第2緩停止手段22から出力された制御信号がそれぞれ入力されており、それらの制御信号のうちのいずれかを選択してアクチュエータ10に出力する。切替手段24は、荷揺れ予測手段23と接続されており、荷揺れ予測手段23が荷揺れ幅Aが許容値を超えると予測した場合に第1緩停止手段21の制御信号をアクチュエータ10に出力し、第1緩停止手段21によりアクチュエータ10を停止させる。また、荷揺れ予測手段23が荷揺れ幅Aが許容値を超えないと予測した場合に第2緩停止手段22の制御信号をアクチュエータ10に出力し、第2緩停止手段22によりアクチュエータ10を停止させる。
 つぎに、緩停止装置1の動作を説明する。
 図2に示すように、作業員が操作部30を操作して、時刻tにおいて操作部30の操作量をpから0(非操作状態)に変化させると(図2(a))、第1緩停止手段21は、荷揺れ周期Tの半周期の時間T1をかけてアクチュエータ10を停止させるように制御信号を出力する(図2(b))。一方、第2緩停止手段22は、時間T1より短い時間T2をかけてアクチュエータ10を停止させるように制御信号を出力する(図2(c))。また、荷揺れ予測手段23は、操作部30の直前の操作量p、姿勢検出器40の検出結果、およびバケット140の重量を基に、荷揺れ幅Aが許容値を超えるか否かを予測する。
 ブーム130の伸長長さが長い場合や、ブーム130の作動速度が速い場合などには、荷揺れ予測手段23により荷揺れ幅Aが許容値を超えると予測される。この場合、切替手段24は第1緩停止手段21の制御信号をアクチュエータ10に出力し、第1緩停止手段21によりアクチュエータ10を停止させる。そのため、ブーム130の作動を停止させる際の荷揺れを抑制できる。
 一方、ブーム130の伸長長さが短い場合や、ブーム130の作動速度が遅い場合などには、荷揺れ予測手段23により荷揺れ幅Aが許容値を超えないと予測される。この場合、切替手段24は第2緩停止手段22の制御信号をアクチュエータ10に出力し、第2緩停止手段22によりアクチュエータ10を停止させる。そのため、ブーム130の作動の停止に要する時間を短くできる。しかも、荷揺れ幅Aが許容値を超えないと予測されているため、第2緩停止手段22によりアクチュエータ10を停止させても荷揺れ幅Aを許容しうる範囲に抑制できる。
 以上のように、緩停止装置1によれば荷揺れを抑制しつつ、停止時間を短くできる。
 また、本実施形態の荷揺れ予測手段23は、ブーム130の作動を停止させる場合に、操作部30の操作量(ブーム130の作動速度)、姿勢検出器40の検出結果(ブーム130の姿勢)、およびバケット140の重量を基に荷揺れ幅Aを予測し、その荷揺れ幅Aを基に許容値を超えるか否かを予測するので、荷揺れを正確に予測できる。そのため、第1緩停止手段21と第2緩停止手段22の切り替えを適切に行うことができ、確実に荷揺れを抑制しつつ、停止時間を短くできる。
(第2実施形態)
 本発明の第2実施形態に係る緩停止装置2は移動式クレーンに備えられる。まず、図5に基づき移動式クレーン200の基本的構造を説明する。
 図5において符号210は走行車体であり、走行車体210の上面には旋回台220が搭載されている。旋回台220の旋回動作は旋回モータで行われる。旋回台220には多段式のブーム230が起伏自在に取り付けられている。ブーム230の伸縮動作は伸縮シリンダで行われ、起伏動作は起伏シリンダで行われる。ブーム230の先端からはフック240を備えたワイヤロープ241が吊り下げられ、そのワイヤロープ241はブーム230の根本に導かれてウィンチに巻き取られている。ウィンチを回転させてワイヤロープ241の巻き取り、繰り出しを行うことで、フック240を昇降させることができる。このフック240に吊り荷250を掛けることができる。ブーム230の旋回、起伏、伸縮、およびフック240の昇降を組み合わせることにより、立体空間内での吊り荷250の荷揚げと荷降ろしが可能となっている。
 この様な移動式クレーン200においてブーム230を旋回させ、その旋回を急停止させると、吊り荷250の慣性力により吊り荷250が振り子の様に水平方向に揺れるのに加え、吊り荷250の慣性力によりブーム230が撓み、その撓みによっても吊り荷250が水平方向に揺れる。また、ブーム230を起伏させ、その起伏を急停止させると吊り荷250の慣性力によりブーム230が撓み、その撓みにより吊り荷250が垂直方向に揺れるとともに、吊り荷250の慣性力の水平方向成分により吊り荷250が振り子の様に水平方向に揺れる。さらに、ブーム230を伸縮させ、その伸縮を急停止させると吊り荷250の慣性力の水平方向成分により吊り荷250が振り子の様に水平方向に揺れる。
 本実施形態に係る緩停止装置2は、移動式クレーン200のブーム230の旋回、起伏、または伸縮を停止させる際に、吊り荷250の揺れを抑制するために用いられる。
 移動式クレーン200においては、特許請求の範囲に記載の「荷物」とはフック240に吊り下げられた吊り荷250を意味し、「荷物の重量」とはフック240の重量と吊り荷250の重量の和を意味し(以下、単に「吊り荷250の重量」という。)、「荷揺れ」とは吊り荷250の揺れを意味する。
 つぎに、緩停止装置2の構成を説明する。
 図4に示すように、緩停止装置2は、第1実施形態に係る緩停止装置1に、吊り荷250の重量を検出する重量検出器50が加えられた構成である。
 本実施形態においてアクチュエータ10は、ブーム230を旋回させる旋回モータ、ブーム230を起伏させる起伏シリンダ、またはブーム230を伸縮させる伸縮シリンダである。
 操作部30は、移動式クレーン200の運転席に備えられた操作レバーや操作ペダル、スイッチなどである。制御部20は、操作部30の操作量(操作レバーの傾倒量など)に従い、アクチュエータ10の駆動速度を制御する。また、操作部30が非操作(操作量が0)の場合には、ブーム230の作動の停止を指示する停止信号が操作部30から制御部20に入力される。
 姿勢検出器40は、ブーム230の旋回角度、起伏角度、伸縮長さ、およびブーム230の先端から吊り荷250までの距離(以下、「フック240の吊下距離」と称する。)を測定する各種センサなどで構成される。姿勢検出器40の検出結果は制御部20に入力されている。
 重量検出器50は、吊り荷250の重量を測定する各種センサなどで構成される。重量検出器50の検出結果は制御部20に入力されている。
 制御部20は、第1緩停止手段21、第2緩停止手段22、荷揺れ予測手段23、および切替手段24を備えており、これらが協働して、駆動しているアクチュエータ10を停止させるよう構成されている。
 第1緩停止手段21には、操作部30、姿勢検出器40、および重量検出器50からの信号が入力されている。第1緩停止手段21は、操作部30からブーム230の作動の停止を指示する停止信号が入力された場合に、以下の緩停止方法でアクチュエータ10を停止させる。
 まず、第1緩停止手段21は、操作部30から停止信号が入力された場合に、姿勢検出器40、および重量検出器50の検出結果を基に吊り荷250の荷揺れ周期Tを算出する。ここで、荷揺れ周期Tは、ブーム230の作動を急停止させた場合に生ずる吊り荷250の固有振動の周期である。吊り荷250の荷揺れ周期Tは、ブーム230の姿勢(起伏角度、および伸縮長さ)、フック240の吊下距離、および吊り荷250の重量により一意に定まることが知られている。
 第1緩停止手段21は、ブーム230の自重や構造、剛性などの情報を予め記憶しておき、それらの情報と姿勢検出器40および重量検出器50の検出結果(ブーム230の姿勢、フック240の吊下距離、および吊り荷250の重量)から力学的に荷揺れ周期Tを算出するよう構成されている。
 また、予めブーム230の姿勢、フック240の吊下距離、および吊り荷250の重量ごとの荷揺れ周期Tを試験で求めて、それを第1緩停止手段21に記憶させておき、第1緩停止手段21は、記憶したブーム230の姿勢、フック240の吊下距離、および吊り荷250の重量ごとの荷揺れ周期Tの中から、姿勢検出器40、および重量検出器50の検出結果に対応する荷揺れ周期Tを呼び出すように構成してもよい。
 つぎに、第1緩停止手段21は、算出した荷揺れ周期Tの半周期の時間T1(=T/2)をかけてアクチュエータ10を制動して停止させるように制御信号を出力する。
 第2緩停止手段22には、操作部30、姿勢検出器40、および重量検出器50からの信号が入力されている。第2緩停止手段22は、操作部30から停止信号が入力された場合に、第1実施形態の第2緩停止手段22と同様の緩停止方法でアクチュエータ10を停止させる。
 ここで、時間T2は、荷揺れ周期Tの半周期の時間T1より短い時間に設定される。そのため、第2緩停止手段22によりアクチュエータ10を停止させると、時間T1より短い分だけ荷揺れが生じる。時間T2の値は予め試験により定められる。具体的には、ブーム130の姿勢、フック240の吊下距離、および吊り荷250の重量ごとに、荷揺れ幅が所定の範囲に収まるように停止に要する時間を求め、それを時間T2とする。
 第2緩停止手段22は、記憶したブーム130の姿勢、フック240の吊下距離、および吊り荷250の重量ごとの時間T2の中から、姿勢検出器40、および重量検出器50の検出結果に対応する時間T2を呼び出し、その時間T2をかけてアクチュエータ10を停止させるように制御信号を出力する。
 なお、時間T2を、ブーム130の姿勢、フック240の吊下距離、および吊り荷250の重量によらず一定の値として定めてもよい。この場合は、第2緩停止手段22には姿勢検出器40、および重量検出器50の検出結果が入力されない。第2緩停止手段22は、ブーム130の姿勢、フック240の吊下距離、および吊り荷250の重量によらず、予め記憶された時間T2をかけてアクチュエータ10を停止させるように制御信号を出力する。
 荷揺れ予測手段23には、操作部30、姿勢検出器40および重量検出器50からの信号が入力されている。荷揺れ予測手段23は、操作部30の操作量と、姿勢検出器40および重量検出器50の検出結果を基に、ブーム230の作動を急停止させた場合の荷揺れ幅が許容値を超えるか否かを予測する。本実施形態において荷揺れ予測手段23は以下の方法で予測を行う。
 まず、荷揺れ予測手段23は、操作部30の操作量と、姿勢検出器40および重量検出器50の検出結果を基に、吊り荷250の荷揺れ幅Aを算出する。吊り荷250の荷揺れ幅Aは、ブーム230の姿勢(起伏角度、および伸縮長さ)、フック240の吊下距離、ブーム230の作動速度、および吊り荷250の重量により定まることが知られている。
 本実施形態において、ブーム230の作動速度は、操作部30の操作量から取得する。なお、姿勢検出器40の検出結果(ブーム230の姿勢)の時間変化からブーム230の作動速度を算出してもよい。また、操作部30とは別に、ブーム230の作動速度を検出する速度検出器を設けてもよい。
 荷揺れ予測手段23は、ブーム230の構造や剛性などの情報を予め記憶しておき、それらの情報と操作部30の操作量(ブーム230の作動速度)と、姿勢検出器40および重量検出器50の検出結果(ブーム230の姿勢、フック240の吊下距離、および吊り荷250の重量)から力学的に荷揺れ幅Aを算出するよう構成される。
 また、予めブーム230の姿勢、フック240の吊下距離、ブーム230の作動速度、および吊り荷250の重量ごとの荷揺れ幅Aを試験で求めて、それを荷揺れ予測手段23に記憶させておき、荷揺れ予測手段23は、記憶したブーム230の姿勢、フック240の吊下距離、ブーム230の作動速度、および吊り荷250の重量ごとの荷揺れ幅Aの中から、操作部30の操作量と、姿勢検出器40および重量検出器50の検出結果に対応する荷揺れ幅Aを呼び出すように構成してもよい。
 つぎに、荷揺れ予測手段23は、算出した荷揺れ幅Aが予め記憶された閾値を超える場合に荷揺れ幅Aが許容値を超えると判断し、算出した荷揺れ幅Aが閾値を超えない場合に荷揺れ幅Aが許容値を超えないと判断する。
 ここで、閾値は荷揺れ幅Aの許容できる最大値として予め定められる。例えば、吊り荷250の荷揺れが安全を確保できる荷揺れ幅Aの最大値として定められる。
 切替手段24は、荷揺れ予測手段23が荷揺れ幅Aが許容値を超えると予測した場合に第1緩停止手段21の制御信号をアクチュエータ10に出力し、第1緩停止手段21によりアクチュエータ10を停止させる。また、荷揺れ予測手段23が荷揺れ幅Aが許容値を超えないと予測した場合に第2緩停止手段22の制御信号をアクチュエータ10に出力し、第2緩停止手段22によりアクチュエータ10を停止させる。
 つぎに、緩停止装置2の動作について説明する。
 図2に示すように、作業員が操作部30を操作して、時刻tにおいて操作部30の操作量をpから0(非操作状態)に変化させると(図2(a))、第1緩停止手段21は、荷揺れ周期Tの半周期の時間T1をかけてアクチュエータ10を停止させるように制御信号を出力する(図2(b))。一方、第2緩停止手段22は、時間T1より短い時間T2をかけてアクチュエータ10を停止させるように制御信号を出力する(図2(c))。また、荷揺れ予測手段23は、操作部30の直前の操作量pと、姿勢検出器40および重量検出器50の検出結果を基に、荷揺れ幅Aが許容値を超えるか否かを予測する。
 ブーム230の伸長長さが長い場合や、ブーム230の作動速度が速い場合、フック240の吊下距離が長い場合、吊り荷250の重量が重い場合などには、荷揺れ予測手段23により荷揺れ幅Aが許容値を超えると予測される。この場合、切替手段24は第1緩停止手段21の制御信号をアクチュエータ10に出力し、第1緩停止手段21によりアクチュエータ10を停止させる。そのため、ブーム230の作動を停止させる際の荷揺れを抑制できる。
 一方、ブーム230の伸長長さが短い場合や、ブーム230の作動速度が遅い場合、フック240の吊下距離が短い場合、吊り荷250の重量が軽い場合などには、荷揺れ予測手段23により荷揺れ幅Aが許容値を超えないと予測される。この場合、切替手段24は第2緩停止手段22の制御信号をアクチュエータ10に出力し、第2緩停止手段22によりアクチュエータ10を停止させる。そのため、ブーム230の作動の停止に要する時間を短くできる。しかも、荷揺れ幅Aが許容値を超えないと予測されているため、第2緩停止手段22によりアクチュエータ10を停止させても荷揺れ幅Aを許容しうる範囲に抑制できる。
 以上のように、緩停止装置2によれば荷揺れを抑制しつつ、停止時間を短くできる。
 また、本実施形態の荷揺れ予測手段23は、フック240を有するブーム230の作動を停止させる場合に、操作部30の操作量(ブーム230の作動速度)、姿勢検出器40の検出結果(ブーム230の姿勢、フック240の吊下距離)、および吊り荷250の重量を基に荷揺れ幅Aを予測し、その荷揺れ幅Aを基に許容値を超えるか否かを予測するので、荷揺れを正確に予測できる。そのため、第1緩停止手段21と第2緩停止手段22の切り替えを適切に行うことができ、確実に荷揺れを抑制しつつ、停止時間を短くできる。
(第3実施形態)
 つぎに、本発明の第3実施形態に係る緩停止装置3を説明する。
 移動式クレーン200においては、ブーム230の旋回、起伏、伸縮を停止させる場合に加え、フック240の昇降を停止させる場合にも荷揺れが生じる。より詳細には、フック240を昇降させ、その昇降を急停止させると吊り荷250の慣性力によりブーム230が撓み、その撓みにより吊り荷250が垂直方向に揺れる。本実施形態に係る緩停止装置3は、移動式クレーン200のフック240の昇降を停止させる際に、吊り荷250の揺れを抑制するために用いられる。
 緩停止装置3の構成は、第2実施形態に係る緩停止装置2の構成と同様である(図4参照)。本実施形態においてアクチュエータ10は、フック240を昇降させるウィンチである。
 操作部30は、移動式クレーン200の運転席に備えられた操作レバーや操作ペダル、スイッチなどである。制御部20は、操作部30の操作量(操作レバーの傾倒量など)に従い、アクチュエータ10の駆動速度を制御する。また、操作部30が非操作(操作量が0)の場合には、フック240の作動の停止を指示する停止信号が操作部30から制御部20に入力される。
 第1緩停止手段21には、操作部30、姿勢検出器40、および重量検出器50からの信号が入力されている。第1緩停止手段21は、操作部30からフック240の作動の停止を指示する停止信号が入力された場合に、以下の緩停止方法でアクチュエータ10を停止させる。
 まず、第1緩停止手段21は、操作部30から停止信号が入力された場合に、姿勢検出器40、および重量検出器50の検出結果を基に吊り荷250の荷揺れ周期Tを算出する。ここで、荷揺れ周期Tは、フック240の作動を急停止させた場合に生ずる吊り荷250の固有振動の周期である。吊り荷250の荷揺れ周期Tは、ブーム230の姿勢(起伏角度、および伸縮長さ)、および吊り荷250の重量により一意に定まることが知られている。第1緩停止手段21は、力学的に荷揺れ周期Tを算出するよう構成されるか、予め記憶された荷揺れ周期Tを呼び出すよう構成されている。
 つぎに、第1緩停止手段21は、算出した荷揺れ周期Tの半周期の時間T1(=T/2)をかけてアクチュエータ10を制動して停止させるように制御信号を出力する。
 第2緩停止手段22には、操作部30、姿勢検出器40、および重量検出器50からの信号が入力されている。第2緩停止手段22は、操作部30から停止信号が入力された場合に、第1実施形態の第2緩停止手段22と同様の緩停止方法でアクチュエータ10を停止させる。
 ここで、時間T2は、荷揺れ周期Tの半周期の時間T1より短い時間に設定される。そのため、第2緩停止手段22によりアクチュエータ10を停止させると、時間T1より短い分だけ荷揺れが生じる。時間T2の値は予め試験により定められる。具体的には、ブーム130の姿勢、および吊り荷250の重量ごとに、荷揺れ幅が所定の範囲に収まるように停止に要する時間を求め、それを時間T2とする。
 第2緩停止手段22は、記憶したブーム130の姿勢、および吊り荷250の重量ごとの時間T2の中から、姿勢検出器40、および重量検出器50の検出結果に対応する時間T2を呼び出し、その時間T2をかけてアクチュエータ10を停止させるように制御信号を出力する。
 なお、時間T2を、ブーム130の姿勢、および吊り荷250の重量によらず一定の値として定めてもよい。この場合は、第2緩停止手段22には姿勢検出器40、および重量検出器50の検出結果が入力されない。第2緩停止手段22は、ブーム130の姿勢、および吊り荷250の重量によらず、予め記憶された時間T2をかけてアクチュエータ10を停止させるように制御信号を出力する。
 荷揺れ予測手段23には、操作部30、姿勢検出器40および重量検出器50からの信号が入力されている。荷揺れ予測手段23は、操作部30の操作量と、姿勢検出器40および重量検出器50の検出結果を基に、フック240の作動を急停止させた場合の荷揺れ幅が許容値を超えるか否かを予測する。本実施形態において荷揺れ予測手段23は以下の方法で予測を行う。
 まず、荷揺れ予測手段23は、操作部30の操作量と、姿勢検出器40および重量検出器50の検出結果を基に、吊り荷250の荷揺れ幅Aを算出する。吊り荷250の荷揺れ幅Aは、ブーム230の姿勢(起伏角度、および伸縮長さ)、ブーム230の作動速度、および吊り荷250の重量により定まることが知られている。荷揺れ予測手段23は、力学的に荷揺れ幅Aを算出するよう構成されるか、予め記憶された荷揺れ幅Aを呼び出すよう構成されている。
 本実施形態において、フック240の作動速度は、操作部30の操作量から取得する。なお、姿勢検出器40の検出結果(フック240の吊下距離)の時間変化からフック240の作動速度を算出してもよい。また、操作部30とは別に、フック240の作動速度を検出する速度検出器を設けてもよい。
 つぎに、荷揺れ予測手段23は、算出した荷揺れ幅Aが予め記憶された閾値を超える場合に荷揺れ幅Aが許容値を超えると判断し、算出した荷揺れ幅Aが閾値を超えない場合に荷揺れ幅Aが許容値を超えないと判断する。
 切替手段24は、荷揺れ予測手段23が荷揺れ幅Aが許容値を超えると予測した場合に第1緩停止手段21の制御信号をアクチュエータ10に出力し、第1緩停止手段21によりアクチュエータ10を停止させる。また、荷揺れ予測手段23が荷揺れ幅Aが許容値を超えないと予測した場合に第2緩停止手段22の制御信号をアクチュエータ10に出力し、第2緩停止手段22によりアクチュエータ10を停止させる。
 つぎに、緩停止装置2の動作について説明する。
 図2に示すように、作業員が操作部30を操作して、時刻tにおいて操作部30の操作量をpから0(非操作状態)に変化させると(図2(a))、第1緩停止手段21は、荷揺れ周期Tの半周期の時間T1をかけてアクチュエータ10を停止させるように制御信号を出力する(図2(b))。一方、第2緩停止手段22は、時間T1より短い時間T2をかけてアクチュエータ10を停止させるように制御信号を出力する(図2(c))。また、荷揺れ予測手段23は、操作部30の直前の操作量pと、姿勢検出器40および重量検出器50の検出結果を基に、荷揺れ幅Aが許容値を超えるか否かを予測する。
 ブーム230の伸長長さが長い場合や、フック240の作動速度が速い場合、吊り荷250の重量が重い場合などには、荷揺れ予測手段23により荷揺れ幅Aが許容値を超えると予測される。この場合、切替手段24は第1緩停止手段21の制御信号をアクチュエータ10に出力し、第1緩停止手段21によりアクチュエータ10を停止させる。そのため、ブーム230の作動を停止させる際の荷揺れを抑制できる。
 一方、ブーム230の伸長長さが短い場合やフック240の作動速度が遅い場合、吊り荷250の重量が軽い場合などには、荷揺れ予測手段23により荷揺れ幅Aが許容値を超えないと予測される。この場合、切替手段24は第2緩停止手段22の制御信号をアクチュエータ10に出力し、第2緩停止手段22によりアクチュエータ10を停止させる。そのため、ブーム230の作動の停止に要する時間を短くできる。しかも、荷揺れ幅Aが許容値を超えないと予測されているため、第2緩停止手段22によりアクチュエータ10を停止させても荷揺れ幅Aを許容しうる範囲に抑制できる。
 以上のように、緩停止装置3によれば荷揺れを抑制しつつ、停止時間を短くできる。
 また、本実施形態の荷揺れ予測手段23は、フック240の作動を停止させる場合に、操作部30の操作量(フック240の作動速度)、姿勢検出器40の検出結果(ブーム230の姿勢)、および吊り荷250の重量を基に荷揺れ幅Aを予測し、その荷揺れ幅Aを基に許容値を超えるか否かを予測するので、荷揺れを正確に予測できる。そのため、第1緩停止手段21と第2緩停止手段22の切り替えを適切に行うことができ、確実に荷揺れを抑制しつつ、停止時間を短くできる。
(第4実施形態)
 つぎに、本発明の第4実施形態に係る緩停止装置4を説明する。
 本実施形態に係る緩停止装置4は、上記実施形態とは荷揺れ予測手段23の予測方法が異なる形態である。その余の構成は第1、第2または第3実施形態に係る緩停止装置1、2、3と同様であるので説明を省略する。
 本実施形態の荷揺れ予測手段23は、操作部30の直前の操作量p(ブーム130、230またはフック240の作動速度)が閾値を超える場合に荷揺れ幅Aが許容値を超えると判断し、操作部30の直前の操作量pが閾値を超えない場合に荷揺れ幅Aが許容値を超えないと判断する。ここで、閾値はブーム130、230の姿勢、フック240の吊下距離(フック240を有するブーム230を停止させる場合)、および荷物(バケット140や吊り荷250)の重量ごとに予め定められる。すなわち、荷揺れ予測手段23は、記憶したブーム130、230の姿勢、フック240の吊下距離(フック240を有するブーム230を停止させる場合)、および荷物140、250の重量ごとの閾値の中から、姿勢検出器40および重量検出器50の検出結果に対応する閾値を呼び出し、その閾値と操作部30の直前の操作量pとを比較して、荷揺れ幅Aが許容値を超えるか否かを判断する。
 なお、閾値を、ブーム130、230の姿勢やフック240の吊下距離によらず荷物140、250の重量ごとに定めてもよい。この場合は、荷揺れ予測手段23には姿勢検出器40の検出結果が入力されない。荷揺れ予測手段23は、記憶した荷物140、250の重量ごとの閾値の中から、重量検出器50の検出結果に対応する閾値を呼び出し、その閾値と操作部30の直前の操作量pとを比較して、荷揺れ幅Aが許容値を超えるか否かを判断する。
 また、閾値を、荷物140、250の重量によらずブーム130、230の姿勢、およびフック240の吊下距離(フック240を有するブーム230を停止させる場合)ごとに定めてもよい。この場合は、荷揺れ予測手段23には重量検出器50の検出結果が入力されない。荷揺れ予測手段23は、記憶したブーム130、230の姿勢、およびフック240の吊下距離(フック240を有するブーム230を停止させる場合)ごとの閾値の中から、姿勢検出器40の検出結果に対応する閾値を呼び出し、その閾値と操作部30の直前の操作量pとを比較して、荷揺れ幅Aが許容値を超えるか否かを判断する。
 さらに、閾値を、ブーム130、230の姿勢、フック240の吊下距離および荷物140、250の重量によらず一定の値として定めてもよい。この場合は、荷揺れ予測手段23には姿勢検出器40および重量検出器50の検出結果が入力されない。荷揺れ予測手段23は、ブーム130、230の姿勢、フック240の吊下距離、および荷物140、250の重量によらず、予め記憶された閾値と操作部30の直前の操作量pとを比較して、荷揺れ幅Aが許容値を超えるか否かを判断する。
 以上のように、操作部30の直前の操作量pと閾値とを比較することで、荷揺れ幅Aが許容値を超えるか否かを予測するので、ブーム130、230の作動速度により第1緩停止手段21と第2緩停止手段22とが切り替えられる。そのため、作業員にとって、いずれの緩停止手段21、22でブーム130、230が停止するかが予想でき、操作性が良くなる。
 なお、操作部30の直前の操作量pに代えて、ブーム130、230またはフック240の作動速度を検出する速度検出器の検出結果を用いてもよい。姿勢検出器40の検出結果(ブーム230の姿勢、またはフック240の吊下距離)の時間変化からブーム230またはフック240の作動速度を算出してもよい。
(第5実施形態)
 つぎに、本発明の第5実施形態に係る緩停止装置5を説明する。
 上記実施形態において、荷揺れ予測手段23を以下のように構成してもよい。
 荷揺れ予測手段23は、姿勢検出器40の検出結果が閾値を超える場合に荷揺れ幅Aが許容値を超えると判断し、姿勢検出器40の検出結果が閾値を超えない場合に荷揺れ幅Aが許容値を超えないと判断する。ここで、閾値はブーム130、230またはフック240の作動速度および荷物140、250の重量ごとに予め定められる。すなわち、荷揺れ予測手段23は、記憶したブーム130、230またはフック240の作動速度および荷物140、250の重量ごとの閾値の中から、操作部30の直前の操作量p(ブーム130、230またはフック240の作動速度)および重量検出器50の検出結果に対応する閾値を呼び出し、その閾値と姿勢検出器40の検出結果とを比較して、荷揺れ幅Aが許容値を超えるか否かを判断する。
 なお、閾値を、ブーム130、230またはフック240の作動速度によらず荷物140、250の重量ごとに定めてもよい。この場合は、荷揺れ予測手段23には操作部30の操作量が入力されない。荷揺れ予測手段23は、記憶した荷物140、250の重量ごとの閾値の中から、重量検出器50の検出結果に対応する閾値を呼び出し、その閾値と姿勢検出器40の検出結果とを比較して、荷揺れ幅Aが許容値を超えるか否かを判断する。
 また、閾値を、荷物140、250の重量によらずブーム130、230またはフック240の作動速度ごとに定めてもよい。この場合は、荷揺れ予測手段23には重量検出器50の検出結果が入力されない。荷揺れ予測手段23は、記憶したブーム130、230またはフック240の作動速度ごとの閾値の中から、操作部30の直前の操作量p(ブーム130、230またはフック240の作動速度)に対応する閾値を呼び出し、その閾値と姿勢検出器40の検出結果とを比較して、荷揺れ幅Aが許容値を超えるか否かを判断する。
 さらに、閾値を、ブーム130、230またはフック240の作動速度および荷物140、250の重量によらず一定の値として定めてもよい。この場合は、荷揺れ予測手段23には操作部30の操作量および重量検出器50の検出結果が入力されない。荷揺れ予測手段23は、ブーム130、230またはフック240の作動速度および荷物140、250の重量によらず、予め記憶された閾値と姿勢検出器40の検出結果とを比較して、荷揺れ幅Aが許容値を超えるか否かを判断する。
 以上のように、姿勢検出器40の検出結果と閾値とを比較することで、荷揺れ幅Aが許容値を超えるか否かを予測するので、ブーム130、230の姿勢により第1緩停止手段21と第2緩停止手段22とが切り替えられる。そのため、作業員にとって、いずれの緩停止手段21、22でブーム130、230またはフック240が停止するかが予想でき、操作性が良くなる。
(第6実施形態)
 つぎに、本発明の第6実施形態に係る緩停止装置6を説明する。
 上記実施形態において、荷揺れ予測手段23を以下のように構成してもよい。
 荷揺れ予測手段23は、重量検出器50の検出結果が閾値を超える場合に荷揺れ幅Aが許容値を超えると判断し、重量検出器50の検出結果が閾値を超えない場合に荷揺れ幅Aが許容値を超えないと判断する。ここで、閾値はブーム130、230の姿勢、フック240の吊下距離(フック240を有するブーム230を停止させる場合)、およびブーム130、230またはフック240の作動速度ごとに予め定められる。すなわち、荷揺れ予測手段23は、記憶したブーム130、230の姿勢、フック240の吊下距離(フック240を有するブーム230を停止させる場合)、およびブーム130、230またはフック240の作動速度ごとの閾値の中から、姿勢検出器40の検出結果および操作部30の直前の操作量p(ブーム130、230またはフック240の作動速度)に対応する閾値を呼び出し、その閾値と重量検出器50の検出結果とを比較して、荷揺れ幅Aが許容値を超えるか否かを判断する。
 なお、閾値を、ブーム130、230の姿勢やフック240の吊下距離によらずブーム130、230またはフック240の作動速度ごとに定めてもよい。この場合は、荷揺れ予測手段23には姿勢検出器40の検出結果が入力されない。荷揺れ予測手段23は、記憶したブーム130、230またはフック240の作動速度ごとの閾値の中から、操作部30の直前の操作量p(ブーム130、230またはフック240の作動速度)に対応する閾値を呼び出し、その閾値と重量検出器50の検出結果とを比較して、荷揺れ幅Aが許容値を超えるか否かを判断する。
 また、閾値を、ブーム130、230またはフック240の作動速度によらずブーム130、230の姿勢、およびフック240の吊下距離(フック240を有するブーム230を停止させる場合)ごとに定めてもよい。この場合は、荷揺れ予測手段23には操作部30の操作量が入力されない。荷揺れ予測手段23は、記憶したブーム130、230の姿勢、およびフック240の吊下距離(フック240を有するブーム230を停止させる場合)ごとの閾値の中から、姿勢検出器40の検出結果に対応する閾値を呼び出し、その閾値と重量検出器50の検出結果とを比較して、荷揺れ幅Aが許容値を超えるか否かを判断する。
 さらに、閾値を、ブーム130、230の姿勢、フック240の吊下距離およびブーム130、230またはフック240の作動速度によらず一定の値として定めてもよい。この場合は、荷揺れ予測手段23には姿勢検出器40の検出結果および操作部30の操作量が入力されない。荷揺れ予測手段23は、ブーム130、230の姿勢、フック240の吊下距離、およびブーム130、230またはフック240の作動速度によらず、予め記憶された閾値と重量検出器50の検出結果とを比較して、荷揺れ幅Aが許容値を超えるか否かを判断する。
 以上のように、重量検出器50の検出結果と閾値とを比較することで、荷揺れ幅Aが許容値を超えるか否かを予測するので、荷物140、250の重量により第1緩停止手段21と第2緩停止手段22とが切り替えられる。そのため、作業員にとって、いずれの緩停止手段21、22でブーム130、230またはフック240が停止するかが予想でき、操作性が良くなる。
(その他の実施形態)
 さらに、上記の第4、第5、および第6実施形態の構成を組み合わせて、荷揺れ予測手段23を、操作部30の直前の操作量p(ブーム130、230またはフック240の作動速度)と、姿勢検出器40および重量検出器50の検出結果と、予め記憶された閾値とを比較して、荷揺れ幅Aが許容値を超えるか否かを判断するよう構成してもよい。
 また、上記第5、第6実施形態において、操作部30の直前の操作量pに代えて、ブーム130、230またはフック240の作動速度を検出する速度検出器の検出結果を用いてもよい。姿勢検出器40の検出結果(ブーム230の姿勢またはフック240の吊下距離)の時間変化からブーム230またはフック240の作動速度を算出してもよい。
 また、上記各実施形態において、アクチュエータ10が第1緩停止手段21と第2緩停止手段22のどちらで緩停止されるかを表示する表示手段を設けてもよい。この表示手段は、荷揺れ予測手段23の予測結果に基づき表示を切り替えるように構成すればよい。
 1、2 緩停止装置
 10  アクチュエータ
 20  制御部
 21  第1緩停止手段
 22  第2緩停止手段
 23  荷揺れ予測手段
 24  切替手段
 30  操作部
 40  姿勢検出器
 50  重量検出器
 100   高所作業車
 110   車両
 120   旋回台
 130   ブーム
 140   バケット
 200   移動式クレーン
 210   走行車体
 220   旋回台
 230   ブーム
 240   フック
 241   ワイヤロープ
 250   吊り荷

Claims (10)

  1.  荷物を支持するブームを有する作業機械に備えられる緩停止装置であって、
    前記作業機械を作動させるアクチュエータと、
    該アクチュエータの駆動を制御する制御部と、
    該制御部に前記作業機械の作動を指示する操作部と、を備え、
    前記制御部は、
    前記操作部から前記作業機械の作動の停止を指示する停止信号が入力された場合に、前記荷物の荷揺れ周期を算出し、該荷揺れ周期の半周期の時間をかけて前記アクチュエータを制動して停止させる第1緩停止手段と、
    前記操作部から前記停止信号が入力された場合に、前記荷揺れ周期の半周期の時間より短い時間をかけて前記アクチュエータを制動して停止させる第2緩停止手段と、
    前記荷物の荷揺れ幅が許容値を超えるか否かを予測する荷揺れ予測手段と、
    前記荷揺れ予測手段が前記荷物の荷揺れ幅が許容値を超えると予測した場合に前記第1緩停止手段により前記アクチュエータを停止させ、前記荷揺れ予測手段が前記荷物の荷揺れ幅が許容値を超えないと予測した場合に前記第2緩停止手段により前記アクチュエータを停止させる切替手段と、を備える
    ことを特徴とする作業機械の緩停止装置。
  2.  前記第1緩停止手段は、前記操作部から前記ブームの作動の停止を指示する停止信号が入力された場合に、前記ブームの姿勢、および前記荷物の重量を基に該荷物の荷揺れ周期を算出し、該荷揺れ周期の半周期の時間をかけて前記アクチュエータを制動して停止させる
    ことを特徴とする請求項1記載の作業機械の緩停止装置。
  3.  前記作業機械は前記ブームから吊り下げられ前記荷物を掛けるフックを備え、
    前記第1緩停止手段は、前記操作部から前記ブームの作動の停止を指示する停止信号が入力された場合に、前記ブームの姿勢、前記フックの吊下距離、および前記荷物の重量を基に該荷物の荷揺れ周期を算出し、該荷揺れ周期の半周期の時間をかけて前記アクチュエータを制動して停止させる
    ことを特徴とする請求項1記載の作業機械の緩停止装置。
  4.  前記作業機械は前記ブームから吊り下げられ前記荷物を掛けるフックを備え、
    第1緩停止手段は、前記操作部から前記フックの作動の停止を指示する停止信号が入力された場合に、前記ブームの姿勢、および前記荷物の重量を基に該荷物の荷揺れ周期を算出し、該荷揺れ周期の半周期の時間をかけて前記アクチュエータを制動して停止させる
    ことを特徴とする請求項1記載の作業機械の緩停止装置。
  5.  前記荷揺れ予測手段は、前記ブームの姿勢、前記ブームの作動速度、および前記荷物の重量を基に該荷物の荷揺れ幅を算出し、該荷揺れ幅が閾値を超える場合に前記荷物の荷揺れ幅が許容値を超えると判断し、該荷揺れ幅が閾値を超えない場合に前記荷物の荷揺れ幅が許容値を超えないと判断する
    ことを特徴とする請求項1または2記載の作業機械の緩停止装置。
  6.  前記作業機械は前記ブームから吊り下げられ前記荷物を掛けるフックを備え、
    前記荷揺れ予測手段は、前記ブームの姿勢、前記フックの吊下距離、前記ブームの作動速度、および前記荷物の重量を基に該荷物の荷揺れ幅を算出し、該荷揺れ幅が閾値を超える場合に前記荷物の荷揺れ幅が許容値を超えると判断し、該荷揺れ幅が閾値を超えない場合に前記荷物の荷揺れ幅が許容値を超えないと判断する
    ことを特徴とする請求項1または3記載の作業機械の緩停止装置。
  7.  前記作業機械は前記ブームから吊り下げられ前記荷物を掛けるフックを備え、
    前記荷揺れ予測手段は、前記ブームの姿勢、前記フックの作動速度、および前記荷物の重量を基に該荷物の荷揺れ幅を算出し、該荷揺れ幅が閾値を超える場合に前記荷物の荷揺れ幅が許容値を超えると判断し、該荷揺れ幅が閾値を超えない場合に前記荷物の荷揺れ幅が許容値を超えないと判断する
    ことを特徴とする請求項1または4記載の作業機械の緩停止装置。
  8.  前記作業機械の作動速度を検出する速度検出器を備え、
    前記荷揺れ予測手段は、前記速度検出器の検出結果が閾値を超える場合に前記荷物の荷揺れ幅が許容値を超えると判断し、前記速度検出器の検出結果が閾値を超えない場合に前記荷物の荷揺れ幅が許容値を超えないと判断する
    ことを特徴とする請求項1、2、3または4記載の作業機械の緩停止装置。
  9.  前記ブームの姿勢を検出する姿勢検出器を備え、
    前記荷揺れ予測手段は、前記姿勢検出器の検出結果が閾値を超える場合に前記荷物の荷揺れ幅が許容値を超えると判断し、前記姿勢検出器の検出結果が閾値を超えない場合に前記荷物の荷揺れ幅が許容値を超えないと判断する
    ことを特徴とする請求項1、2、3または4記載の作業機械の緩停止装置。
  10.  前記荷物の重量を検出する重量検出器を備え、
    前記荷揺れ予測手段は、前記重量検出器の検出結果が閾値を超える場合に前記荷物の荷揺れ幅が許容値を超えると判断し、前記重量検出器の検出結果が閾値を超えない場合に前記荷物の荷揺れ幅が許容値を超えないと判断する
    ことを特徴とする請求項1、2、3または4記載の作業機械の緩停止装置。
PCT/JP2013/006637 2012-11-19 2013-11-12 作業機械の緩停止装置 WO2014076935A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014546869A JP5827421B2 (ja) 2012-11-19 2013-11-12 作業機械の緩停止装置
CN201380060262.0A CN104797517B (zh) 2012-11-19 2013-11-12 作业机械的缓停止装置
DE112013005508.2T DE112013005508T5 (de) 2012-11-19 2013-11-12 Vorrichtung zum langsamen Anhalten der Arbeitsmaschine
US14/441,604 US9434581B2 (en) 2012-11-19 2013-11-12 Slow stopping apparatus for working machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-252828 2012-11-19
JP2012252828 2012-11-19

Publications (1)

Publication Number Publication Date
WO2014076935A1 true WO2014076935A1 (ja) 2014-05-22

Family

ID=50730869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006637 WO2014076935A1 (ja) 2012-11-19 2013-11-12 作業機械の緩停止装置

Country Status (5)

Country Link
US (1) US9434581B2 (ja)
JP (1) JP5827421B2 (ja)
CN (1) CN104797517B (ja)
DE (1) DE112013005508T5 (ja)
WO (1) WO2014076935A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167765A1 (ja) * 2018-02-28 2019-09-06 オムロン株式会社 シミュレーション装置、方法、及びプログラム
JP2019163155A (ja) * 2018-03-20 2019-09-26 株式会社タダノ クレーン

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101838120B1 (ko) * 2016-02-29 2018-03-13 가부시키가이샤 고마쓰 세이사쿠쇼 작업 기계의 제어 장치, 작업 기계 및 작업 기계의 제어 방법
DE102016220810A1 (de) 2016-10-24 2018-04-26 Jungheinrich Aktiengesellschaft Proaktives Verringern von Schwingungen in einem Flurförderzeug
CN106672870B (zh) * 2016-12-22 2022-05-17 徐州海伦哲专用车辆股份有限公司 一种具有限幅控制阀的绝缘折叠臂高空作业车及限幅方法
CN110002341A (zh) * 2019-04-30 2019-07-12 徐工集团工程机械股份有限公司建设机械分公司 工程机械执行机构执行动作的速度控制方法和系统
CN114115232A (zh) * 2021-10-25 2022-03-01 广东嘉腾机器人自动化有限公司 Agv运输速度控制方法、系统、设备及介质
EP4368558A1 (de) * 2022-11-10 2024-05-15 XCMG European Research Center GmbH Verfahren zur steuerung der position eines lastelementes und/oder einer von einem lastelement gehaltenen last eines krans

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769584A (ja) * 1993-08-31 1995-03-14 Tadano Ltd 旋回式クレーンの旋回自動制動装置
JPH07330285A (ja) * 1994-06-03 1995-12-19 Tadano Ltd 旋回式クレーンにおける旋回制御装置
JPH11139771A (ja) * 1997-11-07 1999-05-25 Komatsu Ltd クレーンの旋回減速制御装置及びその制御方法
JP2000103596A (ja) * 1998-09-28 2000-04-11 Tadano Ltd 作業機の油圧駆動制御装置
JP2004161460A (ja) * 2002-11-14 2004-06-10 Ishikawajima Transport Machinery Co Ltd 旋回クレーンの吊り荷の振れ止め制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512821B2 (ja) * 1989-03-27 1996-07-03 株式会社神戸製鋼所 クレ―ンの旋回停止制御方法および装置
US4932541A (en) * 1989-04-24 1990-06-12 Calspan Corporation Stabilized shipboard crane
JP3117791B2 (ja) * 1992-05-26 2000-12-18 株式会社タダノ クレーンの起伏停止制御装置
JP2010030728A (ja) * 2008-07-28 2010-02-12 Seibu Electric & Mach Co Ltd スタッカクレーンの制振方法
CN102120545B (zh) * 2010-12-22 2012-12-19 中联重科股份有限公司 起重机防摇系统
RU2623295C2 (ru) * 2011-05-20 2017-06-23 Оптилифт Ас Система, устройство и способ текущего контроля положения и ориентации транспортного средства, погрузочного устройства и груза при работе погрузочного устройства
CN102502403B (zh) * 2011-10-28 2013-09-18 河南卫华重型机械股份有限公司 起重机防摇摆控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769584A (ja) * 1993-08-31 1995-03-14 Tadano Ltd 旋回式クレーンの旋回自動制動装置
JPH07330285A (ja) * 1994-06-03 1995-12-19 Tadano Ltd 旋回式クレーンにおける旋回制御装置
JPH11139771A (ja) * 1997-11-07 1999-05-25 Komatsu Ltd クレーンの旋回減速制御装置及びその制御方法
JP2000103596A (ja) * 1998-09-28 2000-04-11 Tadano Ltd 作業機の油圧駆動制御装置
JP2004161460A (ja) * 2002-11-14 2004-06-10 Ishikawajima Transport Machinery Co Ltd 旋回クレーンの吊り荷の振れ止め制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167765A1 (ja) * 2018-02-28 2019-09-06 オムロン株式会社 シミュレーション装置、方法、及びプログラム
JP2019150887A (ja) * 2018-02-28 2019-09-12 オムロン株式会社 シミュレーション装置、方法、及びプログラム
JP2019163155A (ja) * 2018-03-20 2019-09-26 株式会社タダノ クレーン

Also Published As

Publication number Publication date
CN104797517B (zh) 2016-01-06
JPWO2014076935A1 (ja) 2017-01-05
DE112013005508T5 (de) 2016-01-07
CN104797517A (zh) 2015-07-22
JP5827421B2 (ja) 2015-12-02
US20150291399A1 (en) 2015-10-15
US9434581B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5827421B2 (ja) 作業機械の緩停止装置
CN110997551B (zh) 过载保护装置
JP2019064796A (ja) クレーン
CN113165855A (zh) 起重机和用于监测这种起重机的操作的方法
CN111108059A (zh) 起重机
CN113135512B (zh) 起重机臂架监控方法、装置、系统及起重机
JP7435819B2 (ja) クレーン
JP6648872B1 (ja) クレーン
US11542126B2 (en) Crane and method for acquiring length of slinging tool
JP5124079B2 (ja) ブーム式クレーンに用いられる吊荷の荷おろし方法及び装置
JP7414672B2 (ja) クレーンの旋回振れ止め装置およびこれを備えたクレーン
JP6524772B2 (ja) ブーム長さ制限装置
CN111836774B (zh) 起重机及起重机的控制方法
JP2023128041A (ja) 荷振抑制装置、荷振抑制装置を備えるクレーン
JP2018095448A (ja) 使用フック判定装置
RU2406679C2 (ru) Способ предотвращения раскачивания груза на гибком подвесе (варианты)
JP7020182B2 (ja) クレーン
US20240002197A1 (en) Crane, and control method of crane
JP7253930B2 (ja) 張力過重防止装置およびクレーン
JP4708067B2 (ja) クレーン装置
CN109689562B (zh) 起重机
JP6642203B2 (ja) クレーン
JP2017052577A (ja) 作業機の安全装置
JPWO2019167893A1 (ja) クレーン及び玉掛け具の長さ取得方法
JP3117791B2 (ja) クレーンの起伏停止制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380060262.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014546869

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14441604

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130055082

Country of ref document: DE

Ref document number: 112013005508

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854744

Country of ref document: EP

Kind code of ref document: A1