JP6648872B1 - クレーン - Google Patents

クレーン Download PDF

Info

Publication number
JP6648872B1
JP6648872B1 JP2019556374A JP2019556374A JP6648872B1 JP 6648872 B1 JP6648872 B1 JP 6648872B1 JP 2019556374 A JP2019556374 A JP 2019556374A JP 2019556374 A JP2019556374 A JP 2019556374A JP 6648872 B1 JP6648872 B1 JP 6648872B1
Authority
JP
Japan
Prior art keywords
hook
wire rope
sub
control
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019556374A
Other languages
English (en)
Other versions
JPWO2019177164A1 (ja
Inventor
真輔 神田
真輔 神田
和磨 水木
和磨 水木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tadano Ltd
Original Assignee
Tadano Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tadano Ltd filed Critical Tadano Ltd
Application granted granted Critical
Publication of JP6648872B1 publication Critical patent/JP6648872B1/ja
Publication of JPWO2019177164A1 publication Critical patent/JPWO2019177164A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • B66C13/30Circuits for braking, traversing, or slewing motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • B66C23/42Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes with jibs of adjustable configuration, e.g. foldable

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)
  • Jib Cranes (AREA)

Abstract

クレーンは、少なくともブームを含む被操作機能部と、被操作機能部を操作するための操作入力を受け付ける操作部と、被操作機能部を駆動するアクチュエータと、操作入力に基づいてアクチュエータの第一制御信号を生成する生成部と、複数のワイヤロープと、ブームの先端部から複数のワイヤロープのそれぞれに吊られた複数のフックと、複数のフックのうち、荷物を吊っていない不使用フックを検出するフック検出部と、複数のワイヤロープのうち、検出された不使用フックを吊るワイヤロープに関する共振周波数を算出する算出部と、共振周波数に基づいてフィルタを生成し、フィルタを用いて第一制御信号をフィルタリングすることにより第二制御信号を生成するフィルタ部と、第二制御信号に基づいて、アクチュエータを制御する制御部と、を備える。

Description

本発明は、クレーンに関する。
従来、クレーンにおいて、搬送中の荷物には、振動が発生している。このような振動は、搬送時に加わる加速度を起振力としてワイヤロープの先端に吊り下げられている荷物を質点とする単振り子、又は、フック部分を支点とする二重振り子としての振動が発生している。
又、ブームを備えるクレーンによって搬送される荷物には、単振り子又は二重振り子による振動に加えてブームやワイヤロープ等のクレーンを構成している構造物のたわみによる振動が発生している。
ワイヤロープに吊り下げられた荷物は、単振り子又は二重振り子の共振周波数で振動するとともに、ブームの起伏方向の固有振動数や旋回方向の固有振動数、及び/又は、ワイヤロープの伸びによる伸縮振動時の固有周波数等で振動しながら搬送される。
このようなクレーンにおいて、操縦者は、荷物を所定の位置に安定的に下ろすために、操作具による手動操作によってブームを旋回させたり起伏させたりして荷物の振動を打ち消す操作を行う必要があった。このため、クレーンの搬送効率は、搬送時に発生する振動の大きさやクレーン操縦者の熟練度に影響される。
そこで、クレーンのアクチュエータの搬送指令(制御信号)から荷物の共振周波数の周波数成分を減衰させることで荷物の振動を抑制して搬送効率を向上させるクレーンが知られている(例えば、特許文献1参照)。
特許文献1に記載のクレーン装置は、ワイヤロープの振れの回転中心から荷物の重心までの距離であるロープ長(吊り下げ長さ)から共振周波数を算出する。つまり、上記クレーン装置は、荷物を吊っているフック(使用フック)に関する共振周波数を算出する。そして、上記クレーン装置は、上記制御信号からこの共振周波数付近の成分をフィルタ部によって除去することにより、フィルタリング制御信号を生成する。
上述のクレーン装置は、荷物の搬送時において、上記フィルタリング制御信号に基づいてブームの動作を制御することにより、荷物の揺れを抑制する。
国際公開第2005/012155号
ところで、上述の特許文献1に記載されたクレーンの場合、荷物の搬送時において、荷物を吊っていないフック(不使用フック)の振動に起因して、この不使用フックが、使用フックを吊っているワイヤロープ、及び/又は、ブームに接触する可能性がある。
本発明の目的は、搬送時において、不使用フックの振動を低減できるクレーンを提供することである。
本発明に係るクレーンの一態様は、少なくともブームを含む被操作機能部と、被操作機能部を操作するための操作入力を受け付ける操作部と、被操作機能部を駆動するアクチュエータと、操作入力に基づいてアクチュエータの第一制御信号を生成する生成部と、複数のワイヤロープと、ブームの先端部から複数のワイヤロープのそれぞれに吊られた複数のフックと、複数のフックのうち、荷物を吊っていない不使用フックを検出するフック検出部と、複数のワイヤロープのうち、検出された不使用フックを吊るワイヤロープに関する共振周波数を算出する算出部と、共振周波数に基づいてフィルタを生成し、フィルタを用いて第一制御信号をフィルタリングすることにより第二制御信号を生成するフィルタ部と、第二制御信号に基づいて、アクチュエータを制御する制御部と、を備える。
本発明によれば、搬送時において、使用していないフックの振動を低減できる。
図1は、クレーンの全体構成を示す側面図である。 図2は、クレーンの制御構成を示すブロック図である。 図3は、ノッチフィルタの周波数特性を表すグラフを示す図である。 図4は、制御信号とノッチフィルタを適用したフィルタリング制御信号とを表すグラフを示す図である。 図5は、作業状態のクレーンの側面図である。 図6は、本発明の第一実施形態に係る制振制御の一部のフローチャートである。 図7は、ノッチフィルタ適用工程を示すフローチャートである。 図8は、本発明の第一実施形態に係る制振制御の一部のフローチャートである。 図9は、本発明の第二実施形態に係る制振制御の一部のフローチャートである。 図10は、本発明の第三実施形態に係る制振制御の一部のフローチャートである。
以下に、図1及び図2を用いて、本発明の第一実施形態に係るクレーン1について説明する。尚、本実施形態においては、クレーンは、移動式クレーン(ラフテレーンクレーン)である。ただし、クレーンは、トラッククレーン等の種々のクレーンでもよい。
図1に示すように、クレーン1は、不特定の場所に移動可能な移動式クレーンである。クレーン1は、車両2及びクレーン装置6を有する。
車両2は、クレーン装置6を搬送するものである。車両2は、複数の車輪3を有し、エンジン4を動力源として走行する。車両2は、アウトリガ5を有する。アウトリガ5は、張り出しビームと、ジャッキシリンダと、を有する。張り出しビームは、油圧によって車両2の幅方向に伸縮可能である。
ジャッキシリンダは、張り出しビームの先端部に固定され、地面に垂直な方向に伸縮可能である。車両2は、アウトリガ5を車両2の幅方向に伸縮させるとともにジャッキシリンダを接地させることにより、クレーン1の作業可能範囲を広げることができる。
クレーン装置6は、ワイヤロープによって、荷物Wを吊り上げる。クレーン装置6は、旋回台7、ブーム9、ジブ9a、メインフックブロック10、サブフックブロック11、起伏用油圧シリンダ12、メインウインチ13、メインワイヤロープ14、サブウインチ15、サブワイヤロープ16、及び、キャビン17等を有する。
旋回台7は、車両2に対してクレーン装置6を旋回可能に支持している。旋回台7は、円環状の軸受を介して車両2のフレーム上に設けられている。旋回台7は、円環状の軸受の中心を回転中心として回転する。旋回台7は、油圧式の旋回用油圧モータ8を有する。旋回台7は、旋回用油圧モータ8によって第一向又は第二方向に旋回する。ブーム9を駆動する油圧モータ及び油圧シリンダは、アクチュエータの一例に該当する。具体的には、旋回用油圧モータ8は、アクチュエータの一例に該当する。
旋回用油圧モータ8は、電磁比例切換弁である旋回用バルブ31(図2参照)によって回転操作される。旋回用バルブ31は、旋回用油圧モータ8に供給される作動油の流量を任意の流量に制御することができる。つまり、旋回台7は、旋回用バルブ31によって回転操作される旋回用油圧モータ8を介して任意の旋回速度に制御される。旋回台7は、旋回台7の旋回位置(角度)と旋回速度とを検出する旋回用センサ25(図2参照)を有する。
ブーム9は、荷物Wを吊り上げ可能な状態にワイヤロープを支持する。ブーム9は、複数のブーム部材から構成されている。ブーム9は、伸縮用油圧シリンダ(不図示)で各ブーム部材を移動させることにより軸方向に伸縮する。ブーム9のベースブーム部材の基端は、旋回台7の略中央に揺動可能に支持されている。伸縮用油圧シリンダは、アクチュエータの一例に該当する。
伸縮用油圧シリンダは、電磁比例切換弁である伸縮用バルブ32(図2参照)によって伸縮操作される。伸縮用バルブ32は、伸縮用油圧シリンダに供給される作動油の流量を任意の流量に制御する。
つまり、ブーム9は、伸縮用バルブ32によって任意のブーム長さに制御される。ブーム9は、伸縮用センサ26と、重量センサ27(図2参照)と、を有する。ブーム9は、被操作機能部の一例に該当する。被操作機能部は、少なくともブーム9を含むと捉えてよい。
伸縮用センサ26は、ブーム9の長さを検出する。重量センサ27は、メインフック10aに加わる荷物W等の重量Wmを検出する。又、重量センサ27は、サブフック11aに加わる荷物W等の重量Wsを検出する。重量センサ27は、吊り下げ荷重検出部の一例に該当する。
ジブ9aは、クレーン装置6の揚程や作業半径を拡大するためのものである。ジブ9aは、ブーム9のベースブーム部材に設けられたジブ支持部によってベースブーム部材に沿った姿勢で保持されている。ジブ9aの基端は、トップブーム部材のジブ支持部に連結可能に構成されている。
メインフックブロック10とサブフックブロック11とは、荷物Wを吊る吊具である。メインフックブロック10には、メインワイヤロープ14が巻き掛けられる複数のフックシーブと、荷物Wを吊るメインフック10aとが設けられている。
サブフックブロック11には、荷物Wを吊るサブフック11aが設けられている。メインフックブロック10の重量は、フックシーブ及びメインフック10aを含む重量と捉えてよい。又、サブフックブロック11の重量は、サブフック11aを含む重量と捉えてよい。
起伏用油圧シリンダ12は、ブーム9を起立及び倒伏させ、ブーム9の姿勢を保持する。起伏用油圧シリンダ12は、シリンダ部と、ロッド部と、を有する。シリンダ部の端部は、旋回台7に揺動自在に連結されている。ロッド部の端部は、ブーム9のベースブーム部材に揺動自在に連結されている。起伏用油圧シリンダ12は、アクチュエータの一例に該当する。
起伏用油圧シリンダ12は、電磁比例切換弁である起伏用バルブ33(図2参照)によって伸縮操作される。起伏用バルブ33は、起伏用油圧シリンダ12に供給される作動油の流量を任意の流量に制御することができる。つまり、ブーム9は、起伏用バルブ33によって任意の起伏速度に制御される。ブーム9には、ブーム9の起伏角度を検出する起伏用センサ28(図2参照)が設けられている。
メインウインチ13とサブウインチ15とは、メインワイヤロープ14とサブワイヤロープ16との繰り入れ(巻き上げ)及び繰り出し(巻き下げ)を行う。メインウインチ13は、メインワイヤロープ14が巻きつけられるメインドラムと、メインドラムを回転駆動するメイン用油圧モータ(不図示)と、を有する。メイン用油圧モータは、アクチュエータの一例に該当する。
サブウインチ15は、サブワイヤロープ16が巻きつけられるサブドラムと、このサブドラムを回転駆動するサブ用油圧モータ(不図示)と、を有する。サブ用油圧モータは、アクチュエータの一例に該当する。
メイン用油圧モータは、電磁比例切換弁であるメイン用バルブ34(図2参照)によって回転操作される。メイン用バルブ34は、メイン用油圧モータに供給される作動油の流量を任意の流量に制御することができる。
つまり、メインウインチ13は、メイン用バルブ34によって任意の繰り入れ及び繰り出し速度に制御される。同様に、サブウインチ15は、電磁比例切換弁であるサブ用バルブ35(図2参照)によって任意の繰り入れ及び繰り出し速度に制御される。
メインウインチ13には、メイン繰出量検出センサ29が設けられている。同様に、サブウインチ15には、サブ繰出量検出センサ30が設けられている。メインウインチ13及びサブウインチ15は、被操作機能部の一例に該当する。
メイン繰出量検出センサ29は、メインウインチ13から繰り出されたメインワイヤロープ14の繰り出し量Lma(n)を検出する。メイン繰出量検出センサ29が検出する繰り出し量Lma(n)は、メインウインチ13から繰り出されたメインワイヤロープ14の長さと捉えてよい。
サブ繰出量検出センサ30は、サブウインチ15から繰り出されたサブワイヤロープ16の繰り出し量Lsa(n)を検出する。サブ繰出量検出センサ30が検出する繰り出し量Lsa(n)は、サブウインチ15から繰り出されたサブワイヤロープ16の長さと捉えてよい。
キャビン17は、操縦席を覆っている。キャビン17は、旋回台7に搭載されている。キャビン17は、操縦席(不図示)を有する。操縦席には、車両2を走行操作するための操作具やクレーン装置6を操作するための操作具が設けられている。
クレーン装置6を操作するための操作具は、例えば、旋回操作具18、起伏操作具19、伸縮操作具20、メインドラム操作具21、サブドラム操作具22、揺れ抑制スイッチ23、及び、優先フック選択スイッチ24等である(図2参照)。
操作具のうち、ブーム9を操作するための操作入力を受け付ける装具は、操作部の一例に該当する。具体的には、旋回操作具18、起伏操作具19、及び、伸縮操作具20は、操作部の一例に該当する。又、操作具のうち、メインウインチ13を操作するためのメインドラム操作具21、及び、サブウインチ15を操作するためのサブドラム操作具22は、操作部の一例に該当する。このような操作部は、被操作機能部を操作するための操作入力を受け付ける。
旋回操作具18は、旋回用バルブ31を操作することで旋回用油圧モータ8を制御する。起伏操作具19は、起伏用バルブ33を操作することで起伏用油圧シリンダ12を制御する。伸縮操作具20は、伸縮用バルブ32を操作することで伸縮用油圧シリンダを制御する。
メインドラム操作具21は、メイン用バルブ34を操作することでメイン用油圧モータを制御する。サブドラム操作具22は、サブ用バルブ35を操作することでサブ用油圧モータを制御する。
揺れ抑制スイッチ23は、不使用フックについて制振制御を実施するか否かを選択する際に使用される。揺れ抑制スイッチ23は、ON状態において、自動的に不使用フックを決定してよい。揺れ抑制スイッチ23は、ON状態において、決定した不使用フックに対して制振制御を実施してよい。尚、以下の説明において、荷物Wを吊っているフックを使用フックと称する。又、荷物Wを吊っていないフックを不使用フックと称する。
優先フック選択スイッチ24は、優先的に制振制御を適用するフックを選択する際に使用される。作業者は、優先フック選択スイッチ24を操作することにより、メインフックとサブフックとのうち、優先するフック(以下、優先フックと称する。)を選択する。尚、優先フック選択スイッチ24は、省略されてもよい。
制御装置36は、不使用フックが決定できない場合、優先フックに対して制振制御を実施してよい。尚、作業者は、優先フック選択スイッチ24を使用して、予め優先フックとして不使用フックを選択してよい。
このように構成されるクレーン1は、車両2を走行させることで任意の位置にクレーン装置6を移動させることができる。又、クレーン1は、起伏操作具19の操作によってブーム9の起伏角度を変更するとともに、伸縮操作具20の操作によってブーム9の長さを変更することによりクレーン装置6の揚程及び作業半径を変更できる。
又、クレーン1は、使用フックの高さを変更するためのドラム操作具(メインドラム操作具21又はサブドラム操作具22)を操作することにより荷物Wを釣り上げた状態で、旋回操作具18の操作により旋回台7を旋回させることで、荷物Wを搬送する。
図2に示すように、制御装置36は、各操作弁を介してクレーン1のアクチュエータを制御する。制御装置36は、制御信号生成部36a、共振周波数算出部36b、及び、フィルタ部36cを有する。制御信号生成部36aは、生成部の一例に該当する。
制御装置36は、キャビン17内に設けられている。制御装置36は、実体的には、CPU、ROM、RAM、及び、HDD等がバスで接続される構成であってよい。又、制御装置36は、ワンチップのLSI等からなる構成であってもよい。
制御装置36には、制御信号生成部36a、共振周波数算出部36b、及び、フィルタ部36cの動作を制御するために種々のプログラムやデータが格納されていてよい。
制御信号生成部36aは、制御装置36の一部であり、各アクチュエータの速度指令である制御信号を生成する。制御信号生成部36aは、旋回操作具18、起伏操作具19、伸縮操作具20、メインドラム操作具21、及び/又は、サブドラム操作具22等から各操作具の操作量(操作に関する情報とも称する。)を取得する。
制御信号生成部36aは、旋回用センサ25、伸縮用センサ26、重量センサ27、及び/又は、起伏用センサ28から旋回台7の旋回位置、ブーム長さ、起伏角度、及び/又は、荷物Wの重量Wm、Ws等のクレーン1の状態に関する情報を取得する。
制御信号生成部36aは、取得したクレーン1の操作に関する情報、及び/又は、クレーン1の状態に関する情報に基づいて旋回操作具18の制御信号C(1)を生成する。又、制御信号生成部36aは、取得した操作に関する情報、及び/又は、クレーン1の状態に関する情報に基づいて、各操作具18〜22の制御信号C(2)〜C(5)を生成する。以下、制御信号C(1)〜C(5)を、まとめて制御信号C(n)と称する。尚、nは、制御信号生成部36aが生成した制御信号により制御される操作具の数と捉えてよい。制御信号生成部36aにより生成される制御信号C(n)は、第一制御信号の一例に該当する。
又、制御信号生成部36aは、揺れ抑制スイッチ23からの信号を取得してよい。制御信号生成部36aは、不使用フックを選択して制振制御を開始する。更に、制御信号生成部36aは、優先フック選択スイッチ24から取得した信号に基づいて、メインフック10aとサブフック11aとのうち優先的に制振制御を適用する優先フックを選択する。
共振周波数算出部36bは、制御装置36の一部であり、メインワイヤロープ14及び/又はサブワイヤロープ16に吊り下げられた荷物Wを単振り子として、荷物Wの揺れの共振周波数ω(n)を算出するものである。共振周波数算出部36bは、算出部の一例に該当する。
共振周波数算出部36bは、メインワイヤロープ14に吊り下げられたメインフック10aを単振り子として、メインフック10aの揺れの共振周波数ω(n)を算出してよい。又、共振周波数算出部36bは、サブワイヤロープ16に吊り下げられたサブフック11aを単振り子として、サブフック11aの揺れの共振周波数ω(n)を算出してよい。共振周波数算出部36bは、共振周波数ω(n)の算出に必要な情報を、制御装置36を構成する各エレメントから取得すると捉えてよい。
共振周波数算出部36bは、制御信号生成部36aからブーム9の起伏角度を取得してよい。共振周波数算出部36bは、メイン繰出量検出センサ29からメインワイヤロープ14の繰り出し量Lma(n)を取得してよい。
又、共振周波数算出部36bは、サブ繰出量検出センサ30からサブワイヤロープ16の繰り出し量Lsa(n)を取得してよい。又、共振周波数算出部36bは、メインフックブロック10を使用している場合、安全装置(不図示)からメインフックブロック10の掛け数を取得してよい。
更に、共振周波数算出部36bは、フックシーブ(メインフックシーブとも称する。)からメインワイヤロープ14が離間する位置からメインフックブロック10までのメインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)(図5参照)を算出してよい。共振周波数算出部36bは、ワイヤ長算出部の一例に該当すると捉えてよい。
共振周波数算出部36bは、メイン繰出量検出センサ29から取得した繰り出し量Lma(n)に基づいて、鉛直方向におけるワイヤ長Lm(n)を算出してよい。具体的には、鉛直方向におけるワイヤ長Lm(n)は、繰り出し量Lma(n)をメインフックブロック10のワイヤ掛け数(本実施形態の場合、2本)で除した値と捉えてよい。
鉛直方向におけるワイヤ長Lm(n)は、メインフックシーブとメインフックブロック10との鉛直方向における距離に等しいメインワイヤロープ14の長さと捉えてもよい。
又、共振周波数算出部36bは、フックシーブ(サブフックシーブとも称する。)からサブワイヤロープ16が離間する位置からサブフックブロック11までのサブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)(図5参照)を算出してよい。
共振周波数算出部36bは、サブ繰出量検出センサ30から取得した繰り出し量Lsa(n)に基づいて、鉛直方向におけるワイヤ長Ls(n)を算出してよい。本実施形態の場合、サブフックブロックのワイヤ掛け数が1本であるため、鉛直方向におけるワイヤ長Ls(n)は、繰り出し量Lsa(n)に等しい。
鉛直方向におけるワイヤ長Ls(n)は、サブフックシーブとサブフックブロック11との鉛直方向における距離に等しいサブワイヤロープ16の長さと捉えてもよい。
更に、共振周波数算出部36bは、メインワイヤロープ14に関する共振周波数ω(n)=√(g/L(n))・・・(1)を算出してよい。共振周波数算出部36bは、重力加速度gとメインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)とに基づいて、共振周波数ω(n)=√(g/Lm(n))を算出してよい。
又、共振周波数算出部36bは、サブワイヤロープ16に関する共振周波数ω(n)=√(g/L(n))・・・(1)を算出してよい。共振周波数算出部36bは、重力加速度gとサブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)とに基づいて、共振周波数ω(n)=√(g/Ls(n))を算出してよい。
フィルタ部36cは、制御装置36の一部であり、制御信号C(1)・C(2)・・C(n)の特定の周波数領域を減衰させるノッチフィルタF(1)・F(2)・・F(n)を生成する(以下、単にまとめて「ノッチフィルタF(n)」と記し、nは任意の数とする)。フィルタ部36cは、制御信号C(n)に対して、生成したノッチフィルタF(n)によりフィルタリングする。
フィルタ部36cは、制御信号生成部36aから旋回台7の旋回位置、ブーム長さ、起伏角度、荷物Wの重量Wm、Ws、制御信号C(1)、及び、制御信号C(2)・・制御信号C(n)、を取得する。更に、フィルタ部36cは、共振周波数算出部36bから、共振周波数ω(n)を取得する。
フィルタ部36cは、取得した旋回台7の旋回位置、ブーム長さ、起伏角度、及び、荷物Wの重量Wm、Ws等のクレーン1の作動状態に関する情報に基づいて、ノッチフィルタF(n)を構成する伝達関数H(s)(下記式(2)参照)の中心周波数係数ωn、ノッチ幅係数ζ、及び、ノッチ深さ係数δを算出する。
フィルタ部36cは、制御信号C(n)のそれぞれに対応したノッチ幅係数ζとノッチ深さ係数δとを算出する。フィルタ部36cは、取得した共振周波数ω(n)を中心周波数ωc(n)として、対応する中心周波数係数ωnを算出する。本実施形態において、フィルタ部36cは、制御信号C(n)に対応する中心周波数係数ωn、ノッチ幅係数ζ、及び、ノッチ深さ係数δを算出して伝達関数H(s)に適応する。
フィルタ部36cは、制御信号C(1)にノッチフィルタF(1)を適用して制御信号C(1)から共振周波数ω(1)を基準として任意の周波数範囲の周波数成分を任意の割合で減衰させたフィルタリング制御信号Cd(1)を生成する。
同様にして、フィルタ部36cは、制御信号C(2)にノッチフィルタF(2)を適用してフィルタリング制御信号Cd(2)を生成する。つまり、フィルタ部36cは、制御信号C(n)にノッチフィルタF(n)を適用して制御信号C(n)から共振周波数ω(n)を基準として任意の周波数範囲の周波数成分を任意の割合で減衰させたフィルタリング制御信号Cd(n)を生成する(以下、単にまとめて「フィルタリング制御信号Cd(n)」と記し、nは任意の数とする)。フィルタ部36cにより生成されるフィルタリング制御信号Cd(n)は、第二制御信号の一例に該当する。
フィルタ部36cは、旋回用バルブ31、伸縮用バルブ32、起伏用バルブ33、メイン用バルブ34、及び、サブ用バルブ35のうち対応する操作バルブにフィルタリング制御信号Cd(n)を伝達する。
つまり、制御装置36は、各操作バルブを介してアクチュエータである旋回用油圧モータ8、起伏用油圧シリンダ12、メイン用油圧モータ(不図示)、及び、サブ用油圧モータ(不図示)を制御する。
制御信号生成部36aは、旋回操作具18、起伏操作具19、伸縮操作具20、メインドラム操作具21及び、サブドラム操作具22に接続されている。制御信号生成部36aは、旋回操作具18、起伏操作具19、メインドラム操作具21、及び、サブドラム操作具22のそれぞれの操作量を取得する。
更に、制御信号生成部36aは、旋回用センサ25、伸縮用センサ26、重量センサ27、及び、起伏用センサ28に接続されている。制御信号生成部36aは、旋回台7の旋回位置、ブーム長さ、起伏角度、及び、荷物Wの重量Wm、Wsを取得する。
制御信号生成部36aは、揺れ抑制スイッチ23と優先フック選択スイッチ24とに接続されている、制御信号生成部36aは、揺れ抑制スイッチ23及び優先フック選択スイッチ24から信号を取得する。
又、制御信号生成部36aは、共振周波数算出部36bに接続されている。制御信号生成部36aは、共振周波数算出部36bからメインワイヤロープ14の繰り出し量Lma(n)を取得する。
又、制御信号生成部36aは、共振周波数算出部36bからサブワイヤロープ16の繰り出し量Lsa(n)を取得する。又、制御信号生成部36aは、共振周波数算出部36bから共振周波数ω(n)を取得する。
共振周波数算出部36bは、制御信号生成部36aに接続されている。共振周波数算出部36bは、揺れ抑制スイッチ23と優先フック選択スイッチ24とから信号を取得する。更に、共振周波数算出部36bは、メイン繰出量検出センサ29、サブ繰出量検出センサ30、及び、安全装置(不図示)に接続されている。共振周波数算出部36bは、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)とサブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)を算出する。
フィルタ部36cは、制御信号生成部36aに接続されている。フィルタ部36cは、旋回台7の旋回位置、ブーム長さ、起伏角度、荷物Wの重量Wm、Ws、及び、制御信号C(n)を取得する。更に、フィルタ部36cは、共振周波数算出部36bに接続されている。フィルタ部36cは、共振周波数算出部36bから共振周波数ω(n)を取得する。
更に、フィルタ部36cは、旋回用バルブ31、伸縮用バルブ32、起伏用バルブ33、メイン用バルブ34、及び、サブ用バルブ35に接続されている。フィルタ部36cは、旋回用バルブ31、起伏用バルブ33、メイン用バルブ34、及び、サブ用バルブ35に対応するフィルタリング制御信号Cd(n)を伝達する。
ここで、図3及び図4を用いてノッチフィルタF(n)について説明する。ノッチフィルタF(n)は、任意の周波数を中心として制御信号C(n)に急峻な減衰を与えるフィルタである。
図3に示すように、ノッチフィルタF(n)は、任意の中心周波数ωc(n)を中心とする任意の周波数範囲であるノッチ幅Bnの周波数成分を、中心周波数ωc(n)における任意の周波数の減衰割合であるノッチ深さDnで減衰させる周波数特性を有するフィルタである。つまり、ノッチフィルタF(n)の周波数特性は、中心周波数ωc(n)、ノッチ幅Bn、及び、ノッチ深さDnにより定まる。
ノッチフィルタF(n)は、以下の式(2)に示す伝達関数H(s)を有する。
Figure 0006648872
式(2)においてωnはノッチフィルタF(n)の中心周波数ωc(n)に対応する中心周波数係数ωnである。ζは、ノッチ幅Bnに対応するノッチ幅係数ζである。δは、ノッチ深さDnに対応するノッチ深さ係数δである。
ノッチフィルタF(n)は、中心周波数係数ωnが変更されることでノッチフィルタF(n)の中心周波数ωc(n)が変更される。又、ノッチフィルタF(n)は、ノッチ幅係数ζが変更されることでノッチ幅Bnが変更される。又、ノッチフィルタF(n)は、ノッチ深さ係数δが変更されることでノッチフィルタF(n)のノッチ深さDnが変更される。
尚、ノッチフィルタF(n)は、ノッチ幅係数ζとノッチ深さ係数δとから決定される荷振れ低減率Pnfによってその特性が表される。荷振れ低減率Pnfは、ノッチフィルタF(n)の伝達関数H(s)におけるノッチ幅係数ζ及びノッチ深さ係数δから定まる割合である。
このように構成される制御装置36は、制御信号生成部36aにおいて、旋回操作具18、起伏操作具19、メインドラム操作具21、及び、サブドラム操作具22の操作量に基づいて各操作具に対応した制御信号C(n)を生成する。
制御装置36は、共振周波数算出部36bにおいて、メイン繰出量検出センサ29から取得したメインワイヤロープ14の繰り出し量Lma(n)に基づいて、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)を算出する。又、制御装置36は、共振周波数算出部36bにおいて、サブ繰出量検出センサ30から取得したサブワイヤロープ16の繰り出し量Lsa(n)に基づいて、サブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)を算出する。
制御装置36は、共振周波数算出部36bにおいて、重力加速度g及びメインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)に基づいて、メインワイヤロープ14に関する、共振周波数ω(n)を算出する。又、制御装置36は、共振周波数算出部36bにおいて、重力加速度g及びサブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)に基づいて、サブワイヤロープ16に関する共振周波数ω(n)を算出する。
更に、制御装置36は、フィルタ部36cにおいて、制御信号C(n)、旋回台7の旋回位置、ブーム9のブーム長さ、起伏角度、及び、荷物Wの重量Wm、Wsに基づいて、制御信号C(n)に対応するノッチ幅係数ζ及びノッチ深さ係数δを算出する。又、制御装置36は、共振周波数算出部36bにおいて算出された共振周波数ω(n)をノッチフィルタF(n)の基準となる中心周波数ωc(n)として、対応する中心周波数係数ωnを算出する。
図4に示すように、制御装置36は、フィルタ部36cにおいて、ノッチ幅係数ζ、ノッチ深さ係数δ、及び、中心周波数係数ωnを適用したノッチフィルタF(n)を制御信号C(n)に適用してフィルタリング制御信号Cd(n)を生成する。
フィルタ部36cは、旋回用バルブ31、伸縮用バルブ32、起伏用バルブ33、メイン用バルブ34、及び、サブ用バルブ35のうち対応する操作バルブにフィルタリング制御信号Cd(n)を伝達し、アクチュエータである旋回用油圧モータ8、起伏用油圧シリンダ12、メイン用油圧モータ(不図示)、及び、サブ用油圧モータを制御する。
次に、クレーン1における不使用フックの制振制御について説明する。不使用フックの制振制御は、制振制御の対象として複数のフックから不使用フックを自動的に検出し、その不使用フックに対して制振制御を行う。
以下の各実施形態において、制御装置36は、不使用フックの制振制御において、メインフック10a及びサブフック11aのうちの何れか一方のフックを不使用のフックとして選択する。つまり、制御装置36は、不使用フックを選択するフック検出部を有すると捉えてよい。又、制御装置36は、ノッチ深さ係数δ及びノッチ幅係数ζをクレーン1の作動状態等に応じた任意の値に設定する。
図5〜図8を用いて、制振制御の第一実施形態について説明する。制御装置36は、重量センサ27(図2参照)の検出値とワイヤロープの鉛直方向におけるワイヤ長とに基づいて荷物Wが吊り下げられていない不使用フックを検出する。
基準値Wvは、任意に定められる荷重であり、フックが使用されているとみなす基準の値として用いられる。基準値Wvは、荷重のばらつきによって不使用フックの制振制御が不安定にならないような値であると好ましい。基準値Wvは、荷重閾値の一例に該当する。
制御装置36は、メインフック10aとサブフック11aとのうち、重量センサ27(図2参照)の検出値が基準値Wv以下のフックを検出する。
更に、制御装置36は、検出したフックを吊り下げているワイヤロープの鉛直方向におけるワイヤ長が他のワイヤロープの鉛直方向におけるワイヤ長のなかで最小である場合、そのフックを不使用フックとする。
制御装置36は、不使用フックのワイヤロープの鉛直方向におけるワイヤ長から不使用フックの共振周波数ω(n)を算出する。制御装置36は、算出した共振周波数ω(n)を中心周波数ωc(n)とするノッチフィルタF(n)を算出する。
制御装置36は、旋回操作具18、起伏操作具19、伸縮操作具20、メインドラム操作具21、及び、サブドラム操作具22のうちの一の操作具(以下、単に「対象操作具」と記す)が操作されると、対象操作具の操作に基づいて生成された制御信号C(n)を取得する。制御装置36は、取得した制御信号C(n)に対してノッチフィルタF(n)によるフィルタリングを施し、フィルタリング制御信号Cd(n)を生成する。
更に、制御装置36は、フィルタリング制御信号Cd(n)に基づいて、対応するアクチュエータを制御する。これにより、クレーン1は、不使用フックの共振周波数ω(n)での振動が抑制される。その結果、荷物Wの搬送時において、不使用フックの振動に起因する、不使用フックと、使用フックのワイヤロープ及び/又はブーム9等との接触が防止される。
以下に、図6〜図8を用いて、制御装置36による不使用フックの制振制御について具体的に説明する。以下の実施形態において、クレーン1は、一の操作具によって操作されているものとする。
図6のステップS110において、制御装置36は、優先フック選択スイッチ24の操作状態に基づいて、制振制御を優先して適用する優先フックを決定してよい。そして、制御装置36は、制御処理を、ステップS120に移行させる。
図6のステップS120において、制御装置36は、揺れ抑制スイッチ23がON状態か否か判定する。
揺れ抑制スイッチ23がON状態である場合(ステップS120において“YES”)、制御装置36は、制御処理をステップ130に移行させる。
一方、揺れ抑制スイッチ23がON状態でない場合(ステップS120において“NO”)、制御装置36は、制御処理をステップS110に移行させる。尚、ステップS120において、揺れ抑制スイッチ23がON状態でない場合、荷物Wを吊り下げているフック(本実施形態においてメインフック10a)の制振制御を開始してよい。つまり、本実施形態に係るクレーン1は、不使用フックの制振制御を実施する機能と、使用フックの制振制御を実施する機能と、を備えていると捉えてよい。
図6のステップS130において、制御装置36は、一の操作具の操作信号から制御信号C(n)を生成する。そして、制御装置36は、制御処理をステップS140に移行させる。
図6のステップS140において、制御装置36は、重量センサ27からメインフック10aに加わる重量Wmとサブフック11aに加わる重量Wsとを取得する。又、ステップS140において、制御装置36は、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)を取得する(算出する)。又、ステップ140において、制御装置36は、サブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)を取得する(算出する)。そして、制御装置36は、制御処理をステップS150に移行させる。
図6のステップS150において、制御装置36は、メインフック10aに加わる重量Wmが基準値Wv以上であるか否か判定する。
ステップS150において、メインフック10aに加わる重量Wmが基準値Wv以上である場合(ステップS150において“YES”)、制御装置36は、制御処理をステップS155に移行させる。メインフック10aに加わる重量Wmが基準値Wv以上である場合、荷物Wが吊り下げられるなどしてメインフック10aが使用されている。
一方、ステップS150において、メインフック10aに加わる重量Wmが基準値Wv以上でない場合(ステップS150において“NO”)、制御装置36は、制御処理をステップS165に移行させる(図6の接続記号Bから図8の接続記号B参照)。メインフック10aに加わる重量Wmが基準値Wv以上でない場合、メインフック10aには、荷物Wが吊り下げられていないため、メインフック10aは使用されていない。
図6のステップS155において、制御装置36は、サブフック11aに加わる重量Wsが基準値Wv以上であるか否か判定する。
ステップS155において、サブフック11aに加わる重量Wsが基準値Wv以上である場合(ステップS155において“YES”)、制御装置36は、制御処理をステップS160に移行させる。サブフック11aに加わる重量Wsが基準値Wv以上である場合、サブフック11aに荷物Wが吊り下げられているため、サブフック11aは使用されている。
ステップS155において、サブフック11aに加わる重量Wsが基準値Wv以上でない場合(ステップS155において“NO”)、制御装置36は、制御処理をステップS185に移行させる。ステップS155において、サブフック11aに加わる重量Wsが基準値Wv以上でない場合、サブフック11aに荷物Wが吊り下げられていないため、サブフック11aは使用されていない。
図6のステップS160において、制御装置36は、振制御を適用するフックとして優先フックを選択する。そして、制御装置36は、制御処理をステップS200に移行させる。
図6のステップS185において、制御装置36は、サブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)が他のワイヤロープの鉛直方向におけるワイヤ長のなかで最小であるか否か判定する。
ステップS185において、サブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)が他のワイヤロープの鉛直方向におけるワイヤ長のなかで最小である場合(ステップS185において“YES”)、制御装置36は、制御処理をステップS190に移行させる。
ステップS185において、サブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)が他のワイヤロープの鉛直方向におけるワイヤ長のなかで最小でない場合(ステップS185において“NO”)、制御装置36は、制御処理をステップS195に移行させる。
図6のステップS190において、制御装置36は、不使用フック(つまり、制振制御を適用するフック)としてサブフック11aを選択する。そして、制御装置36は、制御処理をステップS200に移行させる。
図6のステップS195において、制御装置36は、制振制御を適用するフックとして優先フックを選択する。そして、制御装置36は、制御処理をステップS200に移行させる。
図6のステップS200において、制御装置36は、ノッチフィルタF(n)による制振制御工程Aを開始する。そして、制御装置36は、制御処理をステップS210に移行させる(図7参照)。ノッチフィルタF(n)による制振制御工程Aが終了すると、制御装置36は、制御処理をステップS110に移行させる(図6参照)。
図7は、ノッチフィルタF(n)による制振制御工程Aのフローチャートである。図7のステップS210において、制御装置36は、制振制御を適用するフックとして選択したフック(以下、対象フックと称する。)を吊り下げているワイヤロープ(以下、対象ワイヤロープと称する)の鉛直方向におけるワイヤ長(以下、対象ワイヤロープの鉛直方向におけるワイヤ長と称する。)に基づいて、対象ワイヤロープの共振周波数ω(n)を算出する。そして、制御装置36は、制御処理をステップS220に移行させる。
ステップS210において、対象フックがメインフック10aの場合、対象ワイヤロープはメインワイヤロープ14であり、対象ワイヤロープの鉛直方向におけるワイヤ長は、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)である。
一方、ステップS210において、対象フックがサブフック11aの場合、対象ワイヤロープはサブワイヤロープ16であり、対象ワイヤロープの鉛直方向におけるワイヤ長は、サブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)である。
図7のステップS220において、制御装置36は、クレーン1の作動状態等に応じて算出したノッチ幅係数ζ、ノッチ深さ係数δ、及び、共振周波数ω(n)に対応する中心周波数係数ωnを、ノッチフィルタF(n)の伝達関数H(s)(式(2)参照)に当てはめてノッチフィルタF(n)を生成する。そして、制御装置36は、制御処理をステップS230に移行させる。
図7のステップS230において、制御装置36は、生成した制御信号C(n)に対してノッチフィルタF(n)によるフィルタリングを施して、フィルタリング制御信号Cd(n)を生成する。そして、制御装置36は、制御処理をステップS240に移行させる。
図7のステップS240において、制御装置36は、生成したフィルタリング制御信号Cd(n)を操作具に対応する操作弁に伝達する。このようにして、制御装置36は、フィルタリング制御信号Cd(n)に基づいて、アクチュエータ(例えば、旋回油圧モータ8、伸縮用油圧シリンダ、及び、起伏用油圧シリンダ12)を制御する。
つまり、制御装置36は、第二制御信号に基づいてアクチュエータを制御する制御部の一例に該当する。そして、制御装置36は、ノッチフィルタF(n)による制振制御工程Aを終了する。その後、制御装置36は、制御処理をステップS110に移行させる(図6参照)。
図8は、図6の接続記号Bから移行して実施される処理のフローチャートである。図8のステップS165において、制御装置36は、サブフック11aに加わる重量Wsが基準値Wv以上であるか否か判定する。
ステップ165において、サブフック11aに加わる重量Wsが基準値Wv以上である場合(ステップS165において“YES”)、制御装置36は、制御処理をステップS170に移行させる。ステップS165において、サブフック11aに加わる重量Wsが基準値Wv以上である場合、サブフック11aは、使用されている。
一方、ステップS165において、サブフック11aに加わる重量Wsが基準値Wv以上でない場合(ステップS165において“NO”)、制御装置36は、制御処理をステップS180に移行させる。ステップS165において、サブフック11aに加わる重量Wsが基準値Wv以上でない場合、サブフック11aは、使用されていない。
図8のステップS170において、制御装置36は、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)が、他のワイヤロープの鉛直方向におけるワイヤ長のなかで最小であるか否か判定する。
ステップS170において、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)が他のワイヤロープの鉛直方向におけるワイヤ長のなかで最小である場合(ステップS170において“YES”)、制御装置36は、制御処理をステップS175に移行させる。
一方、ステップS170において、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)が他のワイヤロープの鉛直方向におけるワイヤ長のなかで最小でない場合(ステップS170において“NO”)、制御装置36は、制御処理をステップS180に移行させる。
図8のステップS175において、制御装置36は、不使用フック(つまり、制振制御を適用するフック)としてメインフック10aを選択する。そして、制御装置36は、制御処理を、図6の接続記号CからステップS200に移行させる(図6参照)。
図8のステップS180において、制御装置36は、制振制御を適用するフックとして優先フックを選択する。そして、制御装置36は、制御処理を図6の接続記号CからステップS200に移行させる(図6参照)。
このように、クレーン1は、各フックに加わる荷物Wの重量Wm、Wsを基準としてフックを選択するだけでなく、鉛直方向におけるワイヤ長が小さく、手動操作では振動の抑制が難しいフックを自動的に選択してクレーン1の作動状態等に応じた制振制御が実施される。これにより、複数のフックのうち、不使用フックが、使用フックに対応するワイヤロープやブーム9等に振動によって接触することなく荷物Wを搬送できる。
次に、図5及び図9を用いて、クレーン1における不使用フックの制振制御の第二実施形態について説明する。
制御装置36は、ワイヤロープの鉛直方向におけるワイヤ長に基づいて不使用フックを検出する。メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)とサブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)との差L(n)(図5参照)が基準値Ld以上であると、手動による制振制御が困難となる。そこで、本実施形態の場合、クレーン1は、上記差L(n)が基準値Ld以上であることを一つの条件として、不使用フックを自動選択し、選択した不使用フックに制振制御を行う。基準値Ldは、手動による制振制御の可否を判断する値として、任意に設定される値であってよい。
尚、以下の第二実施形態に係る制振制御の説明において、図1〜図8を参照して説明した第一実施形態に係る制振制御と同様の制御処理については、詳細な説明は省略する。図9において、第一実施形態に係る制振制御と同様の制御処理に対しては、図6と同様の符号を付している。以下、第二実施形態に係る制振制御について、第一実施形態に係る制振制御と異なる点を中心に説明する。
図5に示すように、制御装置36は、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)とサブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)との差L(n)が、基準値Ld以上である場合に、複数のワイヤロープのうち、鉛直方向におけるワイヤ長が最小であるワイヤロープに対応するフックを不使用フックとする。そして、この不使用フックに対して制振制御を実施することにより、クレーン1は、不使用フックの共振周波数ω(n)における振動が抑制される。その結果、荷物Wの搬送時において、不使用フックの振動に起因する、不使用フックと、使用フックを吊っているワイヤロープ及び/又はブーム9等との接触が、防止される。基準値Ldは、長さ閾値の一例に該当する。
以下に、図9を用いて、第二実施形態に係る制御装置36による不使用フックの制振制御について具体的に説明する。クレーン1は、一の操作具によって操作されているものとする。
図9のステップS110、ステップS120、及び、ステップS130の制御処理は、既述の第一実施形態に係る制振制御と同様である。
図9のステップS140において、制御装置36は、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)を取得する(算出する)。又、ステップS140において、制御装置36は、サブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)を取得する(算出する)。鉛直方向におけるワイヤ長Lm(n)及び鉛直方向におけるワイヤ長Ls(n)の取得方法(算出方法)は、既述の通りである。又、ステップS140において、制御装置36は、重量センサ27からメインフック10aに加わる重量Wmとサブフック11aに加わる重量Wsとを取得してよい。そして、制御装置36は、制御処理をステップS310に移行させる。
図9のステップS310において、制御装置36は、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)と、サブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)との差L(n)が基準値Ld以上(|Lm(n)−Ls(n)|≧Ld)であるか否か判定する。
ステップS310において、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)とサブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)との差L(n)が、基準値Ld以上である場合(ステップS310において“YES”)、制御装置36は、制御処理をステップS320に移行させる。
一方、ステップS310において、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)とサブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)との差L(n)が、基準値Ld以上でない場合(ステップS310において“NO”)、制御装置36は、制御処理をステップS340に移行させる。
図9のステップS320において、制御装置36は、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)が、他のワイヤロープの鉛直方向におけるワイヤ長のなかで最小であるか否か判定する。
ステップS320において、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)が、他のワイヤロープの鉛直方向におけるワイヤ長のなかで最小である場合(ステップS320において“YES”)、制御装置36は、制御処理をステップS330に移行させる。
一方、ステップS320において、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)が、他のワイヤロープの鉛直方向におけるワイヤ長のなかで最小でない場合(ステップS320において“NO”)、制御装置36は、制御処理をステップS350に移行させる。
本実施形態の場合、ステップS320において、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)が、他のワイヤロープの鉛直方向におけるワイヤ長のなかで最小でない場合、サブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)が他のワイヤロープの鉛直方向におけるワイヤ長のなかで最小である。
図9のステップS330において、制御装置36は、不使用フック(つまり、制振制御を適用するフック)としてメインフック10aを選択する。そして、制御装置36は、制御処理をステップS200に移行させる。
図9のステップS350において、制御装置36は、不使用フック(制振制御を適用するフック)としてサブフック11aを選択する。そして、制御装置36は、制御処理をステップS200に移行させる。
ステップS340において、制御装置36は、制振制御を適用するフックとして優先フックを選択する。そして、制御装置36は、制御処理をステップS200に移行させる。
以上のように、本実施形態において、クレーン1は、各フックを吊り下げている各ワイヤロープ同士の鉛直方向におけるワイヤ長の差が、基準値Ld以上の場合に、鉛直方向におけるワイヤ長が他のワイヤロープの鉛直方向におけるワイヤ長のなかで最小のフックを、対象フックとして自動的に選択する。そして、対象フックに対して、クレーン1の作動状態等に応じた制振制御を実施する。これにより、複数のフックのうち、不使用フックの振動が抑制される。その結果、荷物Wの搬送時において、不使用フックの振動に起因する、不使用フックと、使用フックを吊っているワイヤロープ及び/又はブーム9等との接触が、防止される。
以下に、図5及び図10を用いて、クレーン1における不使用フックの制振制御の第三実施形態について説明する。本実施形態において、制御装置36は、重量センサ27の検出値によって不使用フックを検出する。
以下に、図10を用いて、第三実施形態に係る制御装置36による不使用フックの制振制御について具体的に説明する。クレーン1は、一の操作具によって操作されているものとする。
尚、以下の第三実施形態に係る制振制御の説明において、図1〜図8を参照して説明した第一実施形態に係る制振制御と同様の制御処理については、詳細な説明は省略する。図10において、第一実施形態に係る制振制御と同様の制御処理に対しては、図6と同様の符号を付している。以下、第三実施形態に係る制振制御について、第一実施形態に係る制振制御と異なる点を中心に説明する。
図10のステップS110、ステップS120、及び、ステップS130の制御処理は、既述の第一実施形態に係る制振制御と同様である。
図10のステップS140において、制御装置36は、重量センサ27からメインフック10aに加わる重量Wmとサブフック11aに加わる重量Wsとを取得する。又、ステップS140において、制御装置36は、メインワイヤロープ14の鉛直方向におけるワイヤ長Lm(n)を取得してよい(算出してよい)。又、ステップS140において、制御装置36は、サブワイヤロープ16の鉛直方向におけるワイヤ長Ls(n)を取得してよい(算出してよい)。そして、制御装置36は、制御処理をステップS410に移行させる。
図10のステップS410において、制御装置36は、メインフック10aに加わる重量Wmが基準値Wv以上であるか否か判定する。
ステップS410において、メインフック10aに加わる重量Wmが基準値Wv以上である場合(ステップS410において“YES”)、制御装置36は制御処理をステップS420に移行させる。メインフック10aに加わる重量Wmが基準値Wv以上である場合、メインフック10aは、使用されている。
一方、ステップS410において、メインフック10aに加わる重量Wmが基準値Wv以上でない場合(ステップS410において“NO”)、制御装置36は、制御処理をステップS440に移行させる。メインフック10aに加わる重量Wmが基準値Wv以上でない場合、メインフック10aには、メインフック10aは、使用されていない。
図10のステップS420において、制御装置36は、サブフック11aに加わる重量Wsが基準値Wv以上であるか否か判定する。
ステップS420において、サブフック11aに加わる重量Wsが基準値Wv以上である場合(ステップS420において“YES”)、制御装置36は、制御処理をステップS430に移行させる。ステップS420において、サブフック11aに加わる重量Wsが基準値Wv以上である場合、サブフック11aは、使用されている。
一方、ステップS420において、サブフック11aに加わる重量Wsが基準値Wv以上でない場合(ステップS420において“NO”)、制御装置36は、制御処理をステップS470に移行させる。ステップS420において、サブフック11aに加わる重量Wsが基準値Wv以上でない場合、サブフック11aは、使用されていない。
図10のステップS430において、制御装置36は、制振制御を適用するフックとして優先フックを選択する。そして、制御装置36は、制御処理をステップS200に移行させる。
図10のステップS470において、制御装置36は、不使用フック(つまり、制振制御を適用するフック)としてサブフック11aを選択する。そして、制御装置36は、制御処理をステップS200に移行させる。
図10のステップS440において、制御装置36は、サブフック11aに加わる重量Wsが基準値Wv以上であるか否か判定する。
ステップS440において、サブフック11aに加わる重量Wsが基準値Wv以上である場合(ステップS440において“YES”)、制御装置36は、制御処理をステップS450に移行させる。ステップS440において、サブフック11aに加わる重量Wsが基準値Wv以上である場合、サブフック11aは、使用されている。
一方、ステップS440において、サブフック11aに加わる重量Wsが基準値Wv以上でない場合(ステップS440において“NO”)、制御装置36は、制御処理をステップS460に移行させる。ステップS440において、サブフック11aに加わる重量Wsが基準値Wv以上でない場合、サブフック11aは、使用されていない。
図10のステップS450において、制御装置36は、不使用フック(つまり、制振制御を適用するフック)としてメインフック10aを選択する。そして、制御装置36は、制御処理をステップS200に移行させる。
図10のステップS460において、制御装置36は、制振制御を適用するフックとして優先フックを選択する。そして、制御装置36は、制御処理をステップS200に移行させる。
以上のように、本実施形態において、クレーン1は、各フックに加わる荷物Wの重量Wm、Wsを基準として不使用フック(対象フック)を自動的に選択する。そして、対象フックに対して、クレーン1の作動状態等に応じた制振制御を実施する。又、クレーン1は、不使用フックを選択できない場合、予め決定されている優先フックに制振制御を優先的に適用する。つまり、クレーン1は、複数のフックのうちいずれかのフックに選択的に制振制御を適応する。これにより、荷物Wの搬送時において、不使用フックの振動に起因する、不使用フックと、使用フックを吊っているワイヤロープ及び/又はブーム9等との接触が、防止される。
尚、既述の各実施形態は、技術的に矛盾しない範囲において、適宜組み合わせて実施してよい。又、既述の各実施形態に係る不使用フックの制振制御において、クレーン1は、ノッチフィルタF(n)によって制御信号C(n)の共振周波数ω(n)を減衰させているが、ローパスフィルタ、ハイパスフィルタ、バンドストップフィルタ等の特定の周波数を減衰させるものであればよい。又、本実施形態に係る不使用フックの制振制御において、クレーン1は、優先フックを選択を選択した場合にノッチフィルタF(n)を適用しないように制御する構成でもよい。
又、制御装置36が、不使用フックを決定する手段は、上述の手段に限定されない。例えば、作業者が、クレーン1に設けられた指定手段を用いて指定したフックを、不使用フックとして検出してもよい。尚、この指定手段は、既述の優先フック選択スイッチ24であってもよい。
又、制御装置36は、例えば、クレーン1(具体的には、ブーム9の先端部)に設けられたカメラの撮像データに基づいて、不使用フックを決定してもよい。このようなカメラは、メインフック10a及びサブフック11aを同時に撮像できるように設けられてよい。その他、制御装置36は、クレーン1に設けられた種々の検出装置から取得した情報に基づいて、不使用フックを検出してよい。
上述の実施形態は、代表的な実施形態の例を示したに過ぎず、一実施形態の骨子を逸脱しない範囲で種々変形して実施することができる。又、本発明の技術的範囲は、特許請求の範囲の記載によって示される。本発明の技術的範囲には、特許請求の範囲に記載された発明と均等の関係にある発明も含まれる。
2018年3月16日出願の特願2018−050258の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
1 クレーン
11a サブフック
12 起伏用油圧シリンダ
13 メインウインチ
14 メインワイヤロープ
15 サブウインチ
16 サブワイヤロープ
17 キャビン
18 旋回操作具
19 起伏操作具
2 車両
20 伸縮操作具
21 メインドラム操作具
22 サブドラム操作具
23 揺れ抑制スイッチ
24 優先フック選択スイッチ
25 旋回用センサ
26 伸縮用センサ
27 重量センサ
28 起伏用センサ
29 メイン繰出量検出センサ
3 車輪
30 サブ繰出量検出センサ
31 旋回用バルブ
32 伸縮用バルブ
33 起伏用バルブ
34 メイン用バルブ
35 サブ用バルブ
36 制御装置
36a 制御信号生成部
36b 共振周波数算出部
36c フィルタ部
4 エンジン
5 アウトリガ
6 クレーン装置
7 旋回台
8 旋回用油圧モータ
9 ブーム
9a ジブ

Claims (10)

  1. 少なくともブームを含む被操作機能部と、
    前記被操作機能部を操作するための操作入力を受け付ける操作部と、
    前記被操作機能部を駆動するアクチュエータと、
    前記操作入力に基づいて前記アクチュエータの第一制御信号を生成する生成部と、
    複数のワイヤロープと、
    前記ブームの先端部から前記複数のワイヤロープのそれぞれに吊られた複数のフックと、
    前記複数のフックのうち、荷物を吊っていない不使用フックを検出するフック検出部と、
    前記複数のワイヤロープのうち、検出された前記不使用フックを吊るワイヤロープに関する共振周波数を算出する算出部と、
    前記共振周波数に基づいてフィルタを生成し、前記フィルタを用いて前記第一制御信号をフィルタリングすることにより第二制御信号を生成するフィルタ部と、
    前記第二制御信号に基づいて、前記アクチュエータを制御する制御部と、を備える、
    クレーン。
  2. 前記複数のフックに作用する荷重を検出する荷重検出部を、更に備え、
    前記フック検出部は、検出された前記荷重に基づいて前記不使用フックを検出する、請求項1に記載のクレーン。
  3. 前記フック検出部は、前記複数のフックのうち、検出された前記荷重が最も小さい前記フックを、前記不使用フックとする、請求項2に記載のクレーン。
  4. 前記複数のワイヤロープそれぞれの、前記ブームの先端部から垂れ下がった部分の鉛直方向における長さを算出するワイヤ長算出部を、更に備え、
    前記フック検出部は、前記複数のフックのうち、検出された前記荷重が荷重閾値以下であり、且つ、前記鉛直方向における長さが最も短い前記ワイヤロープに吊られている前記フックを、前記不使用フックとする請求項に記載のクレーン。
  5. 前記複数のワイヤロープそれぞれの、前記ブームの先端部から垂れ下がった部分の鉛直方向における長さを算出するワイヤ長算出部を、更に備え、
    前記フック検出部は、算出された前記鉛直方向における長さに基づいて、前記不使用フックを検出する、請求項1に記載にクレーン。
  6. 前記フック検出部は、前記複数のワイヤロープのうち、前記鉛直方向における長さが最も短い前記ワイヤロープに吊られた前記フックを、前記不使用フックとする、請求項5に記載のクレーン。
  7. 前記フック検出部は、前記複数のワイヤロープのうち、前記鉛直方向における長さが最も長い前記ワイヤロープである第一ワイヤロープの前記鉛直方向における長さと、前記複数のワイヤロープのうち、前記鉛直方向における長さが最も短い前記ワイヤロープである第二ワイヤロープの前記鉛直方向における長さとの差が、長さ閾値以上の場合に、前記第二ワイヤロープに吊られている前記フックを、前記不使用フックとする、請求項5に記載のクレーン。
  8. 前記アクチュエータは、前記ブームを伸縮させるための伸縮用アクチュエータ、前記ブームを起伏させるための起伏用アクチュエータ、及び、前記ブームを旋回させるための旋回用アクチュエータのうちの少なくとも一つのアクチュエータを含む、請求項1〜7の何れか一項に記載のクレーン。
  9. 前記被操作機能部は、前記複数のワイヤロープそれぞれに対応して設けられ、対応する前記ワイヤロープの繰り出し及び繰り入れを行う複数のウインチを含み、
    前記アクチエータは、前記複数のウインチに対応して設けられ、対応する前記ウインチを駆動する複数のウインチ用アクチュエータを含む、請求項1〜8の何れか一項に記載のクレーン。
  10. 前記フィルタは、前記共振周波数を基準として所定の周波数範囲の周波数成分を所定の割合で、前記第一制御信号から減衰させる機能を有する、請求項1〜9の何れか一項に記載のクレーン。
JP2019556374A 2018-03-16 2019-03-15 クレーン Active JP6648872B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018050258 2018-03-16
JP2018050258 2018-03-16
PCT/JP2019/010990 WO2019177164A1 (ja) 2018-03-16 2019-03-15 クレーン

Publications (2)

Publication Number Publication Date
JP6648872B1 true JP6648872B1 (ja) 2020-02-14
JPWO2019177164A1 JPWO2019177164A1 (ja) 2020-04-23

Family

ID=67907791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019556374A Active JP6648872B1 (ja) 2018-03-16 2019-03-15 クレーン

Country Status (5)

Country Link
US (1) US11787668B2 (ja)
EP (1) EP3766822A4 (ja)
JP (1) JP6648872B1 (ja)
CN (1) CN111867964B (ja)
WO (1) WO2019177164A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200031633A1 (en) * 2017-06-13 2020-01-30 Tadano Ltd. Crane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012155A1 (ja) * 2003-08-05 2005-02-10 Sintokogio, Ltd. クレーン及びそのコントローラ
JP2017193385A (ja) * 2016-04-18 2017-10-26 株式会社タダノ クレーンのフック位置制御装置
JP2018002426A (ja) * 2016-07-05 2018-01-11 株式会社タダノ 移動式クレーンの制御システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908122A (en) * 1996-02-29 1999-06-01 Sandia Corporation Sway control method and system for rotary cranes
US8235229B2 (en) * 2008-01-31 2012-08-07 Georgia Tech Research Corporation Methods and systems for double-pendulum crane control
FI20115922A0 (fi) * 2011-09-20 2011-09-20 Konecranes Oyj Nosturin ohjaus
CN105540434A (zh) * 2016-03-09 2016-05-04 太原重工股份有限公司 一种有效减少重物振动的起重机
JP2018050258A (ja) 2016-09-23 2018-03-29 キヤノン株式会社 情報処理装置、情報処理システム、及び、情報処理方法
US20180346294A1 (en) * 2017-05-30 2018-12-06 Versatile Natures Ltd. Method and apparatus for load handling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012155A1 (ja) * 2003-08-05 2005-02-10 Sintokogio, Ltd. クレーン及びそのコントローラ
JP2017193385A (ja) * 2016-04-18 2017-10-26 株式会社タダノ クレーンのフック位置制御装置
JP2018002426A (ja) * 2016-07-05 2018-01-11 株式会社タダノ 移動式クレーンの制御システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200031633A1 (en) * 2017-06-13 2020-01-30 Tadano Ltd. Crane
US11434111B2 (en) * 2017-06-13 2022-09-06 Tadano Ltd. Crane

Also Published As

Publication number Publication date
CN111867964A (zh) 2020-10-30
US11787668B2 (en) 2023-10-17
CN111867964B (zh) 2022-07-26
JPWO2019177164A1 (ja) 2020-04-23
EP3766822A4 (en) 2022-05-04
US20210371255A1 (en) 2021-12-02
WO2019177164A1 (ja) 2019-09-19
EP3766822A1 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
CN111132922B (zh) 起重机
JP5827421B2 (ja) 作業機械の緩停止装置
JP2018087069A (ja) クレーン
JP6648872B1 (ja) クレーン
JP6897352B2 (ja) クレーン
CN112010179B (zh) 作业机及方法
JP6729842B2 (ja) クレーン
WO2019167893A1 (ja) クレーン及び玉掛け具の長さ取得方法
JP6555457B1 (ja) クレーン及び玉掛け具の長さ取得方法
JPWO2019181953A1 (ja) クレーン及びクレーンの制御方法
JP7414672B2 (ja) クレーンの旋回振れ止め装置およびこれを備えたクレーン
JP6524772B2 (ja) ブーム長さ制限装置
JP2019147686A (ja) クレーン
JP2018100175A (ja) ブームの伸縮制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191016

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191016

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R150 Certificate of patent or registration of utility model

Ref document number: 6648872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250