WO2014075404A1 - 一种高成形性超高强度冷轧钢板及其制造方法 - Google Patents

一种高成形性超高强度冷轧钢板及其制造方法 Download PDF

Info

Publication number
WO2014075404A1
WO2014075404A1 PCT/CN2013/071711 CN2013071711W WO2014075404A1 WO 2014075404 A1 WO2014075404 A1 WO 2014075404A1 CN 2013071711 W CN2013071711 W CN 2013071711W WO 2014075404 A1 WO2014075404 A1 WO 2014075404A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
formability
strength
sheet according
strength steel
Prior art date
Application number
PCT/CN2013/071711
Other languages
English (en)
French (fr)
Inventor
钟勇
王利
冯伟骏
熊伟
职建军
胡广魁
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to CA2890126A priority Critical patent/CA2890126C/en
Priority to JP2015542138A priority patent/JP6207621B2/ja
Priority to EP13854271.7A priority patent/EP2921568B1/en
Priority to US14/442,788 priority patent/US10287659B2/en
Priority to ES13854271.7T priority patent/ES2668653T3/es
Priority to MX2015005836A priority patent/MX368208B/es
Publication of WO2014075404A1 publication Critical patent/WO2014075404A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a cold-rolled steel sheet, in particular to a high-formability ultra-high-strength cold-rolled steel sheet and a manufacturing method thereof.
  • the cold-rolled ultra-high-strength steel sheet has a yield strength of 600 to 900 MPa, a tensile strength of 980 to 1150 MPa, and an elongation of 17 to 25 %, with good plasticity and low resilience. Background technique
  • Chinese patent CN 102409235A discloses a high-strength cold-rolled phase change induced plastic steel sheet and a method for producing the same, the composition thereof: C: 0.1% ⁇ 0.5%, Si: 0.1% ⁇ 0.6%, Mn: 0.5% ⁇ 2.5%, P : 0 ⁇ 02% ⁇ 0 ⁇ 12%, S ⁇ 0.02%, A1: 0 ⁇ 02% ⁇ 0 ⁇ 5%, ⁇ 0 ⁇ 01%, Ni: 0 ⁇ 4 % ⁇ 0 ⁇ 6 %, Cu: 0.1 % ⁇ 1.0%, the rest is Fe.
  • the processing method is as follows: (a) smelting molten steel satisfying the composition conditions, casting into a billet; (b) rolling: heating temperature 1100 ⁇ 1250 ° C, holding time l ⁇ 4h, rolling temperature 1100 ° C, finishing temperature 750 ⁇ 900 ° C, coiling temperature ⁇ 700; hot rolled sheet thickness 2 ⁇ 4mm; cold rolling cumulative reduction 40% ⁇ 80%; (c) continuous annealing: annealing temperature 700 ⁇ Ac3+50 °C, holding time 30 ⁇ 360s, cooling rate 10 ⁇ 150°C/s, aging temperature 250 ⁇ 600°C, aging time 30 ⁇ 1200s, and cooling to room temperature at a cooling rate of 5 ⁇ 100°C/s.
  • the steel sheet of the present invention has a yield strength of 380 to 1000 MPa, a tensile strength of 680 to 1280 MPa, and an elongation of 15 to 30%.
  • the invention can achieve an elongation of about 20% at a tensile strength level of 1000 MPa, and has a good overall performance.
  • it is necessary to add a large amount of alloying elements such as Cu and Ni, which greatly increases the material cost, and is greatly limited in the automotive field where the cost is extremely demanding.
  • Japanese Patent JP 2005-232493 discloses a composition and a process of a cold rolled steel sheet having high strength and high formability.
  • the composition of the material is C: 0.02-0.25%, Si: 0.02-4.0%, Mn: 0.15-3.5%, and the balance is Fe.
  • the structure of the material is two phases of ferrite and martensite, and the ferrite content is 30-60%.
  • the retained austenite content is less than 1.0%.
  • the hot rolled sheet has a crimping temperature of 500 ° C, is heated to 900 to 950 ° C after cold rolling, and is slowly cooled to 640 ° C, then rapidly cooled to 350 ° C, and finally cooled to room temperature.
  • the steel of the invention has a simple composition and a low cost, but an elongation of about 14% is still insufficient for satisfying the formability of high-strength steel for automobiles.
  • Chinese patent CN200510023375.0 discloses a low carbon low silicon cold rolled phase change plastic steel and a preparation method thereof.
  • the low carbon low silicon cold rolled phase change plastic steel of the invention has composition and weight percentage: C 0.1-0.2%, Si 0.1-0.5%, Mn 0.5-2.0%, Al 0.5-1.5%, V 0.05- 0.5%, S, P, N trace, Fe balance.
  • the treated low carbon low silicon cold rolled phase change plasticity steel has good ductility, and its tensile strength is 650-670 MPa, and the elongation is 32.5-34%.
  • the invention has a low tensile strength and cannot meet the performance requirements of ultra-high-strength steel for automobiles, and requires a certain amount of Cr to be added, which is not suitable as an automobile steel with very strict cost control requirements. Summary of the invention
  • An object of the present invention is to provide a high-formability ultra-high-strength cold-rolled steel sheet having a yield strength of 600 to 900 MPa, a tensile strength of 980 MPa or more, an elongation of 17 to 25%, and an excellent formability. , low rebound characteristics, suitable for structural parts and safety parts of automobiles.
  • the invention adopts the composition design of ordinary carbon-manganese steel, fully utilizes the influence law of alloying elements such as Si and Mn on the phase transformation behavior of the material, and finely controls the final structure of the material through the optimized quenching-partitioning technique to realize ultra high strength and Excellent performance with high plasticity uniformity, and ultra-high-strength steel products with superior performance and low cost.
  • the high formability ultra high strength cold rolled steel sheet of the present invention has a composition weight percentage of:
  • the room temperature of the steel plate is 10% ⁇ 30% of ferrite + 60 ⁇ 80% of martensite + 5 ⁇ 15% of retained austenite ; the yield strength is 600 ⁇ 900MPa, the tensile strength is 980 ⁇ 1150MPa, and the elongation is 17 ⁇ 25%.
  • the C content is 0.18 to 0.22% by weight.
  • the Si content is 1.4 to 1.8% by weight.
  • the Mn content is 1.8 to 2.3% by weight.
  • P 0.012%, S ⁇ O.008%, by weight percentage is 0.012%, S ⁇ O.008%, by weight percentage.
  • C is the most basic strengthening element in steel, and is also an austenite stabilizing element.
  • the higher c content in austenite is beneficial to improve the retained austenite fraction and material properties.
  • a higher C content deteriorates the weldability of the steel. Therefore, the C content needs to be controlled within a suitable range.
  • Si is an element that inhibits carbide formation. It has minimal solubility in carbides and can effectively inhibit or delay the formation of carbides. It is beneficial to form carbon-rich austenite during partitioning and remains as room temperature as retained austenite. . However, a higher Si content reduces the high temperature plasticity of the material and increases the incidence of defects in the steelmaking, continuous casting and hot rolling processes. Therefore, it is also necessary to control the Si within a suitable range.
  • Mn is an austenite stabilizing element. The presence of Mn lowers the martensite transformation temperature Ms and increases the content of retained austenite. In addition, Mn is a solid solution strengthening element, which increases the strength of the steel sheet. Wo U. However, too high a Mn content will lead to excessive hardenability of the steel, which is not conducive to fine control of the material structure.
  • P Its action is similar to that of Si, mainly for solid solution strengthening and inhibition of carbide formation, and to improve the stability of retained austenite. The addition of P significantly deteriorates the weldability and increases the brittleness of the material.
  • P is used as an impurity element and is controlled as low as possible.
  • A1 Its action is similar to that of Si, mainly for solid solution strengthening and inhibition of carbide formation, and to improve the stability of retained austenite. However, the strengthening effect of A1 is weaker than Si.
  • N An element not specifically controlled in the steel of the present invention. In order to reduce the adverse effect of N on the control of inclusions, it is best to control N at a lower level during smelting.
  • a method for producing a high-formability ultra-high-strength cold-rolled steel sheet according to the present invention comprises the following steps:
  • the finishing temperature is 880 ⁇ 30°C, and the coiling temperature is 550 ⁇ 650°C;
  • step 2) the slab is heated to 1170 ⁇ 1200 °C.
  • the step 3) hot rolling coiling temperature is 550 to 600 °C.
  • the annealing temperature is 860-890 ° C;
  • step 5 controlling the continuous annealing in a reducing atmosphere by means of radiant heating, the furnace
  • the internal H content is 10 ⁇ 15%.
  • step 5 is slowly cooled to 700 ⁇ 730 °C.
  • step 5 is rapidly cooled to 280-320 °C.
  • the step 5) is heated to 390-420 ° C after rapid cooling, and the temperature is maintained for 180-250 s.
  • the annealing time at 860 to 920 ° C in step 5) is 80 to 120 s.
  • the cooling rate is as fast as 240 to 320 ° C and the cooling rate is 50 to 100 ° C / s.
  • the speed of reheating to 360 to 460 ° C after rapid cooling in step 5) is 5 to 10 ° C / s.
  • the invention adopts the hot rolling high temperature heating furnace to keep warm, which is beneficial to the sufficient dissolution of the C and N compounds, and the coiling adopting a lower coiling temperature is advantageous for obtaining fine precipitates.
  • the annealing process uses continuous annealing, and the temperature uses a higher annealing temperature to form a uniform austenite structure, which is beneficial to increase the strength of the steel.
  • the transformation of the body part into martensite is beneficial to increase the strength of the steel; then it is heated to 360 ⁇ 460 °C and kept for 100 ⁇ 300s, which redistributes carbon in martensite and austenite to form high stability.
  • Carbon-rich austenite which obtains a certain amount of retained austenite in the final structure, is beneficial to improve work hardening ability and formability.
  • the final structure of the steel sheet consists of ferrite + martensite + retained austenite. Due to the high Si design, the martensite which has formed in the steel is not substantially decomposed during the partitioning process to ensure the desired microstructure is finally obtained.
  • the steel of the present invention can obtain a yield strength of 600 to 900 MPa, a tensile strength of 980 to 1150 MPa, and an elongation of 17 to 25%.
  • Chinese patent CN201010291498.3 discloses a high-strength continuous annealing cold-rolled phase-change induced plastic steel sheet which can achieve an elongation of about 20% at a tensile strength level of 1000 MPa, and has a good comprehensive performance.
  • alloying elements such as Cu, Ni, and Cr, which greatly increases the material cost, and is greatly limited in the automotive field where the cost is extremely demanding.
  • Japanese patent JP2005-232493 discloses a cold rolling with high strength and high formability.
  • the steel sheet has a simple composition and a low cost, but the elongation of about 14% is still insufficient for satisfying the formability of high-strength steel for automobiles.
  • U.S. Patent No. 6,210,496 discloses a cold-rolled high-strength high-formability steel which has low tensile strength and cannot meet the performance requirements of ultra-high-strength steel for automobiles, and requires a certain amount of Cr to be added, which is not suitable as a cost control requirement. Strict automotive steel.
  • the invention adopts appropriate composition design to produce ultra-high strength cold-rolled steel sheet by continuous annealing under the conditions of conventional hot rolling and cold rolling processes, without adding any expensive alloying elements, and only appropriately increasing the Mn content and combining the single Some continuous annealing processes can achieve a very high strength, and still maintain good plasticity; at the same time, no special production equipment is required, and the production cost is low.
  • the steel of the invention has good application prospects in automobile safety structural parts after being smelted, hot rolled, cold rolled, annealed and leveled, and is particularly suitable for manufacturing vehicle structural parts with complex shapes and high forming performance requirements.
  • Safety parts such as door anti-collision bars, bumpers and B-pillars.
  • Figure 1 is a car B-pillar (thickness 2.0 mm) made of steel of the present invention.
  • Figure 2 is a comparison of the rebound characteristics of the steel of the present invention and the commercial 980 MPa grade dual phase steel (DP980) (thickness is 1.2 mm). detailed description
  • Table 1 gives the chemical composition of an embodiment of the inventive steel. After smelting, hot rolling, cold rolling, annealing and flattening, the annealing process and mechanical properties are shown in Table 2. As can be seen from Table 2, the present invention can obtain an ultra-high strength cold-rolled steel sheet having a yield strength of 600 to 900 MPa, a tensile strength of 980 to 1150 MPa, and an elongation of 17 to 25% by an appropriate process.
  • Example 4 0.18 1.6 2.7 - - - 0.007 0.007 0.060 0.0046
  • Example 5 0.25 1.0 2.3 - - - 0.012 0.006 0.050 0.0077
  • Example 6 0.21 1.4 1.9 - - - 0.015 0.008 0.040 0.0039
  • Comparative Example 1 0.35 0.52 1.50 0.3 0.5 0.3 0.05 0.001 0.035 0.0020
  • Comparative Example 2 0.17 1.35 2.00 - - - 0.015 0.001 0.040 0.0025
  • Comparative Example 3 0.21 1.05 2.02 0.33 - - 0.041 - 0.051 - Table 2
  • the steel of the present invention is particularly suitable for the manufacture of structural and safety parts of vehicles having complex shapes and high forming properties, such as door impact bars, bumpers and B Columns, etc.
  • Fig. 1 is a car B column (thickness 2.0 mm) made of steel of the present invention. As seen from Fig. 1, the steel of the present invention has excellent formability.
  • Figure 2 is a comparison of the rebound characteristics (1.2 mm thick) of the 980 MPa grade dual phase steel (DP980) of the present invention. It is indicated that the rebound amount of the steel of the present invention is significantly lower than that of the DP980 under the same forming process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种高成形性超高强度冷轧钢板及其制造方法,其成分重量百分比为: C 0.15~0.25%,Si 1.00~2.00%,Mn 1.50~3.00%,P≤0.015%,S≤0.012%,Al 0.03~0.06%,N≤0.008%,其余为Fe和不可避免的杂质;制造方法包括如下步骤:1)冶炼、铸造;2)加热,加热至1170~1230˚C,保温;3)热轧,终轧温度880±30˚C,550~650˚C卷取;4)酸洗、冷轧、退火,冷轧变形量40~60%,860~920˚C退火,以3~10˚C/s冷速缓冷至690~750˚C;再快冷至240~320˚C,冷却速度≥50˚C/s,然后再加热至360~460˚C、保温100~500s,最后冷却至室温。最终获得屈服强度在600~900MPa、抗拉强度980~1150MPa、延伸率17~25%、成形性优越、低回弹特性的超高强度冷轧钢板。

Description

一种高成形性超高强度冷轧钢板及其制造方法 技术领域
本发明涉及冷轧钢板, 特别涉及一种高成形性超高强度冷轧钢板及其 制造方法, 冷轧超高强度钢板的屈服强度 600〜900MPa、 抗拉强度 980〜 1150MPa、 延伸率 17〜25%, 具有良好塑性、 低回弹特性。 背景技术
据评估, 汽车重量每减轻 10%, 可节约燃油消耗 5%〜8%, 同时可相 应减少 C02温室气体以及 NOx、 S02等污染物的排放。 我国自主品牌乘用 车的车重较国外同档次的汽车重约 10%, 而商用汽车重量的差距则更大。 汽车钢板作为车身的主要原材料, 约占车身重量的 60〜70%。 大量使用强 度在 590〜1500MPa级别的高强度和超高强度钢板替代传统汽车用钢, 是 汽车实现"减重节能、 提高安全性和降低制造成本 "的最佳材料解决方案, 对建设低碳社会意义重大。 因此提高钢板的强度以减薄钢板的厚度是近年 来钢板的一种发展趋势。 其中以相变强化为主的先进高强度汽车用钢的开 发和应用已经成为世界各大钢铁公司研究的主流课题之一。
传统的超高强钢利用马氏体、 贝氏体等高强度相结构实现高强度, 但 是同时带来了塑性和成形性能的明显下降。 在马氏体或者贝氏体组织中引 入一定量的残余奥氏体成为实现高强度和高塑性材料的有效技术路径。 例 如 TRIP钢由铁素体, 贝氏体和残余奥氏体组成, 其强度和塑性都较高, 但 是这种相结构限制了其强度的进一歩提高。 因此以马氏体代替贝氏体作为 主要的强化相开始受到人们的重视。
中国专利 CN 102409235A公开了一种高强度冷轧相变诱导塑性钢板及 其制造方法,其成分: C: 0.1%〜0.5%、 Si: 0.1%〜0.6%、 Mn: 0.5%〜2.5%、 P: 0·02%〜0· 12%、 S≤0.02%、 A1: 0·02%〜0·5%、 Ν≤0·01%、 Ni: 0·4 %~0·6 % , Cu: 0.1%〜1.0%, 其余为 Fe。 其加工方法为: (a)冶炼满足成分条件的 钢水, 浇铸成坯; (b)轧制: 加热温度 1100〜1250°C, 保温时间 l〜4h, 开 轧温度 1100°C, 终轧温度 750〜900°C, 卷取温度<700 ; 热轧板厚 2〜 4mm; 冷轧累积压下量 40%〜80%; (c)连续退火: 退火温度 700〜Ac3+50 °C, 保温时间 30〜360s, 冷却速率 10〜150°C/s, 时效温度 250〜600°C, 时效时间 30〜1200s, 再以 5〜100°C/s 的冷却速率冷却至室温。 本发明钢 板屈服强度为 380〜1000MPa, 抗拉强度为 680〜1280MPa, 延伸率为 15〜 30%。 该发明可在 lOOOMPa的抗拉强度级别上实现 20%左右的延伸率, 具 有较好的综合性能。 但是该发明钢中需要添加较多的 Cu、 Ni等合金元素, 大幅度增加了材料成本, 对于成本要求极为苛刻的汽车领域应用将受到较 大限制。
日本专利 JP 2005-232493公开了一种具有高强度与高成形性能的冷轧 钢板的成分及工艺。 材料成分为 C : 0.02-0.25% , Si: 0.02-4.0% , Mn: 0.15-3.5%, 余量为 Fe。 材料的组织为铁素体与马氏体两相, 其中铁素体含 量为 30~60%。残余奥氏体含量少于 1.0%。 热轧板卷曲温度为 500°C, 冷轧 后加热到 900~950°C, 并缓冷到 640°C, 随后快冷到 350°C, 最后缓冷至室 温。 经过上述工艺, 可获得屈服强度 850MPa左右、 抗拉强度 lOOOMPa左 右、 延伸率 14%的钢板。 该发明钢成分简单, 成本较低, 但是 14%左右的 延伸率对于满足汽车用高强钢的成形性仍显不足。
中国专利 CN200510023375.0 公开了一种低碳低硅冷轧相变塑性钢及 其制备方法。 该发明的低碳低硅冷轧相变塑性钢, 其组成成分和重量百分 含量: C 0.1-0.2%, Si 0.1-0.5%, Mn 0.5-2.0%, Al 0.5-1.5%, V 0.05-0.5%, S, P, N微量, Fe余量。 经处理的低碳低硅冷轧相变塑性钢具有良好的强 塑性, 其抗拉强度为 650-670MPa, 延伸率为 32.5-34%。 该发明抗拉强度较 低, 不能满足汽车用超高强钢的性能要求, 而且需要加入一定量的 Cr, 不 适合作为成本控制要求非常严格的汽车用钢。 发明内容
本发明的目的在于提供一种高成形性超高强度冷轧钢板及其制造方 法, 该冷轧钢板的屈服强度在 600〜900MPa, 抗拉强度 980MPa以上, 延 伸率 17〜25%, 成形性优越、 低回弹特性, 适用于汽车的结构件和安全件。
为达到上述目的, 本发明的技术方案是:
现有有关高强度钢的制造方法较多, 但这些发明为了保证钢板的达到 要求的强度和成形性能, 大多采用在现有碳锰钢的成分基础上, 加入较多 的 Cr、 Nb、 B等合金元素, 不仅增加了钢材的生产成本, 同时还也可能降 低了产品的可制造性, 增加了炼钢、 连铸等工序的生产难度。 C、 Si、 Mn 是钢铁中最有效、 成本最低的强化元素, 在现有碳锰钢的基础上, 通过成 分-工艺-组织-性能的综合优化设计, 以实现比现有汽车钢板更好的综合性 能, 将是一个极具优势的汽车用高强钢解决方案。
本发明采用普通碳锰钢成分设计,充分利用 Si、 Mn等合金元素的对材 料相变行为的影响规律, 通过优化的淬火 -配分技术对材料的最终组织进行 精细控制, 以实现超高强度和高塑性统一的优越性能, 获得性能优越、 成 本低廉的超高强钢板产品。
具体地, 本发明的高成形性超高强度冷轧钢板, 其成分重量百分比为:
C: 0.15-0.25%, Si: 1.00-2.00%, Mn: 1.50-3.00%, P<0.015%, S<0.012%, Al: 0.03-0.06%, N<0.008%, 其余为 Fe和不可避免的杂质。 钢板室温组织 为铁素体 10%~30%+马氏体 60~80%+残余奥氏体 5~15%; 屈服强度 600〜 900MPa, 抗拉强度 980〜1150MPa, 延伸率 17〜25%。
优选地, 所述的钢板成分中, C含量为 0.18~0.22%, 以重量百分比计。 优选地, 所述的钢板成分中, Si含量为 1.4~1.8%, 以重量百分比计。 优选地, 所述的钢板成分中, Mn含量为 1.8~2.3%, 以重量百分比计。 优选地, 所述的钢板成分中, P 0.012%, S^O.008%, 以重量百分比 计。
在本发明钢化学成分设计中:
C: 是钢中最基本的强化元素, 也是奥氏体稳定化元素, 在奥氏体中较 高的 c含量有利于提高残余奥氏体分数和材料性能。 但是较高的 C含量会 恶化钢材的焊接性能。 因此, C含量需控制在一个合适的范围。
Si: 是抑制碳化物形成元素, 在碳化物中的溶解度极小, 能够有效抑 制或者推迟碳化物的形成, 有利于在配分过程中形成富碳奥氏体, 并作为 残余奥氏体保留至室温。 但是较高的 Si含量会降低材料的高温塑性, 增加 炼钢、 连铸和热轧过程的缺陷发生率。 因此同样需要把 Si控制在合适的范 围内。
Mn: 是奥氏体稳定化元素。 Mn的存在可降低马氏体转变温度 Ms, 使 残余奥氏体的含量增加。 此外 Mn是固溶强化元素, 对提高钢板的强度有 禾 U。 但是过高的 Mn含量会导致钢材的淬透性过高, 不利于材料组织的精 细控制。
P: 其作用与 Si相似, 主要是起到固溶强化和抑制碳化物形成, 提高 残余奥氏体稳定性的作用。 P 的加入会显著恶化焊接性能, 增加材料的脆 性, 在本发明中将 P作为杂质元素, 尽量控制在低水平。
S: 作为杂质元素其含量尽量控制在较低的水平。
A1: 其作用与 Si相似, 主要是起到固溶强化和抑制碳化物形成, 提高 残余奥氏体稳定性的作用。 但 A1的强化效果弱于 Si。
N: 在本发明钢中不是特别控制的元素。 为降低 N对夹杂物控制的不 利影响, 在冶炼时尽量把 N控制在较低的水平。
本发明的一种高成形性超高强度冷轧钢板的制造方法, 其包括如下歩 骤:
1) 冶炼、 浇铸
按上述成分冶炼、 浇铸成板坯;
2) 板坯加热到 1170〜1230°C并保温;
3) 热轧
终轧温度为 880±30°C, 卷取温度 550〜650°C ;
4) 酸洗、 冷轧
冷轧变形量 40〜60%, 形成钢带;
5) 退火
冷轧变形量 40〜60%, 在 860〜920°C退火, 以 3〜10°C/s的冷速缓 冷至 690〜750°C,使材料中获得一定比例的铁素体;再快冷至 240〜 320°C, 冷却速度≥501 /8, 使奥氏体部分转变为马氏体; 然后再加热 至 360〜460°C、 保温 100~500s, 最后冷却至室温;
最终获得屈服强度在 600〜900MPa、抗拉强度 980〜1150MPa、延伸 率 17〜25%、 成形性优越、 低回弹特性的超高强度冷轧钢板。
优选地, 歩骤 2 ) 板坯加热到 1170~1200°C。
优选地, 歩骤 3 ) 热轧卷取温度 550~600°C。
优选地, 歩骤 5 ) 退火温度为 860~890°C ;
优选地, 歩骤 5 ) 以辐射加热方式在还原性气氛中控制连续退火, 炉 内 H含量 10~15%。
优选地, 歩骤 5 ) 缓冷至 700~730°C。
优选地, 歩骤 5 ) 快冷至 280~320°C。
优选地, 歩骤 5 ) 快冷后再加热至 390~420°C, 保温 180~250s。
优选地, 歩骤 5 ) 中在 860〜920°C退火的保温时间为 80~120s。
优选地, 歩骤 5 ) 中快冷至 240〜320°C的冷却速度为 50~100°C/s。 优选地, 歩骤 5 ) 中快冷之后再加热至 360〜460°C的速度为 5~10°C/s。 本发明采用热轧高温加热炉保温, 有利于 C和 N化合物的充分溶解, 卷取采用较低的卷取温度有利于获得细小的析出物。
采用常规的酸洗和冷轧工艺。 退火工艺采用连续退火, 温度采用较高 的退火温度, 形成均匀化的奥氏体组织, 有利于提高钢的强度。 之后以 <
10°C/s的冷速缓冷至 690~750°C, 以获得一定量的铁素体, 有利于提高钢的 塑性; 之后快冷至 Μ^Π Mf之间某一温度, 奥氏体部分转变为马氏体, 有 利于提高钢的强度; 然后再加热至 360~460°C并保温 100~300s, 使碳在马 氏体和奥氏体中发生再分配, 形成高稳定性的富碳奥氏体, 从而在最终组 织中获得一定量的残余奥氏体, 有利于提高加工硬化能力和成形性能。 钢 板的最终组织由铁素体 +马氏体 +残余奥氏体组成。 由于采用高 Si设计, 使 钢中已经形成的马氏体在配分过程中基本不发生分解, 以保证最终获得所 需的组织形态。
本发明钢经上述处理后, 可以获得屈服强度在 600〜900MPa, 抗拉强 度 980〜1150MPa, 延伸率在 17〜25%。
另外, 由于配分之后马氏体中 C含量降低, 因此降低了马氏体在冷变 形时的滞弹性, 使得本发明钢的回弹特性得到显著改善。
本发明与现有技术相比:
中国专利 CN201010291498.3 公开的一种高强度连续退火冷轧相变诱 导塑性钢板可在 lOOOMPa的抗拉强度级别上实现 20%左右的延伸率, 具有 较好的综合性能。但是该发明钢中需要添加较多的 Cu、 Ni、 Cr等合金元素, 大幅度增加了材料成本, 对于成本要求极为苛刻的汽车领域应用将受到较 大限制。
日本专利 JP2005-232493 公开了一种具有高强度与高成形性能的冷轧 钢板, 其成分简单, 成本较低, 但是 14%左右的延伸率对于满足汽车用高 强钢的成形性仍显不足。
美国专利 US6210496公开的一种冷轧高强度高成形性钢, 该发明抗拉 强度较低, 不能满足汽车用超高强钢的性能要求, 而且需要加入一定量的 Cr, 不适合作为成本控制要求非常严格的汽车用钢。
本发明的有益效果:
本发明通过适当的成分设计, 使得在常规的热轧和冷轧工艺条件下, 采用连续退火生产超高强度冷轧钢板, 不需要添加任何昂贵的合金元素, 仅适当的提高 Mn含量再结合独有的连续退火工艺就可以实现强度的大幅 度挺高, 且仍保持较好的塑性; 同时不需要特殊的生产装备, 生产成本低。
本发明钢在经冶炼、 热轧、 冷轧、 退火、 平整后在汽车安全结构件中 将具有较好的应用前景, 特别适合于制造形状较为复杂、 对成形性能要求 较高的车辆结构件和安全件, 如车门防撞杆、 保险杠及 B柱等。 附图说明
图 1为本发明钢制造的轿车 B柱 (厚度 2.0mm) 。
图 2为本发明钢与商用 980MPa级别双相钢(DP980)的回弹特性对比 (厚度都是 1.2mm) 。 具体实施方式
下面结合实施例对本发明做进一歩说明。
表 1给出了发明钢的实施例的化学成分。 经冶炼、 热轧、 冷轧、 退火 和平整后得产品, 其退火工艺及力学性能情况如表 2所示。 从表 2可看出, 本发明经过适当的工艺配合, 可得到屈服强度 600〜900MPa、 抗拉强度 980〜1150MPa、 延伸率 17〜25%的超高强度冷轧钢板。
表 1 单位: wt%
Figure imgf000008_0001
实施例 4 0.18 1.6 2.7 - - - 0.007 0.007 0.060 0.0046 实施例 5 0.25 1.0 2.3 - - - 0.012 0.006 0.050 0.0077 实施例 6 0.21 1.4 1.9 - - - 0.015 0.008 0.040 0.0039 比较例 1 0.35 0.52 1.50 0.3 0.5 0.3 0.05 0.001 0.035 0.0020 比较例 2 0.17 1.35 2.00 - - - 0.015 0.001 0.040 0.0025 比较例 3 0.21 1.05 2.02 0.33 - - 0.041 - 0.051 - 表 2
Figure imgf000009_0001
比较例 3 800 - - 635 - 410 - 410 180 492 704 38 本发明钢特别适合于制造形状较为复杂、 对成形性能要求较高的车辆 结构件和安全件, 如车门防撞杆、 保险杠及 B柱等。
参见图 1、 图 2, 图 1为本发明钢制造的轿车 B柱 (厚度 2.0mm) , 由 图 1可见, 本发明钢具有优异的成形性能。
图 2为本发明与商用 980MPa级别双相钢(DP980)的回弹特性对比(厚 度都是 1.2mm) 。 说明在相同的成形工艺下, 本发明钢的回弹量明显低于 DP980。

Claims

权利要求书
1. 一种高成形性超高强度钢板, 其化学成分重量百分比为:
C: 0.15~0.25wt%
Si: 1.00~2.00wt%
Mn: 1.50~3.00wt%
P<0.015wt%
S<0.012wt%
Al: 0.03~0.06wt%
N<0.008wt%
其余为 Fe和不可避免杂质;
钢板室温组织为铁素体 10%~30%+马氏体 60~80%+残余奥氏 体 5~15%; 屈服强度 600〜900MPa, 抗拉强度 980〜 1150MPa, 延 伸率在 17〜25%。
2. 如权利要求 1所述的高成形性超高强度钢板, 其特征是, 所述的钢 板成分中, C含量为 0.18~0.22%, 以重量百分比计。
3. 如权利要求 1所述的高成形性超高强度钢板, 其特征是, 所述的钢 板成分中, Si含量为 1.4~1.8%, 以重量百分比计。
4. 如权利要求 1所述的高成形性超高强度钢板, 其特征是, 所述的钢 板成分中, Mn含量为 1.8~2.3%, 以重量百分比计。
5. 如权利要求 1所述的高成形性超高强度钢板, 其特征是, 所述的钢 板成分中, P 0.012%, S^O.008%, 以重量百分比计。
6. 如权利要求 1~5中任何一项所述的高成形性超高强度钢板的制造方 法, 包括如下歩骤:
1)冶炼、 浇铸
按上述成分冶炼、 浇铸成板坯;
2)板坯加热到 1170〜1230°C并保温;
3)热轧
终轧温度为 880±30°C, 卷取温度 550〜650°C ;
4)酸洗、 冷轧
冷轧变形量 40〜60%, 形成钢带; 5)连续退火
在 860〜920°C退火; 以 3〜10°C/s的冷速缓冷至 690〜750°C, 使材料中获得一定比例的铁素体; 再快冷至 240〜320°C, 冷却速度 ^50°C /s , 使奥氏体部分转变为马氏体; 然后再加热至 360〜460°C、 保温 100~500s, 最后冷却至室温; 最终获得屈服强度在 600〜
900MPa、 抗拉强度 980〜1150MPa、 延伸率 17〜25%、 成形性优越、 低回弹特性的超高强度冷轧钢板。
7. 如权利要求 6所述的高成形性超高强度钢板的制造方法,其特征是, 歩骤 2 ) 板坯加热到 1170~1200°C。
8. 如权利要求 6所述的高成形性超高强度钢板的制造方法,其特征是, 歩骤 3 ) 热轧卷取温度 550~600°C。
9. 如权利要求 6所述的高成形性超高强度钢板的制造方法,其特征是, 歩骤 5 ) 退火温度 860~890°C ;
10. 如权利要求 6或 9所述的高成形性超高强度钢板的制造方法, 其 特征是, 歩骤 5 ) 退火后缓冷至 700~730°C。
11. 如权利要求 6 所述的高成形性超高强度钢板的制造方法, 其特征 是, 歩骤 5 ) 快冷至 280~320°C。
12. 如权利要求 6或 11所述的高成形性超高强度钢板的制造方法, 其 特征是, 歩骤 5 ) 快冷后再加热至 390~420°C, 保温 100~300s。
13. 如权利要求 6 所述的高成形性超高强度钢板的制造方法, 其特征 是, 在 860〜920°C退火的保温时间为 80~120s。
14. 如权利要求 6 所述的高成形性超高强度钢板的制造方法, 其特征 是, 快冷至 240〜320°C的冷却速度为 50~100°C/s。
15. 如权利要求 6 所述的高成形性超高强度钢板的制造方法, 其特征 是, 快冷之后再加热至 360〜460°C的速度为 5~10°C/s。
PCT/CN2013/071711 2012-11-15 2013-02-21 一种高成形性超高强度冷轧钢板及其制造方法 WO2014075404A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2890126A CA2890126C (en) 2012-11-15 2013-02-21 High-formability and super-strength cold-rolled steel sheet and manufacturing method thereof
JP2015542138A JP6207621B2 (ja) 2012-11-15 2013-02-21 高成形性超高強度冷間圧延鋼板及びその製造方法
EP13854271.7A EP2921568B1 (en) 2012-11-15 2013-02-21 High-formability and super-strength cold-rolled steel sheet and manufacturing method thereof
US14/442,788 US10287659B2 (en) 2012-11-15 2013-02-21 High-formability and super-strength cold-rolled steel sheet
ES13854271.7T ES2668653T3 (es) 2012-11-15 2013-02-21 Lámina de acero de alta conformabilidad y súper resistencia, laminada en frío, y procedimiento para la fabricación de la misma
MX2015005836A MX368208B (es) 2012-11-15 2013-02-21 Placa de acero laminada en frío de alta maleabilidad y superresistente, y método de fabricación de la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210461631.4 2012-11-15
CN201210461631.4A CN103805838B (zh) 2012-11-15 2012-11-15 一种高成形性超高强度冷轧钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2014075404A1 true WO2014075404A1 (zh) 2014-05-22

Family

ID=50703215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071711 WO2014075404A1 (zh) 2012-11-15 2013-02-21 一种高成形性超高强度冷轧钢板及其制造方法

Country Status (9)

Country Link
US (1) US10287659B2 (zh)
EP (1) EP2921568B1 (zh)
JP (1) JP6207621B2 (zh)
KR (1) KR20150086312A (zh)
CN (1) CN103805838B (zh)
CA (1) CA2890126C (zh)
ES (1) ES2668653T3 (zh)
MX (1) MX368208B (zh)
WO (1) WO2014075404A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236891A (zh) * 2017-06-12 2017-10-10 苏州双金实业有限公司 一种环保型高强度钢材
JP2019505691A (ja) * 2015-12-21 2019-02-28 アルセロールミタル 改善された延性及び成形加工性を有する高強度鋼板を製造するための方法並びに得られた鋼板
JP2019531409A (ja) * 2016-08-30 2019-10-31 宝山鋼鉄股▲分▼有限公司 優れたリン酸塩処理性と成形性を有する冷間圧延高強度鋼板及びその製造方法
CN115505835A (zh) * 2021-06-07 2022-12-23 宝山钢铁股份有限公司 一种冷轧钢板及其制造方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105039846B (zh) * 2015-08-17 2016-09-14 攀钢集团攀枝花钢铁研究院有限公司 钒微合金化tam钢及其制造方法
CN106244923B (zh) * 2016-08-30 2018-07-06 宝山钢铁股份有限公司 一种磷化性能和成形性能优良的冷轧高强度钢板及其制造方法
CN108018484B (zh) 2016-10-31 2020-01-31 宝山钢铁股份有限公司 抗拉强度1500MPa以上成形性优良的冷轧高强钢及其制造方法
JP6414246B2 (ja) * 2017-02-15 2018-10-31 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN108660369A (zh) * 2017-03-29 2018-10-16 鞍钢股份有限公司 抗拉强度大于1180MPa的淬火配分冷轧钢板及生产方法
CN109694992A (zh) * 2017-10-20 2019-04-30 鞍钢股份有限公司 一种抗拉强度大于1500MPa的淬火配分钢及其生产方法
CN109957715A (zh) * 2017-12-14 2019-07-02 鞍钢股份有限公司 热成形用钢板、制造方法、热成形方法、及制得的部件
CN108396242A (zh) * 2018-01-10 2018-08-14 唐山钢铁集团有限责任公司 一种低成本焊管用超高强度冷轧连退带钢及其生产方法
CN109355578B (zh) * 2018-12-14 2022-02-18 辽宁衡业高科新材股份有限公司 一种1000MPa级别热处理车轮的制备方法
CN109652625B (zh) * 2019-01-15 2021-02-23 象山华鹰塑料工程有限公司 一种汽车车窗用超高强度冷轧钢板制造工艺
CN109930079A (zh) * 2019-03-29 2019-06-25 本钢板材股份有限公司 一种980MPa级低成本冷轧淬火配分钢及其制备方法
CN110499461B (zh) * 2019-08-22 2021-10-08 唐山钢铁集团有限责任公司 一种汽车座椅焊管用超高强钢板及其生产方法
CN110747391A (zh) * 2019-08-30 2020-02-04 武汉钢铁有限公司 一种具有优良延伸率的冷轧超高强钢及其制备方法
CN112760554A (zh) * 2019-10-21 2021-05-07 宝山钢铁股份有限公司 一种延展性优异的高强度钢及其制造方法
CN111334701B (zh) * 2020-03-25 2021-04-06 武汉钢铁有限公司 一种抗拉强度≥800MPa的高延伸率热轧组织调控钢及生产方法
CN111349771B (zh) * 2020-04-22 2022-04-01 马鞍山钢铁股份有限公司 一种具有优异塑性的980MPa级冷轧Q&P钢及其制造方法
CN111440987B (zh) * 2020-05-11 2021-03-02 武汉钢铁有限公司 采用短流程生产的抗拉强度≥980MPa淬火配分钢及方法
CN115461482B (zh) * 2020-05-11 2024-04-30 杰富意钢铁株式会社 钢板、部件及其制造方法
CN113718168B (zh) * 2020-05-25 2022-07-19 宝山钢铁股份有限公司 一种高强度冷轧钢板及其制造方法
CN113802051A (zh) * 2020-06-11 2021-12-17 宝山钢铁股份有限公司 一种塑性优异的超高强度钢及其制造方法
CN113926892A (zh) * 2020-06-29 2022-01-14 宝山钢铁股份有限公司 抗拉强度≥980MPa级热轧超高强度双相钢零件冲压成形工艺及应用
CN111979470A (zh) * 2020-08-05 2020-11-24 鞍钢股份有限公司 具有良好弯折性能超高强度冷轧马氏体钢板的生产方法
CN112159931B (zh) * 2020-09-28 2022-08-12 首钢集团有限公司 一种具有连续屈服的1000MPa级中锰TRIP钢及其制备方法
CN114381655A (zh) * 2020-10-21 2022-04-22 宝山钢铁股份有限公司 一种高强塑积冷轧qp钢及其退火工艺和制造方法
CN112680660B (zh) * 2020-12-03 2022-04-15 山东钢铁集团日照有限公司 一种1.2GPa级TRIP钢及其微观组织的调控方法
CN115181884B (zh) * 2021-04-02 2023-08-11 宝山钢铁股份有限公司 1280MPa级别低碳低合金热镀锌Q&P钢及快速热处理热镀锌制造方法
CN115181897B (zh) * 2021-04-02 2023-07-11 宝山钢铁股份有限公司 1280MPa级别低碳低合金超高强度双相钢及快速热处理制造方法
CN115181899B (zh) * 2021-04-02 2023-07-07 宝山钢铁股份有限公司 980MPa级别低碳低合金TRIP钢及其快速热处理制造方法
CN115181892B (zh) * 2021-04-02 2023-07-11 宝山钢铁股份有限公司 1180MPa级别低碳低合金TRIP钢及快速热处理制造方法
CN115181898B (zh) * 2021-04-02 2023-10-13 宝山钢铁股份有限公司 一种1280MPa级别低碳低合金Q&P钢及其快速热处理制造方法
CN115181895B (zh) * 2021-04-02 2023-09-12 宝山钢铁股份有限公司 1180MPa级别低碳低合金热镀锌Q&P钢及快速热处理热镀锌制造方法
CN115181893B (zh) * 2021-04-02 2023-07-11 宝山钢铁股份有限公司 1180MPa级低碳低合金热镀锌TRIP钢及快速热处理热镀锌制造方法
CN115181887B (zh) * 2021-04-02 2023-08-11 宝山钢铁股份有限公司 一种1180MPa级别低碳低合金Q&P钢及其快速热处理制造方法
CN113416890B (zh) * 2021-05-21 2022-07-22 鞍钢股份有限公司 高扩孔高塑性980MPa级冷轧连退钢板及其制备方法
CN113416893B (zh) * 2021-05-24 2022-10-18 鞍钢股份有限公司 汽车用高强高塑性铁素体奥氏体双相冷轧钢板及生产方法
CN115505834A (zh) * 2021-06-07 2022-12-23 宝山钢铁股份有限公司 一种热镀锌钢板及其制造方法
KR102372546B1 (ko) * 2021-07-27 2022-03-10 현대제철 주식회사 연신율이 우수한 초고강도 강판 및 그 제조방법
CN113930665A (zh) * 2021-09-01 2022-01-14 武汉钢铁有限公司 一种以贝氏体为基体的冷轧高强钢及其制备方法
CN114000053B (zh) * 2021-10-19 2022-05-20 湖南华菱涟钢特种新材料有限公司 热轧钢板及其制造方法
KR20240044568A (ko) * 2022-09-28 2024-04-05 주식회사 포스코 우수한 강도 및 성형성을 갖는 냉연강판 및 그 제조방법
CN115612816B (zh) * 2022-09-30 2024-02-02 攀钢集团攀枝花钢铁研究院有限公司 含硼钢制备复相钢、热成形用钢镀层板的方法
CN116288037A (zh) * 2022-12-13 2023-06-23 安钢集团冷轧有限责任公司 一种超深冲冷轧汽车钢及其生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210496B1 (en) 1997-06-16 2001-04-03 Kawasaki Steel Corporation High-strength high-workability cold rolled steel sheet having excellent impact resistance
CN1343262A (zh) * 1999-11-08 2002-04-03 川崎制铁株式会社 强度-延展性平衡和镀层粘合剂均优的热浸镀锌钢板及其制造方法
JP2005232493A (ja) 2004-02-17 2005-09-02 Kobe Steel Ltd 強度成形性バランスに優れた高強度冷延鋼板
CN101939456A (zh) * 2008-02-08 2011-01-05 杰富意钢铁株式会社 加工性优良的高强度热镀锌钢板及其制造方法
WO2012020511A1 (ja) * 2010-08-12 2012-02-16 Jfeスチール株式会社 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
CN102409235A (zh) 2010-09-21 2012-04-11 鞍钢股份有限公司 高强度冷轧相变诱导塑性钢板及其制备方法
CN102471849A (zh) * 2009-07-30 2012-05-23 杰富意钢铁株式会社 高强度钢板及其制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635619B2 (ja) * 1986-02-05 1994-05-11 新日本製鐵株式会社 延性の良い高強度鋼板の製造方法
JP2652539B2 (ja) * 1987-09-21 1997-09-10 株式会社神戸製鋼所 張出し成形性及び疲労特性にすぐれる複合組織高強度冷延鋼板の製造方法
JPH0735536B2 (ja) * 1988-01-14 1995-04-19 株式会社神戸製鋼所 高延性高強度複合組織鋼板の製造法
JP3257009B2 (ja) 1991-12-27 2002-02-18 日本鋼管株式会社 高加工性高強度複合組織鋼板の製造方法
JP2776203B2 (ja) * 1993-06-17 1998-07-16 住友金属工業株式会社 常温非時効性に優れた冷延鋼板の製造方法
CN1151301C (zh) * 2002-11-29 2004-05-26 武汉钢铁(集团)公司 超细化完整铁素体晶粒及残余奥氏体钢的生产方法
CN100410410C (zh) * 2005-01-28 2008-08-13 株式会社神户制钢所 耐氢脆化性优异的高强度弹簧钢
JP3889768B2 (ja) * 2005-03-31 2007-03-07 株式会社神戸製鋼所 塗膜密着性と延性に優れた高強度冷延鋼板および自動車用鋼部品
EP1749895A1 (fr) * 2005-08-04 2007-02-07 ARCELOR France Procédé de fabrication de tôles d'acier présentant une haute résistance et une excellente ductilité, et tôles ainsi produites
JP5438302B2 (ja) * 2008-10-30 2014-03-12 株式会社神戸製鋼所 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板とその製造方法
JP5185874B2 (ja) * 2009-03-30 2013-04-17 株式会社神戸製鋼所 高強度鋼板の製造方法
JP5493986B2 (ja) * 2009-04-27 2014-05-14 Jfeスチール株式会社 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法
JP5327106B2 (ja) 2010-03-09 2013-10-30 Jfeスチール株式会社 プレス部材およびその製造方法
JP5333298B2 (ja) * 2010-03-09 2013-11-06 Jfeスチール株式会社 高強度鋼板の製造方法
JP5668337B2 (ja) * 2010-06-30 2015-02-12 Jfeスチール株式会社 延性及び耐遅れ破壊特性に優れる超高強度冷延鋼板およびその製造方法
JP5462742B2 (ja) * 2010-08-20 2014-04-02 株式会社神戸製鋼所 機械的特性の安定性に優れた高強度鋼板の製造方法
JP5857909B2 (ja) 2012-08-09 2016-02-10 新日鐵住金株式会社 鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210496B1 (en) 1997-06-16 2001-04-03 Kawasaki Steel Corporation High-strength high-workability cold rolled steel sheet having excellent impact resistance
CN1343262A (zh) * 1999-11-08 2002-04-03 川崎制铁株式会社 强度-延展性平衡和镀层粘合剂均优的热浸镀锌钢板及其制造方法
JP2005232493A (ja) 2004-02-17 2005-09-02 Kobe Steel Ltd 強度成形性バランスに優れた高強度冷延鋼板
CN101939456A (zh) * 2008-02-08 2011-01-05 杰富意钢铁株式会社 加工性优良的高强度热镀锌钢板及其制造方法
CN102471849A (zh) * 2009-07-30 2012-05-23 杰富意钢铁株式会社 高强度钢板及其制造方法
WO2012020511A1 (ja) * 2010-08-12 2012-02-16 Jfeスチール株式会社 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
CN102409235A (zh) 2010-09-21 2012-04-11 鞍钢股份有限公司 高强度冷轧相变诱导塑性钢板及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505691A (ja) * 2015-12-21 2019-02-28 アルセロールミタル 改善された延性及び成形加工性を有する高強度鋼板を製造するための方法並びに得られた鋼板
JP2019531409A (ja) * 2016-08-30 2019-10-31 宝山鋼鉄股▲分▼有限公司 優れたリン酸塩処理性と成形性を有する冷間圧延高強度鋼板及びその製造方法
CN107236891A (zh) * 2017-06-12 2017-10-10 苏州双金实业有限公司 一种环保型高强度钢材
CN115505835A (zh) * 2021-06-07 2022-12-23 宝山钢铁股份有限公司 一种冷轧钢板及其制造方法
CN115505835B (zh) * 2021-06-07 2024-04-05 宝山钢铁股份有限公司 一种冷轧钢板及其制造方法

Also Published As

Publication number Publication date
CA2890126A1 (en) 2014-05-22
EP2921568B1 (en) 2018-04-11
ES2668653T3 (es) 2018-05-21
JP6207621B2 (ja) 2017-10-04
KR20150086312A (ko) 2015-07-27
EP2921568A1 (en) 2015-09-23
CN103805838A (zh) 2014-05-21
JP2016503458A (ja) 2016-02-04
US10287659B2 (en) 2019-05-14
MX2015005836A (es) 2015-09-24
CA2890126C (en) 2021-05-04
CN103805838B (zh) 2017-02-08
EP2921568A4 (en) 2016-08-03
US20150337416A1 (en) 2015-11-26
MX368208B (es) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2014075404A1 (zh) 一种高成形性超高强度冷轧钢板及其制造方法
JP6208246B2 (ja) 高成形性超高強度溶融亜鉛めっき鋼板及びその製造方法
JP6770640B2 (ja) 引張強度が1500MPa以上で、かつ成形性に優れた冷間圧延高強度鋼及びその製造方法
CN107619993B (zh) 屈服强度750MPa级冷轧马氏体钢板及其制造方法
CN106011644B (zh) 高伸长率冷轧高强度钢板及其制备方法
US11104974B2 (en) High yield ratio type high-strength cold-rolled steel sheet and manufacturing method thereof
JP2023153941A (ja) 加工性に優れた冷延鋼板、溶融亜鉛めっき鋼板、及びこれらの製造方法
JP2018506642A (ja) 熱処理鋼材、耐久性に優れた超高強度成形品及びその製造方法
CN105937011B (zh) 低屈服强度冷轧高强度钢板及其制备方法
WO2016045264A1 (zh) 一种高成形性的冷轧超高强度钢板、钢带及其制造方法
WO2021249446A1 (zh) 一种塑性优异的超高强度钢及其制造方法
WO2009008548A1 (ja) 降伏強度が低く、材質変動の小さい高強度冷延鋼板の製造方法
JP2022507855A (ja) 高降伏比冷間圧延二相鋼及びその製造方法
CN111406124A (zh) 高强度冷轧钢板及其制造方法
JP4457681B2 (ja) 高加工性超高強度冷延鋼板およびその製造方法
CN112760554A (zh) 一种延展性优异的高强度钢及其制造方法
JP2013227624A (ja) 加工性に優れる高強度冷延鋼板の製造方法
TW201627509A (zh) 高強度高延展性鋼材之製造方法
US10400301B2 (en) Dual-phase steel sheet with excellent formability and manufacturing method therefor
CN114763594A (zh) 一种冷轧钢板以及冷轧钢板的制造方法
JP2023553164A (ja) 曲げ性及び成形性に優れた高強度鋼板及びこの製造方法
JP2024500521A (ja) 熱間成形用鋼材、熱間成形部材及びそれらの製造方法
KR20120097175A (ko) 열처리 경화강 및 그 제조방법
KR20150060211A (ko) 자동차 외판용 냉연강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2890126

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015542138

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/005836

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14442788

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201503196

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 2013854271

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157015775

Country of ref document: KR

Kind code of ref document: A