WO2014073674A1 - 糸状菌の高密度培養株を用いた有用物質生産方法 - Google Patents

糸状菌の高密度培養株を用いた有用物質生産方法 Download PDF

Info

Publication number
WO2014073674A1
WO2014073674A1 PCT/JP2013/080352 JP2013080352W WO2014073674A1 WO 2014073674 A1 WO2014073674 A1 WO 2014073674A1 JP 2013080352 W JP2013080352 W JP 2013080352W WO 2014073674 A1 WO2014073674 A1 WO 2014073674A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
strain
culture
aspergillus
primer
Prior art date
Application number
PCT/JP2013/080352
Other languages
English (en)
French (fr)
Inventor
敬悦 阿部
勝也 五味
啓 吉見
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2014545784A priority Critical patent/JP6132847B2/ja
Priority to DK13853815.2T priority patent/DK2918682T3/da
Priority to US14/441,493 priority patent/US11015175B2/en
Priority to EP13853815.2A priority patent/EP2918682B1/en
Publication of WO2014073674A1 publication Critical patent/WO2014073674A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/485Exopeptidases (3.4.11-3.4.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/58Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi
    • C12N9/62Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi from Aspergillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/02Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P35/00Preparation of compounds having a 5-thia-1-azabicyclo [4.2.0] octane ring system, e.g. cephalosporin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P37/00Preparation of compounds having a 4-thia-1-azabicyclo [3.2.0] heptane ring system, e.g. penicillin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/48Tricarboxylic acids, e.g. citric acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01183Alpha-1,3-glucan synthase (2.4.1.183)

Definitions

  • Filamentous fungi are a general term for what is composed of tubular cells called mycelia, and low molecular weight compounds such as organic acids, pigments, chemicals such as agrochemicals, pharmaceuticals such as penicillins and statins; amylases, cellulases It is used for fermentation production of industrial enzymes such as protease and lipase.
  • Patent Document 1 discloses a step of adding a thermophilic bacterium-derived ⁇ -glucosidase to a glucose-containing solution to produce a disaccharide-containing solution by a condensation reaction, and a filamentous fungus culture using a medium containing the disaccharide-containing solution. Describes a method for producing cellulase, which comprises the step of producing cellulase.
  • Patent Document 2 includes a step of processing a fungal peptide to excise the peptide from the C-terminus and / or the peptide from the N-terminus to generate a core peptide consisting of a specific amino acid sequence having phospholipase activity.
  • a method for producing phospholipases is described.
  • Patent Documents 3 to 7 describe an expression vector constructed so as to function as a host for the purpose of improving the efficiency of substance production by the filamentous fungus, and a gene encoding a homologous or heterologous protein in the expression vector.
  • filamentous fungi have the advantage of being able to produce a wide variety of useful substances.
  • filamentous fungi in the liquid culture process, mycelium is entangled and agglomerated and agglomerated and cannot be densely cultured, the problem is that the production amount of useful substances decreases, the problem is that the production process of useful substances is complicated Attempts have been made to solve the problem from various viewpoints (for example, Patent Documents 8 to 9).
  • JP 2010-227032 A JP2010-172343 JP2001-46078 JP 2005-52116 A JP 2009-118783 A Special table flat 11-506025 Special table 2007-508022 JP 2002-218970 JP 2010-227031 A Special republication 2010-107126 JP 2010-220590
  • An object of the present invention is to cultivate filamentous fungi at high density, thereby enabling mass production of useful substances.
  • the present inventors have found that when a mutant strain of a filamentous fungus that does not express ⁇ -1,3-glucan is used, the aggregation of the cells during culture is significantly suppressed. Thus, the present inventors have found that the microbial cells are uniformly dispersed in the medium and that high-density culture is possible. Furthermore, when such a mutant strain was used, it discovered that the production amount per unit volume of a useful substance could be improved. The present invention is based on such new findings.
  • ⁇ -1,3-glucan is one of the main components of the cell wall of filamentous fungi and is also known to be involved in the expression of pathogenicity.
  • pathogenicity expression mechanism In a study to investigate the pathogenicity expression mechanism from the relationship between the fluctuation of ⁇ -1,3-glucan in the cell wall and the pathogenicity expression, by creating a glucan synthase gene-disrupted strain or suppressing glucan synthase gene expression, Elucidation of the pathogenic expression mechanism has been attempted from the relationship between the change in the amount of ⁇ -1,3-glucan in the cell wall and the expression of the pathogenicity (for example, Non-Patent Documents 1 to 4).
  • Patent Document 10 the expression level of glucan synthase gene in a technical proposal relating to a drug targeting ⁇ -1,3-glucan (Patent Document 10) and a method for screening drug seeds targeting ⁇ -1,3-glucan
  • Patent Document 11 the idea and technical development of using bacteria that do not express ⁇ -1,3-glucan for increased production of substances have not been made.
  • Item 1 A method for producing a substance, comprising a step of culturing a mutant filamentous fungus that does not express ⁇ -1,3-glucan, causing the filamentous fungus to produce a substance, and a step of recovering the obtained substance.
  • Item 2 The method according to Item 1, wherein the mutant filamentous fungus is deficient in at least one of ⁇ -1,3-glucan synthase ags.
  • Item 3. The method according to Item 1 or 2, wherein the filamentous fungus belongs to the genus Aspergillus, Penicillium, Trichoderma, Cephalosporium, or Acremonium.
  • Item 4. The method according to Item 3, wherein the filamentous fungus is Aspergillus nidulans, Aspergillus oryzae, Aspergillus niger, or Aspergillus fumigatus.
  • FIG. 1 is a graph showing the expression of agsA gene and agsB gene in quantitative RT-PCR in Production Example 3.
  • FIG. 2 shows a graph of dry cell weight after cultivation in Example 1 and Comparative Example 1.
  • FIG. 3 shows a photograph of the flask after culture in Example 1 and Comparative Example 1.
  • FIG. 4 shows the transition of each glucose concentration in Example 1 and Comparative Example 1, the amount of bacterial cells in the culture solution of each strain, the remaining amount of glucose, and pH.
  • FIG. 5 shows a graph of dry cell weight after cultivation in Example 2 and Comparative Example 2.
  • FIG. 6 shows a graph of dry cell weight and penicillin concentration after culture in Example 3 and Comparative Example 3.
  • FIG. 7 shows the transition of the dry bacterial weight and amylase activity in Example 4 and Comparative Example 4.
  • FIG. 1 is a graph showing the expression of agsA gene and agsB gene in quantitative RT-PCR in Production Example 3.
  • FIG. 2 shows a graph of dry cell weight after cultivation in Example
  • FIG. 8 shows an outline of the design of a ⁇ agsB strain that highly expresses a heterologous protein. It shows the deduced amino acid sequence (SEQ ID NO: 1) of agsA of Aspergillus nidulans. This shows the base sequence (including introns) (SEQ ID NO: 2) of the nucleic acid molecule encoding asperms of Aspergillus nidulans. This shows the base sequence (including introns) (SEQ ID NO: 2) of the nucleic acid molecule encoding asperms of Aspergillus nidulans.
  • Example 7 The outline of ags destruction strain preparation in Example 7 is shown.
  • the outline of introduction of the ags disruption vector in Example 7 is shown.
  • the outline of the double disruption strain and the triple disruption strain production in Example 7 is shown.
  • cultivation characteristics of the wild strain of Aspergillus in Example 7 and the comparative example 7, and an AGS triple disruption strain (asgA (DELTA) agsB (DELTA) agsC (DELTA) strain) are shown.
  • the deduced amino acid sequence (sequence number 27) of agsA of Aspergillus oryzae is shown. This shows the base sequence (SEQ ID NO: 28) of agsA of Aspergillus oryzae.
  • the deduced amino acid sequence of agsB of Aspergillus oryzae (SEQ ID NO: 29) is shown.
  • the deduced amino acid sequence (sequence number 31) of agsC of Aspergillus oryzae is shown.
  • the present invention Provided is a method for producing a substance, comprising a step of culturing a mutant filamentous fungus that does not express ⁇ -1,3-glucan, causing the filamentous fungus to produce a substance, and a step of recovering the obtained substance.
  • mutant filamentous fungus that does not express ⁇ -1,3-glucan is only a mutant of a filamentous fungus that does not express ⁇ -1,3-glucan at all.
  • those that do not substantially express ⁇ -1,3-glucan are also included.
  • the mutant strain that does not substantially express ⁇ -1,3-glucan is only slightly expressing ⁇ -1,3-glucan, and is an aggregation of bacterial cells that is an effect of the present invention.
  • Is a mutant in which the expression of ⁇ -1,3-glucan is significantly suppressed for example, a strain in which the expression level of ⁇ -1,3-glucan is 30% or less of the wild strain, more preferably 10% or less of the wild strain.
  • filamentous fungi examples include Aspergillus genus, Penicillium genus, Trichoderma genus, Cephalosporum genus, Acremonium genus, Neurospora genus, etc. . Of these, Aspergillus is more preferable.
  • Aspergillus fungi used in the present invention include Aspergillus nidulans, Aspergillus oryzae, Aspergillus niger, Aspergillus fumiga, Aspergillus fumiga, and Aspergillus fumiga. Aspergillus oryzae or Aspergillus niger is preferred.
  • the method of the present invention is characterized by using a mutant strain of a filamentous fungus that does not express ⁇ -1,3-glucan.
  • Such mutant filamentous fungi include those lacking at least one of the ⁇ -1,3-glucan synthase ags.
  • ⁇ -1,3-glucan synthase ags includes Aspergillus nidulans agsA (Genbank accession No. XM_658397), agsB (Genbank accession No. XM_655819), Aspergillus oryzae agsA, agsB, agsC, Aspergillus No.
  • agsA, agsB and agsC of Aspergillus oryzae are registered in the Aspergillus database AspGD (http://www.aspergillusgenome.org) with gene numbers agsA (AO090026000523), agsB (AO090003001500) and agsC (AO090010000106). .
  • FIG. 9 The amino acid sequence of Aspergillus nidulans agsA (SEQ ID NO: 1) is shown in FIG. 9, and the nucleotide sequence (SEQ ID NO: 2) of the nucleic acid molecule encoding Aspergillus nidulans agsA is shown in FIGS. Further, FIG. 13 shows the amino acid sequence of Asgsgillus nidulans agsB (SEQ ID NO: 3), and FIGS. 14 to 15 show the nucleotide sequences (SEQ ID NO: 4) of nucleic acid molecules encoding Aspergillus nidulans agsB.
  • the amino acid sequence of Aspergillus oryzae agsA (SEQ ID NO: 27) is shown in FIG. 20, and the nucleotide sequence of the nucleic acid molecule encoding agsA of Aspergillus oryzae (SEQ ID NO: 28) is shown in FIGS.
  • the amino acid sequence (SEQ ID NO: 29) of agsB of Aspergillus oryzae is shown in FIG. 23, and the nucleotide sequence (SEQ ID NO: 30) of the nucleic acid molecule encoding agsB of Aspergillus oryzae is shown in FIGS.
  • the amino acid sequence of Asgsgillus oryzae agsC (SEQ ID NO: 31) is shown in FIG. 26, and the nucleotide sequence of a nucleic acid molecule encoding agsC of Aspergillus oryzae (SEQ ID NO: 32) is shown in FIGS.
  • mutant filamentous fungi include those lacking one or more of these ⁇ -1,3-glucan synthases.
  • Aspergillus nidulans is used as the filamentous fungus, a strain lacking at least agsB is preferable.
  • the deletion of ⁇ -1,3-glucan synthase ags means that all or part of the coding region of ⁇ -1,3-glucan synthase in the genome is deleted, Examples include those in which another nucleic acid molecule is inserted in whole or in part, and those in which all or part of the coding region is replaced with another nucleic acid molecule.
  • the deletion of ⁇ -1,3-glucan synthase ags includes not only addition, deletion and substitution of a predetermined nucleic acid molecule to the coding region, but also ⁇ -1,3-glucan under certain conditions. Also included are conditional gene defects designed to be expressed only. Therefore, the method of the present invention also includes a method comprising a step of culturing the above-mentioned mutant gene-deficient mutant under conditions where ⁇ -1,3-glucan is not expressed.
  • the method of the present invention may be used for the production of useful substances such as amylase, cellulase, and other low molecular weight compounds such as penicillin, which are inherently capable of producing filamentous fungi. Transformation may be performed so as to enhance the expression of a useful substance having a production ability, or to express a substance in which a filamentous fungus originally does not have a production ability.
  • a transformation method an expression vector constructed so that a filamentous fungus can be used as a host, and a plasmid constructed by functionally linking a gene encoding the same or a heterologous protein to the expression vector are used.
  • Known methods for example, methods described in JP-A-2001-46078, JP-A-2005-52116, JP-A-2009-118783, JP-T-11-506025, JP-T-2007-508022) Can be used.
  • a method for producing such a mutant strain a method known per se (for example, the methods described in Non-Patent Documents 2 to 5) is used as appropriate, for example, construction of an ⁇ -1,3-glucan gene disruption cassette and genomic gene. This can be done by introducing the cassette into the card.
  • the useful substance that can be produced according to the present invention is not particularly limited, and examples thereof include low molecular weight compounds such as penicillin, statins, cephalosporin, succinic acid, citric acid, malic acid; amylase, cellulase, protease, and lipase. , Polymer compounds such as peptidase, esterase and oxidase.
  • useful substances include chemical substances such as organic acids, pigments, and agrochemical ingredients, and various substances used as pharmaceuticals.
  • the method of the present invention can also be applied to bioethanol production by decomposition of biomass (such as those using fungi that have been genetically modified to produce cellulase or the like at high production).
  • the method of the present invention includes a step of culturing a mutant filamentous fungus that does not express ⁇ -1,3-glucan and causing the filamentous fungus to produce a substance.
  • the medium used in the step is not particularly limited, and a medium that can be used for culturing filamentous fungi can be widely used.
  • a medium that can be used for culturing filamentous fungi can be widely used.
  • CD minimum medium, YPD medium, TSB medium, malt medium, PDA medium and the like can be mentioned.
  • Glucose, starch, soluble starch and the like may be added to the medium as a carbon source.
  • the amount of carbon source added is not particularly limited, but can be appropriately set within a range of 0.5 to 10%, more preferably 1 to 4%, for example.
  • the culture temperature is not particularly limited and can be appropriately set within the range of 20 to 45 ° C, more preferably 25 to 37 ° C.
  • the culture time is not particularly limited, but can be appropriately set within a range of, for example, 12 to 72 hours, more preferably 24 to 48 hours.
  • the method for recovering useful substances from the culture medium is not particularly limited, and methods known per se (centrifugation, recrystallization, distillation method, solvent extraction method, chromatography, etc.) can be used as appropriate.
  • agsA gene disruption cassette In order to construct an agsA gene disruption cassette, a gene fragment comprising a 5 'non-coding region (amplicon 1) and a coding region (amplicon 2) in the first round of PCR. A. amplified from the Nidulans ABPU1 genomic DNA template and the pyrG gene (amplicon 3) Amplified from oryzae genomic DNA template.
  • Amplicon 1 was amplified using primers agsA-LU (5′-AGTGGAGGAGTTAGGGAGTGAT-3 ′ (SEQ ID NO: 5)) and agsA-LL (5′-CACAGGGTACGTCTGTTGTGAAAGAGTAAGGTAGAAGCCCC-3 ′ (SEQ ID NO: 6)).
  • agsA-RU 5′-TTCTTCTGAGGTGCAGTTCAGCAGATTATTACGCACCGGA-3 ′ (SEQ ID NO: 7)
  • agsA-RL 5′-AACCGTGGTTTTGGTGGCAAAG-3 ′ (SEQ ID NO: 8)
  • amplicon 3 is agsA ⁇
  • PU 5′-TACCTTACTCTTTCACAACAGACGTACCCTGTGATGTTC-3 ′
  • agsA-PL 5′-GTAATAATCTGCTGAACTGCACCTCAGAAGAAAAGGATG-3 ′ (SEQ ID NO: 10)).
  • Primers agsA-LU, agsA-RU, agsA-PU and agsA-PL are chimeric oligonucleotides each containing the reverse complementary sequence of the PCR fusion.
  • the resulting three PCR products were gel purified and used as substrates for the second round of PCR using agsA-LU and agsA-RL.
  • the second round of PCR the three fragments obtained in the first round were fused to prepare a disruption cassette. All PCR reactions were performed using Gene Amp PCR System 9700 (Applied Biosystems, CA, USA) and PrimeSTAR HS DNA polymerase (Takara Bio Inc.). The obtained PCR product was gel purified and used for transformation of ABPU1 strain.
  • Czapek-Dox CD soft agar medium supplemented with 0.02 ⁇ g / ml biotin, 0.2 mg / ml arginine, and 0.5 ⁇ g / ml pyridoxine warmed to 50 ° C.
  • agsA-disrupted strains were selected from the transformants using the following primers (5′-GTACGGTGTAAGCTGCTCGCTGGAC-3 ′ (SEQ ID NO: 17), 5′-TCCTGGATCTTGTAAACTGAGTCTC-3 ′ (SEQ ID NO: 18)). PCR was performed on the body's genomic DNA, and only the amplified fragment of about 6,200 bp was seen as an agsA disruption candidate strain.
  • the agsB-disrupted strain was selected from the transformant using the following primers (5′-AGGAAAGACTGTTGGATGAG-3 ′ (SEQ ID NO: 19), 5′-GACTTATTCGTGTTGACGTTGTA-3 ′ (SEQ ID NO: 20)). PCR was performed on the above, and an agsB disruption candidate strain with only an amplified fragment of about 5,150 bp was used. Finally, it was confirmed by quantitative RT-PCR that the agsB gene was not expressed (FIG. 1).
  • Example 1 and Comparative Example 1 The ⁇ agsB strain obtained in the above production example is cultured under the following culture conditions, and the amount of cells, remaining glucose and pH in the culture solution are measured every 12 hours after the cultivation, and the dry cell weight after cultivation is measured. (Example 1). Except that a wild strain was used instead of the ⁇ agsB strain, the dry cell weight after culture was measured in the same manner (Comparative Example 1): Culture conditions / medium: CD minimal medium 200ml (500ml flask with baffle) ⁇ Culture temperature: 37.0 °C ⁇ Culture time: 72hr ⁇ Rotation speed: 160 rpm ⁇ Number of conidia: 10 8 / L Carbon source: glucose concentration 2% or 4% ⁇ Number of trials: 5 times. The results are shown in FIGS.
  • FIG. 2 shows the dry cell weight after culture.
  • the amount of cells of the ⁇ agsB strain increases from the wild strain.
  • the amount of bacterial cells increased at a glucose concentration of 4% compared to 2%.
  • FIG. 3 shows a photograph of the flask after the above test at a glucose concentration of 2%.
  • the ⁇ agsB strain is uniformly growing in the liquid medium, but the wild strain is aggregated.
  • FIG. 4 shows the transition of each glucose concentration, the amount of bacterial cells in the culture solution, the remaining amount of glucose and the pH in each strain.
  • Example 2 and Comparative Example 2 The ⁇ agsB strain (Example 2) and the wild strain (Comparative Example 2) obtained in the above production example were each cultured under the following culture conditions using a jar type culture apparatus, and the dry cell weight after the culture was measured: Culture conditions / medium: CD medium 3 L ⁇ Culture temperature: 37.0 °C ⁇ Culture time: 48hr ⁇ Rotation speed: 300 rpm ⁇ Number of conidia: 10 8 / L ⁇ Carbon source: Glucose concentration 2% ⁇ Pressure: 0.3 MPa -Number of trials: 5 times each The results are shown in FIG. As shown in FIG. 5, even in the jar-type culture apparatus, the amount of cells of the ⁇ agsB strain is significantly increased as compared with the wild strain.
  • Example 3 and Comparative Example 3 Penicillin production was measured as an evaluation of the productivity of low molecular compounds.
  • the ⁇ agsB strain (Example 3) and the wild strain (Comparative Example 3) obtained in the above production example were cultured under the following culture conditions: Culture conditions / medium: YPD medium 100mL (200mL flask) ⁇ Culture temperature: 37 °C ⁇ Culture time: 48hr ⁇ Rotation speed: 160 rpm ⁇ Number of conidia: 10 7 / 100mL ⁇ Carbon source: Glucose concentration 2% The culture solution was centrifuged, the culture supernatant was applied to a paper disk, and the penicillin production was measured by measuring the diameter of the inhibition circle for the standard cell for penicillin assay.
  • the mixture was mixed with broth (Becton, Dickinson and Company) agar medium, and 100 ⁇ l of the culture supernatant was soaked in a sterilized paper disc placed in the center of the petri dish.
  • the petri dish was cultured at 55 ° C. for 16 hours, and the diameter of the inhibition circle where the standard strain for penicillin assay could not grow was measured.
  • the amount of penicillin was calculated from the diameter of the inhibition circle obtained by adjusting commercially available penicillin G (manufactured by SIGMA) to 0.01, 0.025, 0.05, and 0.1 ⁇ g / ml and similarly applying to a paper disk.
  • the amount of penicillin produced was 15.9 ng / ml in the wild strain, whereas the amount produced by penicillin was significantly increased to 58.6 ng / ml in the ⁇ agsB strain (FIG. 6).
  • dry cell weight measurement was performed using the precipitate obtained by centrifugation.
  • the dry cell weight was 175.7 mg in the wild strain and 227.6 mg in the ⁇ agsB strain, which was about 1.3 times as large as the bacterial mass (FIG. 6).
  • Example 4 and Comparative Example 4 As an evaluation of the production ability of the polymer compound, amylase production was measured.
  • the ⁇ agsB strain (Example 4) and the wild strain (Comparative Example 4) obtained in the above production example were cultured under the following culture conditions: Culture conditions / medium: CD minimum medium 200mL (500mL flask) ⁇ Culture temperature: 37 °C ⁇ Culture time: 48hr or 36hr ⁇ Rotation speed: 160 rpm ⁇ Number of conidia: 10 7 / 100mL ⁇ Carbon source: 2% starch or 2% soluble starch The cells were filtered from the culture solution, and the amylase activity of the culture supernatant was measured.
  • the cells after 24 hours, 36 hours, and 48 hours (only for starch addition conditions) after the start of culture were filtered with MIRACLOTH (manufactured by Calbiochem), and the amylase activity of the culture filtrate was measured using an ⁇ -amylase measurement kit ( Measured with Kikkoman Biochemifa Co., Ltd.
  • the filtered cells were freeze-dried and the dry cell weight was measured. The results are shown in FIG.
  • the ⁇ agsB strain exhibits an amylase activity that is about twice as high as that of the wild strain under both the starch addition conditions and the soluble starch addition conditions.
  • Example 5 Comparative Example 5 Method for constructing a high expression vector of Aspergillus oryzae amylase ( Figure 8) From Aspergillus genomic DNA, to amplify the amylase gene by PCR reaction, connected to the terminator Agda gene of Aspergillus nidulans was the DNA fragment with AoamyB-agdA t.
  • AoamyB-Not IF sequence: 5′-TGAATT CGCGGCCGC TATTTATGATGGTCGCGTGGTG-3 ′ (SEQ ID NO: 21)
  • AoamyB-R + sequence: 5′-CTTCTTGAGTGAGCTCACGAGCTACTACAGATCT-3 ′ (SEQ ID NO: 22) were used as PCR primers.
  • TagdA-Xx-F (sequence: 5'- TGTAGTAGCTCGTGAGCTCACTCAAGAAG CGTAACAGGATAGCCT-3 '(SEQ ID NO: 23)
  • TagdA-XbaI-R (sequence: 5') are used as PCR primers for agdA gene terminator amplification.
  • -GCTA TCTAGA GGCCTGCAGGAGATC-3 '(SEQ ID NO: 24) was used.
  • AoamyB-Not IF has a recognition sequence for restriction enzyme Not I (underlined).
  • TagdA-Xx-F has a sequence that overlaps part of the AoamyB gene sequence (underlined), and TagdA-XbaI-R has a recognition sequence for the restriction enzyme Xba I. Yes (underlined).
  • AoamyB-Not Fusion PCR method to connect IF and AoamyB-R + amplified using gene fragment (AoamyB fragment) and TagdA-Xx-F and TagdA-XbaI-R was amplified using gene fragment (Agda t fragment) was used.
  • the ligated DNA fragment AoamyB-agdA t was digested with restriction enzymes Not I and Xba I, and pNA (N) EGFP (Furukawa et al. Biosci. Biothechnol. Biochem., 71 (7), 1724-1730, 2007) Introduced at Not I and Xba I sites.
  • pNA (N) EGFP is a vector having an aureobasidin resistance gene (auA r ) as a selection marker in Aspergillus nidulans, and digested with Not I and Xba I was used for gene introduction.
  • auA r aureobasidin resistance gene
  • plasmid pNA (N) AoamyB the introduction of the DNA fragment AoamyB-agdA t is digested with restriction enzymes Not I, Bacterial alkaline phosphatase (BAP ) (Takara Co.) performs processing, promoter AnenoA p which strongly expresses in Aspergillus nidulans was introduced.
  • AnenoA p is derived from Aspergillus nidulans genomic DNA using PCR primers PenoA-F (sequence: 5'-TGGTAAGAGTCGTCATATCGAG-3 '(sequence number 25)) and PenoA-Not IR (sequence: 5'-TAG CGGCCGCG AATTCGATGAACTAGAAGGATAGAG-3' (sequence No. 26)).
  • PenoA-Not IR A recognition sequence for restriction enzyme Not I is added to PenoA-Not IR (underlined), and an AnenoA p fragment is once introduced into the EcoRV site of plasmid pZErO TM -2 (Invitrogen).
  • Example 6 and Comparative Example 6 Amylase activity was measured in the amylase high expression strain.
  • the vector pNAenoA :: AoamyB that highly expresses the amylase of Aspergillus prepared by the method described in Example 5 and Comparative Example 5 is a strain that lacks the wild strain of Aspergillus nidulans and the strain lacking ⁇ -1,3-glucan. Introduced into (AG-deficient strain), wild strains and AG-deficient strains that highly express heterologous proteins were prepared. For these strains, the amount of amylase secreted into the culture supernatant was measured.
  • an AG-deficient strain and a wild strain, an amylase-highly expressing AG-deficient strain, and an amylase-highly expressing wild strain were cultured under the following culture conditions: Culture conditions / medium: CD minimum medium 50mL (200mL flask) ⁇ Culture temperature: 37 °C ⁇ Culture time: 24 hr ⁇ Rotation speed: 160 rpm ⁇ Number of conidia: 10 7 / 100mL -Carbon source: Cells were filtered from a 2% maltose culture solution, and the amylase activity of the culture supernatant was measured.
  • the cells after 24 hours from the start of culture were filtered with MIRACLOTH (CALBIOCHEM), and the amylase activity of the culture filtrate was measured with an ⁇ -amylase measurement kit (Kikkoman Biochemifa Co., Ltd.).
  • Table 1 The results are shown in Table 1 below.
  • amylase-high-expressing AG-deficient strain exhibits amylase activity that is about 6 times as high as that of the amylase-highly expressing wild-type strain.
  • Example 7 and Comparative Example 7 A triple disruption strain of ⁇ -1,3-glucan synthase (AGS) gene was constructed in Aspergillus oryzae and the culture properties were compared.
  • AGS ⁇ -1,3-glucan synthase
  • AGS Aspergillus oryzae AGS genes in the genome, which are named as agsA (AO090026000523), agsB (AO090003001500), and agsC (AO090010000106), respectively. .org)).
  • a triple gene disruption strain was constructed for these three AGS genes using the multiple gene disruption method using the Cre-loxP system (see Appliedliand Environmental Microbiology, Volume 78 Number 12 June 2012 p. 4126-4133). It was confirmed by the following method that all the three genes were destroyed. An outline of the production test of the triple disruption strain is shown in FIGS.
  • the 5 'upstream region of each ags gene and the region in the ags gene were PCR amplified (Fig. 16 (1)).
  • the reverse primer in the 5 'upstream region and the forward primer in the ags gene contain a homologous region of the loxP sequence.
  • Table 2 shows the sequences of the primers for destruction.
  • the ⁇ ⁇ ⁇ ⁇ Cre expression cassette containing the gonococcal selection marker (adeA) is linked to the ags gene 5 'upstream region and the ags gene region to construct a vector for ags gene disruption.
  • FIG. 16 (2) the obtained ags gene disruption vector was introduced into a wild strain (adeA ⁇ strain) of Aspergillus (FIG. 17 (3)). It was transferred to a medium containing xylose (1%) to induce the expression of CreC (FIG. 17 (4)). This operation causes recombination at the loxP sequence by the action of Cre. The disruption was confirmed with each ags gene-specific primer (Fig. 17 (5)). Primer sequences are shown in Table 3.
  • a double disruption strain was produced in the same manner using the single disruption strain as a host (FIG. 18 (6)). Specifically, ⁇ agsA strain was used as a host strain, and agsB and agsC were each destroyed ( ⁇ agsA ⁇ agsB, ⁇ agsA ⁇ agsC). Similarly, the ⁇ agsC strain was used as a host strain, and agsB was destroyed ( ⁇ agsC ⁇ agsB). Further, a triple disruption strain was prepared in the same manner using the double disruption strain as a host (FIG. 18 (7)). Specifically, ⁇ agsA ⁇ agsB strain was used as a host strain and agsC was destroyed.
  • the mycelium aggregates and grows in a granular form in the wild strain of Aspergillus, whereas the Aspergillus AGS triple disruption strain has little aggregation of the mycelium and grows relatively dispersed. Similar results were also obtained in a medium in which the carbon source was glucose or maltose.
  • the bacterial body weight after 48 hours of culture was compared, the bacterial weight of the Aspergillus oryzae AGS triple disruption strain was increased compared to the wild strain (Table 4).
  • the bacterial weight of the gonococcal AGS triple disruption strain has reached 130% of the wild strain, and can be cultured at a high density due to the deletion of the AGS gene as in the case of A. nidulans.
  • the production amount of useful substances can be dramatically increased.
  • useful substances that can be produced by the method of the present invention are not particularly limited and are diverse, so that they are very useful industrially.
  • SEQ ID NO: 5 is a primer.
  • SEQ ID NO: 6 is a primer.
  • SEQ ID NO: 7 is a primer.
  • SEQ ID NO: 8 is a primer.
  • SEQ ID NO: 9 is a primer.
  • SEQ ID NO: 10 is a primer.
  • SEQ ID NO: 11 is a primer.
  • SEQ ID NO: 12 is a primer.
  • SEQ ID NO: 13 is a primer.
  • SEQ ID NO: 14 is a primer.
  • SEQ ID NO: 15 is a primer.
  • SEQ ID NO: 16 is a primer.
  • SEQ ID NO: 17 is a primer.
  • SEQ ID NO: 18 is a primer.
  • SEQ ID NO: 19 is a primer.
  • SEQ ID NO: 20 is a primer.
  • SEQ ID NO: 21 is a primer.
  • SEQ ID NO: 22 is a primer.
  • SEQ ID NO: 23 is a primer.
  • SEQ ID NO: 24 is a primer.
  • SEQ ID NO: 25 is a primer.
  • SEQ ID NO: 26 is a primer.
  • SEQ ID NO: 33 is a primer.
  • SEQ ID NO: 34 is a primer.
  • SEQ ID NO: 35 is a primer.
  • SEQ ID NO: 36 is a primer.
  • SEQ ID NO: 37 is a primer.
  • SEQ ID NO: 38 is a primer.
  • SEQ ID NO: 39 is a primer.
  • SEQ ID NO: 40 is a primer.
  • SEQ ID NO: 41 is a primer.
  • SEQ ID NO: 42 is a primer.
  • SEQ ID NO: 43 is a primer.
  • SEQ ID NO: 44 is a primer.
  • SEQ ID NO: 45 is a primer.
  • SEQ ID NO: 46 is a primer.
  • SEQ ID NO: 47 is a primer.
  • SEQ ID NO: 48 is a primer.
  • SEQ ID NO: 49 is a primer.
  • SEQ ID NO: 50 is a primer.
  • SEQ ID NO: 33 is a primer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明が解決すべき課題は、本発明は、糸状菌を高密度培養し、それにより有用物質を大量生産することを可能とすることである。本発明は、α-1,3-グルカンを発現しない変異型の糸状菌を培養して、当該糸状菌に物質を生成させる工程、及び得られた物質を回収する工程を含む、物質生産方法を提供する。

Description

糸状菌の高密度培養株を用いた有用物質生産方法
 [関連出願の相互参照]
 本出願は、2012年11月9日に出願された、日本国特許出願第2012-247276号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。
本発明は、糸状菌を用いた有用物質の生産方法に関する。
 糸状菌とは、菌糸と呼ばれる管状の細胞から構成されているものの総称であり、有機酸、色素、農薬原体等の化成品、ペニシリン、スタチン類等の医薬品等の低分子化合物;アミラーゼ、セルラーゼ、プロテアーゼ、リパーゼの産業用酵素等の発酵生産に使用されている。
 例えば、特許文献1には、グルコース含有溶液に好熱性菌由来β-グルコシダーゼを添加し、縮合反応により2糖類含有溶液を製造する工程、および2糖類含有溶液を含む培地を使用して糸状菌培養によりセルラーゼを製造する工程を含む、セルラーゼの製造方法が記載されている。
 また、特許文献2には、真菌ペプチドをプロセシングしてC-末端からペプチドおよび/またはN-末端からペプチドを切除して、ホスホリパーゼ活性をもつ特定のアミノ酸配列からなるコアペプチドを生成せしめる工程を含むホスホリパーゼの製造方法が記載されている。
 また、特許文献3~7には、糸状菌による物質生産の効率化を目的に、糸状菌を宿主として機能するように構築された発現ベクター、また該発現ベクターに同種または異種タンパク質をコードする遺伝子が機能的に連結されてなるプラスミドを糸状菌へ導入し形質転換体を作成する方法、さらに該形質転換体の利用がアミラーゼ、セルラーゼ等の酵素や、ペニシリン等の低分子化合物の増産に資すること、が記載されている。
 上記のように、糸状菌は、多種多様な有用物質を生産できるという利点を有する。しかし、糸状菌は、その液体培養工程において、菌糸が絡まり塊状に集塊し、高密度培養ができないという問題、有用物質の生産量が低下するという問題、有用物質の生産工程の煩雑化という問題を発生し、様々な視点から解決が試みられている(例えば、特許文献8~9)。
特開2010-227032 特開2010-172343 特開2001-46078 特開2005-52116 特開2009-118783 特表平11-506025 特表2007-508022 特開2002-218970 特開2010-227031 特再公表2010-107126 特開2010-220590
Hogan, L. H., et al (1994) Altered expression of surface α-1,3-glucan in genetically related strains of Blastomyces dermatitidis that differ in virulence. Infect. Immun. 62:3543-3546. Rappleye, C.A., et al (2004) RNA interference in Histoplasma capsulatumdemonstrates a role for a-(1,3)-glucan in virulence. Mol. Microbiol. 53: 153-165. Beauvais, A., et al (2005) Two α(1-3) Glucan Synthases with Different Functions in Aspergillus fumigates. Appl. Environ. Microbiol. 71: 1531-1538. Maubon, D., et al (2006) AGS3, an α(1-3)glucan synthase gene family member of Aspergillusfumigatus, modulates mycelium growth in the lung of experimentally infected mice. Fungal Genet. Biol. 43:366-375. Henry C., et al (2011) α1,3 glucansare dispensable in Aspergillus fumigatus. Eukariot. Cell 11: 26-29
 本発明は、糸状菌を高密度培養し、それにより有用物質を大量生産することを可能とすることを課題とする。
 本発明者らは、上記の状況の下、鋭意研究した結果、α-1,3-グルカンを発現しない糸状菌の変異株を用いた場合、培養の際の菌体の凝集が有意に抑制されて培地中に菌体が均一に分散し、高密度培養が可能となることを見出した。さらに、かかる変異株を用いた場合、有用物質の単位体積当たりの生産量を向上できることを見出した。本発明は、かかる新規の知見に基づく。
 α-1,3-グルカンは、糸状菌の細胞壁の主要な構成要素の1つであるほか、病原性の発現への関与も知られている。細胞壁中α-1,3-グルカンの変動と病原性発現との関係から病原性発現機序を調べる研究では、グルカン合成酵素遺伝子破壊株の作成、またはグルカン合成酵素遺伝子発現を抑制すること、によって細胞壁中α-1,3-グルカン量を変化させ、その変動と病原性発現の関係から、病原性発現機序の解明が試みられてきた(例えば、非特許文献1~4)。またα-1,3-グルカンを標的分子とする薬剤に関する技術提案(特許文献10)や、α-1,3-グルカンを標的とする創薬シーズをスクリーニングする方法においてグルカン合成酵素遺伝子の発現量変動を指標に用いるという技術提案(特許文献11)、などがなされてきたが、α-1,3-グルカンを発現しない菌を物質の増産に利用するという着想ならびに技術開発は行われてこなかった。
 従って、本発明は、以下の項を提供する:
 項1.α-1,3-グルカンを発現しない変異型の糸状菌を培養して、当該糸状菌に物質を生成させる工程、及び
 得られた物質を回収する工程
を含む、物質生産方法。
 項2.前記変異型糸状菌がα-1,3-グルカン合成酵素agsの少なくとも一つを欠損している、項1に記載の方法。
 項3.糸状菌が、アスペルギルス属、ペニシリウム属、トリコデルマ属、セファロスポリウム属、又はアクレモニウム属に属する、項1又は2に記載の方法。
 項4.糸状菌が、アスペルギルス ニドランス、アスペルギルス オリゼ、アスペルギルス ニガー、又はアスペルギルス フミガタスである、項3に記載の方法。
 本発明の方法によれば、糸状菌の液体培養において、菌糸の絡まり及び菌体の凝集が抑制されるため、高密度培養が可能になる。従って、有用物質の単位体積当たりの生産量を飛躍的に上昇させることができる。
図1は、製造例3における定量RT-PCRでのagsA遺伝子及びagsB遺伝子の発現を示すグラフである。 図2は、実施例1及び比較例1における培養後の乾燥菌体重量のグラフを示す。 図3は、実施例1及び比較例1における培養後のフラスコ写真を示す。 図4は、実施例1及び比較例1での各グルコース濃度、各菌株における培養液中の菌体量、グルコース残量及びpHの推移を示す。 図5は、実施例2及び比較例2における培養後の乾燥菌体重量のグラフを示す。 図6は、実施例3及び比較例3における培養後の乾燥菌体重量及びペニシリン濃度のグラフを示す。 図7は、実施例4及び比較例4における乾燥菌体重及びアミラーゼ活性の推移を示す。 図8は、異種タンパク質を高発現するΔagsB株の設計の概略を示す。 アスペルギルス ニドランスのagsAの推定アミノ酸配列(配列番号1)を示す。 アスペルギルス ニドランスのagsAをコードする核酸分子の塩基配列(イントロン含む)(配列番号2)を示す。 アスペルギルス ニドランスのagsAをコードする核酸分子の塩基配列(イントロン含む)(配列番号2)を示す。 アスペルギルス ニドランスのagsAをコードする核酸分子の塩基配列(イントロン含む)(配列番号2)を示す。 アスペルギルス ニドランスのagsBの推定アミノ酸配列(配列番号3)を示す。 アスペルギルス ニドランスのagsBをコードする核酸分子の塩基配列(イントロン含む)(配列番号4)を示す。 アスペルギルス ニドランスのagsBをコードする核酸分子の塩基配列(イントロン含む)(配列番号4)を示す。 実施例7におけるags破壊株作製の概略を示す。 実施例7におけるags破壊用ベクター導入の概略を示す。 実施例7における二重破壊株、三重破壊株作製の概略を示す。 実施例7、比較例7における麹菌の野生株およびAGS三重破壊株(asgA△agsB△agsC△ 株)の培養性状を示す。 アスペルギルス オリゼのagsAの推定アミノ酸配列(配列番号27)を示す。 アスペルギルス オリゼのagsAの塩基配列(配列番号28)を示す。 アスペルギルス オリゼのagsAの塩基配列(配列番号28)を示す。 アスペルギルス オリゼのagsBの推定アミノ酸配列(配列番号29)を示す。 アスペルギルス オリゼのagsBの塩基配列(配列番号30)を示す。 アスペルギルス オリゼのagsBの塩基配列(配列番号30)を示す。 アスペルギルス オリゼのagsCの推定アミノ酸配列(配列番号31)を示す。 アスペルギルス オリゼのagsCの塩基配列(配列番号32)を示す。 アスペルギルス オリゼのagsCの塩基配列(配列番号32)を示す。
 本発明は、
 α-1,3-グルカンを発現しない変異型の糸状菌を培養して、当該糸状菌に物質を生成させる工程、及び
 得られた物質を回収する工程
を含む、物質生産方法
を提供する。
 糸状菌変異株
 本発明において、「α-1,3-グルカンを発現しない変異型の糸状菌」とは、糸状菌の変異株であって、α-1,3-グルカンを全く発現しないものだけでなく、α-1,3-グルカンを実質的に発現しないものも包含する。より具体的には、α-1,3-グルカンを実質的に発現しない変異株とは、ごくわずかにα-1,3-グルカンを発現するにとどまり、本発明の効果である菌体の凝集が有意に抑制されている変異株を示し、例えば、α-1,3-グルカンの発現量が野生株の30%以下、より好ましくは野生株の10%以下である株等が挙げられる。
 糸状菌としては、例えば、アスペルギルス(Aspergillus)属、ペニシリウム(Penicillium)属、トリコデルマ(Trichoderma)属、セファロスポリウム(Cephalosporium)属、アクレモニウム(Acremonium)属、ニューロスポラ(Neurospora)属等が挙げられる。これらのうち、アスペルギルス属がより好ましい。本発明において用いるアスペルギルス属の糸状菌としては、例えば、アスペルギルス ニドランス(Aspergillus nidulans))、アスペルギルス オリゼ(Aspergillus oryzae)、アスペルギルス ニガー(Aspergillus niger)、アスペルギルス フミガタス(Aspergillus fumigatus)等が挙げられ、アスペルギルス ニドランス、アスペルギルス オリゼ、またはアスペルギルス ニガーが好ましい。
 本発明の方法は、糸状菌の変異株であって、α-1,3-グルカンを発現しないものを用いることを特徴とする。かかる変異型糸状菌としては、α-1,3-グルカン合成酵素agsの少なくとも一つを欠損しているものが挙げられる。α-1,3-グルカン合成酵素agsとしては、アスペルギルス ニドランスのagsA(Genbank accession No. XM_658397)、agsB(Genbank accession No. XM_655819)、アスペルギルス オリゼのagsA、agsB、agsC、アスペルギルス フミガタスのags1(Genbank accession No. XM_743319)、アスペルギルス ニガーのagsE(Genbank accession No.AY530790)、ペニシリウム クリソゲナムのagsB(Genbank accession No.AY530792)、などが挙げられる。ここで、アスペルギルス オリゼのagsA、agsB、agsCは、アスペルギルスデータベースAspGD(http://www.aspergillusgenome.org)に、遺伝子番号agsA(AO090026000523)、agsB(AO090003001500)、agsC(AO090010000106)で登録されている。アスペルギルス ニドランスのagsAのアミノ酸配列(配列番号1)を図9に、アスペルギルス ニドランスのagsAをコードする核酸分子の塩基配列(配列番号2)を図10~12に示す。また、アスペルギルス ニドランスのagsBのアミノ酸配列(配列番号3)を図13に、アスペルギルス ニドランスのagsBをコードする核酸分子の塩基配列(配列番号4)を図14~15に示す。アスペルギルス オリゼのagsAのアミノ酸配列(配列番号27)を図20に、アスペルギルス オリゼのagsAをコードする核酸分子の塩基配列(配列番号28)を図21~22に示す。アスペルギルス オリゼのagsBのアミノ酸配列(配列番号29)を図23に、アスペルギルス オリゼのagsBをコードする核酸分子の塩基配列(配列番号30)を図24~25に示す。アスペルギルス オリゼのagsCのアミノ酸配列(配列番号31)を図26に、アスペルギルス オリゼのagsCをコードする核酸分子の塩基配列(配列番号32)を図27~28に示す。変異型糸状菌としては、これらのα-1,3-グルカン合成酵素の1つ又は2つ以上を欠損しているものが挙げられる。本発明において、糸状菌としてアスペルギルス ニドランスを用いる場合、少なくともagsBを欠損している株が好ましい。
 本発明において、α-1,3-グルカン合成酵素agsの欠損とは、ゲノム中のα-1,3-グルカン合成酵素のコード領域の全部または一部が欠失しているもの、コード領域の全部または一部に別の核酸分子が挿入されているもの、当該コード領域の全部または一部が別の核酸分子で置換されているもの等が挙げられる。また、α-1,3-グルカン合成酵素agsの欠損には、上記コード領域への所定の核酸分子の付加、欠失及び置換だけでなく、α-1,3-グルカンが一定の条件下でのみ発現されるように設計された、コンディショナルな遺伝子欠損も含まれる。従って、本発明の方法には、上記コンディショナルな遺伝子欠損のされた変異株を、α-1,3-グルカンが発現しない条件下で培養する工程を含む方法も含まれる。
 本発明の方法を糸状菌が本来産生能を有するアミラーゼ、セルラーゼ等の酵素、ペニシリン等の低分子化合物等の有用物質の生産に用いてもよいが、本発明の方法においては、糸状菌が本来産生能を有する有用物質の発現を増強する、又は糸状菌が本来産生能を有さない物質を発現するように形質転換を行ってもよい。かかる形質転換方法としては、糸状菌を宿主とできるように構築された発現ベクターと、該発現ベクターに同種または異種タンパク質をコードする遺伝子を機能的に連結して構築されるプラスミドを利用する、自体公知の方法(例えば特開2001-46078号公報、特開2005-52116号公報、特開2009-118783号公報、特表平11-506025号公報、特表2007-508022号公報に記載の方法)を用いることが可能である。
 かかる変異株の作製方法としては、自体公知の方法(例えば、非特許文献2~5に記載の方法)を適宜用いて、例えば、α-1,3-グルカン遺伝子の破壊カセットの構築及びゲノム遺伝子への当該カセットの導入等により行うことができる。
 本発明により製造することができる有用物質としては、特に限定されず、例えば、ペニシリン、スタチン類、セファロスポリン、麹酸、クエン酸、リンゴ酸等の低分子化合物;アミラーゼ、セルラーゼ、プロテアーゼ、リパーゼ、ペプチターゼ、エステラーゼ、酸化酵素等の高分子化合物等が挙げられる。また有用物質としては、上記以外にも、有機酸、色素、農薬原体等の化成品、医薬品として用いられる各種物質が挙げられる。また、本発明の方法は、バイオマスの分解によるバイオエタノールの生産(セルラーゼ等を高生産するよう遺伝子組換えをしたカビを使用するもの等)等にも応用が可能である。
 培養工程
 本発明の方法は、α-1,3-グルカンを発現しない変異型の糸状菌を培養して、当該糸状菌に物質を生成させる工程を含む。当該工程で用いる培地としては、特に限定されず、糸状菌の培養に用いることができるものを広く使用することができる。例えば、CD最小培地、YPD培地、TSB培地、モルト培地、PDA培地等が挙げられる。上記培地には、炭素源として、グルコース、でんぷん、可溶性でんぷん等を添加してもよい。かかる炭素源の添加量としては特に限定されないが、例えば、0.5~10%、より好ましくは1~4%の範囲で適宜設定できる。培養温度は特に限定されず、20~45℃、より好ましくは25~37℃の範囲で適宜設定できる。培養時間も特に限定されないが、例えば、12~72時間、より好ましくは24~48時間の範囲で適宜設定できる。
 培養培地からの有用物質の回収方法としては、特に限定されず、自体公知の方法(遠心分離、再結晶、蒸留法、溶媒抽出法、クロマトグラフィー等)を適宜用いることができる。
 製造例1 agsA遺伝子の破壊カセットの構築
 agsA遺伝子の破壊カセットを構築するために、第1ラウンドのPCRで、5’非コード領域(アンプリコン1)及びコード領域(アンプリコン2)を含む遺伝子断片をA.nidulans ABPU1ゲノムDNAテンプレートから増幅し、pyrG遺伝子(アンプリコン3)をA.oryzaeゲノムDNAテンプレートから増幅した。アンプリコン1は、プライマーagsA-LU(5’-AGTGGAGGAGTTAGGGAGTGAT-3’(配列番号5))及びagsA-LL(5’-CACAGGGTACGTCTGTTGTGAAAGAGTAAGGTAGAAGCCCC-3’(配列番号6))を用いて増幅し、アンプリコン2は、agsA-RU(5’-TTCTTCTGAGGTGCAGTTCAGCAGATTATTACGCACCGGA-3’(配列番号7))及びagsA-RL(5’-AACCGTGGTTTTGGTGGCAAAG-3’(配列番号8))を用いて増幅し、アンプリコン3は、agsA-PU(5’-TACCTTACTCTTTCACAACAGACGTACCCTGTGATGTTC-3’(配列番号9))及びagsA-PL(5’-GTAATAATCTGCTGAACTGCACCTCAGAAGAAAAGGATG-3’(配列番号10))を用いて増幅した。プライマーagsA-LU、agsA-RU、agsA-PU及びagsA-PLは、それぞれPCRフュージョンの逆相補的配列を含む、キメラオリゴヌクレオチドである。得られた3つのPCR産物をゲル精製し、agsA-LU及びagsA-RLを用いる第2ラウンドのPCRの基質として使用した。当該第2ラウンドのPCRにより、第1ラウンドで得られた3つのフラグメントを融合して、破壊カセットを作製した。全てのPCR反応は、Gene Amp PCR System 9700(Appied Biosystems、CA、USA)及びPrimeSTAR HS DNA polymerase(タカラバイオ株式会社製)を用いて行った。得られたPCR産物をゲル精製し、ABPU1株の形質転換に用いた。
 製造例2 agsB遺伝子の破壊カセットの構築
 第1ラウンドのPCRで、プライマーagsB-LU(5’-GCAATGAGAGCTGGAATCAGTG-3’ (配列番号11))及びagsB-LL(5’-TGAGTCGGCCACAGCGGATGGAATTCGTCGTCTGGCTGTGAGTGTAAC-3’ (配列番号12))(アプリコン1用)、agsB-RU(5’-TCTTCCAGTTACTCCGTCGGTACCCAGCAACATGCTGGCCATACGAC-3’ (配列番号13))及びagsB-RL(5’-AAAGTCCTGGGTCTCTTCGTTC-3’ (配列番号14))(アプリコン2用)、及びagrB-F(5’-GAATTCCATCCGCTGTGGCCGACTCA-3’ (配列番号15))及びagrB-R(5’-GGTACCGACGGAGTAACTGGAAAGATACGA-3’ (配列番号16))(アプリコン3用)を用い、第2ラウンドのPCRで、プライマーagsB-LU及びagsB-RLを用いる以外、上記製造例1と同様にして、agsB遺伝子の破壊カセットを構築した。
 製造例3 変異株の作製及びα-1,3-グルカン発現量の測定
 agsAおよびagsB遺伝子欠失破壊のための形質転換はプロトプラスト-PEG法を改良した方法を用い、形質転換するDNA断片は、上記で作製したagsAおよびagsB遺伝子欠失破壊用DNA断片を用いた。アスペルギルス ニドランスABPU1 ΔligD::ptrA(ビオチン(biA1)、アルギニン(argB2)、ウリジン(pyrG89)、ピリドキシン(pyroA4)要求性株(東北大学大学院農学研究科・藤岡智則博士より供与))の分生子懸濁液をYPD培地に植菌し、37℃、20時間振盪培養した。17G1滅菌済ガラスフィルターを用いて集菌後、菌体を50 ml容の遠心チューブに移し、滅菌水で洗浄した。その後、菌体を30 mlのプロトプラスト化溶液(0.8M NaCl、10mM NaH2PO4、10mg/ml Lysingenzyme (Sigma Chemical社製)、5mg/ml Cellulase Onozuka R-10 (Yakult Pharmaceutical Ind.社製)、2.5mg/ml Yatalase (タカラバイオ社製)を加え懸濁し、30℃、90rpm、3時間振盪しプロトプラスト化反応を行った。滅菌したMIRACLOTH(CALBIOCHEM社製)にて濾過し、濾液中のプロトプラストを3,000×g、4℃、5分間遠心分離して沈澱として得た。0.8M NaClにて1回プロトプラストを洗浄し、3,000×g、4℃、5分間遠心分離して沈澱させた。このプロトプラストをSolution 1(0.8M NaCl、10mM CaCl2、10mM Tris-HCl、pH8.0)で懸濁した。プロトプラスト懸濁液を200μlずつ15ml容の遠心チューブに移し、それぞれにSolution 2(40%(w/v) PEG♯4000、 50mM CaCl2、50mM Tris-HCl、pH8.0)40μlと前述の形質転換用DNA溶液各5μl(DNA量として5μg)を加えよく混合し、氷中で30分間放置した。1 mlのSol.2を加え混合し、室温で20分間放置した。5mlのSol.1で2回洗浄し、Sol.2をなるべく取り除いた。agsA破壊株の選抜の場合は、50℃に温めておいた終濃度0.02μg/mlのビオチン、0.2mg/mlのアルギニン、0.5μg/mlのピリドキシンを添加したCzapek-Dox(CD)軟寒天培地にプロトプラスト縣濁液を加え混合し、終濃度0.02μg/mlのビオチン、0.2mg/mlのアルギニン、0.5μg/mlのピリドキシンを添加したCD寒天培地に重層した。その後、30℃で分生子を形成するまで培養した。形質転換体からのagsA破壊株の選択は以下のプライマー(5’- GTACGGTGTAAGCTGCTCGCTGGAC-3’(配列番号17)、5’- TCCTGGATCTTGTAAACTGAGTCTC-3’(配列番号18))を用いて形質転換体のゲノムDNAに対してPCRを行い、約6,200bpの増幅断片のみがみられたものをagsA破壊候補株とし、最終的に定量RT-PCRによりagsA遺伝子が発現していないことを確認した(図1)。agsB破壊株の選抜の場合は、50℃に温めておいた終濃度0.02μg/mlのビオチン、5mMのウリジン、10mMのウラシル、0.5μg/mlのピリドキシンを添加したCzapek-Dox(CD)軟寒天培地にプロトプラスト縣濁液を加え混合し、終濃度0.02μg/mlのビオチン、5mMのウリジン、10mMのウラシル、0.5μg/mlのピリドキシンを添加したCD寒天培地に重層した。その後、30℃で分生子を形成するまで培養した。形質転換体からのagsB破壊株の選択は以下のプライマー(5’-AGGAAAGACTGTTGGATGAG-3’(配列番号19)、5’-GACTTATTCGTGTTGACGTTGTA-3’(配列番号20))を用いて形質転換体のゲノムDNAに対してPCRを行い、約5,150bpの増幅断片のみがみられたものをagsB破壊候補株とし、最終的に定量RT-PCRによりagsB遺伝子が発現していないことを確認した(図1)。
 実施例1、比較例1
 上記製造例で得られたΔagsB株を下記培養条件で培養し、培養後12時間毎に、培養液中の菌体量、グルコース残量及びpHを測定し、培養後の乾燥菌体重量を測定した(実施例1)。ΔagsB株の代わりに野生株を用いる以外、同様にして、培養後の乾燥菌体重を測定した(比較例1):
 培養条件
・培地: CD最小培地 200ml ( 500 ml バッフル付フラスコ )
・培養温度: 37.0 ℃
・培養時間: 72hr
・回転数: 160 rpm
・分生子数: 108 個/L 
・炭素源:グルコース濃度 2% または 4%
・試行回数: 5 回。
結果を図2~図4に示す。
 図2は、培養後の乾燥菌体重量を示す。図2に示されるように、液体培養において、野生株よりΔagsB 株の菌体量は増加する。また、ΔagsB株では、グルコース濃度4%のほうが2%時に比べて菌体量が増加している。図3は、グルコース濃度2%での上記試験後のフラスコの写真を示す。図3に示されるように、ΔagsB株は、液体培地中に均一に増殖しているが、野生株は凝集してしまっている。図4は、各グルコース濃度、各菌株における培養液中の菌体量、グルコース残量及びpHの推移を示す。野生株は、グルコース2%、4%のいずれにおいても、培養液中の菌体量は、4%程度で増加が止まってしまっている。これに対し、ΔagsB株では、グルコース2%では60時間付近でグルコースが枯渇しているが、グルコース4%ではグルコースが枯渇せず、菌体重も増加し続けている。
 図2~4から、野生株では凝集により、菌体量が一定以上増加できなくなっていること、一方、ΔagsB株では培養液中に均一に増殖し、野生株よりも大幅に菌体量を増殖させることができることが分かる。
 実施例2、比較例2
 上記製造例で得られたΔagsB株(実施例2)及び野生株(比較例2)をそれぞれ、ジャー型培養装置により下記培養条件で培養し、培養後の乾燥菌体重量を測定した:
 培養条件
・培地: CD培地 3 L
・培養温度: 37.0 ℃
・培養時間:48hr
・回転数  : 300 rpm
・分生子数: 108 個/L
・炭素源:グルコース濃度 2%
・加圧量: 0.3 MPa
・試行回数: 各5 回
 結果を図5に示す。図5に示されるように、ジャー型培養装置においても、野生株よりΔagsB 株の菌体量は大幅に増加する。
 実施例3、比較例3
 低分子化合物の生産能の評価として、ペニシリン生産量を測定した。
 具体的には、まず、上記製造例で得られたΔagsB株(実施例3)及び野生株(比較例3)を下記培養条件で培養した:
 培養条件
・培地: YPD培地 100mL(200mL フラスコ)
・培養温度: 37 ℃
・培養時間:48hr
・回転数  : 160 rpm
・分生子数: 107 個/100mL
・炭素源:グルコース濃度 2%
 培養液を遠心分離し、培養上清をペーパーディスクに塗布し、ペニシリンアッセイ用標準菌体に対する阻止円の直径を測定することにより、ペニシリン生産量を測定した。具体的には、ペニシリンアッセイ用標準菌株であるBacillus stearothermophilusvar. calidolactis(NBRC 100862:独立行政法人 製品評価技術基盤機構より分譲を受けた)を最終濁度O.D.=0.1となるように3%の Tryptic soy broth(Becton, Dickinson and Company社製)寒天培地に混ぜ込み、シャーレ中央に置いた滅菌済ペーパーディスクに100μlの培養上清をしみ込ませた。シャーレを55℃で16時間培養し、ペニシリンアッセイ用標準菌株が生育できない阻止円の直径を計測した。ペニシリンの定量は、市販のペニシリンG(SIGMA社製)を0.01、0.025、0.05、0.1μg/mlに調整し、同様にペーパーディスクに塗布して得られた阻止円の直径から算出した。ペニシリン生産量は、野生株で15.9ng/mlであったのに対し、ΔagsB株で58.6ng/mlと大幅にペニシリンの生産量が増加した(図6)。
 また、遠心分離により得られた沈殿物を用いて乾燥菌体重量測定を行った。乾燥菌体重は、野生株で175.7mgに対し、ΔagsB株で227.6mgと約1.3倍に菌体量も増加していた(図6)。
 実施例4、比較例4
 高分子化合物の生産能の評価として、アミラーゼ生産量を測定した。
 具体的には、上記製造例で得られたΔagsB株(実施例4)及び野生株(比較例4)を下記培養条件で培養した:
 培養条件
・培地: CD最小培地 200mL(500mL フラスコ)
・培養温度: 37 ℃
・培養時間:48hr or 36hr
・回転数  : 160 rpm
・分生子数: 107 個/100mL
・炭素源:でんぷん2% or 可溶性でんぷん2%
 培養液から菌体を濾過し、培養上清のアミラーゼ活性を測定した。具体的には、培養開始24時間、36時間、48時間(でんぷん添加条件のみ)経過時の菌体をMIRACLOTH(CALBIOCHEM社製)にて濾過し、培養濾液のアミラーゼ活性をα-アミラーゼ測定キット(キッコーマンバイオケミファ株式会社製)にて測定した。測定法は付属の取扱説明書に従い、培養上清中のアミラーゼ活性を1U = N3-G5-β-CNP から 1 分間に1 μ molのCNPが遊離する力価として評価した。また、濾過した菌体を凍結乾燥し、乾燥菌体重量測定を行った。結果を図7に示す。
 図7から明らかなように、ΔagsB株は、でんぷん添加条件及び可溶性でんぷん添加条件のいずれにおいても、野生株と比較して約2倍もの高いアミラーゼ活性を示すことが分かる。
 実施例5、比較例5
 麹菌アミラーゼ高発現ベクターの作製法(図8)
麹菌ゲノムDNAより、PCR反応によりアミラーゼ遺伝子を増幅し、アスペルギルス ニドランスのagdA遺伝子のターミネーターと接続し、このDNA断片をAoamyB-agdAtとした。アミラーゼ遺伝子の増幅には、PCRプライマーとしてAoamyB-Not I-F(配列:5’- TGAATTCGCGGCCGCTATTTATGATGGTCGCGTGGTG-3’(配列番号21))およびAoamyB-R+(配列: 5’-CTTCTTGAGTGAGCTCACGAGCTACTACAGATCT-3’(配列番号22))を用い、agdA遺伝子のターミネーターの増幅には、PCRプライマーとしてTagdA-Xx-F(配列: 5’-TGTAGTAGCTCGTGAGCTCACTCAAGAAGCGTAACAGGATAGCCT-3’ (配列番号23))およびTagdA-XbaI-R(配列: 5’-GCTATCTAGAGGCCTGCAGGAGATC-3’ (配列番号24))を使用した。AoamyB-Not I-Fには制限酵素のNot Iの認識配列が付加されている(下線部)。また、TagdA-Xx-FにはAoamyB遺伝子の配列の一部とオーバーラップする配列が付加されており(下線部)、TagdA-XbaI-Rには制限酵素のXba Iの認識配列が付加されている(下線部)。AoamyB-Not I-FおよびAoamyB-R+を用いて増幅した遺伝子断片(AoamyB断片)とTagdA-Xx-FおよびTagdA-XbaI-Rを用いて増幅した遺伝子断片(agdAt断片)の接続にはヒュージョンPCR法を用いた。これはAoamyB断片およびagdAt断片の混合物をテンプレートとし、AoamyB-Not I-FおよびTagdA-XbaI-Rを用いてPCR反応を行う方法で、両遺伝子断片を接続することができる方法である。接続したDNA断片AoamyB-agdAtは、制限酵素のNot IおよびXba Iで消化し、pNA(N)EGFP(Furukawa et al. Biosci. Biothechnol. Biochem.,71(7), 1724-1730, 2007)のNot I、Xba Iサイトに導入した。pNA(N)EGFPは、アスペルギルス ニドランス内での選択マーカーとしてオーレオバシジン耐性遺伝子(auAr)を持つベクターであり、これをNot IおよびXba Iで消化したものを遺伝子導入に用いた。DNA断片AoamyB-agdAtを導入したプラスミドpNA(N)AoamyBは制限酵素のNot Iで消化した後、Bacterial alkaline phosphatase(BAP)(Takara社製)処理を行い、アスペルギルス ニドランスで強発現するプロモーターAnenoApを導入した。AnenoApはアスペルギルス ニドランスのゲノムDNAから、PCRプライマーPenoA-F(配列:5’-TGGTAAGAGTCGTCATATCGAG-3’ (配列番号25))およびPenoA-Not I-R(配列:5’-TAGCGGCCGCGAATTCGATGAACTAGAAGGATAGAG-3’ (配列番号26))を用いて増幅した。PenoA-Not I-Rには制限酵素のNot Iの認識配列が付加されており(下線部)、AnenoApの断片を一旦、プラスミドpZErOTM-2(Invitrogen社製)のEcoRVサイトに導入し、Not Iで切り出すことにより断片の両端にNot Iサイトが付加されたAnenoApの断片を得た。このAnenoApの断片をpNA(N)AoamyBのNot Iサイトに導入し、麹菌のアミラーゼを高発現するベクターpNAenoA::AoamyBとした。このベクターをアスペルギルス ニドランスのΔagsB株に導入することにより、異種タンパク質を高発現するΔagsB株を作製することができる。
 実施例6、比較例6
 アミラーゼ高発現株においてアミラーゼ活性を測定した。具体的には、実施例5、比較例5に記載の方法で作製した麹菌のアミラーゼを高発現するベクターpNAenoA::AoamyBをAspergillus nidulans の野生株およびα-1,3-グルカンが欠損株した株(AG欠損株)に導入し、異種タンパク質を高発現する野生株およびAG欠損株を作製した。これらの株について、培養上清に分泌されるアミラーゼの量を測定した。
具体的には、AG欠損株及び野生株、アミラーゼ高発現AG欠損株及びアミラーゼ高発現野生株を下記培養条件で培養した:
培養条件
・培地: CD最小培地 50mL(200mL フラスコ)
・培養温度: 37 ℃
・培養時間:24 hr
・回転数  : 160 rpm
・分生子数: 107 個/100mL
・炭素源:2% マルトース培養液から菌体を濾過し、培養上清のアミラーゼ活性を測定した。具体的には、培養開始24時間経過時の菌体をMIRACLOTH(CALBIOCHEM社製)にて濾過し、培養濾液のアミラーゼ活性をα-アミラーゼ測定キット(キッコーマンバイオケミファ株式会社製)にて測定した。測定法は付属の取扱説明書に従い、培養上清中のアミラーゼ活性を1U = N3-G5-β-CNP から1 分間に1 μ molのCNPが遊離する力価として評価した。結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、アミラーゼ高発現AG欠損株は、アミラーゼ高発現野生株と比較して約6倍もの高いアミラーゼ活性を示すことが分かる。
 実施例7、比較例7
 麹菌アスペルギルス オリゼ(Aspergillus oryzae)においてα-1,3-グルカン合成酵素(AGS)遺伝子の三重破壊株を造成し、培養性状を比較した。
 麹菌のAGS遺伝子はゲノム中に3種類存在し、それぞれ、agsA(AO090026000523)、agsB(AO090003001500)、agsC(AO090010000106)と命名されている(遺伝子番号は、アスペルギルスデータベースAspGD(http://www.aspergillusgenome.org)に登録されている)。これら3種のAGS遺伝子について、Cre-loxPシステムを用いた多重遺伝子破壊法(Applied and Environmental Microbiology, Volume 78 Number 12 June 2012 p. 4126-4133参照)をもちいて3重遺伝子破壊株を造成した。上記3つの遺伝子が全て破壊されていることは、下記の方法により確認した。三重破壊株の作製試験の概略を図16~18に示す。具体的には、まず、各 ags 遺伝子の 5’上流領域と ags 遺伝子中の領域をPCR増幅した(図16(1))。ここで、5’上流領域のリバースプライマーと ags 遺伝子中のフォワードプライマーには、loxP 配列の相同領域が含まれている。また、破壊用プライマーの配列を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 次に、酵母の相同組換えシステムを利用し、麹菌内選択マーカー(adeA)を含む Cre 発現カセットと ags 遺伝子の 5’上流領域および ags 遺伝子中の領域を連結し、ags gene破壊用ベクターを構築した(図16(2))。次に、得られたags gene 破壊ベクターを麹菌の野生株(adeA△株)に導入した(図17(3))。キシロース(1%)入り培地に移し、Cre の発現を誘導した(図17(4))。この操作によりCre の働きにより、loxP 配列で組換えが起こる。それぞれの ags 遺伝子特異的なプライマーにより破壊を確認した(図17(5))。プライマー配列は表3に示す。
Figure JPOXMLDOC01-appb-T000003
 次に、一重破壊株を宿主として、同様の方法で二重破壊株を作製した(図18(6))。具体的には、△agsA 株を宿主株とし、agsB とagsC をそれぞれ破壊した(△agsA△agsB、△agsA△agsC)。また、同様にして、△agsC 株を宿主株とし、agsB を破壊した(△agsC△agsB)。さらに、二重破壊株を宿主として、同様の方法で三重破壊株を作製した(図18(7))。具体的には、△agsA△agsB 株を宿主株とし、agsC を破壊した。
 次に、上記操作で作製したこの麹菌AGS三重破壊株について、液体培養時の培養性状を観察した。
具体的には、麹菌AGS三重破壊株及び野生株を下記培養条件で培養した:
培養条件
・培地: CD最小培地 50mL(200mL フラスコ)
・培養温度: 30 ℃
・培養時間:48 hr
・回転数  : 160 rpm
・分生子数: 107 個/100mL
・炭素源:2% グルコース または 2% マルトース
 結果を図19及び表4に示す。
Figure JPOXMLDOC01-appb-T000004
 図19に示すように、麹菌の野生株においても菌糸は凝集し粒状に生育するのに対し、麹菌AGS三重破壊株では菌糸の凝集性はあまり無く、比較的分散して生育する。また、炭素源をグルコースあるいはマルトースにした培地においても同様な結果が得られた。48時間培養後の菌体重を比較したところ、麹菌AGS三重破壊株は野生株と比較して菌体重量が増加していた(表4)。麹菌AGS三重破壊株の菌体重は野生株比130%に達しており、A. nidulansの場合と同じくAGS遺伝子の欠損により、高密度に培養できる。
 本発明によれば、糸状菌を用いた物質生産方法において、有用物質の生産量を飛躍的に上昇させることができる。また、本発明の方法により生産することができる有用物質は、特に限定されず、多岐にわたるため、産業上、非常に有用である。
 配列番号5はプライマーである。
 配列番号6はプライマーである。
 配列番号7はプライマーである。
 配列番号8はプライマーである。
 配列番号9はプライマーである。
 配列番号10はプライマーである。
 配列番号11はプライマーである。
 配列番号12はプライマーである。
 配列番号13はプライマーである。
 配列番号14はプライマーである。
 配列番号15はプライマーである。
 配列番号16はプライマーである。
 配列番号17はプライマーである。
 配列番号18はプライマーである。
 配列番号19はプライマーである。
 配列番号20はプライマーである。
 配列番号21はプライマーである。
 配列番号22はプライマーである。
 配列番号23はプライマーである。
 配列番号24はプライマーである。
 配列番号25はプライマーである。
 配列番号26はプライマーである。
 配列番号33はプライマーである。
 配列番号34はプライマーである。
 配列番号35はプライマーである。
 配列番号36はプライマーである。
 配列番号37はプライマーである。
 配列番号38はプライマーである。
 配列番号39はプライマーである。
 配列番号40はプライマーである。
 配列番号41はプライマーである。
 配列番号42はプライマーである。
 配列番号43はプライマーである。
 配列番号44はプライマーである。
 配列番号45はプライマーである。
 配列番号46はプライマーである。
 配列番号47はプライマーである。
 配列番号48はプライマーである。
 配列番号49はプライマーである。
 配列番号50はプライマーである。
 配列番号33はプライマーである。

Claims (4)

  1.  α-1,3-グルカンを発現しない変異型の糸状菌を培養して、当該糸状菌に物質を生成させる工程、及び
     得られた物質を回収する工程
    を含む、物質生産方法。
  2.  前記変異型糸状菌がα-1,3-グルカン合成酵素agsの少なくとも一つを欠損している、請求項1に記載の方法。
  3.  糸状菌が、アスペルギルス属、ペニシリウム属、トリコデルマ属、セファロスポリウム属、又はアクレモニウム属に属する、請求項1又は2に記載の方法。
  4.  糸状菌が、アスペルギルス ニドランス、アスペルギルス オリゼ、アスペルギルス ニガー、又はアスペルギルス フミガタスである、請求項3に記載の方法。
PCT/JP2013/080352 2012-11-09 2013-11-08 糸状菌の高密度培養株を用いた有用物質生産方法 WO2014073674A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014545784A JP6132847B2 (ja) 2012-11-09 2013-11-08 糸状菌の高密度培養株を用いた有用物質生産方法
DK13853815.2T DK2918682T3 (da) 2012-11-09 2013-11-08 Fremgangsmåde til fremstilling af nyttigt stof, hvor højdensitet-dyrket filamentøs svampestamme anvendes
US14/441,493 US11015175B2 (en) 2012-11-09 2013-11-08 Method for manufacturing useful substance in which high-density cultured strain of filamentous fungi is used
EP13853815.2A EP2918682B1 (en) 2012-11-09 2013-11-08 Method for manufacturing useful substance in which high-density cultured strain of filamentous fungi is used

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012247276 2012-11-09
JP2012-247276 2012-11-09

Publications (1)

Publication Number Publication Date
WO2014073674A1 true WO2014073674A1 (ja) 2014-05-15

Family

ID=50684765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080352 WO2014073674A1 (ja) 2012-11-09 2013-11-08 糸状菌の高密度培養株を用いた有用物質生産方法

Country Status (5)

Country Link
US (1) US11015175B2 (ja)
EP (1) EP2918682B1 (ja)
JP (1) JP6132847B2 (ja)
DK (1) DK2918682T3 (ja)
WO (1) WO2014073674A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016066690A1 (en) * 2014-10-29 2016-05-06 Novozymes A/S Filamentous fungal double-mutant host cells
WO2018166943A1 (en) 2017-03-13 2018-09-20 Dsm Ip Assets B.V. Zinc binuclear cluster transcriptional regulator-deficient strain
WO2018203566A1 (ja) 2017-05-02 2018-11-08 国立大学法人東北大学 変異型糸状菌及び当該変異型糸状菌を用いた物質生産方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018112030A2 (en) * 2016-12-13 2018-06-21 Ecc See Level Innovation Llc New processes for photo real embroidery technology for garments in sustainable and eco-friendly ways

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506025A (ja) 1996-03-18 1999-06-02 アンティビオティコス,ソシエダ アノニマ pcl遺伝子の発現によりペニシリウム・クリソゲヌムにおけるペニシリンG(ベンジルペニシリン)の生産性を高めるための方法
JP2001046078A (ja) 1999-06-01 2001-02-20 Gekkeikan Sake Co Ltd タンパク質の高発現システム
JP2002218970A (ja) 2001-01-24 2002-08-06 Kikkoman Corp 液体麹の製造法
JP2005052116A (ja) 2003-08-07 2005-03-03 Gekkeikan Sake Co Ltd 高活性プロモーター及びその利用
JP2007508022A (ja) 2003-10-15 2007-04-05 サンド・アクチエンゲゼルシヤフト ペニシリン製造方法
JP2009118783A (ja) 2007-11-15 2009-06-04 Gekkeikan Sake Co Ltd 糸状菌タンパク質分泌生産の改善
JP2010107126A (ja) 2008-10-30 2010-05-13 Honda Motor Co Ltd 加湿器
JP2010172343A (ja) 2003-04-28 2010-08-12 Novozyme As ホスホリパーゼおよびそれを製造する方法
JP2010220590A (ja) 2009-03-25 2010-10-07 National Institute Of Agrobiological Sciences 新規レポーター遺伝子を用いたスクリーニング方法
JP2010227031A (ja) 2009-03-27 2010-10-14 Toray Ind Inc 糸状菌連続培養によるタンパク質の製造方法およびその装置
JP2010227032A (ja) 2009-03-27 2010-10-14 Toray Ind Inc セルラーゼの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3117997B2 (ja) * 1993-12-01 2000-12-18 ノボ ノルディスク バイオテック,インコーポレイティド アスペルギルス発現システム
ATE210180T1 (de) * 1995-01-26 2001-12-15 Novozymes As Xylanase beinhaltende futterzusätze für tiere
US5773214A (en) * 1995-02-27 1998-06-30 Eli Lilly And Company Multiple drug resistance gene of aspergillus flavus
US20030027286A1 (en) * 2000-09-06 2003-02-06 Robert Haselbeck Bacterial promoters and methods of use
US20030134353A1 (en) * 2001-03-08 2003-07-17 Bioteknologisk Institut Recombinant dimorphic fungal cell
US20070196367A1 (en) * 2006-02-22 2007-08-23 Valentin Dinu Methods of preventing and treating Alzheimer's disease, age related macular degeneration and other diseases involving extra-cellular debris through the inhibition of the complement system
US20100093601A1 (en) * 2008-05-19 2010-04-15 Brett Tyler Compositions and methods to protect cells by blocking entry of pathogen proteins
TW201037077A (en) 2009-03-16 2010-10-16 Nat Inst Of Agrobio Sciences Method for preventing or inhibiting infection of plant by microorganisms, and plant having resistance against infection by microorganisms
WO2011130247A2 (en) * 2010-04-14 2011-10-20 The Penn State Research Foundation Strategies for the transgenic manipulation of filamentous fungi
EP2588616B1 (en) 2010-07-01 2018-11-14 DSM IP Assets B.V. A method for the production of a compound of interest
JP5707494B2 (ja) * 2010-08-25 2015-04-30 ダニスコ・ユーエス・インク 粘性の表現型を変化させた糸状菌
MX357482B (es) 2012-07-19 2018-07-11 Dsm Ip Assets Bv Cepa deficiente en agse.

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506025A (ja) 1996-03-18 1999-06-02 アンティビオティコス,ソシエダ アノニマ pcl遺伝子の発現によりペニシリウム・クリソゲヌムにおけるペニシリンG(ベンジルペニシリン)の生産性を高めるための方法
JP2001046078A (ja) 1999-06-01 2001-02-20 Gekkeikan Sake Co Ltd タンパク質の高発現システム
JP2002218970A (ja) 2001-01-24 2002-08-06 Kikkoman Corp 液体麹の製造法
JP2010172343A (ja) 2003-04-28 2010-08-12 Novozyme As ホスホリパーゼおよびそれを製造する方法
JP2005052116A (ja) 2003-08-07 2005-03-03 Gekkeikan Sake Co Ltd 高活性プロモーター及びその利用
JP2007508022A (ja) 2003-10-15 2007-04-05 サンド・アクチエンゲゼルシヤフト ペニシリン製造方法
JP2009118783A (ja) 2007-11-15 2009-06-04 Gekkeikan Sake Co Ltd 糸状菌タンパク質分泌生産の改善
JP2010107126A (ja) 2008-10-30 2010-05-13 Honda Motor Co Ltd 加湿器
JP2010220590A (ja) 2009-03-25 2010-10-07 National Institute Of Agrobiological Sciences 新規レポーター遺伝子を用いたスクリーニング方法
JP2010227031A (ja) 2009-03-27 2010-10-14 Toray Ind Inc 糸状菌連続培養によるタンパク質の製造方法およびその装置
JP2010227032A (ja) 2009-03-27 2010-10-14 Toray Ind Inc セルラーゼの製造方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 78, no. 12, June 2012 (2012-06-01), pages 4126 - 4133
BEAUVAIS, A. ET AL.: "Two a(1-3) Glucan Synthases with Different Functions in Aspergillus fumigates", APPL. ENVIRON. MICROBIOL., vol. 71, 2005, pages 1531 - 1538, XP055280600, DOI: doi:10.1128/AEM.71.3.1531-1538.2005
C. HENRY ET AL.: "al,3 Glucans Are Dispensable in Aspergillus fumigatus", EUKARYOTIC CELL, vol. 11, no. 1, 2012, pages 26 - 29, XP055255465 *
FURUKAWA ET AL., BIOSCI. BIOTHECHNOL. BIOCHEM., vol. 71, no. 7, 2007, pages 1724 - 1730
HENRY C. ET AL.: "a1,3 glucansare dispensable in Aspergillus fumigatus", EUKARIOT. CELL, vol. 11, 2011, pages 26 - 29
HIROKI SATO ET AL.: "Kojikin no Ekitai Baiyo ni Okeru a-1,3-glucan Gosei Koso Idenshi no Hatsugen to Kinshi Keitai eno Kan'yo", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY TAIKAI KOEN YOSHISHU, vol. 2011, 2011, pages 95, XP008179267 *
HOGAN, L. H. ET AL.: "Altered expression of surface a-1,3-glucan in genetically related strains of Blastomyces dermatitidis that differ in virulence", INFECT. IMMUN., vol. 62, 1994, pages 3543 - 3546
I. POLACHECK ET AL.: "Aspergillus nidulans Mutant Lacking a-(1,3)- Glucan, Melanin, and Cleistothecia", JOURNAL OF BACTERIOLOGY, vol. 132, no. 2, 1977, pages 650 - 656, XP055255462 *
MASAHIRO HITOSUGI ET AL.: "Aspergillus nigulans ni Okeru a-1,3-glucan Kessonkabu no Komitsudo Baiyosei to Busshitsu Seisansei no Hyoka", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY TAIKAI KOEN YOSHISHU, vol. 2013, 5 March 2013 (2013-03-05), pages 1626, XP008179276 *
MAUBON, D. ET AL.: "AGS3, an a(1-3)glucan synthase gene family member of Aspergillusfumigatus, modulates mycelium growth in the lung of experimentally infected mice", FUNGAL GENET. BIOL., vol. 43, 2006, pages 366 - 375
RAPPLEYE, C.A. ET AL.: "RNA interference in Histoplasma capsulatumdemonstrates a rolefor a-(1,3)-glucan in virulence", MOL. MICROBIOL., vol. 53, 2004, pages 153 - 165

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016066690A1 (en) * 2014-10-29 2016-05-06 Novozymes A/S Filamentous fungal double-mutant host cells
CN107075451A (zh) * 2014-10-29 2017-08-18 诺维信公司 丝状真菌双重突变体宿主细胞
WO2018166943A1 (en) 2017-03-13 2018-09-20 Dsm Ip Assets B.V. Zinc binuclear cluster transcriptional regulator-deficient strain
WO2018203566A1 (ja) 2017-05-02 2018-11-08 国立大学法人東北大学 変異型糸状菌及び当該変異型糸状菌を用いた物質生産方法
US11021725B2 (en) 2017-05-02 2021-06-01 Tohoku University Mutant filamentous fungus and substance production method in which said mutant filamentous fungus is used
EP4431608A2 (en) 2017-05-02 2024-09-18 Tohoku University Mutant filamentous fungus and substance production method in which said mutant filamentous fungus is used

Also Published As

Publication number Publication date
EP2918682A1 (en) 2015-09-16
DK2918682T3 (da) 2019-06-03
US11015175B2 (en) 2021-05-25
JPWO2014073674A1 (ja) 2016-09-08
EP2918682B1 (en) 2019-04-10
JP6132847B2 (ja) 2017-05-24
EP2918682A4 (en) 2016-07-27
US20150307852A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
Zhang et al. Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611
DK2714914T3 (en) Simultaneous sequence-specific integration of multiple gene copies into filamentous fungi
US20230265413A1 (en) Compositions and methods for enzyme immobilization
Meyer Genetic engineering of filamentous fungi—progress, obstacles and future trends
CN101128581B (zh) 突变aox1启动子
JP6132847B2 (ja) 糸状菌の高密度培養株を用いた有用物質生産方法
Sidhu et al. Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici
JP6335161B2 (ja) 細胞表層発現用ポリヌクレオチド
Nakamura et al. Agrobacterium tumefaciens-mediated transformation for investigating pathogenicity genes of the phytopathogenic fungus Colletotrichum sansevieriae
Liu et al. Development of genetic tools in glucoamylase-hyperproducing industrial Aspergillus niger strains
JP2021514679A (ja) 糸状真菌宿主細胞によって発現された組換えシュウ酸デカルボキシラーゼ
JP4831664B2 (ja) 優れた熱安定性を有するクチナーゼ変異体
EP3054004B1 (en) Aspergillus mutant strain and transformant thereof
CN104981540A (zh) 用于生物合成谷外停和羟谷外停的基因簇
JP4495904B2 (ja) 改変プロモーター
Dong et al. Optimization of production conditions of rice α-galactosidase II displayed on yeast cell surface
JP2015063522A (ja) Ebd及びhkd含有融合ペプチド及び当該ペプチドを発現する形質転換体
Miller et al. Role of cis-acting sites NorL, a TATA box, and AflR1 in nor-1 transcriptional activation in Aspergillus parasiticus
JP6647653B2 (ja) 変異型糸状菌及び当該変異型糸状菌を用いた物質生産方法
JP2016154483A (ja) プロテインキナーゼ遺伝子変異株を利用した酵素類の製造方法
JP6859086B2 (ja) 糸状菌変異株及びそれを用いたc4ジカルボン酸の製造方法
JP2017515494A (ja) コルネキシスチン及びヒドロキシコルネキシスチンの生合成のための遺伝子クラスター
JP2009118783A (ja) 糸状菌タンパク質分泌生産の改善
Stewart et al. Yeast genetic manipulation
JP2003164295A (ja) 遺伝子高発現系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853815

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14441493

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014545784

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013853815

Country of ref document: EP