WO2014073674A1 - 糸状菌の高密度培養株を用いた有用物質生産方法 - Google Patents
糸状菌の高密度培養株を用いた有用物質生産方法 Download PDFInfo
- Publication number
- WO2014073674A1 WO2014073674A1 PCT/JP2013/080352 JP2013080352W WO2014073674A1 WO 2014073674 A1 WO2014073674 A1 WO 2014073674A1 JP 2013080352 W JP2013080352 W JP 2013080352W WO 2014073674 A1 WO2014073674 A1 WO 2014073674A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- strain
- culture
- aspergillus
- primer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
- C12N9/20—Triglyceride splitting, e.g. by means of lipase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2408—Glucanases acting on alpha -1,4-glucosidic bonds
- C12N9/2411—Amylases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/2437—Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/485—Exopeptidases (3.4.11-3.4.19)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/58—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi
- C12N9/62—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi from Aspergillus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P1/00—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
- C12P1/02—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/02—Oxygen as only ring hetero atoms
- C12P17/06—Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P35/00—Preparation of compounds having a 5-thia-1-azabicyclo [4.2.0] octane ring system, e.g. cephalosporin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P37/00—Preparation of compounds having a 4-thia-1-azabicyclo [3.2.0] heptane ring system, e.g. penicillin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
- C12P7/46—Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
- C12P7/48—Tricarboxylic acids, e.g. citric acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/01—Hexosyltransferases (2.4.1)
- C12Y204/01183—Alpha-1,3-glucan synthase (2.4.1.183)
Definitions
- Filamentous fungi are a general term for what is composed of tubular cells called mycelia, and low molecular weight compounds such as organic acids, pigments, chemicals such as agrochemicals, pharmaceuticals such as penicillins and statins; amylases, cellulases It is used for fermentation production of industrial enzymes such as protease and lipase.
- Patent Document 1 discloses a step of adding a thermophilic bacterium-derived ⁇ -glucosidase to a glucose-containing solution to produce a disaccharide-containing solution by a condensation reaction, and a filamentous fungus culture using a medium containing the disaccharide-containing solution. Describes a method for producing cellulase, which comprises the step of producing cellulase.
- Patent Document 2 includes a step of processing a fungal peptide to excise the peptide from the C-terminus and / or the peptide from the N-terminus to generate a core peptide consisting of a specific amino acid sequence having phospholipase activity.
- a method for producing phospholipases is described.
- Patent Documents 3 to 7 describe an expression vector constructed so as to function as a host for the purpose of improving the efficiency of substance production by the filamentous fungus, and a gene encoding a homologous or heterologous protein in the expression vector.
- filamentous fungi have the advantage of being able to produce a wide variety of useful substances.
- filamentous fungi in the liquid culture process, mycelium is entangled and agglomerated and agglomerated and cannot be densely cultured, the problem is that the production amount of useful substances decreases, the problem is that the production process of useful substances is complicated Attempts have been made to solve the problem from various viewpoints (for example, Patent Documents 8 to 9).
- JP 2010-227032 A JP2010-172343 JP2001-46078 JP 2005-52116 A JP 2009-118783 A Special table flat 11-506025 Special table 2007-508022 JP 2002-218970 JP 2010-227031 A Special republication 2010-107126 JP 2010-220590
- An object of the present invention is to cultivate filamentous fungi at high density, thereby enabling mass production of useful substances.
- the present inventors have found that when a mutant strain of a filamentous fungus that does not express ⁇ -1,3-glucan is used, the aggregation of the cells during culture is significantly suppressed. Thus, the present inventors have found that the microbial cells are uniformly dispersed in the medium and that high-density culture is possible. Furthermore, when such a mutant strain was used, it discovered that the production amount per unit volume of a useful substance could be improved. The present invention is based on such new findings.
- ⁇ -1,3-glucan is one of the main components of the cell wall of filamentous fungi and is also known to be involved in the expression of pathogenicity.
- pathogenicity expression mechanism In a study to investigate the pathogenicity expression mechanism from the relationship between the fluctuation of ⁇ -1,3-glucan in the cell wall and the pathogenicity expression, by creating a glucan synthase gene-disrupted strain or suppressing glucan synthase gene expression, Elucidation of the pathogenic expression mechanism has been attempted from the relationship between the change in the amount of ⁇ -1,3-glucan in the cell wall and the expression of the pathogenicity (for example, Non-Patent Documents 1 to 4).
- Patent Document 10 the expression level of glucan synthase gene in a technical proposal relating to a drug targeting ⁇ -1,3-glucan (Patent Document 10) and a method for screening drug seeds targeting ⁇ -1,3-glucan
- Patent Document 11 the idea and technical development of using bacteria that do not express ⁇ -1,3-glucan for increased production of substances have not been made.
- Item 1 A method for producing a substance, comprising a step of culturing a mutant filamentous fungus that does not express ⁇ -1,3-glucan, causing the filamentous fungus to produce a substance, and a step of recovering the obtained substance.
- Item 2 The method according to Item 1, wherein the mutant filamentous fungus is deficient in at least one of ⁇ -1,3-glucan synthase ags.
- Item 3. The method according to Item 1 or 2, wherein the filamentous fungus belongs to the genus Aspergillus, Penicillium, Trichoderma, Cephalosporium, or Acremonium.
- Item 4. The method according to Item 3, wherein the filamentous fungus is Aspergillus nidulans, Aspergillus oryzae, Aspergillus niger, or Aspergillus fumigatus.
- FIG. 1 is a graph showing the expression of agsA gene and agsB gene in quantitative RT-PCR in Production Example 3.
- FIG. 2 shows a graph of dry cell weight after cultivation in Example 1 and Comparative Example 1.
- FIG. 3 shows a photograph of the flask after culture in Example 1 and Comparative Example 1.
- FIG. 4 shows the transition of each glucose concentration in Example 1 and Comparative Example 1, the amount of bacterial cells in the culture solution of each strain, the remaining amount of glucose, and pH.
- FIG. 5 shows a graph of dry cell weight after cultivation in Example 2 and Comparative Example 2.
- FIG. 6 shows a graph of dry cell weight and penicillin concentration after culture in Example 3 and Comparative Example 3.
- FIG. 7 shows the transition of the dry bacterial weight and amylase activity in Example 4 and Comparative Example 4.
- FIG. 1 is a graph showing the expression of agsA gene and agsB gene in quantitative RT-PCR in Production Example 3.
- FIG. 2 shows a graph of dry cell weight after cultivation in Example
- FIG. 8 shows an outline of the design of a ⁇ agsB strain that highly expresses a heterologous protein. It shows the deduced amino acid sequence (SEQ ID NO: 1) of agsA of Aspergillus nidulans. This shows the base sequence (including introns) (SEQ ID NO: 2) of the nucleic acid molecule encoding asperms of Aspergillus nidulans. This shows the base sequence (including introns) (SEQ ID NO: 2) of the nucleic acid molecule encoding asperms of Aspergillus nidulans.
- Example 7 The outline of ags destruction strain preparation in Example 7 is shown.
- the outline of introduction of the ags disruption vector in Example 7 is shown.
- the outline of the double disruption strain and the triple disruption strain production in Example 7 is shown.
- cultivation characteristics of the wild strain of Aspergillus in Example 7 and the comparative example 7, and an AGS triple disruption strain (asgA (DELTA) agsB (DELTA) agsC (DELTA) strain) are shown.
- the deduced amino acid sequence (sequence number 27) of agsA of Aspergillus oryzae is shown. This shows the base sequence (SEQ ID NO: 28) of agsA of Aspergillus oryzae.
- the deduced amino acid sequence of agsB of Aspergillus oryzae (SEQ ID NO: 29) is shown.
- the deduced amino acid sequence (sequence number 31) of agsC of Aspergillus oryzae is shown.
- the present invention Provided is a method for producing a substance, comprising a step of culturing a mutant filamentous fungus that does not express ⁇ -1,3-glucan, causing the filamentous fungus to produce a substance, and a step of recovering the obtained substance.
- mutant filamentous fungus that does not express ⁇ -1,3-glucan is only a mutant of a filamentous fungus that does not express ⁇ -1,3-glucan at all.
- those that do not substantially express ⁇ -1,3-glucan are also included.
- the mutant strain that does not substantially express ⁇ -1,3-glucan is only slightly expressing ⁇ -1,3-glucan, and is an aggregation of bacterial cells that is an effect of the present invention.
- Is a mutant in which the expression of ⁇ -1,3-glucan is significantly suppressed for example, a strain in which the expression level of ⁇ -1,3-glucan is 30% or less of the wild strain, more preferably 10% or less of the wild strain.
- filamentous fungi examples include Aspergillus genus, Penicillium genus, Trichoderma genus, Cephalosporum genus, Acremonium genus, Neurospora genus, etc. . Of these, Aspergillus is more preferable.
- Aspergillus fungi used in the present invention include Aspergillus nidulans, Aspergillus oryzae, Aspergillus niger, Aspergillus fumiga, Aspergillus fumiga, and Aspergillus fumiga. Aspergillus oryzae or Aspergillus niger is preferred.
- the method of the present invention is characterized by using a mutant strain of a filamentous fungus that does not express ⁇ -1,3-glucan.
- Such mutant filamentous fungi include those lacking at least one of the ⁇ -1,3-glucan synthase ags.
- ⁇ -1,3-glucan synthase ags includes Aspergillus nidulans agsA (Genbank accession No. XM_658397), agsB (Genbank accession No. XM_655819), Aspergillus oryzae agsA, agsB, agsC, Aspergillus No.
- agsA, agsB and agsC of Aspergillus oryzae are registered in the Aspergillus database AspGD (http://www.aspergillusgenome.org) with gene numbers agsA (AO090026000523), agsB (AO090003001500) and agsC (AO090010000106). .
- FIG. 9 The amino acid sequence of Aspergillus nidulans agsA (SEQ ID NO: 1) is shown in FIG. 9, and the nucleotide sequence (SEQ ID NO: 2) of the nucleic acid molecule encoding Aspergillus nidulans agsA is shown in FIGS. Further, FIG. 13 shows the amino acid sequence of Asgsgillus nidulans agsB (SEQ ID NO: 3), and FIGS. 14 to 15 show the nucleotide sequences (SEQ ID NO: 4) of nucleic acid molecules encoding Aspergillus nidulans agsB.
- the amino acid sequence of Aspergillus oryzae agsA (SEQ ID NO: 27) is shown in FIG. 20, and the nucleotide sequence of the nucleic acid molecule encoding agsA of Aspergillus oryzae (SEQ ID NO: 28) is shown in FIGS.
- the amino acid sequence (SEQ ID NO: 29) of agsB of Aspergillus oryzae is shown in FIG. 23, and the nucleotide sequence (SEQ ID NO: 30) of the nucleic acid molecule encoding agsB of Aspergillus oryzae is shown in FIGS.
- the amino acid sequence of Asgsgillus oryzae agsC (SEQ ID NO: 31) is shown in FIG. 26, and the nucleotide sequence of a nucleic acid molecule encoding agsC of Aspergillus oryzae (SEQ ID NO: 32) is shown in FIGS.
- mutant filamentous fungi include those lacking one or more of these ⁇ -1,3-glucan synthases.
- Aspergillus nidulans is used as the filamentous fungus, a strain lacking at least agsB is preferable.
- the deletion of ⁇ -1,3-glucan synthase ags means that all or part of the coding region of ⁇ -1,3-glucan synthase in the genome is deleted, Examples include those in which another nucleic acid molecule is inserted in whole or in part, and those in which all or part of the coding region is replaced with another nucleic acid molecule.
- the deletion of ⁇ -1,3-glucan synthase ags includes not only addition, deletion and substitution of a predetermined nucleic acid molecule to the coding region, but also ⁇ -1,3-glucan under certain conditions. Also included are conditional gene defects designed to be expressed only. Therefore, the method of the present invention also includes a method comprising a step of culturing the above-mentioned mutant gene-deficient mutant under conditions where ⁇ -1,3-glucan is not expressed.
- the method of the present invention may be used for the production of useful substances such as amylase, cellulase, and other low molecular weight compounds such as penicillin, which are inherently capable of producing filamentous fungi. Transformation may be performed so as to enhance the expression of a useful substance having a production ability, or to express a substance in which a filamentous fungus originally does not have a production ability.
- a transformation method an expression vector constructed so that a filamentous fungus can be used as a host, and a plasmid constructed by functionally linking a gene encoding the same or a heterologous protein to the expression vector are used.
- Known methods for example, methods described in JP-A-2001-46078, JP-A-2005-52116, JP-A-2009-118783, JP-T-11-506025, JP-T-2007-508022) Can be used.
- a method for producing such a mutant strain a method known per se (for example, the methods described in Non-Patent Documents 2 to 5) is used as appropriate, for example, construction of an ⁇ -1,3-glucan gene disruption cassette and genomic gene. This can be done by introducing the cassette into the card.
- the useful substance that can be produced according to the present invention is not particularly limited, and examples thereof include low molecular weight compounds such as penicillin, statins, cephalosporin, succinic acid, citric acid, malic acid; amylase, cellulase, protease, and lipase. , Polymer compounds such as peptidase, esterase and oxidase.
- useful substances include chemical substances such as organic acids, pigments, and agrochemical ingredients, and various substances used as pharmaceuticals.
- the method of the present invention can also be applied to bioethanol production by decomposition of biomass (such as those using fungi that have been genetically modified to produce cellulase or the like at high production).
- the method of the present invention includes a step of culturing a mutant filamentous fungus that does not express ⁇ -1,3-glucan and causing the filamentous fungus to produce a substance.
- the medium used in the step is not particularly limited, and a medium that can be used for culturing filamentous fungi can be widely used.
- a medium that can be used for culturing filamentous fungi can be widely used.
- CD minimum medium, YPD medium, TSB medium, malt medium, PDA medium and the like can be mentioned.
- Glucose, starch, soluble starch and the like may be added to the medium as a carbon source.
- the amount of carbon source added is not particularly limited, but can be appropriately set within a range of 0.5 to 10%, more preferably 1 to 4%, for example.
- the culture temperature is not particularly limited and can be appropriately set within the range of 20 to 45 ° C, more preferably 25 to 37 ° C.
- the culture time is not particularly limited, but can be appropriately set within a range of, for example, 12 to 72 hours, more preferably 24 to 48 hours.
- the method for recovering useful substances from the culture medium is not particularly limited, and methods known per se (centrifugation, recrystallization, distillation method, solvent extraction method, chromatography, etc.) can be used as appropriate.
- agsA gene disruption cassette In order to construct an agsA gene disruption cassette, a gene fragment comprising a 5 'non-coding region (amplicon 1) and a coding region (amplicon 2) in the first round of PCR. A. amplified from the Nidulans ABPU1 genomic DNA template and the pyrG gene (amplicon 3) Amplified from oryzae genomic DNA template.
- Amplicon 1 was amplified using primers agsA-LU (5′-AGTGGAGGAGTTAGGGAGTGAT-3 ′ (SEQ ID NO: 5)) and agsA-LL (5′-CACAGGGTACGTCTGTTGTGAAAGAGTAAGGTAGAAGCCCC-3 ′ (SEQ ID NO: 6)).
- agsA-RU 5′-TTCTTCTGAGGTGCAGTTCAGCAGATTATTACGCACCGGA-3 ′ (SEQ ID NO: 7)
- agsA-RL 5′-AACCGTGGTTTTGGTGGCAAAG-3 ′ (SEQ ID NO: 8)
- amplicon 3 is agsA ⁇
- PU 5′-TACCTTACTCTTTCACAACAGACGTACCCTGTGATGTTC-3 ′
- agsA-PL 5′-GTAATAATCTGCTGAACTGCACCTCAGAAGAAAAGGATG-3 ′ (SEQ ID NO: 10)).
- Primers agsA-LU, agsA-RU, agsA-PU and agsA-PL are chimeric oligonucleotides each containing the reverse complementary sequence of the PCR fusion.
- the resulting three PCR products were gel purified and used as substrates for the second round of PCR using agsA-LU and agsA-RL.
- the second round of PCR the three fragments obtained in the first round were fused to prepare a disruption cassette. All PCR reactions were performed using Gene Amp PCR System 9700 (Applied Biosystems, CA, USA) and PrimeSTAR HS DNA polymerase (Takara Bio Inc.). The obtained PCR product was gel purified and used for transformation of ABPU1 strain.
- Czapek-Dox CD soft agar medium supplemented with 0.02 ⁇ g / ml biotin, 0.2 mg / ml arginine, and 0.5 ⁇ g / ml pyridoxine warmed to 50 ° C.
- agsA-disrupted strains were selected from the transformants using the following primers (5′-GTACGGTGTAAGCTGCTCGCTGGAC-3 ′ (SEQ ID NO: 17), 5′-TCCTGGATCTTGTAAACTGAGTCTC-3 ′ (SEQ ID NO: 18)). PCR was performed on the body's genomic DNA, and only the amplified fragment of about 6,200 bp was seen as an agsA disruption candidate strain.
- the agsB-disrupted strain was selected from the transformant using the following primers (5′-AGGAAAGACTGTTGGATGAG-3 ′ (SEQ ID NO: 19), 5′-GACTTATTCGTGTTGACGTTGTA-3 ′ (SEQ ID NO: 20)). PCR was performed on the above, and an agsB disruption candidate strain with only an amplified fragment of about 5,150 bp was used. Finally, it was confirmed by quantitative RT-PCR that the agsB gene was not expressed (FIG. 1).
- Example 1 and Comparative Example 1 The ⁇ agsB strain obtained in the above production example is cultured under the following culture conditions, and the amount of cells, remaining glucose and pH in the culture solution are measured every 12 hours after the cultivation, and the dry cell weight after cultivation is measured. (Example 1). Except that a wild strain was used instead of the ⁇ agsB strain, the dry cell weight after culture was measured in the same manner (Comparative Example 1): Culture conditions / medium: CD minimal medium 200ml (500ml flask with baffle) ⁇ Culture temperature: 37.0 °C ⁇ Culture time: 72hr ⁇ Rotation speed: 160 rpm ⁇ Number of conidia: 10 8 / L Carbon source: glucose concentration 2% or 4% ⁇ Number of trials: 5 times. The results are shown in FIGS.
- FIG. 2 shows the dry cell weight after culture.
- the amount of cells of the ⁇ agsB strain increases from the wild strain.
- the amount of bacterial cells increased at a glucose concentration of 4% compared to 2%.
- FIG. 3 shows a photograph of the flask after the above test at a glucose concentration of 2%.
- the ⁇ agsB strain is uniformly growing in the liquid medium, but the wild strain is aggregated.
- FIG. 4 shows the transition of each glucose concentration, the amount of bacterial cells in the culture solution, the remaining amount of glucose and the pH in each strain.
- Example 2 and Comparative Example 2 The ⁇ agsB strain (Example 2) and the wild strain (Comparative Example 2) obtained in the above production example were each cultured under the following culture conditions using a jar type culture apparatus, and the dry cell weight after the culture was measured: Culture conditions / medium: CD medium 3 L ⁇ Culture temperature: 37.0 °C ⁇ Culture time: 48hr ⁇ Rotation speed: 300 rpm ⁇ Number of conidia: 10 8 / L ⁇ Carbon source: Glucose concentration 2% ⁇ Pressure: 0.3 MPa -Number of trials: 5 times each The results are shown in FIG. As shown in FIG. 5, even in the jar-type culture apparatus, the amount of cells of the ⁇ agsB strain is significantly increased as compared with the wild strain.
- Example 3 and Comparative Example 3 Penicillin production was measured as an evaluation of the productivity of low molecular compounds.
- the ⁇ agsB strain (Example 3) and the wild strain (Comparative Example 3) obtained in the above production example were cultured under the following culture conditions: Culture conditions / medium: YPD medium 100mL (200mL flask) ⁇ Culture temperature: 37 °C ⁇ Culture time: 48hr ⁇ Rotation speed: 160 rpm ⁇ Number of conidia: 10 7 / 100mL ⁇ Carbon source: Glucose concentration 2% The culture solution was centrifuged, the culture supernatant was applied to a paper disk, and the penicillin production was measured by measuring the diameter of the inhibition circle for the standard cell for penicillin assay.
- the mixture was mixed with broth (Becton, Dickinson and Company) agar medium, and 100 ⁇ l of the culture supernatant was soaked in a sterilized paper disc placed in the center of the petri dish.
- the petri dish was cultured at 55 ° C. for 16 hours, and the diameter of the inhibition circle where the standard strain for penicillin assay could not grow was measured.
- the amount of penicillin was calculated from the diameter of the inhibition circle obtained by adjusting commercially available penicillin G (manufactured by SIGMA) to 0.01, 0.025, 0.05, and 0.1 ⁇ g / ml and similarly applying to a paper disk.
- the amount of penicillin produced was 15.9 ng / ml in the wild strain, whereas the amount produced by penicillin was significantly increased to 58.6 ng / ml in the ⁇ agsB strain (FIG. 6).
- dry cell weight measurement was performed using the precipitate obtained by centrifugation.
- the dry cell weight was 175.7 mg in the wild strain and 227.6 mg in the ⁇ agsB strain, which was about 1.3 times as large as the bacterial mass (FIG. 6).
- Example 4 and Comparative Example 4 As an evaluation of the production ability of the polymer compound, amylase production was measured.
- the ⁇ agsB strain (Example 4) and the wild strain (Comparative Example 4) obtained in the above production example were cultured under the following culture conditions: Culture conditions / medium: CD minimum medium 200mL (500mL flask) ⁇ Culture temperature: 37 °C ⁇ Culture time: 48hr or 36hr ⁇ Rotation speed: 160 rpm ⁇ Number of conidia: 10 7 / 100mL ⁇ Carbon source: 2% starch or 2% soluble starch The cells were filtered from the culture solution, and the amylase activity of the culture supernatant was measured.
- the cells after 24 hours, 36 hours, and 48 hours (only for starch addition conditions) after the start of culture were filtered with MIRACLOTH (manufactured by Calbiochem), and the amylase activity of the culture filtrate was measured using an ⁇ -amylase measurement kit ( Measured with Kikkoman Biochemifa Co., Ltd.
- the filtered cells were freeze-dried and the dry cell weight was measured. The results are shown in FIG.
- the ⁇ agsB strain exhibits an amylase activity that is about twice as high as that of the wild strain under both the starch addition conditions and the soluble starch addition conditions.
- Example 5 Comparative Example 5 Method for constructing a high expression vector of Aspergillus oryzae amylase ( Figure 8) From Aspergillus genomic DNA, to amplify the amylase gene by PCR reaction, connected to the terminator Agda gene of Aspergillus nidulans was the DNA fragment with AoamyB-agdA t.
- AoamyB-Not IF sequence: 5′-TGAATT CGCGGCCGC TATTTATGATGGTCGCGTGGTG-3 ′ (SEQ ID NO: 21)
- AoamyB-R + sequence: 5′-CTTCTTGAGTGAGCTCACGAGCTACTACAGATCT-3 ′ (SEQ ID NO: 22) were used as PCR primers.
- TagdA-Xx-F (sequence: 5'- TGTAGTAGCTCGTGAGCTCACTCAAGAAG CGTAACAGGATAGCCT-3 '(SEQ ID NO: 23)
- TagdA-XbaI-R (sequence: 5') are used as PCR primers for agdA gene terminator amplification.
- -GCTA TCTAGA GGCCTGCAGGAGATC-3 '(SEQ ID NO: 24) was used.
- AoamyB-Not IF has a recognition sequence for restriction enzyme Not I (underlined).
- TagdA-Xx-F has a sequence that overlaps part of the AoamyB gene sequence (underlined), and TagdA-XbaI-R has a recognition sequence for the restriction enzyme Xba I. Yes (underlined).
- AoamyB-Not Fusion PCR method to connect IF and AoamyB-R + amplified using gene fragment (AoamyB fragment) and TagdA-Xx-F and TagdA-XbaI-R was amplified using gene fragment (Agda t fragment) was used.
- the ligated DNA fragment AoamyB-agdA t was digested with restriction enzymes Not I and Xba I, and pNA (N) EGFP (Furukawa et al. Biosci. Biothechnol. Biochem., 71 (7), 1724-1730, 2007) Introduced at Not I and Xba I sites.
- pNA (N) EGFP is a vector having an aureobasidin resistance gene (auA r ) as a selection marker in Aspergillus nidulans, and digested with Not I and Xba I was used for gene introduction.
- auA r aureobasidin resistance gene
- plasmid pNA (N) AoamyB the introduction of the DNA fragment AoamyB-agdA t is digested with restriction enzymes Not I, Bacterial alkaline phosphatase (BAP ) (Takara Co.) performs processing, promoter AnenoA p which strongly expresses in Aspergillus nidulans was introduced.
- AnenoA p is derived from Aspergillus nidulans genomic DNA using PCR primers PenoA-F (sequence: 5'-TGGTAAGAGTCGTCATATCGAG-3 '(sequence number 25)) and PenoA-Not IR (sequence: 5'-TAG CGGCCGCG AATTCGATGAACTAGAAGGATAGAG-3' (sequence No. 26)).
- PenoA-Not IR A recognition sequence for restriction enzyme Not I is added to PenoA-Not IR (underlined), and an AnenoA p fragment is once introduced into the EcoRV site of plasmid pZErO TM -2 (Invitrogen).
- Example 6 and Comparative Example 6 Amylase activity was measured in the amylase high expression strain.
- the vector pNAenoA :: AoamyB that highly expresses the amylase of Aspergillus prepared by the method described in Example 5 and Comparative Example 5 is a strain that lacks the wild strain of Aspergillus nidulans and the strain lacking ⁇ -1,3-glucan. Introduced into (AG-deficient strain), wild strains and AG-deficient strains that highly express heterologous proteins were prepared. For these strains, the amount of amylase secreted into the culture supernatant was measured.
- an AG-deficient strain and a wild strain, an amylase-highly expressing AG-deficient strain, and an amylase-highly expressing wild strain were cultured under the following culture conditions: Culture conditions / medium: CD minimum medium 50mL (200mL flask) ⁇ Culture temperature: 37 °C ⁇ Culture time: 24 hr ⁇ Rotation speed: 160 rpm ⁇ Number of conidia: 10 7 / 100mL -Carbon source: Cells were filtered from a 2% maltose culture solution, and the amylase activity of the culture supernatant was measured.
- the cells after 24 hours from the start of culture were filtered with MIRACLOTH (CALBIOCHEM), and the amylase activity of the culture filtrate was measured with an ⁇ -amylase measurement kit (Kikkoman Biochemifa Co., Ltd.).
- Table 1 The results are shown in Table 1 below.
- amylase-high-expressing AG-deficient strain exhibits amylase activity that is about 6 times as high as that of the amylase-highly expressing wild-type strain.
- Example 7 and Comparative Example 7 A triple disruption strain of ⁇ -1,3-glucan synthase (AGS) gene was constructed in Aspergillus oryzae and the culture properties were compared.
- AGS ⁇ -1,3-glucan synthase
- AGS Aspergillus oryzae AGS genes in the genome, which are named as agsA (AO090026000523), agsB (AO090003001500), and agsC (AO090010000106), respectively. .org)).
- a triple gene disruption strain was constructed for these three AGS genes using the multiple gene disruption method using the Cre-loxP system (see Appliedliand Environmental Microbiology, Volume 78 Number 12 June 2012 p. 4126-4133). It was confirmed by the following method that all the three genes were destroyed. An outline of the production test of the triple disruption strain is shown in FIGS.
- the 5 'upstream region of each ags gene and the region in the ags gene were PCR amplified (Fig. 16 (1)).
- the reverse primer in the 5 'upstream region and the forward primer in the ags gene contain a homologous region of the loxP sequence.
- Table 2 shows the sequences of the primers for destruction.
- the ⁇ ⁇ ⁇ ⁇ Cre expression cassette containing the gonococcal selection marker (adeA) is linked to the ags gene 5 'upstream region and the ags gene region to construct a vector for ags gene disruption.
- FIG. 16 (2) the obtained ags gene disruption vector was introduced into a wild strain (adeA ⁇ strain) of Aspergillus (FIG. 17 (3)). It was transferred to a medium containing xylose (1%) to induce the expression of CreC (FIG. 17 (4)). This operation causes recombination at the loxP sequence by the action of Cre. The disruption was confirmed with each ags gene-specific primer (Fig. 17 (5)). Primer sequences are shown in Table 3.
- a double disruption strain was produced in the same manner using the single disruption strain as a host (FIG. 18 (6)). Specifically, ⁇ agsA strain was used as a host strain, and agsB and agsC were each destroyed ( ⁇ agsA ⁇ agsB, ⁇ agsA ⁇ agsC). Similarly, the ⁇ agsC strain was used as a host strain, and agsB was destroyed ( ⁇ agsC ⁇ agsB). Further, a triple disruption strain was prepared in the same manner using the double disruption strain as a host (FIG. 18 (7)). Specifically, ⁇ agsA ⁇ agsB strain was used as a host strain and agsC was destroyed.
- the mycelium aggregates and grows in a granular form in the wild strain of Aspergillus, whereas the Aspergillus AGS triple disruption strain has little aggregation of the mycelium and grows relatively dispersed. Similar results were also obtained in a medium in which the carbon source was glucose or maltose.
- the bacterial body weight after 48 hours of culture was compared, the bacterial weight of the Aspergillus oryzae AGS triple disruption strain was increased compared to the wild strain (Table 4).
- the bacterial weight of the gonococcal AGS triple disruption strain has reached 130% of the wild strain, and can be cultured at a high density due to the deletion of the AGS gene as in the case of A. nidulans.
- the production amount of useful substances can be dramatically increased.
- useful substances that can be produced by the method of the present invention are not particularly limited and are diverse, so that they are very useful industrially.
- SEQ ID NO: 5 is a primer.
- SEQ ID NO: 6 is a primer.
- SEQ ID NO: 7 is a primer.
- SEQ ID NO: 8 is a primer.
- SEQ ID NO: 9 is a primer.
- SEQ ID NO: 10 is a primer.
- SEQ ID NO: 11 is a primer.
- SEQ ID NO: 12 is a primer.
- SEQ ID NO: 13 is a primer.
- SEQ ID NO: 14 is a primer.
- SEQ ID NO: 15 is a primer.
- SEQ ID NO: 16 is a primer.
- SEQ ID NO: 17 is a primer.
- SEQ ID NO: 18 is a primer.
- SEQ ID NO: 19 is a primer.
- SEQ ID NO: 20 is a primer.
- SEQ ID NO: 21 is a primer.
- SEQ ID NO: 22 is a primer.
- SEQ ID NO: 23 is a primer.
- SEQ ID NO: 24 is a primer.
- SEQ ID NO: 25 is a primer.
- SEQ ID NO: 26 is a primer.
- SEQ ID NO: 33 is a primer.
- SEQ ID NO: 34 is a primer.
- SEQ ID NO: 35 is a primer.
- SEQ ID NO: 36 is a primer.
- SEQ ID NO: 37 is a primer.
- SEQ ID NO: 38 is a primer.
- SEQ ID NO: 39 is a primer.
- SEQ ID NO: 40 is a primer.
- SEQ ID NO: 41 is a primer.
- SEQ ID NO: 42 is a primer.
- SEQ ID NO: 43 is a primer.
- SEQ ID NO: 44 is a primer.
- SEQ ID NO: 45 is a primer.
- SEQ ID NO: 46 is a primer.
- SEQ ID NO: 47 is a primer.
- SEQ ID NO: 48 is a primer.
- SEQ ID NO: 49 is a primer.
- SEQ ID NO: 50 is a primer.
- SEQ ID NO: 33 is a primer.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mycology (AREA)
- Botany (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
本出願は、2012年11月9日に出願された、日本国特許出願第2012-247276号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。
本発明は、糸状菌を用いた有用物質の生産方法に関する。
項1.α-1,3-グルカンを発現しない変異型の糸状菌を培養して、当該糸状菌に物質を生成させる工程、及び
得られた物質を回収する工程
を含む、物質生産方法。
α-1,3-グルカンを発現しない変異型の糸状菌を培養して、当該糸状菌に物質を生成させる工程、及び
得られた物質を回収する工程
を含む、物質生産方法
を提供する。
本発明において、「α-1,3-グルカンを発現しない変異型の糸状菌」とは、糸状菌の変異株であって、α-1,3-グルカンを全く発現しないものだけでなく、α-1,3-グルカンを実質的に発現しないものも包含する。より具体的には、α-1,3-グルカンを実質的に発現しない変異株とは、ごくわずかにα-1,3-グルカンを発現するにとどまり、本発明の効果である菌体の凝集が有意に抑制されている変異株を示し、例えば、α-1,3-グルカンの発現量が野生株の30%以下、より好ましくは野生株の10%以下である株等が挙げられる。
本発明の方法は、α-1,3-グルカンを発現しない変異型の糸状菌を培養して、当該糸状菌に物質を生成させる工程を含む。当該工程で用いる培地としては、特に限定されず、糸状菌の培養に用いることができるものを広く使用することができる。例えば、CD最小培地、YPD培地、TSB培地、モルト培地、PDA培地等が挙げられる。上記培地には、炭素源として、グルコース、でんぷん、可溶性でんぷん等を添加してもよい。かかる炭素源の添加量としては特に限定されないが、例えば、0.5~10%、より好ましくは1~4%の範囲で適宜設定できる。培養温度は特に限定されず、20~45℃、より好ましくは25~37℃の範囲で適宜設定できる。培養時間も特に限定されないが、例えば、12~72時間、より好ましくは24~48時間の範囲で適宜設定できる。
agsA遺伝子の破壊カセットを構築するために、第1ラウンドのPCRで、5’非コード領域(アンプリコン1)及びコード領域(アンプリコン2)を含む遺伝子断片をA.nidulans ABPU1ゲノムDNAテンプレートから増幅し、pyrG遺伝子(アンプリコン3)をA.oryzaeゲノムDNAテンプレートから増幅した。アンプリコン1は、プライマーagsA-LU(5’-AGTGGAGGAGTTAGGGAGTGAT-3’(配列番号5))及びagsA-LL(5’-CACAGGGTACGTCTGTTGTGAAAGAGTAAGGTAGAAGCCCC-3’(配列番号6))を用いて増幅し、アンプリコン2は、agsA-RU(5’-TTCTTCTGAGGTGCAGTTCAGCAGATTATTACGCACCGGA-3’(配列番号7))及びagsA-RL(5’-AACCGTGGTTTTGGTGGCAAAG-3’(配列番号8))を用いて増幅し、アンプリコン3は、agsA-PU(5’-TACCTTACTCTTTCACAACAGACGTACCCTGTGATGTTC-3’(配列番号9))及びagsA-PL(5’-GTAATAATCTGCTGAACTGCACCTCAGAAGAAAAGGATG-3’(配列番号10))を用いて増幅した。プライマーagsA-LU、agsA-RU、agsA-PU及びagsA-PLは、それぞれPCRフュージョンの逆相補的配列を含む、キメラオリゴヌクレオチドである。得られた3つのPCR産物をゲル精製し、agsA-LU及びagsA-RLを用いる第2ラウンドのPCRの基質として使用した。当該第2ラウンドのPCRにより、第1ラウンドで得られた3つのフラグメントを融合して、破壊カセットを作製した。全てのPCR反応は、Gene Amp PCR System 9700(Appied Biosystems、CA、USA)及びPrimeSTAR HS DNA polymerase(タカラバイオ株式会社製)を用いて行った。得られたPCR産物をゲル精製し、ABPU1株の形質転換に用いた。
第1ラウンドのPCRで、プライマーagsB-LU(5’-GCAATGAGAGCTGGAATCAGTG-3’ (配列番号11))及びagsB-LL(5’-TGAGTCGGCCACAGCGGATGGAATTCGTCGTCTGGCTGTGAGTGTAAC-3’ (配列番号12))(アプリコン1用)、agsB-RU(5’-TCTTCCAGTTACTCCGTCGGTACCCAGCAACATGCTGGCCATACGAC-3’ (配列番号13))及びagsB-RL(5’-AAAGTCCTGGGTCTCTTCGTTC-3’ (配列番号14))(アプリコン2用)、及びagrB-F(5’-GAATTCCATCCGCTGTGGCCGACTCA-3’ (配列番号15))及びagrB-R(5’-GGTACCGACGGAGTAACTGGAAAGATACGA-3’ (配列番号16))(アプリコン3用)を用い、第2ラウンドのPCRで、プライマーagsB-LU及びagsB-RLを用いる以外、上記製造例1と同様にして、agsB遺伝子の破壊カセットを構築した。
agsAおよびagsB遺伝子欠失破壊のための形質転換はプロトプラスト-PEG法を改良した方法を用い、形質転換するDNA断片は、上記で作製したagsAおよびagsB遺伝子欠失破壊用DNA断片を用いた。アスペルギルス ニドランスABPU1 ΔligD::ptrA(ビオチン(biA1)、アルギニン(argB2)、ウリジン(pyrG89)、ピリドキシン(pyroA4)要求性株(東北大学大学院農学研究科・藤岡智則博士より供与))の分生子懸濁液をYPD培地に植菌し、37℃、20時間振盪培養した。17G1滅菌済ガラスフィルターを用いて集菌後、菌体を50 ml容の遠心チューブに移し、滅菌水で洗浄した。その後、菌体を30 mlのプロトプラスト化溶液(0.8M NaCl、10mM NaH2PO4、10mg/ml Lysingenzyme (Sigma Chemical社製)、5mg/ml Cellulase Onozuka R-10 (Yakult Pharmaceutical Ind.社製)、2.5mg/ml Yatalase (タカラバイオ社製)を加え懸濁し、30℃、90rpm、3時間振盪しプロトプラスト化反応を行った。滅菌したMIRACLOTH(CALBIOCHEM社製)にて濾過し、濾液中のプロトプラストを3,000×g、4℃、5分間遠心分離して沈澱として得た。0.8M NaClにて1回プロトプラストを洗浄し、3,000×g、4℃、5分間遠心分離して沈澱させた。このプロトプラストをSolution 1(0.8M NaCl、10mM CaCl2、10mM Tris-HCl、pH8.0)で懸濁した。プロトプラスト懸濁液を200μlずつ15ml容の遠心チューブに移し、それぞれにSolution 2(40%(w/v) PEG♯4000、 50mM CaCl2、50mM Tris-HCl、pH8.0)40μlと前述の形質転換用DNA溶液各5μl(DNA量として5μg)を加えよく混合し、氷中で30分間放置した。1 mlのSol.2を加え混合し、室温で20分間放置した。5mlのSol.1で2回洗浄し、Sol.2をなるべく取り除いた。agsA破壊株の選抜の場合は、50℃に温めておいた終濃度0.02μg/mlのビオチン、0.2mg/mlのアルギニン、0.5μg/mlのピリドキシンを添加したCzapek-Dox(CD)軟寒天培地にプロトプラスト縣濁液を加え混合し、終濃度0.02μg/mlのビオチン、0.2mg/mlのアルギニン、0.5μg/mlのピリドキシンを添加したCD寒天培地に重層した。その後、30℃で分生子を形成するまで培養した。形質転換体からのagsA破壊株の選択は以下のプライマー(5’- GTACGGTGTAAGCTGCTCGCTGGAC-3’(配列番号17)、5’- TCCTGGATCTTGTAAACTGAGTCTC-3’(配列番号18))を用いて形質転換体のゲノムDNAに対してPCRを行い、約6,200bpの増幅断片のみがみられたものをagsA破壊候補株とし、最終的に定量RT-PCRによりagsA遺伝子が発現していないことを確認した(図1)。agsB破壊株の選抜の場合は、50℃に温めておいた終濃度0.02μg/mlのビオチン、5mMのウリジン、10mMのウラシル、0.5μg/mlのピリドキシンを添加したCzapek-Dox(CD)軟寒天培地にプロトプラスト縣濁液を加え混合し、終濃度0.02μg/mlのビオチン、5mMのウリジン、10mMのウラシル、0.5μg/mlのピリドキシンを添加したCD寒天培地に重層した。その後、30℃で分生子を形成するまで培養した。形質転換体からのagsB破壊株の選択は以下のプライマー(5’-AGGAAAGACTGTTGGATGAG-3’(配列番号19)、5’-GACTTATTCGTGTTGACGTTGTA-3’(配列番号20))を用いて形質転換体のゲノムDNAに対してPCRを行い、約5,150bpの増幅断片のみがみられたものをagsB破壊候補株とし、最終的に定量RT-PCRによりagsB遺伝子が発現していないことを確認した(図1)。
上記製造例で得られたΔagsB株を下記培養条件で培養し、培養後12時間毎に、培養液中の菌体量、グルコース残量及びpHを測定し、培養後の乾燥菌体重量を測定した(実施例1)。ΔagsB株の代わりに野生株を用いる以外、同様にして、培養後の乾燥菌体重を測定した(比較例1):
培養条件
・培地: CD最小培地 200ml ( 500 ml バッフル付フラスコ )
・培養温度: 37.0 ℃
・培養時間: 72hr
・回転数: 160 rpm
・分生子数: 108 個/L
・炭素源:グルコース濃度 2% または 4%
・試行回数: 5 回。
結果を図2~図4に示す。
上記製造例で得られたΔagsB株(実施例2)及び野生株(比較例2)をそれぞれ、ジャー型培養装置により下記培養条件で培養し、培養後の乾燥菌体重量を測定した:
培養条件
・培地: CD培地 3 L
・培養温度: 37.0 ℃
・培養時間:48hr
・回転数 : 300 rpm
・分生子数: 108 個/L
・炭素源:グルコース濃度 2%
・加圧量: 0.3 MPa
・試行回数: 各5 回
結果を図5に示す。図5に示されるように、ジャー型培養装置においても、野生株よりΔagsB 株の菌体量は大幅に増加する。
低分子化合物の生産能の評価として、ペニシリン生産量を測定した。
培養条件
・培地: YPD培地 100mL(200mL フラスコ)
・培養温度: 37 ℃
・培養時間:48hr
・回転数 : 160 rpm
・分生子数: 107 個/100mL
・炭素源:グルコース濃度 2%
培養液を遠心分離し、培養上清をペーパーディスクに塗布し、ペニシリンアッセイ用標準菌体に対する阻止円の直径を測定することにより、ペニシリン生産量を測定した。具体的には、ペニシリンアッセイ用標準菌株であるBacillus stearothermophilusvar. calidolactis(NBRC 100862:独立行政法人 製品評価技術基盤機構より分譲を受けた)を最終濁度O.D.=0.1となるように3%の Tryptic soy broth(Becton, Dickinson and Company社製)寒天培地に混ぜ込み、シャーレ中央に置いた滅菌済ペーパーディスクに100μlの培養上清をしみ込ませた。シャーレを55℃で16時間培養し、ペニシリンアッセイ用標準菌株が生育できない阻止円の直径を計測した。ペニシリンの定量は、市販のペニシリンG(SIGMA社製)を0.01、0.025、0.05、0.1μg/mlに調整し、同様にペーパーディスクに塗布して得られた阻止円の直径から算出した。ペニシリン生産量は、野生株で15.9ng/mlであったのに対し、ΔagsB株で58.6ng/mlと大幅にペニシリンの生産量が増加した(図6)。
高分子化合物の生産能の評価として、アミラーゼ生産量を測定した。
培養条件
・培地: CD最小培地 200mL(500mL フラスコ)
・培養温度: 37 ℃
・培養時間:48hr or 36hr
・回転数 : 160 rpm
・分生子数: 107 個/100mL
・炭素源:でんぷん2% or 可溶性でんぷん2%
培養液から菌体を濾過し、培養上清のアミラーゼ活性を測定した。具体的には、培養開始24時間、36時間、48時間(でんぷん添加条件のみ)経過時の菌体をMIRACLOTH(CALBIOCHEM社製)にて濾過し、培養濾液のアミラーゼ活性をα-アミラーゼ測定キット(キッコーマンバイオケミファ株式会社製)にて測定した。測定法は付属の取扱説明書に従い、培養上清中のアミラーゼ活性を1U = N3-G5-β-CNP から 1 分間に1 μ molのCNPが遊離する力価として評価した。また、濾過した菌体を凍結乾燥し、乾燥菌体重量測定を行った。結果を図7に示す。
麹菌アミラーゼ高発現ベクターの作製法(図8)
麹菌ゲノムDNAより、PCR反応によりアミラーゼ遺伝子を増幅し、アスペルギルス ニドランスのagdA遺伝子のターミネーターと接続し、このDNA断片をAoamyB-agdAtとした。アミラーゼ遺伝子の増幅には、PCRプライマーとしてAoamyB-Not I-F(配列:5’- TGAATTCGCGGCCGCTATTTATGATGGTCGCGTGGTG-3’(配列番号21))およびAoamyB-R+(配列: 5’-CTTCTTGAGTGAGCTCACGAGCTACTACAGATCT-3’(配列番号22))を用い、agdA遺伝子のターミネーターの増幅には、PCRプライマーとしてTagdA-Xx-F(配列: 5’-TGTAGTAGCTCGTGAGCTCACTCAAGAAGCGTAACAGGATAGCCT-3’ (配列番号23))およびTagdA-XbaI-R(配列: 5’-GCTATCTAGAGGCCTGCAGGAGATC-3’ (配列番号24))を使用した。AoamyB-Not I-Fには制限酵素のNot Iの認識配列が付加されている(下線部)。また、TagdA-Xx-FにはAoamyB遺伝子の配列の一部とオーバーラップする配列が付加されており(下線部)、TagdA-XbaI-Rには制限酵素のXba Iの認識配列が付加されている(下線部)。AoamyB-Not I-FおよびAoamyB-R+を用いて増幅した遺伝子断片(AoamyB断片)とTagdA-Xx-FおよびTagdA-XbaI-Rを用いて増幅した遺伝子断片(agdAt断片)の接続にはヒュージョンPCR法を用いた。これはAoamyB断片およびagdAt断片の混合物をテンプレートとし、AoamyB-Not I-FおよびTagdA-XbaI-Rを用いてPCR反応を行う方法で、両遺伝子断片を接続することができる方法である。接続したDNA断片AoamyB-agdAtは、制限酵素のNot IおよびXba Iで消化し、pNA(N)EGFP(Furukawa et al. Biosci. Biothechnol. Biochem.,71(7), 1724-1730, 2007)のNot I、Xba Iサイトに導入した。pNA(N)EGFPは、アスペルギルス ニドランス内での選択マーカーとしてオーレオバシジン耐性遺伝子(auAr)を持つベクターであり、これをNot IおよびXba Iで消化したものを遺伝子導入に用いた。DNA断片AoamyB-agdAtを導入したプラスミドpNA(N)AoamyBは制限酵素のNot Iで消化した後、Bacterial alkaline phosphatase(BAP)(Takara社製)処理を行い、アスペルギルス ニドランスで強発現するプロモーターAnenoApを導入した。AnenoApはアスペルギルス ニドランスのゲノムDNAから、PCRプライマーPenoA-F(配列:5’-TGGTAAGAGTCGTCATATCGAG-3’ (配列番号25))およびPenoA-Not I-R(配列:5’-TAGCGGCCGCGAATTCGATGAACTAGAAGGATAGAG-3’ (配列番号26))を用いて増幅した。PenoA-Not I-Rには制限酵素のNot Iの認識配列が付加されており(下線部)、AnenoApの断片を一旦、プラスミドpZErOTM-2(Invitrogen社製)のEcoRVサイトに導入し、Not Iで切り出すことにより断片の両端にNot Iサイトが付加されたAnenoApの断片を得た。このAnenoApの断片をpNA(N)AoamyBのNot Iサイトに導入し、麹菌のアミラーゼを高発現するベクターpNAenoA::AoamyBとした。このベクターをアスペルギルス ニドランスのΔagsB株に導入することにより、異種タンパク質を高発現するΔagsB株を作製することができる。
アミラーゼ高発現株においてアミラーゼ活性を測定した。具体的には、実施例5、比較例5に記載の方法で作製した麹菌のアミラーゼを高発現するベクターpNAenoA::AoamyBをAspergillus nidulans の野生株およびα-1,3-グルカンが欠損株した株(AG欠損株)に導入し、異種タンパク質を高発現する野生株およびAG欠損株を作製した。これらの株について、培養上清に分泌されるアミラーゼの量を測定した。
具体的には、AG欠損株及び野生株、アミラーゼ高発現AG欠損株及びアミラーゼ高発現野生株を下記培養条件で培養した:
培養条件
・培地: CD最小培地 50mL(200mL フラスコ)
・培養温度: 37 ℃
・培養時間:24 hr
・回転数 : 160 rpm
・分生子数: 107 個/100mL
・炭素源:2% マルトース培養液から菌体を濾過し、培養上清のアミラーゼ活性を測定した。具体的には、培養開始24時間経過時の菌体をMIRACLOTH(CALBIOCHEM社製)にて濾過し、培養濾液のアミラーゼ活性をα-アミラーゼ測定キット(キッコーマンバイオケミファ株式会社製)にて測定した。測定法は付属の取扱説明書に従い、培養上清中のアミラーゼ活性を1U = N3-G5-β-CNP から1 分間に1 μ molのCNPが遊離する力価として評価した。結果を下記表1に示す。
麹菌アスペルギルス オリゼ(Aspergillus oryzae)においてα-1,3-グルカン合成酵素(AGS)遺伝子の三重破壊株を造成し、培養性状を比較した。
具体的には、麹菌AGS三重破壊株及び野生株を下記培養条件で培養した:
培養条件
・培地: CD最小培地 50mL(200mL フラスコ)
・培養温度: 30 ℃
・培養時間:48 hr
・回転数 : 160 rpm
・分生子数: 107 個/100mL
・炭素源:2% グルコース または 2% マルトース
結果を図19及び表4に示す。
Claims (4)
- α-1,3-グルカンを発現しない変異型の糸状菌を培養して、当該糸状菌に物質を生成させる工程、及び
得られた物質を回収する工程
を含む、物質生産方法。 - 前記変異型糸状菌がα-1,3-グルカン合成酵素agsの少なくとも一つを欠損している、請求項1に記載の方法。
- 糸状菌が、アスペルギルス属、ペニシリウム属、トリコデルマ属、セファロスポリウム属、又はアクレモニウム属に属する、請求項1又は2に記載の方法。
- 糸状菌が、アスペルギルス ニドランス、アスペルギルス オリゼ、アスペルギルス ニガー、又はアスペルギルス フミガタスである、請求項3に記載の方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014545784A JP6132847B2 (ja) | 2012-11-09 | 2013-11-08 | 糸状菌の高密度培養株を用いた有用物質生産方法 |
DK13853815.2T DK2918682T3 (da) | 2012-11-09 | 2013-11-08 | Fremgangsmåde til fremstilling af nyttigt stof, hvor højdensitet-dyrket filamentøs svampestamme anvendes |
US14/441,493 US11015175B2 (en) | 2012-11-09 | 2013-11-08 | Method for manufacturing useful substance in which high-density cultured strain of filamentous fungi is used |
EP13853815.2A EP2918682B1 (en) | 2012-11-09 | 2013-11-08 | Method for manufacturing useful substance in which high-density cultured strain of filamentous fungi is used |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012247276 | 2012-11-09 | ||
JP2012-247276 | 2012-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014073674A1 true WO2014073674A1 (ja) | 2014-05-15 |
Family
ID=50684765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080352 WO2014073674A1 (ja) | 2012-11-09 | 2013-11-08 | 糸状菌の高密度培養株を用いた有用物質生産方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11015175B2 (ja) |
EP (1) | EP2918682B1 (ja) |
JP (1) | JP6132847B2 (ja) |
DK (1) | DK2918682T3 (ja) |
WO (1) | WO2014073674A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016066690A1 (en) * | 2014-10-29 | 2016-05-06 | Novozymes A/S | Filamentous fungal double-mutant host cells |
WO2018166943A1 (en) | 2017-03-13 | 2018-09-20 | Dsm Ip Assets B.V. | Zinc binuclear cluster transcriptional regulator-deficient strain |
WO2018203566A1 (ja) | 2017-05-02 | 2018-11-08 | 国立大学法人東北大学 | 変異型糸状菌及び当該変異型糸状菌を用いた物質生産方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018112030A2 (en) * | 2016-12-13 | 2018-06-21 | Ecc See Level Innovation Llc | New processes for photo real embroidery technology for garments in sustainable and eco-friendly ways |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11506025A (ja) | 1996-03-18 | 1999-06-02 | アンティビオティコス,ソシエダ アノニマ | pcl遺伝子の発現によりペニシリウム・クリソゲヌムにおけるペニシリンG(ベンジルペニシリン)の生産性を高めるための方法 |
JP2001046078A (ja) | 1999-06-01 | 2001-02-20 | Gekkeikan Sake Co Ltd | タンパク質の高発現システム |
JP2002218970A (ja) | 2001-01-24 | 2002-08-06 | Kikkoman Corp | 液体麹の製造法 |
JP2005052116A (ja) | 2003-08-07 | 2005-03-03 | Gekkeikan Sake Co Ltd | 高活性プロモーター及びその利用 |
JP2007508022A (ja) | 2003-10-15 | 2007-04-05 | サンド・アクチエンゲゼルシヤフト | ペニシリン製造方法 |
JP2009118783A (ja) | 2007-11-15 | 2009-06-04 | Gekkeikan Sake Co Ltd | 糸状菌タンパク質分泌生産の改善 |
JP2010107126A (ja) | 2008-10-30 | 2010-05-13 | Honda Motor Co Ltd | 加湿器 |
JP2010172343A (ja) | 2003-04-28 | 2010-08-12 | Novozyme As | ホスホリパーゼおよびそれを製造する方法 |
JP2010220590A (ja) | 2009-03-25 | 2010-10-07 | National Institute Of Agrobiological Sciences | 新規レポーター遺伝子を用いたスクリーニング方法 |
JP2010227031A (ja) | 2009-03-27 | 2010-10-14 | Toray Ind Inc | 糸状菌連続培養によるタンパク質の製造方法およびその装置 |
JP2010227032A (ja) | 2009-03-27 | 2010-10-14 | Toray Ind Inc | セルラーゼの製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3117997B2 (ja) * | 1993-12-01 | 2000-12-18 | ノボ ノルディスク バイオテック,インコーポレイティド | アスペルギルス発現システム |
ATE210180T1 (de) * | 1995-01-26 | 2001-12-15 | Novozymes As | Xylanase beinhaltende futterzusätze für tiere |
US5773214A (en) * | 1995-02-27 | 1998-06-30 | Eli Lilly And Company | Multiple drug resistance gene of aspergillus flavus |
US20030027286A1 (en) * | 2000-09-06 | 2003-02-06 | Robert Haselbeck | Bacterial promoters and methods of use |
US20030134353A1 (en) * | 2001-03-08 | 2003-07-17 | Bioteknologisk Institut | Recombinant dimorphic fungal cell |
US20070196367A1 (en) * | 2006-02-22 | 2007-08-23 | Valentin Dinu | Methods of preventing and treating Alzheimer's disease, age related macular degeneration and other diseases involving extra-cellular debris through the inhibition of the complement system |
US20100093601A1 (en) * | 2008-05-19 | 2010-04-15 | Brett Tyler | Compositions and methods to protect cells by blocking entry of pathogen proteins |
TW201037077A (en) | 2009-03-16 | 2010-10-16 | Nat Inst Of Agrobio Sciences | Method for preventing or inhibiting infection of plant by microorganisms, and plant having resistance against infection by microorganisms |
WO2011130247A2 (en) * | 2010-04-14 | 2011-10-20 | The Penn State Research Foundation | Strategies for the transgenic manipulation of filamentous fungi |
EP2588616B1 (en) | 2010-07-01 | 2018-11-14 | DSM IP Assets B.V. | A method for the production of a compound of interest |
JP5707494B2 (ja) * | 2010-08-25 | 2015-04-30 | ダニスコ・ユーエス・インク | 粘性の表現型を変化させた糸状菌 |
MX357482B (es) | 2012-07-19 | 2018-07-11 | Dsm Ip Assets Bv | Cepa deficiente en agse. |
-
2013
- 2013-11-08 JP JP2014545784A patent/JP6132847B2/ja active Active
- 2013-11-08 WO PCT/JP2013/080352 patent/WO2014073674A1/ja active Application Filing
- 2013-11-08 US US14/441,493 patent/US11015175B2/en active Active
- 2013-11-08 DK DK13853815.2T patent/DK2918682T3/da active
- 2013-11-08 EP EP13853815.2A patent/EP2918682B1/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11506025A (ja) | 1996-03-18 | 1999-06-02 | アンティビオティコス,ソシエダ アノニマ | pcl遺伝子の発現によりペニシリウム・クリソゲヌムにおけるペニシリンG(ベンジルペニシリン)の生産性を高めるための方法 |
JP2001046078A (ja) | 1999-06-01 | 2001-02-20 | Gekkeikan Sake Co Ltd | タンパク質の高発現システム |
JP2002218970A (ja) | 2001-01-24 | 2002-08-06 | Kikkoman Corp | 液体麹の製造法 |
JP2010172343A (ja) | 2003-04-28 | 2010-08-12 | Novozyme As | ホスホリパーゼおよびそれを製造する方法 |
JP2005052116A (ja) | 2003-08-07 | 2005-03-03 | Gekkeikan Sake Co Ltd | 高活性プロモーター及びその利用 |
JP2007508022A (ja) | 2003-10-15 | 2007-04-05 | サンド・アクチエンゲゼルシヤフト | ペニシリン製造方法 |
JP2009118783A (ja) | 2007-11-15 | 2009-06-04 | Gekkeikan Sake Co Ltd | 糸状菌タンパク質分泌生産の改善 |
JP2010107126A (ja) | 2008-10-30 | 2010-05-13 | Honda Motor Co Ltd | 加湿器 |
JP2010220590A (ja) | 2009-03-25 | 2010-10-07 | National Institute Of Agrobiological Sciences | 新規レポーター遺伝子を用いたスクリーニング方法 |
JP2010227031A (ja) | 2009-03-27 | 2010-10-14 | Toray Ind Inc | 糸状菌連続培養によるタンパク質の製造方法およびその装置 |
JP2010227032A (ja) | 2009-03-27 | 2010-10-14 | Toray Ind Inc | セルラーゼの製造方法 |
Non-Patent Citations (11)
Title |
---|
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 78, no. 12, June 2012 (2012-06-01), pages 4126 - 4133 |
BEAUVAIS, A. ET AL.: "Two a(1-3) Glucan Synthases with Different Functions in Aspergillus fumigates", APPL. ENVIRON. MICROBIOL., vol. 71, 2005, pages 1531 - 1538, XP055280600, DOI: doi:10.1128/AEM.71.3.1531-1538.2005 |
C. HENRY ET AL.: "al,3 Glucans Are Dispensable in Aspergillus fumigatus", EUKARYOTIC CELL, vol. 11, no. 1, 2012, pages 26 - 29, XP055255465 * |
FURUKAWA ET AL., BIOSCI. BIOTHECHNOL. BIOCHEM., vol. 71, no. 7, 2007, pages 1724 - 1730 |
HENRY C. ET AL.: "a1,3 glucansare dispensable in Aspergillus fumigatus", EUKARIOT. CELL, vol. 11, 2011, pages 26 - 29 |
HIROKI SATO ET AL.: "Kojikin no Ekitai Baiyo ni Okeru a-1,3-glucan Gosei Koso Idenshi no Hatsugen to Kinshi Keitai eno Kan'yo", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY TAIKAI KOEN YOSHISHU, vol. 2011, 2011, pages 95, XP008179267 * |
HOGAN, L. H. ET AL.: "Altered expression of surface a-1,3-glucan in genetically related strains of Blastomyces dermatitidis that differ in virulence", INFECT. IMMUN., vol. 62, 1994, pages 3543 - 3546 |
I. POLACHECK ET AL.: "Aspergillus nidulans Mutant Lacking a-(1,3)- Glucan, Melanin, and Cleistothecia", JOURNAL OF BACTERIOLOGY, vol. 132, no. 2, 1977, pages 650 - 656, XP055255462 * |
MASAHIRO HITOSUGI ET AL.: "Aspergillus nigulans ni Okeru a-1,3-glucan Kessonkabu no Komitsudo Baiyosei to Busshitsu Seisansei no Hyoka", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY TAIKAI KOEN YOSHISHU, vol. 2013, 5 March 2013 (2013-03-05), pages 1626, XP008179276 * |
MAUBON, D. ET AL.: "AGS3, an a(1-3)glucan synthase gene family member of Aspergillusfumigatus, modulates mycelium growth in the lung of experimentally infected mice", FUNGAL GENET. BIOL., vol. 43, 2006, pages 366 - 375 |
RAPPLEYE, C.A. ET AL.: "RNA interference in Histoplasma capsulatumdemonstrates a rolefor a-(1,3)-glucan in virulence", MOL. MICROBIOL., vol. 53, 2004, pages 153 - 165 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016066690A1 (en) * | 2014-10-29 | 2016-05-06 | Novozymes A/S | Filamentous fungal double-mutant host cells |
CN107075451A (zh) * | 2014-10-29 | 2017-08-18 | 诺维信公司 | 丝状真菌双重突变体宿主细胞 |
WO2018166943A1 (en) | 2017-03-13 | 2018-09-20 | Dsm Ip Assets B.V. | Zinc binuclear cluster transcriptional regulator-deficient strain |
WO2018203566A1 (ja) | 2017-05-02 | 2018-11-08 | 国立大学法人東北大学 | 変異型糸状菌及び当該変異型糸状菌を用いた物質生産方法 |
US11021725B2 (en) | 2017-05-02 | 2021-06-01 | Tohoku University | Mutant filamentous fungus and substance production method in which said mutant filamentous fungus is used |
EP4431608A2 (en) | 2017-05-02 | 2024-09-18 | Tohoku University | Mutant filamentous fungus and substance production method in which said mutant filamentous fungus is used |
Also Published As
Publication number | Publication date |
---|---|
EP2918682A1 (en) | 2015-09-16 |
DK2918682T3 (da) | 2019-06-03 |
US11015175B2 (en) | 2021-05-25 |
JPWO2014073674A1 (ja) | 2016-09-08 |
EP2918682B1 (en) | 2019-04-10 |
JP6132847B2 (ja) | 2017-05-24 |
EP2918682A4 (en) | 2016-07-27 |
US20150307852A1 (en) | 2015-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611 | |
DK2714914T3 (en) | Simultaneous sequence-specific integration of multiple gene copies into filamentous fungi | |
US20230265413A1 (en) | Compositions and methods for enzyme immobilization | |
Meyer | Genetic engineering of filamentous fungi—progress, obstacles and future trends | |
CN101128581B (zh) | 突变aox1启动子 | |
JP6132847B2 (ja) | 糸状菌の高密度培養株を用いた有用物質生産方法 | |
Sidhu et al. | Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici | |
JP6335161B2 (ja) | 細胞表層発現用ポリヌクレオチド | |
Nakamura et al. | Agrobacterium tumefaciens-mediated transformation for investigating pathogenicity genes of the phytopathogenic fungus Colletotrichum sansevieriae | |
Liu et al. | Development of genetic tools in glucoamylase-hyperproducing industrial Aspergillus niger strains | |
JP2021514679A (ja) | 糸状真菌宿主細胞によって発現された組換えシュウ酸デカルボキシラーゼ | |
JP4831664B2 (ja) | 優れた熱安定性を有するクチナーゼ変異体 | |
EP3054004B1 (en) | Aspergillus mutant strain and transformant thereof | |
CN104981540A (zh) | 用于生物合成谷外停和羟谷外停的基因簇 | |
JP4495904B2 (ja) | 改変プロモーター | |
Dong et al. | Optimization of production conditions of rice α-galactosidase II displayed on yeast cell surface | |
JP2015063522A (ja) | Ebd及びhkd含有融合ペプチド及び当該ペプチドを発現する形質転換体 | |
Miller et al. | Role of cis-acting sites NorL, a TATA box, and AflR1 in nor-1 transcriptional activation in Aspergillus parasiticus | |
JP6647653B2 (ja) | 変異型糸状菌及び当該変異型糸状菌を用いた物質生産方法 | |
JP2016154483A (ja) | プロテインキナーゼ遺伝子変異株を利用した酵素類の製造方法 | |
JP6859086B2 (ja) | 糸状菌変異株及びそれを用いたc4ジカルボン酸の製造方法 | |
JP2017515494A (ja) | コルネキシスチン及びヒドロキシコルネキシスチンの生合成のための遺伝子クラスター | |
JP2009118783A (ja) | 糸状菌タンパク質分泌生産の改善 | |
Stewart et al. | Yeast genetic manipulation | |
JP2003164295A (ja) | 遺伝子高発現系 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13853815 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 14441493 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014545784 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013853815 Country of ref document: EP |