WO2014069437A1 - 電池寿命予測装置及び電池寿命予測システム - Google Patents

電池寿命予測装置及び電池寿命予測システム Download PDF

Info

Publication number
WO2014069437A1
WO2014069437A1 PCT/JP2013/079216 JP2013079216W WO2014069437A1 WO 2014069437 A1 WO2014069437 A1 WO 2014069437A1 JP 2013079216 W JP2013079216 W JP 2013079216W WO 2014069437 A1 WO2014069437 A1 WO 2014069437A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery life
life prediction
substrate
heat
Prior art date
Application number
PCT/JP2013/079216
Other languages
English (en)
French (fr)
Inventor
学 折戸
義基 加藤
Original Assignee
Semitec株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semitec株式会社 filed Critical Semitec株式会社
Publication of WO2014069437A1 publication Critical patent/WO2014069437A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery life prediction apparatus and a battery life prediction system for predicting a battery life by measuring a heat flux caused by deterioration of a battery such as a secondary battery.
  • a secondary battery such as a lithium ion battery is deteriorated by repeated charging / discharging and use under a high temperature environment, so that the usable life is limited, that is, there is a lifetime.
  • the resistance value of the power storage unit of the secondary battery is calculated from the internal resistance value of the secondary battery, and then the resistance value of the power storage unit in the usage environment of the secondary battery is calculated.
  • a technique is known in which the increase rate is calculated and the remaining life of the secondary battery is estimated from the resistance value of the power storage unit and the increase rate of the resistance value of the power storage unit (see Patent Document 1).
  • the current change value and the voltage change value are obtained from the current and voltage of the secondary battery measured in real time, and the internal resistance of the secondary battery is determined from these change values.
  • the remaining life of the secondary battery is estimated by calculation. For this reason, there is a possibility that a phenomenon in which the estimated remaining life of the secondary battery is suddenly shortened or lengthened due to a measurement error of the current and voltage of the secondary battery.
  • the heat flow sensor is used in the induction heating cooker as described above, the heat flow sensor is exclusively used for measuring the temperature. Therefore, the heat flow sensor is not used with attention paid to the point of predicting the life based on the characteristics of the battery, and such attention is not disclosed at all and there is no description suggesting it.
  • the present invention has been made in view of the above problems, and provides a battery life prediction apparatus and a battery life prediction system capable of highly accurate prediction by paying attention to the point of predicting the life based on the characteristics of the battery. With the goal.
  • the battery life prediction apparatus includes a heat flux detecting means for detecting temperature at least at two locations with respect to the battery, and measuring a change in heat flux due to deterioration of the battery from a temperature difference between the two locations. It is characterized by comprising.
  • the heat flux detection means corresponds to, for example, a sensor called a heat flow sensor or a heat flux sensor. According to this invention, it is possible to provide a battery life prediction apparatus capable of highly accurate prediction.
  • the battery life prediction apparatus is the battery life prediction apparatus according to claim 1, further comprising a battery, wherein the battery is a secondary battery, a fuel cell, or a solar battery. . According to this invention, it is possible to provide a battery life prediction apparatus suitable for predicting the life of these batteries.
  • the battery life prediction apparatus is the battery life prediction apparatus according to claim 2, wherein the heat flux detecting means includes a substrate, and the surface of the substrate is substantially the same as the mounting surface of the battery. It is characterized by being arranged in parallel. According to this invention, the apparatus can be miniaturized.
  • the battery life prediction apparatus is the battery life prediction apparatus according to any one of claims 1 to 3, wherein the heat flux detecting means includes a substrate, and the substrate is flexible. It has the property.
  • the flexible substrate is preferably a substrate called a flexible substrate, but is not limited to this. It is applicable if it has flexibility and can be arranged along the mounting surface. According to this invention, it is possible to ensure stabilization of the mounting state.
  • the battery life prediction apparatus is the battery life prediction apparatus according to any one of claims 1 to 4, further comprising temperature detection means for temperature compensation.
  • the temperature detection means for temperature compensation for example, a thermistor can be applied, but is not limited thereto.
  • Various heat sensitive elements can be applied. According to this invention, it is possible to predict the battery life with higher accuracy.
  • the battery life prediction system wherein the battery life prediction system predicts a load, a battery that supplies power to the load, and a life of the battery. It is characterized by comprising.
  • Battery life prediction system can be applied to various electronic devices such as personal computers and electric vehicles.
  • the application target is not particularly limited, and can be applied to devices, apparatuses, and the like that require prediction of battery life.
  • the battery life prediction system according to claim 7 is the battery life prediction system according to claim 6, wherein the battery life prediction system detects battery deterioration from charge and discharge of the battery or a change in heat flux during charge or discharge.
  • the change in heat flux may be measured both during charging and discharging of the battery, or the change in heat flux may be measured at one time during charging or discharging, and can be selected as appropriate. .
  • heat flux detection means heat flow sensor
  • (a) is a top view
  • (b) is a side view
  • (c) is a rear view.
  • the heat flux detection means heat flow sensor
  • (a) is a plan view
  • (b) is a side view
  • (c) is a rear view. It is explanatory drawing which shows a part of battery life prediction apparatus which concerns on the 4th Embodiment of this invention in cross section.
  • the heat flux detection means (heat flow sensor) is typically shown, (a) is a plan view, (b) is a side view, and (c) is a rear view.
  • the modification of the same heat flux detection means (heat flow sensor) is shown typically, (a) is a top view, (b) is a side view, (c) is a rear view.
  • FIG. 1 is an explanatory view showing a part of the battery life prediction apparatus in cross section
  • FIG. 2 is a schematic perspective view showing a heat flow sensor.
  • the present inventor has factors that affect the deterioration of the secondary battery, such as internal electrode short circuit, separator deterioration, internal resistance increase, and chemical reaction inside the battery.
  • factors that affect the deterioration of the secondary battery such as internal electrode short circuit, separator deterioration, internal resistance increase, and chemical reaction inside the battery.
  • all of these are known to be accompanied by abnormal heat generation, and we focused on the fact that the heat flux greatly changes during these heat generations.
  • various experiments and investigations were repeated, and it was found that the change in the heat flux had a correlation with the battery life, and the battery life prediction apparatus of this embodiment has been configured.
  • the battery life prediction apparatus includes, as a battery, for example, a lithium ion battery 1 that is a secondary battery, and a heat flow sensor 2 that constitutes a heat flux detection unit attached to the battery 1. .
  • the lithium ion battery 1 has a metal battery can 11 formed in a substantially cylindrical shape, and a strip-like positive electrode plate 12 and a negative electrode plate 13 are placed inside the battery can 11 via a separator 14 and a center pin 15. An electrolyte solution in which a lithium salt is dissolved is enclosed in a state of being wound around.
  • the battery can 11 has one end side closed in a bottomed shape and the other end side opened. The other end side is closed by the positive electrode cap 16 so that the battery can 11 is hermetically sealed. Inside the positive electrode cap 16, there is a heat feeling that prevents abnormal heat generation due to a gas discharge valve (not shown) or a large current. A resistance element or the like is provided.
  • Such a lithium ion battery 1 has one end side as a negative electrode terminal and the other end side positive electrode cap 16 side as a positive electrode terminal.
  • the heat flow sensor 2 constituting the heat flux detecting means includes a substrate 21, a first heat sensitive element 22 and a second heat sensitive element 23 as temperature detecting means disposed on the substrate 21. And.
  • the substrate 21 is made of an alumina material and has a substantially rectangular shape.
  • the substrate 21 has a length dimension of about 4 mm to 6 mm, a width dimension of about 1 mm to 2 mm, and a thickness dimension of about 0.1 mm to 0.4 mm. Yes.
  • a wiring pattern 21a made of platinum, a terminal portion 21b for electrically connecting the thermal elements 22 and 23, and a terminal portion 21c for connecting lead wires are formed by sputtering or the like.
  • the first thermosensitive element 22 and the second thermosensitive element 23 are made of a thin film thermistor, and the thin film thermistor is a complex oxide made of manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), or the like. These sintered bodies are used as a target and formed by sputtering.
  • the first heat sensitive element 22 and the second heat sensitive element 23 are arranged at two positions at a predetermined distance along the longitudinal direction of the substrate 21. Is to be detected.
  • the first heat sensitive element 22 and the second heat sensitive element 23 are each covered with a protective film 24.
  • the protective film 24 is formed by applying a glass paste by screen printing and sintering.
  • the material of the substrate 21 is not limited to alumina, and zirconia, sapphire, quartz, silicone, polyimide, glass epoxy, or the like can be applied.
  • the shape, dimensions, and material of the heat flow sensor 2 are not limited to specific ones.
  • such a heat flow sensor 2 includes a battery can 11 of the lithium ion battery 1 through an elastic member 3 having good thermal conductivity on the side end side of the substrate 21 where the first heat sensitive element 22 is formed. It is attached so as to be in close contact with the surface by an adhesive or the like.
  • the elastic member 3 is not limited to an elastic body, and may be grease having good thermal conductivity. In this case, an adhesive can be dispensed with.
  • a thin insulating film when laminated on the surface of the battery can 11, it may be attached so that it adheres in the same manner. Also in this case, heat can be detected by a first thermal element 22 and a second thermal element 23 described later.
  • the heat flow sensor 2 is attached to the surface of the battery can 11 with the flange portion 41 of the case 4 being fixedly attached to the surface of the battery can 11 while being accommodated in a cap-like case 4 provided as necessary.
  • the side is pressed against the surface side of the battery can 11.
  • a lead wire L connected to the terminal portion 21 c of the substrate 21 is led out from the case 4.
  • the flange portion 41 is formed in a shape that matches the curved surface of the battery can 11.
  • FIG. 16 shows the charging characteristics of the initial product (new product) of the lithium ion battery
  • FIG. 17 shows the charging characteristics of the used product (deteriorated product).
  • FIG. 18 shows the discharge characteristics of the initial product of the lithium ion battery
  • FIG. 19 shows the discharge characteristics of the used product.
  • the horizontal axis represents time [hr]
  • the left vertical axis represents the surface temperature [° C.]
  • the right vertical axis represents the temperature difference [° C.].
  • the surface temperature is the temperature of the surface of the battery can 11
  • the temperature difference is the difference between the measured temperatures respectively acquired by the first thermal element and the second thermal element of the heat flow sensor.
  • the surface temperature and the temperature difference have a similar curve, and increase with time, and then reach a peak and then decrease.
  • the used product shown in FIG. 17 has a pattern in which a curve is drawn with a steep gradient centering on the peak point, particularly in the temperature difference, and the heat flux greatly changes.
  • the change in temperature difference between the initial product and the product in use that is, the change in heat flux clearly forms a different pattern, and the result that the heat flux in this product in use has changed greatly. It is possible to predict the life of the battery by using it. Specifically, by grasping many patterns of changes in the heat flow rate of the used products, it is possible to predict with high accuracy in a short time. 18 and 19, the horizontal axis represents time [hr], the left vertical axis represents voltage [V], current [A], and the right vertical axis represents temperature difference [° C.].
  • the change in the heat flux has a correlation with the battery life, and the life of the battery can be predicted by measuring the change in the heat flux during charging and discharging of the battery.
  • FIG. 15 shows a block configuration of the battery life prediction system.
  • the lithium ion battery 1 is provided with a heat flow sensor 2 that constitutes a heat flux detection means, and a load 5 is connected to the lithium ion battery 1 so that power is supplied from the battery 1 to the load 5. It has become. Further, the heat flow sensor 2 is connected to the control means 6 by a lead wire L, and further, the notification means 7 is connected to the control means 6.
  • the control means 6 is constituted by a microcomputer or the like in order to execute control of the entire system and data processing, and includes a memory such as a CPU, a ROM, and a RAM.
  • the notification unit 7 is a display unit or a sound report unit, and performs a notification operation based on data transmitted from the control unit 6.
  • the memory of the control means 6 stores and stores several types of actual heat flow rate change patterns of used products.
  • the control means 6 transmits the comparison result data to the notification means 7.
  • the notification means 7 performs a notification operation based on the received data. For example, when it is determined that the comparison result data is the same as the pattern near the end of life stored in the memory in advance, such a warning display indicating the deterioration of the battery is performed.
  • the pattern comparison can be performed, for example, at the initial time of charging, and can be compared with the actual heat flow rate change pattern of the used product. The change is less affected by the ambient temperature, and a more accurate battery life can be predicted.
  • the degree of deterioration of the battery 1 may be largely determined according to the frequency at which the magnitude of the deterioration factor corresponding to the magnitude of the heat flux measured by the heat flow sensor 2 exceeds a predetermined threshold. By measuring the change in the heat flow rate, it is possible to predict the battery life with various high accuracy.
  • the battery life prediction system is not particularly limited to various electronic devices such as personal computers and electric vehicles, and can be applied to devices, devices, and the like that need to predict battery life.
  • FIG. 3 is an explanatory view showing a part of the battery life prediction apparatus in cross section
  • FIG. 4 schematically shows a heat flow sensor, (a) is a plan view, (b) is a side view, (c) is a rear view, and (d) is an explanatory view showing that the substrate has flexibility.
  • the battery life prediction apparatus includes a lithium ion battery 1 that is a secondary battery, and a heat flow sensor 2 that constitutes a heat flux detection means attached to the battery 1.
  • the basic configuration is the same as that of the first embodiment, but the configuration of the heat flow sensor 2 is slightly different.
  • the substrate 21 is a film-like flexible substrate formed of polyimide resin, polyester resin, polyethylene resin, or the like.
  • an elastic member 25 having a substantially rectangular shape with good thermal conductivity is attached to a region on the back side of the substrate 21 facing the first thermal element 22.
  • the substrate 21 has flexibility and can be easily deformed in a direction orthogonal to the longitudinal direction.
  • the heat flow sensor 2 is mounted in a state where the surface of the substrate 21 is disposed substantially parallel to the surface of the battery can 11 as the mounting surface.
  • the elastic member 25 is attached to the surface of the battery can 11 using an adhesive or the like.
  • the substrate 21 including the elastic member 25 is deformed and attached along the curved surface of the surface of the battery can 11.
  • the heat flow sensor 2 is attached in close contact with the surface of the battery can 11 at the elastic member 25 portion. Further, since the substrate 21 is disposed substantially parallel to the surface of the battery can 11, it is possible to reduce the size.
  • the internal heat of the battery 1 generated during charging and discharging of the battery 1 is received by the elastic member 25 from the surface of the battery can 11, flows to the substrate 21, is detected by the first thermal element 22, and then the substrate 21 is detected by the second thermal element 23.
  • the first thermal element 22 is detected by the first thermal element 22.
  • the apparatus can be miniaturized.
  • the heat flow sensor 2 may be configured as shown in FIG. FIG. 5 is a view corresponding to FIG. 4 schematically showing a heat flow sensor.
  • a portion 25 ′ corresponding to the elastic member 25 is formed integrally with the substrate 21. Therefore, the portion 25 ′ in the substrate 21 is formed with a larger thickness dimension than the other portions.
  • the portion 25 ′ of the substrate 21 is attached in close contact with the surface of the battery can 11. Therefore, the heat inside the battery 1 is detected by the second thermal element 23 through the surface 25 of the substrate 21, the first thermal element 22, and the substrate 21 through the portion 25 ′ from the surface of the battery can 11. .
  • FIGS. 6 is an explanatory view showing a part of the battery life prediction apparatus in cross section
  • FIG. 7 schematically shows a heat flow sensor, (a) is a plan view, (b) is a side view, c) is a rear view.
  • the battery life prediction apparatus includes a lithium ion battery 1 that is a secondary battery, and a heat flow sensor 2 that constitutes a heat flux detection means attached to the battery 1.
  • This embodiment is basically configured in the same manner as the second embodiment, but the configuration on the back side of the substrate 21 is different. As shown in FIG. 7, an elastic member 25 having a substantially rectangular heat conductivity is attached to a region on the back side of the substrate 21 facing the first thermosensitive element 22. Further, an insulating member 26 formed so as to follow the shape of the substrate 21 is attached around the elastic member 25.
  • FIG. 8 is an explanatory view showing a part of the battery life prediction device in cross section.
  • FIGS. 9 and 10 schematically show the heat flow sensor, (a) is a plan view, and (b) is a side view.
  • FIG. 4C is a rear view.
  • substrate 21 is abbreviate
  • the battery life prediction apparatus includes a lithium ion battery 1 that is a secondary battery and a heat flow sensor 2 that constitutes a heat flux detection means attached to the battery 1.
  • a lithium ion battery 1 that is a secondary battery
  • a heat flow sensor 2 that constitutes a heat flux detection means attached to the battery 1. This embodiment differs from the above-described embodiments in the configuration of the heat flow sensor 2.
  • substrate 21 is formed in the substantially square shape
  • the thin film thermistor which is a thermosensitive element is formed in the approximate center part. Two such substrates 21 are configured such that the back sides are bonded together. Therefore, in FIG. 9B, the thin film thermistor formed on the lower substrate 21 becomes the first thermal element 22, and the thin film thermistor formed on the upper substrate 21 becomes the second thermal element 23.
  • the heat flow sensor 2 configured in this way is attached, for example, with one thermal element (the first thermal element 22 in this embodiment) facing the surface of the battery can 11.
  • the internal heat of the battery 1 generated during charging and discharging of the battery 1 is detected by the first thermal element 22 from the surface of the battery can 11, and then flows in the thickness direction of the substrate 21. It is detected by the element 23. Thereby, the temperature difference between the first thermosensitive element 22 and the second thermosensitive element 23 can be measured, and the heat flux of heat generated from the inside of the battery 1 can be measured.
  • the heat flow sensor 2 may be configured as shown in FIG.
  • the heat flow sensor 2 forms a thin film thermistor on the front and back of a single substrate 21. Therefore, in FIG. 10B, for example, the thin film thermistor formed on the lower side (back side) of the substrate 21 becomes the first thermal element 22, and the thin film thermistor formed on the upper side (front side) is the second.
  • the thermal element 23 is obtained. Even with such a configuration, the same operational effects as described above can be achieved.
  • FIG. 11 is an explanatory diagram showing a part of the battery life prediction apparatus in cross section.
  • a rectangular type battery is applied as the lithium ion battery 1.
  • the battery 1 has a rectangular flat appearance, includes an insulating case 11, and is provided with a positive electrode terminal and a negative electrode terminal on one end side.
  • a recess 11a is formed on one side of the insulating case 11, and the heat flow sensor 2 is attached to the recess 11a.
  • the heat generated in the battery 1 due to charging and discharging is detected by the first thermal element 22 of the heat flow sensor 2 through the thin portion of the recess 11a, and then flows through the substrate 21 and the second thermal element 23. Will be detected.
  • FIG. 12 is an explanatory diagram showing a part of the battery life prediction apparatus in cross section.
  • This embodiment is basically the same as the first embodiment. The difference is that a storage recess 11b extending in the vertical direction is formed in the center of the battery 1, and the third thermosensitive element 8 is disposed as a temperature detecting means in the storage recess 11b.
  • the thermal element 8 is a temperature-sensitive thermal element and is a thermistor.
  • the lead wire L connected to the thermistor is led out from the housing recess 11b and connected to the control means.
  • the thermal element 8 detects the ambient temperature, specifically, the internal temperature of the battery 1 as a change in resistance value, and the detection result is detected and measured by the first thermal element 22 and the second thermal element 23.
  • the measurement accuracy of the change in the heat flow rate is improved by reflecting the difference in temperature.
  • FIG. 13 is an explanatory diagram showing a part of the battery life prediction apparatus in cross section.
  • the heat flow sensor 2 is constituted by a thermopile.
  • the heat flow sensor 2 is a thermopile in which a large number of thermocouples are connected to both surfaces of a heat resistance plate. Therefore, the temperature difference which arises on both surfaces (front and back) can be measured.
  • Such a heat flow sensor 2 is attached to the surface of the battery can 11 in the battery 1. Specifically, it is attached so that one surface (for example, the back surface side) contacts the surface of the battery can 11.
  • the internal heat of the battery 1 generated during charging and discharging of the battery 1 is detected from the surface of the battery can 11 on the back surface side of the heat flow sensor 2, and then flows in the thickness direction of the heat resistance plate. Detected. Thereby, the temperature difference which arises on both surfaces (front and back) can be measured, and the heat flux of the heat which generate
  • a temperature-compensating thermal element 8 is disposed in the housing recess 11b formed in the center of the battery 1.
  • FIG. 14 is an explanatory diagram showing a part of the battery life prediction apparatus in section.
  • the heat flow sensor 2 is constituted by a thermopile.
  • a temperature-sensitive thermal element 8 is arranged in the vicinity of the battery 1.
  • the thermal element 8 detects the ambient temperature in the vicinity of the battery 1 as a change in resistance value, and reflects the detection result on the temperature difference generated on both surfaces (front and back surfaces) of the heat flow sensor 2, thereby measuring the measurement accuracy of the change in the heat flow rate. Is to improve.
  • thermocouple a thermocouple, a thermopile, a thermistor, a resistance temperature detector, a semiconductor temperature sensor, etc.
  • the means is not particularly limited.
  • a secondary battery a fuel cell, or a solar cell can be applied.
  • the secondary battery include a lithium ion battery, a nickel hydrogen battery, an electric double layer capacitor, a lead storage battery, and a nickel cadmium battery, but are not limited to specific ones.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 電池の特性に基づいてその寿命を予測する点に着目し、精度の高い予測が可能な電池寿命予測装置及び電池寿命予測システムを提供する。 電池寿命予測装置は、二次電池、燃料電池又は太陽電池1に対して温度検出手段(第1の感熱素子22、第2の感熱素子23)によって少なくとも2箇所で温度を検知し、これら2箇所の温度差から電池1の劣化に起因する熱流束の変化を測定する熱流束検出手段(熱流センサ2)を備えている。熱流束検出手段(熱流センサ2)は、基板21を備えており、この基板21の面は電池1の取付面に対して略平行に配置されている。

Description

電池寿命予測装置及び電池寿命予測システム
 本発明は、二次電池等の電池の劣化に起因する熱流束を測定して電池の寿命を予測する電池寿命予測装置及び電池寿命予測システムに関する。
 例えば、リチウムイオン電池等の二次電池は、充放電の繰り返しや高温環境下での使用によって劣化するため、使用可能な耐用年数には限りがあり、すなわち、寿命がある。
 このため、二次電池の余寿命を推定する技術として、二次電池の内部抵抗値から二次電池の蓄電部の抵抗値を算出し、次いで二次電池の使用環境における蓄電部の抵抗値の増加率を算出し、蓄電部の抵抗値と蓄電部の抵抗値の増加率から二次電池の余寿命を推定する技術が知られている(特許文献1参照)。
 しかしながら、このような余寿命を推定する方法においては、リアルタイムで計測された二次電池の電流及び電圧から、電流変化値及び電圧変化値を取得し、これら変化値から二次電池の内部抵抗を算出し二次電池の余寿命を推定している。このため二次電池の電流及び電圧の計測誤差等により、推定される二次電池の余寿命が突然短くなったり、長くなったりする現象が生じる可能性がある。
 ところで、誘導加熱調理器において、鍋の温度を瞬時に、精度よく予測するため、熱流束を測定する熱流センサ(熱流束検出手段)を用いるものが提案されている(特許文献2参照)。
特開2010-139260号公報 特開2009-156753号公報
 しかしながら、上記のように誘導加熱調理器に熱流センサを用いる場合には、専ら熱流センサは温度を測定するために使用されるものである。したがって、熱流センサは、電池の特性に基づいてその寿命を予測する点に着目して用いられるものではなく、このような着目は全く開示されておらず、また、それを示唆する記載もない。
 本発明は、上記課題に鑑みてなされたもので、電池の特性に基づいてその寿命を予測する点に着目し、精度の高い予測が可能な電池寿命予測装置及び電池寿命予測システムを提供することを目的とする。
 請求項1に記載の電池寿命予測装置は、電池に対して少なくとも2箇所で温度を検知し、これら2箇所の温度差から電池の劣化に起因する熱流束の変化を測定する熱流束検出手段を具備することを特徴とする。
 熱流束検出手段は、例えば、熱流センサ、熱流束センサと称されるセンサが相当する。
 かかる発明によれば、精度の高い予測が可能な電池寿命予測装置を提供することができる。
 請求項2に記載の電池寿命予測装置は、請求項1に記載の電池寿命予測装置において、電池を備えており、当該電池は、二次電池、燃料電池又は太陽電池であることを特徴とする。
 かかる発明によれば、これら電池の寿命予測に好適な電池寿命予測装置を提供することができる。
 請求項3に記載の電池寿命予測装置は、請求項2に記載の電池寿命予測装置において、前記熱流束検出手段は、基板を備えており、この基板の面は電池の取付面に対して略平行に配置されていることを特徴とする。
 かかる発明によれば、装置の小形化が可能となる。
 請求項4に記載の電池寿命予測装置は、請求項1乃至請求項3のいずれか一に記載の電池寿命予測装置において、前記熱流束検出手段は、基板を備えており、この基板は可撓性を有していることを特徴とする。
 可撓性を有する基板は、フレキシブル基板と称される基板が好ましいが、このものに限定されるものではない。可撓性を有して取付面に沿うように配設可能であれば適用できる。
 かかる発明によれば、取付状態の安定化の確保が可能となる。
 請求項5に記載の電池寿命予測装置は、請求項1乃至請求項4のいずれか一に記載の電池寿命予測装置において、温度補償用の温度検出手段を備えていることを特徴とする。
 温度補償用の温度検出手段としては、例えば、サーミスタが適用できるが、これに限定されるものではない。各種感熱素子等の適用が可能である。
 かかる発明によれば、より精度の高い電池寿命の予測が可能となる。
 請求項6に記載の電池寿命予測システムは、負荷と、この負荷に電力を供給する電池と、この電池の寿命を予測する請求項1乃至請求項5のいずれか一に記載の電池寿命予測装置と、を具備することを特徴とする。
 電池寿命予測システムは、パソコン等の各種電子機器や電動車両等に適用できる。適用対象が格別に限定されるものではなく、電池寿命の予測が必要な機器、装置等に適用可能である。
 請求項7に記載の電池寿命予測システムは、請求項6に記載の電池寿命予測システムにおいて、電池の充電及び放電時又は充電若しくは放電時の熱流束の変化から、電池の劣化を検知することを特徴とする。
 電池の充電及び放電時の双方時に、熱流束の変化を測定するようにしてもよいし、充電又は放電時の一方時に熱流束の変化を測定するようにしてもよく、適宜選択することができる。
 本発明によれば、精度の高い予測が可能な電池寿命予測装置及び電池寿命予測システムを提供することができる。
本発明の第1の実施形態に係る電池寿命予測装置の一部を断面にして示す説明図である。 同熱流束検出手段(熱流センサ)を示す模式的な斜視図である。 本発明の第2の実施形態に係る電池寿命予測装置の一部を断面にして示す説明図である。 同熱流束検出手段(熱流センサ)を模式的に示しており、(a)は平面図、(b)は側面図、(c)は背面図、(d)は基板が可撓性を有していることを示す説明図である。 同熱流束検出手段(熱流センサ)の変形例を模式的に示しており、(a)は平面図、(b)は側面図、(c)は背面図である。 本発明の第3の実施形態に係る電池寿命予測装置の一部を断面にして示す説明図である。 同熱流束検出手段(熱流センサ)を模式的に示しており、(a)は平面図、(b)は側面図、(c)は背面図である。 本発明の第4の実施形態に係る電池寿命予測装置の一部を断面にして示す説明図である。 同熱流束検出手段(熱流センサ)を模式的に示しており、(a)は平面図、(b)は側面図、(c)は背面図である。 同熱流束検出手段(熱流センサ)の変形例を模式的に示しており、(a)は平面図、(b)は側面図、(c)は背面図である。 本発明の第5の実施形態に係る電池寿命予測装置の一部を断面にして示す説明図である。 本発明の第6の実施形態に係る電池寿命予測装置の一部を断面にして示す説明図である。 本発明の第7の実施形態に係る電池寿命予測装置の一部を断面にして示す説明図である。 本発明の第8の実施形態に係る電池寿命予測装置の一部を断面にして示す説明図である。 本発明の実施形態に係る電池寿命予測システムを示すブロック構成図である。 初期品の電池における充電特性を示すグラフである。 使用経過品における充電特性を示すグラフである。 初期品の電池における放電特性を示すグラフである。 使用経過品における放電特性を示すグラフである。
 以下、本発明の第1の実施形態に係る電池寿命予測装置について図1及び図2を参照して説明する。図1は、電池寿命予測装置の一部を断面にして示す説明図であり、図2は、熱流センサを示す模式的な斜視図である。
 まず、本発明者は、電池寿命予測装置を設計するにあたり、二次電池の劣化に影響を及ぼす因子として、内部電極の短絡、セパレータの劣化、内部抵抗の増大、電池内部での化学反応があるがこれらはいずれも異常な発熱を伴うことが知られており、これらの現象が発熱時に熱流束が大きく変化することに着目した。そして、種々の実験、調査を繰り返し、熱流束の変化が電池寿命と相関があることを見出し、本実施形態の電池寿命予測装置を構成するに至っている。
 図1に示すように、電池寿命予測装置は、電池として例えば、二次電池であるリチウムイオン電池1と、この電池1に取付けられた熱流束検出手段を構成する熱流センサ2とを備えている。
 リチウムイオン電池1は、略円筒状に形成された金属製の電池缶11を有し、この電池缶11の内部に、帯状の正極板12と負極板13とがセパレータ14を介してセンターピン15を中心として巻回された状態で、リチウム塩を溶解させた電解液が封入されている。
 また、電池缶11は、一端側が有底状に閉塞されていて他端側が開放されている。この他端側は正極キャップ16により閉塞されて電池缶11は密閉されるようになっており、正極キャップ16の内側には、図示しないガス排出弁や大電流による異常な発熱を防止する熱感抵抗素子等が設けられている。
 このようなリチウムイオン電池1は、一端側を負極端子とし、他端側の正極キャップ16側を正極端子としている。
 図2に示すように、熱流束検出手段を構成する熱流センサ2は、基板21と、この基板21上に配設された温度検出手段としての第1の感熱素子22及び第2の感熱素子23とを備えている。
 基板21は、アルミナ材料が用いられて略長方形状をなして、長さ寸法が約4mm~6mm、幅寸法が約1mm~2mm、厚さ寸法が約0.1mm~0.4mmに形成されている。また、基板21上には、プラチナからなる配線パターン21a及び前記感熱素子22、23を電気的に接続する端子部21b、リード線を接続する端子部21cがスパッタリング法等によって形成されている。
 第1の感熱素子22及び第2の感熱素子23は、薄膜サーミスタからなり、この薄膜サーミスタは、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)等からなる複合酸化物の焼結体をターゲットとしてスパッタリング法によって形成されている。
 具体的には、第1の感熱素子22と第2の感熱素子23とは、基板21の長手方向に沿って所定の距離を空けて2箇所に配設されており、したがって、2箇所で温度を検知するようになっている。また、第1の感熱素子22と第2の感熱素子23とは、それぞれ保護膜24で覆われている。この保護膜24は、ガラスペーストをスクリーン印刷により塗布し、焼結して形成されている。
 なお、基板21の材料は、アルミナに限らず、ジルコニア、サファイア、石英、シリコーン、ポリイミド、ガラスエポキシ等が適用できる。加えて、熱流センサ2における形状、寸法や材質は、格別特定のものに限定されるものでなはい。
 このような熱流センサ2は、図1に示すように基板21における第1の感熱素子22が形成された側端側が熱伝導性が良好な弾性部材3を介してリチウムイオン電池1の電池缶11の表面に接着剤等によって密着するように取付けられている。弾性部材3は、弾性体に限定されるものではなく熱伝導性の良好なグリス等でもよい。この場合、接着剤を不要とすることができる。
 また、電池缶11の表面に薄い絶縁用のフィルムがラミネートされている場合も同様の方法で密着するように取付ければよい。この場合にも後述する第1の感熱素子22及び第2の感熱素子23による熱の検知が可能である。
 詳しくは、熱流センサ2は、必要に応じて設けられるキャップ状のケース4内に収納された状態でケース4のフランジ部41が電池缶11の表面に固着されて取付けられ、基板21の側端側が電池缶11の表面側に押圧されるようになっている。また、ケース4からは、基板21の端子部21cに接続されたリード線Lが導出されている。なお、フランジ部41は、電池缶11の曲面状の表面に合致する形状に形成されている。
 次に、電池寿命予測装置の概略の動作について説明する。電池1の充電時及び放電時には、電池1の内部において充電、放電に伴い熱が発生する。この熱は、電池缶11の表面に伝わり、まず、熱流センサ2の第1の感熱素子22に検知され、その後、基板21を流れて第2の感熱素子23に検知される。この場合、第1の感熱素子22に検知され測定される温度と第2の感熱素子23に検知され測定される温度とには差が生じ、つまり、温度差が生じる。この温度差の変化は、熱流速の変化に相当するものであり、温度差を測定することにより、電池1内部から発生する熱の熱流束を測定することができる。
 このように電池1に対して2箇所で温度を検知することにより、熱流速の変化を測定することが可能となる。
 続いて、熱流束の変化が電池寿命と相関関係があることを見出し確認した実験結果について図16乃至図19を参照して説明する。図16は、リチウムイオン電池の初期品(新品)の充電特性を示し、図17は、同使用経過品(劣化品)の充電特性を示している。また、図18は、リチウムイオン電池の初期品の放電特性を示し、図19は、同使用経過品の放電特性を示している。
 図16及び図17において、横軸は時間[hr]を示し、縦軸左は表面温度[℃]、縦軸右は温度差[℃]を示している。表面温度は、電池缶11の表面の温度であり、温度差は、熱流センサの第1の感熱素子と第2の感熱素子とによってそれぞれ取得される測定温度の差である。
 図16に示す初期品においては、表面温度と温度差は、類似したカーブを描いており、時間とともに上昇し、ピークに至った後下降するパターンとなっている。
 一方、図17に示す使用経過品では、特に温度差において、ピーク点を中心として急峻な勾配によってカーブが描かれるパターンとなっており、熱流束が大きく変化している。
 このように初期品と使用経過品との温度差の変化、つまり、熱流束の変化は明らかに異なったパターンを形成するようになっており、この使用経過品における熱流束が大きく変化する結果を用いて電池の寿命を予測することが可能となる。
 また、具体的には、使用経過品の熱流速の変化の多くのパターンを把握しておくことにより、短時間に、かつ精度の高い予測が可能となる。
 図18及び図19において、横軸は時間[hr]を示し、縦軸左は電圧[V]、電流[A]、縦軸右は温度差[℃]を示している。
 ここにおいても初期品と使用経過品との熱流束の変化は明らかに異なったパターンを形成するようになっており、この結果を用いて電池の寿命を予測することが可能となる。
 以上のように、熱流束の変化が電池寿命と相関関係があり、電池の充電時、放電時の熱流束の変化を測定することにより電池の寿命を予測することが可能なことが分かる。
 次に、上記電池寿命予測装置を備える電池寿命予測システムについて図15を参照して説明する。図15は、電池寿命予測システムのブロック構成を示している。
 リチウムイオン電池1には、熱流束検出手段を構成する熱流センサ2が取付けられており、リチウムイオン電池1には、負荷5が接続されていて電池1から負荷5に電力が供給されるようになっている。また、熱流センサ2は、リード線Lによって制御手段6と接続されており、さらに、制御手段6には、報知手段7が接続されている。
 制御手段6は、システム全体の制御やデータ処理を実行するため、マイクロコンピュータ等によって構成され、CPUやROM、RAM等のメモリを備えている。報知手段7は、表示部や報音部であり、制御手段6から送信されるデータによって報知動作を実行する。
 また、制御手段6のメモリには、使用経過品の実際の熱流速の変化のパターンが数種類記憶され格納されている。
 このように構成された電池寿命予測システムの動作の概略を説明する。電池1の充電時及び放電時に熱流センサ2によって熱流速の変化(具体的には、第1の感熱素子22と第2の感熱素子23との抵抗値の変化である)が測定されると、この測定値が制御手段6へ送られ、制御手段6ではこの測定値に基づく熱流速の変化のパターンと予めメモリに格納されている使用経過品の熱流速の変化のパターンとを比較する動作を行う。
 次いで制御手段6は、比較結果のデータを報知手段7へ送信する。報知手段7では、受信したデータに基づいて報知動作を行う。例えば、比較結果のデータが予めメモリに格納されている寿命末期に近いパターンと同じという判定がなされた場合には、そのような電池の劣化を示す警告表示を行うようになっている。
 このような電池寿命予測システムよれば、熱流束の変化を測定することにより、短時間に、かつ精度の高い電池の寿命を予測が可能となる。すなわち、パターンの比較は、例えば、充電の初期の時間に実行することも可能であり、また、使用経過品の実際の熱流速の変化のパターンとの比較が可能であり、さらに、熱流速の変化は、周囲温度に影響されることが少なく、より精度の高い電池の寿命を予測が可能となる。
 なお、上記では電池の充電及び放電時の双方時において、熱流速の変化を測定するものについて説明したが、充電又は放電時の一方時において、熱流束の変化を測定するようにしてもよい。これは、電池1の特性等に応じて適宜選択することができる。
 なお、熱流センサ2によって測定された熱流束の大きさに応じた劣化因子の大きさが予め定められた閾値を超える頻度に応じて、電池1の劣化の度合いを大きく判定するようにしてもよく、熱流速の変化を測定することにより、種々の精度の高い電池寿命の予測を行うことができる。
 また、この電池寿命予測システムは、パソコン等の各種電子機器や電動車両等、格別に限定されず、電池寿命の予測が必要な機器、装置等に適用できる。
 次に、本発明の第2の実施形態に係る電池寿命予測装置について図3乃至及び図5を参照して説明する。図3は、電池寿命予測装置の一部を断面にして示す説明図であり、図4は、熱流センサを模式的に示しており、(a)は平面図、(b)は側面図、(c)は背面図、(d)は基板が可撓性を有していることを示す説明図である。
 なお、以下の各実施形態において、第1の実施形態と同一又は相当部分には同一符号を付し、重複する説明は省略する。また、熱流センサ2から導出されるリード線Lの図示を省略している場合がある。
 図3に示すように、電池寿命予測装置は、二次電池であるリチウムイオン電池1と、この電池1に取付けられた熱流束検出手段を構成する熱流センサ2とを備えている。
 基本的な構成は、第1の実施形態と同様であるが、熱流センサ2の構成が若干異なっている。図4に示すように、基板21は、ポリイミド樹脂、ポリエステル樹脂やポリエチレン樹脂等から形成されたフィルム状のフレキシブル基板である。また、第1の感熱素子22と対向する基板21の背面側の領域には、略長方形状をなす熱伝導性が良好な弾性部材25が貼着されている。さらに、図4(d)に示すように、基板21は、可撓性を有し、長手方向と直交する方向に容易に変形することが可能となっている。
 このような構成において、図3に示すように熱流センサ2は、その基板21の面が取付面である電池缶11の表面と略平行に配置された状態で取付けられている。具体的には、その弾性部材25の部分を接着剤等を用いて電池缶11の表面に取付けられている。この場合、基板21は、弾性部材25を含めて電池缶11の表面の曲面に沿って変形されて取付けられる。このため、熱流センサ2は、弾性部材25の部分において、電池缶11の表面に密着して取付けられるようになる。また、基板21が電池缶11の表面と略平行に配置されているので、小形化が可能となる。
 電池1の充電時及び放電時に発生する電池1の内部の熱は、電池缶11の表面から弾性部材25へ受熱され、基板21へと流れ、第1の感熱素子22で検知され、その後、基板21を流れて第2の感熱素子23で検知される。これにより、第1の実施形態と同様に、熱流速の変化を測定することが可能となる。
 以上のように本実施形態によれば、熱流束の変化を測定することにより、短時間に、かつ精度の高い電池の寿命を予測が可能となる。加えて、装置の小形化が可能となる。
 なお、熱流センサ2は、図5に示すように構成してもよい。図5は、熱流センサを模式的に示す前記図4に相当する図である。この熱流センサ2は、前記弾性部材25に相当する部分25´を基板21と一体的に形成したものである。したがって、基板21における部分25´は、他の部分より厚さ寸法が大きく形成されている。
 このような構成においては、基板21における部分25´が電池缶11の表面に密着して取付けられるようになる。したがって、電池1の内部の熱は、電池缶11の表面から部分25´を通して基板21の表面側、第1の感熱素子22、さらに、基板21を流れて第2の感熱素子23で検知される。
 次に、本発明の第3の実施形態に係る電池寿命予測装置について図6及び図7を参照して説明する。図6は、電池寿命予測装置の一部を断面にして示す説明図であり、図7は、熱流センサを模式的に示しており、(a)は平面図、(b)は側面図、(c)は背面図である。
 図6に示すように、電池寿命予測装置は、二次電池であるリチウムイオン電池1と、この電池1に取付けられた熱流束検出手段を構成する熱流センサ2とを備えている。
 本実施形態は、基本的には、第2の実施形態と同様に構成されているが、基板21の背面側の構成が異なっている。図7に示すように、第1の感熱素子22と対向する基板21の背面側の領域には、略長方形状をなす熱伝導性が良好な弾性部材25が貼着されている。また、この弾性部材25の周囲には、基板21の形状に沿うように形成された絶縁部材26が貼着されている。
 このような構成によれば、熱流センサ2における基板21の背面側の略全面を電池缶11の表面に当接することができ、安定して取付けることができるので、取付状態の安定性を確保することが可能となる。
 次に、本発明の第4の実施形態に係る電池寿命予測装置について図8乃至図10を参照して説明する。図8は、電池寿命予測装置の一部を断面にして示す説明図であり、図9及び図10は、熱流センサを模式的に示しており、(a)は平面図、(b)は側面図、(c)は背面図である。なお、基板21に形成される配線パターン及び端子部の図示は省略している。
 図8に示すように、電池寿命予測装置は、二次電池であるリチウムイオン電池1と、この電池1に取付けられた熱流束検出手段を構成する熱流センサ2とを備えている。本実施形態は、前述の各実施形態とは、熱流センサ2の構成が異なっている。
 図9に示すように、基板21は、略正方形状に形成されており、その略中央部に感熱素子である薄膜サーミスタが形成されている。このような基板21における2枚を、背面側同士を貼り合わせて構成されている。したがって、図9(b)において、下側の基板21に形成された薄膜サーミスタが第1の感熱素子22となり、上側の基板21に形成された薄膜サーミスタが第2の感熱素子23となる。
 このように構成された熱流センサ2が例えば、一方の感熱素子(本実施形態においては、第1の感熱素子22)側が電池缶11の表面に対向して取付けられる。
 よって、電池1の充電時及び放電時に発生する電池1の内部の熱は、電池缶11の表面から第1の感熱素子22で検知され、その後、基板21の厚み方向に流れ、第2の感熱素子23で検知される。これにより、第1の感熱素子22と第2の感熱素子23との温度差を測定することができ、電池1内部から発生する熱の熱流束を測定することができる。
 このように電池1に対して第1の感熱素子22と第2の感熱素子23との表裏の2箇所で温度を検知することにより、熱流速の変化を測定することが可能となる。
 なお、熱流センサ2は、図10に示すように構成してもよい。この熱流センサ2は、1枚の基板21の表裏に薄膜サーミスタを形成するものである。したがって、図10(b)において、例えば、基板21の下側(裏面側)に形成された薄膜サーミスタが第1の感熱素子22となり、上側(表面側)に形成された薄膜サーミスタが第2の感熱素子23となる。このような構成によっても上記と同様な作用効果を奏することが可能となる。
 次に、本発明の第5の実施形態に係る電池寿命予測装置について図11を参照して説明する。図11は、電池寿命予測装置の一部を断面にして示す説明図である。
 本実施形態においては、リチウムイオン電池1として角形タイプの電池を適用するものである。電池1は、角形扁平状の外観をなしていて、絶縁性のケース11を備え、一端側に正極端子及び負極端子が設けられている。
 絶縁性のケース11の一側には、凹部11aが形成されており、この凹部11aに熱流センサ2が差し込まれるように取付けられている。
 したがって、電池1の内部において充電、放電に伴い発生する熱は、凹部11aの薄肉部を通じて熱流センサ2の第1の感熱素子22で検知され、その後、基板21を流れて第2の感熱素子23で検知されるようになる。
 次に、本発明の第6の実施形態に係る電池寿命予測装置について図12を参照して説明する。図12は、電池寿命予測装置の一部を断面にして示す説明図である。
 本実施形態は、基本的には、第1の実施形態と同様である。異なるのは、電池1の中心部に縦方向に延出する収納凹部11bを形成し、この収納凹部11bに温度検出手段として第3の感熱素子8を配設した点である。感熱素子8は温度補償用の感熱素子であり、サーミスタである。このサーミスタに接続されたリード線Lが収納凹部11bから外部に導出され制御手段に接続されるようになっている。
 したがって、感熱素子8は周囲温度、具体的には、電池1の内部温度を抵抗値の変化として検出し、この検出結果を第1の感熱素子22と第2の感熱素子23とで検知され測定される温度差に反映させ、熱流速の変化の測定精度を向上するものである。
 続いて、本発明の第7の実施形態に係る電池寿命予測装置について図13を参照して説明する。図13は、電池寿命予測装置の一部を断面にして示す説明図である。
 本実施形態においては、熱流センサ2をサーモパイルによって構成したものである。この熱流センサ2は、熱抵抗板の両面に多数の熱電対を接続したサーモパイルを構成したものである。したがって、両面(表裏面)に生じる温度差を測定することができる。
 このような熱流センサ2が電池1における電池缶11の表面に取付けられている。具体的には、一方の面(例えば、裏面側)を電池缶11の表面に当接するように取付けられている。
 よって、電池1の充電時及び放電時に発生する電池1の内部の熱は、電池缶11の表面から熱流センサ2の裏面側で検知され、その後、熱抵抗板の厚み方向に流れ、表面側で検知される。これにより、両面(表裏面)に生じる温度差を測定することができ、電池1内部から発生する熱の熱流束を測定することができる。
 このように電池1に対して熱流センサ2の表裏面の2箇所で温度を検知することにより、熱流速の変化を測定することが可能となる。
 また、前記第6の実施形態と同様に、電池1の中心部に形成された収納凹部11bには、温度補償用の感熱素子8が配設されている。
 次に、本発明の第8の実施形態に係る電池寿命予測装置について図14を参照して説明する。図14は、電池寿命予測装置の一部を断面にして示す説明図である。
 本実施形態は、前記第7の実施形態と同様に、熱流センサ2をサーモパイルによって構成したものである。異なるのは、温度補償用の感熱素子8を電池1の近傍に配設した点である。
 したがって、感熱素子8は電池1の近傍の周囲温度を抵抗値の変化として検出し、この検出結果を熱流センサ2の両面(表裏面)に生じる温度差に反映させ、熱流速の変化の測定精度を向上するものである。
 なお、本発明は、上記各実施形態の構成に限定されることなく、発明の要旨を逸脱しない範囲で種々の変形が可能である。また、上記各実施形態は、一例として提示したものであり、発明の範囲を限定することは意図していない。
 例えば、電池に対して2箇所で温度を検知する温度検出手段には、熱電対、サーモパイル、サーミスタ、測温抵抗体、半導体温度センサ等が適用でき、格別その手段が限定されるものではない。
 また、電池としては、二次電池、燃料電池や太陽電池が適用できる。さらに、二次電池には、リチウムイオン電池、ニッケル水素電池、電気二重層キャパシタ、鉛蓄電池及びニッケルカドニウム電池等があるが、これらの内の特定のものに限定されるものではない。
1・・・電池(リチウムイオン電池)
2・・・熱流束検出手段(熱流センサ)
3・・・弾性部材
4・・・ケース
5・・・負荷
6・・・制御手段
7・・・報知手段
8・・・温度補償用の温度検出手段(感熱素子)
11・・・電池缶
21・・・基板
21a・・・配線パターン
21b、21c・・・端子部
22・・・第1の感熱素子(薄膜サーミスタ)
23・・・第2の感熱素子(薄膜サーミスタ)
24・・・保護膜

Claims (7)

  1.  電池に対して少なくとも2箇所で温度を検知し、これら2箇所の温度差から電池の劣化に起因する熱流束の変化を測定する熱流束検出手段を具備することを特徴とする電池寿命予測装置。
  2.  請求項1に記載の電池寿命予測装置は、電池を備えており、当該電池は、二次電池、燃料電池又は太陽電池であることを特徴とする電池寿命予測装置。
  3.  前記熱流束検出手段は、基板を備えており、この基板の面は電池の取付面に対して略平行に配置されていることを特徴とする請求項2に記載の電池寿命予測装置。
  4.  前記熱流束検出手段は、基板を備えており、この基板は可撓性を有していることを特徴とする請求項1乃至請求項3のいずれか一に記載の電池寿命予測装置。
  5.  温度補償用の温度検出手段を備えていることを特徴とする請求項1乃至請求項4のいずれか一に記載の電池寿命予測装置。
  6.  負荷と、
     この負荷に電力を供給する電池と、
     この電池の寿命を予測する請求項1乃至請求項5のいずれか一に記載の電池寿命予測装置と、
     を具備することを特徴とする電池寿命予測システム。
  7.  電池の充電及び放電時又は充電若しくは放電時の熱流束の変化から、電池の劣化を検知することを特徴とする請求項6に記載の電池寿命予測システム。
PCT/JP2013/079216 2012-11-02 2013-10-29 電池寿命予測装置及び電池寿命予測システム WO2014069437A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012242595A JP5679233B2 (ja) 2012-11-02 2012-11-02 電池寿命予測装置及び電池寿命予測システム
JP2012-242595 2012-11-02

Publications (1)

Publication Number Publication Date
WO2014069437A1 true WO2014069437A1 (ja) 2014-05-08

Family

ID=50627342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079216 WO2014069437A1 (ja) 2012-11-02 2013-10-29 電池寿命予測装置及び電池寿命予測システム

Country Status (2)

Country Link
JP (1) JP5679233B2 (ja)
WO (1) WO2014069437A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017102272A1 (de) * 2015-12-17 2017-06-22 Greenteg Ag Messaufbau zur funktionskontrolle von wiederaufladbaren batterien
EP3376582A4 (en) * 2015-11-12 2019-05-22 E-GLE Co., Ltd. SECONDARY BATTERY CELLS WITH A WATER-FREE ELECTROLYTE AND BATTERY MANUFACTURED THEREWITH
FR3127046A1 (fr) * 2021-09-14 2023-03-17 Electricite De France Estimation de l’état de santé d’un dispositif électrochimique
WO2024044951A1 (zh) * 2022-08-30 2024-03-07 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6396812B2 (ja) * 2015-01-20 2018-09-26 株式会社Soken 充電率推定システム
JP6363529B2 (ja) * 2015-02-13 2018-07-25 株式会社Soken 電池制御装置
WO2017057069A1 (ja) * 2015-10-01 2017-04-06 株式会社デンソー 異常兆候診断装置
JP2017067761A (ja) * 2015-10-01 2017-04-06 株式会社デンソー 異常兆候診断装置
JP6274246B2 (ja) * 2016-04-08 2018-02-07 株式会社デンソー 監視装置
KR102413668B1 (ko) * 2016-10-07 2022-06-28 세미텍 가부시키가이샤 용접용 전자 부품, 실장 기판 및 온도 센서
JP6922981B2 (ja) * 2017-06-23 2021-08-18 株式会社村田製作所 リチウムイオン二次電池システム、充電ユニット及びリチウムイオン二次電池の制御方法
JP6809399B2 (ja) * 2017-07-03 2021-01-06 トヨタ自動車株式会社 二次電池システム
JP6992690B2 (ja) * 2018-03-29 2022-01-13 トヨタ自動車株式会社 二次電池の反応分布推定方法
JP6996426B2 (ja) * 2018-06-05 2022-01-17 トヨタ自動車株式会社 異常検出システム
JP7107240B2 (ja) * 2019-02-08 2022-07-27 トヨタ自動車株式会社 二次電池の再利用判定システム
WO2021198720A1 (en) * 2020-04-03 2021-10-07 Faurecia Systems D'echappement Method for qualifying battery quality by means of heat flow rate sensing during first charge
CN112666480B (zh) * 2020-12-02 2023-04-28 西安交通大学 一种基于充电过程特征注意力的电池寿命预测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206243A (ja) * 1997-01-20 1998-08-07 Mitsubishi Heavy Ind Ltd 熱物理量計測方法およびその計測装置
JP2009117230A (ja) * 2007-11-08 2009-05-28 Fujitsu Ltd 二次電池用セパレータの測定方法
JP2010185688A (ja) * 2009-02-10 2010-08-26 Yazaki Corp 温度検出用回路体
JP2010252538A (ja) * 2009-04-16 2010-11-04 Mitsumi Electric Co Ltd 電池保護モジュールおよびリードサーミスタ取付け方法
JP2012074328A (ja) * 2010-09-30 2012-04-12 Hitachi Ltd 発熱分布を検出する二次電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206243A (ja) * 1997-01-20 1998-08-07 Mitsubishi Heavy Ind Ltd 熱物理量計測方法およびその計測装置
JP2009117230A (ja) * 2007-11-08 2009-05-28 Fujitsu Ltd 二次電池用セパレータの測定方法
JP2010185688A (ja) * 2009-02-10 2010-08-26 Yazaki Corp 温度検出用回路体
JP2010252538A (ja) * 2009-04-16 2010-11-04 Mitsumi Electric Co Ltd 電池保護モジュールおよびリードサーミスタ取付け方法
JP2012074328A (ja) * 2010-09-30 2012-04-12 Hitachi Ltd 発熱分布を検出する二次電池システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3376582A4 (en) * 2015-11-12 2019-05-22 E-GLE Co., Ltd. SECONDARY BATTERY CELLS WITH A WATER-FREE ELECTROLYTE AND BATTERY MANUFACTURED THEREWITH
WO2017102272A1 (de) * 2015-12-17 2017-06-22 Greenteg Ag Messaufbau zur funktionskontrolle von wiederaufladbaren batterien
CH711926A1 (de) * 2015-12-17 2017-06-30 Greenteg Ag Messaufbau zur Funktionskontrolle von wiederaufladbaren Batterien.
CN108474692A (zh) * 2015-12-17 2018-08-31 格林泰戈股份有限公司 用于可充电电池的功能控制的测量结构
US10809133B2 (en) 2015-12-17 2020-10-20 Greenteg Ag Measurement set-up for controlling the function of rechargeable batteries
FR3127046A1 (fr) * 2021-09-14 2023-03-17 Electricite De France Estimation de l’état de santé d’un dispositif électrochimique
WO2023041395A1 (fr) * 2021-09-14 2023-03-23 Electricite De France Estimation de l'état de santé d'un dispositif électrochimique
WO2024044951A1 (zh) * 2022-08-30 2024-03-07 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Also Published As

Publication number Publication date
JP5679233B2 (ja) 2015-03-04
JP2014092428A (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5679233B2 (ja) 電池寿命予測装置及び電池寿命予測システム
US9054397B2 (en) Battery cell with integrated sensing platform
EP3211708B1 (en) Battery module
Cai et al. Modeling li-ion battery temperature and expansion force during the early stages of thermal runaway triggered by internal shorts
JP5343465B2 (ja) 蓄電装置
US9391348B2 (en) Electrochemical cell of an accumulator
JP5035428B2 (ja) 電池温度測定装置および電池温度測定方法、電池の製造方法
KR101431720B1 (ko) 신규한 구조의 스위칭 보드 및 그것을 포함하고 있는 전지모듈
US20150340744A1 (en) Battery cell health monitoring using eddy current sensing
JP6860126B2 (ja) 内部温度の測定が可能な電池セル
JP6543408B2 (ja) 電池セルのハウジングの内部の圧力を決定する方法、及び、電池セル
JP2015191777A (ja) 蓄電システム及び電池パックの運転方法
KR102512068B1 (ko) 열전대 유닛을 갖는 배터리 모듈
CN113597562B (zh) 用于确定电池单元异常的设备和方法
JP2011040330A (ja) 温度センサー、バッテリーパック及び温度センサーの製造方法
KR101973053B1 (ko) 배터리 팩
Bree et al. Monitoring state of charge and volume expansion in lithium-ion batteries: an approach using surface mounted thin-film graphene sensors
Xiao et al. Online Monitoring of Internal Temperature in Lithium-Ion Batteries
TWM456590U (zh) 鋰離子電池溫度感應器
US20220276311A1 (en) Estimation device and estimation method
JP2009272113A (ja) 蓄電装置
Grosch et al. Device optimization and application study of low cost printed temperature sensor for mobile and stationary battery based Energy Storage Systems
JP7468467B2 (ja) 温度測定装置、温度測定方法、電池システム
JP2011222773A (ja) ポリマー温度ヒューズ素子、温度センサー、バッテリパック
KR102512061B1 (ko) 배터리 모듈을 위한 센서 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850403

Country of ref document: EP

Kind code of ref document: A1