WO2014069188A1 - 一次磁束制御方法 - Google Patents

一次磁束制御方法 Download PDF

Info

Publication number
WO2014069188A1
WO2014069188A1 PCT/JP2013/077365 JP2013077365W WO2014069188A1 WO 2014069188 A1 WO2014069188 A1 WO 2014069188A1 JP 2013077365 W JP2013077365 W JP 2013077365W WO 2014069188 A1 WO2014069188 A1 WO 2014069188A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic flux
primary magnetic
torque
command value
amplitude
Prior art date
Application number
PCT/JP2013/077365
Other languages
English (en)
French (fr)
Inventor
剛 荒木
小林 直人
伸起 北野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020157009707A priority Critical patent/KR101681438B1/ko
Priority to RU2015120609A priority patent/RU2606637C2/ru
Priority to CN201380056687.4A priority patent/CN104756396B/zh
Priority to ES13851084T priority patent/ES2860500T3/es
Priority to EP13851084.7A priority patent/EP2916452B1/en
Priority to BR112015009647-6A priority patent/BR112015009647B1/pt
Priority to AU2013339484A priority patent/AU2013339484B2/en
Priority to US14/439,251 priority patent/US10110150B2/en
Publication of WO2014069188A1 publication Critical patent/WO2014069188A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a technique for controlling a synchronous motor including a field and an armature.
  • the present invention relates to a technique for controlling a rotary motor based on a so-called primary magnetic flux, which is a combination of a field magnetic flux generated by the field and an armature reaction magnetic flux generated by an armature current flowing in an armature winding. .
  • the primary magnetic flux control is a technique for stably controlling the rotary motor by controlling the primary magnetic flux of the rotary motor according to the command value.
  • the phase of the field magnetic flux ⁇ 0 is adopted for the d-axis of the rotating coordinate system
  • the phase of the primary magnetic flux [ ⁇ 1] (which is treated as a vector having a direction and amplitude) is adopted for the ⁇ -axis of the other rotating coordinate systems.
  • the phase difference between the ⁇ axis and the d axis is considered as the load angle ⁇ .
  • the ⁇ -axis is adopted at a phase advanced by 90 degrees with respect to the ⁇ -axis.
  • the ⁇ c axis and the ⁇ c axis are defined as the control axes of the rotating coordinate system employed in the control of the primary magnetic flux [ ⁇ 1].
  • the ⁇ c axis and the ⁇ c axis correspond to the ⁇ axis and the ⁇ axis, respectively, and the phase difference of the ⁇ c axis with respect to the d axis is ⁇ c.
  • a command value of primary magnetic flux [ ⁇ 1] (hereinafter referred to as “primary magnetic flux command value”) [ ⁇ 1 *] (which is treated as a vector having a direction and an amplitude) has a positive value ⁇ * as its ⁇ c-axis component. And the ⁇ c-axis component is zero. Therefore, if the primary magnetic flux [ ⁇ 1] matches the primary magnetic flux command value [ ⁇ 1 *], the ⁇ c-axis component ⁇ 1 ⁇ c of the primary magnetic flux [ ⁇ 1] is a positive value ⁇ * (this is also the amplitude of the primary magnetic flux command value [ ⁇ 1 *]. ), The phase difference ⁇ c is equal to the load angle ⁇ , and the ⁇ c axis coincides with the ⁇ axis.
  • a voltage command is used so that not only the ⁇ c axis component ⁇ 1 ⁇ c of the primary magnetic flux [ ⁇ 1] is equal to the amplitude ⁇ * of the primary magnetic flux command value [ ⁇ 1 *], but also the ⁇ c axis component ⁇ 1 ⁇ c is zero. Control to correct the value is performed. As a result, the phase difference ⁇ c matches the load angle ⁇ .
  • the amplitude ⁇ of the primary magnetic flux [ ⁇ 1] is made equal to the amplitude ⁇ * of the command value [ ⁇ 1 *], and the torque difference T of the rotary motor is made to coincide with the load angle ⁇ .
  • control can be performed in proportion to the ⁇ c-axis component i ⁇ c of the amplitude ia of the armature current.
  • the control is performed with the amplitude ⁇ * being constant.
  • the number of pole pairs n, the current amplitude ia, the armature current phase (so-called current phase) ⁇ with respect to the q-axis (which is advanced by 90 degrees with respect to the d-axis) and the amplitude ⁇ are introduced, and the torque T is obtained by the following equation (1).
  • Non-Patent Document 6 is adopted by replacing the other prior art documents listed below with the ⁇ / ⁇ axes.
  • Primary magnetic flux control is usually controlled with the primary magnetic flux amplitude being constant, so there may be cases where control with an efficient current phase is not possible when the torque fluctuates.
  • the present invention has been made in view of the above points, and in the primary magnetic flux control, the current phase is appropriately controlled by changing the primary magnetic flux command value according to the torque, so that the operating point is efficient according to the torque. It aims at providing the technique which drives a rotary motor.
  • the primary magnetic flux control method is directed to a command for primary magnetic flux ([ ⁇ 1]) to a rotary motor including an armature having an armature winding and a field rotor that rotates relative to the armature.
  • a primary magnetic flux command value ([ ⁇ 1 *]) that is a value is set, and the primary magnetic flux is controlled according to the primary magnetic flux command value.
  • the primary magnetic flux includes a field magnetic flux ( ⁇ 0) generated by the field and an armature reaction magnetic flux ([ ⁇ a]: id ⁇ Ld, iq ⁇ Lq generated by an armature current (ia) flowing through the armature). ).
  • the primary magnetic flux command value is changed according to the torque (T) of the rotary motor, and the phase is advanced by ⁇ / 2 from the d-axis in phase with the field magnetic flux ( ⁇ 0).
  • the current phase ( ⁇ ) of the armature current with respect to the q axis is controlled to a desired phase corresponding to the torque.
  • a second aspect of the primary magnetic flux control method is the first aspect, wherein the primary magnetic flux ([ ⁇ 1]), the armature current (ia), and the torque (T ), The amplitude ( ⁇ 0 (T)) of the primary magnetic flux that minimizes the armature current in accordance with the torque is changed to the amplitude ( ⁇ *) of the primary magnetic flux command value ([ ⁇ 1 *]).
  • a third aspect of the primary magnetic flux control method is the second aspect thereof, wherein the relationship includes a load angle ⁇ of the primary magnetic flux ([ ⁇ 1]) with respect to the d-axis, the armature current (ia ) With respect to the q axis, the field magnetic flux amplitude ⁇ 0, the primary magnetic flux amplitude ⁇ , the d-axis inductance Ld and q-axis inductance Lq of the rotary motor, and the d-axis components id and q of the armature current.
  • T n ⁇ ⁇ ⁇ ia ⁇ cos ( ⁇ )
  • ⁇ ⁇ sin ⁇ Lq ⁇ iq
  • ⁇ ⁇ cos ⁇ Ld ⁇ id + ⁇ 0
  • tan ⁇ ⁇ id / iq
  • ia ⁇ (id 2 + iq 2 ).
  • a fourth aspect of the primary magnetic flux control method according to the present invention is the second aspect or the third aspect thereof, and is based on the relationship between the armature current that takes the minimum value for the primary magnetic flux and the torque.
  • the primary magnetic flux command value is set from the armature current.
  • a fifth aspect of the primary magnetic flux control method is the second aspect or the third aspect thereof, and is in phase with the primary magnetic flux among the armature currents that take a minimum value with respect to the primary magnetic flux. Based on the relationship between the in-phase component (i ⁇ ) and the torque, the primary magnetic flux command value is set from the in-phase component of the armature current.
  • the 6th aspect of the primary magnetic flux control method concerning this invention is the 2nd aspect or the 3rd aspect, Comprising: It orthogonally crosses to the said primary magnetic flux among the said armature currents which take the minimum value with respect to the said primary magnetic flux. Based on the relationship between the orthogonal component (i ⁇ ) and the torque, the primary magnetic flux command value is set from the orthogonal component of the armature current.
  • a seventh aspect of the primary magnetic flux control method is the third aspect, wherein the armature reaction magnetic flux generated by the armature current taking a minimum value with respect to the primary magnetic flux and the field Based on the relationship between the load angle ( ⁇ ) determined by magnetic flux and the torque, the primary magnetic flux command value is set from the load angle.
  • An eighth aspect of the primary magnetic flux control method is the first aspect, wherein the primary magnetic flux ([ ⁇ 1]), the loss of the rotary motor, the torque (T) of the rotary motor, and Based on the relationship with the rotational speed, the primary magnetic flux that minimizes the loss is set as the primary magnetic flux command value according to the torque and the rotational speed.
  • a ninth aspect of the primary magnetic flux control method is any one of the first to eighth aspects, wherein a cycle for updating the primary magnetic flux command value is based on the primary magnetic flux command value. It is different from the control period of magnetic flux.
  • a tenth aspect of the primary magnetic flux control method according to the present invention is any one of the first to eighth aspects, wherein the primary magnetic flux command value is controlled by the primary magnetic flux based on the primary magnetic flux command value. In the transition period, it is not changed and is updated while the control is stable.
  • the 11th aspect of the primary magnetic flux control method concerning this invention is the 4th aspect, Comprising: The said primary magnetic flux command value is changed according to the torque (T) of the said rotary motor processed with the low-pass filter. .
  • a twelfth aspect of the primary magnetic flux control method according to the present invention is the fifth aspect, in which the primary magnetic flux command value is changed according to the in-phase component (i ⁇ ) processed by the low-pass filter.
  • a thirteenth aspect of the primary magnetic flux control method according to the present invention is the sixth aspect, in which the primary magnetic flux command value is changed according to the orthogonal component (i ⁇ ) processed by the low-pass filter.
  • 14th aspect of the primary magnetic flux control method concerning this invention is the 7th aspect, Comprising: The said primary magnetic flux command value is changed according to the said load angle ((phi)) processed with the low-pass filter.
  • the primary magnetic flux command value is changed according to the estimated value of the torque.
  • the current phase can be appropriately controlled by changing the primary magnetic flux command value according to the torque, and the motor rotates at an efficient operating point according to the torque. Electric motor can be driven.
  • the armature current has a minimum value with respect to the primary magnetic flux under a constant torque condition.
  • maximum torque / current control can be realized.
  • the loss has a minimum value with respect to the primary magnetic flux under the condition that the torque and the rotational speed are constant, and therefore the primary magnetic flux command value corresponding to the minimum value.
  • the stability of the primary magnetic flux control is not easily impaired.
  • setting the amplitude of the primary magnetic flux command value can reduce the influence on the primary magnetic flux control itself.
  • the vector diagram explaining primary magnetic flux control The vector diagram explaining primary magnetic flux control.
  • the rotary motor includes an armature having armature windings and a rotor that is a field that rotates relative to the armature.
  • the rotary motor includes a permanent magnet or a field winding that generates a field magnetic flux.
  • First embodiment. 1 and 2 are both vector diagrams for explaining primary magnetic flux control.
  • the dq coordinate system based on the phase of the field magnetic flux ⁇ 0 (the d axis is in phase with the field magnetic flux ⁇ 0 and the q axis is advanced by 90 degrees with respect to the d axis) (that is, rotation)
  • a ⁇ c- ⁇ c coordinate system is set which leads to a phase difference ⁇ c (with respect to the rotation of the child).
  • the voltage applied to the rotary motor is adjusted so that the ⁇ c axis coincides with the ⁇ axis in phase with the primary magnetic flux.
  • FIG. 1 shows a case where the phase difference ⁇ c matches the load angle ⁇ .
  • the magnetic flux [ ⁇ a] of the armature reaction (which is treated as a vector having a direction and an amplitude) is a magnetic flux Lq ⁇ iq in the q-axis positive direction and a magnetic flux Ld ⁇ id in the d-axis negative direction. It becomes the synthesis with.
  • the primary magnetic flux [ ⁇ 1] is a combination of the magnetic flux [ ⁇ a] and the field magnetic flux ⁇ 0, and takes a positive value ⁇ on the ⁇ axis (which coincides with the amplitude ⁇ * of the primary magnetic flux command value).
  • the armature current advances with the current phase ⁇ with respect to the q axis, and the amplitude ia can be decomposed into a q axis component iq and a d axis component id.
  • the amplitude ia can be decomposed into a ⁇ c axis component i ⁇ c and a ⁇ c axis component i ⁇ c.
  • FIG. 1 since the case where the ⁇ c axis coincides with the ⁇ axis is shown, a ⁇ axis component i ⁇ corresponding to the ⁇ c axis component i ⁇ c is shown.
  • FIG. 3 is a graph showing the relationship between the positive value ⁇ , which is the amplitude of the primary magnetic flux [ ⁇ 1], the amplitude ia of the armature current, and the load angle ⁇ when the torque T is maintained at a certain value. It can be seen that the amplitude ia has a minimum value with respect to the positive value ⁇ .
  • the maximum torque / current control can be realized by performing the primary magnetic flux control using a positive value ⁇ (which is indicated as a value ⁇ 0 (T)) that gives such a minimum value of the amplitude ia.
  • the primary magnetic flux control as described above, not only the ⁇ c axis component ⁇ 1 ⁇ c of the primary magnetic flux [ ⁇ 1] coincides with the positive value ⁇ *, but also the ⁇ c axis component ⁇ 1 ⁇ c of the primary magnetic flux [ ⁇ 1] is changed to the primary magnetic flux command value [ ⁇ 1 *. ],
  • the primary magnetic flux [ ⁇ 1] is uniquely determined in both the amplitude ⁇ and the load angle ⁇ by setting only the positive value ⁇ * to the value ⁇ 0 (T). .
  • FIG. 4 is a graph showing the relationship between the positive value ⁇ , the amplitude ia, and the current phase ⁇ when the torque T is maintained at a certain value.
  • the value ⁇ 0 (T) varies depending on the torque T. Therefore, if the relationship between the amplitude ⁇ of the primary magnetic flux and the amplitude ia of the armature current is obtained for various torques T, the value ⁇ 0 (T) obtained according to the torque is set as the amplitude ⁇ * of the primary magnetic flux command value. Can be adopted. Thereby, maximum torque / current control can be realized in the primary magnetic flux control.
  • the current phase ⁇ can be controlled to a desired phase according to the torque.
  • the rotary motor may be driven at an operating point where the efficiency of the torque T is poor.
  • the current phase ⁇ can be appropriately controlled by changing the amplitude ⁇ * according to the torque T, and driving can be performed at an efficient operating point according to the torque T.
  • the maximum torque / current control can be realized by adopting the value ⁇ 0 (T) as the amplitude ⁇ *.
  • ⁇ 0 (T) the amplitude of the primary magnetic flux control after the amplitude ⁇ * is obtained.
  • FIG. 5 is a block diagram showing a configuration for obtaining such an amplitude ⁇ *.
  • the primary magnetic flux command value setting unit 1 stores the relationship among the amplitude ⁇ of the primary magnetic flux [ ⁇ 1], the amplitude ia of the armature current, and the torque T of the rotary motor. Then, according to the torque T, a value ⁇ 0 (T) that minimizes the amplitude ia is output as the amplitude ⁇ * of the primary magnetic flux command value [ ⁇ 1 *].
  • FIG. 5 the relationship between the amplitude ia and the value ⁇ 0 (T) shown in FIG. 3 and FIG. 4 depicts an image stored in the primary magnetic flux command value setting unit 1 for various torques T.
  • the primary magnetic flux command value setting unit 1 calculates based on the above relationship and outputs the amplitude ⁇ *.
  • the detected value can be used as the torque T.
  • the estimated value T ⁇ can be adopted.
  • the estimated value T ⁇ is obtained by the following equation (3) with reference to FIG.
  • the estimated value T ⁇ may be obtained by the following equation (4) with reference to FIG. 1 and FIG.
  • FIG. 6 shows a technique for obtaining the amplitude ⁇ * [n] of the primary magnetic flux command value [ ⁇ 1 *] at the next control timing from the amplitude ⁇ * [n ⁇ 1] of the primary magnetic flux command value [ ⁇ 1 *] at a certain control timing.
  • the amplitude ⁇ * that minimizes the amplitude ia is obtained, but the same technique as the so-called “mountain climbing method” that obtains the maximum value of the control target value by changing the parameter is used.
  • the increment generator 2 inputs the change amount ⁇ and the difference ⁇ ia and outputs ⁇ ⁇ g ( ⁇ ia), and the adder adds ⁇ ⁇ g ( ⁇ ia) to the amplitude ⁇ * [n ⁇ 1] to obtain the amplitude.
  • the operation for obtaining ⁇ * [n] is desirable.
  • the function g (Q) takes the value ( ⁇ 1) when the value Q is positive, and takes the value 1 when the value Q is negative.
  • FIG. 7 to 9 are graphs showing the relationship between the torque T and the armature current at the operating point for realizing the maximum torque / current.
  • FIG. 7 is a graph showing the relationship between torque T and ⁇ -axis component i ⁇ of amplitude ia
  • FIG. 8 is a graph showing the relationship between torque T and ⁇ -axis component i ⁇ of amplitude ia
  • FIG. It is a graph which shows the relationship with amplitude ia
  • FIG. 10 is a graph showing the relationship between the torque T and the load angle ⁇ at the operating point that achieves the maximum torque / current.
  • the graphs shown in FIGS. 7 to 10 may be obtained from the equations (1) and (2) or may be obtained experimentally.
  • a new index depending on the torque T may be obtained by combining the ⁇ -axis component i ⁇ and the ⁇ -axis component i ⁇ , and the value ⁇ 0 (T) corresponding to the index may be adopted as the amplitude ⁇ *.
  • the index must uniquely determine the torque T. In view of FIG. 2, the amplitude ia can be grasped as one of the indexes.
  • the maximum torque / current can be realized by adopting the value ⁇ 0 (T) corresponding to the ⁇ c-axis component i ⁇ c, the ⁇ c-axis component i ⁇ c, the amplitude ia, and the phase difference ⁇ c instead of the torque T as the amplitude ⁇ *. it can. In this case, a device for detecting the torque T is not necessary.
  • FIG. 11 is a block diagram showing a technique for outputting a value ⁇ 0 (T) corresponding to the ⁇ c-axis component i ⁇ c, the ⁇ c-axis component i ⁇ c, the amplitude ia, and the phase difference ⁇ c as the amplitude ⁇ *.
  • the primary magnetic flux command value setting unit 4 includes a torque estimation unit 3 and a primary magnetic flux command value setting unit 1.
  • the torque estimation unit 3 sets the estimated torque value Te based on the ⁇ c axis component i ⁇ c, the ⁇ c axis component i ⁇ c (or further the amplitude ia), or the phase difference ⁇ c.
  • the estimated torque Te is not an estimated value T ⁇ obtained from the equations (3) and (4), but is an estimated value of the torque T estimated from the equations (1) and (2) or FIGS. is there.
  • FIG. 12 exemplifies a configuration in which a filter 5 is provided before the primary magnetic flux command value setting unit 1.
  • FIG. 13 illustrates a configuration in which a filter 5 is provided in the preceding stage of the primary magnetic flux command value setting unit 4.
  • the filter 5 functions as a low pass filter.
  • the primary magnetic flux command value setting unit 4 shown in FIG. 11 does not necessarily need to include the torque estimation unit 3 and the primary magnetic flux command value setting unit 1. Rather, an experimental relationship between the ⁇ -axis component i ⁇ and the value ⁇ 0 (see FIG. 14) or a relationship between the ⁇ -axis component i ⁇ and the value ⁇ 0 (see FIG. 15) is obtained in advance, and this is formulated or a table (or It is desirable to obtain it as a map. This is because it is not necessary to obtain the estimated torque value Te once.
  • the value ⁇ 0 (T) may be the primary magnetic flux [ ⁇ 1] giving the minimum power / torque instead of the amplitude of the primary magnetic flux [ ⁇ 1] giving the maximum torque / current. Also in this case, even if the amplitude ⁇ * taking the value ⁇ 0 (T) is determined and the primary magnetic flux control is performed, it is not necessary to perform another calculation such as current vector control, and the current phase ⁇ for obtaining the maximum efficiency is appropriate. Will be controlled.
  • the primary magnetic flux command value that minimizes the loss is determined according to the torque T and the rotational speed. If the primary magnetic flux control is performed, maximum efficiency control can be realized.
  • FIG. 16 is a graph showing the loss of the primary magnetic flux [ ⁇ 1] with respect to the amplitude ⁇ when the torque T and the rotation speed of the rotary motor are constant.
  • Curves G1 and G2 indicate the total of copper loss, copper loss, and iron loss of the rotary motor, respectively. Since the copper loss is proportional to the square of the current flowing through the rotary motor, the primary magnetic flux that gives the minimum value of the curve G1 can be adopted as the value ⁇ 0 (T) in the first embodiment.
  • the amplitude of the primary magnetic flux [ ⁇ 1] that gives the minimum value of the curve G2 is obtained as the value ⁇ 1 (T), and this is adopted as the amplitude ⁇ * of the primary magnetic flux command [ ⁇ 1 *].
  • Such a value ⁇ 1 (T) can be obtained by a method similar to the so-called “mountain climbing method”, as described with reference to FIG.
  • the amplitude ⁇ * [n] at the next control timing is obtained from the amplitude ⁇ * [n ⁇ 1] at a certain control timing.
  • the amplitude ⁇ * that minimizes the power is obtained.
  • the increment generator 6 inputs the variation ⁇ and the difference ⁇ P and outputs ⁇ ⁇ g ( ⁇ P), and the adder 7 adds ⁇ ⁇ g ( ⁇ P) to the amplitude ⁇ * [n ⁇ 1] to obtain the amplitude. ⁇ * [n] is obtained.
  • the function g is as described above.
  • a component near the control frequency of the primary magnetic flux control of the torque T (or its estimated value Te) is removed using a filter to set the amplitude ⁇ *. May be.
  • the primary magnetic flux value ⁇ 1 (T) that minimizes the loss in accordance with the rotational speed or the primary magnetic flux value that minimizes the loss in accordance with the rotational speed and the torque T are obtained in advance by experiments, respectively. These values may be made into a table (or map). Then, the primary magnetic flux value that minimizes the loss is read from the table according to the rotation speed and the torque T, and the read value may be set as the primary magnetic flux command value.
  • Rotational speed may be a value for electrical angle or a value for mechanical angle.
  • the speed of the control axis ( ⁇ c axis, ⁇ c axis) and the speed command (electrical angle) coincide with the rotational speed, and these may be substituted for the rotational speed.
  • the period for updating the amplitude ⁇ * may be made slower than the control period of the primary magnetic flux control. Therefore, the setting of the primary magnetic flux command value [ ⁇ 1 *] and the interference with the primary magnetic flux control are suppressed.
  • the primary magnetic flux control can be stably executed by updating the amplitude ⁇ * only when the velocity pulsation is within the predetermined range and not updating the amplitude ⁇ * otherwise.
  • the primary magnetic flux command value [ ⁇ 1 *] changes, the primary magnetic flux command value [ ⁇ 1 *] Is not changed, and it is desirable that the primary magnetic flux control is updated in a stable state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 一次磁束制御において、トルクに応じて一次磁束指令値を変更することで電流位相を適切に制御し、以てトルクに応じて効率が良い動作点で回転電動機を駆動する技術を提供する。あるトルクTについて、一次磁束の振幅Λδが値λδ0(T)を採るときに、電機子電流の振幅iaを最小値にする。このとき、最大トルク/電流制御が可能となる。よって一次磁束指令値の振幅に値λδ0(T)を採用して一次磁束制御を行うことにより、自動的に電機子電流が決定する。即ち、電流位相βが一意に決定する。つまり、当該トルクTに応じた所望の位相に電流位相βを制御することになり、トルクに応じて効率が良い動作点で回転電動機が駆動される。

Description

一次磁束制御方法
 この発明は、界磁と電機子とを備える同期電動機を制御する技術に関する。
 特に、当該界磁が発生する界磁磁束と、電機子巻線に流れる電機子電流によって発生する電機子反作用の磁束との合成である、いわゆる一次磁束に基づいて、回転電動機を制御する技術に関する。
 従来から、一次磁束に基づいた回転電動機の制御、いわゆる一次磁束制御が種々提案されている。一次磁束制御は、簡単に言えば、回転電動機の一次磁束をその指令値に従って制御することにより、回転電動機を安定に制御する技術である。
 例えば界磁磁束Λ0の位相を回転座標系のd軸に採用し、一次磁束[λ1](これは向きと振幅を有するベクトルとして扱われる)の位相を他の回転座標系のδ軸に採用し、δ軸のd軸に対する位相差を負荷角φとして考える。但しここではγ軸をδ軸に対して90度進相の位相において採用する。また、一次磁束[λ1]の制御で採用する回転座標系の制御軸としてδc軸及びγc軸を定義する。δc軸及びγc軸はそれぞれδ軸及びγ軸に対応しており、δc軸のd軸に対する位相差をφcとする。
 この場合、一次磁束[λ1]の指令値(以下「一次磁束指令値」と称す)[Λ1*](これは向きと振幅を有するベクトルとして扱われる)はそのδc軸成分に正値Λδ*を有し、γc軸成分は零となる。よって一次磁束[λ1]が一次磁束指令値[Λ1*]に一致すれば、一次磁束[λ1]のδc軸成分λ1δcは正値Λδ*(これは一次磁束指令値[Λ1*]の振幅でもある)に等しく、位相差φcは負荷角φと等しく、δc軸がδ軸に一致する。
 一次磁束制御では、一次磁束[λ1]のδc軸成分λ1δcを一次磁束指令値[Λ1*]の振幅Λδ*に等しくするのみならず、そのγc軸成分λ1γcを零にするように、例えば電圧指令値を修正する制御が行われる。これにより負荷角φに位相差φcが一致する。
 このように、一次磁束制御において一次磁束[λ1]の振幅Λδを指令値[Λ1*]の振幅Λδ*に等しくし、負荷角φに位相差φcを一致させることにより、回転電動機のトルクTをその回転角速度に依らずに電機子電流の振幅iaのγc軸成分iγcに比例させて制御することができる。通常、振幅Λδ*は一定として当該制御が行われる。
 具体的には、極対数n、電流振幅ia、電機子電流のq軸(これはd軸に対して90度進相する)に対する位相(いわゆる電流位相)β及び振幅Λδを導入して、トルクTは下式(1)で求められる。
Figure JPOXMLDOC01-appb-M000001
 なお、下掲の先行技術文献のうち非特許文献6は、下掲の他の先行技術文献と、δ軸/γ軸が入れ替わって採用されている。
特許第3672761号公報 特開平4-91693号公報
掘田、浅野、常広、「位置検出器のないDCブラシレスモータの制御法」昭和63年度電気関係学会東海支部連合大会、p.161 角、常広、「DCブラシレスモータの位置センサレス制御法」、1990年度電気関係学会東海支部連合大会、p.172 角、山村、常広、「DCブラシレスモータの位置センサレス制御法」、電気学会論文誌D、平成3年、111巻8号、p.639-644 瓜田、塚本、常広、「一次磁束制御された同期機の定数推定法について」 1998年度電気関係学会東海支部連合大会、p.101 瓜田、山村、常広、「同期機駆動用汎用インバータについて」電気学会論文誌D、平成11年、119巻5号、p.707-712 矢部、坂廼辺、「過変調PWMを併用したIPMモータのセンサレス駆動」、電気学会研究会資料. RM、 回転機研究会 2001(159)、p.7-12 武田、松井、森本、本田、「埋込磁石同期モータの設計と制御」、オーム社、2001年、p.23-26
 回転電動機の制御において、従来から比T/iaを最大とする、いわゆる最大トルク/電流制御が指向されている。そして電流ベクトル制御により、トルクが一定の場合において振幅iaを最小とする電流位相βが求められていた(例えば非特許文献7参照)。
 他方、一次磁束制御において適切な電流位相βを設定するには、電流ベクトル制御とは異なるアプローチが必要となる。電流ベクトル制御のように電流位相を直接に制御できないからである。しかしながらそのようなアプローチはこれまで知られていない。
 一次磁束制御において、通常は一次磁束の振幅を一定として制御されるので、トルクが変動したときに効率が良い電流位相での制御ができていない場合もあった。
 この発明は上記の点に鑑みたもので、一次磁束制御において、トルクに応じて一次磁束指令値を変更することで電流位相を適切に制御し、以てトルクに応じて効率が良い動作点で回転電動機を駆動する技術を提供することを目的とする。
 この発明にかかる一次磁束制御方法は、電機子巻線を有する電機子と、前記電機子と相対的に回転する界磁たる回転子と含む回転電動機に対し、一次磁束([λ1])の指令値たる一次磁束指令値([Λ1*])を設定し、前記一次磁束指令値に従って前記一次磁束を制御する方法である。
 前記一次磁束は、前記界磁が発生する界磁磁束(Λ0)と、前記電機子に流れる電機子電流(ia)によって発生する電機子反作用の磁束([λa]:id・Ld,iq・Lq)との合成である。
 そしてその第1の態様では、前記回転電動機のトルク(T)に応じて前記一次磁束指令値を変更して、前記界磁磁束(Λ0)と同相のd軸よりもπ/2で進相するq軸に対する前記電機子電流の電流位相(β)を前記トルクに応じた所望の位相に制御する。
 この発明にかかる一次磁束制御方法の第2の態様は、その第1の態様であって、前記一次磁束([λ1])と、前記電機子電流(ia)と、前記回転電動機のトルク(T)との関係に基づき、前記トルクに応じて、前記電機子電流を最小にする前記一次磁束の振幅(Λδ0(T))を前記一次磁束指令値([Λ1*])の振幅(Λδ*)として設定する。
 この発明にかかる一次磁束制御方法の第3の態様はその第2の態様であって、前記関係は、前記一次磁束([λ1])の前記d軸に対する負荷角φ、前記電機子電流(ia)の前記q軸に対する電流位相β、前記界磁磁束の振幅Λ0、前記一次磁束の振幅Λδ、前記回転電動機のd軸インダクタンスLd及びq軸インダクタンスLq、前記電機子電流のd軸成分id及びq軸成分iq、前記回転電動機の極対数n、トルクTを導入して、T=n・Λδ・ia・cos(φ-β)、Λδ・sinφ=Lq・iq、Λδ・cosφ=Ld・id+Λ0、tanβ=-id/iq、ia=√(id+iq)で決定される。
 この発明にかかる一次磁束制御方法の第4の態様はその第2の態様または第3の態様であって、前記一次磁束に対して最小値を採る前記電機子電流と前記トルクとの関係に基づき、前記電機子電流から前記一次磁束指令値を設定する。
 この発明にかかる一次磁束制御方法の第5の態様はその第2の態様または第3の態様であって、前記一次磁束に対して最小値を採る前記電機子電流のうち前記一次磁束に同相の同相成分(iδ)と前記トルクとの関係に基づき、前記電機子電流の前記同相成分から前記一次磁束指令値を設定する。
 この発明にかかる一次磁束制御方法の第6の態様はその第2の態様または第3の態様であって、前記一次磁束に対して最小値を採る前記電機子電流のうち前記一次磁束に直交する直交成分(iγ)と前記トルクとの関係に基づき、前記電機子電流の前記直交成分から前記一次磁束指令値を設定する。
 この発明にかかる一次磁束制御方法の第7の態様はその第3の態様であって、前記一次磁束に対して最小値を採る前記電機子電流によって発生する前記電機子反作用の磁束及び前記界磁磁束で決定される前記負荷角(φ)と前記トルクとの関係に基づき、前記負荷角から前記一次磁束指令値を設定する。
 この発明にかかる一次磁束制御方法の第8の態様は、その第1の態様であって、前記一次磁束([λ1])と、前記回転電動機の損失と、前記回転電動機のトルク(T)及び回転速度との関係に基づき、前記トルク及び前記回転速度に応じて、前記損失を最小にする前記一次磁束を前記一次磁束指令値として設定する。
 この発明にかかる一次磁束制御方法の第9の態様は、その第1乃至第8の態様のいずれかであって、前記一次磁束指令値を更新する周期は、前記一次磁束指令値に基づく前記一次磁束の制御の周期とは異なる。
 この発明にかかる一次磁束制御方法の第10の態様は、その第1乃至第8の態様のいずれかであって、前記一次磁束指令値は、前記一次磁束指令値に基づく前記一次磁束の制御が過渡期においては変更せず、前記制御が安定している状態で更新される。
 この発明にかかる一次磁束制御方法の第11の態様は、その第4の態様であって、ローパスフィルタで処理された、前記回転電動機のトルク(T)に応じて前記一次磁束指令値を変更する。
 この発明にかかる一次磁束制御方法の第12の態様は、その第5の態様であって、ローパスフィルタで処理された前記同相成分(iδ)に応じて前記一次磁束指令値を変更する。
 この発明にかかる一次磁束制御方法の第13の態様は、その第6の態様であって、ローパスフィルタで処理された前記直交成分(iγ)に応じて前記一次磁束指令値を変更する。
 この発明にかかる一次磁束制御方法の第14の態様は、その第7の態様であって、ローパスフィルタで処理された前記負荷角(φ)に応じて前記一次磁束指令値を変更する。
 この発明にかかる一次磁束制御方法の第1の態様乃至第14の態様において、例えば、前記一次磁束指令値は、前記トルクの推定値に応じて変更される。
 この発明にかかる一次磁束制御方法の第1の態様によれば、トルクに応じて一次磁束指令値を変更することで、電流位相を適切に制御でき、トルクに応じて効率が良い動作点で回転電動機を駆動できる。
 この発明にかかる一次磁束制御方法の第2の態様乃至第7の態様によれば、トルク一定の条件下では電機子電流は一次磁束に対して最小値を有するので、当該最小値に対応した一次磁束指令値として採用することにより、最大トルク/電流制御を実現することができる。
 この発明にかかる一次磁束制御方法の第8の態様によれば、トルク及び回転速度が一定の条件下では損失は一次磁束に対して最小値を有するので、当該最小値に対応した一次磁束指令値として採用することにより、最大効率制御を実現することができる。
 この発明にかかる一次磁束制御方法の第9の態様によれば、一次磁束指令値の設定と、一次磁束の制御との干渉が抑制される。
 この発明にかかる一次磁束制御方法の第10の態様によれば、一次磁束指令値が変化しても、一次磁束制御の安定性が損なわれにくい。
 この発明にかかる一次磁束制御方法の第11乃至第14の態様によれば、一次磁束指令値の振幅を設定することが、一次磁束制御それ自体に与える影響を低減できる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
一次磁束制御を説明するベクトル図。 一次磁束制御を説明するベクトル図。 一次磁束の振幅と、電機子電流の振幅及び負荷角との関係を示すグラフ。 一次磁束の振幅と、電機子電流の振幅及び電流位相との関係を示すグラフ。 一次磁束指令値の振幅を得るための構成を示すブロック図。 一次磁束指令値の振幅を得るための構成を示すブロック図。 最大トルク/電流を実現する動作点におけるトルクと電機子電流の振幅のγ軸成分との関係を示すグラフ。 最大トルク/電流を実現する動作点におけるトルクと電機子電流の振幅のδ軸成分との関係を示すグラフ。 最大トルク/電流を実現する動作点におけるトルクと電機子電流の振幅との関係を示すグラフ。 最大トルク/電流を実現する動作点におけるトルクと負荷角との関係を示すグラフ。 一次磁束指令値の振幅を得るための構成を示すブロック図。 一次磁束指令値の振幅を得るための構成を示すブロック図。 一次磁束指令値の振幅を得るための構成を示すブロック図。 最大トルク/電流を実現する動作点におけるδ軸成分iδと一次磁束振幅との関係を示すグラフ。 最大トルク/電流を実現する動作点におけるγ軸成分iγと一次磁束振幅との関係を示すグラフ。 一次磁束の振幅に対する損失を示すグラフ。 一次磁束指令値の振幅を得るための構成を示すブロック図。
 以下の実施の形態において、回転電動機は、電機子巻線を有する電機子と、前記電機子と相対的に回転する界磁たる回転子と含む。当該回転電動機は界磁磁束を発生させる永久磁石、あるいは界磁巻線を備える。
 第1の実施の形態.
 図1及び図2は、いずれも一次磁束制御を説明するベクトル図である。
 一次磁束制御では、界磁磁束Λ0の位相を基準としたd-q座標系(d軸は界磁磁束Λ0と同相、q軸はd軸に対して90度進相)に対して(つまり回転子の回転に対して)位相差φcで進相となるδc-γc座標系を設定する。そして一次磁束と同相のδ軸にδc軸が一致するように、回転電動機に対して印加する電圧を調節する。
 まず図1に、位相差φcが負荷角φと一致している場合を示す。図1において示されるように、電機子反作用の磁束[λa](これは向きと振幅を有するベクトルとして扱われる)はq軸正方向の磁束Lq・iqと、d軸負方向の磁束Ld・idとの合成となる。
 そして一次磁束[λ1]は磁束[λa]と界磁磁束Λ0との合成となり、δ軸において正値Λδ(これは一次磁束指令値の振幅Λδ*と一致)を採る。
 なお、一次磁束[λ1]が一次磁束指令値[Λ1*]と一致しない場合、図2に示されるように、位相差φcと負荷角φとの間にずれが発生することもある。
 一次磁束制御が行われるδc-γc回転座標系では、一次磁束[λ1]のδc軸成分λ1δcを一次磁束指令値[Λ1*]のδc軸成分Λδ*に一致させ、一次磁束[λ1]のγc軸成分λ1γcを一次磁束指令値[Λ1*]のγc軸成分Λγ*(=0)に一致させる制御が行われる。
 電機子電流はq軸に対して電流位相βで進相し、その振幅iaはq軸成分iq及びd軸成分idに分解できる。同様に、振幅iaはγc軸成分iγc及びδc軸成分iδcに分解できる。図1においてはγc軸がγ軸に一致する場合が示されているので、γc軸成分iγcに相当するγ軸成分iγが示されている。なお、図の繁雑を避けるため、図1ではδc軸成分iδcに相当する成分を、図2ではq軸成分iq及びd軸成分idを、それぞれ省略している。
 図3はトルクTがある一定値を保つときの、一次磁束[λ1]の振幅たる正値Λδと、電機子電流の振幅ia及び負荷角φとの関係を示すグラフである。正値Λδに対し、振幅iaは極小値を有することが判る。このような振幅iaの極小値を与える正値Λδ(これを値Λδ0(T)として示す)を用いて一次磁束制御を行うことにより、最大トルク/電流制御が実現できる。
 一次磁束制御では、上述のように、一次磁束[λ1]のδc軸成分λ1δcを正値Λδ*に一致させるのみならず、一次磁束[λ1]のγc軸成分λ1γcを一次磁束指令値[Λ1*]のγ軸成分0に一致させるのであるから、正値Λδ*のみを値Λδ0(T)に設定することにより、一次磁束[λ1]はその振幅Λδも、負荷角φも一意に決定される。
 そして一次磁束[λ1]が定まれば、界磁磁束Λ0は一定なので磁束[λa]は一意に定まる(図1参照)。そして磁束[λa]を構成する磁束Lq・iq,Ld・idはそれぞれ電機子電流のq軸成分iq及びd軸成分idに比例し、その比例定数Lq,Ldは回転電動機のインダクタンスで決定される。よって結局、あるトルクTについて、値Λδ0(T)を採る正値Λδ*さえ定まれば、電流ベクトル制御のような計算を改めて行う必要はなく、電流位相βが適切に制御されることになる。図4はトルクTがある一定値を保つときの、正値Λδと、振幅ia及び電流位相βとの関係を示すグラフである。
 もちろん、値Λδ0(T)はトルクTに依存して異なる値を採る。よって種々のトルクTについて、一次磁束の振幅Λδと電機子電流の振幅iaとの関係を求めておけば、トルクに応じて得られる値Λδ0(T)を、一次磁束指令値の振幅Λδ*として採用することができる。これにより一次磁束制御において最大トルク/電流制御が実現できる。
 換言すれば、トルクTに応じて一次磁束指令値[Λ1*]を変更して一次磁束制御を行うことにより、当該トルクに応じて電流位相βを所望の位相に制御することができる。
 従来のように一次磁束指令値[Λ1*]の振幅Λδ*を一定とした一次磁束制御を行うと、回転電動機は、そのトルクTについて効率が悪い動作点で駆動される場合がある。これに対して、上述の技術では、トルクTに応じて振幅Λδ*を変更することで、電流位相βを適切に制御でき、トルクTに応じて効率が良い動作点で駆動することができる。
 特に値Λδ0(T)を、振幅Λδ*として採用することにより最大トルク/電流制御が実現できる。なお、振幅Λδ*が得られた後の一次磁束制御は簡単に上述したし、周知であるので、ここでは詳細な動作、当該動作に必要な構成の説明を省略する。
 図5は、このような振幅Λδ*を得るための構成を示すブロック図である。一次磁束指令値設定部1は一次磁束[λ1]の振幅Λδと、電機子電流の振幅iaと、回転電動機のトルクTとの関係を記憶する。そしてトルクTに応じて、振幅iaを最小にする値Λδ0(T)を、一次磁束指令値[Λ1*]の振幅Λδ*として出力する。
 図5では、図3や図4に示された振幅iaと値Λδ0(T)との関係が、様々なトルクTについて一次磁束指令値設定部1に記憶されているイメージを描いている。
 あるいは一次磁束指令値設定部1は、上記関係に基づいて計算を行って振幅Λδ*を出力する。一次磁束の振幅Λδと、比例定数Lq,Ld、負荷角φ、電機子電流の振幅ia及びq軸成分iq及びd軸成分id、電流位相βの間には下式(2)の関係があることが公知である。但し、iγ=iq・cosφ-id・sinφの関係がある。
Figure JPOXMLDOC01-appb-M000002
 よって式(1)(2)を計算することにより、トルクT毎に振幅iaを最小にする一次振幅Λδの値Λδ0(T)を求めることができる。
 なお、トルクTは検出された値を用いることができる。あるいは推定値T^を採用することができる。推定値T^は、図2を参照して、下式(3)で求められる。
Figure JPOXMLDOC01-appb-M000003
 あるいは、回転電動機が定常状態にある場合には、一次磁束[λ1]とその指令値[Λ1*]とが一致していると考えられる。よって図1と図2とを参照して下式(4)で推定値T^を求めても良い。
Figure JPOXMLDOC01-appb-M000004
 あるいは、所望のトルクTにて一次磁束制御を実際に動作させつつ、振幅Λδ*が採るべき値Λδ0(T)を得ることもできる。図6はある制御タイミングにおける一次磁束指令値[Λ1*]の振幅Λδ*[n-1]から、その次の制御タイミングにおける一次磁束指令値[Λ1*]の振幅Λδ*[n]を求める技術を示すブロック図である。ここでは振幅iaを最小とする振幅Λδ*を求めてはいるが、パラメータを変更して制御対象値の極大値を求めるいわゆる「山登り法」と同じ手法を用いる。
 ある制御タイミングにおける一次磁束指令値[Λ1*]の振幅Λδ*[n-2]から、その次の制御タイミングにおける振幅Λδ*[n-1]へと変化量ΔΛδで増加したとき、振幅iaが差分Δiaで増加した場合を想定する。この場合は、振幅iaを最小とする値Λδ0(T)から遠離るように振幅Λδ*[n-2]から振幅Λδ*[n-1]へ変化したのである。よって振幅Λδ*[n]を振幅Λδ*[n-1]に対して変化量ΔΛδで減少させることで、値Λδ0(T)に近づくと考えられる。
 逆に、振幅Λδ*[n-2]から振幅Λδ*[n-1]へと変化量ΔΛδで増加したとき、振幅iaが差分Δiaで減少した場合を想定する。この場合は、振幅iaを最小とする値Λδ0(T)に近づくように振幅Λδ*[n-2]から振幅Λδ*[n-1]へ変化したのである。よって振幅Λδ*[n]は振幅Λδ*[n-1]に対して変化量ΔΛδで増加させることで、値Λδ0(T)に近づくと考えられる。
 よって増分発生器2は変化量ΔΛδ及び差分Δiaとを入力してΔΛδ×g(Δia)を出力し、加算器が振幅Λδ*[n-1]にΔΛδ×g(Δia)を加算して振幅Λδ*[n]を求める動作が望ましい。但し関数g(Q)は値Qが正のときに値(-1)を採り、値Qが負の時に値1を採る。
 図7乃至図9は最大トルク/電流を実現する動作点におけるトルクTと電機子電流との関係を示すグラフである。図7はトルクTと振幅iaのγ軸成分iγとの関係を示すグラフであり、図8はトルクTと振幅iaのδ軸成分iδとの関係を示すグラフであり、図9はトルクTと振幅iaとの関係を示すグラフである。図10は最大トルク/電流を実現する動作点におけるトルクTと負荷角φとの関係を示すグラフである。これらのグラフは、最大トルク/電流を実現する動作点については、トルクTがγ軸成分iγ、δ軸成分iδ、振幅ia、及び負荷角φによって一意に決定されることを示している。
 例えば図7乃至図10に示されるグラフは、式(1)(2)から求めても良いし、実験的に求めてもよい。
 もちろん、γ軸成分iγとδ軸成分iδとを組み合わせて、トルクTに依存した新たな指標を求め、当該指標に対応した値Λδ0(T)を振幅Λδ*に採用してもよい。但し、当該指標はトルクTを一意に決定しなければならない。図2に鑑みれば、振幅iaは当該指標の一つとして把握できる。
 なお、定常状態においてはφ=φc、iγ=iγc、iδ=iδcが成立する。よってトルクTに替えてγc軸成分iγc、δc軸成分iδc、振幅ia、及び位相差φcに対応した値Λδ0(T)を振幅Λδ*に採用することにより、最大トルク/電流を実現することができる。この場合、トルクTを検出する装置が不要となる。
 図11は、γc軸成分iγc、δc軸成分iδc、振幅ia、及び位相差φcに対応した値Λδ0(T)を振幅Λδ*として出力する技術を示すブロック図である。
 一次磁束指令値設定部4は、トルク推定部3と一次磁束指令値設定部1を有する。トルク推定部3はγc軸成分iγc、δc軸成分iδc(あるいは更に振幅ia)、または位相差φcに基づいて、トルク推定値Teを設定する。トルク推定値Teは式(3)や式(4)から得られる推定値T^ではなく、式(1)及び式(2)、あるいは図7~図10から推定されるトルクTの推定値である。
 このようにして、トルクTを検出することなく最大トルク/電流を実現することができる。
 図12は一次磁束指令値設定部1の前段にフィルタ5を設けた構成を例示する。また図13は一次磁束指令値設定部4の前段にフィルタ5を設けた構成を例示する。フィルタ5はローパスフィルタとして機能する。ローパスフィルタで処理して得られたトルクTに基づいて一次磁束指令値を設定することにより、その急激な変化を抑制する。これにより、一次磁束制御それ自体に、トルクT(あるいはその推定値Te)毎に、あるいはδc軸成分iδc、γc軸成分iγc、または位相差φc毎に、振幅Λδ*を設定することが与える影響を低減できる。
 なお、図11において示される一次磁束指令値設定部4は、必ずしもトルク推定部3と一次磁束指令値設定部1を有する必要はない。むしろ、予め実験的にδ軸成分iδと値Λδ0との関係(図14参照)や、γ軸成分iγと値Λδ0との関係(図15参照)を得て、これを定式化またはテーブル(あるいはマップ)として得ておくことが望ましい。トルク推定値Teを一旦求める必要がないからである。
 第2の実施の形態.
 値Λδ0(T)が、最大トルク/電流を与える一次磁束[λ1]の振幅ではなく、最小電力/トルクを与える一次磁束[λ1]であってもよい。この場合にも、値Λδ0(T)を採る振幅Λδ*さえ定まり、一次磁束制御を行えば、電流ベクトル制御のような計算を改めて行う必要はなく、最大効率を得るための電流位相βが適切に制御されることになる。
 つまり一次磁束[λ1]と、回転電動機の損失と、回転電動機のトルクT及び回転速度との関係に基づいて、トルクT及び回転速度に応じて、損失を最小にする一次磁束を一次磁束指令値として設定し、一次磁束制御を行えば最大効率制御が実現できる。
 図16は回転電動機のトルクT及び回転速度が一定の場合の、一次磁束[λ1]の振幅Λδに対する損失を示すグラフである。曲線G1,G2は、それぞれ回転電動機の銅損、銅損及び鉄損の合計を示す。銅損は回転電動機に流れる電流の2乗に比例するので、曲線G1の最小値を与える一次磁束は、第1の実施の形態にいう値Λδ0(T)として採用できる。
 本実施の形態では、曲線G2の最小値を与える一次磁束[λ1]の振幅を値Λδ1(T)として求め、これを一次磁束指令[Λ1*]の振幅Λδ*として採用する。
 このような値Λδ1(T)は、図6を用いて説明したのと同様に、いわゆる「山登り法」と類似した手法で求めることができる。
 具体的には、図17を参照して、ある制御タイミングにおける振幅Λδ*[n-1]から、その次の制御タイミングにおける振幅Λδ*[n]を求める。ここでは電力を最小とする振幅Λδ*を求める。
 ある制御タイミングにおける振幅Λδ*[n-2]から、その次の制御タイミングにおける振幅Λδ*[n-1]へと変化量ΔΛδで増加したとき、電力が差分ΔPで増加した場合を想定する。
 増分発生器6は変化量ΔΛδ及び差分ΔPとを入力してΔΛδ×g(ΔP)を出力し、加算器7が振幅Λδ*[n-1]にΔΛδ×g(ΔP)を加算して振幅Λδ*[n]を求める。関数gについては前述の通りである。
 第2の実施の形態においても第1の実施の形態と同様に、フィルタを用いてトルクT(あるいはその推定値Te)の一次磁束制御の制御周波数近傍の成分を除去して振幅Λδ*を設定してもよい。
 また、回転速度に応じて損失を最小にする一次磁束の値Λδ1(T)を、あるいは回転速度とトルクTに応じて損失を最小にする一次磁束の値を、それぞれ予め実験で求めておき、これらの値をテーブル(或いはマップ)にしてもよい。そして回転速度とトルクTとに応じて、上記テーブルから損失を最小にする一次磁束の値を読み出し、読み出された値を上記一次磁束指令値として設定すればよい。
 また回転速度は電気角についての値でも機械角についての値でもよい。定常状態では制御軸(δc軸、γc軸)の速度や(電気角の)速度指令は回転速度と一致するので、これらを回転速度に代用してもよい。
 あるいは第1の実施の形態及び第2の実施の形態において、フィルタを採用する代わりに、振幅Λδ*を更新する周期を、一次磁束制御の制御周期よりも遅くしてもよい。これにより、一次磁束指令値[Λ1*]の設定と、一次磁束制御との干渉が抑制される。
 あるいは速度脈動が所定範囲に収まっているときにおいてのみ振幅Λδ*を更新し、それ以外では振幅Λδ*を更新しないことにより、一次磁束制御を安定して実行することができる。
 換言すれば、一次磁束指令値[Λ1*]が変化しても一次磁束制御の安定性が損なわれにくい観点では、一次磁束指令値[Λ1*]は、これに基づく一次磁束制御が過渡期においては変更せず、一次磁束制御が安定している状態で更新されることが望ましい。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。

Claims (15)

  1.  電機子巻線を有する電機子と、前記電機子と相対的に回転する界磁たる回転子と含む回転電動機に対し、一次磁束([λ1」)の指令値たる一次磁束指令値([Λ1*])を設定し、前記一次磁束指令値に従って前記一次磁束を制御する方法であって、
     前記一次磁束は、前記界磁が発生する界磁磁束(Λ0)と、前記電機子に流れる電機子電流(ia)によって発生する電機子反作用の磁束([λa]:id・Ld,iq・Lq)との合成であり、
     前記回転電動機のトルク(T)に応じて前記一次磁束指令値を変更して、前記界磁磁束(Λ0)と同相のd軸よりもπ/2で進相するq軸に対する前記電機子電流の電流位相(β)を前記トルクに応じた所望の位相に制御する、一次磁束制御方法。
  2.  前記一次磁束([λ1])と、前記電機子電流(ia)と、前記回転電動機のトルク(T)との関係に基づき、前記トルクに応じて、前記電機子電流を最小にする前記一次磁束の振幅(Λδ0(T))を前記一次磁束指令値(Λ1*)の振幅(Λδ*)として設定する、請求項1記載の一次磁束制御方法。
  3.  前記関係は、前記一次磁束([λ1])の前記d軸に対する負荷角φ、前記電機子電流(ia)の前記q軸に対する電流位相β、前記界磁磁束の振幅Λ0、前記一次磁束の振幅Λδ、前記回転電動機のd軸インダクタンスLd及びq軸インダクタンスLq、前記電機子電流のd軸成分id及びq軸成分iq、前記回転電動機の極対数n、トルクTを導入して、T=n・Λδ・ia・cos(φ-β)、Λδ・sinφ=Lq・iq、Λδ・cosφ=Ld・id+Λ0、tanβ=-id/iq、ia=√(id+iq)で決定される、請求項2記載の一次磁束制御方法。
  4.  前記一次磁束に対して最小値を採る前記電機子電流と前記トルクとの関係に基づき、前記電機子電流から前記一次磁束指令値を設定する、請求項2記載の一次磁束制御方法。
  5.  前記一次磁束に対して最小値を採る前記電機子電流のうち前記一次磁束に同相の同相成分(iδ)と前記トルクとの関係に基づき、前記電機子電流の前記同相成分から前記一次磁束指令値を設定する、請求項2記載の一次磁束制御方法。
  6.  前記一次磁束に対して最小値を採る前記電機子電流のうち前記一次磁束に直交する直交成分(iγ)と前記トルクとの関係に基づき、前記電機子電流の前記直交成分から前記一次磁束指令値を設定する、請求項2記載の一次磁束制御方法。
  7.  前記一次磁束に対して最小値を採る前記電機子電流によって発生する前記電機子反作用の磁束及び前記界磁磁束で決定される前記負荷角(φ)と前記トルクとの関係に基づき、前記負荷角から前記一次磁束指令値を設定する、請求項3記載の一次磁束制御方法。
  8.  前記一次磁束([λ1])と、前記回転電動機の損失と、前記回転電動機のトルク(T)及び回転速度との関係に基づき、前記トルク及び前記回転速度に応じて、前記損失を最小にする前記一次磁束を前記一次磁束指令値として設定する、請求項1記載の一次磁束制御方法。
  9.  前記一次磁束指令値を更新する周期は、前記一次磁束指令値に基づく前記一次磁束の制御の周期とは異なる、請求項1記載の一次磁束制御方法。
  10.  前記一次磁束指令値は、前記一次磁束指令値に基づく前記一次磁束の制御が過渡期においては変更せず、前記制御が安定している状態で更新される、請求項1記載の一次磁束制御方法。
  11.  ローパスフィルタで処理された前記回転電動機のトルク(T)に応じて前記一次磁束指令値を変更する、請求項4記載の一次磁束制御方法。
  12.  ローパスフィルタで処理された前記同相成分(iδ)に応じて前記一次磁束指令値を変更する、請求項5記載の一次磁束制御方法。
  13.  ローパスフィルタで処理された前記直交成分(iγ)に応じて前記一次磁束指令値を変更する、請求項6記載の一次磁束制御方法。
  14.  ローパスフィルタで処理された前記負荷角(φ)に応じて前記一次磁束指令値を変更する、請求項7記載の一次磁束制御方法。
  15.  前記一次磁束指令値は、前記トルクの推定値に応じて変更される、請求項1記載の一次磁束制御方法。
PCT/JP2013/077365 2012-10-31 2013-10-08 一次磁束制御方法 WO2014069188A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020157009707A KR101681438B1 (ko) 2012-10-31 2013-10-08 일차 자속 제어 방법
RU2015120609A RU2606637C2 (ru) 2012-10-31 2013-10-08 Способ управления первичным магнитным потоком
CN201380056687.4A CN104756396B (zh) 2012-10-31 2013-10-08 一次磁通控制方法
ES13851084T ES2860500T3 (es) 2012-10-31 2013-10-08 Método de control de flujo magnético primario
EP13851084.7A EP2916452B1 (en) 2012-10-31 2013-10-08 Method for controlling primary magnetic flux
BR112015009647-6A BR112015009647B1 (pt) 2012-10-31 2013-10-08 Método de controle de fluxo magnético primário
AU2013339484A AU2013339484B2 (en) 2012-10-31 2013-10-08 Primary Magnetic Flux Control Method
US14/439,251 US10110150B2 (en) 2012-10-31 2013-10-08 Primary magnetic flux control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-240326 2012-10-31
JP2012240326A JP5556875B2 (ja) 2012-10-31 2012-10-31 一次磁束制御方法

Publications (1)

Publication Number Publication Date
WO2014069188A1 true WO2014069188A1 (ja) 2014-05-08

Family

ID=50627103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077365 WO2014069188A1 (ja) 2012-10-31 2013-10-08 一次磁束制御方法

Country Status (10)

Country Link
US (1) US10110150B2 (ja)
EP (1) EP2916452B1 (ja)
JP (1) JP5556875B2 (ja)
KR (1) KR101681438B1 (ja)
CN (1) CN104756396B (ja)
AU (1) AU2013339484B2 (ja)
BR (1) BR112015009647B1 (ja)
ES (1) ES2860500T3 (ja)
RU (1) RU2606637C2 (ja)
WO (1) WO2014069188A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133795A (ja) * 2014-01-10 2015-07-23 ダイキン工業株式会社 電動機駆動装置の制御装置および電動機駆動システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582393B2 (ja) * 2014-11-06 2019-10-02 ダイキン工業株式会社 電動機駆動装置の制御装置
JP6405987B2 (ja) * 2014-12-22 2018-10-17 ダイキン工業株式会社 インバータの制御装置
JP6135713B2 (ja) 2015-06-18 2017-05-31 株式会社安川電機 モータ制御装置、磁束指令の生成装置および磁束指令の生成方法
JP6103125B1 (ja) 2015-10-29 2017-03-29 ダイキン工業株式会社 速度指令補正装置、一次磁束指令生成装置
KR102431317B1 (ko) * 2015-12-14 2022-08-09 현대모비스 주식회사 차량용 모터 제어장치 및 방법
KR102548679B1 (ko) * 2015-12-14 2023-06-27 현대모비스 주식회사 차량용 모터 제어 장치 및 이를 이용한 전류 지령 생성 방법
CN108063569B (zh) * 2017-11-22 2019-11-12 南京航空航天大学 一种永磁电机最优工作点的快速求解方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491693A (ja) 1990-08-03 1992-03-25 Matsushita Electric Ind Co Ltd ブラシレスモータの駆動方法
JP2003259680A (ja) * 2002-02-28 2003-09-12 Mitsubishi Electric Corp 同期電動機駆動装置、インバータ装置、同期電動機の制御方法
JP3672761B2 (ja) 1999-03-04 2005-07-20 譲 常広 同期電動機駆動装置
JP2009124811A (ja) * 2007-11-13 2009-06-04 Fuji Electric Systems Co Ltd 永久磁石形同期電動機の制御装置
JP4531751B2 (ja) * 2004-05-14 2010-08-25 三菱電機株式会社 同期機制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814677A (en) * 1987-12-14 1989-03-21 General Electric Company Field orientation control of a permanent magnet motor
JPH03150090A (ja) * 1989-11-02 1991-06-26 Fanuc Ltd 主軸モータの制御方式
JP2755011B2 (ja) * 1992-02-13 1998-05-20 三菱電機株式会社 モータ駆動制御装置
JP3262253B2 (ja) * 1995-02-22 2002-03-04 株式会社日立製作所 電気車用駆動制御装置及び制御方法
RU2092967C1 (ru) * 1995-07-27 1997-10-10 Новосибирский государственный технический университет Электропривод с синхронным двигателем
JPH09327200A (ja) * 1996-06-06 1997-12-16 Hitachi Ltd 同期電動機の制御装置
JP3640120B2 (ja) * 1997-02-27 2005-04-20 富士電機機器制御株式会社 同期電動機の制御装置
JP2000032799A (ja) * 1998-07-07 2000-01-28 Hitachi Ltd 回転電機の制御装置及び制御方法
JP3716670B2 (ja) * 1998-09-29 2005-11-16 三菱電機株式会社 誘導電動機の制御装置
JP2006230169A (ja) * 2005-02-21 2006-08-31 Toshiba Corp 同期機の制御装置
CA2667025C (en) * 2006-10-19 2012-05-22 Mitsubishi Electric Corporation Vector controller for permanent-magnet synchronous electric motor
US8736220B2 (en) * 2008-04-28 2014-05-27 Daikin Industries, Ltd. Inverter control device and power conversion device
KR101628385B1 (ko) * 2010-03-31 2016-06-08 현대자동차주식회사 영구자석 동기모터의 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491693A (ja) 1990-08-03 1992-03-25 Matsushita Electric Ind Co Ltd ブラシレスモータの駆動方法
JP3672761B2 (ja) 1999-03-04 2005-07-20 譲 常広 同期電動機駆動装置
JP2003259680A (ja) * 2002-02-28 2003-09-12 Mitsubishi Electric Corp 同期電動機駆動装置、インバータ装置、同期電動機の制御方法
JP4531751B2 (ja) * 2004-05-14 2010-08-25 三菱電機株式会社 同期機制御装置
JP2009124811A (ja) * 2007-11-13 2009-06-04 Fuji Electric Systems Co Ltd 永久磁石形同期電動機の制御装置

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HOTTA; ASANO; TSUNEHIRO: "Method of controlling Position Sensorless DC brushless motor", TOKAI-SECTION JOINT CONFERENCE OF THE INSTITUTES OF ELECTRICAL AND RELATED ENGINEERS, 1988, pages 161
KAKU; TSUNEHIRO: "A Novel Technique for a DC Brushless Motor Having No Position-Sensors", TOKAI-SECTION JOINT CONFERENCE OF THE INSTITUTES OF ELECTRICAL AND ENGINEERS, 1990, pages 172
KAKU; YAMAMURA; TSUNEHIRO: "A Novel Technique for a DC Brushless Motor Having No Position-Sensors", IEEJ TRANSACTION ON INDUSTRY APPLICATIONS, vol. 111, no. 8, 1991, pages 639 - 644
See also references of EP2916452A4
TAKEDA; MATSUI; MORIMOTO; HONDA: "Design and Control of Interior Permanent Magnet Synchronous Motor", 2001, OHMSHA, pages: 23 - 26
URITA; TSUKAMOTO; TSUNEHIRO: "Constant estimation method for synchronous machines with the primary magnetic flux controlled", TOKAI-SECTION JOINT CONFERENCE OF THE INSTITUTES OF ELECTRICAL ENGINEERS, 1998, pages 101
URITA; YAMAMURA; TSUNEHIRO: "On General Purpose Inverter for Synchronous Motor Drive", IEEJ TRANSACTION ON INDUSTRY APPLICATIONS, vol. 119, no. 5, 1999, pages 707 - 712
YABE; SAKANOBE: "A Sensor-less Drive of IPM Motor with Over-modulation PWM", THE PAPERS OF JOINT TECHNICAL MEETING ON ROTATING MACHINERY, vol. 159, 2001, pages 7 - 12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133795A (ja) * 2014-01-10 2015-07-23 ダイキン工業株式会社 電動機駆動装置の制御装置および電動機駆動システム

Also Published As

Publication number Publication date
AU2013339484A1 (en) 2015-05-14
RU2015120609A (ru) 2016-12-20
US20150311846A1 (en) 2015-10-29
BR112015009647B1 (pt) 2021-07-27
CN104756396A (zh) 2015-07-01
EP2916452A1 (en) 2015-09-09
ES2860500T3 (es) 2021-10-05
EP2916452B1 (en) 2021-02-24
RU2606637C2 (ru) 2017-01-10
AU2013339484B2 (en) 2016-01-07
US10110150B2 (en) 2018-10-23
CN104756396B (zh) 2017-06-23
JP5556875B2 (ja) 2014-07-23
BR112015009647A2 (pt) 2017-07-04
KR101681438B1 (ko) 2016-11-30
KR20150058362A (ko) 2015-05-28
JP2014090626A (ja) 2014-05-15
EP2916452A4 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2014069188A1 (ja) 一次磁束制御方法
US9742333B2 (en) Motor control device
JP5494760B2 (ja) 電動機制御装置
US9048778B2 (en) Rotor phase/speed estimating device for an AC motor
WO2016121751A1 (ja) インバータ制御装置及びモータ駆動システム
WO2016121237A1 (ja) インバータ制御装置及びモータ駆動システム
JP5447590B2 (ja) 回転機の制御装置
JP6075090B2 (ja) モータ制御装置
JP2007097263A (ja) 同期モータの磁極位置推定方法
JP5527025B2 (ja) 同期機の位置センサレス制御装置
JP6115250B2 (ja) モータ制御装置
JP6115251B2 (ja) モータ制御装置
JP5660191B2 (ja) 電動機制御装置
Tang et al. A robust V/f based sensorless MTPA control strategy for IPM drives
JP5983352B2 (ja) 電動機制御装置
Kato et al. Position and velocity sensorless control of synchronous reluctance motor at low speed using disturbance observer for high-frequency extended EMF
JP6241807B2 (ja) 交流電動機の駆動制御装置
Blasko et al. An integral method combining V/Hz and vector control of permanent magnet motor
JP6311105B2 (ja) 交流電動機の駆動制御装置
JP6012037B2 (ja) 電力変換装置
KATO et al. Rotor Position Sensorless Estimation of High Efficiency Synchronous Reluctance Motor at Low Speed for Realization of Low-Carbon Society
JP2015165741A (ja) 電動機の制御装置および電動機制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157009707

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013851084

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14439251

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015009647

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2013339484

Country of ref document: AU

Date of ref document: 20131008

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015120609

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015009647

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150429