WO2014069092A1 - 無線電力伝送による可動部多重化伝送システム - Google Patents

無線電力伝送による可動部多重化伝送システム Download PDF

Info

Publication number
WO2014069092A1
WO2014069092A1 PCT/JP2013/073549 JP2013073549W WO2014069092A1 WO 2014069092 A1 WO2014069092 A1 WO 2014069092A1 JP 2013073549 W JP2013073549 W JP 2013073549W WO 2014069092 A1 WO2014069092 A1 WO 2014069092A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
reception
receiving
antenna
spacer
Prior art date
Application number
PCT/JP2013/073549
Other languages
English (en)
French (fr)
Inventor
阿久澤 好幸
良幸 高橋
Original Assignee
三菱電機エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機エンジニアリング株式会社 filed Critical 三菱電機エンジニアリング株式会社
Priority to EP13850074.9A priority Critical patent/EP2916427B1/en
Priority to KR1020157011050A priority patent/KR101568967B1/ko
Priority to US14/433,847 priority patent/US9337665B2/en
Priority to CN201380056469.0A priority patent/CN104756360B/zh
Publication of WO2014069092A1 publication Critical patent/WO2014069092A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J5/005
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the present invention relates to a movable part multiplexing transmission system by wireless power transmission which enables non-contact realization of a power multiplexing transmission function by a slip ring device which requires a mechanical contact.
  • a slip ring device having a mechanical contact
  • This slip ring device includes an annular slip ring that is connected to a transmission power source and disposed on an outer peripheral surface of a rotating body via an insulator, a brush that is connected to a reception power source and that is in sliding contact with the outer peripheral surface of the slip ring. It is composed of A load device or the like is connected to the reception power source. With this configuration, the slip ring and the brush are electrically connected, and the power from the transmission power source can be transmitted to the reception power source. Furthermore, in this slip ring device, it is possible to multiplex and transmit a plurality of systems of power by multiplexing pairs of slip rings and brushes.
  • Patent Document 1 a transmission device using non-contact wireless power transmission has been known (for example, see Patent Document 1).
  • a plurality of power receiving circuit units including a power receiving coil are associated with a power feeding coil, and a rectifying element is coupled to the output side of each power receiving circuit unit.
  • the power receiving circuit unit including it is coupled to the load in parallel.
  • Patent Document 1 describes contactless wireless power transmission, the main purpose is to increase transmission power, and a transmission system is simply added in parallel. Therefore, in this transmission apparatus, a magnetic field is shared between systems, and there is a problem that multiplexed transmission of independent power cannot be realized. Further, the transmission device does not assume power transmission via a rotating body, and there is a problem that it cannot be applied in place of a slip ring device.
  • the present invention has been made to solve the above-described problems, and provides a movable part multiplexing transmission system by wireless power transmission that can realize a power multiplexing transmission function by a slip ring device in a contactless manner.
  • the purpose is that.
  • the movable part multiplexing transmission system by wireless power transmission includes a primary transmission power supply for supplying power, a plurality of transmission antennas for wireless transmission of power from the primary transmission power supply, and a pair of transmission antennas.
  • a transmission / reception unit comprising a plurality of receiving antennas for receiving power, a plurality of transmission power supply circuits for establishing a resonance condition for a pair of transmitting antennas, and a plurality of receiving power sources for satisfying a resonance condition for a pair of receiving antennas
  • a transmitting antenna is configured so that a transmitting side coil that is arranged about the axis of the rotating body as a center or around the axis and a pair of transmitting side that controls the magnetic flux by the transmitting side coil for each system
  • the transmission-side spacer having a predetermined magnetic permeability and the receiving antenna that are arranged with the axial center of the coil substantially in the center are the same as the arrangement of the transmission-side coil.
  • the power multiplexing transmission function by the slip ring device can be realized without contact.
  • Embodiment 1 of this invention It is a schematic diagram which shows the structure of the movable part multiplexing transmission system by the wireless power transmission which concerns on Embodiment 1 of this invention. It is a schematic diagram which shows the structure of the transmission / reception part in Embodiment 1 of this invention, (a) It is a side view of a transmission / reception part, (b) It is a front view of a transmission antenna and a reception antenna. It is a perspective view which shows the structure of the single unit
  • FIG. 2 It is a schematic diagram which shows the structure of the transmission / reception part in Embodiment 2 of this invention, (a) It is a side view of a transmission / reception part, (b) It is a front view of a transmission / reception part. It is a front view which shows the structure of the transmitting antenna and receiving antenna in Embodiment 2 of this invention. It is a front view which shows the structure of the transmitting antenna and receiving antenna in Embodiment 3 of this invention. It is a side view which shows the structure of the transmission / reception part in Embodiment 4 of this invention.
  • FIG. 1 is a schematic diagram showing a configuration of a movable part multiplexing transmission system using wireless power transmission according to Embodiment 1 of the present invention.
  • the movable part multiplexing transmission system by wireless power transmission is used when connecting a power line to a load device or the like (not shown) via a mechanical rotating body (not shown). It is a device that wirelessly transmits multiple systems of power in parallel.
  • the movable part multiplexing transmission system by wireless power transmission includes a primary transmission power source 1, a transmission power source circuit 2, a transmission / reception unit 3, and a reception power source circuit 4.
  • the transmission / reception unit 3 includes a transmission antenna 5 and a reception antenna 6.
  • the movable part multiplexed transmission system has a plurality of transmission power supply circuits 2, a transmission antenna 5, a reception antenna 6, and a reception power supply circuit 4 for performing multiplexed transmission (in the example of FIG. 1, three systems).
  • the suffixes a to c are added to the reference numerals of the functional units).
  • the primary transmission power supply 1 supplies predetermined power to each transmission antenna 5 via each transmission power supply circuit 2.
  • the transmission power supply circuit 2 is disposed between the primary transmission power supply 1 and the transmission antenna 5 and establishes a resonance condition of the paired transmission antenna 5 by resonance impedance control.
  • the transmission antenna 5 wirelessly transmits the power supplied from the primary transmission power supply 1 via the paired transmission power supply circuit 2 to the reception antenna 6. Details of the configuration of the transmission antenna 5 will be described later.
  • the receiving antenna 6 receives power from the transmitting antenna 5 that forms a pair. The power received by the receiving antenna 6 is supplied to a load device or the like via the receiving power supply circuit 4. Details of the configuration of the receiving antenna 6 will be described later.
  • the reception power supply circuit 4 is disposed between the reception antenna 6 and a load device and the like, and establishes a resonance condition of the paired reception antenna 6 by input impedance control.
  • the wireless transmission method of the transmission / reception unit 3 is not particularly limited, and any of a magnetic field resonance method, an electric field resonance method, and an electromagnetic induction method may be used.
  • FIG. 2 is a schematic diagram showing the configuration of the transmission / reception unit 3 according to Embodiment 1 of the present invention, (a) a side view of the transmission / reception unit 3, and (b) a front view of the transmission antenna 5 and the reception antenna 6. .
  • FIG. 3 is a perspective view showing a configuration of a single transmission antenna 5. Although FIG. 3 shows the transmission antenna 5, the same applies to the reception antenna 6.
  • the transmission antennas 5 and the reception antennas 6 are opposed to each other with a predetermined gap.
  • the transmission antenna 5 includes a transmission side spacer 7 and a transmission coil 8.
  • the receiving antenna 6 includes a receiving side spacer 9 and a receiving coil 10. Note that the example of FIG. 2 shows a case where the transmission / reception unit 3 has three systems, and suffixes a to c are added to the codes of the functional units.
  • the transmission side coil 8 is arranged with the axial center of the rotating body as a substantial center or around the axial center.
  • the respective transmission side coils 8 are configured to have different diameters, and are overlapped with a predetermined gap about the axial center of the rotating body.
  • the transmission-side spacer 7 is arranged with the axis of the transmission-side coil 8 as a pair as a substantial center so as to control the magnetic flux generated by the transmission-side coil 8 for each system, and is composed of a member having a predetermined magnetic permeability.
  • the transmission side spacers 7 are hollow spacers each having a different diameter (hereinafter referred to as a transmission side hollow spacer 7), and are overlapped with a predetermined gap.
  • the reception side coil 10 is arranged in the same form as the arrangement form of the transmission side coil 8 and is arranged around the axis of the rotating body or around the axis.
  • the receiving coils 10 are configured to have different diameters, and are overlapped with a predetermined gap with the axial center of the rotating body as a substantial center.
  • the receiving-side spacer 9 is arranged with the axis of the receiving-side coil 10 as a pair approximately at the center so as to control the magnetic flux generated by the receiving-side coil 10 for each system, and is constituted by a member having a predetermined magnetic permeability.
  • the receiving spacers 9 are hollow spacers having different diameters (hereinafter referred to as receiving hollow spacers 9), and are overlapped with a predetermined gap.
  • each transmission-side hollow spacer 7 and each reception-side hollow spacer 9 may be the same.
  • transmission efficiency deteriorates. Therefore, when it is necessary to consider the transmission efficiency, the magnetic permeability between the adjacent transmitting side hollow spacers 7 and between the adjacent receiving side hollow spacers 9 should be different from each other.
  • the permeability of the first transmission side hollow spacer 7a and the first reception side hollow spacer 9a is 2500
  • the permeability of the third transmission side hollow spacer 7c and the third reception side hollow spacer 9c is 25.
  • the spacers 7 and 9 having a predetermined permeability the magnetic flux between the coils 8 and 10 can be controlled, and the coupling magnetic flux can be optimized. Therefore, multiplexed transmission by wireless power transmission is possible.
  • the transmission side coils 8 are overlapped with gaps around the axial center of the rotating body, and the reception side coils 10 are paired with transmissions. Since the side coil 8 is opposed to each other with a gap and overlapped with each other and the magnetic flux between the coils 8 and 10 is controlled by the spacers 7 and 9, multiplexed transmission of power by the slip ring device The function can be realized without contact. As a result, there is no life limit due to wear deterioration of the mechanical contacts, and the life of the apparatus can be extended. In addition, since wireless power transmission can prevent contact failure due to contamination and leakage due to condensation, the reliability of the device is improved. Furthermore, since there is no spark generated due to wear of mechanical contacts, operation is possible even in flammable gas or liquid.
  • the transmission side coil 8a is exposed and wound on the outer peripheral surface of the outermost transmission side hollow spacer 7a.
  • a hollow spacer may be further stacked on the outside with a predetermined gap. Thereby, the said hollow spacer functions as a shielding material, and can prevent the magnetic flux leakage to the exterior.
  • the receiving antenna 6 side can be similarly configured.
  • Embodiment 2 shows a case where the transmitting antenna 5 and the receiving antenna 6 are integrally fitted and arranged.
  • the movable part multiplexing transmission system by wireless power transmission according to the second embodiment is the same as the configuration of the movable part multiplexing transmission system by wireless power transmission according to the first embodiment shown in FIG. Omitted.
  • FIGS. 4A and 4B are schematic views showing the configuration of the transmission / reception unit 3 according to Embodiment 2 of the present invention.
  • FIG. 4A is a side view of the transmission / reception unit 3 and
  • FIG. 4B is a front view of the transmission / reception unit 3.
  • FIG. 5 is a front view of the transmitting antenna 5 and the receiving antenna 6. 4 and 5 show a case where the transmission / reception unit 3 has three systems, and suffixes a to c are added to the codes of the functional units.
  • the transmission / reception unit 3 includes the transmission antennas 5 and the reception antennas 6 fitted together. That is, as shown in FIG. 4B, the transmitting coils 8 are stacked with a predetermined gap around the axis of the rotating body, and the receiving coils 10 are paired with each other. The transmitter coil 8 is overlapped adjacently with a predetermined gap. As shown in FIG. 5, the receiving antenna 6 is configured with a smaller diameter than the transmitting antenna 5 so as to be disposed inside the paired transmitting antenna 5.
  • the permeability of the first to third transmitting side hollow spacers 7a to 7c is 4 ⁇ ⁇ 10 ⁇ -9
  • the permeability of the first receiving side hollow spacer 9a is 2500
  • the second receiving side The magnetic permeability of the hollow spacer 9b is 250
  • the magnetic permeability of the third receiving-side hollow spacer 9c is 25.
  • the transmission side coils 8 are overlapped with gaps around the axial center of the rotating body, and the reception side coils 10 are transmitted in pairs. Even if the side coil 8 is adjacently overlapped with a gap, and the magnetic permeability of the transmitting side hollow spacer 7 and the receiving side hollow spacer 9 to be paired is changed, the same effect as in the first embodiment is obtained. be able to.
  • the transmission side coil 8a is exposed and wound on the outer peripheral surface of the outermost transmission side hollow spacer 7a.
  • a hollow spacer may be further stacked on the outside with a predetermined gap.
  • the said hollow spacer functions as a shielding material, and can prevent the magnetic flux leakage to the exterior. Further, it is possible to control the magnetic flux by combining the hollow spacer and the transmission-side hollow spacer 7a of the next layer as one set.
  • the receiving antenna 6 is configured with a diameter smaller than that of the paired transmitting antenna 5.
  • the transmitting antenna 5 is paired with the receiving antenna.
  • the diameter may be smaller than 6.
  • Embodiment 3 FIG. In the first and second embodiments, the case where the annular coils 5 and 6 are used as the coils and are arranged in a stacked manner has been described. On the other hand, Embodiment 3 shows a case where a coil having an arbitrary shape is used and a plurality of coils are provided along the outer periphery of the rotating body 20. In the following description, the elliptical coils 8 and 10 are taken as an example.
  • the movable part multiplexing transmission system by wireless power transmission according to the third embodiment is the same as the configuration of the movable part multiplexing transmission system by wireless power transmission according to the first embodiment shown in FIG. Omitted.
  • FIG. 6 is a front view showing configurations of the transmitting antenna 5 and the receiving antenna 6 according to Embodiment 3 of the present invention.
  • the transmission / reception unit 3 (the transmission antenna 5 and the reception antenna 6) has three systems is shown, and suffixes a to c are added to the codes of the functional units.
  • the transmission antennas 5 and the reception antennas 6 are arranged to face each other with a predetermined gap.
  • the transmission side coil 8 is configured in an elliptical shape, and is disposed along the outer periphery (around the axis) of the rotating body 20.
  • the reception side coil 10 is configured in an elliptical shape, and is disposed along the outer periphery of the rotating body 20 so as to face the paired transmission side coil 8.
  • the reason why the shapes of the transmission side coil 8 and the reception side coil 10 are elliptical is that when the transmission side coil 8 and the reception side coil 10 are rotated in accordance with the rotation of the rotating body 20, a pair of coils is formed. This is to gain time during which the magnetic flux can be shared between 8 and 10. That is, the rotations of the transmitting antenna 5 and the receiving antenna 6 are not synchronized, so that the magnetic flux cannot always be shared between the pair of coils 8 and 10.
  • the first transmission coil 8a and the first reception coil 10a do not always face each other, and the first transmission coil 8a and the second reception coil 10b may face each other. Therefore, this configuration is considered effective when the power transmission destination is not distinguished for each system.
  • the magnetic permeability of each transmitting spacer 7 and each receiving spacer 9 is all. It may be the same.
  • the magnetic permeability of the first to third transmission side spacers 7a to 7c and the first to third reception side spacers 9a to 9c is 1000.
  • the transmission efficiency deteriorates. Therefore, when it is necessary to consider the transmission efficiency, it is better that the magnetic permeability between the adjacent transmission side spacers 7 and the reception side spacers 9 are different.
  • the transmission-side coil 8 having an arbitrary shape is arranged along the outer periphery of the rotating body 20, and the reception-side coil 10 having an arbitrary shape is paired with the transmission side. Since the coil 8 is configured so as to be opposed to each other with a gap, in addition to the effects of the first embodiment, the structure is simpler than the first embodiment and can be configured at low cost.
  • the transmission side coils 8a to 8c are exposed and wound around the outer peripheral surfaces of the transmission side hollow spacers 7a to 7c.
  • a hollow spacer may be further stacked on the outside with a predetermined gap. Thereby, the said hollow spacer functions as a shielding material, and can prevent the magnetic flux leakage to the exterior.
  • the receiving antenna 6 side can be similarly configured.
  • the transmission / reception unit 3 (the transmission antenna 5 and the reception antenna 6) is arranged on the outer periphery of the rotating body 20 has been described as an example.
  • the present invention is not limited to this, and the transmitting / receiving unit 3 may be arranged inside the hollow rotating body 20.
  • Embodiment 4 FIG.
  • the fourth embodiment shows an example in which a single transmission antenna 5 and a reception antenna 6 are connected in series.
  • the movable part multiplexing transmission system by wireless power transmission according to the fourth embodiment is the same as the configuration of the movable part multiplexing transmission system by wireless power transmission according to the first embodiment shown in FIG. Omitted.
  • FIG. 7 is a side view showing the configuration of the transmission / reception unit 3 according to Embodiment 4 of the present invention.
  • a case where the transmission / reception unit 3 has two systems is shown, and suffixes a and b are added to the codes of the functional units.
  • the transmission / reception unit 3 includes a plurality of fitting portions 11 and a connecting hollow spacer 12.
  • the fitting unit 11 includes a single transmission antenna 5 and a reception antenna 6 that are fitted together.
  • This fitting structure is the same as that of the second embodiment, and the description thereof is omitted.
  • the connecting hollow spacer 12 is composed of a member having a permeability equal to or lower than the permeability of the transmitting side hollow spacer 7 and the receiving side hollow spacer 9 of the fitting part 11 adjacent along substantially the same axis, and the adjacent fitting part 11. Are connected in series.
  • 9a comprises the 1st fitting part 11a.
  • the second transmission side hollow spacer 7b around which the second transmission side coil 8b is wound and the second reception side hollow spacer 9b around which the second reception side coil 10b is wound The fitting part 11b is comprised.
  • the 1st fitting part 11a and the 2nd fitting part 11b are connected in series via the hollow spacer 12 for a connection. Thereby, sharing of the magnetic flux between the adjacent 1st fitting part 11a and the 2nd fitting part 11b can be prevented.
  • a plurality of systems can be multiplexed by similarly connecting a plurality of fitting portions 11 in series.
  • the permeability of the first and second transmitting-side hollow spacers 7a and 7b is 4 ⁇ ⁇ 10 ⁇ . ⁇ 9, the permeability of the first and second receiving hollow spacers 9a and 9b is 1000, and the permeability of the connecting hollow spacer 12 is 4 ⁇ ⁇ 10 ⁇ -9.
  • the plurality of fitting portions 11 in which the transmission antenna 5 and the receiving antenna 6 of one system are fitted and arranged, and the fitting portions 11 adjacent to each other along substantially the same axis Since it is composed of a member having a permeability equal to or lower than the permeability of the transmission side spacer 7 and the reception side spacer 9 and is configured to include the connecting hollow spacer 12 that connects the adjacent fitting portions 11 in series.
  • the structure is simpler than that of the first embodiment, and it can be configured at low cost.
  • the diameter of the transmission part 3 can be made small with respect to Embodiment 2, and space saving can be achieved.
  • the transmission side coils 8a and 8b are exposed and wound around the outer peripheral surfaces of the outermost transmission side hollow spacers 7a and 7b.
  • a hollow spacer may be further stacked on the outside with a predetermined gap.
  • the said hollow spacer functions as a shielding material, and can prevent the magnetic flux leakage to the exterior. It is also possible to control the magnetic flux by combining the hollow spacer and the transmitting layer hollow spacers 7a and 7b in the next layer as one set.
  • the fitting part 11 in which the transmission antenna 5 and the receiving antenna 6 of one system are fitted and arranged is connected in series is shown.
  • the fitting portion 11 in which two or more transmission antennas 5 and receiving antennas 6 are fitted and arranged may be connected in series.
  • the reception antenna 6 is configured with a diameter smaller than that of the pair of transmission antennas 5.
  • the transmission antenna 5 is configured by the pair of reception antennas 6. You may comprise with a small diameter.
  • the transmission / reception unit 3 shown in the first, second, and fourth embodiments may be arranged on the outer periphery of the rotating body, or may be arranged inside the hollow rotating body.
  • positioned inside the transmission / reception part 3 do not need to be hollow.
  • the transmission antenna 5 and the reception antenna 6 are each configured by a single coil (transmission side coil 8 and reception side coil 10).
  • each of the coils 8 and 10 may be composed of, for example, a power feeding coil and a resonance coil, or may be composed of two or more coils.
  • the power supplied from the primary transmission power source 1 to each transmission antenna 5 may be the same frequency for each system or may be a different frequency.
  • strain will also change.
  • the resonance condition changes depending on the distance between the transmitting antennas 5 as a pair, the load current, the load impedance, and the like.
  • the reception-side circuit 4 may be added with a function of making the resonance condition established for the reception antenna 6 variable in accordance with such a change in transmission state.
  • a function for changing the resonance condition of the transmission antenna 5 in the transmission side circuit 2 may be added.
  • a function of making the resonance conditions of the antennas 5 and 6 variable in both the circuits 2 and 4 may be added.
  • the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
  • each transmission side coil is overlapped with a gap centered around the axis of the rotating body, and each reception side coil is paired with transmission.
  • the side coils are opposed to each other with gaps, overlapped with gaps, and the magnetic flux between the coils is controlled by spacers, and the power multiplexing transmission function by the slip ring device is realized without contact. Therefore, it is suitable for use in a power transmission system that multiplexes and transmits power of a plurality of systems.
  • 1 Primary transmission power source 2, 2a to 2c transmission power circuit, 3 Transmitter / receiver, 4, 4a to 4c reception power circuit, 5, 5a to 5c transmission antenna, 6, 6a to 6c reception antenna, 7, 7a to 7c transmission side Spacer (transmission side hollow spacer), 8, 8a to 8c, transmission side coil, 9, 9a to 9c, reception side spacer (reception side hollow spacer), 10, 10a to 10c, reception side coil, 11, 11a, 11b fitting part, 12 Hollow spacer for connection, 20 rotating body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

 電力を供給する一次送信電源1と、供給された電力を無線伝送する複数系統の送信アンテナ5、及び、対となる送信アンテナ5からの電力を受信する複数系統の受信アンテナ6からなる送受信部3と、対となる送信アンテナ5の共振条件を成立させる複数系統の送信電源回路2と、対となる受信アンテナ6の共振条件を成立させる複数系統の受信電源回路4とを備え、送信アンテナ5は、回転体の軸心を略中心にして又は軸心周りに配置される送信側コイル8と、系統ごとに送信側コイル8による磁束をコントロールするよう配置された所定の透磁率の送信側スペーサ7と、受信アンテナ6は、送信側コイル8と同一形態で配置される受信側コイル10と、系統ごとに受信側コイル10による磁束をコントロールするよう配置された所定の透磁率の受信側スペーサ9とを備えた。

Description

無線電力伝送による可動部多重化伝送システム
 この発明は、機械的接点を必要とするスリップリング装置による電力の多重化伝送機能を、非接触で実現可能とする無線電力伝送による可動部多重化伝送システムに関するものである。
 機構的な回転体を経由して電源ラインを負荷機器等へ接続する場合、従来では、機械的接点を有するスリップリング装置を使用している。
 このスリップリング装置は、送信電源が接続され、回転体の外周面に絶縁体を介して配置された環状のスリップリングと、受信電源が接続され、スリップリングの外周面と摺動接触するブラシとから構成されている。なお、受信電源には負荷機器等が接続されている。この構成により、スリップリングとブラシが電気的に接続され、送信電源からの電力を受信電源へ伝送することができる。さらに、このスリップリング装置において、スリップリング及びブラシの対を多重化することで、複数系統の電力を多重化伝送することが可能となる。
特開2005-312285号公報
 しかしながら、スリップリング装置では、機械的接点となるスリップリングとブラシの接点における磨耗劣化が発生する。そのため、磨耗劣化により電力伝送システムの寿命が制限されてしまうという課題があった。
 一方、従来から非接触の無線電力伝送による伝送装置が知られている(例えば特許文献1参照)。この特許文献1に開示された伝送装置では、給電コイルに対して受電コイルを含む受電回路ユニットを複数対応させて構成し、各受電回路ユニットの出力側に整流素子を結合し、この整流素子を含む受電回路ユニットを並列で負荷に結合させている。これにより、受電回路ユニット間での逆流防止を図りつつ、各受電回路ユニット出力電流の加算による出力増大が可能となる。
 しかしながら、特許文献1では、非接触の無線電力伝送について記載されているものの、伝送電力の増大化を主目的としたものであり、伝送系統を単純に並列に足したものである。そのため、この伝送装置では、系統間で磁界が共有されてしまい、各々独立した電力の多重化伝送は実現することができないという課題がある。また、上記伝送装置は、回転体を経由した電力伝送を想定したものではなく、スリップリング装置に代えて適用することができないという課題もある。
 この発明は、上記のような課題を解決するためになされたもので、スリップリング装置による電力の多重化伝送機能を非接触で実現可能とする無線電力伝送による可動部多重化伝送システムを提供することを目的としている。
 この発明に係る無線電力伝送による可動部多重化伝送システムは、電力を供給する一次送信電源と、一次送信電源からの電力を無線伝送する複数系統の送信アンテナ、及び、対となる送信アンテナからの電力を受信する複数系統の受信アンテナからなる送受信部と、対となる送信アンテナの共振条件を成立させる複数系統の送信電源回路と、対となる受信アンテナの共振条件を成立させる複数系統の受信電源回路とを備え、送信アンテナは、回転体の軸心を略中心にして又は軸心周りに配置される送信側コイルと、系統ごとに送信側コイルによる磁束をコントロールするよう、対となる送信側コイルの軸心を略中心にして配置された所定の透磁率の送信側スペーサと、受信アンテナは、送信側コイルの配置形態と同一の形態で、回転体の軸心を略中心にして又は軸心周りに配置される受信側コイルと、系統ごとに受信側コイルによる磁束をコントロールするよう、対となる受信側コイルの軸心を略中心にして配置された所定の透磁率の受信側スペーサとを備えたものである。
 この発明によれば、上記のように構成したので、スリップリング装置による電力の多重化伝送機能を非接触で実現可能とすることができる。
この発明の実施の形態1に係る無線電力伝送による可動部多重化伝送システムの構成を示す模式図である。 この発明の実施の形態1における送受信部の構成を示す模式図であり、(a)送受信部の側面図であり、(b)送信アンテナ及び受信アンテナの正面図である。 この発明の実施の形態1における送信アンテナの単体の構成を示す斜視図である。 この発明の実施の形態2における送受信部の構成を示す模式図であり、(a)送受信部の側面図であり、(b)送受信部の正面図である。 この発明の実施の形態2における送信アンテナ及び受信アンテナの構成を示す正面図である。 この発明の実施の形態3における送信アンテナ及び受信アンテナの構成を示す正面図である。 この発明の実施の形態4における送受信部の構成を示す側面図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る無線電力伝送による可動部多重化伝送システムの構成を示す模式図である。
 無線電力伝送による可動部多重化伝送システムは、機構的な回転体(不図示)を経由して電源ラインを負荷機器等(不図示)へ接続する場合等に用いられるものであり、電気信号を含む複数系統の電力を並列に無線伝送する装置である。この無線電力伝送による可動部多重化伝送システムは、図1に示すように、一次送信電源1、送信電源回路2、送受信部3及び受信電源回路4から構成されている。また、送受信部3は、送信アンテナ5及び受信アンテナ6を有している。そして、可動部多重化伝送システムは、多重化伝送を行うため、送信電源回路2、送信アンテナ5、受信アンテナ6及び受信電源回路4を各々複数系統有している(図1の例では3系統設けた場合を示し、各機能部の符号に接尾記号a~cを付している)。
 一次送信電源1は、各送信電源回路2を介して各送信アンテナ5に対し、所定の電力を供給するものである。
 送信電源回路2は、一次送信電源1と送信アンテナ5間に配置され、共鳴インピーダンス制御により、対となる送信アンテナ5の共振条件を成立させるものである。
 送信アンテナ5は、対となる送信電源回路2を介して一次送信電源1から供給された電力を、受信アンテナ6に無線伝送するものである。この送信アンテナ5の構成の詳細については後述する。
 受信アンテナ6は、対となる送信アンテナ5からの電力を受信するものである。この受信アンテナ6により受信された電力は受信電源回路4を介して負荷機器等に供給される。この受信アンテナ6の構成の詳細については後述する。
 受信電源回路4は、受信アンテナ6と負荷機器等間に配置され、入力インピーダンス制御により、対となる受信アンテナ6の共振条件を成立させるものである。
 なお、送受信部3の無線伝送方式は特に限定されるものではなく、磁界共鳴による方式、電界共鳴による方式、電磁誘導による方式のいずれであってもよい。
 次に、送受信部3の構成について、図2,3を参照しながら説明する。図2はこの発明の実施の形態1における送受信部3の構成を示す模式図であり、(a)送受信部3の側面図であり、(b)送信アンテナ5及び受信アンテナ6の正面図である。また、図3は単体の送信アンテナ5の構成を示す斜視図である。なお図3では送信アンテナ5について示しているが、受信アンテナ6についても同様である。
 送受信部3は、図2(a)に示すように、各送信アンテナ5及び各受信アンテナ6が所定のギャップを有して対向配置されている。
 この送信アンテナ5は、図2,3に示すように、送信側スペーサ7及び送信コイル8から構成されている。また、受信アンテナ6も同様に、受信側スペーサ9及び受信コイル10から構成されている。
 なお、図2の例では、送受信部3を3系統とした場合を示し、各機能部の符号に接尾記号a~cを付している。
 送信側コイル8は、回転体の軸心を略中心にして又は軸心周りに配置されるものである。実施の形態1では、各送信側コイル8が、各々異なる径に構成され、回転体の軸心を略中心にして各々所定のギャップを有して重ねられている。
 送信側スペーサ7は、系統ごとに送信側コイル8による磁束をコントロールするよう、対となる送信側コイル8の軸心を略中心にして配置されたものであり、所定の透磁率の部材により構成されている。実施の形態1では、各送信側スペーサ7が、各々異なる径に構成された中空スペーサ(以下、送信側中空スペーサ7と称す)であり、各々所定のギャップを有して重ねられている。
 受信側コイル10は、送信側コイル8の配置形態と同一の形態で、回転体の軸心を略中心にして又は軸心周りに配置されるものである。実施の形態1では、各受信側コイル10が、各々異なる径に構成され、回転体の軸心を略中心にして各々所定のギャップを有して重ねられている。
 受信側スペーサ9は、系統ごとに受信側コイル10による磁束をコントロールするよう、対となる受信側コイル10の軸心を略中心にして配置されたものであり、所定の透磁率の部材により構成されている。実施の形態1では、各受信側スペーサ9が、各々異なる径に構成された中空スペーサ(以下、受信側中空スペーサ9と称す)であり、各々所定のギャップを有して重ねられている。
 なお、図2に示す構成(送信アンテナ5及び受信アンテナ6を対向配置した構成)では、各送信側中空スペーサ7及び各受信側中空スペーサ9の透磁率はすべて同一であってもよい。ただし、この場合には伝送効率が劣化する。そのため、伝送効率を考慮する必要がある場合には、隣接する送信側中空スペーサ7間及び隣接する受信側中空スペーサ9間の透磁率は各々異なる方がよい。例えば、図2において、第1の送信側中空スペーサ7a及び第1の受信側中空スペーサ9aの透磁率は2500とし、第2の送信側中空スペーサ7b及び第2の受信側中空スペーサ9bの透磁率は250とし、第3の送信側中空スペーサ7c及び第3の受信側中空スペーサ9cの透磁率は25とする。
 このように、所定の透磁率のスペーサ7,9を用いることで、コイル8,10間の磁束をコントロールすることができ、結合磁束の最適化を図ることができる。よって、無線電力伝送による多重化伝送が可能となる。
 以上のように、この実施の形態1によれば、各送信側コイル8を、回転体の軸心を略中心にして各々ギャップを有して重ね、各受信側コイル10を、対となる送信側コイル8にギャップを有して対向させ、各々ギャップを有して重ね、スペーサ7,9によりコイル8,10間の磁束をコントロールするように構成したので、スリップリング装置による電力の多重化伝送機能を非接触で実現可能とすることができる。その結果、機械的接点の磨耗劣化による寿命制限がなくなり、装置の長寿命化が可能となる。また、無線電力伝送のため、汚染による接触不良や結露による漏電などを防ぐことができるため、装置の信頼性が向上する。さらに、機械的接点の磨耗により発生するスパーク等もないため、引火性のある気体や液体中においても動作が可能である。
 なお、図2に示す例では、送信アンテナ5側において、最外層の送信側中空スペーサ7aの外周面に送信側コイル8aが露出して巻線されている。これに対して、その外側にさらに中空スペーサを所定のギャップを有して重ねるようにしてもよい。これにより、当該中空スペーサがシールド材として機能し、外部への磁束漏洩を防止することができる。受信アンテナ6側についても同様に構成可能である。
実施の形態2.
 実施の形態1では、送信アンテナ5及び受信アンテナ6を独立に構成して対向配置した場合について示した。それに対して、実施の形態2では、送信アンテナ5及び受信アンテナ6を一体に勘合配置した場合について示す。
 なお、実施の形態2に係る無線電力伝送による可動部多重化伝送システムは、図1に示す実施の形態1に係る無線電力伝送による可動部多重化伝送システムの構成と同様であり、その説明を省略する。
 送受信部3の構成について、図4,5を参照しながら説明する。図4はこの発明の実施の形態2における送受信部3の構成を示す模式図であり、(a)送受信部3の側面図であり、(b)送受信部3の正面図である。また、図5は送信アンテナ5及び受信アンテナ6の正面図である。なお、図4,5の例では、送受信部3を3系統とした場合を示し、各機能部の符号に接尾記号a~cを付している。
 実施の形態2における送受信部3は、図4に示すように、各送信アンテナ5及び各受信アンテナ6が勘合配置されている。すなわち、図4(b)に示すように、各送信側コイル8は、回転体の軸心を略中心にして各々所定のギャップを有して重ねられ、また、各受信側コイル10は、対となる送信側コイル8の内側に所定のギャップを有して隣接して重ねられている。
 なお、受信アンテナ6は、図5に示すように、対となる送信アンテナ5に対して内側に配置されるよう、当該送信アンテナ5より小さい径で構成されている。
 なお、図4に示す構成(送信アンテナ5及び受信アンテナ6を勘合配置した構成)では、対となる送信側中空スペーサ7及び受信側中空スペーサ9の透磁率を各々変える必要がある。例えば、図4において、第1~3の送信側中空スペーサ7a~7cの透磁率は4π×10^-9とし、第1の受信側中空スペーサ9aの透磁率は2500とし、第2の受信側中空スペーサ9bの透磁率は250とし、第3の受信側中空スペーサ9cの透磁率は25とする。
 以上のように、この実施の形態2によれば、各送信側コイル8を、回転体の軸心を略中心にして各々ギャップを有して重ね、各受信側コイル10を、対となる送信側コイル8にギャップを有して隣接して重ね、対となる送信側中空スペーサ7及び受信側中空スペーサ9の透磁率を変えるように構成しても、実施の形態1と同様の効果を得ることができる。
 なお、図4に示す例では、最外層の送信側中空スペーサ7aの外周面に送信側コイル8aが露出して巻線されている。これに対して、その外側にさらに中空スペーサを所定のギャップを有して重ねるようにしてもよい。これにより、当該中空スペーサがシールド材として機能し、外部への磁束漏洩を防止することができる。また、当該中空スペーサと次層の送信側中空スペーサ7aを1つの組にして磁束のコントロールを行わせることも可能である。
 また、図4,5に示す例では、受信アンテナ6を、対となる送信アンテナ5より小さい径で構成した場合を示したが、これとは逆に、送信アンテナ5を、対となる受信アンテナ6より小さい径で構成してもよい。
実施の形態3.
 実施の形態1,2では、コイルとして環状のコイル5,6を用い、重ねて配置する場合について示した。それに対して、実施の形態3では、任意の形状のコイルを用い、回転体20の外周に沿って複数設けた場合について示す。以下では、楕円形状のコイル8,10を例に説明を行う。
 なお、実施の形態3に係る無線電力伝送による可動部多重化伝送システムは、図1に示す実施の形態1に係る無線電力伝送による可動部多重化伝送システムの構成と同様であり、その説明を省略する。
 送受信部3の構成について、図6を参照しながら説明する。図6はこの発明の実施の形態3における送信アンテナ5及び受信アンテナ6の構成を示す正面図である。なお、図6の例では、送受信部3(送信アンテナ5及び受信アンテナ6)を3系統とした場合を示し、各機能部の符号に接尾記号a~cを付している。
 実施の形態3における送受信部3は、各送信アンテナ5及び各受信アンテナ6が、所定のギャップを有して対向配置されている。
 図6に示すように、送信側コイル8は、楕円形状に構成され、回転体20の外周(軸心周り)に沿って配置されている。また、受信側コイル10は、楕円形状に構成され、対となる送信側コイル8に対向して回転体20の外周に沿って配置されている。
 ここで、送信側コイル8及び受信側コイル10の形状を楕円形状としている理由は、回転体20の回転に伴い送信側コイル8及び受信側コイル10が回転している際に、対となるコイル8,10間で磁束を共有できる時間を稼ぐためである。すなわち、送信アンテナ5と受信アンテナ6の回転は同期しているわけではないため、対となるコイル8,10間において常に磁束を共有することはできない。例えば、第1の送信側コイル8aと第1の受信側コイル10aが常に対向するわけではなく、第1の送信側コイル8aと第2の受信側コイル10bが対向する場合も生じる。よって、本構成は、電力の伝送先が系統ごとに区別されていない場合に有効であると考えられる。
 なお、図6に示す構成(任意の形状のコイル8,10を用い、送信アンテナ5及び受信アンテナ6を対向配置した構成)では、各送信側スペーサ7及び各受信側スペーサ9の透磁率はすべて同一であってもよい。例えば、図6において、第1~3の送信側スペーサ7a~7c及び第1~3の受信側スペーサ9a~9cの透磁率は1000とする。ただし、この場合には伝送効率が劣化するため、伝送効率を考慮する必要がある場合には、隣接する送信側スペーサ7間及び受信側スペーサ9間の透磁率は各々異なる方がよい。
 以上のように、この実施の形態3によれば、任意の形状の送信側コイル8を、回転体20の外周に沿って配置し、任意の形状の受信側コイル10を、対となる送信側コイル8にギャップを有して対向配置するように構成したので、実施の形態1における効果に加え、実施の形態1に対して構造が簡単になり安価に構成することが可能となる。
 なお、図6に示す例では、送信アンテナ5側において、各送信側中空スペーサ7a~7cの外周面に送信側コイル8a~8cが露出して巻線されている。これに対して、その外側にさらに中空スペーサを所定のギャップを有して重ねるようにしてもよい。これにより、当該中空スペーサがシールド材として機能し、外部への磁束漏洩を防止することができる。受信アンテナ6側についても同様に構成可能である。
 なお、図6に示す例では、回転体20の外周に送受信部3(送信アンテナ5及び受信アンテナ6)を配置する場合を例にして説明を行った。しかしながら、これに限るものではなく、中空の回転体20の内部に送受信部3を配置するようにしてもよい。
実施の形態4.
 実施の形態1,2では、複数系統の送信アンテナ5と受信アンテナ6を重ねて配置する場合について示した。それに対して、実施の形態4では、1系統の送信アンテナ5と受信アンテナ6を勘合配置したものを直列接続したものについて示す。
 なお、実施の形態4に係る無線電力伝送による可動部多重化伝送システムは、図1に示す実施の形態1に係る無線電力伝送による可動部多重化伝送システムの構成と同様であり、その説明を省略する。
 送受信部3の構成について、図7を参照しながら説明する。図7はこの発明の実施の形態4における送受信部3の構成を示す側面図である。なお、図7の例では、送受信部3を2系統とした場合を示し、各機能部の符号に接尾記号a,bを付している。
 実施の形態4における送受信部3は、図7に示すように、複数の勘合部11及び接続用中空スペーサ12を備えている。
 勘合部11は、1系統の送信アンテナ5及び受信アンテナ6が勘合配置されたものである。なお、この勘合構造は実施の形態2と同様であり、その説明を省略する。
 接続用中空スペーサ12は、略同一軸心上に沿って隣接する勘合部11の送信側中空スペーサ7及び受信側中空スペーサ9の透磁率以下の透磁率の部材からなり、当該隣接する勘合部11を直列接続するものである。
 ここで、図7に示すように、第1の送信側コイル8aが巻線された第1の送信側中空スペーサ7a及び第1の受信側コイル10aが巻線された第1の受信側中空スペーサ9aは、第1の勘合部11aを構成している。また、第2の送信側コイル8bが巻線された第2の送信側中空スペーサ7b及び第2の受信側コイル10bが巻線された第2の受信側中空スペーサ9bは、同様に第2の勘合部11bを構成している。
 そして、第1の勘合部11a及び第2の勘合部11bは、接続用中空スペーサ12を介して直列接続される。これにより、隣接する第1の勘合部11aと第2の勘合部11b間における磁束の共有を防止することができる。また、図7では、2系統を直列接続した場合を示したが、複数の勘合部11を同様に直列接続することで複数系統を多重化することができる。
 なお、図7に示す構成(送信アンテナ5及び受信アンテナ6を勘合配置した上で直列接続した構成)では、例えば、第1,2の送信側中空スペーサ7a,7bの透磁率は4π×10^-9とし、第1,2の受信側中空スペーサ9a,9bの透磁率は1000とし、接続用中空スペーサ12の透磁率は4π×10^-9とする。
 以上のように、この実施の形態4によれば、1系統の送信アンテナ5及び受信アンテナ6が勘合配置された複数の勘合部11と、略同一軸心上に沿って隣接する勘合部11の送信側スペーサ7及び受信側スペーサ9の透磁率以下の透磁率の部材からなり、当該隣接する勘合部11を直列接続する接続用中空スペーサ12とを備えるように構成したので、実施の形態1における効果に加え、実施の形態1に対して構造が簡単になり安価に構成することが可能となる。また、実施の形態2に対して送信部3の径を小さくすることができ、省スペース化を図ることができる。
 なお、図7に示す例では、最外層の送信側中空スペーサ7a,7bの外周面に送信側コイル8a,8bが露出して巻線されている。これに対して、その外側にさらに中空スペーサを所定のギャップを有して重ねるようにしてもよい。これにより、当該中空スペーサがシールド材として機能し、外部への磁束漏洩を防止することができる。また、当該中空スペーサと次層の送信側中空スペーサ7a,7bを1つの組にして磁束のコントロールを行わせることも可能である。
 また、実施の形態4では、1系統の送信アンテナ5及び受信アンテナ6を勘合配置した勘合部11を直列接続する場合について示した。これに対して、実施の形態2と組み合わせて、2系統以上の送信アンテナ5及び受信アンテナ6を勘合配置した勘合部11を直列接続するようにしてもよい。
 また、図7に示す例では、受信アンテナ6を、対となる送信アンテナ5より小さい径で構成した場合を示したが、これとは逆に、送信アンテナ5を、対となる受信アンテナ6より小さい径で構成してもよい。
 また、実施の形態1,2,4に示す送受信部3は、回転体の外周に配置してもよいし、中空の回転体の内部に配置するようにしてもよい。なお、送受信部3を回転体の内部に配置する場合において、当該送受信部3のうち最も内側に配置されるスペーサ7,9は中空である必要はない。
 また、実施の形態1~4では、送信アンテナ5及び受信アンテナ6を各々単一のコイル(送信側コイル8、受信側コイル10)から構成する場合について示した。しかしながら、これに限るものではなく、各コイル8,10を、各々例えば給電用コイル及び共鳴用コイルから構成してもよく、2個以上のコイルで構成するようにしてもよい。
 また、実施の形態1~4において、一次送信電源1が各送信アンテナ5に供給する電力は系統ごとに同一周波数であってもよいし、異なる周波数であってもよい。なお、系統ごとに周波数が異なる場合には、系統ごとの送信アンテナ5及び受信アンテナ6の共振条件も変わることになる。
 また、受信アンテナ6では、対となる送信アンテナ5間の距離や負荷電流・負荷インピーダンス等によって共振条件が変化する。そこで、受信側回路4にて、このような伝送状況の変化に応じて、受信アンテナ6に対して成立させる共振条件を可変とする機能を追加してもよい。また同様に、送信側回路2にて送信アンテナ5の共振条件を可変とする機能を追加するようにしてもよい。さらに、両回路2,4に各アンテナ5,6の共振条件を可変とする機能を追加するようにしてもよい。
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
産業上利用可能性
 この発明に係る無線電力伝送による可動部多重化伝送システムは、各送信側コイルを、回転体の軸心を略中心にして各々ギャップを有して重ね、各受信側コイルを、対となる送信側コイルにギャップを有して対向させ、各々ギャップを有して重ね、スペーサによりコイル間の磁束をコントロールするように構成し、スリップリング装置による電力の多重化伝送機能を非接触で実現することができるので、複数系統の電力を多重化伝送する電力伝送システムに用いるのに適している。
 1 一次送信電源、2,2a~2c 送信電源回路、3 送受信部、4,4a~4c 受信電源回路、5,5a~5c 送信アンテナ、6,6a~6c 受信アンテナ、7,7a~7c 送信側スペーサ(送信側中空スペーサ)、8,8a~8c 送信側コイル、9,9a~9c 受信側スペーサ(受信側中空スペーサ)、10,10a~10c 受信側コイル、11,11a,11b 勘合部、12 接続用中空スペーサ、20 回転体。

Claims (13)

  1.  回転体を経由した無線電力伝送による可動部多重化伝送システムであって、
     電力を供給する一次送信電源と、
     前記一次送信電源からの電力を無線伝送する複数系統の送信アンテナ、及び、対となる前記送信アンテナからの電力を受信する複数系統の受信アンテナからなる送受信部と、
     対となる前記送信アンテナの共振条件を成立させる複数系統の送信電源回路と、
     対となる前記受信アンテナの共振条件を成立させる複数系統の受信電源回路とを備え、
     前記送信アンテナは、
     前記回転体の軸心を略中心にして又は軸心周りに配置される送信側コイルと、
     前記系統ごとに前記送信側コイルによる磁束をコントロールするよう、対となる前記送信側コイルの軸心を略中心にして配置された所定の透磁率の送信側スペーサと、
     前記受信アンテナは、
     前記送信側コイルの配置形態と同一の形態で、前記回転体の軸心を略中心にして又は軸心周りに配置される受信側コイルと、
     前記系統ごとに前記受信側コイルによる磁束をコントロールするよう、対となる前記受信側コイルの軸心を略中心にして配置された所定の透磁率の受信側スペーサとを備えた
     ことを特徴とする無線電力伝送による可動部多重化伝送システム。
  2.  前記各送信側コイルは、各々異なる径に構成され、前記回転体の軸心を略中心にして各々ギャップを有して重ねられ、
     前記各受信側コイルは、各々異なる径に構成され、対となる前記送信側コイルにギャップを有して対向し、各々ギャップを有して重ねられた
     ことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。
  3.  前記各送信側コイルは、各々異なる径に構成され、前記回転体の軸心を略中心にして各々ギャップを有して重ねられ、
     前記各受信側コイルは、各々異なる径に構成され、対となる送信側コイルにギャップを有して隣接して重ねられ、
     対となる前記送信側スペーサ及び前記受信側スペーサは透磁率が異なる
     ことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。
  4.  前記各送信側コイルは、任意の形状に構成され、前記回転体の軸心周りに配置され、
     前記各受信側コイルは、任意の形状に構成され、対となる前記送信側コイルにギャップを有して対向して配置された
     ことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。
  5.  前記送受信部は、
     1系統以上の前記送信アンテナ及び前記受信アンテナが勘合配置された複数の勘合部と、
     略同一軸心上に沿って隣接する前記勘合部の送信側スペーサ及び受信側スペーサの透磁率以下の透磁率の部材からなり、当該隣接する勘合部を直列接続する接続用中空スペーサとを備え、
     前記送信側コイルは、前記回転体の軸心を略中心にして配置され、
     前記受信側コイルは、対となる送信側コイルにギャップを有して隣接して重ねられ、
     対となる前記送信側スペーサ及び前記受信側スペーサは透磁率が異なる
     ことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。
  6.  前記送受信部は、最外層の前記送信側スペーサ及び/又は前記受信側スペーサの外側にギャップを有して重ねられた中空スペーサを備えたことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。
  7.  前記送受信部は、磁界共鳴により無線伝送を行うことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。
  8.  前記送受信部は、電界共鳴により無線伝送を行うことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。
  9.  前記送受信部は、電磁誘導により無線伝送を行うことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。
  10.  前記送信側コイル及び前記受信側コイルは、各々2個以上のコイルから構成されたことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。
  11.  前記一次送信電源は、前記各送信アンテナに対して異なる周波数の電力を供給することを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。
  12.  前記受信電源回路は、前記受信アンテナの伝送状況に応じて前記受信アンテナの共振条件を可変することを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。
  13.  前記送信電源回路は、前記送信アンテナの伝送状況に応じて前記送信アンテナの共振条件を可変することを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。
PCT/JP2013/073549 2012-10-31 2013-09-02 無線電力伝送による可動部多重化伝送システム WO2014069092A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13850074.9A EP2916427B1 (en) 2012-10-31 2013-09-02 System for mobile unit multiplexed transmission resulting from wireless power transmission
KR1020157011050A KR101568967B1 (ko) 2012-10-31 2013-09-02 무선 전력 전송에 의한 가동부 다중화 전송 시스템
US14/433,847 US9337665B2 (en) 2012-10-31 2013-09-02 Multiplexed wireless power transmission system for moving component
CN201380056469.0A CN104756360B (zh) 2012-10-31 2013-09-02 利用无线电力传输的可动部多路传输系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-240760 2012-10-31
JP2012240760A JP5449502B1 (ja) 2012-10-31 2012-10-31 無線電力伝送による可動部多重化伝送システム

Publications (1)

Publication Number Publication Date
WO2014069092A1 true WO2014069092A1 (ja) 2014-05-08

Family

ID=50614442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073549 WO2014069092A1 (ja) 2012-10-31 2013-09-02 無線電力伝送による可動部多重化伝送システム

Country Status (6)

Country Link
US (1) US9337665B2 (ja)
EP (1) EP2916427B1 (ja)
JP (1) JP5449502B1 (ja)
KR (1) KR101568967B1 (ja)
CN (1) CN104756360B (ja)
WO (1) WO2014069092A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107040040A (zh) * 2015-10-23 2017-08-11 松下知识产权经营株式会社 电力路由器装置及电力传送系统

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173890A1 (ja) * 2014-05-13 2015-11-19 三菱電機エンジニアリング株式会社 無線電力伝送による可動部伝送システム
CN104037957B (zh) * 2014-06-30 2016-03-30 重庆大学 无线电能传输系统多自由度电能拾取机构
JP6415579B2 (ja) * 2014-09-19 2018-10-31 三菱電機エンジニアリング株式会社 無線電力伝送による可動部多重化伝送システム
JP2016139864A (ja) 2015-01-26 2016-08-04 パナソニックIpマネジメント株式会社 撮像装置
WO2016121029A1 (ja) * 2015-01-28 2016-08-04 三菱電機エンジニアリング株式会社 共振型電力伝送装置
EP3334008B1 (en) * 2015-08-03 2022-02-16 Mitsubishi Electric Engineering Company, Limited Power transmission device and antenna
US10633967B2 (en) * 2015-10-07 2020-04-28 Oliden Technology, Llc Modular system for geosteering and formation evaluation
FI128674B (en) 2016-02-04 2020-10-15 Rolls Royce Oy Ab Device for transmitting electrical energy
JP6945188B2 (ja) * 2016-11-30 2021-10-06 パナソニックIpマネジメント株式会社 無線給電ユニット、送電モジュール、受電モジュールおよび無線電力伝送システム
CN108183556A (zh) * 2016-12-08 2018-06-19 佑骅科技(深圳)有限公司 一种无线电功率接收方法及多线圈复用式无线电功率接收装置
EP3798647A1 (en) * 2017-05-29 2021-03-31 Mitsubishi Electric Corporation Wireless power transmission device and power transmission system to aerial moving body
US11322980B2 (en) * 2018-10-31 2022-05-03 Nissan North America, Inc. Inductive power distribution in a vehicle
JP6995941B1 (ja) * 2020-07-07 2022-01-17 日本航空電子工業株式会社 無線コネクタ着脱方法、ロボット装置、無線コネクタ及び無線コネクタユニット
DE102021212149A1 (de) 2021-10-27 2023-04-27 Mahle International Gmbh Drehtransformatorsystem
CN113937904B (zh) * 2021-10-29 2022-10-11 中国石油天然气集团有限公司 一种基于井下旋转导向的多路无线电能传输耦合机构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212416A (ja) * 1988-02-19 1989-08-25 Nippon Syst Kenkyusho:Kk 分割コイル型同軸カプラ
JP2005312285A (ja) 2004-03-23 2005-11-04 Japan Science & Technology Agency 非接触給電装置および非接触受電装置内蔵デバイス、並びに非接触給電方法
JP2011086890A (ja) * 2009-10-19 2011-04-28 Tdk Corp ワイヤレス給電装置、ワイヤレス受電装置およびワイヤレス電力伝送システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521444A (en) * 1994-11-30 1996-05-28 Honeywell Inc. Apparatus for transferring electrical power from a stationary device to a rotating device without the use of brushes or contacts
EP0926690A4 (en) * 1997-07-03 2000-12-20 Furukawa Electric Co Ltd SPLIT TRANSFORMER AND TRANSMISSION CONTROL WITH THE SPLIT TRANSFORMER
US6388548B1 (en) * 1999-04-28 2002-05-14 Tokin Corp. Non-contact transformer and vehicular signal relay apparatus using it
JP2001112253A (ja) 1999-10-06 2001-04-20 Matsushita Electric Works Ltd Dc−dcコンバータ
JP3894876B2 (ja) 2002-11-08 2007-03-22 株式会社椿本チエイン 非接触給電装置
SE0402945D0 (sv) * 2004-11-30 2004-11-30 Abb Research Ltd Industrial robot
US9634730B2 (en) * 2007-07-09 2017-04-25 Qualcomm Incorporated Wireless energy transfer using coupled antennas
US20100148505A1 (en) * 2008-12-16 2010-06-17 Dunlap Gregory M Contact-less power and signal transmission device for a high power level transformer
JP5077340B2 (ja) * 2009-12-25 2012-11-21 トヨタ自動車株式会社 非接触受電装置およびその製造方法
US20120068548A1 (en) 2010-09-16 2012-03-22 Advantest Corporation Wireless power supply apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212416A (ja) * 1988-02-19 1989-08-25 Nippon Syst Kenkyusho:Kk 分割コイル型同軸カプラ
JP2005312285A (ja) 2004-03-23 2005-11-04 Japan Science & Technology Agency 非接触給電装置および非接触受電装置内蔵デバイス、並びに非接触給電方法
JP2011086890A (ja) * 2009-10-19 2011-04-28 Tdk Corp ワイヤレス給電装置、ワイヤレス受電装置およびワイヤレス電力伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2916427A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107040040A (zh) * 2015-10-23 2017-08-11 松下知识产权经营株式会社 电力路由器装置及电力传送系统

Also Published As

Publication number Publication date
EP2916427A4 (en) 2016-08-10
EP2916427B1 (en) 2017-11-01
CN104756360A (zh) 2015-07-01
EP2916427A1 (en) 2015-09-09
US9337665B2 (en) 2016-05-10
CN104756360B (zh) 2018-04-03
JP2014090648A (ja) 2014-05-15
KR101568967B1 (ko) 2015-11-12
JP5449502B1 (ja) 2014-03-19
KR20150055088A (ko) 2015-05-20
US20150280447A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
JP5449502B1 (ja) 無線電力伝送による可動部多重化伝送システム
JP6524175B2 (ja) 電力伝送機構
US9153969B2 (en) Power feeding device, power receiving device and wireless power feeding system
JP5449504B1 (ja) 無線電力伝送による多重化伝送システム及び送信側多重化伝送装置
WO2015125295A1 (ja) 非接触電力伝送装置および非接触電力伝送方法
KR20220134509A (ko) 비접촉식 전력 전달을 위한 시스템 및 방법
JPWO2013005415A1 (ja) 無線電力伝送装置および方法、ならびに、中継器
CN104685796A (zh) 通信系统
JP5449503B1 (ja) 無線電力伝送による多重化伝送システム
WO2016042666A1 (ja) 無線電力伝送による可動部多重化伝送システム
KR101765222B1 (ko) 무선 전력 전송 장치 및 방법, 그리고 무선 전력 전송 시스템
JP5819030B2 (ja) 無線電力伝送による多重化伝送システム、送信側多重化伝送装置及び課金・情報システム
US10243413B2 (en) Resonance type power transmission device
JP2017041875A (ja) 電力伝送通信ユニット
JP2015090995A (ja) 無線通信装置、無線通信システムおよびアンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14433847

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157011050

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013850074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013850074

Country of ref document: EP