WO2016042666A1 - 無線電力伝送による可動部多重化伝送システム - Google Patents
無線電力伝送による可動部多重化伝送システム Download PDFInfo
- Publication number
- WO2016042666A1 WO2016042666A1 PCT/JP2014/074876 JP2014074876W WO2016042666A1 WO 2016042666 A1 WO2016042666 A1 WO 2016042666A1 JP 2014074876 W JP2014074876 W JP 2014074876W WO 2016042666 A1 WO2016042666 A1 WO 2016042666A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission
- antenna
- reception
- wireless power
- movable part
- Prior art date
Links
Images
Definitions
- the present invention relates to a movable part multiplexing transmission system by wireless power transmission that enables non-contact realization of a power multiplexing transmission function by a slip ring device that requires a mechanical contact.
- a slip ring device having a mechanical contact
- the slip ring device includes an annular slip ring that is connected to a primary power source and disposed on an outer peripheral surface of a rotating body via an insulator, a brush that is connected to a reception power source and that is in sliding contact with the outer peripheral surface of the slip ring. It is composed of A load device or the like is connected to the reception power source. With this configuration, the slip ring and the brush are electrically connected, and the power from the primary power source can be transmitted to the receiving power source. Furthermore, in this slip ring device, it is possible to multiplex and transmit a plurality of systems of power by multiplexing pairs of slip rings and brushes.
- a transmission system based on contactless wireless power transmission is known as an alternative technology (see, for example, Patent Document 1).
- the transmitting antenna side is configured to transmit the magnetic flux generated by the transmitting coil 101 and the transmitting coil 101 arranged around the axis of the rotating body.
- a transmission side spacer 102 having a predetermined magnetic permeability is provided so as to be controlled so as to be centered on the axis of the transmission side coil 101 as a pair.
- the receiving antenna side is centered on the axis of the receiving side coil 103 and the receiving side coil 103 arranged around the axis of the rotating body and the receiving side coil 103 so as to control the magnetic flux by the receiving side coil 103.
- a receiving-side spacer 104 having a predetermined magnetic permeability.
- FIG. 3 a case where two systems of transmission / reception antennas are provided is shown, and suffixes a and b are added to the reference numerals of the functional units.
- Reference numeral 105 denotes a connection hollow spacer for connecting each system. With this configuration, the power transmission function by the slip ring device can be realized without contact.
- a transmission / reception antenna is configured using spacers 102 and 104 having a predetermined permeability for controlling magnetic flux. Therefore, there exists a subject that the coil shape of a transmission / reception antenna will be restrict
- the present invention has been made to solve the above-described problems, and enables the non-contact implementation of the power multiplex transmission function by the slip ring device. It is an object of the present invention to provide a movable part multiplexing transmission system by wireless power transmission that can achieve reduction in size, weight, and cost.
- a movable part multiplexed transmission system by wireless power transmission is a movable part multiplexed transmission system by wireless power transmission via a rotator, and includes a transmission antenna for wirelessly transmitting power and a pair of transmission antennas Including two or more transmission / reception units each including a reception antenna for receiving power from the transmission antenna.
- the transmission antenna is formed of a spiral transmission-side coil arranged around the axis of the rotation body. Consists of a spiral-shaped receiving coil arranged with a gap between it and the transmitting coil around the axis, and the transmitting / receiving unit of each system operates with an alternating current in the opposite phase to the adjacent transmitting / receiving unit Is.
- the power multiplexing transmission function by the slip ring device can be realized in a contactless manner, and further, the power loss can be reduced (higher than the conventional configuration). Efficiency) and a reduction in size, weight, and cost can be realized.
- Embodiment 1 of this invention It is a schematic diagram which shows the structure of the movable part multiplexing transmission system by the wireless power transmission which concerns on Embodiment 1 of this invention. It is a schematic diagram which shows the structure of the transmission / reception part in Embodiment 1 of this invention, (a) It is a perspective view of a transmission / reception part, (b) It is a front view of a transmission antenna and a reception antenna. It is a schematic diagram which shows the structure of the transmission / reception part of the movable part multiplexing transmission system by the conventional wireless power transmission.
- FIG. 1 is a schematic diagram showing a configuration of a movable part multiplexing transmission system using wireless power transmission according to Embodiment 1 of the present invention.
- the movable part multiplexing transmission system by wireless power transmission is used when connecting a power line to a load device or the like (not shown) via a mechanical rotating body (not shown). It is a device that wirelessly transmits the electric power including FIG. 1 shows an example in which the wireless power transmission function is multiplexed into three systems, and shows a case where a plurality of systems of electric power including electric signals are wirelessly transmitted in parallel.
- the movable part multiplexing transmission system by wireless power transmission is composed of a primary power source 1, a transmission power source circuit 2, a transmission / reception unit 3, and a reception power source circuit 4.
- the transmission / reception unit 3 includes a transmission antenna 5 and a reception antenna 6.
- 1 has a plurality of transmission power supply circuits 2, a transmission antenna 5, a reception antenna 6, and a reception power supply circuit 4 in order to perform multiplexed transmission (FIG. 1).
- the example shows a case where three systems are provided, and suffixes a to c are added to the codes of the respective functional units).
- the primary power supply 1 supplies power to each transmission antenna 5 through each transmission power supply circuit 2.
- the transmission power supply circuit 2 is arranged between the primary power supply 1 and the transmission antenna 5, and establishes resonance conditions by supplying AC power to the paired transmission antenna 5 through resonance impedance control.
- the transmission antenna 5 wirelessly transmits the power supplied from the primary power supply 1 to the reception antenna 6 via the AC power from the paired transmission power supply circuit 2. Details of the configuration of the transmission antenna 5 will be described later.
- the receiving antenna 6 receives power from the transmitting antenna 5 that forms a pair. The power received by the receiving antenna 6 is supplied to a load device or the like via the receiving power supply circuit 4. Details of the configuration of the receiving antenna 6 will be described later.
- the reception power supply circuit 4 is disposed between the reception antenna 6 and a load device and the like, and establishes a resonance condition of the paired reception antenna 6 by input impedance control.
- the wireless power transmission method of the transmission / reception unit 3 is not particularly limited, and any of a magnetic field resonance method, an electric field resonance method, and an electromagnetic induction method may be used.
- FIG. 2 is a schematic diagram showing a configuration of the transmission / reception unit 3 according to Embodiment 1 of the present invention, (a) a perspective view of the transmission / reception unit 3, and (b) a front view of the transmission antenna 5 and the reception antenna 6. .
- the transmission antenna 5 is arranged outside the reception antenna 6, but the arrangement of the transmission antenna 5 and the reception antenna 6 may be reversed.
- a pair of transmission antenna 5 and reception antenna 6 are arranged with a gap. Further, because of the multiplexing configuration, the transmission antenna 5 and the reception antenna 6 of each system are arranged at a distance along the axial direction of the rotating body (Y direction shown in FIG. 2A). 2A shows a case where the transmission / reception unit 3 has three systems, and suffixes a to c are added to the codes of the functional units.
- the transmission antenna 5 is composed of a spiral transmission-side coil 7 arranged with the axis of the rotating body as the center (including the meaning of substantially the center).
- the transmission coil 7 is fixed on an insulating material (for example, acrylic, glass epoxy, CFRP (carbon fiber reinforced plastic), polyimide, resin, etc.).
- the receiving antenna 6 is composed of a spiral receiving side coil 8 that is arranged with a gap between it and the transmitting side coil 7 about the axis of the rotating body (including the meaning of the center). ing.
- the reception side coil 8 is disposed inside the transmission side coil 7.
- the surfaces of the transmitting antenna 5 and the receiving antenna 6 are arranged with the same surface or offset (in the example of FIG. 2, the case where they are arranged on the same surface is shown).
- the coil shape of the transmitting antenna 5 and the receiving antenna 6 is circular. However, it is not limited to this shape, and may be any shape such as an ellipse or a square.
- the power transmission efficiency characteristic changes depending on the distance G between the systems. That is, the greater the distance G, the better the power transmission efficiency characteristics.
- the distance G between the systems is set so that the mutual interference between the systems is reduced in consideration of the magnetic field intensity generated from each transmission antenna 5.
- the distance G is designed to be greater than or equal to the maximum outer diameter D of the transmission antenna 5 and the reception antenna 6 that are paired, or the distance G is designed to be greater than or equal to the minimum inner diameter B of the transmission antenna 5 and the reception antenna 6 that are paired. To do.
- each of the transmission antennas 5 and the reception antennas 6 arranged in parallel in a plurality of systems is configured to operate with an alternating current having a phase opposite to that of the adjacent system.
- This reverse-phase alternating current operation is performed by a configuration in which the output current of the transmission power supply circuit 2 of each system is in a phase opposite to that of the adjacent system, or by winding of the spiral coils 7 and 8 of the transmission antenna 5 and the reception antenna 6. It is composed by making the direction reverse to the next system.
- the transmission / reception unit 3 of each system may be configured to operate with an alternating current having a phase opposite to that of the adjacent transmission / reception unit 3.
- strain of the movable part multiplexing transmission system by this wireless power transmission becomes a structure which operate
- the transmission antenna 5 composed of the spiral transmission-side coil 7 arranged around the axis of the rotating body and the transmission centered around the axis of the rotating body.
- a receiving antenna 6 comprising a spiral receiving coil 8 arranged with a gap between the receiving coil 7 and the side coil 7.
- the transmitting / receiving unit 3 of each system is an alternating current having a phase opposite to that of the adjacent transmitting / receiving unit 3. Since it is configured to operate, it is possible to realize a power multiplex transmission function by the slip ring device in a non-contact manner. As a result, there is no life limit due to wear deterioration of the mechanical contacts, and the life of the apparatus can be extended.
- each system is arranged at a distance G so that mutual interference between the systems is reduced in consideration of the magnetic field intensity generated from each transmission antenna 5, so that highly efficient wireless power transmission is possible. Multiplexed transmission can be performed.
- the transmission antenna 5 and the reception antenna 6 are each composed of a single coil 7 and 8.
- each of the coils 7 and 8 may be composed of, for example, a power feeding coil and a resonance coil, or may be composed of two or more coils.
- the power supplied from the primary power supply 1 and the transmission power supply circuit 2 to the transmission antenna 5 has the same frequency in each system.
- the reception power supply circuit 4 may be added with a function of making the resonance condition established for the reception antenna 6 variable according to such a change in the transmission state.
- a function for changing the resonance condition of the transmission antenna 5 in the transmission power supply circuit 2 may be added.
- a function of making the resonance conditions of the antennas 5 and 6 variable in both the circuits 2 and 4 may be added.
- the present invention can be modified with any component of the embodiment or omitted with any component of the embodiment.
- the movable part multiplexing transmission system by wireless power transmission can realize the power multiplexing transmission function by the slip ring device in a non-contact manner, and can achieve low power loss (high efficiency) compared to the conventional configuration. It is possible to achieve a reduction in size, weight and cost, so that the power multiplex transmission function by the slip ring device requiring mechanical contact can be realized without contact. It is suitable for use in a movable part multiplexing transmission system by wireless power transmission.
Landscapes
- Near-Field Transmission Systems (AREA)
Abstract
電力を無線伝送する送信アンテナ5、及び、対となる送信アンテナ5からの電力を受信する受信アンテナ6からなる送受信部3を2系統以上備え、送信アンテナ5は、回転体の軸心を中心にして配置されたスパイラル状の送信側コイル7から成り、受信アンテナ6は、回転体の軸心を中心にして送信側コイル7との間に空隙を有して配置されたスパイラル状の受信側コイル8から成り、各系統の送受信部3は、隣の送受信部3と逆位相の交流電流で動作する。
Description
この発明は、機械的接点を必要とするスリップリング装置による電力の多重型伝送機能を、非接触で実現可能とする無線電力伝送による可動部多重化伝送システムに関するものである。
機構的な回転体を経由して電源ラインを負荷機器等へ接続する場合、従来では、機械的接点を有するスリップリング装置を使用している。
このスリップリング装置は、一次電源が接続され、回転体の外周面に絶縁体を介して配置された環状のスリップリングと、受信電源が接続され、スリップリングの外周面と摺動接触するブラシとから構成されている。なお、受信電源には負荷機器等が接続されている。この構成により、スリップリングとブラシが電気的に接続され、一次電源からの電力を受信電源へ伝送することができる。更に、このスリップリング装置において、スリップリング及びブラシの対を多重化することで、複数系統の電力を多重化伝送することが可能となる。
このスリップリング装置は、一次電源が接続され、回転体の外周面に絶縁体を介して配置された環状のスリップリングと、受信電源が接続され、スリップリングの外周面と摺動接触するブラシとから構成されている。なお、受信電源には負荷機器等が接続されている。この構成により、スリップリングとブラシが電気的に接続され、一次電源からの電力を受信電源へ伝送することができる。更に、このスリップリング装置において、スリップリング及びブラシの対を多重化することで、複数系統の電力を多重化伝送することが可能となる。
しかしながら、スリップリング装置では、機械的接点となるスリップリングとブラシの接点における磨耗劣化が発生する。そのため、磨耗劣化により電力伝送システムの寿命が制限されてしまうという課題があった。
一方、これに換わる技術として、非接触の無線電力伝送による伝送システムが知られている(例えば特許文献1参照)。この特許文献1に開示された伝送システムでは、例えば図3に示すように、送信アンテナ側は、回転体の軸心を中心にして配置される送信側コイル101と、送信側コイル101による磁束をコントロールするよう、対となる送信側コイル101の軸心を中心にして配置された所定の透磁率の送信側スペーサ102とを備えている。また、受信アンテナ側は、回転体の軸心を中心にして配置される受信側コイル103と、受信側コイル103による磁束をコントロールするよう、対となる受信側コイル103の軸心を中心にして配置された所定の透磁率の受信側スペーサ104とを備えている。なお図3の例では、送受信アンテナを2系統設けた場合を示し、各機能部の符号に接尾記号a,bを付している。また、符号105は各系統を接続するための接続用中空スペーサである。この構成により、スリップリング装置による電力伝送機能を非接触で実現可能とすることができる。
しかしながら、特許文献1に開示された伝送システムでは、磁束をコントロールするための所定の透磁率のスペーサ102,104を使用して送受信アンテナを構成している。そのため、製造上、送受信アンテナのコイル形状がヘリカル形状等に制限されてしまうという課題がある。また、透磁率を持つスペーサ102,104での渦電流による電力損失の発生という課題や、スペーサ102,104により質量、体積及びコストが増加するという課題がある。
この発明は、上記のような課題を解決するためになされたもので、スリップリング装置による電力の多重型伝送機能を非接触で実現可能とし、従来構成に対して、低電力損失化(高効率化)を図ることができ、且つ、小型化、軽量化及び低コスト化を実現することができる無線電力伝送による可動部多重化伝送システムを提供することを目的としている。
この発明に係る無線電力伝送による可動部多重化伝送システムは、回転体を経由した無線電力伝送による可動部多重化伝送システムであって、電力を無線伝送する送信アンテナ、及び、対となる送信アンテナからの電力を受信する受信アンテナからなる送受信部を2系統以上備え、送信アンテナは、回転体の軸心を中心にして配置されたスパイラル状の送信側コイルから成り、受信アンテナは、回転体の軸心を中心にして送信側コイルとの間に空隙を有して配置されたスパイラル状の受信側コイルから成り、各系統の送受信部は、隣の送受信部と逆位相の交流電流で動作するものである。
この発明によれば、上記のように構成したので、スリップリング装置による電力の多重型伝送機能を非接触で実現可能とすることができ、更に、従来構成に対して、低電力損失化(高効率化)を図ることができ、且つ、小型化、軽量化及び低コスト化を実現することができる。
以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
図1はこの発明の実施の形態1に係る無線電力伝送による可動部多重化伝送システムの構成を示す模式図である。
無線電力伝送による可動部多重化伝送システムは、機構的な回転体(不図示)を経由して電源ラインを負荷機器等(不図示)へ接続する場合等に用いられるものであり、電気信号を含む電力を無線伝送する装置である。なお図1では、無線電力伝送機能を3系統に多重化した例を示し、電気信号を含む複数系統の電力を並列に無線伝送する場合を示している。
実施の形態1.
図1はこの発明の実施の形態1に係る無線電力伝送による可動部多重化伝送システムの構成を示す模式図である。
無線電力伝送による可動部多重化伝送システムは、機構的な回転体(不図示)を経由して電源ラインを負荷機器等(不図示)へ接続する場合等に用いられるものであり、電気信号を含む電力を無線伝送する装置である。なお図1では、無線電力伝送機能を3系統に多重化した例を示し、電気信号を含む複数系統の電力を並列に無線伝送する場合を示している。
この無線電力伝送による可動部多重化伝送システムは、図1に示すように、一次電源1、送信電源回路2、送受信部3及び受信電源回路4から構成されている。また、送受信部3は、送信アンテナ5及び受信アンテナ6を有している。また、図1に示す可動部多重化伝送システムでは、多重化伝送を行うため、送信電源回路2、送信アンテナ5、受信アンテナ6及び受信電源回路4を各々複数系統有している(図1の例では3系統設けた場合を示し、各機能部の符号に接尾記号a~cを付している)。
一次電源1は、各送信電源回路2を介して各送信アンテナ5に対し、電力を供給するものである。
送信電源回路2は、一次電源1と送信アンテナ5との間に配置され、共振インピーダンス制御により、対となる送信アンテナ5への交流電力の供給と共振条件を成立させるものである。
送信電源回路2は、一次電源1と送信アンテナ5との間に配置され、共振インピーダンス制御により、対となる送信アンテナ5への交流電力の供給と共振条件を成立させるものである。
送信アンテナ5は、対となる送信電源回路2からの交流電力を介して一次電源1から供給された電力を、受信アンテナ6に無線伝送するものである。この送信アンテナ5の構成の詳細については後述する。
受信アンテナ6は、対となる送信アンテナ5からの電力を受信するものである。この受信アンテナ6により受信された電力は受信電源回路4を介して負荷機器等に供給される。この受信アンテナ6の構成の詳細については後述する。
受信アンテナ6は、対となる送信アンテナ5からの電力を受信するものである。この受信アンテナ6により受信された電力は受信電源回路4を介して負荷機器等に供給される。この受信アンテナ6の構成の詳細については後述する。
受信電源回路4は、受信アンテナ6と負荷機器等との間に配置され、入力インピーダンス制御により、対となる受信アンテナ6の共振条件を成立させるものである。
なお、送受信部3の無線電力伝送方式は特に限定されるものではなく、磁界共鳴による方式、電界共鳴による方式、電磁誘導による方式のいずれであってもよい。
なお、送受信部3の無線電力伝送方式は特に限定されるものではなく、磁界共鳴による方式、電界共鳴による方式、電磁誘導による方式のいずれであってもよい。
次に、送受信部3の構成について、図2を参照しながら説明する。図2はこの発明の実施の形態1における送受信部3の構成を示す模式図であり、(a)送受信部3の斜視図であり、(b)送信アンテナ5及び受信アンテナ6の正面図である。なお、図2では送信アンテナ5を受信アンテナ6の外側に配置した構成としているが、送信アンテナ5と受信アンテナ6の配置を逆の構成にしてもよい。
送受信部3では、図2(a)に示すように、対となる送信アンテナ5と受信アンテナ6が空隙を有して配置されている。また、多重化構成のため、各系統の送信アンテナ5及び受信アンテナ6がそれぞれ、回転体の軸心方向(図2(a)に示すY方向)に沿って距離を置いて配置されている。なお、図2(a)の例では、送受信部3を3系統とした場合を示し、各機能部の符号に接尾記号a~cを付している。
この送信アンテナ5は、図2(b)に示すように、回転体の軸心を中心(略中心の意味も含む)にして配置されたスパイラル状の送信側コイル7から構成されている。なお送信側コイル7は絶縁材料(例えばアクリル、ガラスエポキシ、CFRP(炭素繊維強化プラスチック)、ポリイミド、樹脂等)の上に固定される。また、受信アンテナ6は、回転体の軸心を中心(略中心の意味も含む)にして送信側コイル7との間に空隙を有して配置されたスパイラル状の受信側コイル8から構成されている。なお図2の例では、受信側コイル8は送信側コイル7の内側に配置されている。また、送信アンテナ5と受信アンテナ6の各面は同一面又はオフセットを持って配置される(図2の例では同一面に配置した場合を示している)。
なお図2に示す例では、送信アンテナ5と受信アンテナ6のコイル形状が、円形の場合を示している。しかしながら、この形状に限るものではなく、楕円形又は正方形等の任意の形状でよい。
また、送信アンテナ5及び受信アンテナ6を回転体の軸心方向へ複数系統並列に配置する場合、各系統間の距離Gにより電力伝送効率特性が変化する。すなわち、距離Gが大きいほど電力伝送効率特性はよくなる。
ここで、各系統間の距離Gの設定は、各送信アンテナ5から発生する磁界強度を考慮して、各系統間の相互干渉が少なくなるように設定する。例えば図2において、距離Gを対となる送信アンテナ5及び受信アンテナ6の最大外径D以上に設計する、又は、距離Gを対となる送信アンテナ5及び受信アンテナ6の最小内径B以上に設計する。
ここで、各系統間の距離Gの設定は、各送信アンテナ5から発生する磁界強度を考慮して、各系統間の相互干渉が少なくなるように設定する。例えば図2において、距離Gを対となる送信アンテナ5及び受信アンテナ6の最大外径D以上に設計する、又は、距離Gを対となる送信アンテナ5及び受信アンテナ6の最小内径B以上に設計する。
また、複数系統並列に配置された各送信アンテナ5及び受信アンテナ6の動作は、隣の系統と逆位相の交流電流で動作するように構成する。この逆移相の交流電流動作は、各系統の送信電源回路2の出力電流を隣の系統と逆位相にした構成、又は、送信アンテナ5及び受信アンテナ6のスパイラル状のコイル7,8の巻き方を隣の系統と逆巻きにすることで構成する。その他いずれの方法でも、各系統の送受信部3が隣の送受信部3と逆位相の交流電流で動作するように構成されていればよい。
なお、この無線電力伝送による可動部多重化伝送システムの各系統は、同一の周波数に同期して動作する構成となる。
なお、この無線電力伝送による可動部多重化伝送システムの各系統は、同一の周波数に同期して動作する構成となる。
以上のように、この実施の形態1によれば、回転体の軸心を中心にして配置されたスパイラル状の送信側コイル7から成る送信アンテナ5と、回転体の軸心を中心にして送信側コイル7との間に空隙を有して配置されたスパイラル状の受信側コイル8から成る受信アンテナ6とを備え、各系統の送受信部3が隣の送受信部3と逆位相の交流電流で動作するように構成したので、スリップリング装置による電力の多重型伝送機能を非接触で実現可能とすることができる。その結果、機械的接点の磨耗劣化による寿命制限がなくなり、装置の長寿命化が可能となる。また、無線電力伝送のため、汚染による接触不良や結露による漏電等を防ぐことができ、装置の信頼性が向上する。更に、機械的接点の磨耗により発生するスパーク等もないため、引火性のある気体や液体中においても動作が可能である。
また、従来技術のように磁束をコントロールするための所定の透磁率のスペーサ102,104を使用しないため、送信アンテナ5と受信アンテナ6のコイル形状に製造上の制限がない。更に、スペーサ102,104での渦電流による電力損失の発生もなく、また、スペーサ102,104における質量、体積及びコストの増加もない。よって、従来構成よりも低電力損失化(高効率化)を図ることができ、且つ、小型化、軽量化及び低コスト化を実現することができる。
また、従来技術のように磁束をコントロールするための所定の透磁率のスペーサ102,104を使用しないため、送信アンテナ5と受信アンテナ6のコイル形状に製造上の制限がない。更に、スペーサ102,104での渦電流による電力損失の発生もなく、また、スペーサ102,104における質量、体積及びコストの増加もない。よって、従来構成よりも低電力損失化(高効率化)を図ることができ、且つ、小型化、軽量化及び低コスト化を実現することができる。
また、多重化構成において、各送信アンテナ5から発生する磁界強度を考慮して、各系統間の相互干渉が少なくなるように距離Gを置いて各系統を配置したので、高効率な無線電力伝送による多重化伝送が可能となる。
なお上記では、送信アンテナ5及び受信アンテナ6を各々単一のコイル7,8から構成する場合について示した。しかしながら、これに限るものではなく、各コイル7,8を各々例えば給電用コイル及び共鳴用コイルから構成してもよく、2個以上のコイルで構成するようにしてもよい。
また上記において、一次電源1及び送信電源回路2が送信アンテナ5に供給する電力は、各系統とも同一周波数となる。
また、受信アンテナ6では、対となる送信アンテナ5との間の距離や負荷電流、負荷インピーダンス等によって共振条件が変化する。そこで、受信電源回路4にて、このような伝送状況の変化に応じて、受信アンテナ6に対して成立させる共振条件を可変とする機能を追加してもよい。また同様に、送信電源回路2にて送信アンテナ5の共振条件を可変とする機能を追加するようにしてもよい。更に、両回路2,4に各アンテナ5,6の共振条件を可変とする機能を追加するようにしてもよい。
また、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
この発明に係る無線電力伝送による可動部多重化伝送システムは、スリップリング装置による電力の多重型伝送機能を非接触で実現可能とし、従来構成に対して、低電力損失化(高効率化)を図ることができ、且つ、小型化、軽量化及び低コスト化を実現することができるため、機械的接点を必要とするスリップリング装置による電力の多重型伝送機能を、非接触で実現可能とする無線電力伝送による可動部多重化伝送システム等に用いるのに適している。
1 一次電源、2,2a~2c 送信電源回路、3 送受信部、4,4a~4c 受信電源回路、5,5a~5c 送信アンテナ、6,6a~6c 受信アンテナ、7,7a~7c 送信側コイル、8,8a~8c 受信側コイル。
Claims (10)
- 回転体を経由した無線電力伝送による可動部多重化伝送システムであって、
電力を無線伝送する送信アンテナ、及び、対となる前記送信アンテナからの電力を受信する受信アンテナからなる送受信部を2系統以上備え、
前記送信アンテナは、前記回転体の軸心を中心にして配置されたスパイラル状の送信側コイルから成り、
前記受信アンテナは、前記回転体の軸心を中心にして前記送信側コイルとの間に空隙を有して配置されたスパイラル状の受信側コイルから成り、
各系統の前記送受信部は、隣の前記送受信部と逆位相の交流電流で動作する
ことを特徴とする無線電力伝送による可動部多重化伝送システム。 - 各系統の前記送信アンテナ及び前記受信アンテナは、前記回転体の軸心方向に沿って距離を置いて配置された
ことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。 - 前記距離は、対となる前記送信アンテナ及び前記受信アンテナの最大外径以上である
ことを特徴とする請求項2記載の無線電力伝送による可動部多重化伝送システム。 - 前記距離は、対となる前記送信アンテナ及び前記受信アンテナの最小内径以上である
ことを特徴とする請求項2記載の無線電力伝送による可動部多重化伝送システム。 - 前記送受信部は、磁界共鳴により無線伝送を行う
ことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。 - 前記送受信部は、電界共鳴により無線伝送を行う
ことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。 - 前記送受信部は、電磁誘導により無線伝送を行う
ことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。 - 前記送信側コイル及び前記受信側コイルは、各々2個以上のコイルから構成された
ことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。 - 各系統において前記受信アンテナに対応して設けられ、当該受信アンテナの共振条件を成立させる受信電源回路を備え、
前記受信電源回路は、対となる前記受信アンテナの伝送状況に応じて当該受信アンテナの共振条件を可変とする
ことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。 - 各系統において前記送信アンテナに対応して設けられ、当該送信アンテナの共振条件を成立させる送信電源回路を備え、
前記送信電源回路は、対となる前記送信アンテナの伝送状況に応じて当該送信アンテナの共振条件を可変とする
ことを特徴とする請求項1記載の無線電力伝送による可動部多重化伝送システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016548516A JP6415579B2 (ja) | 2014-09-19 | 2014-09-19 | 無線電力伝送による可動部多重化伝送システム |
PCT/JP2014/074876 WO2016042666A1 (ja) | 2014-09-19 | 2014-09-19 | 無線電力伝送による可動部多重化伝送システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/074876 WO2016042666A1 (ja) | 2014-09-19 | 2014-09-19 | 無線電力伝送による可動部多重化伝送システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016042666A1 true WO2016042666A1 (ja) | 2016-03-24 |
Family
ID=55532729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/074876 WO2016042666A1 (ja) | 2014-09-19 | 2014-09-19 | 無線電力伝送による可動部多重化伝送システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6415579B2 (ja) |
WO (1) | WO2016042666A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999001878A1 (fr) * | 1997-07-03 | 1999-01-14 | The Furukawa Electric Co., Ltd. | Transformateur dissocie et controleur d'emission equipe de ce transformateur dissocie |
JP2000294438A (ja) * | 1999-04-06 | 2000-10-20 | Furukawa Electric Co Ltd:The | 分離型トランスの電力伝送方法及びその装置 |
JP2011234496A (ja) * | 2010-04-27 | 2011-11-17 | Nippon Soken Inc | コイルユニット、非接触送電装置、非接触受電装置、非接触給電システムおよび車両 |
WO2012046453A1 (ja) * | 2010-10-08 | 2012-04-12 | パナソニック株式会社 | 無線電力伝送装置、ならびに無線電力伝送装置を備える発電装置 |
JP5449502B1 (ja) * | 2012-10-31 | 2014-03-19 | 三菱電機エンジニアリング株式会社 | 無線電力伝送による可動部多重化伝送システム |
-
2014
- 2014-09-19 WO PCT/JP2014/074876 patent/WO2016042666A1/ja active Application Filing
- 2014-09-19 JP JP2016548516A patent/JP6415579B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999001878A1 (fr) * | 1997-07-03 | 1999-01-14 | The Furukawa Electric Co., Ltd. | Transformateur dissocie et controleur d'emission equipe de ce transformateur dissocie |
JP2000294438A (ja) * | 1999-04-06 | 2000-10-20 | Furukawa Electric Co Ltd:The | 分離型トランスの電力伝送方法及びその装置 |
JP2011234496A (ja) * | 2010-04-27 | 2011-11-17 | Nippon Soken Inc | コイルユニット、非接触送電装置、非接触受電装置、非接触給電システムおよび車両 |
WO2012046453A1 (ja) * | 2010-10-08 | 2012-04-12 | パナソニック株式会社 | 無線電力伝送装置、ならびに無線電力伝送装置を備える発電装置 |
JP5449502B1 (ja) * | 2012-10-31 | 2014-03-19 | 三菱電機エンジニアリング株式会社 | 無線電力伝送による可動部多重化伝送システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016042666A1 (ja) | 2017-06-29 |
JP6415579B2 (ja) | 2018-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6524175B2 (ja) | 電力伝送機構 | |
JP5449502B1 (ja) | 無線電力伝送による可動部多重化伝送システム | |
US11094456B2 (en) | Wireless power transmission device | |
JP5449504B1 (ja) | 無線電力伝送による多重化伝送システム及び送信側多重化伝送装置 | |
JP2018534808A5 (ja) | ||
JP6584896B2 (ja) | 送電または受電コイル、それを用いた無線電力伝送装置および回転体 | |
CN108352859A (zh) | 用于无接触地继续拧能量传输的能量传输设备和用于无接触地进行能量传输的方法 | |
JP6415579B2 (ja) | 無線電力伝送による可動部多重化伝送システム | |
JP2014103778A (ja) | 無線電力伝送による伝送システム及び送信側伝送装置 | |
JP2014090650A (ja) | 無線電力伝送による多重化伝送システム | |
KR101765222B1 (ko) | 무선 전력 전송 장치 및 방법, 그리고 무선 전력 전송 시스템 | |
CN107086676B (zh) | 一种无线供电及通讯装置 | |
CN205846878U (zh) | 一种用于旋转部件无线电能传输的天线及装置 | |
KR102293809B1 (ko) | 커패시티브 결합방식의 커플러 구조 및 이를 포함하는 무선전력전송 시스템 | |
JP2017041875A (ja) | 電力伝送通信ユニット | |
KR102150521B1 (ko) | 유도 전력 신호 및 공명 전력 신호를 송수신할 수 있는 무선 전력 전송 시스템 | |
KR20180129563A (ko) | 회전 스테이지 | |
JP2015167317A (ja) | 非接触回転伝送装置 | |
US10243413B2 (en) | Resonance type power transmission device | |
JPWO2014192180A1 (ja) | 無線電力伝送による多重化伝送システム、送信側多重化伝送装置及び課金・情報システム | |
JP2014128068A (ja) | 無線電力伝送装置 | |
CN105896746A (zh) | 一种用于旋转部件无线电能传输的天线及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14902037 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016548516 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14902037 Country of ref document: EP Kind code of ref document: A1 |