WO2014068801A1 - フォトレジスト剥離液組成物 - Google Patents

フォトレジスト剥離液組成物 Download PDF

Info

Publication number
WO2014068801A1
WO2014068801A1 PCT/JP2013/000200 JP2013000200W WO2014068801A1 WO 2014068801 A1 WO2014068801 A1 WO 2014068801A1 JP 2013000200 W JP2013000200 W JP 2013000200W WO 2014068801 A1 WO2014068801 A1 WO 2014068801A1
Authority
WO
WIPO (PCT)
Prior art keywords
stripping solution
copper film
copper
amino acid
stripping
Prior art date
Application number
PCT/JP2013/000200
Other languages
English (en)
French (fr)
Inventor
真一郎 淵上
日高 義晴
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014068801A1 publication Critical patent/WO2014068801A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/425Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen

Definitions

  • the present invention relates to a photoresist stripping solution.
  • the present invention relates to a photoresist stripping composition suitably used for the production of copper or copper alloys or aluminum wiring substrates for flat panel displays (FPD) such as liquid crystal displays and organic EL displays.
  • FPD flat panel displays
  • Copper-based materials are less susceptible to corrosion in aqueous solutions because they have less protective oxide films formed on the surface than aluminum. Therefore, there is a problem that the wiring pattern cannot be stably formed. Therefore, in the manufacture of semiconductors, corrosion is prevented by a dry process using plasma.
  • the FPD has a larger substrate size than a semiconductor, and it is difficult to apply a dry process using plasma. Therefore, development of wiring formation using a wet etching method is indispensable.
  • copper film means a film made of a copper-based material.
  • the copper film is corroded in the last resist film peeling step.
  • the resist adhering to the copper film surface disappears, the copper film surface is directly exposed to the stripping solution.
  • the resist stripping solution shows alkalinity and also contains water. Therefore, the copper film is easily corroded.
  • development of a photoresist stripping solution that achieves a good balance between stripping the photoresist and preventing corrosion of the copper film has been performed.
  • the main technique is to mix a copper film corrosion inhibitor into the stripping solution.
  • Patent Document 1 contains a secondary or tertiary alkanolamine, a water-soluble organic solvent, 0.002 to 0.1% by weight of an amino acid having no thiol group and amide structure and having two or more nitrogen atoms.
  • a photoresist stripper composition is disclosed.
  • the main purpose is to prevent the stripping solution from corroding the underlying molybdenum film when the molybdenum film is used as the base of the copper film in order to improve the adhesion of the copper film to the substrate.
  • Patent Document 2 discloses a copper wiring residue cleaning agent containing an amino acid having a chelate stability constant of 15 or more and having no thiol group.
  • this copper wiring residue cleaning agent is for cleaning residues by dry etching, and targets ashing residues and copper wiring residues removed by ashing with oxygen plasma.
  • Patent Document 1 aims to prevent corrosion of a copper-based material while maintaining the peelability of the photoresist.
  • tertiary alkanolamine even if no corrosion inhibitor is added, the corrosion of copper-based materials is not so severe, and damage that may affect product performance may not occur. I understood.
  • the present invention has been conceived in view of the above problems, and prevents adhesion of a stripped photoresist component to the copper film surface when a copper film on a large-area substrate is formed by wet etching to form a wiring or the like.
  • a photoresist stripping composition that hardly corrodes the copper film is provided.
  • the photoresist stripping composition of the present invention comprises 1 to 9% by mass of a tertiary alkanolamine, 10 to 70% by mass of a polar solvent, 10 to 40% by mass of water, It is characterized by having 100 ppm amino acids.
  • the photoresist stripping composition of the present invention has a total amount of 10 to 100 ppm of amino acids in addition to tertiary alkanolamine, a polar solvent, and water. This amino acid suppresses the exfoliated photoresist component from adhering to the surface of the copper film, so that the adhesion of the subsequently formed layer decreases until the photo resist concentration of the exfoliating solution reaches a predetermined value. This is avoided.
  • amino acids have no boiling point, they can be easily separated from tertiary alkanolamines, polar solvents and water, so that the photoresist stripping liquid composition can be easily reused.
  • the photoresist stripping composition (hereinafter simply referred to as “stripping solution”) used in the present invention is a tertiary alkanolamine of 1 to 9% by weight, a polar solvent of 10 to 70% by weight, water of 10 to 40% by weight, Contains 10 to 100 ppm of amino acids. Note that a mixture of a tertiary alkanolamine, a polar solvent, and water is referred to as a mixed solution for convenience, including the present specification and claims.
  • tertiary alkanolamines that can be suitably used include the following. Triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dibutylethanolamine, N-methylethanolamine, N-ethylethanolamine, N-butylethanolamine, N-methyldiethanolamine Etc. These may be used in combination of a plurality of types.
  • the polar solvent may be an organic solvent having an affinity for water. Moreover, it is more suitable if the mixing property with said tertiary alkanolamine is favorable.
  • water-soluble organic solvents examples include sulfoxides such as dimethyl sulfoxide; sulfones such as dimethyl sulfone, diethyl sulfone, bis (2-hydroxyethyl) sulfone, and tetramethylene sulfone; N, N-dimethylformamide, N-methyl Amides such as formamide, N, N-dimethylacetamide, N-methylacetamide, N, N-diethylacetamide; N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone, N -Lactams such as hydroxymethyl-2-pyrrolidone and N-hydroxyethyl-2-pyrrolidone; 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3-diisopropyl -2-Imidazolidinones such as imi
  • At least one selected from dimethyl sulfoxide, N-methyl-2-pyrrolidone, and diethylene glycol monobutyl ether is preferably used from the viewpoints of further peelability and anticorrosiveness to the substrate.
  • diethylene glycol monobutyl ether and N-methyl-2-pyrrolidone are particularly preferred.
  • These components may be used in combination of a plurality of types.
  • the water is preferably pure water, but may contain impurities within the industrially usable range. That is, it is not necessary to use pure water that has passed through the RO membrane. This is because some impurities may be tolerated when a wiring of several ⁇ m or more is formed.
  • the stripping solution according to the present invention contains an amino acid in addition to the mixed solution (tertiary alkanolamine, polar solvent and water).
  • An amino acid refers to a so-called broad amino acid and may be any substance containing an amino group and a carboxyl group.
  • so-called essential amino acids glycine, arginine, and asparagine can be suitably used as described later. Further, glycine can be most suitably used from the viewpoint of cost. These amino acids suppress the adhesion of the resist component to the copper film surface.
  • the mixed solution itself corrodes the copper film to some extent.
  • the amino acid itself described later also corrodes the copper film at the beginning of using the stripping solution. Therefore, the ratio of tertiary alkanolamine, polar solvent, water, and amino acid is alkaline enough to dissolve the exposed resist, and the corrosion is such that the copper film substantially remains in the presence of the resist component. It is necessary to be power.
  • the fact that the copper film substantially remains means that the copper film remains to the extent that it does not hinder the product even if the exposed resist on the copper film is removed by the stripping solution.
  • the blending amount of the tertiary alkanolamine in the photoresist stripping solution used in the present invention is 1 to 9% by weight, more preferably 2 to 7% by weight, most preferably 4 to 6% by weight based on the total amount of the stripping solution. % Is preferred. This is because when the content is 9% by mass or more, the copper film is excessively corroded. Further, when the amount is 1% by mass or less, the photoresist cannot be peeled off.
  • the ratio of the polar solvent is preferably 10 to 70% by mass, more preferably 30 to 70% by mass, and most preferably 50 to 70% by mass with respect to the total amount of the stripping solution.
  • the water content is preferably 10 to 40% by mass, more preferably 20 to 40% by mass, and most preferably 30 to 40% by mass.
  • the polar solvent and water may be prepared so that the viscosity of the stripping solution, which is a mixed solution of a tertiary alkanolamine, is suitable at the temperature used.
  • the amino acid is preferably 10 to 100 ppm, more preferably 50 to 60 ppm. If there are too many amino acids, the corrosion of the copper-based material is too great. Moreover, when there are few amino acids, adhesion to the surface of the copper-type material of a photoresist component cannot be suppressed.
  • the reaction between the resin or the photosensitizer in the photoresist and the photoresist stripping composition depends on the temperature. Therefore, temperature control when using the stripping solution is strictly performed.
  • the stripping solution and the object to be treated according to the present invention have a preferable range of 35 ° C. to 60 ° C., and a more preferable use range of 38 ° C. to 55 ° C. Further, it is desirable that the object to be processed (the photoresist film to be peeled off) and the stripping solution are treated at the same temperature. Since the base material of FPD is very large, the space where the stripping solution is used becomes a large space. This is because the temperature range from 35 ° C. to 60 ° C. allows such a space to stably perform a chemical reaction and maintain a large amount of energy for temperature management.
  • the stripping solution of the present invention is a mixture of tertiary alkanolamine, polar solvent, water and amino acid, it can be easily separated.
  • concentration of the photoresist component increases.
  • the stripping solution waste liquid further contains a photoresist component in the stripping solution.
  • the separation liquid is a mixture of tertiary alkanolamine, polar solvent and water.
  • the boiling point of water is relatively low at 100 ° C.
  • the polar solvent can use what differs from the boiling point of water depending on a thing.
  • the stripping solution according to the present invention is a mixture of a tertiary alkanolamine, a polar solvent, water, and an amino acid from the waste solution after use, it can be easily recycled.
  • the adhesion amount of the resist component to the copper-based material surface was evaluated by the contact angle.
  • the base stripping solution is 3% by mass of N-methyldiethanolamine (MDEA) as a tertiary alkanolamine, 67% by mass of a mixed solvent of diethylene glycol monobutyl ether and propylene glycol as a polar solvent, and 30% by mass of water. did. This is called a base stripping solution.
  • MDEA N-methyldiethanolamine
  • Resist powder was prepared by drying a positive resist using a novolac resin to form a powder.
  • amino acid glycine was prepared.
  • a substrate in which a copper film was formed on a silicon substrate referred to as “copper film substrate”
  • aluminum film substrate a substrate in which an aluminum film was formed on a silicon substrate
  • stripping solutions A, B, C, and D Four types were prepared, one with and without the addition of 50 ppm of amino acid to the base stripping solution, and one with and without the addition of 500 ppm of resist powder for each, and were named stripping solutions A, B, C, and D. More specifically, the stripping solution A is only the base stripping solution. The stripping solution B is obtained by adding 500 ppm of resist powder to the base stripping solution. The stripping solution C is obtained by adding 50 ppm of glycine to the base stripping solution. The stripping solution D is obtained by adding 50 ppm of glycine and 500 ppm of resist powder to the base stripping solution.
  • the resist stripping solution composition according to the present invention is stripping solution C. Further, the stripping solution D shows a state in which the stripping solution C is used to contain a resist component. Since the photoresist stripping solution does not always use a new solution but is used repeatedly to some extent, the characteristics in a state in which a photoresist component is included is also important. These compositions are shown in Table 1.
  • represents a trace amount. This is because both the resist powder and glycine are very small relative to the base stripping solution.
  • FIG. 1 shows the results for the copper film substrate
  • FIG. 2 shows the results for the aluminum film substrate.
  • the horizontal axis represents the type of stripping solution
  • the vertical axis represents the contact angle (°).
  • the contact angle was 13.0 °.
  • stripping solution B the angle was 35.8 °. That is, it was found that when the copper film substrate was immersed in a stripping solution in which a resist powder was added to the base stripping solution, the resist component adhered to the copper film substrate and repels water. If another material is formed on the copper film substrate in such a state, the adhesive strength is weakened.
  • the contact angle was 14.8 °, which was slightly higher than that of the stripping solution A.
  • the contact angle was 21.2 °.
  • the stripping solution D contains a resist component. However, even when the same resist component is included, it can be seen that the contact angle is greatly reduced as compared with the case of the stripping solution B. That is, it was found that the adhesion of the resist component on the copper film substrate was suppressed by the addition of glycine.
  • FIG. 2 shows the result of the same test in the case of an aluminum film substrate.
  • the aluminum film substrate had almost the same contact angle regardless of the type of stripping solution. That is, it can be said that the resist component hardly adheres to the surface of aluminum. Further, it can be said that the stripping solutions (stripping solutions C and D) according to the present invention have a very effective effect on the copper film substrate.
  • the stripping solutions A to D and the test apparatus and substrate used are the same as those used in ⁇ Adhesion inhibiting effect of resist component>.
  • the substrate which was cut into 10 mm ⁇ 50 mm was immersed in a beaker stirred at 500 rpm with a 20 mm stirrer while maintaining the liquid temperature at 50 ° C. After 30 minutes, 1 ml of the stripping solution was sampled with a pipette. The substrate element in the sampled stripping solution was quantitatively analyzed with an ICP (Inductively coupled plasma) plasma mass spectrometer.
  • ICP Inductively coupled plasma
  • FIG. 3 shows the results for the copper film substrate
  • FIG. 4 shows the results for the aluminum film substrate.
  • the horizontal axis represents the type of the stripping solution
  • the vertical axis represents the amount (ppm) of the substrate element.
  • the amount of copper dissolved was 7.0 ppm.
  • the stripping solution B it was 4.1 ppm.
  • the stripping solution B is obtained by adding a resist component to the base stripping solution. Therefore, it can be said that the resist component adheres to the surface of the copper film substrate and suppresses dissolution of the copper film surface. This corresponds well to the result of the stripping solution B in FIG. 1 that the resist component is considered to be attached to the copper film surface.
  • the stripping solution C 8.8 ppm was more dissolved than in the case of the stripping solution A. That is, the amount of copper dissolved increased as amino acid (glycine) was added to the stripping solution.
  • the stripping solution D the amount of copper film dissolved was less than that of the stripping solution A at 5.3 ppm.
  • the stripping solutions C and D are both stripping solutions according to the present invention, but the stripping solution D can be compared to stripping solutions in which the concentration of the resist component is increased by use. That is, the stripping solution according to the present invention reduces the amount of dissolution of the copper film when the resist concentration is increased by use, and also suppresses adhesion of the resist component to the copper film surface (see FIG. 1).
  • the use of the stripping solution according to the present invention causes little damage to the copper film, and does not change the adhesion of the film formed on the copper film. It shows that processing can be provided.
  • FIG. 4 shows the results for an aluminum film substrate.
  • the stripping solutions C and D which are stripping solutions according to the present invention, were lower than the stripping solutions A and B. That is, it can be said that the stripping solution according to the present invention is a stripping solution with little damage to the aluminum film substrate, and it can be said that the stripping solution is effective when used not only for the copper film substrate but also for the aluminum film substrate.
  • the stripping solution prepared was a base stripping solution (glycine amount 0 ppm) and a stripping solution obtained by adding 10 ppm, 50 ppm, 100 ppm of amino acid to the base stripping solution.
  • the stripping solutions are E, F, and G, respectively. Stripping solutions E, F and G are photoresist stripping compositions according to the present invention.
  • the stripping solution F is the same as the stripping solution C.
  • the stripping solution having a glycine amount of 0 ppm is stripping solution A.
  • each stripping solution 50 g was taken in a beaker, kept at 50 ° C., and stirred at 600 rpm using a stirrer and a 20 mm stir bar.
  • substrate prepared the copper film board
  • the copper film substrate was immersed in a stirred beaker, and 1 ml of the stripping solution after 5 minutes, 10 minutes, 20 minutes, and 30 minutes was sampled, and the amount of copper was quantified with an ICP plasma mass spectrometer.
  • Figure 5 shows the results.
  • the horizontal axis represents the immersion time (minutes), and the vertical axis represents the amount of dissolution in terms of copper element concentration (ppm).
  • the copper element concentration in the stripping solution increased with the immersion time.
  • the content of amino acid (glycine) increased, the concentration of copper element in the stripping solution increased.
  • the amino acid content increased, the amount of copper dissolved from the copper film substrate increased.
  • the line of the stripping solution G (amino acid amount 100 ppm) was almost the same as the stripping solution with the most damage to the copper film among the practical stripping solutions that were confirmed in a separate experiment. Therefore, the amino acid amount needs to be 100 ppm or less.
  • the adhesive force on the copper film after stripping may be reduced from the result of FIG. Therefore, it is considered that an amino acid is necessary for the stripping solution, and at least 10 ppm or more is necessary. However, based on the results of FIG. 1 and FIG. 3, it is considered that the amino acid amount is more preferably 50 to 60 ppm.
  • amino acid type solubility>
  • Glutamic acid as acidic amino acid
  • arginine as basic amino acid
  • glycine alanine
  • valine as neutral amino acid with alkyl group
  • methionine as neutral amino acid with thiol group
  • amide group as neutral amino acid Asparagine was chosen for each.
  • the stripping solution was prepared by adding 50 ppm of each amino acid to the base stripping solution.
  • 50 g of each stripping solution was placed in a beaker, kept at 50 ° C., and stirred at 500 rpm using a stirrer and a 20 mm stirrer.
  • the copper film substrate was prepared by cutting it into 10 mm ⁇ 50 mm.
  • the copper film substrate was immersed in a stirred beaker, 1 ml of the stripping solution after 0 minutes, 5 minutes, 15 minutes, and 30 minutes was sampled, and the amount of copper was quantified with an ICP plasma mass spectrometer.
  • Figure 6 shows the results.
  • the horizontal axis represents the treatment (immersion) time (minutes), and the vertical axis represents the dissolution amount (ppm).
  • an asterisk shows the state (only base stripping solution: shown with the dotted line) which does not put any amino acid. Referring to FIG. 6, since the base stripping solution itself corrodes the copper film, the amount of dissolution increases with the immersion time even if no amino acid is contained (star sign).
  • arginine the same amount as the base stripping solution or a larger amount of dissolution was shown.
  • glycine shown as a straight line
  • Arginine has a small amount of copper dissolved, and can be said to suppress the corrosion of the base stripping solution to copper.
  • ⁇ Amino acid type Contact angle> Next, the contact angle was similarly examined for a plurality of amino acids.
  • the amount of base stripping solution (50 g), the amount of amino acid (50 ppm), and the temperature (50 ° C.) are the same as those used in ⁇ Amino acid type: Solubility>.
  • a sample containing 500 ppm of a resist component and a sample containing no resist component were prepared.
  • each stripping solution 50 g was taken in a beaker and kept at 50 ° C., and a 20 mm stirring bar was rotated at a rotation speed of 500 rpm.
  • the substrate was formed into a 10 mm ⁇ 70 mm strip and immersed in the beaker for 1 minute.
  • the substrate was washed with pure water (DIW: Dispersed Ion Water) for 1 minute, dried with N 2 blow, and the contact angle was measured. For the measurement of the contact angle, pure water was used as a reagent.
  • DIW Dispersed Ion Water
  • Results are shown in FIG. Referring to FIG. 7, the horizontal axis represents the type of amino acid. “No additive” means that no amino acid is added. The vertical axis is the contact angle. Two bar graphs were drawn for each amino acid type. The left side is the result when the resist component is not added (0 ppm) toward the paper surface, and the right side is the result when the resist component is mixed (500 ppm).
  • the contact angle increased. Further, when there was no resist component, the surface contact angle of any amino acid was reduced compared to the case of no additive (no amino acid). From this, it is considered that the surface of the copper film became hydrophilic by the addition of amino acids.
  • glycine has almost the same contact angle as the case of no additive (no amino acid) when the resist is not contained in the stripping solution, and even if the stripping solution contains a resist component, the contact angle is It didn't change much. In addition, the contact angle did not change greatly even with or without the resist component (left and right bar graph of glycine).
  • glycine corrodes the copper film, but if used for a short time, it can be used at a level where there is no problem in the characteristics of the product.
  • resist component adhesion to the surface of the copper film can be suppressed, stable product characteristics can be planned even during continuous use, and the cost is the lowest among the essential amino acids. It can be said that it is the most desirable amino acid.
  • the stripping solution (photoresist stripping solution composition) according to the present invention can be said to be a stripping solution with little damage not only to a copper film but also to an aluminum film. Therefore, it can be suitably used for manufacturing not only a copper film but also aluminum as a conductive wire, in particular, a general FPD such as a liquid crystal display, a plasma display, and an organic EL, which requires a large area and fine processing.
  • a general FPD such as a liquid crystal display, a plasma display, and an organic EL

Abstract

 大面積の基板上の銅膜若しくは銅合金膜をウェットエッチングすることによって配線等とする際に、銅膜にダメージを与えないように剥離し、なおかつ、銅膜の上に堆積させる層との間の接着力を低下させないフォトレジストの剥離液を用いた剥離液リサイクルシステムを提供する。 フォトレジストの剥離液組成物であって、1~9質量%の三級アルカノールアミンと、10~70質量%の極性溶媒と、10~40質量%の水と、10~100ppmのアミノ酸を有することを特徴とするフォトレジスト剥離液組成物は、銅膜上にレジスト成分が付着することを抑制し、堆積させる層との間の接着力を低下させない。

Description

フォトレジスト剥離液組成物
 本発明は、フォトレジスト剥離液に関する。特に、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)の銅又は銅合金又はアルミ配線基板製造に好適に使用されるフォトレジスト剥離液組成物に関する。
 ICやLSI等では、半導体素子の高集積化とチップサイズの縮小化に伴い、配線回路の微細化及び多層化が進み、半導体素子で用いる金属膜の抵抗(配線抵抗)と配線容量に起因する信号の遅延などが問題視されている。そのため、配線抵抗をより小さくするためにアルミニウム(Al)よりも抵抗の少ない銅(Cu)が用いられるようになっている。
 また、液晶ディスプレイ等のFPDでも、従来配線材料としてアルミニウムが採用されてきたが、近年の基板大型化や高精細化および有機ELへの対応のため、半導体素子同様に、配線抵抗を下げる必要があり、アルミニウムよりも抵抗の少ない銅若しくは銅合金等(以下「銅系材料」と呼ぶ。)を配線材料として用いられることが試みられている。
 銅系材料はアルミニウムに比べ、表面に生成する酸化被膜の保護性が弱いため、水溶液中では腐食しやすい。従って、配線パターンを安定して形成できないという課題がある。そこで、半導体の製造では、プラズマを使ったドライプロセスで腐食を防止している。しかし、FPDは半導体よりも基板サイズが大きく、プラズマを使ったドライプロセスの適用が困難である。そのため、ウェットエッチング工法を用いた配線形成の開発が不可欠である。
 配線材料として銅系材料を用いた場合の課題は、上記に示したようにウェットエッチングによる銅膜面の腐食である。よく知られているように、ウェットエッチングによるフォトリソグラフィでは、基材上に形成した銅膜にレジストで配線パターンを形成し、銅膜を溶解するエッチャントによって不要な部分の銅膜を除去し、最後にレジストを除去することで、所望の配線パターンを得る事ができる。なお、本明細書において、「銅膜」とは銅系材料で作製された膜を意味する。
 ここで、銅膜が腐食されるのは、最後のレジスト膜の剥離工程である。この工程では、銅膜表面に付着していたレジストが無くなるため、銅膜表面が剥離液に直接曝される。特にレジストの剥離液は、アルカリ性を示し、また水も混在されている。そのため、銅膜は容易に腐食される。そこで、フォトレジストを剥離する事と、銅膜の腐食を防止する事をバランス良く達成するフォトレジスト剥離液の開発が行われている。その主たる手法は、剥離液中に銅膜の腐食防止剤を混入させることである。
 特許文献1には、二級又は三級アルカノールアミンと、水溶性有機溶剤と、チオール基およびアミド構造を持たず、窒素原子を2個以上有するアミノ酸を0.002~0.1重量%含有するフォトレジスト剥離剤組成物が開示されている。特許文献1では、基板に対する銅膜の接着性を高めるため、モリブデン膜を銅膜の下地とした際に、剥離液が下地のモリブデン膜を腐食させないことを主たる目的としている。
 また、特許文献2では、銅とのキレート安定度定数が15以上であって、チオール基を有しないアミノ酸を含有する銅配線用残渣洗浄剤が開示されている。ただし、この銅配線用残渣洗浄剤は、ドライエッチングによる残渣を洗浄するためのものであり、酸素プラズマによってアッシング除去したアッシング残渣や銅配線残渣を対象としている。
WO2010/073887 A1 特開2005-217114号公報
 特許文献1では、フォトレジストの剥離性を維持したまま、銅系材料の腐食を防止することを目的としている。しかし、三級アルカノールアミンを使用した場合は、腐食防止剤を添加していなくても、銅系材料の腐食はそれほど激しくなく、製品の性能に影響を与えるようなダメージが生じない場合もあることが分かった。
 また、特許文献2で開示されているアミノ酸をウェットエッチングで利用するフォトレジスト剥離液に用いると、開示されている濃度では、銅系材料へのダメージが大きかった。
 また、剥離液中のフォトレジストの濃度が高くなると、溶解したレジスト成分が銅膜の表面に付着し、フォトレジスト剥離後の銅膜上に成膜した他の膜の接着性が低下するといった課題があった。
 また、剥離液中に金属が溶解してくると、シリコンなど半導体層に金属原子が付着しやすく、半導体の電気特性などにも影響を及ぼすという課題があった。
 本発明は、上記課題に鑑みて想到されたもので、大面積の基板上の銅膜をウェットエッチングすることによって配線等とする際に、剥離したフォトレジスト成分の銅膜表面への付着を防止し、なおかつ銅膜を腐食しにくいフォトレジスト剥離液組成物を提供する。
 より具体的には、本発明のフォトレジスト剥離液組成物は、1~9質量%の三級アルカノールアミンと、10~70質量%の極性溶媒と、10~40質量%の水と、10~100ppmのアミノ酸を有することを特徴とする。
 本発明のフォトレジスト剥離液組成物は、三級アルカノールアミンと、極性溶媒と、水に加えて、全量の10~100ppmのアミノ酸を有する。このアミノ酸は、剥離したフォトレジスト成分が銅膜の表面に付着することを抑制するため、剥離液のフォトレジスト濃度が所定の値になるまでは、その後に成膜した層の接着性が低下するということが回避される。
 また、アミノ酸を添加し過ぎると、銅膜の表面にダメージが生じるが、10~100ppmの量であれば、製品の性能として問題が生じるほどのダメージは生じない。
 また、アミノ酸は、沸点を持たないため、三級アルカノールアミンと極性溶媒と水から容易に分離することができるので、フォトレジスト剥離液組成物が容易に再利用することができるという効果を有する。
銅膜基板へのレジスト付着抑制効果を示す試験結果を表すグラフである。 アルミ膜基板へのレジスト付着抑制効果を示す試験結果を表すグラフである。 銅膜基板に対する溶解量を示す試験結果を表すグラフである。 アルミ膜基板に対する溶解量を示す試験結果を表すグラフである。 アミノ酸の含有量が溶解量に及ぼす影響を調べた試験結果を表すグラフである。 アミノ酸の種類による銅膜基板の溶解量を示す試験結果を表すグラフである。 アミノ酸の種類による銅膜基板へのレジスト付着抑制効果を示す試験結果を表すグラフである。
 以下本発明を図面および実施例を示しながら説明を行うが、本発明の趣旨を逸脱しない範囲で、実施形態は変更することができる。
 本発明に用いるフォトレジスト剥離液組成物(以後単に「剥離液」という。)は、三級アルカノールアミンを1~9質量%、極性溶媒を10~70質量%、水を10~40質量%、アミノ酸を10~100ppm含む。なお、本明細書および特許請求の範囲を含め、三級アルカノールアミンと極性溶媒と水を混合したものを便宜上混合液と呼ぶ。
 三級アルカノールアミンとしては、具体的に以下のものが好適に利用できる。トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジブチルエタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、N-ブチルエタノールアミン、N-メチルジエタノールアミン等である。これらは、複数種類を混合して用いてもよい。
 極性溶媒としては、水と親和性のある有機溶媒であればよい。また上記の三級アルカノールアミンとの混合性が良好であればより好適である。
 このような水溶性有機溶媒としては、ジメチルスルホキシド等のスルホキシド類;ジメチルスルホン、ジエチルスルホン、ビス(2-ヒドロキシエチル)スルホン、テトラメチレンスルホン等のスルホン類;N,N-ジメチルホルムアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルアセトアミド、N,N-ジエチルアセトアミド等のアミド類;N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-プロピル-2-ピロリドン、N-ヒドロキシメチル-2-ピロリドン、N-ヒドロキシエチル-2-ピロリドン等のラクタム類;1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジイソプロピル-2-イミダゾリジノン等のイミダゾリジノン類;エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテルなどのジエチレングリコールモノアルキルエーテル(アルキルは炭素原子数1~6の低級アルキル基)等の多価アルコール類、およびその誘導体が挙げられる。これらの中で、ジメチルスルホキシド、N-メチル-2-ピロリドン、ジエチレングリコールモノブチルエーテルの中から選ばれる少なくとも1種が、より一層の剥離性、基板に対する防食性等の点から好ましく用いられる。中でも、ジエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンが特に好ましい。これらの成分は複数種類を混合して用いてもよい。
 水は、純水であることが好ましいが、工業的に利用できる範囲内で、不純物が含まれていてもよい。すなわち、RO膜を通過させた純水を用いなくてもよい。数μm以上の配線を形成する場合は、多少の不純物は許容できる場合もあるからである。
 本発明に係る剥離液は、混合液(三級アルカノールアミンと極性溶媒と水)に加え、アミノ酸が含まれる。アミノ酸は、所謂広義のアミノ酸をいい、アミノ基とカルボキシル基を含む物質であればよい。所謂必須アミノ酸の中では、後述するようにグリシン、アルギニン、アスパラギンが好適に利用できる。またコストの観点も含めると、グリシンが最も好適に利用できる。これらのアミノ酸はレジスト成分の銅膜表面への付着を抑制する。
 本発明に係る剥離液は、混合液自体がある程度の銅膜を腐食させる。後述するアミノ酸自体も、剥離液の使い始めに、銅膜を腐食させる。したがって、三級アルカノールアミンと、極性溶媒と水とアミノ酸の比率は、露光されたレジストを溶解させられる程度のアルカリ性であって、レジスト成分の存在下で実質的に銅膜が残存する程度の腐食力であることが必要である。なお、ここで実質的に銅膜が残存するとは、剥離液によって銅膜上の露光されたレジストを除去しても、製品として支障ない程度に銅膜が残ることをいう。
 そのために本発明で用いるフォトレジスト剥離液での三級アルカノールアミンの配合量としては、剥離液全量に対して1~9質量%、より好ましくは2~7質量%、最も好ましくは4~6質量%が好適である。9質量%以上含まれると、銅膜の腐食が著しくなりすぎるからである。また1質量%以下では、フォトレジストを剥離することができなくなるからである。
 極性溶媒の比率は剥離液全量に対して10~70質量%、より好ましくは30~70質量%、最も好ましくは50~70質量%が好適である。また水は10~40質量%、より好ましくは20~40質量%、最も好ましくは30~40質量%が好適である。なお、上記の組成範囲内で、極性溶媒と水は使用する温度において、三級アルカノールアミンとの混合液である剥離液の粘度が好適になるように調製してよい。
 アミノ酸は、10~100ppm、より好ましくは50~60ppmが好適である。アミノ酸が多すぎると、銅系材料の腐食が大きすぎる。また、アミノ酸が少ないと、フォトレジスト成分の銅系材料の表面への付着を抑制することができない。
 また、フォトレジスト中の樹脂や感光剤と、フォトレジスト剥離液組成物の反応は温度に依存する。そのため、剥離液を使用する際の温度管理は厳格に行われる。本発明に係る剥離液および被処理対象は35℃から60℃が好適な範囲であり、38℃から55℃であればより好適な使用範囲である。また、被処理対象物(剥離するフォトレジスト膜)および剥離液ともに同一温度で処理されるのが望ましい。FPDの基材は非常に大きいため、剥離液が使用される空間は大きな空間となる。そのような空間を化学反応が安定して行え、なおかつ温度管理に大きなエネルギーを要しないで保持できるのが35℃から60℃の温度範囲であるからである。
 また、本発明の剥離液は、三級アルカノールアミンと、極性溶媒と、水とアミノ酸の混合物であるので、分離が容易に行える。剥離液は使用するとフォトレジスト成分の濃度が上がる。この剥離液の廃液には、剥離液にさらにフォトレジスト成分も含まれる。しかし、アミノ酸とフォトレジストの沸点はない、若しくは非常に高いので、気化分離で、容易に混合液と分離できる。分離液は、三級アルカノールアミンと極性溶媒と水の混合物である。
 このうち、水の沸点が100℃と比較的低い。また極性溶媒は、物によっては水の沸点と異なるものを使うことができる。また、三級アルカノールアミンは、複数種類使用していたとしても、その混合物として分離することができる。このように本発明に係る剥離液は、使用後の廃液から、三級アルカノールアミンと、極性溶媒と、水と、アミノ酸の混合物なので、リサイクルが容易に行える。
 <レジスト成分の付着抑制効果>
 レジスト成分の銅系材料表面への付着量を接触角により評価した。ベースとなる剥離液は、三級アルカノールアミンとしてN-メチルジエタノールアミン(MDEA)を3質量%、極性溶媒としてジエチレングリコールモノブチルエーテルとプロピレングリコールの混合溶媒を67質量%、水を30質量%の配合で用意した。これをベース剥離液と呼ぶ。
 レジスト粉末は、ノボラック樹脂を用いたポジ型レジストを乾燥させ、粉末にしたものを用意した。またアミノ酸は、グリシンを用意した。また、基板としてはシリコン基板上に銅膜を形成したもの(「銅膜基板」と呼ぶ。)と、シリコン基板上にアルミニウム膜を形成したもの(「アルミ膜基板]と呼ぶ。)を用意した。
 ベース剥離液にアミノ酸を50ppm添加したものとしないもの、またそれぞれについてレジスト粉末を500ppm添加したものとしないものの4種類を用意し、剥離液A、B、C、Dとした。より具体的には、剥離液Aは、ベース剥離液だけである。剥離液Bは、ベース剥離液にレジスト粉末500ppmが添加されたものである。また剥離液Cは、ベース剥離液にグリシンが50ppm添加されたものである。剥離液Dはベース剥離液にグリシンが50ppmとレジスト粉末が500ppm添加されているものである。
 本発明に係るレジスト剥離液組成物は、剥離液Cである。また剥離液Dは、剥離液Cが使用されることによって、レジスト成分を含有するようになった状態をしめす。フォトレジスト剥離液は、常に新液を使用するのではなく、ある程度は繰り返し使用するので、フォトレジスト成分が含まれた状態での特性も重要である。これらの組成は表1に示した。
Figure JPOXMLDOC01-appb-T000001
 ここで、「δ」は、微量を表す。レジスト粉末もグリシンもベース剥離液に対して微量であるからである。
 4種類の剥離液に対して、銅膜基板とアルミ膜基板を使い、全8水準の試験を行った。まず、ビーカー中で50gの剥離液を液温50℃に保ち、20mmの撹拌子を回転数500rpmで回転させた状態にした。基板は10mm×70mmの短冊状に形成し、そのビーカーの中に1分間浸漬させた。その基板を純水(DIW:Distilled Ion Water)で1分間洗浄し、窒素によるブロー風(以下N2ブローという)で乾燥した後、接触角を測定した。接触角の測定には試薬は純水を用いた。
 図1に銅膜基板の場合の結果を示し、図2にアルミ膜基板の場合の結果を示す。図1および図2ともに、横軸は剥離液の種類を表し、縦軸は接触角(°)を示した。図1を参照して、ベース剥離液だけの場合(剥離液A)は、接触角は13.0°であった。剥離液Bでは、35.8°となった。つまり、ベース剥離液にレジスト粉末が添加された剥離液中に銅膜基板が浸されると、銅膜基板上にレジスト成分が付着し、水をはじくことがわかった。このような状態の銅膜基板上に別の材料を成膜すれば、接着力は弱くなる。
 剥離液Cでは、接触角は14.8°と剥離液Aと比較し、若干上昇した。一方剥離液Dでは、接触角が21.2°であった。剥離液Dにはレジスト成分が含まれている。しかし、同じレジスト成分が含まれている場合でも、剥離液Bの場合と比較すると、大幅に接触角が低下しているのがわかる。すなわち、グリシンの添加によって、レジスト成分の銅膜基板上への付着が抑制されていることがわかった。
 図2はアルミ膜基板の場合の同じ試験の結果を示すものである。銅膜基板と異なりアルミ膜基板の場合は、剥離液の種類によらず、ほぼ同じ接触角であった。つまり、アルミニウムの表面には、レジスト成分は付着しにくいと言える。また、本発明に係る剥離液(剥離液CおよびD)は、銅膜基板に対して非常に有効な効果を有していると言える。
 <基板溶解量>
 次に剥離液の基板溶解量を評価した。剥離液A乃至Dおよび、用いた試験装置および基板は、<レジスト成分の付着抑制効果>で用いたものと同じである。液温を50℃に保ち、20mmの撹拌子で500rpmで撹拌しているビーカー中に10mm×50mmに割断した基板を浸漬し、30分経過した後に、剥離液1mlをピペットでサンプリングした。サンプリングした剥離液中の基板元素をICP(Inductively coupled plasma)プラズマ質量分析装置で定量分析した。
 図3に銅膜基板の場合の結果を示し、図4にはアルミ膜基板の場合の結果を示す。どちらも横軸は剥離液の種類を表し、縦軸は基板元素の量(ppm)を表す。
 図3を参照して、剥離液Aの場合は、銅の溶解量が7.0ppmであった。これに対し、剥離液Bの場合は4.1ppmであった。剥離液Bはベース剥離液にレジスト成分が添加されたものである。したがって、レジスト成分が銅膜基板の表面に付着し、銅膜表面の溶解を抑制していると言える。これは、図1の場合の剥離液Bで、銅膜表面にレジスト成分が付着していると考えられる結果とよく対応している。
 剥離液Cの場合は、8.8ppmと剥離液Aの場合より溶解量が多かった。すなわち、アミノ酸(グリシン)が剥離液に添加されることで、銅の溶解量は多くなった。一方、剥離液Dでは、5.3ppmと剥離液Aより銅膜の溶解量は少なかった。剥離液CとDはどちらも本発明に係る剥離液であるが、剥離液Dは、使用によりレジスト成分の濃度が高くなった剥離液に例えることができる。すなわち、本発明に係る剥離液は、使用によりレジスト濃度が高くなると、銅膜の溶解量が減り、なおかつレジスト成分の銅膜表面への付着も抑制する(図1参照)。
 これは言い換えると、本発明に係る剥離液は、使用することで、銅膜へのダメージが少なく、また銅膜上に成膜される膜の接着性が変わることがない、安定した銅膜の加工を提供することができることを示している。
 図4には、アルミ膜基板の場合の結果を示す。アルミ膜基板の場合は、本発明に係る剥離液である剥離液CおよびDが剥離液AおよびBより低い値となった。すなわち、本発明に係る剥離液は、アルミ膜基板に対して、与えるダメージの少ない剥離液であるといえ、銅膜基板だけでなく、アルミ膜基板に用いても、有効性があると言える。
 <アミノ酸量>
 次に本発明に係る剥離液中に含有させることのできるアミノ酸量について検討を行った。剥離液はベース剥離液(グリシン量0ppm)と、ベース剥離液にアミノ酸を10ppm、50ppm、100ppm添加した剥離液を用意した。それぞれ剥離液E、F、Gとする。剥離液E、F、Gは本発明に係るフォトレジスト剥離液組成物である。なお、剥離液Fは剥離液Cと同じである。また、グリシン量0ppmの剥離液は剥離液Aである。
 それぞれの剥離液50gをビーカーに取り、50℃に保温して、スターラーと20mmの撹拌子を用いて600rpmで撹拌した状態を作った。基板は10mm×50mmに割断した銅膜基板を用意した。銅膜基板を撹拌したビーカー中に浸漬し、5分、10分、20分、30分後の剥離液を1mlサンプリングし、ICPプラズマ質量分析装置で銅の量を定量した。
 図5にその結果を示す。横軸は浸漬時間(分)であり、縦軸は銅元素濃度(ppm)で溶解量を表す。いずれのサンプルでも剥離液中の銅元素濃度は、浸漬時間と共に増加した。そして、アミノ酸(グリシン)の含有量が多くなるに従い、剥離液中の銅元素濃度は多くなった。言い換えると、アミノ酸の含有量が多くなると、銅膜基板からの銅の溶解量が増えた。
 剥離液G(アミノ酸量100ppm)のラインは、別途の実験にて、確認している実用できる剥離液中で最も銅膜へのダメージが多い剥離液とほぼ同じラインであった。したがって、アミノ酸量は100ppm以下であることが必要である。
 また、剥離液Aのように、アミノ酸が含有されていない場合は、図1の結果より、剥離後の銅膜上の接着力が低減するおそれがある。したがって、剥離液には、アミノ酸が必要であり、その量は少なくても10ppm以上は必要であると考えられる。もっとも図1および図3の結果を踏まえると、アミノ酸量は、より好ましくは50乃至60ppmがより好適であると考えられる。
 <アミノ酸の種類:溶解性>
 次に本発明に利用することのできるアミノ酸の種類について検討した。酸性アミノ酸としてグルタミン酸、塩基性アミノ酸としてアルギニン、中性アミノ酸のうちアルキル基を持つものとしてグリシン、アラニン、バリン、中性アミノ酸のうちチオール基を持つものとしてメチオニン、中性アミノ酸のうちアミド基を持つものとしてアスパラギンをそれぞれ選んだ。
 剥離液はベース剥離液に、各アミノ酸50ppmを添加したものを用意した。それぞれの剥離液50gをビーカーに取り、50℃に保温して、スターラーと20mmの撹拌子を用いて500rpmで撹拌した状態を作った。銅膜基板は10mm×50mmに割断したものを用意した。銅膜基板を撹拌したビーカー中に浸漬し、0分、5分、15分、30分後の剥離液を1mlサンプリングし、ICPプラズマ質量分析装置で銅の量を定量した。
 図6に結果を示す。横軸は処理(浸漬)時間(分)であり、縦軸は溶解量(ppm)である。なお、星印はアミノ酸を何も入れない状態(ベース剥離液のみ:点線で示した)を示す。図6を参照して、ベース剥離液自体が銅膜を腐食させるので、アミノ酸が含まれていなくても(星印)浸漬時間とともに、溶解量は増加する。
 アミノ酸の中で、アルギニン以外は、ベース剥離液と同じか、より多くの溶解量を示した。特にグリシン(直線で示した。)は最もよく銅膜を溶解させた。アルギニン(一点鎖線で示した。)は、銅の溶解量が少なく、ベース剥離液の銅への腐食を抑制していると言える。
 <アミノ酸の種類:接触角>
 次に同じく複数のアミノ酸において接触角の検討を行った。ベース剥離液の量(50g)、アミノ酸の量(50ppm)、温度(50℃)は、<アミノ酸の種類:溶解性>で用いた条件と同じである。これにレジスト成分を500ppm混入させたものと、レジスト成分を混入させなかったものを用意した。
 それぞれの剥離液50gをビーカーに取り、50℃に保温して、20mmの撹拌子を回転数500rpmで回転させた状態にした。基板は10mm×70mmの短冊状に形成し、そのビーカーの中に1分間浸漬させた。その基板を純水(DIW:Distilled Ion Water)で1分間洗浄し、N2ブローで乾燥した後、接触角を測定した。
接触角の測定には試薬は純水を用いた。
 結果を図7に示す。図7を参照して、横軸はアミノ酸の種類である。「添加剤なし」とは、アミノ酸を添加していないということである。縦軸は接触角である。それぞれのアミノ酸の種類には、2本の棒グラフを描いた。紙面に向かって左側がレジスト成分を入れなかった場合(0ppm)であり、向かって右側がレジスト成分を混入させた場合(500ppm)の結果である。
 まず、いずれの場合においても、レジスト成分を剥離液に混入させると、接触角は大きくなった。また、レジスト成分がない状態であると、いずれのアミノ酸も、添加剤なし(アミノ酸なし)の場合より表面の接触角が減少した。これより、アミノ酸の添加で、銅膜の表面が親水性になったと考えられる。
 接触角は、大きくなりすぎると、銅膜上に形成する他の膜の接着性が低減するおそれが高い。この限界値は、これまでの経験値でおよそ25度であることが分かっている(図7中に矢印で示す直線で示した)。
 メチオニン、バリン、アラニン、グルタミン酸については、レジスト含有剥離液の場合(向かって右の棒グラフ:500ppm)、25度のラインを越えていた。すなわち、レジスト成分の銅膜表面への付着を抑制する能力が少なかったと結論できる。
 一方、アスパラギン、アルギニン、グリシンは、いずれも接触角が25度以下になり、レジスト成分付着を抑制する力があったと結論できる。すなわち、少なくともこれら3種のアミノ酸は本発明に係る剥離液組成物に好適に利用することができると言える。
 特にグリシンは、剥離液中にレジストが含まれていない場合に、添加剤なし(アミノ酸なし)の場合とほぼ同じ接触角であり、レジスト成分が含まれた剥離液であっても、接触角はそれほど大きく変化しなかった。また、レジスト成分の有り無し(グリシンの左右の棒グラフ)でも接触角が大きく変化しなかった。
 これは、レジスト成分が含まれていない新液の状態と、レジスト成分が混入した使用済み液の状態で、銅膜表面に与える影響が変わらないということを意味している。すなわち、継続的に使用しても、製品特性が安定することを示す特性であり、量産の場においては、大変望ましい特性である。
 図6で示したようにグリシンは銅膜を腐食させるが、短時間の使用であれば、製品の特性に問題ないレベルで使用することができる。一方、銅膜の表面へのレジスト成分の付着を抑制し、また継続的な使用においても安定した製品特性が予定できること、さらにコストも必須アミノ酸中最も安いという利点があり、フォトレジスト剥離液組成物に用いる場合は、最も望ましいアミノ酸であると言える。
 本発明に係る剥離液(フォトレジスト剥離液組成物)は、銅膜だけでなく、アルミニウムの膜に対してもダメージの少ない剥離液であるといえる。したがって、銅膜だけでなくアルミニウムを導線として製造するもの、特に大面積でなおかつ微細な加工が必要となる、液晶ディスプレイ、プラズマディスプレイ、有機ELなどFPD一般の製造に好適に利用することができる。

Claims (4)

  1.  フォトレジストの剥離液組成物であって、
    1~9質量%の三級アルカノールアミンと、
    10~70質量%の極性溶媒と、
    10~40質量%の水と、
    10~100ppmのアミノ酸を有することを特徴とするフォトレジスト剥離液組成物。
  2.  前記三級アルカノールアミンは、N-メチルジエタノールアミン(MDEA)であることを特徴とする請求項1に記載の剥離液組成物。
  3.  前記極性溶媒は、ジエチレングリコールモノブチルエーテルと、プロピレングリコールの混合溶媒であることを特徴とする請求項1または2の何れかの請求項に記載された剥離液組成物。
  4.  前記アミノ酸は、グリシンであることを特徴とする請求項1乃至3の何れかの請求項に記載された剥離液組成物。
PCT/JP2013/000200 2012-10-31 2013-01-17 フォトレジスト剥離液組成物 WO2014068801A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-241261 2012-10-31
JP2012241261A JP6112446B2 (ja) 2012-10-31 2012-10-31 フォトレジスト剥離液組成物

Publications (1)

Publication Number Publication Date
WO2014068801A1 true WO2014068801A1 (ja) 2014-05-08

Family

ID=50626761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000200 WO2014068801A1 (ja) 2012-10-31 2013-01-17 フォトレジスト剥離液組成物

Country Status (3)

Country Link
JP (1) JP6112446B2 (ja)
TW (1) TWI497237B (ja)
WO (1) WO2014068801A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805629A (zh) * 2019-11-20 2021-05-14 松下知识产权经营株式会社 抗蚀剂剥离液
WO2021100254A1 (ja) * 2019-11-20 2021-05-27 パナソニックIpマネジメント株式会社 レジスト剥離液

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805630B (zh) * 2019-11-20 2022-04-05 松下知识产权经营株式会社 抗蚀剂剥离液
JP6823820B1 (ja) * 2019-11-20 2021-02-03 パナソニックIpマネジメント株式会社 レジスト剥離液
JP6823821B1 (ja) * 2019-11-20 2021-02-03 パナソニックIpマネジメント株式会社 レジスト剥離液
CN112805631B (zh) * 2019-11-20 2021-08-13 松下知识产权经营株式会社 抗蚀剂剥离液
JP7177527B2 (ja) 2021-04-02 2022-11-24 株式会社住野事務所 移動式篩別車

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07295240A (ja) * 1994-04-18 1995-11-10 Ocg Microelectron Materials Inc 非腐食性フォトレジスト剥離用組成物
JP2005507166A (ja) * 2001-10-23 2005-03-10 アドバンスド.テクノロジー.マテリアルス.インコーポレイテッド 半導体基板上の無機残滓を洗浄するための銅に対し特異な腐食防止剤を含む水性洗浄用組成物
JP2006253692A (ja) * 2005-03-11 2006-09-21 Rohm & Haas Electronic Materials Llc ポリマー除去剤
JP2007100086A (ja) * 2005-09-30 2007-04-19 Rohm & Haas Electronic Materials Llc 剥離剤
WO2010073887A1 (ja) * 2008-12-25 2010-07-01 ナガセケムテックス株式会社 フォトレジスト剥離剤組成物、積層金属配線基板のフォトレジスト剥離方法及び製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07295240A (ja) * 1994-04-18 1995-11-10 Ocg Microelectron Materials Inc 非腐食性フォトレジスト剥離用組成物
JP2005507166A (ja) * 2001-10-23 2005-03-10 アドバンスド.テクノロジー.マテリアルス.インコーポレイテッド 半導体基板上の無機残滓を洗浄するための銅に対し特異な腐食防止剤を含む水性洗浄用組成物
JP2006253692A (ja) * 2005-03-11 2006-09-21 Rohm & Haas Electronic Materials Llc ポリマー除去剤
JP2007100086A (ja) * 2005-09-30 2007-04-19 Rohm & Haas Electronic Materials Llc 剥離剤
WO2010073887A1 (ja) * 2008-12-25 2010-07-01 ナガセケムテックス株式会社 フォトレジスト剥離剤組成物、積層金属配線基板のフォトレジスト剥離方法及び製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805629A (zh) * 2019-11-20 2021-05-14 松下知识产权经营株式会社 抗蚀剂剥离液
WO2021100254A1 (ja) * 2019-11-20 2021-05-27 パナソニックIpマネジメント株式会社 レジスト剥離液
JP2021081616A (ja) * 2019-11-20 2021-05-27 パナソニックIpマネジメント株式会社 レジスト剥離液
CN112805629B (zh) * 2019-11-20 2022-02-15 松下知识产权经营株式会社 抗蚀剂剥离液

Also Published As

Publication number Publication date
JP2014092585A (ja) 2014-05-19
JP6112446B2 (ja) 2017-04-12
TW201416809A (zh) 2014-05-01
TWI497237B (zh) 2015-08-21

Similar Documents

Publication Publication Date Title
JP6112446B2 (ja) フォトレジスト剥離液組成物
WO2015056428A1 (ja) レジスト剥離液
JP5860020B2 (ja) 厚いフィルム・レジストを除去するための剥離及びクリーニング用組成物
JP4741315B2 (ja) ポリマー除去組成物
TWI546632B (zh) A photoresist stripping agent composition, a sheet metal wiring substrate, and a method for manufacturing the same
WO2012160721A1 (ja) フォトレジスト用剥離液、剥離液リサイクルシステムと運転方法および剥離液のリサイクル方法
CN1904016A (zh) 除残留物的含有阳离子盐的组合物及其使用方法
KR101691850B1 (ko) 포토레지스트 스트리퍼 조성물
KR101375100B1 (ko) 후막의 네가티브 포토레지스트용 박리액 조성물
CN102124414A (zh) 光致抗蚀剂剥离剂组合物以及光致抗蚀剂剥离方法
JP4358935B2 (ja) フォトレジスト用ストリッパー組成物
JP5370358B2 (ja) 残渣剥離液組成物およびそれを用いた半導体素子の洗浄方法
JP5809444B2 (ja) フォトレジスト用剥離液
JP6783926B2 (ja) 電子工業で使用される溶媒
TWI795433B (zh) 用於移除乾膜光阻的剝離組成物及使用所述組成物的剝離方法
KR101341701B1 (ko) 레지스트 박리액 조성물 및 이를 이용한 레지스트의박리방법
CN102880017B (zh) 光刻胶用剥离液组合物及其制备和应用
WO2010118916A1 (en) Organic photoresist stripper composition
JP5717519B2 (ja) フォトレジスト用剥離液
KR101341746B1 (ko) 레지스트 박리액 조성물 및 이를 이용한 레지스트의박리방법
JP2015011356A (ja) フォトレジスト用剥離液
WO2014208088A1 (ja) フォトレジスト用剥離液
JP2004361433A (ja) 表面処理液
JP4577881B2 (ja) 剥離剤組成物、その製造方法、及び、半導体基板または半導体素子の製造方法
JP2016031384A (ja) フォトレジスト用剥離液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851868

Country of ref document: EP

Kind code of ref document: A1