WO2014065263A1 - 非空気入りタイヤ - Google Patents

非空気入りタイヤ Download PDF

Info

Publication number
WO2014065263A1
WO2014065263A1 PCT/JP2013/078538 JP2013078538W WO2014065263A1 WO 2014065263 A1 WO2014065263 A1 WO 2014065263A1 JP 2013078538 W JP2013078538 W JP 2013078538W WO 2014065263 A1 WO2014065263 A1 WO 2014065263A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
circumferential direction
ring
shaped body
connecting plate
Prior art date
Application number
PCT/JP2013/078538
Other languages
English (en)
French (fr)
Inventor
成志 西田
明彦 阿部
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP13849548.6A priority Critical patent/EP2910387B1/en
Priority to CN201380054797.7A priority patent/CN104736355B/zh
Priority to US14/436,577 priority patent/US9713940B2/en
Publication of WO2014065263A1 publication Critical patent/WO2014065263A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • B60C7/14Non-inflatable or solid tyres characterised by means for increasing resiliency using springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B9/00Wheels of high resiliency, e.g. with conical interacting pressure-surfaces
    • B60B9/02Wheels of high resiliency, e.g. with conical interacting pressure-surfaces using springs resiliently mounted bicycle rims
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B9/00Wheels of high resiliency, e.g. with conical interacting pressure-surfaces
    • B60B9/02Wheels of high resiliency, e.g. with conical interacting pressure-surfaces using springs resiliently mounted bicycle rims
    • B60B9/08Wheels of high resiliency, e.g. with conical interacting pressure-surfaces using springs resiliently mounted bicycle rims in flat coiled form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B9/00Wheels of high resiliency, e.g. with conical interacting pressure-surfaces
    • B60B9/26Wheels of high resiliency, e.g. with conical interacting pressure-surfaces comprising resilient spokes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • B60C7/14Non-inflatable or solid tyres characterised by means for increasing resiliency using springs
    • B60C7/146Non-inflatable or solid tyres characterised by means for increasing resiliency using springs extending substantially radially, e.g. like spokes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • B60C7/14Non-inflatable or solid tyres characterised by means for increasing resiliency using springs
    • B60C7/16Non-inflatable or solid tyres characterised by means for increasing resiliency using springs of helical or flat coil form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • B60C7/14Non-inflatable or solid tyres characterised by means for increasing resiliency using springs
    • B60C7/16Non-inflatable or solid tyres characterised by means for increasing resiliency using springs of helical or flat coil form
    • B60C7/18Non-inflatable or solid tyres characterised by means for increasing resiliency using springs of helical or flat coil form disposed radially relative to wheel axis

Definitions

  • the present invention relates to a non-pneumatic tire that does not need to be filled with pressurized air when used.
  • This application claims priority based on Japanese Patent Application No. 2012-232803 for which it applied to Japan on October 22, 2012, and uses the content here.
  • Patent Document 1 In order to solve such problems, in recent years, for example, a non-pneumatic tire as shown in Patent Document 1 has been proposed.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a non-pneumatic tire capable of improving the rigidity against a compressive load in the tire radial direction.
  • a compression load when a compression load is applied in the tire radial direction in a state where the tire is in contact with the ground (hereinafter simply referred to as a compressed state), a contact surface, an attachment body, Since the connecting members located between the two are adjacent to each other in the tire circumferential direction, the contact portions of the adjacent connecting members in the tire circumferential direction are supported with respect to the compression load. It becomes possible to fit.
  • the rigidity of the connecting member with respect to the compressive load in the tire radial direction that is, in the tire radial direction of the entire non-pneumatic tire.
  • the spring constant (longitudinal spring constant) can be increased. In this case, even if a large load momentarily acts on the non-pneumatic tire, for example, it is possible to prevent the connecting member from being damaged or plastically deformed.
  • the contact portions of the plurality of connecting members overlaps with the ground contact surface in a side view of the tire. For this reason, loads (compressive loads in the tire radial direction) applied to these contact portions can be dispersed with each other.
  • the non-pneumatic tire according to a third aspect of the present invention is the above-described first or second aspect, wherein the curved portion connected to one end portion of the plurality of curved portions is on the other end side with respect to the curved portion. Since the radius of curvature is smaller than that of the curved portion located at, the intermediate portions of the plurality of connecting members can be flexibly deformed. Thereby, the connecting members adjacent in the tire circumferential direction can be more easily brought into contact with each other, and the contact portion can be secured long along the ground contact surface.
  • a non-pneumatic tire according to a fourth aspect of the present invention is the non-pneumatic tire according to any one of the first to third aspects, wherein the first connecting plate is positioned along one tire width direction along the tire circumferential direction. Since a plurality of second connecting plates are arranged along the tire circumferential direction at other positions in the tire width direction, a state in which a compressive load is not acting in the tire radial direction (hereinafter, simply nothing) In a load state), it is possible to prevent the adjacent connecting plates in the tire circumferential direction from interfering with each other, and it is possible to suppress the restriction on the number of arrangements.
  • One end of the first connecting plate connected to the ring-shaped body is located on one side in the tire circumferential direction from the other end, and one end of the second connecting plate connected to the ring-shaped body. Since the portion is located on the other side in the tire circumferential direction with respect to the other end portion, when an external force acts on the non-pneumatic tire, the first connecting plate and the second connecting plate can be easily deformed.
  • the non-pneumatic tire can be made flexible to ensure good riding comfort.
  • the connecting plates adjacent in the tire circumferential direction can easily come into contact with each other, so that the rigidity of the connecting member is reliably increased.
  • a non-pneumatic tire according to a fifth aspect of the present invention is the non-pneumatic tire according to any one of the first to fourth aspects, in each of the first connecting plate and the second connecting plate.
  • a plurality of curved portions that curve in the tire circumferential direction may be formed in an intermediate portion located between the other end portion along the direction in which the connecting plate extends in the tire side view.
  • each of the first connecting plate and the second connecting plate has a plurality of curved portions formed along the extending direction of the connecting plate, the length of each connecting plate is formed linearly. Can be longer than Therefore, it becomes easy to ensure the contact part in each of a some 1st connection plate and a 2nd connection plate long along a grounding surface, or over several places.
  • a non-pneumatic tire according to a sixth aspect of the present invention is the tire according to the first aspect, wherein the connecting member has a tire radial direction outer end A and a tire radial direction inner end B in a side view of the tire in an unloaded state.
  • the connecting member has a tire radial direction outer end A and a tire radial direction inner end B in a side view of the tire in an unloaded state.
  • ⁇ 0 the length of the line segment OA is R (mm)
  • the line AO connecting the tire radial direction outer end A and the axle O is defined as R (mm).
  • the length of the segment OB is r (mm)
  • ⁇ 0 k ⁇ (r / R)
  • the angle between the line segment AB and the line segment OB is ⁇ 2 (°)
  • k ⁇ 40 and ⁇ 2 ⁇ 90 ° is satisfied.
  • the “predetermined compressive load” means a load that is 1.5 times the load applied to one wheel of the weight of the vehicle on which the tire is mounted.
  • the outer end in the tire radial direction of the connecting member means the end located on the outer side in the tire radial direction of both ends in the extending direction of the connecting member, and “the inner end in the tire radial direction of the connecting member” Of the both ends in the extending direction of the connecting member, the end located on the inner side in the tire radial direction is assumed. Thereby, the rigidity with respect to the compressive load in the tire radial direction can be improved while suppressing an increase in the weight of the tire.
  • rigidity against a compressive load in the tire radial direction can be improved.
  • FIG. 1 it is the schematic perspective view which decomposed
  • the non-pneumatic tire 1 of the present embodiment may be employed in a small vehicle that travels at a low speed, such as a handle-type electric wheelchair defined in Japanese Industrial Standard JIS T 9208. Further, as the non-pneumatic tire 1 of the present embodiment, a tire having a size of, for example, 3.00-8 can be adopted. As shown in FIGS. 1 and 2, the non-pneumatic tire 1 of the present embodiment includes an attachment body 11 attached to an axle (not shown), a ring-like body 13 surrounding the attachment body 11 from the outside in the tire radial direction, and an attachment.
  • a plurality of connecting members 15 that are disposed between the body 11 and the ring-shaped body 13 along the tire circumferential direction, and that connect the attachment body 11 and the ring-shaped body 13 so as to be relatively elastically displaceable. And a tread member 16 disposed on the outer peripheral surface side of the ring-shaped body 13 over the entire circumference thereof.
  • the attachment body 11, the ring-shaped body 13, and the tread member 16 are each arranged coaxially with the common shaft.
  • the common axis is referred to as an axis O
  • a direction along the axis O is referred to as a tire width direction H
  • a direction orthogonal to the axis O is referred to as a tire radial direction
  • a direction around the axis O is referred to as a tire circumferential direction.
  • the attachment body 11, the ring-shaped body 13, and the tread member 16 are disposed such that the center portions in the tire width direction H are aligned with each other.
  • the attachment body 11 connects the mounting cylinder part 17 to which the front end part of the axle is mounted, the outer ring part 18 surrounding the mounting cylinder part 17 from the outer side in the tire radial direction, and the mounting cylinder part 17 and the outer ring part 18.
  • a plurality of ribs 19 are integrally formed of a metal material such as an aluminum alloy.
  • the mounting cylinder portion 17 and the outer ring portion 18 are each formed in a cylindrical shape and are arranged coaxially with the axis O.
  • the plurality of ribs 19 are arranged point-symmetrically with respect to the axis O.
  • a plurality of key groove portions 18a that are recessed toward the inside in the tire radial direction and that extend in the tire width direction H are formed on the outer peripheral surface of the outer ring portion 18 at intervals in the tire circumferential direction.
  • the key groove portion 18 a is opened only on one side of both ends in the tire width direction H on the outer peripheral surface of the outer ring portion 18, and the other side is closed.
  • a plurality of hollow holes penetrating in the tire radial direction are arranged at intervals in the tire width direction H in a portion located between the key groove portions 18 a adjacent in the tire circumferential direction.
  • a plurality of hole rows 18c are formed at intervals in the tire circumferential direction.
  • the rib 19 is also formed with a hole 19a penetrating in the tire width direction H.
  • a concave portion 18b that is recessed toward the other side in the tire width direction H and into which the plate material 28 is fitted is formed at the edge corresponding to the key groove portion 18a at one edge of the outer ring portion 18 in the tire width direction H.
  • a through hole is formed in the plate material 28 and communicates with a through hole of the plate material 28 fitted in the recess 18b on a bottom wall surface facing one side in the tire width direction H among the wall surfaces defining the recess 18b.
  • An internal thread portion is formed. A plurality of these internal thread portions and through holes are formed at intervals in the tire circumferential direction.
  • a cylindrical exterior body 12 is externally fitted to the attachment body 11.
  • a plurality of protrusions 12 a that protrude toward the inner side in the tire radial direction and extend over the entire length in the tire width direction H are disposed at intervals in the tire circumferential direction.
  • These protrusions 12 a are fitted in the key groove portions 18 a of the attachment body 11, respectively.
  • the exterior body 12 is fixed to the attachment body 11 by fixing the plate material 28 in the recess 18b in a state in which the protruding portion 12a is fitted in the key groove portion 18a. In this state, the protrusion 12a is sandwiched between the plate member 28 and the bottom wall surface of the recess 18b in the tire width direction H.
  • the pair of side wall surfaces and the bottom wall surface facing each other in the tire circumferential direction form a right angle.
  • a pair of side wall surfaces which stand up from the inner peripheral surface of the exterior body 12 and the top wall surface which faces the inner side in the tire radial direction out of the outer surface of the protruding portion 12a form a right angle.
  • the size of the protrusion 12a and the key groove 18a in the tire circumferential direction is equal to each other.
  • the ring-shaped body 13 is larger in size in the tire width direction H than the exterior body 12, that is, the width is larger. In the example shown in the figure, the ring-shaped body 13 is formed in a cylindrical shape.
  • the connecting member 15 connects the outer peripheral surface side of the mounting body 11 and the inner peripheral surface side of the ring-shaped body 13.
  • the connecting member 15 is connected to the outer peripheral surface of the exterior body 12 and the ring-shaped body.
  • the first connecting plate 21 and the second connecting plate 22 that are elastically deformable and connect the inner peripheral surface of the first connecting plate 13 to each other.
  • a plurality of first connecting plates 21 are arranged along the tire circumferential direction at a position in one tire width direction H (one side along the tire width direction H), and the second connecting plate 22 is one tire.
  • a plurality of tires are arranged along the tire circumferential direction at different positions in the tire width direction H (the other side along the tire width direction H) different from the positions in the width direction H. That is, the plurality of first connecting plates 21 are arranged in the tire circumferential direction H at the same position along the tire circumferential direction, and the plurality of second connecting plates 22 extend from the first connecting plate 21 in the tire width direction.
  • a plurality of tires are arranged along the tire circumferential direction at the same position in the tire width direction H apart from H. In the illustrated example, 60 connecting plates 21 and 22 are provided along the tire circumferential direction.
  • the plurality of connecting members 15 are disposed between the exterior body 12 and the ring-shaped body 13 at positions that are symmetrical with respect to each other with respect to the axis O. All the connecting members 15 have the same shape and the same size. Further, the width of the connecting member 15 is smaller than the width of the ring-shaped body 13. In a state where a compressive load is not applied in the tire radial direction (hereinafter, simply referred to as an unloaded state), the first connecting plates 21 adjacent in the tire circumferential direction are not in contact with each other. Similarly, the second connecting plates 22 adjacent in the tire circumferential direction are not in contact with each other in the no-load state.
  • first connecting plate 21 and the second connecting plate 22 adjacent in the tire width direction H are not in contact with each other.
  • the widths of the first connecting plate 21 and the second connecting plate 22 are equal to each other.
  • the thicknesses of the first connecting plate 21 and the second connecting plate 22 are also equal to each other.
  • the one end 21 a connected to the ring-shaped body 13 is more circumferential than the other end 21 b connected to the exterior body 12.
  • One end portion 22a of the second connecting plate 22 connected to the ring-shaped body 13 is positioned on the other side in the tire circumferential direction with respect to the other end portion 22b connected to the exterior body 12.
  • the one end portions 21a and 22a of the first connecting plate 21 and the second connecting plate 22 in one connecting member 15 are different from each other in the tire width direction H on the inner peripheral surface of the ring-shaped body 13, It is connected to the same position in the tire circumferential direction.
  • the shapes of the first connecting plate 21 and the second connecting plate 22 in the vicinity of the attachment body 11 and the exterior body 12 are upright with respect to the ground plane G. Moreover, the shape of the 1st connection board 21 and the 2nd connection board 22 for connecting the attachment body 11 and the exterior body 12 inclines with respect to radial direction, and is curving.
  • the middle portions 21 c and 22 c positioned between the one end portions 21 a and 22 a and the other end portions 21 b and 22 b are curved in the tire circumferential direction.
  • a plurality of curved portions 21d to 21f and 22d to 22f are formed along the direction in which the connecting plates 21 and 22 extend when the non-pneumatic tire 1 is viewed from the side of the tire when viewed from the tire width direction H.
  • the bending directions of the bending portions 21d to 21f and 22d to 22f adjacent to each other in the extending direction among the plurality of bending portions 21d to 21f and 22d to 22f are opposite to each other. It has become.
  • the plurality of curved portions 21d to 21f formed on the first connecting plate 21 are a first curved portion 21d curved so as to protrude toward the other side in the tire circumferential direction, a first curved portion 21d, and one end portion 21a. Between the second bending portion 21e, which is connected to the one end portion 21a and is curved so as to protrude toward one side in the tire circumferential direction, and between the first bending portion 21d and the other end portion 21b. And a third curved portion 21f that is curved so as to project toward one side in the tire circumferential direction.
  • the plurality of curved portions 22d to 22f formed on the second connecting plate 22 include a first curved portion 22d that is curved so as to protrude toward one side in the tire circumferential direction, a first curved portion 22d, and one end.
  • a second bending portion 22e which is located between the first end portion 22a and curved toward the other side in the tire circumferential direction, and a first bending portion 22d and the other end portion 22b.
  • a third curved portion 22f that is curved so as to project toward the other side in the tire circumferential direction.
  • the first bending portions 21d and 22d have a larger radius of curvature in a tire side view than the second bending portions 21e and 22e and the third bending portions 21f and 22f.
  • the curvature radius of the second curved portions 21e and 22e connected to the one end portions 21a and 22a is the smallest.
  • the first curved portions 21d and 22d are arranged at the center in the extending direction of the first connecting plate 21 and the second connecting plate 22.
  • the lengths of the connecting plates 21 and 22 are equal to each other, and the other end portions 21b and 22b of the connecting plates 21 and 22 are externally seen from the side of the tire as shown in FIG.
  • the same angle for example, 20 ° or more and 135 ° or less
  • the first curved portions 21d and 22d, the second curved portions 21e and 22e, and the third curved portions 21f and 22f of the first connecting plate 21 and the second connecting plate 22 respectively protrude in the tire circumferential direction.
  • the directions are opposite and the size is the same.
  • each connecting member 15 in a side view of the tire is symmetrical with respect to an imaginary line L that extends along the tire radial direction and passes through the one end portions 21a and 22a of both the connecting plates 21 and 22. It has become. Further, in each of the connecting plates 21 and 22, the one end side portion extending from the center portion to the one end portions 21a and 22a in the extending direction of the connecting plates 21 and 22 is more than the other end side portion extending from the center portion to the other end portions 21b and 22b. The thickness is increased.
  • the exterior body 12, the ring-shaped body 13, and the plurality of connecting members 15 are integrally formed. Furthermore, in this embodiment, as shown in FIG. 1, the exterior body 12 includes a one-side divided exterior body 25 located on one side in the tire width direction H and a second-side divided exterior located on the other side in the tire width direction H. The body 26 is divided. The ring-shaped body 13 is divided into a one-side split ring-shaped body 23 located on one side in the tire width direction H and a second-side split ring-shaped body 24 located on the other side in the tire width direction H. Yes. In the illustrated example, the exterior body 12 and the ring-shaped body 13 are each divided at the center in the tire width direction H.
  • the one-side split exterior body 25 and the one-side split ring-shaped body 23 are formed integrally with the first connecting plate 21, and the other-side split exterior body 26 and the other-side split ring-shaped body 24 are the second connecting plate 22. And is integrally formed. Further, in the present embodiment, the one-side divided outer body 25, the one-side divided ring-shaped body 23 and the first connecting plate 21, and the other-side divided outer-body 26, the other-side divided ring-shaped body 24 and the second connecting plate 22 are respectively It is integrally formed by casting or injection molding.
  • the one-side divided outer body 25, the one-side divided ring-like body 23, and the first connecting plate 21 are integrally formed as a first divided case body 31, the other-side divided outer body 26, and the other-side divided ring.
  • the body 24 and the second connecting plate 22 that are integrally formed are referred to as a second divided case body 32.
  • the injection molding may be a general method in which each of the respective divided case bodies 31 and 32 is molded at the same time.
  • each divided outer body 25 and 26, each of the divided ring-like bodies 23 and 24, and part of each of the connecting plates 21 and 22 may be insert molding in which the rest is injection molded, or so-called two-color molding or the like.
  • segmentation ring-shaped body 23 and 24, and each connection board 21 and 22 may be formed with a mutually different material. However, they may be formed of the same material.
  • this material examples include a metal material and a resin material, but a resin material, particularly a thermoplastic resin is preferable from the viewpoint of weight reduction. Further, when the entire divided case bodies 31 and 32 are simultaneously injection-molded, a plurality of protrusions 12a formed on the exterior body 12 may be used as gate portions.
  • the exterior body 12 has a width smaller than that of the ring-shaped body 13 and is equal to each width of the first connection plate 21 and the second connection plate 22.
  • segmentation ring-shaped body 23 and 24 is connected by welding, melt
  • welding for example, hot plate welding or the like may be employed.
  • the edges in the tire width direction H of each of the divided exterior bodies 25 and 26 are separated from each other in the tire width direction H. Thereby, it is prevented that a burr
  • segmentation case body 31 and 32 is mutually the same shape and the same size as FIG. 3 shows in the state before connecting these 31 and 32 as mentioned above. And when connecting each division
  • the tread member 16 is formed in a cylindrical shape and integrally covers the outer peripheral surface side of the ring-shaped body 13 over the entire region.
  • the inner peripheral surface of the tread member 16 extends over the entire region and the outer peripheral surface of the ring-shaped body 13. Close to.
  • the tread member 16 is made of, for example, vulcanized rubber obtained by vulcanizing natural rubber and / or a rubber composition, or a thermoplastic material.
  • the thermoplastic material include a thermoplastic elastomer or a thermoplastic resin.
  • thermoplastic elastomer examples include amide-based thermoplastic elastomer (TPA), ester-based thermoplastic elastomer (TPC), olefin-based thermoplastic elastomer (TPO), and styrene-based thermoplastic elastomer (TPS) defined in Japanese Industrial Standard JIS K6418. ), Urethane-based thermoplastic elastomer (TPU), crosslinked thermoplastic rubber (TPV), or other thermoplastic elastomer (TPZ).
  • thermoplastic resin examples include urethane resin, olefin resin, vinyl chloride resin, and polyamide resin. From the viewpoint of wear resistance, it is preferable to form the tread member 16 from vulcanized rubber.
  • An angle formed by the connecting line segment AB and the line segment AO connecting the tire radial direction outer end A and the axle O is defined as ⁇ 0 (°).
  • the length of the line segment OA in the illustrated example, the radius of the inner peripheral surface of the ring-shaped body 13 centering on the axle O
  • R (mm) the length of the line segment OB (in the illustrated example, the axle O R (mm) is the radius of the outer peripheral surface of the exterior body 12 centered at.
  • k ⁇ 40 and ⁇ 2 ⁇ It is preferable to satisfy 90 °.
  • the 1st connection board 21 located between the grounding surface G and the exterior body 12 among the connection members 15 falls down toward the other side along a tire circumferential direction as it goes to the other end part 21b from the one end part 21a.
  • the first connecting plates 21 that are deformed and adjacent in the tire circumferential direction are in contact with each other so as to overlap in the tire radial direction.
  • another first connecting plate 21 (other connecting member) adjacent to both sides in the tire circumferential direction with respect to the first first connecting plate 21 is provided in the first first connecting plate 21 as a non-pneumatic tire.
  • the first connecting plate 21 is in contact with different parts (parts different in the tire circumferential direction) in the extending direction of the first connecting plate 21. Specifically, the contact portion (contact portion) C1 between the first connecting plate 21 and the first connecting plate 21 adjacent to the first connecting plate 21 on the other side in the tire circumferential direction. Is the other in the first connection plate 21 than the contact portion (contact portion) C2 between the other first connection plate 21 adjacent on one side in the tire circumferential direction and the one first connection plate 21. It is arrange
  • the other first connecting plate 21 includes first connecting plates 21 located on both sides in the tire circumferential direction with respect to the first connecting plate 21.
  • the 2nd connection board 22 located between the ground surface G and the exterior body 12 among the connection members 15 falls down toward the one side along a tire circumferential direction as it goes to the other end part 22b from the one end part 22a.
  • the second connecting plates 22 adjacent in the tire circumferential direction are in contact with each other so as to overlap in the tire radial direction. Accordingly, the connecting plates 21 and 22 are deformed in opposite directions along the tire circumferential direction.
  • one second connecting plate 22 has another second connecting plate 22 (other connecting member) adjacent to both sides in the tire circumferential direction with respect to the one second connecting plate 22 in the tire side view.
  • the second connecting plate 22 is in contact with different parts (parts different in the tire circumferential direction) in the extending direction.
  • a contact portion C1 between another second connecting plate 22 adjacent to one second connecting plate 22 on one side in the tire circumferential direction and one second connecting plate 22 is in the tire circumferential direction.
  • the second connecting plate 22 is disposed closer to the other end 22b of the second connecting plate 22 than the contact portion C1 of the second connecting plate 22 adjacent to the other second connecting plate 22 on the one side.
  • the connecting plates 21 and 22 are in contact with each other in the tire circumferential direction in the first connecting plate 21 and the second connecting plate 22, respectively, and these contact portions C1 and C2 are seen in the tire side view. It overlaps along the ground plane G. That is, the contact portions C1 and C2 are arranged so as to be continuous along the ground contact surface G in a tire side view.
  • the contact portions C1 of the plurality of first connecting plates 21 adjacent in the tire circumferential direction and the contact portion C2 of the second connecting plate 22 are disposed at the same position in the tire radial direction. It is preferable. Further, among the contact portions of the connecting plates 21 and 22 positioned between the ground contact surface G and the attachment body 11, all contact portions may overlap along the ground contact surface G in a tire side view. Only the contact part of the part may overlap.
  • the non-pneumatic tire 1 in the compressed state, it is located between the ground contact surface G and the attachment body 11 (the exterior body 12) and is adjacent in the tire circumferential direction. Since the connecting members 15 are in contact with each other, the contact portions C1 and C2 of the connecting members 15 adjacent in the tire circumferential direction can be supported with respect to the compression load. Therefore, for example, the rigidity of the connecting member 15 with respect to the compressive load in the tire radial direction, that is, the entire tire of the non-pneumatic tire 1, compared to a configuration in which the connecting members 15 adjacent in the tire circumferential direction are not in contact with each other regardless of the compressed state.
  • the radial spring constant (longitudinal spring constant) can be increased. In this case, even if a momentary large load acts on the non-pneumatic tire 1, for example, the connection member 15 can be prevented from being damaged or plastically deformed.
  • first connecting plates 21 are arranged along the tire circumferential direction at a position in one tire width direction H, and the second connecting plates 22 are arranged at other tire width direction H positions in the tire circumferential direction. Therefore, it is possible to suppress the adjacent connecting members 15 from interfering with each other in the tire circumferential direction in a no-load state, and it is possible to suppress the number of the arrangement members from being limited.
  • the one end part 21a connected with the ring-shaped body 13 is located in the one side of a tire circumferential direction rather than the other end part 21b connected with the exterior body 12, and the 2nd connection plate 22, one end 22 a connected to the ring-shaped body 13 is located on the other side in the tire circumferential direction with respect to the other end 22 b connected to the exterior body 12.
  • the first connecting plate 21 and the second connecting plate 22 can be easily elastically deformed, and the non-pneumatic tire 1 is provided with flexibility to ensure good riding comfort. it can.
  • the connecting plates 21 and 22 adjacent in the tire circumferential direction can easily come into contact with each other, so that the rigidity of the connecting member 15 is ensured. Enhanced.
  • the first connection plate 21 and the second connection plate 22 respectively have tire circumferences. Since each of the plurality adjacent in the direction abuts each other, the rigidity against the compressive load in the tire radial direction is reliably increased. Furthermore, since the contact portions C1 and C2 of each of the plurality of first connection plates 21 and the second connection plates 22 are continuous along the ground contact surface G in a side view of the tire, loads applied to these contact portions C1 and C2 ( (Compressive load in the tire radial direction) can be dispersed with each other.
  • each of the first connecting plate 21 and the second connecting plate 22 a plurality of curved portions 21d to 21f and 22d to 22f are formed along the direction in which the connecting plates 21 and 22 extend.
  • the length of 22 can be made longer than when each is formed linearly. Therefore, the contact portions C1 and C2 in each of the plurality of first connection plates 21 and the second connection plates 22 are long along the ground surface G or easily secured over a plurality of locations.
  • the second bending portions 21e and 22e are smaller than the radii of curvature of the first bending portions 21d and 22d and the third bending portions 21f and 22f, they are intermediate between the first connecting plate 21 and the second connecting plate 22.
  • the portions 21c and 22c can be flexibly deformed. Thereby, the connecting plates 21 and 22 adjacent in the tire circumferential direction can be more easily brought into contact with each other, and the contact portions C1 and C2 can be ensured long along the ground contact surface G.
  • the connecting member 15 is formed symmetrically with respect to the virtual line L in a side view of the tire, the spring constant along one side in the tire circumferential direction and the spring constant along the other side in the non-pneumatic tire 1 Therefore, it is possible to suppress the difference between the two, and it is possible to provide good maneuverability.
  • each end of each of the plurality of connecting members 15 is Even if the ring body 13 and the ring-shaped body 13 are not connected to each other, it is sufficient to attach the ring-shaped body 13 and the plurality of connecting members 15 to the attachment body 11 in an integrally formed state, so that the manufacturing time can be shortened. Since the ring-shaped body 13 and the plurality of connecting members 15 are integrally formed, for example, both ends of the connecting member 15 are connected to the exterior body 12 and the ring-shaped body 13 using a fastening member or the like. The weight can be reduced compared to the case.
  • the attachment body 11 and the ring-shaped body 13 are displaced by 5% or more of the outer diameter (tire height) of the non-pneumatic tire 1 in the tire radial direction, the contact surface G and the exterior It is preferable that the connecting members 15 located between the body 12 and adjacent in the tire circumferential direction are in contact with each other. Thereby, after ensuring the softness
  • the non-pneumatic tire 1 shown in FIGS. 1 to 5 is adopted, and as the first comparative example, the non-pneumatic tire in which the connecting members 15 adjacent in the tire circumferential direction are configured to be in a non-contact state in a compressed state. Adopted tires.
  • the relationship between the deflection rate (%: the displacement rate with respect to the outer diameter) and the load (N) was measured. Note that the size of both tires (for example, 3.00-8) was the same.
  • Example 1 As shown in the graph of FIG. 6, it can be seen that in both Example 1 and Comparative Example 1, the load increases as the deflection rate increases. Specifically, in the case of Comparative Example 1, it can be seen that the load increases at a constant rate with respect to the increase in the deflection rate, and the deflection rate and the load have a substantially proportional relationship. On the other hand, in the case of Example 1, in the range where the deflection rate is less than 5 to 6% (point A in FIG. 6), the deflection rate and the load are proportional to each other as in Comparative Example 1, but the deflection rate is the point A. In the above range, the increase rate of the load with respect to the deflection rate is larger than that in the range less than the point A.
  • Example 1 it is considered that at the point A, the connecting members 15 adjacent in the tire circumferential direction abut each other, so that the rigidity is improved in the range beyond the point A. Furthermore, in the range beyond the point A, the contact portions C1 and C2 of the connecting member 15 are long along the ground contact surface G as the deflection rate increases, or it is easy to ensure over a plurality of locations. It is considered that the rate of increase in load gradually increases. As a result of this test, it was confirmed that the longitudinal spring constant of Example 1 was 170 when the longitudinal spring constant of Comparative Example 1 was 100 when the deflection rate was 10%.
  • the inventors have found that the rigidity against the compressive load in the tire radial direction can be effectively improved by satisfying k ⁇ 40 and ⁇ 2 ⁇ 90 ° as follows.
  • [theta] 2 is less than 90 [deg.]
  • the distance between the connecting members 15 is narrowed, and contact between the connecting members 15 occurs with a slight deflection, and the path of the connecting member 15 becomes longer, resulting in an increase in tire weight. Resulting in.
  • FIG. 7 is a graph showing the relationship between ⁇ 0 (°), stress and weight for tires of tire size 155 / 65R13 (PS), 3.00-8, 4.00-5.
  • the stress which arises in a connection member was computed by FEM analysis.
  • the vertical axis is displayed in INDEX with the weight set to 100, and the larger the value, the greater the stress and weight.
  • FIG. 9 is a diagram showing the relationship between the ratio r / R and ⁇ 0 by taking the triangle, square, and circle plots in FIG. 8 for the tires of the three tire sizes. As shown in FIG. 9, it has been found that it is important to make the shape such that k is 40 or more when regulating the shape of the connecting member 15.
  • Example 2 As shown in the graph of FIG. 10, it can be seen that in both Example 2 and Comparative Example 2, the load increases as the deflection rate increases. Specifically, in the case of Comparative Example 2, it can be seen that the load increases at a constant rate with respect to the increase in the deflection rate, and the deflection rate and the load have a substantially proportional relationship. On the other hand, in the case of Example 2, in the range where the deflection rate is less than about 10% (point A in FIG. 10), the deflection rate and the load are proportional to each other as in Comparative Example 2, but the deflection rate is higher than the point A. In the range of, the rate of increase of the load with respect to the deflection rate is larger than that in the range below the point A.
  • connection member 15 may be arranged along the tire width direction H in three or more rows or in one row.
  • a plurality of connecting members 15 may be provided along the tire width direction H between the exterior body 12 and the ring-shaped body 13.
  • the other end portions 21b and 22b of the first connecting plate 21 and the second connecting plate 22 are opposite to each other, for example, by sandwiching the axis O in the tire radial direction on the outer peripheral surface of the exterior body 12 instead of the above-described embodiment. May be respectively connected to each position, or on the outer peripheral surface of the exterior body 12, positions facing the one end portions 21 a, 22 a of the first connecting plate 21 and the second connecting plate 22 in the tire radial direction, etc. You may connect to. Further, instead of the above-described embodiment, the one end portions 21 a and 22 a of both the connecting plates 21 and 22 may be connected to the inner peripheral surface of the ring-shaped body 13 with different positions in the tire circumferential direction.
  • the exterior body 12 and the ring-shaped body 13 may be divided into three or more in the tire width direction H, or may not be divided.
  • the first and second divided case bodies 31 and 32 are not limited to the above-described embodiment, and may be formed by, for example, cutting.
  • the exterior body 12, the ring-shaped body 13, and the plurality of connecting members 15 are integrally formed.
  • the present invention is not limited to this. You may connect.
  • the exterior body 12 may be formed integrally with the attachment body 11.
  • the configuration in which the one end portions 21 a and 22 a of the connecting member 15 are indirectly connected to the attachment body 11 via the exterior body 12 is described.
  • the one end portions 21a and 22a of the member 15 may be directly connected.
  • the contact portions C1 and C2 of the plurality of first connecting plates 21 adjacent in the tire circumferential direction and the contact portions C1 and C2 of the second connecting plate 22 are the same in the tire radial direction.
  • the present invention is not limited to this.
  • tires according to Examples 3 to 5 and tires according to Comparative Examples 3 and 4 were prototyped and evaluated for weight, stress, and presence / absence of contact between connecting members when loaded.
  • the test was conducted.
  • Each of the tires is a tire having a tire size of 3.00-8.
  • stress was calculated by FEM analysis of stress generated in the connecting member when an actual vehicle load was applied.
  • the specifications and evaluation results of each tire are shown in Table 1 below.
  • the weight and stress are evaluated by an index when the evaluation result of Example 3 is set to 100, and the larger value indicates the weight and stress. Is large.
  • the presence / absence of contact of the connecting member when a load is applied means whether or not the connecting members are undesirably contacted when a slight load of 0.7 kN is applied.
  • the tires according to Examples 3 to 5 were able to reduce stress while suppressing an increase in weight as compared with the tires according to Comparative Examples 3 and 4. Recognize.
  • the rigidity against the compressive load in the tire radial direction can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

車軸に取り付けられる取り付け体と、取り付け体をタイヤ径方向の外側から囲むリング状体(13)と、外装体(12)とリング状体(13)との間にタイヤ周方向に沿って複数配設されるとともに、これらの外装体(12)とリング状体(13)とを相対的に弾性変位自在に連結する連結部材と、を備える非空気入りタイヤであって、タイヤが接地して、連結部材がタイヤ径方向の圧縮荷重により弾性変形し、外装体(12)とリング状体(13)とが相対的にタイヤ径方向に変位したときに、複数の連結部材のうち、タイヤが接地する接地面(G)と、外装体(12)と、の間に位置し、かつタイヤ周方向で隣り合うもの同士が互いに当接する構成とされた。

Description

非空気入りタイヤ
 本発明は、使用に際し内部に加圧空気の充填が不要な非空気入りタイヤに関するものである。
本願は、2012年10月22日に日本に出願された特願2012-232803号に基づき優先権を主張し、その内容をここに援用する。
 内部に加圧空気が充填されて用いられる従来の空気入りタイヤでは、パンクの発生は構造上不可避的な問題である。
 このような問題を解決するために近年では、例えば下記特許文献1に示されるような非空気入りタイヤが提案されている。
日本国特開2011-156905号公報
 しかしながら、従来の非空気入りタイヤでは、タイヤ径方向の圧縮荷重に対する剛性を高めることに改善の余地がある。
 本発明は、このような事情を考慮してなされたもので、タイヤ径方向の圧縮荷重に対する剛性を向上させることができる非空気入りタイヤを提供することを目的とする。
 本発明に係る、第1の態様の非空気入りタイヤは、タイヤが接地した状態でタイヤ径方向に圧縮荷重が作用した場合(以下、単に圧縮状態という)に、接地面と、取り付け体と、の間に位置する連結部材がタイヤ周方向で隣り合う他の連結部材に当接する構成とされているため、タイヤ周方向で隣接する連結部材の当接部分同士を圧縮荷重に対して互いに支持させ合うことが可能になる。そのため、例えば圧縮状態にも関わらずタイヤ周方向で隣接する連結部材同士が非接触の構成に比べて、タイヤ径方向の圧縮荷重に対する連結部材の剛性、すなわち非空気入りタイヤ全体のタイヤ径方向のばね定数(縦ばね定数)を高めることができる。
 この場合、仮に瞬間的に大荷重が非空気入りタイヤに作用したとしても、例えば連結部材が破損したり、塑性変形したりする等を抑制できる。
 本発明に係る、第2の態様の非空気入りタイヤは、上記第1の態様において、複数の連結部材の当接部分のうち少なくとも一部が、タイヤ側面視で接地面に沿って重なり合っているため、これらの当接部分にかかる負荷(タイヤ径方向の圧縮荷重)を互いに分散させ合うことができる。
 本発明に係る、第3の態様の非空気入りタイヤは、上記第1または第2の態様において、複数の湾曲部のうち、一端部に連なる湾曲部は、前記湾曲部よりも他端部側に位置する湾曲部に比べて曲率半径が小さくなっているため、複数の連結部材の中間部分を柔軟に変形させることができる。これにより、タイヤ周方向で隣接する連結部材同士をより当接させ易く、また当接部分を接地面に沿って長く確保できる。
 本発明に係る、第4の態様の非空気入りタイヤは、上記第1~第3のいずれか1つの態様において、第1連結板が、一のタイヤ幅方向の位置にタイヤ周方向に沿って複数配置されるとともに、第2連結板が、他のタイヤ幅方向の位置にタイヤ周方向に沿って複数配置されているので、タイヤ径方向に圧縮荷重が作用していない状態(以下、単に無負荷状態という)において、タイヤ周方向で隣り合う連結板同士が干渉し合うのを抑えることが可能になり、その配設個数に制限が生ずるのを抑制できる。
 また、第1連結板のうち、リング状体に連結された一端部が、他端部よりもタイヤ周方向の一方側に位置し、第2連結板のうち、リング状体に連結された一端部が、他端部よりもタイヤ周方向の他方側に位置しているので、この非空気入りタイヤに外力が作用したときに、第1連結板および第2連結板を変形させ易くすることが可能になり、この非空気入りタイヤに柔軟性を備えさせて良好な乗り心地性を確保できる。
 特に、第1連結板および第2連結板を変形させ易くすることで、タイヤ周方向で隣接する連結板同士が互いに当接し易くなるので、連結部材の剛性が確実に高められる。
 しかも、取り付け体とリング状体とが、上述のようにタイヤ径方向に変位したときに、第1連結板および第2連結板それぞれにおいて、タイヤ周方向に隣り合う複数ずつが互いに当接するので、タイヤ径方向の圧縮荷重に対する剛性が確実に高められる。
 本発明に係る、第5の態様の非空気入りタイヤは、上記第1~第4のいずれか1つの態様において、前記第1連結板、および前記第2連結板それぞれにおいて、前記一端部と前記他端部との間に位置する中間部分に、タイヤ周方向に湾曲する湾曲部が、前記タイヤ側面視で、前記連結板が延びる方向に沿って複数形成されていてもよい。
 この場合、第1連結板および第2連結板それぞれにおいて、連結板の延びる方向に沿って複数の湾曲部が形成されているため、各連結板の長さを、それぞれを直線的に形成する場合に比べて長くできる。そのため、複数の第1連結板および第2連結板それぞれにおける当接部分を、接地面に沿って長く、若しくは複数箇所に亘って確保し易くなる。
本発明に係る、第6の態様の非空気入りタイヤは、上記第1の態様において、無負荷状態のタイヤ側面視において、前記連結部材のタイヤ径方向外側端Aとタイヤ径方向内側端Bとを結ぶ線分ABと、前記タイヤ径方向外側端Aと車軸Oとを結ぶ線分AOとのなす角度をθ0(°)とし、前記線分OAの長さをR(mm)とし、前記線分OBの長さをr(mm)とし、θ0=k×(r/R)とし、線分ABと線分OBとのなす角をθ2(°)とするとき、k≧40、且つ、θ2≧90°を満たす。
 ここで、「所定の圧縮荷重」とは、上記タイヤを装着する車両の重量の、車輪1つに対してかかる荷重の1.5倍の荷重をいうものとする。
 さらに、「連結部材のタイヤ径方向外側端」とは、連結部材の延在方向両端のうち、タイヤ径方向外側に位置する端をいうものとし、「連結部材のタイヤ径方向内側端」とは、連結部材の延在方向両端のうち、タイヤ径方向内側に位置する端をいうものとする。
 これにより、タイヤの重量の増加を抑制しつつも、タイヤ径方向の圧縮荷重に対する剛性を向上させることができる。
 本発明によれば、タイヤ径方向の圧縮荷重に対する剛性を向上させることができる。
本発明に係る一実施形態において、非空気入りタイヤの一部を分解した概略斜視図である。 図1に示す非空気入りタイヤをタイヤ幅方向の一方側から見たタイヤ側面図である。 図1に示す非空気入りタイヤのうち、第1分割ケース体をタイヤ幅方向の一方側から見た平面図、または第2分割ケース体をタイヤ幅方向の他方側から見た平面図である。 無負荷状態における図2の要部を示す拡大図である。 圧縮状態における図3の要部を示す拡大図である。 撓み率(%)と荷重(N)との関係を示すグラフである。 本発明の一実施形態にかかる非空気入りタイヤの部分側面図である。 θ0と応力及び重量との関係を示すグラフである。 比r/Rとθ0との関係を示すグラフである。 撓み率(%)と荷重(N)との関係を示すグラフである。 比較例3にかかる非空気入りタイヤの側面図である。 発明例3にかかる非空気入りタイヤの側面図である。 発明例4にかかる非空気入りタイヤの側面図である。 比較例4にかかる非空気入りタイヤの側面図である。
 以下、本発明に係る非空気入りタイヤの一実施形態を、図面を参照しながら説明する。なお、本実施形態の非空気入りタイヤ1は、例えば日本工業規格JIS T 9208に規定されるハンドル形電動車いす等、低速度で走行する小型車両等に採用してもよい。また、本実施形態の非空気入りタイヤ1は、サイズが例えば3.00-8等のものを採用できる。
 図1、図2に示すように、本実施形態の非空気入りタイヤ1は、図示しない車軸に取り付けられる取り付け体11と、取り付け体11をタイヤ径方向の外側から囲むリング状体13と、取り付け体11とリング状体13との間にタイヤ周方向に沿って複数配設されるとともに、これらの取り付け体11とリング状体13とを相対的に弾性変位自在に連結する連結部材15と、リング状体13の外周面側にその全周にわたって配設されたトレッド部材16と、を備えている。
 ここで、取り付け体11、リング状体13、およびトレッド部材16はそれぞれ、共通軸と同軸に配設されている。以下、この共通軸を軸線Oといい、この軸線Oに沿う方向をタイヤ幅方向Hといい、軸線Oに直交する方向をタイヤ径方向といい、軸線O回りに周回する方向をタイヤ周方向という。なお、取り付け体11、リング状体13、およびトレッド部材16は、タイヤ幅方向Hの中央部が互いに一致させられて配設されている。
 取り付け体11は、車軸の先端部が装着される装着筒部17と、装着筒部17をタイヤ径方向の外側から囲む外リング部18と、装着筒部17と外リング部18とを連結する複数のリブ19と、を備えている。
 装着筒部17、外リング部18、およびリブ19は例えばアルミニウム合金等の金属材料で一体に形成されている。装着筒部17および外リング部18はそれぞれ、円筒状に形成され軸線Oと同軸に配設されている。複数のリブ19は、軸線Oを基準とする点対称に配置されている。
 外リング部18の外周面には、タイヤ径方向の内側に向けて窪み、かつタイヤ幅方向Hに延びるキー溝部18aがタイヤ周方向に間隔をあけて複数形成されている。キー溝部18aは、外リング部18の外周面において、タイヤ幅方向Hの両端のうちの一方側にのみ開口し他方側は閉じている。
 なお、外リング部18において、タイヤ周方向で隣り合うキー溝部18a同士の間に位置する部分には、タイヤ径方向に貫通する肉抜き孔がタイヤ幅方向Hに間隔をあけて複数配置されてなる孔列18cが、タイヤ周方向に間隔をあけて複数形成されている。また、リブ19にも、タイヤ幅方向Hに貫通する肉抜き孔19aが形成されている。
 また、外リング部18におけるタイヤ幅方向Hの一方側の端縁において、キー溝部18aと対応する位置に、タイヤ幅方向Hの他方側に向けて窪み、かつ板材28が嵌め込まれる凹部18bが形成されている。板材28には貫通孔が形成されていて、凹部18bを画成する壁面のうち、タイヤ幅方向Hの一方側を向く底壁面には、凹部18bに嵌め込まれた板材28の貫通孔に連通する雌ねじ部が形成されている。なお、これらの雌ねじ部および貫通孔はタイヤ周方向に間隔をあけて複数形成されている。
 そして、取り付け体11には、円筒状の外装体12が外嵌されている。外装体12の内周面には、タイヤ径方向の内側に向けて突出するとともにタイヤ幅方向Hの全長にわたって延びる突条部12aが、タイヤ周方向に間隔をあけて複数配設されている。これらの突条部12aは、取り付け体11のキー溝部18aにそれぞれ嵌合している。
 外装体12は、突条部12aがキー溝部18aに嵌合された状態で、凹部18b内に板材28を固定することにより、取り付け体11に固定されている。この状態において、突条部12aは、板材28と、凹部18bの底壁面と、によりタイヤ幅方向Hに挟み込まれている。
 なお、キー溝部18aを画成する壁面のうち、タイヤ周方向で互いに対向する一対の側壁面と底壁面とは直角をなしている。また、突条部12aの外表面のうち、外装体12の内周面から立ち上がる一対の側壁面と、タイヤ径方向の内側を向く頂壁面と、は直角をなしている。さらに、突条部12aおよびキー溝部18aのタイヤ周方向の大きさは互いに同等になっている。
 また、リング状体13は外装体12よりもタイヤ幅方向Hの大きさ、つまり幅が大きくなっており、図示の例では、リング状体13は円筒状に形成されている。
 連結部材15は、取り付け体11の外周面側と、リング状体13の内周面側と、を連結しており、図示の例において連結部材15は、外装体12の外周面とリング状体13の内周面とを互いに連結する弾性変形可能な第1連結板21および第2連結板22を備えている。
 連結部材15のうち、第1連結板21は一のタイヤ幅方向H(タイヤ幅方向Hに沿う一方側)の位置にタイヤ周方向に沿って複数配置され、第2連結板22は一のタイヤ幅方向Hの位置とは異なる他のタイヤ幅方向H(タイヤ幅方向Hに沿う他方側)の位置にタイヤ周方向に沿って複数配置されている。すなわち、複数の第1連結板21は、タイヤ幅方向Hにおける同一の位置にタイヤ周方向に沿って複数配置されるとともに、複数の第2連結板22は、第1連結板21からタイヤ幅方向Hに離れた同一のタイヤ幅方向Hの位置にタイヤ周方向に沿って複数配置されている。なお、図示の例において、各連結板21,22は、タイヤ周方向に沿ってそれぞれ60個ずつ設けられている。
 なお、複数の連結部材15は、外装体12とリング状体13との間において、軸線Oを基準に互いに点対称となる位置にそれぞれ配置されている。また、全ての連結部材15は互いに同一形状かつ同一サイズとなっている。さらに、連結部材15の幅はリング状体13の幅より小さくなっている。
 そして、タイヤ径方向に圧縮荷重が作用していない状態(以下、単に無負荷状態という)では、タイヤ周方向で隣り合う第1連結板21同士は、互いに非接触とされている。同様に、タイヤ周方向で隣り合う第2連結板22同士も、無負荷状態では互いに非接触となっている。さらに、タイヤ幅方向Hで隣り合う第1連結板21および第2連結板22同士も互いに非接触となっている。
 なお、第1連結板21および第2連結板22それぞれの幅は互いに同等になっている。
また、第1連結板21および第2連結板22それぞれの厚さも互いに同等になっている。
 ここで、図2~図4に示すように、第1連結板21のうち、リング状体13に連結された一端部21aは、外装体12に連結された他端部21bよりもタイヤ周方向の一方側に位置し、第2連結板22のうち、リング状体13に連結された一端部22aは、外装体12に連結された他端部22bよりもタイヤ周方向の他方側に位置している。
 また、1つの連結部材15における第1連結板21および第2連結板22の各一端部21a,22aは、リング状体13の内周面において、タイヤ幅方向Hの位置を互いに異ならせて、タイヤ周方向における同一の位置に連結されている。
また、取り付け体11と外装体12付近での第1連結板21および第2連結板22の形状は、接地面Gに対して直立状である。また、取り付け体11と外装体12を結ぶための第1連結板21および第2連結板22の形状は、径方向に対して傾斜して湾曲している。
 図示の例では、第1連結板21および第2連結板22それぞれにおいて、一端部21a,22aと他端部21b,22bとの間に位置する中間部分21c,22cに、タイヤ周方向に湾曲する湾曲部21d~21f,22d~22fが、非空気入りタイヤ1をタイヤ幅方向Hから見たタイヤ側面視で、連結板21,22が延びる方向に沿って複数形成されている。両連結板21,22それぞれにおいて、複数の湾曲部21d~21f,22d~22fのうち、上述した延びる方向で互いに隣り合う各湾曲部21d~21f,22d~22fの湾曲方向は、互いに逆向きになっている。
 第1連結板21に形成された複数の湾曲部21d~21fは、タイヤ周方向の他方側に向けて突となるように湾曲した第1湾曲部21dと、第1湾曲部21dと一端部21aとの間に位置し、一端部21aに連なるとともに、タイヤ周方向の一方側に向けて突となるように湾曲した第2湾曲部21eと、第1湾曲部21dと他端部21bとの間に位置し、かつタイヤ周方向の一方側に向けて突となるように湾曲した第3湾曲部21fと、を有している。
 また、第2連結板22に形成された複数の湾曲部22d~22fは、タイヤ周方向の一方側に向けて突となるように湾曲した第1湾曲部22dと、第1湾曲部22dと一端部22aとの間に位置し、一端部22aに連なるとともに、かつタイヤ周方向の他方側に向けて突となるように湾曲した第2湾曲部22eと、第1湾曲部22dと他端部22bとの間に位置し、かつタイヤ周方向の他方側に向けて突となるように湾曲した第3湾曲部22fと、を有している。
 図示の例では、第1湾曲部21d,22dは、第2湾曲部21e,22eおよび第3湾曲部21f,22fよりも、タイヤ側面視の曲率半径が大きくなっている。特に、図示の例では、各連結板21,22それぞれの湾曲部21d~21f,22d~22fのうち、一端部21a,22aに連なる第2湾曲部21e,22eの曲率半径が最も小さくなっている。なお、第1湾曲部21d,22dは、第1連結板21および第2連結板22の延びる方向における中央部に配置されている。
 さらに、両連結板21,22の各長さは互いに同等とされるとともに、両連結板21,22の各他端部21b,22bは、図4に示されるように、タイヤ側面視で、外装体12の外周面において各一端部21a,22aとタイヤ径方向で対向する位置から軸線Oを中心にタイヤ周方向における一方側および他方側にそれぞれ同じ角度(例えば20°以上135°以下)ずつ離れた各位置にそれぞれ連結されている。また、第1連結板21および第2連結板22それぞれの第1湾曲部21d,22d同士、第2湾曲部21e,22e同士、並びに第3湾曲部21f,22f同士は互いに、タイヤ周方向に突となる向きが逆で、かつ大きさが同等になっている。
 これにより、各連結部材15のタイヤ側面視の形状は、タイヤ径方向に沿って延在し、かつ両連結板21,22の各一端部21a,22aを通る仮想線Lに対して線対称となっている。
 また、両連結板21,22それぞれにおいて、連結板21,22の延びる方向における中央部から一端部21a,22aにわたる一端側部分は、中央部から他端部21b,22bにわたる他端側部分よりも厚さが大きくなっている。これにより、連結部材15の重量の増大を抑えたり、連結部材15の柔軟性を確保したりしながら、連結板21,22において大きな負荷がかかり易い一端部21a,22a側の強度を高めることができる。なお、これらの一端側部分と他端側部分とは段差なく滑らかに連なっている。
 ここで本実施形態では、外装体12、リング状体13および複数の連結部材15は、一体に形成されている。
 さらに本実施形態では、図1に示すように、外装体12は、タイヤ幅方向Hの一方側に位置する一方側分割外装体25と、タイヤ幅方向Hの他方側に位置する他方側分割外装体26と、に分割されている。また、リング状体13は、タイヤ幅方向Hの一方側に位置する一方側分割リング状体23と、タイヤ幅方向Hの他方側に位置する他方側分割リング状体24と、に分割されている。なお図示の例では、外装体12およびリング状体13はそれぞれ、タイヤ幅方向Hの中央部で分割されている。
 そして、一方側分割外装体25および一方側分割リング状体23は、第1連結板21と一体に形成され、他方側分割外装体26および他方側分割リング状体24は、第2連結板22と一体に形成されている。
 さらに本実施形態では、一方側分割外装体25、一方側分割リング状体23および第1連結板21、並びに他方側分割外装体26、他方側分割リング状体24および第2連結板22はそれぞれ、鋳造若しくは射出成形により一体に形成されている。
 以下、一方側分割外装体25、一方側分割リング状体23および第1連結板21が一体に形成されたものを第1分割ケース体31といい、他方側分割外装体26、他方側分割リング状体24および第2連結板22が一体に形成されたものを第2分割ケース体32という。
 ここで、射出成形としては、各分割ケース体31,32それぞれの全体をそれぞれ同時に成形する一般的な方法であってもよいし、各分割ケース体31,32それぞれにおいて、各分割外装体25,26、各分割リング状体23,24、並びに各連結板21、22のうちの一部をインサート品として残りを射出成形するインサート成形でもよいし、あるいはいわゆる二色成形等であってもよい。
 また、各分割ケース体31,32それぞれにおいて、各分割外装体25,26と、各分割リング状体23,24と、各連結板21,22と、は、互いに異なる材質で形成してもよいし、同一の材質で形成してもよい。なお、この材質としては、金属材料や樹脂材料等が挙げられるが、軽量化の観点から樹脂材料、特に熱可塑性樹脂が好ましい。
 また、各分割ケース体31,32それぞれの全体をそれぞれ同時に射出成形する場合には、外装体12に形成された複数の突条部12aをゲート部分としてもよい。
 分割ケース体31,32それぞれにおいて、各連結板21,22のタイヤ幅方向Hの中央部と、リング状体13のタイヤ幅方向Hの中央部と、外装体12のタイヤ幅方向Hの中央部と、は互いに一致している。また、外装体12は、リング状体13よりも幅が小さく、かつ第1連結板21および第2連結板22の各幅と同等になっている。
 そして、各分割リング状体23,24それぞれのタイヤ幅方向Hの端縁同士は、例えば溶着、融着若しくは接着等により連結されている。なおこれらのうち、溶着の場合には例えば熱板溶着等を採用してもよい。
 また、各分割外装体25,26それぞれのタイヤ幅方向Hの端縁同士は、タイヤ幅方向Hに離れている。これにより、取り付け体11に外嵌される外装体12の内周面にバリが生ずることが防止されている。
 また、各分割ケース体31,32は、これら31,32を上述のように連結する前の状態では、図3に示されるように互いに同一形状かつ同一サイズとなっている。
 そして、各分割ケース体31,32同士を連結するに際し、各連結部材15がタイヤ側面視で上述のように線対称となるように、各分割ケース体31,32それぞれのタイヤ周方向の位置を合わせつつ、これらの両分割ケース体31、32のタイヤ幅方向Hの向きを互いに逆向きにした状態で、各分割ケース体31,32の各リング状体13のタイヤ幅方向Hの端縁同士を突き合わせて連結する。
 トレッド部材16は円筒状に形成され、リング状体13の外周面側を全域にわたって一体に覆っており、図示の例では、トレッド部材16の内周面は全域にわたって、リング状体13の外周面に密接している。トレッド部材16は、例えば、天然ゴムまたは/およびゴム組成物が加硫された加硫ゴム、あるいは熱可塑性材料等で形成されている。熱可塑性材料として、例えば熱可塑性エラストマー若しくは熱可塑性樹脂等が挙げられる。熱可塑性エラストマーとしては、例えば日本工業規格JIS K6418に規定されるアミド系熱可塑性エラストマー(TPA)、エステル系熱可塑性エラストマー(TPC)、オレフィン系熱可塑性エラストマー(TPO)、スチレン系熱可塑性エラストマー(TPS)、ウレタン系熱可塑性エラストマー(TPU)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。熱可塑性樹脂としては、例えばウレタン樹脂、オレフィン樹脂、塩化ビニル樹脂、若しくはポリアミド樹脂等が挙げられる。なお、耐摩耗性の観点ではトレッド部材16を加硫ゴムで形成するのが好ましい。
 このように構成された非空気入りタイヤ1は、図5に示すように、接地面Gに接地した状態でタイヤ径方向に圧縮荷重が作用した場合(以下、単に圧縮状態という)に、連結部材15が弾性変形することで、取り付け体11(外装体12)とリング状体13とが相対的にタイヤ径方向に変位する。このとき、各連結部材15のうち、非空気入りタイヤ1が接地する接地面Gと、外装体12と、の間に位置し、かつタイヤ周方向で隣り合う連結部材15同士は、タイヤ周方向を向く面が互いに当接するようになっている。
 また、図7に示すように、無負荷状態のタイヤ側面視において、連結部材15のタイヤ径方向外側端A(一端部の端)とタイヤ径方向内側端B(他端部の端)とを結ぶ線分ABと、タイヤ径方向外側端Aと車軸Oとを結ぶ線分AOとのなす角度をθ0(°)とする。
 また、線分OAの長さ(図示例では、車軸Oを中心とするリング状体13の内周面の半径)をR(mm)とし、線分OBの長さ(図示例では、車軸Oを中心とする外装体12の外周面の半径)をr(mm)とする。
 さらに、θ0=k×(r/R)とし、線分ABと線分OBとのなす角をθ2(°)とするとき、本発明の非空気入りタイヤでは、k≧40、且つ、θ2≧90°を満たすことが好ましい。
 連結部材15のうち、接地面Gと外装体12との間に位置する第1連結板21は、一端部21aから他端部21bに向かうに従いタイヤ周方向に沿う他方側に向けて倒れ込むように変形しており、タイヤ周方向で隣接する第1連結板21同士がタイヤ径方向で重なり合うように互いに接触している。
 このとき、一の第1連結板21には、一の第1連結板21に対してタイヤ周方向の両側に隣接する他の第1連結板21(他の連結部材)が、非空気入りタイヤ1をタイヤ幅方向Hから見たタイヤ側面視において、一の第1連結板21の延びる方向でそれぞれ異なる部分(タイヤ周方向で異なる部分)に接触している。具体的に、一の第1連結板21に対してタイヤ周方向の他方側で隣接する他の第1連結板21と、一の第1連結板21と、の接触部分(当接部分)C1は、タイヤ周方向の一方側で隣接する他の第1連結板21と、一の第1連結板21と、の接触部分(当接部分)C2よりも、一の第1連結板21における他端部21b寄りに配設されている。なお、他の第1連結板21は、一の第1連結板21を基準にしてタイヤ周方向の両側に位置する第1連結板21を含む。
 また、連結部材15のうち、接地面Gと外装体12との間に位置する第2連結板22は、一端部22aから他端部22bに向かうに従いタイヤ周方向に沿う一方側に向けて倒れ込むように変形しており、タイヤ周方向で隣接する第2連結板22同士とタイヤ径方向で重なり合うように接触している。したがって、各連結板21,22は、変形方向がタイヤ周方向に沿って互いに逆向きになっている。
 また、一の第2連結板22には、一の第2連結板22に対してタイヤ周方向の両側に隣接する他の第2連結板22(他の連結部材)が、タイヤ側面視において一の第2連結板22の延びる方向でそれぞれ異なる部分(タイヤ周方向で異なる部分)に接触している。具体的に、一の第2連結板22に対してタイヤ周方向の一方側で隣接する他の第2連結板22と、一の第2連結板22と、の接触部分C1は、タイヤ周方向の一方側で隣接する他の第2連結板22と、一の第2連結板22と、の接触部分C1よりも、一の第2連結板22における他端部22b寄りに配設されている。
 そして、各連結板21,22は、第1連結板21および第2連結板22それぞれにおいて、タイヤ周方向に隣り合う複数ずつが互いに当接し、かつこれらの接触部分C1,C2がタイヤ側面視で接地面Gに沿って重なり合っている。すなわち、接触部分C1,C2は、タイヤ側面視で接地面Gに沿って連なるように並んでいる。なお、本実施形態では、タイヤ周方向で隣り合う複数の第1連結板21の接触部分C1同士と、第2連結板22の接触部分C2と、がタイヤ径方向でも同等の位置に配設されることが好ましい。また、接地面Gと取り付け体11との間に位置する各連結板21,22それぞれの接触部分のうち、全ての接触部分がタイヤ側面視で接地面Gに沿って重なり合っていてもよく、一部の接触部分のみが重なり合っていてもよい。
 以上説明したように、本実施形態による非空気入りタイヤ1によれば、圧縮状態において、接地面Gと、取り付け体11(外装体12)と、の間に位置し、タイヤ周方向で隣接する連結部材15同士が互いに当接する構成とされているため、タイヤ周方向で隣接する連結部材15の接触部分C1,C2同士を圧縮荷重に対して互いに支持させ合うことが可能になる。そのため、例えば圧縮状態にも関わらずタイヤ周方向で隣接する連結部材15同士が非接触の構成に比べて、タイヤ径方向の圧縮荷重に対する連結部材15の剛性、すなわち非空気入りタイヤ1全体のタイヤ径方向のばね定数(縦ばね定数)を高めることができる。
 この場合、仮に瞬間的な大荷重が非空気入りタイヤ1に作用したとしても、例えば連結部材15が破損したり、塑性変形したりする等を抑制できる。
 さらに、第1連結板21が、一のタイヤ幅方向Hの位置にタイヤ周方向に沿って複数配置されるとともに、第2連結板22が、他のタイヤ幅方向Hの位置にタイヤ周方向に沿って複数配置されているので、無負荷状態においてタイヤ周方向で隣り合う連結部材15同士が干渉し合うのを抑えることが可能になり、その配設個数に制限が生ずるのを抑制できる。
 また、第1連結板21のうち、リング状体13に連結された一端部21aが、外装体12に連結された他端部21bよりもタイヤ周方向の一方側に位置し、第2連結板22のうち、リング状体13に連結された一端部22aが、外装体12に連結された他端部22bよりもタイヤ周方向の他方側に位置しているので、この非空気入りタイヤ1に外力が作用したときに、第1連結板21および第2連結板22を弾性変形させ易くすることが可能になり、この非空気入りタイヤ1に柔軟性を備えさせて良好な乗り心地性を確保できる。
 特に、第1連結板21および第2連結板22を弾性変形させ易くすることで、タイヤ周方向で隣接する連結板21,22同士が互いに当接し易くなるので、連結部材15の剛性が確実に高められる。
 しかも、本実施形態では、外装体12とリング状体13とが、上述のように相対的にタイヤ径方向に変位したときに、第1連結板21および第2連結板22それぞれにおいて、タイヤ周方向に隣り合う複数ずつが互いに当接するので、タイヤ径方向の圧縮荷重に対する剛性が確実に高められる。
 さらに、複数の第1連結板21および第2連結板22それぞれにおける接触部分C1,C2が、タイヤ側面視で接地面Gに沿って連なっているため、これらの接触部分C1,C2にかかる負荷(タイヤ径方向の圧縮荷重)を互いに分散させ合うことができる。
 また、第1連結板21および第2連結板22それぞれにおいて、連結板21,22の延びる方向に沿って複数の湾曲部21d~21f,22d~22fが形成されているため、各連結板21,22の長さを、それぞれを直線的に形成する場合に比べて長くできる。そのため、複数の第1連結板21および第2連結板22それぞれにおける接触部分C1,C2を、接地面Gに沿って長く、若しくは複数箇所に亘って確保し易くなる。
 また、第2湾曲部21e,22eが、第1湾曲部21d,22dおよび第3湾曲部21f,22fの曲率半径よりも小さくなっているため、第1連結板21および第2連結板22の中間部分21c,22cを柔軟に変形させることができる。これにより、タイヤ周方向で隣接する連結板21,22同士をより当接させ易く、また当接部分C1,C2部分を接地面Gに沿って長く確保できる。
 また、連結部材15が、タイヤ側面視で仮想線Lに対して線対称に形成されているので、この非空気入りタイヤ1におけるタイヤ周方向の一方側に沿うばね定数と他方側に沿うばね定数とで差が生ずるのを抑えることが可能になり、良好な操縦性を備えさせることができる。
 さらに、本実施形態では、外装体12、リング状体13および複数の連結部材15が一体に形成されているので、非空気入りタイヤ1の組み立てに際し、複数の連結部材15それぞれの両端部を、外装体12およびリング状体13にそれぞれ連結しなくても、リング状体13および複数の連結部材15が一体に形成された状態で取り付け体11に装着すれば足りるため、製造時間を短縮できる。
 また、リング状体13および複数の連結部材15が一体に形成されていることから、例えば、連結部材15の両端部と外装体12およびリング状体13とを、締結部材等を用いて連結する場合と比べて重量を抑えることができる。
 なお、本実施形態では、取り付け体11とリング状体13とが相対的にタイヤ径方向に非空気入りタイヤ1の外径(タイヤハイト)の5%以上変位したときに、接地面Gと外装体12との間に位置し、かつタイヤ周方向で隣り合う連結部材15同士が当接する構成になっていることが好ましい。これにより、連結部材15の柔軟性を確保した上で、剛性を高めることができる。
 ここで、本願発明者は以上説明した作用効果についての検証試験を実施した。
 実施例1として、図1~図5で示した非空気入りタイヤ1を採用し、また比較例1として、タイヤ周方向で隣接する連結部材15同士が圧縮状態で非接触に構成された非空気入りタイヤを採用した。そして、本試験では、実施例1および比較例1それぞれにおいて、撓み率(%:外径に対する変位率)と荷重(N)との関係を測定した。なお、両タイヤのサイズ(例えば、3.00-8)は同じものとした。
 図6のグラフに示すように、実施例1および比較例1ともに、撓み率が増加するに従い荷重も増加していることが分かる。具体的に、比較例1の場合には、撓み率の増加に対して荷重が一定の割合で増加しており、撓み率と荷重とはほぼ比例の関係を有していることが分かる。
 一方、実施例1の場合、撓み率が5~6%(図6中A地点)未満の範囲では比較例1と同様に、撓み率と負荷は比例の関係にあるものの、撓み率がA地点以上の範囲では、撓み率に対する荷重の増加割合がA地点未満の範囲に比べて大きくなっている。
 これは、A地点未満の範囲において、実施例1および比較例1ともに、タイヤ径方向に圧縮荷重が作用した場合、タイヤ周方向で隣り合う各連結部材15が非接触の状態で弾性変形することで、取り付け体11とリング状体13とが相対的にタイヤ径方向に変位する。
 そして、比較例1の場合には、A地点以上の範囲でも、タイヤ周方向で隣り合う各連結部材15が非接触の状態で弾性変形することで、撓み率の増加に対して荷重が一定の割合で増加する。
 一方、実施例1の場合には、A地点において、タイヤ周方向で隣り合う連結部材15同士が互いに当接することで、A地点以上の範囲で剛性が向上するためであると考えられる。
さらに、A地点以上の範囲では、撓み率が増加するに従い連結部材15の接触部分C1,C2が接地面Gに沿って長く、若しくは複数箇所に亘って確保し易くなるので、撓み率の増加に対する荷重の増加割合が除々に増加するものと考えられる。なお、本試験の結果、撓み率が10%の場合での比較例1の縦ばね定数を100とすると、実施例1の縦ばね定数は170であったことが確認された。
 また、発明者は、k≧40、且つ、θ2≧90°を満たすことで、タイヤ径方向の圧縮荷重に対する剛性を有効に向上させることができることを、以下のように見出した。
 まず、θ2が90°未満だと、連結部材15間の間隔が狭くなり、わずかな撓みで連結部材15間の接触が生じてしまうと共に、連結部材15のパスが長くなるため、タイヤ重量が増加してしまう。このことから連結部材15の形状を規制するに当たり、まず、θ2を90°以上とすることが肝要となる。
 次に、図7は、タイヤサイズ155/65R13(PS)、3.00-8、4.00-5のタイヤについて、上記θ0(°)と応力及び重量との関係を示した図である。
 なお、応力については、実車荷重を負荷した際に連結部材に生じる応力をFEM解析により算出した。
 図8において、三角のプロットは、θ=90°の場合に相当するものであり(上記定義におけるkの上限値を意味する)、タイヤサイズ3.00-8のタイヤにおけるこの点での応力及び重量を100としたINDEXで縦軸を表示しており、数値が大きい方が応力及び重量が大きいことを意味している。
 そして、応力のINDEX110までをタイヤが十分な強度を有する指標とし、図中、四角のプロットでそれを表示している。この点は、上記定義におけるkの下限値を意味する。
 また、好適値の一例として、応力のグラフと重量のグラフとの交点を丸のプロットで表示している。
 次に、図9は、上記3つのタイヤサイズのタイヤについて、図8における上記三角、四角、丸の各プロットをとることにより、比r/Rとθ0との関係を示す図である。
 図9に示すように、連結部材15の形状を規制するに当たっては、kが40以上となるような形状にすることが肝要であることがわかった。
 以上の考察により、k≧40、且つ、θ2≧90°を満たすことで、タイヤ径方向の圧縮荷重に対する剛性の向上と、重量の増加の抑制とを両立させることができることがわかった。
 従って、本実施形態のタイヤによれば、重量の増加を抑制しつつも、タイヤ径方向の圧縮荷重に対する剛性を向上させることができる。
図10のグラフに示すように、実施例2および比較例2ともに、撓み率が増加するに従い荷重も増加していることが分かる。具体的に、比較例2の場合には、撓み率の増加に対して荷重が一定の割合で増加しており、撓み率と荷重とはほぼ比例の関係を有していることが分かる。
 一方、実施例2の場合、撓み率が約10%(図10中A地点)未満の範囲では比較例2と同様に、撓み率と負荷は比例の関係にあるものの、撓み率がA地点以上の範囲では、撓み率に対する荷重の増加割合がA地点未満の範囲に比べて大きくなっている。
 なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、第1連結板21における湾曲部21d~21fの湾曲方向、および第2連結板22における湾曲部22d~22fの湾曲方向は、上述した実施形態に限らず適宜変更してもよい。
 また、上述した実施形態では、連結部材15として第1連結板21および第2連結板22をタイヤ幅方向Hに沿って2列に配設する構成について説明したが、これに限らず、連結部材15はタイヤ幅方向Hに沿って3列以上の複数や、1列で配設しても構わない。
 また、連結部材15を、外装体12とリング状体13との間にタイヤ幅方向Hに沿って複数設けてもよい。
 また、第1連結板21および第2連結板22それぞれの他端部21b,22bは、上述した実施形態に代えて例えば、外装体12の外周面において軸線Oをタイヤ径方向で挟んで互いに反対となる各位置にそれぞれ連結してもよいし、あるいは、外装体12の外周面において、第1連結板21および第2連結板22の各一端部21a,22aにタイヤ径方向で対向する位置等に連結してもよい。
 また、上述した実施形態に代えて、両連結板21,22の各一端部21a,22aを、リング状体13の内周面にタイヤ周方向位置を互いに異ならせて連結してもよい。
 さらに、一方側分割外装体25と、他方側分割外装体26と、の間にタイヤ幅方向Hの隙間を設けなくてもよい。
 また、外装体12およびリング状体13をタイヤ幅方向Hに3個以上分割してもよいし、分割しなくてもよい。
 さらに、第1、第2分割ケース体31、32は、上述した実施形態に限らず例えば、切削加工等で形成してもよい。
 また、上述した実施形態では、外装体12、リング状体13および複数の連結部材15を、一体に形成するものとしたが、これに限られるものではなく、それぞれを個別に形成した後、互いに連結してもよい。さらに、外装体12を、取り付け体11と一体に形成してもよい。
 また、上述した実施形態では、連結部材15の一端部21a,22aを、外装体12を介して取り付け体11に間接的に連結する構成について説明したが、これに限らず、取り付け体11に連結部材15の一端部21a,22aを直接的に連結しても構わない。
 また、上述した実施形態では、タイヤ周方向で隣り合う複数の第1連結板21の接触部分C1,C2同士と、第2連結板22の接触部分C1、C2同士と、がタイヤ径方向で同一に配設される構成としたが、これに限られない。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した変形例を適宜組み合わせてもよい。
 本発明の効果を確かめるため、実施例3~5にかかるタイヤ及び比較例3、4にかかるタイヤを試作し、重量、応力、および荷重負荷時の連結部材間の接触の有無、を評価する以下の試験を行った。
 上記各タイヤは、タイヤサイズ3.00-8のタイヤである。
 ここで、「応力」は、実車荷重を負荷した際に、連結部材に発生する応力をFEM解析により算出した。
 各タイヤの諸元及び評価結果は、以下の表1に示しており、重量及び応力については、実施例3の評価結果を100としたときの指数で評価し、数値が大きい方が重量及び応力が大きいことを示している。また、「荷重負荷時の連結部材の接触の有無」とは、0.7kNのわずかな荷重を負荷した際に、連結部材間が不所望に接触してしまうか否かを意味する。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例3~5にかかるタイヤは、比較例3、4にかかるタイヤと比較して、重量の増加を抑制しつつも、応力を低減することができていることがわかる。
 タイヤ径方向の圧縮荷重に対する剛性を向上させることができる。
 1 非空気入りタイヤ
11 取り付け体
12 外装体
13 リング状体
15 連結部材
21 第1連結板
22 第2連結板
21a,22a 一端部
21b,22b 他端部
21d~21f,22d~22f 湾曲部
G 接地面
H タイヤ幅方向
O 軸線

Claims (11)

  1.  車軸に取り付けられる取り付け体と、
     前記取り付け体をタイヤ径方向の外側から囲むリング状体と、
     前記取り付け体と前記リング状体との間にタイヤ周方向に沿って複数配設されるとともに、これらの取り付け体とリング状体とを変位自在に連結する連結部材と、を備える非空気入りタイヤであって、
     前記タイヤが接地して、前記連結部材がタイヤ径方向の圧縮荷重により変形し、前記取り付け体と前記リング状体とがタイヤ径方向に変位したときに、複数の前記連結部材のうち、前記タイヤが接地する接地面と、前記取り付け体と、の間に位置する連結部材がタイヤ周方向で隣り合う他の連結部材に当接する構成とされた非空気入りタイヤ。
  2.  前記タイヤが接地して、前記連結部材がタイヤ径方向の圧縮荷重により弾性変形し、前記取り付け体と前記リング状体とがタイヤ径方向に変位したときに、複数の前記連結部材のうち、タイヤ周方向に隣り合う複数ずつが互いに当接し、かつこれらの当接部分の少なくとも一部が、前記タイヤをタイヤ幅方向から見たタイヤ側面視で、前記接地面に沿って重なり合う請求項1に記載の非空気入りタイヤ。
  3.  前記連結部材において、前記リング状体に連結された一端部と、前記取り付け体に連結された他端部と、の間に位置する中間部分にタイヤ周方向に湾曲する湾曲部が、前記タイヤをタイヤ幅方向から見たタイヤ側面視で、前記連結板が延びる方向に沿って複数形成され、
     前記複数の湾曲部のうち、前記一端部に連なる湾曲部は、前記湾曲部よりも前記他端部側に位置する湾曲部に比べて曲率半径が小さくなっている請求項1に記載の非空気入りタイヤ。
  4.  前記連結部材は、前記取り付け体と前記リング状体とを連結する第1連結板および第2連結板を備え、
     前記第1連結板のうち、前記リング状体に連結された一端部は、前記取り付け体に連結された他端部よりもタイヤ周方向の一方側に位置し、
     前記第2連結板のうち、前記リング状体に連結された一端部は、前記取り付け体に連結された他端部よりもタイヤ周方向の他方側に位置し、
     前記第1連結板は、一のタイヤ幅方向位置にタイヤ周方向に沿って複数配置されるとともに、前記第2連結板は、前記一のタイヤ幅位置とは異なる他のタイヤ幅方向位置にタイヤ周方向に沿って複数配置され、
     前記タイヤが接地して、前記連結部材がタイヤ径方向の圧縮荷重により弾性変形させられ、前記取り付け体と前記リング状体とがタイヤ径方向に変位したときに、複数の前記第1連結板、および複数の前記第2連結板それぞれにおいて、タイヤ周方向に隣り合う複数ずつが互いに当接する請求項1に記載の非空気入りタイヤ。
  5.  前記第1連結板、および前記第2連結板それぞれにおいて、前記一端部と前記他端部との間に位置する中間部分に、タイヤ周方向に湾曲する湾曲部が、前記タイヤ側面視で、前記連結板が延びる方向に沿って複数形成されている請求項4に記載の非空気入りタイヤ。
  6.  無負荷状態のタイヤ側面視において、前記連結部材のタイヤ径方向外側端Aとタイヤ径方向内側端Bとを結ぶ線分ABと、前記タイヤ径方向外側端Aと車軸Oとを結ぶ線分AOとのなす角度をθ0(°)とし、前記線分OAの長さをR(mm)とし、前記線分OBの長さをr(mm)とし、θ0=k×(r/R)とし、線分ABと線分OBとのなす角をθ2(°)とするとき、
    k≧40、且つ、θ2≧90°を満たす請求項1に記載の非空気入りタイヤ。
  7.  前記連結部材において、前記リング状体に連結された一端部と、前記取り付け体に連結された他端部と、の間に位置する中間部分にタイヤ周方向に湾曲する湾曲部が、前記タイヤをタイヤ幅方向から見たタイヤ側面視で、前記連結板が延びる方向に沿って複数形成され、
     前記複数の湾曲部のうち、前記一端部に連なる湾曲部は、前記湾曲部よりも前記他端部側に位置する湾曲部に比べて曲率半径が小さくなっている請求項2に記載の非空気入りタイヤ。
  8.  前記連結部材は、前記取り付け体と前記リング状体とを連結する第1連結板および第2連結板を備え、
     前記第1連結板のうち、前記リング状体に連結された一端部は、前記取り付け体に連結された他端部よりもタイヤ周方向の一方側に位置し、
     前記第2連結板のうち、前記リング状体に連結された一端部は、前記取り付け体に連結された他端部よりもタイヤ周方向の他方側に位置し、
     前記第1連結板は、一のタイヤ幅方向位置にタイヤ周方向に沿って複数配置されるとともに、前記第2連結板は、前記一のタイヤ幅位置とは異なる他のタイヤ幅方向位置にタイヤ周方向に沿って複数配置され、
     前記タイヤが接地して、前記連結部材がタイヤ径方向の圧縮荷重により弾性変形させられ、前記取り付け体と前記リング状体とがタイヤ径方向に変位したときに、複数の前記第1連結板、および複数の前記第2連結板それぞれにおいて、タイヤ周方向に隣り合う複数ずつが互いに当接する請求項2に記載の非空気入りタイヤ。
  9.  前記連結部材は、前記取り付け体と前記リング状体とを連結する第1連結板および第2連結板を備え、
     前記第1連結板のうち、前記リング状体に連結された一端部は、前記取り付け体に連結された他端部よりもタイヤ周方向の一方側に位置し、
     前記第2連結板のうち、前記リング状体に連結された一端部は、前記取り付け体に連結された他端部よりもタイヤ周方向の他方側に位置し、
     前記第1連結板は、一のタイヤ幅方向位置にタイヤ周方向に沿って複数配置されるとともに、前記第2連結板は、前記一のタイヤ幅位置とは異なる他のタイヤ幅方向位置にタイヤ周方向に沿って複数配置され、
     前記タイヤが接地して、前記連結部材がタイヤ径方向の圧縮荷重により弾性変形させられ、前記取り付け体と前記リング状体とがタイヤ径方向に変位したときに、複数の前記第1連結板、および複数の前記第2連結板それぞれにおいて、タイヤ周方向に隣り合う複数ずつが互いに当接する請求項3に記載の非空気入りタイヤ。
  10.  前記第1連結板、および前記第2連結板それぞれにおいて、前記一端部と前記他端部との間に位置する中間部分に、タイヤ周方向に湾曲する湾曲部が、前記タイヤ側面視で、前記連結板が延びる方向に沿って複数形成されている請求項8に記載の非空気入りタイヤ。
  11.  前記第1連結板、および前記第2連結板それぞれにおいて、前記一端部と前記他端部との間に位置する中間部分に、タイヤ周方向に湾曲する湾曲部が、前記タイヤ側面視で、前記連結板が延びる方向に沿って複数形成されている請求項9に記載の非空気入りタイヤ。
PCT/JP2013/078538 2012-10-22 2013-10-22 非空気入りタイヤ WO2014065263A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13849548.6A EP2910387B1 (en) 2012-10-22 2013-10-22 Non-pneumatic tire
CN201380054797.7A CN104736355B (zh) 2012-10-22 2013-10-22 非充气轮胎
US14/436,577 US9713940B2 (en) 2012-10-22 2013-10-22 Non-pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012232803A JP6043582B2 (ja) 2012-10-22 2012-10-22 非空気入りタイヤ
JP2012-232803 2012-10-22

Publications (1)

Publication Number Publication Date
WO2014065263A1 true WO2014065263A1 (ja) 2014-05-01

Family

ID=50544642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078538 WO2014065263A1 (ja) 2012-10-22 2013-10-22 非空気入りタイヤ

Country Status (5)

Country Link
US (1) US9713940B2 (ja)
EP (1) EP2910387B1 (ja)
JP (1) JP6043582B2 (ja)
CN (1) CN104736355B (ja)
WO (1) WO2014065263A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015175804A1 (en) * 2014-05-16 2015-11-19 Basf Se Thermoplastic wheel hub
JP2016074249A (ja) * 2014-10-02 2016-05-12 住友ゴム工業株式会社 エアレスタイヤ
EP2902217A4 (en) * 2012-11-05 2016-06-22 Bridgestone Corp NON-PNEUMATIC TIRE

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2915483C (en) 2013-06-15 2021-11-16 Ronald Thompson Annular ring and non-pneumatic tire
JP6221113B2 (ja) * 2013-11-15 2017-11-01 株式会社ブリヂストン 非空気入りタイヤ
US10118444B2 (en) * 2013-11-15 2018-11-06 Bridgestone Corporation Non-pneumatic tire
FR3031932B1 (fr) * 2015-01-22 2017-02-03 Michelin & Cie Dispositif de type pneumatique pour vehicule
CA2976055A1 (en) 2015-02-04 2016-08-11 Advancing Mobility, Llc. Non-pneumatic tire and other annular devices
JP6618693B2 (ja) * 2015-03-18 2019-12-11 株式会社ブリヂストン 非空気入りタイヤ
CN108136835B (zh) * 2015-10-09 2019-11-22 株式会社普利司通 非充气轮胎
CA3008846C (en) 2015-12-16 2024-02-20 Ronald H. Thompson Track system for traction of a vehicle
WO2017116389A1 (en) * 2015-12-28 2017-07-06 Compagnie Generale Des Etablissements Michelin Method of using ultrasonic device to attach supporting structure of a non-pneumatic tire to a hub
WO2017116384A1 (en) 2015-12-28 2017-07-06 Campagnie Generale Des Etablissements Michelin Method of forming non-pneumatic tire using support structure deformation
WO2017116385A1 (en) 2015-12-28 2017-07-06 Compagnie Generale Des Etablissements Michelin Method of forming non-pneumatic tire including pressure application between an intermediate section and an outer shear band ring
WO2017116386A1 (en) * 2015-12-28 2017-07-06 Compagnie Generale Des Etablissements Michelin Method of forming non-pneumatic tire using intermediate section
WO2017117587A1 (en) * 2015-12-31 2017-07-06 Compagnie Generale Des Etablissements Michelin Non-pneumatic tire
CN109996684B (zh) * 2016-10-03 2023-06-09 米其林集团总公司 用于轮胎的增强橡胶轮辐
WO2018227276A1 (en) 2017-06-15 2018-12-20 Camso Inc. Wheel comprising a non-pneumatic tire
CN111051079B (zh) * 2017-07-06 2023-06-09 米其林集团总公司 具有聚酰胺轮辐的非充气轮
WO2019010432A1 (en) 2017-07-06 2019-01-10 Compagnie Generale Des Etablissements Michelin NON-PNEUMATIC WHEEL
WO2019054523A1 (ko) * 2017-09-12 2019-03-21 이성기 비 공기식 차륜
JP6989082B2 (ja) 2017-12-14 2022-01-05 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー マルチピースウェブを有する非空気圧式タイヤ
US11993109B2 (en) 2017-12-21 2024-05-28 Camso Inc. Wheel comprising a non-pneumatic tire
WO2019227205A1 (en) * 2018-05-28 2019-12-05 Camso Inc. Wheel comprising a non-pneumatic tire
JP7123770B2 (ja) * 2018-11-30 2022-08-23 株式会社ブリヂストン 非空気入りタイヤ
JP7123771B2 (ja) * 2018-11-30 2022-08-23 株式会社ブリヂストン 非空気入りタイヤ
JP1654471S (ja) * 2019-05-23 2020-03-09
CA3150286A1 (en) * 2019-08-09 2021-02-18 Berkshire Grey, Inc. Systems and methods for providing wheels having variable spring rates
EP4139135A4 (en) * 2020-04-24 2024-06-12 Milwaukee Electric Tool Corporation WHEEL WITH DEFORMABLE INTERFACED SPOKE
CN114259711A (zh) * 2022-01-12 2022-04-01 徐敏 一种瑜伽轮

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1375832A (en) * 1919-12-04 1921-04-26 Baun Earl Amos De Vehicle-wheel and tire
US1543728A (en) * 1924-03-17 1925-06-30 John H Schulz Resilient wheel
GB978913A (en) * 1963-01-04 1965-01-01 Robert Barnett Improvements relating to wheels for vehicles
JP2007112243A (ja) * 2005-10-19 2007-05-10 Yokohama Rubber Co Ltd:The 非空気式タイヤ
JP2011156905A (ja) 2010-01-29 2011-08-18 Bridgestone Corp 非空気入りタイヤ
JP2011156906A (ja) * 2010-01-29 2011-08-18 Bridgestone Corp 非空気入りタイヤ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB601764A (en) 1944-10-26 1948-05-12 Hugh Compton Lord Cushioned tires
US3219090A (en) * 1963-09-04 1965-11-23 Air Flex Corp Wheel
GB1292928A (en) 1970-04-17 1972-10-18 John Dudley Wells Gregg Improvements relating to spring wheels for vehicles
JPS5836702B2 (ja) 1977-01-17 1983-08-11 三菱製鋼株式会社 土地加工工具
DE3175652D1 (en) * 1980-11-10 1987-01-15 Wheel Dev Ltd Wheel with resilient spokes
JPS5836702A (ja) * 1981-08-25 1983-03-03 Ohtsu Tire & Rubber Co Ltd 軟弱地盤走行用車輪
CA2011473C (en) * 1989-05-22 1998-01-06 Richard L. Palinkas Trapezoidal non-pneumatic tire with supporting and cushioning members
FR2652310A1 (fr) 1989-09-28 1991-03-29 Michelin & Cie Bandage deformable non pneumatique.
US5265659A (en) * 1992-03-18 1993-11-30 Uniroyal Goodrich Licensing Services, Inc. Non-pneumatic tire with ride-enhancing insert
CA2346562A1 (fr) 1998-09-29 2000-04-06 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Roue deformable non pneumatique
GB9914473D0 (en) 1999-06-21 1999-08-18 Image Audit Design Consultancy Wheel structure
DE60131469T2 (de) 2001-08-24 2008-09-18 Société de Technologie Michelin Nicht- pneumatischer reifen
US7143797B2 (en) * 2005-01-04 2006-12-05 Frederick F. Vannan Airless tire
WO2007137858A2 (en) 2006-05-31 2007-12-06 Terramark Markencreation Gmbh Airless tire for vehicles
WO2009031650A1 (ja) * 2007-09-05 2009-03-12 Bridgestone Corporation 非空気入りタイヤ
KR101064896B1 (ko) * 2007-11-14 2011-09-16 전영일 비공기식 바퀴, 그에 사용되는 휠, 서스펜션 및 타이어
JP5624737B2 (ja) 2009-07-22 2014-11-12 株式会社ブリヂストン 非空気入りタイヤ
WO2012036687A1 (en) * 2010-09-16 2012-03-22 Michelin Recherche Et Technique S.A. Passive tuned vibration absorber
US8813797B2 (en) * 2011-01-30 2014-08-26 Compagnie Generale Des Etablissements Michelin Controlled buckling of a shear band for a tire
JP5879089B2 (ja) 2011-10-20 2016-03-08 株式会社ブリヂストン 非空気入りタイヤの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1375832A (en) * 1919-12-04 1921-04-26 Baun Earl Amos De Vehicle-wheel and tire
US1543728A (en) * 1924-03-17 1925-06-30 John H Schulz Resilient wheel
GB978913A (en) * 1963-01-04 1965-01-01 Robert Barnett Improvements relating to wheels for vehicles
JP2007112243A (ja) * 2005-10-19 2007-05-10 Yokohama Rubber Co Ltd:The 非空気式タイヤ
JP2011156905A (ja) 2010-01-29 2011-08-18 Bridgestone Corp 非空気入りタイヤ
JP2011156906A (ja) * 2010-01-29 2011-08-18 Bridgestone Corp 非空気入りタイヤ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2902217A4 (en) * 2012-11-05 2016-06-22 Bridgestone Corp NON-PNEUMATIC TIRE
US9931890B2 (en) 2012-11-05 2018-04-03 Bridgestone Corporation Non-pneumatic tire
WO2015175804A1 (en) * 2014-05-16 2015-11-19 Basf Se Thermoplastic wheel hub
CN106573491A (zh) * 2014-05-16 2017-04-19 巴斯夫欧洲公司 热塑性轮毂
US10486460B2 (en) 2014-05-16 2019-11-26 Basf Se Thermoplastic wheel hub
JP2016074249A (ja) * 2014-10-02 2016-05-12 住友ゴム工業株式会社 エアレスタイヤ

Also Published As

Publication number Publication date
EP2910387B1 (en) 2020-02-19
EP2910387A1 (en) 2015-08-26
JP6043582B2 (ja) 2016-12-14
JP2014083915A (ja) 2014-05-12
US9713940B2 (en) 2017-07-25
CN104736355A (zh) 2015-06-24
US20160167434A1 (en) 2016-06-16
CN104736355B (zh) 2018-01-19
EP2910387A4 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2014065263A1 (ja) 非空気入りタイヤ
JP5930941B2 (ja) 非空気入りタイヤ
WO2013058389A1 (ja) 非空気入りタイヤ
JP6061625B2 (ja) 非空気入りタイヤ
JP6152036B2 (ja) 非空気入りタイヤ
WO2017061405A1 (ja) 非空気入りタイヤ
WO2014061809A1 (ja) 非空気入りタイヤ
EP3162589B1 (en) Non-pneumatic tire
JP6221113B2 (ja) 非空気入りタイヤ
WO2014103723A1 (ja) 非空気入りタイヤ
WO2015141579A1 (ja) 非空気入りタイヤ
WO2015052989A1 (ja) 非空気入りタイヤ
JP6106428B2 (ja) 非空気入りタイヤ
WO2016084512A1 (ja) 非空気入りタイヤ
WO2015072183A1 (ja) 非空気入りタイヤ
WO2015072222A1 (ja) 非空気入りタイヤ
JP6288928B2 (ja) 非空気入りタイヤ
JP5894964B2 (ja) 非空気入りタイヤ
JP5914409B2 (ja) 非空気入りタイヤ及び非空気入りタイヤの製造方法
JP2014213789A (ja) 非空気入りタイヤ
JP6134204B2 (ja) 非空気入りタイヤ
JP5851450B2 (ja) 非空気入りタイヤ
JP6043147B2 (ja) 非空気入りタイヤ
JP2016107678A (ja) 非空気入りタイヤ
JP5894966B2 (ja) 非空気入りタイヤ及び非空気入りタイヤの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849548

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14436577

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013849548

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE