WO2014064813A1 - Ledランプ、そのledランプを含む照明装置、及び、ledランプの電流制御方法 - Google Patents

Ledランプ、そのledランプを含む照明装置、及び、ledランプの電流制御方法 Download PDF

Info

Publication number
WO2014064813A1
WO2014064813A1 PCT/JP2012/077644 JP2012077644W WO2014064813A1 WO 2014064813 A1 WO2014064813 A1 WO 2014064813A1 JP 2012077644 W JP2012077644 W JP 2012077644W WO 2014064813 A1 WO2014064813 A1 WO 2014064813A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
unit
light emitting
input
terminal
Prior art date
Application number
PCT/JP2012/077644
Other languages
English (en)
French (fr)
Inventor
三郎 宮道
Original Assignee
株式会社エム・システム技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エム・システム技研 filed Critical 株式会社エム・システム技研
Priority to KR1020137026518A priority Critical patent/KR101418579B1/ko
Priority to CN201280017095.7A priority patent/CN103907209B/zh
Priority to PCT/JP2012/077644 priority patent/WO2014064813A1/ja
Priority to SG11201404002XA priority patent/SG11201404002XA/en
Priority to US14/110,541 priority patent/US8779679B2/en
Priority to JP2013511435A priority patent/JP5266594B1/ja
Priority to EP12887278.5A priority patent/EP2793276B1/en
Priority to TW102136371A priority patent/TWI432082B/zh
Publication of WO2014064813A1 publication Critical patent/WO2014064813A1/ja
Priority to IN6161DEN2014 priority patent/IN2014DN06161A/en
Priority to HK14109982.5A priority patent/HK1196704A1/xx

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3578Emulating the electrical or functional characteristics of discharge lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention stabilizes the magnitude of the current flowing in the LED light emitting portion within a predetermined range even if the fluorescent lamp of the constant power control type inverter lighting device distributed in the market is mounted instead of the fluorescent lamp.
  • the present invention relates to a possible LED lamp, a lighting apparatus including the LED lamp, and a current control method of the LED lamp.
  • a typical lighting device of a commonly used fluorescent lamp (usually referred to as a fluorescent lamp), it is called a glow starter type, a rapid start type, or an electronic type ballast called a magnetic type ballast.
  • a glow starter type As a typical lighting device of a commonly used fluorescent lamp (usually referred to as a fluorescent lamp), it is called a glow starter type, a rapid start type, or an electronic type ballast called a magnetic type ballast.
  • an inverter type There are lighting devices for various fluorescent lamps such as an inverter type.
  • the above-mentioned inverter type fluorescent lamp lighting device which has been spreading rapidly in recent years, has been used to convert AC current to DC current, and then has a high resonant frequency near the resonant frequency due to the inverter circuit comprising transistors, capacitors, choke coils, etc. It is a device that generates a high voltage of frequency (20 kHz to 100 kHz).
  • the fluorescent lamp is turned on by the high voltage, and after the light is turned on, the fluorescent lamp is turned on stably at a low voltage by the current flowing in the fluorescent lamp.
  • FIG.15 (a) is a figure which shows an example of a glow starter type ballast
  • FIG.15 (b) is a figure which shows an example of a rapid start type ballast
  • FIG.15 (c) is an inverter. It is a figure which shows an example of the ballast of Formula.
  • the ballast of the glow starter type shown in FIG. 15 (a) is prepared by preheating an electrode (also referred to as a filament, hereinafter the same) of a fluorescent lamp by a starter using a lighting tube (glow starter G) and switching on. It is a type that can be lighted in a few seconds from the most popular type.
  • the rapid start type ballast shown in FIG. 15 (b) is a ballast used in combination with a rapid start type lamp, and is of the type that lights up simultaneously with preheating when switched on.
  • the ballast of the inverter type lighting device shown in FIG. 15 (c) converts the alternating current within the AC input voltage of 85 to 450 V into a direct current, and then uses the integrated circuit to drive the LED lamp at the high frequency as described above. It drives and it makes it light (for example, page 4 of patent document 1 and FIG. 2).
  • a choke coil L is inserted in series with the LED lamp in order to smooth the current supplied to the LED lamp, but an electrolytic capacitor (not shown) is usually inserted in parallel with the LED lamp.
  • FIG. 16 is a diagram showing an example in which two fluorescent lamps are connected in series with respect to a series rapid ballast.
  • Two fluorescent lamps are connected in series and lighted with one ballast.
  • the configuration is simpler and more economical than the one using two ballasts for one lamp or the flickerless ballast. is there.
  • the respective electrodes of the fluorescent lamp A and the fluorescent lamp B are preheated, and the starting capacitor has a high impedance, so the voltage on the secondary side does not shift to the normal discharge and the minute discharge state Become.
  • the voltage drop across the starting capacitor due to this slight discharge current is applied to the fluorescent lamp B, and discharge of the fluorescent lamp B is started.
  • the ballast of the above-mentioned inverter type lighting device (hereinafter, also referred to as an inverter type ballast or an electronic type ballast) is applied not only to an LED lamp but also to a conventional fluorescent lamp, and the magnitude of the current flowing through the fluorescent lamp
  • a constant current control type in which control is performed so as to be constant
  • a constant power control type in which control is performed such that the magnitude of power supplied to a fluorescent lamp is constant. 2 and 3).
  • the LED lamp corresponding to each ballast is used I needed to.
  • the output (secondary side output) of the ballast is approximately AC 200 V corresponding to AC 100 V to 240 V (50 Hz / 60 Hz) of the power source side input.
  • the frequency is controlled so as to increase the frequency, the frequency is the same as the frequency of the power source input.
  • the LED light emitting portion of the LED lamp is obtained so as to obtain a desired illuminance after rectifying into a direct current with the internal rectification circuit so that an alternating current that matches the frequency of the power source side input can be used.
  • the circuit configuration (the configuration of the circuit to which a plurality of LEDs are connected, the same applies hereinafter) is fixed so that the magnitude of the current flowing through each LED falls within a predetermined range.
  • the ballast of the lighting device of the fluorescent lamp is a glow starter type and the rapid start type conventionally, the built-in LEDs can be turned on by using a dedicated LED lamp that can be adapted to the lamp socket for the fluorescent lamp It was
  • the output (secondary side output) of the ballast is approximately AC 280 V (even if the power source side input is AC 100 V to 240 V (50 Hz / 60 Hz)
  • the circuit configuration of the LED light-emitting unit of the LED lamp is controlled to a constant voltage at no load) and constant current control or constant power control so that the frequency is within the range of 20 kHz to 100 kHz. Were fixed so that the magnitude of the current flowing to each LED was within a predetermined range.
  • the ballast of the lighting device of the fluorescent lamp is an inverter type
  • the circuit modification work on the lighting device side is accompanied, or a conversion adapter necessary for direct connection is applied, etc. was required.
  • LED lamps which can greatly contribute to power saving and long life of the lamps, have been a major impediment to the market penetration of LED lamps.
  • the value of the load impedance for limiting the current value flowing to the LED light emitting part of the LED lamp is smaller than that of the fluorescent lamp
  • the output voltage of the inverter type ballast decreases and the output current increases.
  • the magnitude of the current flowing through the LED lamp may be larger than a predetermined range, and an appropriate light amount may not be obtained.
  • the magnitude of the current flowing to the LED lamp is predetermined. It may not be stable within the range, and an appropriate light amount may not be obtained.
  • the output voltage of the inverter-type ballast is fixed so as to be approximately proportional to the magnitude of the load impedance of the LED lamp, while the output current fluctuates according to the magnitude of the output voltage. As a result, the magnitude of the current flowing through the LED lamp may fluctuate beyond a predetermined range, and an appropriate light amount may not be obtained.
  • An object of the present invention is to provide an LED lamp capable of stabilizing the magnitude of the flowing current in a predetermined range, a lighting device including the LED lamp, and a current control method of the LED lamp.
  • the LED lamp according to the present invention comprises a pair of input terminals, a rectifier circuit that rectifies an AC current externally input to the pair of input terminals into a DC current, and a DC current output from the rectifier circuit. And an LED light emitting unit that emits light, and in the circuit between the pair of input terminal units and the rectifying circuit unit, the rectifying circuit unit is formed from one of the input terminal units of the pair of input terminals.
  • the inductance of the variable inductance unit varies the inductance value of the variable inductance unit according to the magnitude of the current detected by the current detection unit, and the output voltage is fixed so as to be approximately proportional to the value.
  • the magnitude of the current flowing through the LED light emitting unit can be stabilized within a predetermined range.
  • the output voltage of the constant power control type inverter type ballast is reduced by reducing the inductance value of the variable inductance unit.
  • the magnitude of the current flowing through the LED light emitting unit can be stabilized within a predetermined range by utilizing the increase of the current.
  • the output voltage of the constant power control inverter type ballast is increased by increasing the inductance value of the variable inductance unit.
  • the LED lamp described above passes through the rectifier circuit portion from one of the input terminal portions of the pair of input terminal portions.
  • a threshold element is provided for supplying an alternating current flowing to the other input terminal, and the threshold element has passed a predetermined time since an alternating current exceeding a predetermined threshold is externally input to the pair of input terminals Later, the both ends are short-circuited, and the variable inductance control unit may change the inductance value of the variable inductance unit according to the magnitude of the direct current detected after the both ends of the threshold element are shorted.
  • the output voltage is set in advance for grasping the state of the fluorescent lamp (for example, checking whether the fluorescent lamp is attached to the load side) at the start of output.
  • Set a lower value than the rated value flow a small current that can not obtain an appropriate light quantity, monitor the magnitude of the output current at that time, raise the output voltage to a predetermined range, and then perform constant power control There is.
  • both ends of the threshold element are short-circuited after a predetermined time has elapsed since an AC current exceeding the predetermined threshold is externally input to the pair of input terminal portions, and the LED light emitting portion after short-circuiting of both ends of the threshold element
  • the inductance value of the variable inductance unit is varied according to the magnitude of the direct current flowing to the current source, so even with this type of inverter type ballast, the current flowing through the LED light emission unit to be detected Only the current (current) is not detected.
  • the LED lamp described above passes through the rectifier circuit portion from one of the input terminal portions of the pair of input terminal portions.
  • a circuit interrupting unit capable of interrupting alternating current flowing to the other input terminal unit, and the circuit interrupting unit is configured such that the magnitude of the direct current detected by the current detecting unit exceeds a predetermined upper limit value or a predetermined lower limit The alternating current may be cut off when the value falls below.
  • the alternating current input from the outside to the pair of input terminals is rectified on the safety side. It can block the flow to the department.
  • the safety side even if the magnitude of the detected direct current is very small due to some abnormality such as the mounting condition of the LED lamp to the ballast or the electrical connection failure, the safety side also makes a pair from the outside It is possible to block the flow of alternating current input to the input terminal portion to the rectifier circuit portion.
  • the LED lamp described above is provided with a PWM control unit capable of performing PWM control of the current flowing through the LED light emitting unit based on the duty ratio in the circuit between the rectifier circuit unit and the LED light emitting unit
  • the PWM control unit performs PWM control of the current flowing through the LED light emitting unit and PWM control of the current flowing through the LED light emitting unit according to the frequency of the external alternating current input to the pair of input terminal units.
  • the current detection unit detects the magnitude of the direct current flowing through the LED light emitting unit when the PWM control unit does not perform PWM control, and the inductance is variable according to the magnitude of the direct current.
  • the control unit may change the inductance value of the variable inductance unit.
  • the ballast of the lighting device for a fluorescent lamp is any of a glow starter type, rapid start type or inverter type lighting type, a fluorescent lamp (which may be an LED lamp) previously mounted and If it replaces
  • this configuration stabilizes the magnitude of the current flowing through the LED light emitting unit within a predetermined range. it can.
  • the ballast of the fluorescent lamp lighting device is a glow starter type or rapid start type
  • the frequency of the alternating current input from the pair of input terminal portions is low as in the commercial frequency 50 Hz / 60 Hz.
  • the PWM control unit of the LED lamp acts to stabilize the current flowing to the LED light emitting unit.
  • the frequency of the alternating current input from the pair of input terminals is as high as 20 kHz to 100 kHz as in the case of an inverter type ballast, variable according to the magnitude of the direct current flowing to the LED light emitting unit
  • the inductance value of the inductance unit is varied to affect the stabilization of the current flowing to the LED light emitting unit.
  • the PWM control unit is configured to set the external alternating current input to the pair of input terminal units to a predetermined frequency when the frequency is lower than the predetermined frequency. Also performs PWM control of the current flowing to the LED light emitting unit by pulse driving with high frequency, and flows to the LED light emitting unit when the frequency of the external alternating current input to the pair of input terminals is higher than a predetermined frequency It may be a form which does not perform PWM control of current.
  • the ballast of the fluorescent lamp lighting device can be replaced with a fluorescent lamp (which may be an LED lamp) that has been previously mounted, regardless of whether it is a glow starter type, rapid start type or inverter type lighting type. For example, it is possible to perform pulse driving at a frequency higher than a predetermined frequency to be lit for illumination that can be lit.
  • the user needs to select the LED lamps according to the method of the lighting device (confirm the compatibility), or that additional work such as circuit construction or direct connection work on the lighting device side is required. From the side, it is possible to easily solve the situation grasping survey for the introduction work, the complexity such as adjustment of the work period, and the situation that the introduction cost is incurred accordingly.
  • the LED lamp As a result, there is no obstacle to adopting the LED lamp as a conventional fluorescent lamp lighting device (which may be an LED lighting device) at home or at work.
  • the frequency of the alternating current input from the pair of input terminal portions is 50 Hz / 60 Hz of the commercial frequency.
  • the PWM control unit performs PWM control of the current flowing through the LED light emitting unit with the driving pulse having a frequency higher than at least a predetermined frequency (for example, 5 kHz), so the current flowing through the LED light emitting unit is repeatedly turned on / off at high speed. It is possible to obtain a stable rms value (RMS value) that does not cause flicker.
  • a predetermined frequency for example, 5 kHz
  • the ballast of the fluorescent lamp lighting device is an inverter type
  • the alternating current input from the pair of input terminals is high frequency 20 kHz to 100 kHz, so the PWM control unit does not perform PWM control. Since the frequency as it is rectified by the rectifying circuit (in the case of full-wave rectification, the ripple voltage waveform superimposed on DC is twice the frequency) is used, the current flowing through the LED light emitting unit is Control of the inverter-type ballast (for example, PWM control) makes it possible to obtain a stable rms value (RMS value) that does not cause flicker.
  • RMS value stable rms value
  • a bypass circuit unit is provided between the cathode side terminal of the LED light emitting unit and the ground side output terminal of the rectifier circuit unit.
  • a high pass filter circuit for outputting a drive voltage of the switching element, the switching element being a circuit of the LED light emitting section when the alternating current input to the pair of input terminal sections has a frequency lower than a predetermined frequency. If no current flows from the cathode side terminal to the ground side output terminal of the rectifier circuit and the alternating current input to the pair of input terminals has a frequency higher than a predetermined frequency, from the cathode side terminal of the LED light emitting unit The current may flow to the ground side output terminal of the rectifier circuit unit.
  • the bypass circuit unit performs switching control of the PWM control unit for performing PWM control of the current flowing through the LED light emitting unit when the alternating current input from the input terminal of the rectifier circuit unit is higher than a predetermined frequency.
  • the switching element of the bypass circuit unit controls the flow of current between the drain terminal and the source terminal according to the gate voltage input to the gate terminal.
  • the drain terminal is connected to the cathode side terminal of the LED light emitting unit
  • the source terminal is connected to the ground side output terminal of the rectifying circuit unit
  • the gate terminal is a rectifying circuit via a high pass filter circuit.
  • the high-pass filter circuit is connected to one of the input terminals of the block so that current flows from the drain terminal to the source terminal when the alternating current input to the pair of input terminals is higher than a predetermined frequency.
  • a gate voltage for driving the drain terminal so no current to the source terminal may be in a form to be output to the gate terminal of the.
  • the N-channel MOS FET functions as a switching element of the bypass circuit, so that the current can flow to the LED light emitting unit with a sufficient margin, and the current can be prevented from flowing to the PWM control unit.
  • the PWM control unit when the alternating current input from the input terminal of the rectifier circuit unit is higher than a predetermined frequency, the PWM control unit is bypassed, and the current flowing through the LED light emitting unit flows into the PWM control unit. Rather, the PWM control unit can be configured not to perform PWM control.
  • the high-pass filter circuit is connected in series to the first capacitor, and one terminal connected to one terminal of the first capacitor.
  • the other terminal of the first capacitor may be connected to any one of the input terminals of the rectifier circuit section.
  • the predetermined frequency may be a frequency higher than 65 Hz and smaller than 20 kHz.
  • the ballast system is the frequency (60 ⁇ 1 Hz) in the case of the glow starter type or rapid start type and the inverter type circulating in the market. Since the frequency (20 to 100 kHz) can be clearly distinguished, the case where PWM control by pulse drive is performed or not is switched according to the result of the distinction, and pulse drive is performed at high frequency and lighting is enabled for lighting. be able to.
  • the predetermined frequency to be distinguished belongs to the range of the audible range smaller than 20 kHz (the frequency range in which the human can feel as sound)
  • the PWM control is performed by pulse driving the frequency in the higher frequency range. It is also alleviated to feel as an offensive noise.
  • a lighting device of the present invention is characterized by including an LED lamp having any of the above-described configurations.
  • the fluorescent lamp since the above-described LED lamp is included, even if the ballast of the lighting device for the fluorescent lamp is a constant power control type inverter type ballast, the fluorescent lamp (even the LED lamp was mounted before) The magnitude of the current flowing to the LED light emitting unit can be stabilized within a predetermined range only by exchanging it for good.
  • the ballast is not mounted on the lighting device itself, the configuration of the lighting device is simplified, and it is necessary to select and check the LED lamps according to the type of the lighting device (confirmation of compatibility), or lighting From the user's point of view, additional work such as circuit work and direct connection work on the equipment side is required, and from the user's point of view, the present situation survey for installation work, complexity of work period adjustment, etc. The situation is easily resolved.
  • a pair of input terminals, a rectifier circuit that rectifies an alternating current input from the outside to the pair of input terminals into a direct current, and a rectifier circuit output A current control method of an LED lamp including: an LED light emitting unit that emits light by energization of a direct current, wherein one of the pair of input terminal units in a circuit between the pair of input terminal units and the rectifier circuit unit; Flowing an alternating current from the input terminal of the sensor through the variable inductance unit to the other input terminal, and flowing to the LED light emitting unit in the circuit between the rectifier circuit and the LED light emitting unit And detecting the magnitude of the direct current and varying the inductance value of the variable inductance portion in accordance with the magnitude of the detected direct current, the direct current flowing through the LED light emitting portion And controlling the magnitude to be within a predetermined range.
  • the ballast of the lighting device for a fluorescent lamp is a constant power control type inverter type ballast, it is replaced with a fluorescent lamp (which may be an LED lamp) previously mounted.
  • the inductance value of the variable inductance unit is varied according to the magnitude of the current detected by the current detection unit, and the output voltage is fixed so as to be approximately proportional to the value.
  • the magnitude of the current flowing through the LED light emitting unit can be stabilized within a predetermined range.
  • the lighting apparatus including the LED lamp, and the current control method of the LED lamp, even if the ballast of the lighting apparatus for fluorescent lamps is a constant power control type inverter type, it is mounted before The size of the current flowing through the LED light emitting unit can be stabilized within a predetermined range by replacing the fluorescent lamp (which may be an LED lamp).
  • FIG. 1 is a block diagram showing an entire circuit of a lighting device according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of the LED lamp in the embodiment of the present invention.
  • FIG. 3 is a block diagram showing the inside of the integrated circuit IC1.
  • FIG. 4 is a circuit diagram showing a variable inductance unit.
  • FIG. 5 is a diagram showing a variable control pattern of the variable inductance unit.
  • FIG. 6 is a diagram showing a variable region of an inductance value with respect to a detection current and a circuit cutoff region.
  • FIG. 7 is a flowchart showing a current control method of the LED lamp in the embodiment of the present invention.
  • 8 (a) and 8 (b) respectively show the input voltage waveform and the current waveform flowing through the LED light emitting part when the inductance value of the LED lamp is 100 ⁇ H in the case of lighting with the constant power control type inverter type ballast.
  • 8 (c) and 8 (d) respectively show an input voltage waveform and an electric current waveform flowing through the LED light emitting portion when the inductance value of the LED lamp is 400 ⁇ H in the case of lighting with the constant power control type inverter type ballast.
  • Fig.9 (a) and (b) are respectively the input voltage waveform at the time of inductance value 100microH of the LED lamp in, and the current waveform which flows through a LED light emission part in the case of making it light with a constant power control type inverter type ballast.
  • 9 (c) and 9 (d) respectively show an input voltage waveform and an electric current waveform flowing through the LED light emitting part when the inductance value of the LED lamp is 400 ⁇ H in the case of lighting with the constant power control type inverter type ballast.
  • 10 (a) shows the waveform of the input voltage Vin
  • FIG. 10 (b) shows the waveform of the voltage Vg1 of the gate terminal of the switching element Q1
  • FIG. 10 (c) shows the current sensor terminal of the integrated circuit IC1.
  • FIG. 10D is a waveform of the voltage Vg2 of the gate terminal of the switching element Q2
  • FIG. 10E is a waveform of the current i flowing through the LED light emitting unit 24.
  • 11 (a) shows the waveform of the input voltage Vin
  • FIG. 11 (b) shows the waveform of the voltage Vg1 at the gate terminal of the switching element Q1
  • FIG. 11 (c) shows the current sensor terminal of the integrated circuit IC1.
  • 11D is a waveform of the voltage Vg2 of the gate terminal of the switching element Q2
  • FIG. 11E is a waveform of the current i flowing through the LED light emitting unit 24.
  • 12 (a) shows the waveform of the input voltage Vin
  • FIG. 11 (b) shows the waveform of the voltage Vg1 at the gate terminal of the switching element Q1
  • FIG. 11 (c) shows the current sensor terminal of the integrated circuit IC1.
  • 11D is a waveform of the voltage Vg2 of the gate terminal of the switching element Q2
  • FIG. 12 (b) shows the waveform of the voltage Vg1 of the gate terminal of the switching element Q1
  • FIG. 12 (c) shows the current sensor terminal of the integrated circuit IC1.
  • 12 (d) is a waveform of the voltage Vg2 of the gate terminal of the switching element Q2
  • FIG. 12 (e) is a waveform of the current i flowing through the LED light emitting unit 24.
  • FIG. 13 is a block diagram showing the entire circuit of a lighting device in a modification of the present invention.
  • FIG. 14 (a) is a diagram showing a part of a circuit for varying the threshold voltage according to the magnitude of the high voltage (HV)
  • FIG. 14 (b) is a diagram for a series rapid ballast. It is the whole block diagram which connected the LED lamp in embodiment in series.
  • FIG.15 (a) is a figure which shows an example of a glow starter type ballast
  • FIG.15 (b) is a figure which shows an example of a rapid start type ballast
  • FIG.15 (c) is an inverter. It is a figure which shows an example of the ballast of Formula.
  • FIG. 16 is a diagram showing an example of a series rapid ballast.
  • FIG. 1 is a block diagram showing the entire circuit of the lighting device in the embodiment of the present invention
  • FIG. 2 is a circuit diagram of the LED lamp in the embodiment of the present invention
  • FIG. FIG. 4 is a block diagram showing the inside
  • FIG. 4 is a circuit diagram showing a variable inductance unit
  • FIG. 5 is a diagram showing a variable control pattern of the variable inductance unit
  • FIG. 7 is a diagram showing an area and a circuit interruption area
  • FIG. 7 is a flowchart showing a current control method of the LED lamp in the embodiment of the present invention
  • FIGS. 8 (a) to 8 (d) and 9 (a) to 9 (D) shows an input voltage waveform of the LED lamp and a current waveform flowing through the LED light emitting portion when the LED lamp in the embodiment of the present invention is lit by the constant power control type inverter type ballast.
  • 0 (a) to (e) are voltage waveform diagrams at each measurement point when a glow starter type is used as a ballast of the lighting apparatus according to the embodiment of the present invention
  • FIGS. 11 (a) to (e) These are voltage waveform diagrams at each measurement point in the case of using a rapid start type as a ballast of the lighting apparatus in the embodiment of the present invention, and FIGS.
  • FIG. 14 is a voltage waveform diagram at each measurement point when an inverter type is used as a ballast of the lighting device in FIG. 13, and FIG. 13 is a block diagram showing the entire circuit of the lighting device in a modification of the present invention.
  • FIG. 14 is a diagram showing a part of the circuit for varying the threshold voltage according to the magnitude of the high voltage (HV)
  • FIG. 14 (b) is a diagram illustrating the series rapid ballast according to the present embodiment.
  • LED lamp It is an overall configuration diagram connected in series.
  • the lighting device 10 is a plug connected for supplying power from an external power supply of, for example, AC voltage 100 to 240 V (50 Hz / 60 Hz) for home use.
  • 11 and a ballast 12 for controlling the power input from the plug 11 for lighting the fluorescent lamp, and between a pair of input terminals according to the system of the ballast 12 (input terminal 20a and input terminal 20c And an LED lamp 20 to which a predetermined voltage is input.
  • the ballast 12 may be any of a known glow starter type, a rapid start type or an inverter type for lighting an existing fluorescent lamp.
  • the LED lamp 20 operates normally, so the external power is supplied to the LED lamp 20 without passing through the ballast 12 There is no problem even if it is configured to input directly.
  • a line for outputting an alternating current from the ballast 12 is between a pair of input terminals (between the input terminal 20a and the input terminal 20c) or between a pair of input terminals (an input terminal 20b and an input) It is connected so as to be able to input to either or both of the terminal portion 20d).
  • an input circuit portion Z9 constituted of an RC parallel circuit of a resistor R9 and a capacitor C9 is connected (see FIG. 2).
  • an input circuit portion Z10 configured of an RC parallel circuit of a resistor R10 and a capacitor C10 is connected (see FIG. 2).
  • an input circuit portion Z11 configured of an RC parallel circuit of a resistor R11 and a capacitor C11 is connected between the input terminal portion 20c of the LED lamp 20 and the terminal T2 (see FIG. 2).
  • an input circuit portion Z12 configured of an RC parallel circuit of a resistor R12 and a capacitor C12 is connected between the input terminal portion 20d of the LED lamp 20 and the terminal T2 (see FIG. 2).
  • the resistances of the resistors R9 and R10 between the input terminal portion 20a and the input terminal portion 20b are each selected from about several ohms to about 100 ohms to correspond to the resistance component of the filament of the fluorescent lamp. There is.
  • the resistances of the resistors R11 and R12 between the input terminal portion 20c and the input terminal portion 20d are each selected from several ⁇ to about 100 ⁇ so as to correspond to the resistance component of the filament of the fluorescent lamp There is.
  • the resistance values of the resistors R9 to R12 are selected, it is automatically detected whether the ballast 12 is an inverter type and the fluorescent lamp is attached to the load side (conduction due to filament resistance). Even if the fluorescent lamp is not attached (in the case where there is no conduction due to filament resistance), even if it is a type that does not output power, these resistors R9 to R12 function as dummy resistors, so the LED lamp 20 is normally operated. Power is supplied.
  • the circuit breaker 33 is connected between the terminal T1 and the terminal T11, and similarly, the circuit breaker 33 is also connected between the terminal T2 and the terminal T12.
  • the circuit breaker 33 includes, for example, a relay of a B contact type, and can shut off alternating current from the pair of input terminals when the magnitude of the current i flowing to the LED light emitter 24 is abnormal. The details of the circuit breaker 33 will be described later.
  • a protection circuit unit 21 (see FIG. 2) is inserted between the terminal T11 and the terminal T12.
  • the protection circuit unit 21 is a series connection of a two-pole discharge tube SA1 and a varistor SA2 in which an inert gas such as neon or argon is sealed.
  • the surge voltage entering from the power supply side between the terminals T1 and T2 can be suppressed to a peak value of about 400 V or less, for example. Can. Further, by combining the two-electrode discharge tube SA1 and the varistor SA2 in series, the varistor SA2 can effectively prevent a follow current due to the discharge of the two-electrode discharge tube SA1 after the surge voltage is terminated.
  • the threshold element 34 is connected in series to the terminal T12 side.
  • the threshold element 34 includes, for example, two Zener diodes D34a and D34b connected in series in opposite directions (bidirectionally) to each other, and a relay RY34 connected in parallel to the Zener diodes (see FIG. 2).
  • the relay RY 34 is driven by an output voltage from a delay circuit (not shown) that outputs a predetermined voltage after a predetermined time has elapsed since a current flows in the LED light emitting unit 24, and both ends of the two Zener diodes D34a and D34b Short circuit.
  • the delay circuit is set to drive the relay RY 34 by outputting a predetermined voltage after a predetermined time has elapsed since the alternating current exceeds the predetermined threshold of the threshold element 34 and starts to flow to the rectifying circuit unit 22 in the subsequent stage. There is. Thereby, both ends of the threshold value element 34 are short-circuited by the relay RY 34 after a predetermined time has elapsed since an alternating current exceeding the predetermined threshold value is externally input to the pair of input terminal portions.
  • the threshold element is defined as an element which starts energization in the element when a voltage equal to or higher than a predetermined threshold is applied between both terminals, and the threshold element 34 is replaced with the zener diodes D34a and D34b.
  • Sidac registered trademark
  • Sidac registered trademark of a gateless two-terminal thyristor, a two-pole discharge tube, and the like are applicable. Details of the threshold element 34 will be described later.
  • variable inductance portion L50 is inserted between the terminal T11 and the terminal T3 on one input side of the rectifier circuit portion 22, and similarly, between the terminal T12 and the terminal T6 on the other input side of the rectifier circuit portion 22.
  • the variable inductance portion L60 is inserted in series with the threshold element 34.
  • the inductance value (hereinafter also referred to as L value) of the variable inductance portions L50 and L60 is controlled by the inductance variable control portion 32. Details of the variable inductance of the variable inductance portions L50 and L60 will be described later.
  • variable inductance unit L50 and the variable inductance unit L60 act as an impedance that limits the current flowing to pulses of high frequency.
  • the switching element Q1 is turned on / off, so that the switching noise (noise pulse of high frequency) is any of the input terminal portions 20a to 20d. It can be prevented from flowing out to the external alternating current side (input power supply) side through the
  • ballast 12 is an inverter type
  • a high frequency 20 kHz to 100 kHz AC current is input, so the variable inductance unit L50 and the variable inductance unit L60 do not have effective power loss (reactive power Act as a loss) load.
  • the rectification circuit section 22 comprises a bridge diode consisting of four diodes D4 to D7, and an electrolytic capacitor C4 and an electrolytic capacitor C5 connected in parallel to smooth the full-wave rectified waveform in the output stage thereof. (See Figure 2).
  • the high voltage (HV) side output terminal T7 is connected to the anode side terminal TA of the LED light emitting unit 24 through the smoothing circuit unit 23.
  • the cathode side terminal TK of the LED light emitting unit 24 is connected through the smoothing circuit unit 23. It is connected to the PWM control unit 25.
  • the LED light emitting unit 24 is formed of a circuit in which 30 LEDs (light emitting diodes) of 30 forward voltage voltages connected in series are connected in parallel in three circuits, and the anode terminal TA to the cathode terminal TK The current i flows in the direction of (arrow direction).
  • the GND terminal TG of the PWM control unit 25 is connected to the ground side output terminal T5 on the output side of the rectifier circuit unit 22.
  • the current i flowing through the LED light emitting unit 24 is PWM controlled by pulse driving at a frequency higher than a predetermined frequency by the PWM control unit 25 and controlled to a predetermined current value range.
  • a bypass circuit unit 26 is connected between the cathode side terminal TK of the LED light emitting unit 24 and the ground side output terminal T5 of the rectifying circuit unit 22.
  • the switching element Q1 when the frequency of the alternating current input to one terminal T3 of the rectifier circuit unit 22 is higher than a predetermined frequency, the switching element Q1 is in the on state (a state where current flows from the drain terminal to the source terminal, Even in the same case, since the resistor R3, the resistor R4 and the resistor R5 are connected in parallel between the terminal T9 and the terminal TG, the PWM control unit 25 is bypassed and Flows directly from the cathode side terminal TK to the ground side output terminal T5 of the rectifier circuit unit 22 through the GND terminal TG of the PWM control unit 25.
  • performing PWM control of current i based on the duty ratio means that the period of the drive pulse is constant and the magnitude of the input signal is constant.
  • the duty ratio of the drive pulse (the ratio of the pulse width to the pulse period) is in agreement with the on-duty according to the magnitude of the voltage detected at the # 2 pin which is the current sensor terminal.
  • on / off control of the current i is defined, and the duty ratio at that time is larger than 0% and smaller than 100%.
  • not performing PWM control on current i based on the duty ratio means that the PWM control unit does not perform on / off control of current i based on the duty ratio, and, as described above, In addition to the case where i hardly flows, the case where the duty ratio of the drive pulse is 0% and the switching element Q1 is always off during operation, and the duty ratio of the drive pulse is 100% always while the switching element Q1 is operating. It includes cases where it is in the on state.
  • a current detection unit 31 is connected in series to the bypass circuit unit 26 between the cathode side terminal TK of the LED light emitting unit 24 and the ground side output terminal T5 of the rectification circuit unit 22.
  • the current detection unit 31 detects the magnitude of the direct current, and detects the detected signal (direct current Voltage) to the variable inductance control unit 32.
  • variable inductance control unit 32 controls the inductance value of the variable inductance units L50 and L60 according to the magnitude of the current detected by the current detection unit 31. Details of the inductance variable control unit 32 will be described later.
  • the resistor R9 between the input terminal portion 20a and the terminal T1 functions as a dummy resistor corresponding to a filament of a fluorescent lamp, but the capacitor C9 is in a normal operation state (during lighting of the LED light emitting unit 24 Alternating current can be passed through.
  • shunting can be performed in inverse proportion to the ratio of the capacitive reactance determined by the frequency of the alternating current and the capacitance of the capacitor C9 and the resistance value of the resistor R9, and heat generation of the resistor R9 is suppressed accordingly.
  • the resistor R11 between the input terminal portion 20c and the terminal T2 acts as a dummy resistor corresponding to a filament
  • the capacitor C11 can pass an alternating current in a normal operation state, so the resistor R11 Control the fever of
  • the fuse F1 is either between the pair of input terminal portions (between the input terminal portion 20a and the input terminal portion 20c) or between the pair of input terminal portions (between the input terminal portion 20b and the input terminal portion 20d). It is for over current protection of the power supply current input to one or both of them.
  • the anode is connected to the terminal T3 in the previous stage, the cathode is connected to the high voltage (HV) side output terminal T7, the anode is connected to the terminal T6, and the cathode is high voltage
  • a diode D5 connected to the (HV) side output terminal T7
  • a diode D6 whose anode is connected to the ground side output terminal T5 and a cathode is connected to the terminal T4 having the same potential as the terminal T3, and an anode is the ground side output terminal
  • a diode D7 connected to T5 and having a cathode connected to the terminal T6.
  • the high voltage (HV) side output terminal T7 side is provided between the high voltage (HV) side output terminal T7 and the ground side output terminal T5.
  • the electrolytic capacitor C4 and the electrolytic capacitor C5 are connected in parallel, with the plus side (+) and the ground side output terminal T5 side as the minus side (-) terminal.
  • the smoothed and DC-converted output voltage is output to the high voltage (HV) side output terminal T7, and the low voltage side is output to the ground side output terminal T5.
  • the smoothing circuit unit 23 removes a pulsating component (ripple component) from the high-voltage DC voltage output to the high-voltage (HV) side output terminal T7.
  • This is a so-called choke coil input type smoothing circuit.
  • the LED light emitting unit 24 is configured by a series circuit of choke coils L1 to L4 and a parallel circuit of an electrolytic capacitor C3.
  • the current i from which the pulsating component is removed flows from the anode terminal TA of the LED light emitting unit 24 to the cathode terminal TK, and a total of 90 constituting the LED light emitting unit 24 described above. It functions to make each LED (light emitting diode) emit light.
  • the current i which has passed through the smoothing circuit unit 23 from the LED light emitting unit 24 is integrated circuit IC1 constituting the PWM control unit 25 and resistors R1 to R8 connected to respective pins (# 1 to # 8), a capacitor C1, The capacitor C2, the Zener diode D1, the diode D2 and the switching element Q1 perform PWM control by pulse driving of a predetermined oscillation period t OSC ( ⁇ s).
  • the oscillation period t OSC (.mu.s) is obtained by the following equation 1 by the resistance value R T (kW) of the resistor R1 connected # 8 pins Is controlled by the time it is
  • the resistance R1 is set to about 499 (k ⁇ )
  • about 20.84 ( ⁇ s) can be obtained by the above equation 1 as the oscillation period t OSC ( ⁇ s).
  • the oscillation period is about 20.84 ( ⁇ s) as calculated, it is possible to perform pulse driving at a high frequency of about 48 kHz.
  • the switching element Q1 that performs on / off control of the current i flowing through the LED light emitting unit 24 is an N-channel MOS type capable of controlling the flow of current between the drain terminal and the source terminal according to the input voltage of the gate terminal. It is a FET.
  • the drain terminal of the switching element Q1 is connected to the anode terminal of the diode D3 that constitutes a part of the smoothing circuit unit 23, and the source terminal is the current sensor terminal of the integrated circuit IC1 # 2. It is connected to the terminal T9 connected to the pin through the resistor R6, and the voltage output from the # 4 pin of the integrated circuit IC1 is divided by the resistor R2 and the resistor R7 at the gate terminal. A voltage corresponding to R7 is input.
  • the # 1 pin of the integrated circuit IC1 is connected to the high voltage (HV) side output terminal T7 via the resistor R8 and the zener diode D1, the DC output from the rectifying circuit unit 22 is applied to the # 1 pin. High voltage is supplied.
  • the voltage (about DC 8 V to about DC 450 V) supplied from the # 1 pin is dropped, rectified and stabilized to a predetermined VDD voltage (about DC 12 V) by the internal regulator, and the power supply for driving the internal circuit of integrated circuit IC1. And the VDD voltage is output to the # 6 pin (see FIG. 3).
  • the high level ( A voltage of about DC 7.5 V) is output and turned on, and the low level is applied to the gate terminal of the switching element Q1 when the voltage detected at the # 2 pin which is the current sensor terminal reaches about 250 mV of the threshold voltage.
  • a voltage (about 0 V) is output, and an off state (a state in which no current flows from the drain terminal to the source terminal, the same applies hereinafter) is obtained.
  • the current i flowing through the LED light emitting portion is a voltage (current (voltage) detected at the # 2 pin with a constant period of the drive pulse for outputting the voltage Vg1 of the gate terminal of the switching element Q1 by the operation of According to the level of the sensor terminal voltage Vcs, the duty ratio of the pulse width of the voltage Vg1 of the gate terminal is varied, and the current i is controlled.
  • the oscillation cycle t OSC ( ⁇ s) obtained by the above equation 1 can be obtained according to the switching element Q1 which is repeatedly turned on / off. Repeat the increase and decrease in a pulse shape (triangular wave) with.
  • the above threshold voltage to be compared with the voltage detected at the # 2 pin which is the current sensor terminal the above-mentioned approximately DC 250 mV generated inside the integrated circuit IC1 is set. (See Figure 3).
  • the threshold is compared with the voltage detected at the current sensor terminal (pin 2) Since the threshold can be set as the voltage, it is also possible to further change the duty ratio in the direction of lowering.
  • the switching element Q1 when the switching element Q1 is turned off, in the series circuit of the choke coils L1 to L4, a counter electromotive force in the direction in which the current i is to flow is excited, but absorbs the current due to the counter electromotive force.
  • the diode D3 is connected in the forward direction from the terminal T8 at the end of the choke coil L1 to the anode terminal TA of the LED light emitting unit 24.
  • bypass circuit unit 26 and the current detection unit 31 are provided between the cathode side terminal TK of the LED light emitting unit 24 and the ground side output terminal T5 of the rectification circuit unit 22.
  • the bypass circuit unit 26 includes a switching element Q2 and a high pass filter circuit that outputs a drive voltage (gate terminal voltage) to the switching element Q2.
  • the switching element Q2 of the bypass circuit unit 26 is an N-channel MOS FET that controls the flow of current between the drain terminal and the source terminal according to the voltage input to the gate terminal, and is a drain terminal Is connected to the cathode side terminal TK of the LED light emitting unit 24, the source terminal is (electrically) connected to the ground side output terminal T5 of the rectifying circuit unit 22 via the current detection unit 31, and the gate terminal is a high pass filter circuit Are connected to the terminal T4 of the rectifier circuit section 22.
  • the high-pass filter circuit includes a first capacitor C6, a first resistor R13 having one terminal connected to one terminal of the first capacitor C6 and connected in series to the first capacitor, and a first resistor A first diode D9 connected in the forward direction from the other terminal of R13 to the gate terminal of switching element Q2, and a second capacitor C7 electrically connected between the source terminal and the gate terminal of switching element Q2 A second resistor R14 electrically connected between the source terminal and the gate terminal, a Zener diode D10 electrically connected in the forward direction from the source terminal to the gate terminal, and a first resistor from the source terminal And a second diode D8 electrically connected in the forward direction to the other terminal of R13.
  • the other terminal of the first capacitor C6 is connected to one of the input terminals of the rectifying circuit unit 22 (terminal T3 or terminal T6 through terminal T4).
  • This high-pass filter circuit is a circuit of a first capacitor C6, a first resistor R13, and a second resistor R14 so as to cut off the case where the alternating current input to the terminal T3 is a predetermined frequency or less. If a constant is selected, a CR circuit consisting of a capacitor and a resistor acts as a high pass filter, so that only alternating current having a frequency exceeding a predetermined frequency is passed to the subsequent stage.
  • a DC voltage is generated on the high voltage side of the second capacitor C7, the second resistor R14, and the Zener diode D10 by an alternating current having a frequency higher than the predetermined frequency input to the terminal T3, and the switching element Q2 is A voltage that can be turned on is output to the gate terminal.
  • the voltage at this gate terminal can be appropriately set according to the voltage division ratio between the first resistor R13 and the second resistor R14 and the Zener voltage of the Zener diode D10 that limits the voltage input to the gate terminal. It may be set to the voltage range of the high level gate terminal which can turn on Q2.
  • the high-pass filter circuit is a filter for passing the alternating current and setting the gate terminal of the switching element Q 2 to a high level (for example, about DC 14 V) when the frequency of the alternating current is higher than a predetermined frequency. Since it is an input circuit, it may be connected to the terminal T6 to which the same alternating current (only the phase differs by 180 degrees) is input to the ground side output terminal T5 of the rectifier circuit unit 22.
  • the alternating current input to the input terminal of the rectifier circuit portion 22 has a predetermined frequency (in the present embodiment, the capacitance of the first capacitor C6 is 100 pF, and the first resistor R13
  • the cutoff frequency is set to about 5 kHz in actual measurement, and the same applies hereinafter.
  • a predetermined gate voltage for flowing current to the terminal is output, and when the alternating current is lower than a predetermined frequency, a gate voltage for not flowing current from the drain terminal to the source terminal is output.
  • the switching element Q2 starts the PWM control unit from the cathode side terminal TK of the LED light emitting unit 24.
  • the alternating current input from the input terminal of the rectification circuit unit 22 does not flow current to the ground side output terminal T5 of the rectification circuit unit 22 through the 25 GND terminals TG, and the alternating current input from the input terminal of the rectification circuit unit 22 If the frequency is higher than 5 kHz, a current is allowed to flow from the cathode side terminal TK of the LED light emitting unit 24 to the ground side output terminal T5 of the rectifier circuit unit 22 through the GND terminal TG of the PWM control unit 25. It is possible.
  • the frequency of the external alternating current input to the pair of input terminals is lower than a predetermined frequency (for example, when input from a glow starter type or rapid start type ballast), LED light emission
  • a predetermined frequency for example, when input from a glow starter type or rapid start type ballast
  • LED light emission The current i flowing through the unit 24 is subjected to PWM control by pulse driving at a frequency higher than a predetermined frequency by the PWM control unit 25 and becomes a pulse wave (triangular wave).
  • the PWM control unit 25 when the frequency of the external alternating current input to the pair of input terminal portions is higher than a predetermined frequency (for example, when it is input from an inverter type ballast), the PWM control unit 25 generates a bypass circuit. Since it is bypassed (detoured) by the unit 26, the current i flowing through the LED light emitting unit 24 is not subjected to PWM control by the PWM control unit 25 and flows as it is to the ground side output terminal T5 of the rectifier circuit unit 22.
  • a predetermined frequency for example, when it is input from an inverter type ballast
  • the high frequency alternating current input to the pair of input terminal portions only passes through the rectifier circuit portion 22, the smoothing circuit portion 23, and the LED light emitting portion 24, so the current i flowing through the LED light emitting portion 24 is
  • the alternating current input to the pair of input terminal portions has a waveform converted to a direct current by full-wave rectification (see, for example, FIG. 12E).
  • the current detection unit 31 is configured of an RC parallel circuit of a resistor R31 and a capacitor C31.
  • the current detection unit 31 detects the magnitude of the current flowing from the drain terminal of the switching element Q2 to the source terminal when the switching element Q2 in the bypass circuit unit 26 is turned on. That is, when the frequency of the external alternating current input to the pair of input terminals is higher than a predetermined frequency, for example, when the ballast is an inverter type, the current detection unit 31 controls the LED light emitting unit 24.
  • the current i flowing to the In the present embodiment, the current detection unit 31 outputs a detection signal (DC voltage) corresponding to the value of the current flowing therein to the variable inductance control unit 32.
  • variable inductance control unit 32 includes a microprocessor, and according to the magnitude of the current detected by the current detection unit 31 (that is, according to the magnitude of the DC voltage from the current detection unit 31), a variable inductance The inductance value of the portions L50 and L60 is controlled.
  • variable inductance unit L50 includes an inductor L51 and an inductor L52 connected in series, and switch elements 32a and 32b connected in parallel to the inductors L51 and L52, respectively.
  • variable inductance portion L60 includes an inductor L51 and an inductor L52 connected in series, and a switch element 32c connected in parallel to both ends of a series circuit of the inductors L51 and L52.
  • a sliding inductor, a mag amplifier, or the like may be applied to the variable inductance portions L50 and L60.
  • the inductance variable control unit 32 can vary the total inductance value of the variable inductance units L50 and L60 by performing on / off control of the switch elements 32a, 32b, and 32c. For example, as shown in FIGS. 5 and 6, when the magnitude of the current i flowing through the LED light emitting unit 24 is within the predetermined range (the L value non-variable region), the inductance variable control unit 32 performs the pattern 2 As described above, the switch element 32a is turned on and the switch elements 32b and 32c are turned off, whereby the inductance value of the variable inductance portions L50 and L60 is set to the total inductance value of the inductors L52, L61 and L62.
  • variable inductance control unit 32 controls the circuit interruption unit 33, and Block the alternating current flowing from the input terminal to the rectifier circuit 22 (overcurrent protection). Further, when the magnitude of the current detected by the current detection unit 31 falls below a predetermined lower limit value (in the case of the circuit interruption region), the inductance variable control unit 32 controls the circuit interruption unit 33, and Block the alternating current flowing from the input terminal to the rectifier circuit 22 (any current abnormality protection).
  • the current detection unit 31 performs current detection after both ends of the threshold element 34 are shorted.
  • the output voltage is set in advance for grasping the state of the fluorescent lamp (for example, checking whether the fluorescent lamp is attached to the load side) at the start of output. Set a lower value than the rated value, flow a small current that can not obtain an appropriate light quantity, monitor the magnitude of the output current at that time, raise the output voltage to a predetermined range, and then perform constant power control There is.
  • both ends of threshold element 34 are short-circuited after a predetermined time has elapsed since an AC current exceeding the predetermined threshold is externally input to the pair of input terminal portions, and the LED after short-circuiting of both ends of threshold element 34 Since the inductance value of the variable inductance unit is varied according to the magnitude of the direct current flowing through the light emitting unit, the current flowing through the LED light emitting unit to be detected (normal lighting condition even with this type of inverter type ballast) Current) can be detected to prevent erroneous control.
  • the inductance variable control unit 32 sets the inductance value of the variable inductance units L50 and L60 to the pattern 2 (step S01).
  • the current detection unit 31 detects the magnitude of the current i flowing through the LED light emitting unit 24 (step S03).
  • the inductance variable control unit 32 patterns the inductance values of the variable inductance units L50 and L60. It remains unchanged at 2 (step S04).
  • variable inductance control unit 32 controls the variable inductance unit L50, The inductance value of L60 is set to pattern 3, and the total inductance value is varied small. Then, the output voltage of the constant power control type inverter type ballast decreases and the output current increases. That is, since the current i flowing through the LED light emitting unit 24 can be increased, the magnitude of the current i flowing through the LED light emitting unit 24 is stabilized within a predetermined range (step S04).
  • the variable inductance control unit 32 controls the variable inductance unit L50, The inductance value of L60 is set to pattern 1, and the total inductance value is greatly varied. Then, the output voltage of the constant power control inverter-type ballast increases and the output current decreases. That is, since the current i flowing through the LED light emitting unit 24 can be reduced, the magnitude of the current i flowing through the LED light emitting unit 24 is stabilized within a predetermined range (step S04).
  • variable inductance control unit 32 controls the circuit interruption unit 33.
  • the alternating current flowing from the pair of input terminals to the rectifier circuit 22 is cut off (overcurrent protection).
  • the variable inductance control unit 32 controls the circuit interruption unit 33.
  • the alternating current flowing from the pair of input terminals to the rectifier circuit 22 is cut off (any current abnormality protection).
  • the ballast 12 is a constant power control type inverter type ballast
  • the LED lamp 20 is lighted by this ballast 12 and the magnitude of the current i flowing through the LED light emitting portion 24
  • the observed waveforms of the input voltage Vin of the LED lamp 20 and the current i flowing through the LED light emitting unit 24 when the inductance values of the variable inductance units L50 and L60 are changed according to the length will be described.
  • FIGS. 8A and 9A show the observation of the input voltage Vin of the LED lamp 20 when the total inductance value of the variable inductance parts L50 and L60 is 100 ⁇ H, and the vertical axis is 50 V / div. It corresponds to 8B and 9B show the current i flowing through the LED light emitting unit 24 when the total inductance value of the variable inductance units L50 and L60 is 100 ⁇ H, and the vertical axis represents It corresponds to 200 mA / div.
  • 8C and 9C show the input voltage Vin of the LED lamp 20 observed when the total inductance value of the variable inductance portions L50 and L60 is 400 ⁇ H, and the vertical axis represents 50 V. It corresponds to / div.
  • 8D and 9D show the current i flowing through the LED light emitting unit 24 when the total inductance value of the variable inductance units L50 and L60 is 400 ⁇ H, and the vertical axis represents It corresponds to 200 mA / div.
  • the resistance value of the resistor R31 in the current detection unit 31 is 1 ⁇ , and when the voltage across the unit is 390 mV, that is, when the magnitude of the current flowing through the LED light emitting unit 24 is 390 mA, it exceeds the threshold value.
  • the total inductance value of the variable inductance portions L50 and L60 is set to be switched from 100 ⁇ H (pattern 2) to 400 ⁇ H (pattern 1).
  • the output voltage of the inverter type ballast is increased and the output current is controlled to be small by changing the total inductance value of the variable inductance portions L50 and L60 from 100 ⁇ H to 400 ⁇ H. It was observed that it stabilized below 390 mA within the range of (L value non-variable region).
  • the input voltage Vin of the pair of input terminal portions (between the input terminal portion 20a and the input terminal portion 20c)
  • the observed waveforms of the voltage Vg1 of the gate terminal, the current sensor terminal voltage Vcs of the # 2 pin of the integrated circuit IC1, the voltage Vg2 of the gate terminal of the switching element Q2, and the current i flowing through the LED light emitting unit 24 will be described.
  • the voltages Vg1 and Vg2 of the gate terminal and the current sensor terminal voltage Vcs are all measured using the GND terminal TG of the PWM control unit 25 as a reference (ground level).
  • the current i flowing through the LED light emitting unit 24 shown in FIGS. 10 (e), 11 (e) and 12 (e) is the total resistance of the current flowing through the LED light emitting unit 24 (total of 90 LEDs).
  • the voltage drop applied to the resistance is observed in (1 ⁇ ), and the vertical axis in FIG. 10 (e) and FIG. 11 (e) corresponds to 500 mA / div, and the vertical axis in FIG. 12 (e) The axis corresponds to 200 mA / div.
  • FIGS. 10 (a) to 10 (e) show the case where the glow starter type (secondary voltage 200 V / secondary current 0.42 A) is used as the ballast 12, and FIG. 10 (a) shows the input voltage.
  • 10 (b) shows the waveform of the voltage Vg1 at the gate terminal of the switching element Q1
  • FIG. 10 (c) shows the waveform of the current sensor terminal voltage Vcs of the integrated circuit IC1
  • FIG. d) shows the waveform of the voltage Vg2 at the gate terminal of the switching element Q2
  • FIG. 10 (e) shows the waveform of the current i flowing through the LED light emitting unit 24.
  • a commercial frequency of 60.1 Hz is observed as the frequency of the waveform of the input voltage Vin.
  • the pulse drive of the integrated circuit IC1 of the PWM control unit 25 causes the oscillation period t OSC ( ⁇ s) to be about 22 in the measurement as shown in FIG.
  • the voltage Vg1 of the gate terminal of the switching element Q1 which is .78 ( ⁇ s) is output.
  • high level (about DC 7.5 V) and low level (about 0 V) voltages are alternately inputted to the gate terminal at a duty ratio of about 33%, and pulse at a frequency of about 43.9 kHz It is driven.
  • the frequency of the waveform of the input voltage Vin is lower than the cut-off frequency set to about 5 kHz, the DC voltage of about 50 mV is applied to the gate terminal of the switching element Q2 by the high pass filter circuit described above as shown in FIG. Since the switching element Q2 is turned off, no current flows from the drain terminal to the source terminal.
  • the current i flowing through the LED light emitting unit 24 flows in synchronization with the voltage Vg1 of the gate terminal of the switching element Q1, and the switching element Q1 rises in the on state, and the switching element Q1 starts to fall in the OFF state (the current i does not immediately fall to 0 A due to the back electromotive force of the choke coils L1 to L4).
  • the current i flowing through the LED light emitting unit 24 is PWM controlled by pulse driving of the PWM control unit 25 at a frequency of about 43.9 kHz.
  • the current i flowing through the LED light emitting unit 24 is output in the form of a 43.7 kHz pulse (triangular wave) higher than 5 kHz which is the cutoff frequency in frequency measurement.
  • the value (RMS value) was measured to be approximately 192.2 mA.
  • FIGS. 11 (a) to 11 (e) show the case where a rapid start type (secondary voltage 190 V / second current 0.42 A) is used as the ballast 12, and FIG. FIG. 11 (b) shows the waveform of the voltage Vg1 at the gate terminal of the switching element Q1.
  • FIG. 11 (c) shows the waveform of the current sensor terminal voltage Vcs of the integrated circuit IC1.
  • 11 (d) shows the waveform of the voltage Vg2 of the gate terminal of the switching element Q2, and
  • FIG. 11 (e) shows the waveform of the current i flowing through the LED light emitting unit 24.
  • 60.1 Hz is observed as the frequency of the waveform of the input voltage Vin.
  • the pulse drive of the integrated circuit IC1 of the PWM control unit 25 causes the oscillation period t OSC ( ⁇ s) to be about 22 in the measurement as shown in FIG.
  • the voltage Vg1 of the gate terminal of the switching element Q1 which is .78 ( ⁇ s) is output.
  • the switching element Q1 alternately receives high level (about DC 7.5 V) and low level (about 0 V) voltages at a duty ratio of about 43% to the gate terminal, and pulses at a frequency of about 43.9 kHz It is driven.
  • the frequency of the waveform of the input voltage Vin is lower than the cut-off frequency set to about 5 kHz, the DC voltage of about 50 mV is applied to the gate terminal of the switching element Q2 by the high pass filter circuit described above as shown in FIG. Since the switching element Q2 is turned off, no current flows from the drain terminal to the source terminal.
  • the current i flowing through the LED light emitting unit 24 flows in synchronization with the voltage Vg1 of the gate terminal of the switching element Q1, and the switching element Q1 rises in the on state, and the switching element Q1 starts to fall in the OFF state (the current i does not immediately fall to 0 A due to the back electromotive force of the choke coils L1 to L4).
  • the current i flowing through the LED light emitting unit 24 is PWM controlled by pulse driving of the PWM control unit 25 at a frequency of about 43.9 kHz.
  • the current i flowing through the LED light emitting unit 24 is output in the form of a 43.6 kHz pulse (triangular wave) higher than 5 kHz which is the cutoff frequency in frequency measurement.
  • the value (RMS value) was measured to be about 195.7 mA.
  • FIGS. 12 (a) to 12 (e) show the case where an inverter type (secondary voltage 280 V / second current 0.225 A at no load) is used as the ballast 12, and FIG. 12 (b) shows the waveform of the voltage Vg1 of the gate terminal of the switching element Q1.
  • FIG. 12 (c) shows the waveform of the current sensor terminal voltage Vcs of the integrated circuit IC1.
  • 12 (d) shows the waveform of the voltage Vg2 at the gate terminal of the switching element Q2, and
  • FIG. 12 (e) shows the waveform of the current i flowing through the LED light emitting unit 24. As shown in FIG.
  • the period t1 is about 13.7 ( ⁇ s), and a frequency of 73.0 kHz is observed.
  • the high level (about DC 14 V) voltage Vg2 is input to the gate terminal of the switching element Q2 as shown in FIG. Switching element Q2 is always on.
  • the current i flowing through the LED light emitting unit 24 almost flows through the PWM control unit 25 because the resistor R3, the resistor R4 and the resistor R5 are connected in parallel between the terminal T9 and the terminal TG. It flows directly from the cathode side terminal TK of the LED light emitting unit 24 to the ground side output terminal T5 of the rectifying circuit unit 22 through the GND terminal TG of the PWM control unit 25.
  • the current sensor terminal voltage Vcs is constant at the ground level (0 V) as shown in FIG. 12 (c).
  • the duty ratio of the drive pulse is 100%, the voltage Vg1 of the gate terminal of the switching element Q1 in the PWM control unit 25 is always at high level (about DC 7.5 V), and the switching element Q1 is on.
  • the PWM control unit 25 does not perform PWM control of the current i flowing through the LED light emitting unit 24.
  • the current i flowing through the LED light emitting unit 24 has a waveform in which the input voltage Vin is full-wave rectified without being subjected to PWM control by the PWM control unit 25 and the effective value (RMS Value) It was observed at about 199.3 mA in the measurement.
  • the period t2 of the ripple voltage waveform superimposed on the direct current becomes about 6.9 ( ⁇ s), and the frequency of the current i flowing through the LED light emitting unit 24 is It was observed to be approximately 145.4 kHz, twice the frequency of the input voltage Vin.
  • the frequency of the ripple voltage waveform of the current i flowing through the LED light emitting unit 24 is about twice the frequency of the waveform of the input voltage Vin by full-wave rectification.
  • an execution value (RMS value) of the current i flowing through the LED light emitting unit 24 is 190 mA to It was confirmed that 200 mA was obtained by actual measurement and could be turned on for illumination.
  • the ballast 12 is a glow starter type or rapid start type
  • the frequency of the input voltage Vin is approximately 60 Hz, so the current i flowing through the LED light emitting unit 24 is cut off by the PWM control unit 25
  • PWM control is performed by pulse driving at a frequency of about 43.6 to 43.7 kHz, which is higher than 5 kHz.
  • the frequency of the input voltage Vin is approximately 73.0 kHz, which is higher than the cutoff frequency of 5 kHz, so the current i flowing through the LED light emitting unit 24 is approximately 145. It was confirmed that 4 kHz and PWM control by pulse driving of the PWM control unit 25 were not performed.
  • the ballast of the lighting device for a fluorescent lamp is any of a glow starter type, rapid start type, or inverter type lighting type, and a fluorescent lamp (an LED lamp may be used)
  • the PWM control unit 25, the smoothing circuit unit 23, and the bypass circuit unit 26 are provided so that lighting can be performed for lighting that can be turned on by PWM control by pulse driving.
  • the LED lamp 200 may not include the PWM control unit 25, the smoothing circuit unit 23 and the bypass circuit unit 26 shown in FIG. 1. Note that, in FIG. 13, elements having the same functions as the constituent elements shown in FIG. 1 are denoted by the same reference numerals.
  • the LED lamp 200 does not include the PWM control unit 25, the smoothing circuit unit 23 and the bypass circuit unit 26, the PWM by pulse driving is performed according to the frequency of the alternating current input to the pair of input terminal units. Since the control can not be performed, PWM control by pulse drive with high frequency can not be performed when attached to a glow starter type or rapid start type ballast, but when attached to an inverter type ballast. As described above, the current i flowing through the LED light emitting unit 24 can be stabilized in a predetermined range.
  • a pair of input terminal portions is meant to include at least a pair of input terminal portions, and for example, a total of four (two on each side) inputs, such as terminals at both ends of a straight tube type fluorescent lamp In the case where there is a terminal portion, any external current may be input to at least two of the input terminal portions (two terminals from one side or two terminals from both sides).
  • the specified frequency for discriminating the frequency of the alternating current input to the pair of input terminal portions is the commercial frequency (50 Hz / 60 Hz) when the ballast is of the glow starter type or rapid start type and the inverter type.
  • About 5 kHz is preferable as a frequency (cut-off frequency) that can distinguish high frequencies (about 20 to 100 kHz), but changing the circuit constant of the high pass filter circuit in a frequency range larger than 65 Hz and smaller than 20 kHz
  • the frequency may be set appropriately to obtain a desired frequency.
  • the frequency and duty ratio of pulse driving by the PWM control unit are selected for each pin within the specification range of the integrated circuit IC1. It may be set by appropriately setting the connected resistance, drive voltage and the like.
  • a plurality of resistors R20, a resistor R21, a Zener diode D20 and a resistor R22 are connected in series between the high voltage (HV) side output terminal T7 and the ground side output terminal T5. If the DC voltage (a voltage smaller than about 250mV and proportional to the magnitude of the high voltage (HV)) divided by the resistor R22 is input to the # 7 pin of the integrated circuit IC1, the pair of input terminals is The threshold voltage can also be proportionally varied according to the magnitude of the input voltage.
  • the illumination device including the LED lamp, and the current control method of the LED lamp is a constant power control inverter type
  • the ballast of the fluorescent lamp lighting device is a constant power control inverter type

Abstract

 本発明の一実施形態に係るLEDランプ20は、一対の入力端子部20a,20cと、整流回路部22と、LED発光部24とを含み、一対の入力端子部20a,20cのいずれか一方の入力端子部から整流回路部22を通過して他方の入力端子部へ流れる交流電流を流すための可変インダクタンス部L50,L60と、LED発光部24に流れる直流電流の大きさを検出する電流検出部31と、電流検出部31により検出された直流電流の大きさに応じて可変インダクタンス部L50,L60のインダクタンス値を可変するためのインダクタンス可変制御部32とを有する。

Description

LEDランプ、そのLEDランプを含む照明装置、及び、LEDランプの電流制御方法
 本発明は、市場に流通している定電力制御型のインバータ式の点灯装置の蛍光ランプに替えて装着しても、LED発光部に流れる電流の大きさを所定の範囲に安定化することができるLEDランプ、そのLEDランプを含む照明装置、及び、LEDランプの電流制御方法に関するものである。
 従来、一般に使用されている蛍光ランプ(通常、蛍光灯と称する)の代表的な点灯装置として、磁気式安定器と称されるグロースタータ式、ラピッドスタート式、又は電子式安定器と称されるインバータ式などの各種蛍光ランプの点灯装置が存在する。
 近年、特に急速に普及が進んでいる上記インバータ式の蛍光ランプ点灯装置は、交流電流を直流電流に変換した後、トランジスタ、コンデンサ、チョ-クコイルなどで構成されるインバータ回路により共振周波数付近の高い周波数(20kHz~100kHz)の高電圧を発生させる装置である。
 その高電圧により蛍光ランプが点灯し、点灯後は蛍光ランプ内に流れる電流により低電圧で安定して蛍光ランプを点灯させるというものである。
 これは、チョークコイルを用いた従来のグロースタータ式やラピッドスタート式など磁気式安定器に比べて、省電力、高効率、50Hz/60Hz兼用、低騒音、ちらつきが感じられない等のすぐれた特長を有している。
 以下に図面を参照して説明する。
 図15(a)は、グロースタータ式の安定器の一例を示す図であり、図15(b)は、ラピッドスタート式の安定器の一例を示す図であり、図15(c)は、インバータ式の安定器の一例を示す図である。
 図15(a)で示したグロースタータ式の安定器は、点灯管(グロースタータG)を用いた始動装置により蛍光ランプの電極(フィラメントとも称する、以下同じ)を予熱し、スイッチを入れてから数秒で点灯が可能である方式で、最も普及しているタイプである。
 また、図15(b)で示したラピッドスタート式の安定器は、ラピッドスタート形のランプと組み合わせて使う安定器で、スイッチを入れると予熱と同時に即時に点灯するタイプである。
 一方、図15(c)で示したインバータ式点灯装置の安定器は、AC入力電圧85~450V内の交流電流を直流電流に変換した後、集積回路によりLEDランプを上記のような高い周波数で駆動して点灯させるものである(例えば、特許文献1の第4頁及び図2を参照)。
 この場合、LEDランプに流す電流を平滑化するため、LEDランプと直列にチョークコイルLが挿入されているが、通常はLEDランプと並列に電解コンデンサ(図示せず)が挿入される。
 また、図16は、直列ラピッド式安定器に対して、2本の蛍光ランプを直列に接続した一例を示す図である。
 2本の蛍光ランプを直列に接続して、1個の安定器で点灯するもので、1灯用の安定器を2個使ったものや、フリッカレス安定器よりも構成が簡素で経済的である。
 電源が入力されると、蛍光ランプAと蛍光ランプBのそれぞれの電極が予熱されるとともに、始動用コンデンサが高インピーダンスのため、二次側の電圧が正常放電には移行せず微放電状態となる。この微放電電流による始動コンデンサの両端の降下電圧が蛍光ランプBに加わり、蛍光ランプBの放電を開始する。
 両蛍光ランプに放電が生じると、高インピーダンスの始動用コンデンサは実質上不動作状態となり、両蛍光ランプに正常な放電が起こり、点灯状態が維持される。
 このように直列接続でありながら、1灯ずつ放電させるため、2灯直列の蛍光ランプを比較的低い二次側の電圧で点灯させることができるが、節電のため片方の蛍光ランプを外したり、片方の蛍光ランプが切れたりした時には両方とも点灯しないという欠点もある。
 ところで、上述したインバータ式点灯装置の安定器(以下、インバータ式安定器又は電子式安定器とも称する)としては、LEDランプに限らず従来の蛍光ランプにも応用され、蛍光ランプに流れる電流の大きさが一定となるように制御する定電流制御型や、蛍光ランプに供給される電力の大きさが一定となるように制御する定電力制御型のものが広く知られている(例えば、特許文献2及び3を参照)。
特開2010-34012号公報 特開2010-218961号公報 特開2002-15886号公報
 近年、省電力対応やランプの長寿命化などの理由により、従来の蛍光ランプに替えてLEDランプを前述したような各種方式の安定器に装着して使用するケースも多く見られるようになってきている。
 その場合、LEDランプの一対の入力端子部に入力される交流電流のピーク値や周波数が、装着される点灯装置の安定器の方式により大きく異なるため、それぞれの安定器に対応したLEDランプを使用する必要があった。
 例えば、蛍光ランプの点灯装置がグロースタータ式やラピッドスタート式であれば、電源側入力のAC100V~240V(50Hz/60Hz)に対応して、安定器の出力(2次側出力)は、約AC200Vで制御されるものの、周波数を高周波数化するような制御はなされていないため、その周波数は電源側入力の周波数と同一であった。
 そのため、LEDランプ内においては、電源側入力の周波数と一致する交流電流を使用できるように、内部の整流回路で直流電流に整流した後、所望の照度が得られるようにLEDランプのLED発光部の回路構成(複数のLEDが接続される回路の構成、以下同じ)を固定して、各LEDに流れる電流の大きさが所定の範囲内に収まるようにしていた。
 したがって、従来は蛍光ランプの点灯装置の安定器がグロースタータ式、ラピッドスタート式の場合には蛍光ランプ用のランプソケットに適合できる専用のLEDランプを用いれば内蔵する各LEDを点灯させることができていた。
 一方、前述したように、蛍光ランプの点灯装置がインバータ式であれば、電源側入力がAC100V~240V(50Hz/60Hz)であっても、安定器の出力(2次側出力)は約AC280V(無負荷時)の定電圧に制御され、周波数も20kHz~100kHzの範囲に入るよう定電流制御又は定電力制御されているため、所望の照度が得られるようにLEDランプのLED発光部の回路構成を固定して、各LEDに流れる電流の大きさが所定の範囲内に収まるようにしていた。
 そのため、上記蛍光ランプの点灯装置の安定器がインバータ式である場合には、そのインバータ式の安定器を介さず(駆動動作させることなく)、LEDランプに内蔵されるAC/DCコンバータ(整流回路)に電源側の電力を直接的に供給できるように、点灯装置側の回路変更工事を伴ったり、直結に必要な変換アダプタを適用したりするなど、点灯装置側やLEDランプ側において相応の処置が必要とされていた。
 また、LEDランプをインバータ式で点灯させる場合には、インバータ式の安定器を内蔵する点灯装置とそれ専用のLEDランプをセットで付け替えることが必要とされていた。
 以上のように、点灯装置の方式に応じてLEDランプを取捨選択(適合性の確認)しなければならない点、又は点灯装置側での回路工事や直結作業などの付加作業が必要とされる点など、ユーザーサイドからすれば、導入工事のための現状把握調査、工期調整などの煩雑さやそれに伴う導入コスト増を生じる原因にもなっていた。
 すなわち、それらが家庭や職場における従来の蛍光ランプ点灯装置にLEDランプを採用することへの障害となっていた。
 その結果、従前の蛍光ランプがそのまま使い続けられるため、省電力やランプの長寿命化に大きく貢献できるLEDランプが市場に普及することの大きな阻害要因となっていた。
 また、定電力制御型のインバータ式安定器にLEDランプを装着した場合、例えば、LEDランプのLED発光部に流れる電流値を制限する負荷インピーダンスの値が蛍光ランプのそれと比較して小さいことに起因して、インバータ式安定器の出力電圧が小さくなり、出力電流が大きくなってしまう。その結果、LEDランプに流れる電流の大きさが所定の範囲より大きくなって適切な光量が得られないことがあった。
 また、様々な定格電力の蛍光ランプを駆動するために、様々な出力電力設定のインバータ式安定器が存在し、これらのインバータ式安定器の種類によって、LEDランプに流れる電流の大きさが所定の範囲内に安定せず、適切な光量が得られないことがあった。詳説すれば、LEDランプの負荷インピーダンスの大きさに略比例するようにインバータ式安定器の出力電圧が固定される一方、出力電流は、その出力電圧の大きさに応じて変動してしまう。その結果、LEDランプに流れる電流の大きさが所定の範囲を超えて変動してしまい、適切な光量が得られないことがあった。
 そこで、本発明は、蛍光ランプ用点灯装置の安定器が定電力制御型のインバータ式であっても、従前に装着されていた蛍光ランプ(LEDランプでもよい)と交換すれば、LED発光部に流れる電流の大きさを所定の範囲に安定化することができるLEDランプ、そのLEDランプを含む照明装置、及び、LEDランプの電流制御方法を提供することを目的とする。
 本発明のLEDランプは、一対の入力端子部と、外部からその一対の入力端子部に入力される交流電流を直流電流に整流する整流回路部と、整流回路部から出力される直流電流の通電により発光するLED発光部と、を含むLEDランプであって、一対の入力端子部と整流回路部との間の回路において、一対の入力端子部のいずれか一方の入力端子部から整流回路部を通過して他方の入力端子部へ流れる交流電流を流すための可変インダクタンス部と、整流回路部とLED発光部との間の回路において、LED発光部に流れる直流電流の大きさを検出する電流検出部と、電流検出部により検出された直流電流の大きさに応じて可変インダクタンス部のインダクタンス値を可変するためのインダクタンス可変制御部と、を有することを特徴とする。
 このLEDランプによれば、蛍光ランプ用点灯装置の安定器が定電力制御型のインバータ式安定器であっても、従前に装着されていた蛍光ランプ(LEDランプでもよい)と交換すれば、インダクタンス可変制御部によって、電流検出部によって検出された電流の大きさに応じて、可変インダクタンス部のインダクタンス値が可変され、その値に応じて出力電圧が略比例するように固定される。その結果、LED発光部に流れる電流の大きさを所定の範囲に安定化することができる。
 例えば、LED発光部を流れる電流の大きさが所定の範囲より小さい場合には、可変インダクタンス部のインダクタンス値を小さくすることにより、定電力制御型のインバータ式安定器の出力電圧が小さくなり、出力電流が大きくなることを利用して、LED発光部を流れる電流の大きさを所定の範囲に安定化することができる。一方、LED発光部を流れる電流の大きさが所定の範囲より大きい場合には、可変インダクタンス部のインダクタンス値を大きくすることにより、定電力制御型のインバータ式安定器の出力電圧が大きくなり、出力電流が小さくなることを利用して、LED発光部を流れる電流の大きさを所定の範囲に安定化することができる。すなわち、定電力制御型のインバータ式安定器におけるLEDランプ側へ定電力を供給しようとする制御方式の特性を利用して、所望の効果が得られるものである。
 また、上記したLEDランプは、前記構成に加え、一対の入力端子部と整流回路部との間の回路において、一対の入力端子部のいずれか一方の入力端子部から整流回路部を通過して他方の入力端子部へ流れる交流電流を流すための閾値素子が設けられ、その閾値素子は、一対の入力端子部に外部から所定の閾値を超える交流電流が入力されてから所定の時間を経過した後にその両端が短絡され、インダクタンス可変制御部は、閾値素子の両端が短絡された後に検出された直流電流の大きさに応じて可変インダクタンス部のインダクタンス値を可変してもよい。
 例えば、定電力制御型のインバータ式安定器の種類によっては、出力開始時に、蛍光ランプの状態把握(例えば、負荷側に蛍光ランプが装着されているか否かのチェック)のため、あらかじめ出力電圧を定格値よりも低めに設定し、適切な光量の得られないわずかな電流を流してそのときの出力電流の大きさを監視した後に出力電圧を所定の範囲まで上げてから定電力制御を行うものがある。
 しかしながら、この構成によれば、一対の入力端子部に外部から所定の閾値を超える交流電流が入力されてから所定時間経過後に閾値素子の両端が短絡され、閾値素子の両端短絡後のLED発光部に流れる直流電流の大きさに応じて可変インダクタンス部のインダクタンス値が可変されるので、この種のインバータ式安定器であっても、検出すべきLED発光部を流れる電流(通常の点灯状態での電流)のみを検出し、誤った制御をすることがない。
 また、上記したLEDランプは、前記構成に加え、一対の入力端子部と整流回路部との間の回路において、一対の入力端子部のいずれか一方の入力端子部から整流回路部を通過して他方の入力端子部へ流れる交流電流を遮断できる回路遮断部が設けられ、その回路遮断部は、電流検出部により検出された直流電流の大きさが所定の上限値を上回った場合または所定の下限値を下回った場合に、交流電流を遮断してもよい。
 この構成によれば、例えば、安定器側において経年変化や何らかの異常が生じ、LEDランプに過電流が流れても、安全サイドで、外部から一対の入力端子部に入力された交流電流が整流回路部へ流れることを遮断することができる。また、反対に、LEDランプの安定器への装着状態や電気的な接続不良などの何らかの異常により、検出された直流電流の大きさが非常に小さい場合にも、安全サイドで、外部から一対の入力端子部に入力される交流電流が整流回路部へ流れることを遮断することができる。
 また、上記したLEDランプは、前記構成に加え、整流回路部と前記LED発光部との間の回路において、LED発光部に流す電流をデューティ比に基づいてPWM制御できるPWM制御部が設けられ、そのPWM制御部は、一対の入力端子部に入力される外部の交流電流の周波数に応じて、LED発光部に流れる電流のPWM制御を行う場合と、LED発光部に流れる電流のPWM制御を行わない場合と、に切り替えられ、PWM制御部がPWM制御を行わない場合において、電流検出部はLED発光部に流れる直流電流の大きさを検出し、その直流電流の大きさに応じて、インダクタンス可変制御部は可変インダクタンス部のインダクタンス値を可変してもよい。
 この構成によれば、蛍光ランプ用点灯装置の安定器がグロースタータ式、ラピッドスタート式又はインバータ式のいずれの点灯方式であっても、従前に装着されていた蛍光ランプ(LEDランプでもよい)と交換すれば、パルス駆動によるPWM制御により点灯可能な照明用として点灯させることができる。また、インバータ式安定器に装着された場合、すなわち、PWM制御部がPWM制御を行わない場合には、この構成により、LED発光部を流れる電流の大きさを所定の範囲に安定化することができる。
 言い換えると、蛍光ランプ用点灯装置の安定器がグロースタータ式又はラピッドスタート式のように、一対の入力端子部から入力される交流電流の周波数が商用周波数50Hz/60Hzのように低い場合であれば、LEDランプが有するPWM制御部がLED発光部に流れる電流の安定化に作用している。一方、同安定器がインバータ式のように一対の入力端子部から入力される交流電流の周波数が20kHz~100kHzのように高い場合には、LED発光部に流れる直流電流の大きさに応じて可変インダクタンス部のインダクタンス値が可変されてLED発光部に流れる電流の安定化に作用している。
 また、上記したLEDランプによれば、前記構成に加え、PWM制御部は、一対の入力端子部に入力される外部の交流電流の周波数が所定の周波数よりも低い場合には、所定の周波数よりも高い周波数のパルス駆動によりLED発光部に流れる電流のPWM制御を行い、一対の入力端子部に入力される外部の交流電流の周波数が所定の周波数よりも高い場合には、LED発光部に流れる電流のPWM制御を行わない形態であってもよい。
 この構成により、蛍光ランプ用点灯装置の安定器がグロースタータ式、ラピッドスタート式又はインバータ式のいずれの点灯方式であっても、従前に装着されていた蛍光ランプ(LEDランプでもよい)と交換すれば、所定の周波数よりも高い周波数でパルス駆動して点灯可能な照明用として点灯させることができる。
 そのため、点灯装置の方式に応じてLEDランプを取捨選択(適合性の確認)しなければならない点、又は点灯装置側での回路工事や直結作業などの付加作業が必要とされる点など、ユーザーサイドからすれば、導入工事のための現状把握調査、工期調整などの煩雑さやそれに伴い導入コストを生じるなどの事情が容易に解消される。
 その結果、LEDランプを家庭や職場における従来の蛍光ランプ点灯装置(LED点灯装置でもよい)にLEDランプを採用することへの障害がなくなる。
 そして、省電力やランプの長寿命化に大きく貢献できるLEDランプを市場に普及させることができる。
 例えば、蛍光ランプ用点灯装置の安定器がグロースタータ式又はラピッドスタート式の場合であれば、一対の入力端子部から入力される交流電流の周波数は、商用周波数の50Hz/60Hzである。
 したがって、PWM制御部は、LED発光部を流れる電流を少なくとも所定の周波数(例えば、5kHz)よりも高い周波数の駆動パルスによりPWM制御するため、LED発光部を流れる電流を高速でオン/オフを繰り返し、ちらつきを生じない安定した実効値(RMS値)を得ることができる。
 一方、蛍光ランプ用点灯装置の安定器がインバータ式の場合であれば、一対の入力端子部から入力される交流電流は高い周波数の20kHz~100kHzであるため、PWM制御部はPWM制御を行わず、整流回路部により整流されたそのままの周波数(全波整流の場合であれば、直流に重畳するリップル電圧波形分は2倍の周波数)が用いられるため、LED発光部を流れる電流は、外部のインバータ式の安定器の制御(例えば、PWM制御)により、ちらつきを生じない安定した実効値(RMS値)を得ることができる。
 したがって、外部とLEDランプの内部において同種の制御方式が重畳することが確実に防止され、LED発光部を流れる電流の大きさが安定しないなどの不調が発生することの原因が解消される。
 また、上記したLEDランプによれば、前記構成に加え、LED発光部のカソード側端子と整流回路部のグランド側出力端子との間にバイパス回路部が設けられ、バイパス回路部は、スイッチング素子と、そのスイッチング素子の駆動電圧を出力するハイパスフィルタ回路と、を含み、スイッチング素子は、一対の入力端子部に入力される交流電流が所定の周波数よりも低い周波数である場合は、LED発光部のカソード側端子から整流回路部のグランド側出力端子へ電流を流さず、一対の入力端子部に入力される交流電流が所定の周波数よりも高い周波数である場合は、LED発光部のカソード側端子から整流回路部のグランド側出力端子へ電流を流す形態であってもよい。
 この構成により、バイパス回路部が、整流回路部の入力端子から入力される交流電流が所定の周波数よりも高い場合に、LED発光部を流れる電流をPWM制御するためのPWM制御部のスイッチング素子をバイパス(迂回)させることにより、LEDランプ内蔵のPWM制御部がPWM制御しないようにできる。
 また、上記したLEDランプによれば、前記構成に加え、バイパス回路部のスイッチング素子は、ゲート端子に入力されるゲート電圧に応じて、ドレイン端子とソース端子との間の電流の流れを制御するNチャンネルMOS型FETであって、ドレイン端子はLED発光部のカソード側端子に接続され、ソース端子は整流回路部のグランド側出力端子に接続され、ゲート端子は、ハイパスフィルタ回路を介して整流回路部の入力端子のいずれか一方に接続され、ハイパスフィルタ回路は、一対の入力端子部に入力される交流電流が所定の周波数よりも高い場合には、ドレイン端子からソース端子へ電流を流すように駆動させるゲート電圧をゲート端子に出力し、一対の入力端子部に入力される交流電流が所定の周波数よりも低い場合には、ドレイン端子からソース端子へ電流を流さないように駆動させるゲート電圧をゲート端子に出力する形態であってもよい。
 この構成により、NチャンネルMOS型FETがバイパス回路のスイッチング素子として機能するので、十分な余裕をもってLED発光部に電流を流すことが可能となり、PWM制御部へ電流が流れ込むことを阻止できる。
 すなわち、整流回路部の入力端子から入力される交流電流が所定の周波数よりも高い場合に、PWM制御部がバイパス(迂回)されるため、LED発光部を流れる電流はPWM制御部へ電流が流れ込まず、PWM制御部はPWM制御を行わないようにできる。
 また、上記したLEDランプによれば、前記構成に加え、ハイパスフィルタ回路は、第1のコンデンサと、一端子が第1のコンデンサの一端子に接続されて、第1のコンデンサに直列に接続される第1の抵抗と、第1の抵抗の他端子からゲート端子へ順方向に接続される第1のダイオードと、ソース端子とゲート端子との間に接続される第2のコンデンサと、ソース端子とゲート端子との間に接続される第2の抵抗と、ソース端子からゲート端子へ順方向に接続されるツェナーダイオードと、ソース端子から第1の抵抗の他端子へ順方向に接続される第2のダイオードと、を含み、第1のコンデンサの他端子は、整流回路部の入力端子のいずれか一方に接続される形態であってもよい。
 この構成により、所定の周波数よりも高い周波数の電流のみを次段へ通過させることのできるフィルタ機能が作用し、周波数に応じてバイパス回路のスイッチング素子を確実にON/OFF動作させることができる。
 その結果、整流回路部の入力端子から入力される交流電流が所定の周波数よりも高い場合にのみ、後段へ電流が流れるため、確実にスイッチング素子であるNチャンネルMOS型FETをON状態にすることができ、LED発光部を流れる電流をPWM制御しないようにできる。
 また、上記したLEDランプによれば、前記構成に加え、所定の周波数は、65Hzよりも大きく、20kHzよりも小さい周波数であってもよい。
 この構成により、電源周波数の精度を含めたばらつきを考慮しても、安定器の方式がグロースタータ式又はラピッドスタート式の場合における周波数(60±1Hz)と、市場に流通するインバータ式の場合における周波数(20~100kHz)とを明確に峻別できるため、その峻別結果に応じてパルス駆動によるPWM制御をする場合としない場合とを切り替え、高い周波数でパルス駆動して点灯可能な照明用として点灯させることができる。
 特に、峻別する所定の周波数を20kHzよりも小さい可聴域(ヒトが音として感じることのできる周波数帯)の範囲に属する周波数としたことにより、それよりも高い周波数帯域における周波数のパルス駆動によりPWM制御をするため、耳障りな騒音として感じることも軽減される。
 また、本発明の照明装置は、上記いずれかの構成を有するLEDランプを含むことを特徴とする。
 この照明装置によれば、上記したLEDランプを含むので、蛍光ランプ用点灯装置の安定器が定電力制御型のインバータ式安定器であっても、従前に装着されていた蛍光ランプ(LEDランプでもよい)と交換するだけで、LED発光部に流れる電流の大きさを所定の範囲に安定化することができる。
 また、照明装置側に新たにLED発光部を調光するための安定器を設ける必要がなく、外部の交流電流を一対の入力端子部に供給するだけで照明としての点灯が可能となる。
 また、照明装置自体に安定器が搭載されてないため、照明装置の構成が簡素化され、点灯装置の方式に応じてLEDランプを取捨選択(適合性の確認)しなければならない点、又は点灯装置側での回路工事や直結作業などの付加作業が必要とされる点など、ユーザーサイドからすれば、導入工事のための現状把握調査、工期調整などの煩雑さやそれに伴い導入コストを生じるなどの事情が容易に解消される。
 また、本発明のLEDランプの電流制御方法は、一対の入力端子部と、外部から一対の入力端子部に入力される交流電流を直流電流に整流する整流回路部と、整流回路部から出力される直流電流の通電により発光するLED発光部と、を含むLEDランプの電流制御方法であって、一対の入力端子部と整流回路部との間の回路において、一対の入力端子部のいずれか一方の入力端子部から可変インダクタンス部を介して整流回路部を通過させて他方の入力端子部へ交流電流を流す段階と、整流回路部とLED発光部との間の回路において、LED発光部に流れる直流電流の大きさを検出する段階と、検出された直流電流の大きさに応じて可変インダクタンス部のインダクタンス値を可変する段階と、を含み、LED発光部に流れる直流電流の大きさを所定の範囲内となるように制御することを特徴とする。
 このLEDランプの電流制御方法によれば、蛍光ランプ用点灯装置の安定器が定電力制御型のインバータ式安定器であっても、従前に装着されていた蛍光ランプ(LEDランプでもよい)と交換すれば、電流検出部によって検出された電流の大きさに応じて、可変インダクタンス部のインダクタンス値が可変され、その値に応じて出力電圧が略比例するように固定される。その結果、LED発光部に流れる電流の大きさを所定の範囲に安定化することができる。
 本発明のLEDランプ、そのLEDランプを含む照明装置、及び、LEDランプの電流制御方法によれば、蛍光ランプ用点灯装置の安定器が定電力制御型のインバータ式であっても、従前に装着されていた蛍光ランプ(LEDランプでもよい)と交換すれば、LED発光部に流れる電流の大きさを所定の範囲に安定化することができる。
図1は、本発明の実施の形態における照明装置の回路全体を示すブロック図である。 図2は、本発明の実施の形態におけるLEDランプの回路図である。 図3は、集積回路IC1の内部を示すブロック図である。 図4は、可変インダクタンス部を示す回路図である。 図5は、可変インダクタンス部の可変制御パターンを示す図である。 図6は、検出電流に対するインダクタンス値の可変領域と回路遮断領域を示す図である。 図7は、本発明の実施の形態におけるLEDランプの電流制御方法を示すフローチャートである。 図8(a)及び(b)は、それぞれ、定電力制御型インバータ式安定器で点灯させた場合におけるLEDランプのインダクタンス値100μH時の入力電圧波形とLED発光部を流れる電流波形であり、図8(c)及び(d)は、それぞれ、定電力制御型インバータ式安定器で点灯させた場合におけるLEDランプのインダクタンス値400μH時の入力電圧波形とLED発光部を流れる電流波形である。 図9(a)及び(b)は、それぞれ、定電力制御型インバータ式安定器で点灯させた場合におけるLEDランプのインダクタンス値100μH時の入力電圧波形とLED発光部を流れる電流波形であり、図9(c)及び(d)は、それぞれ、定電力制御型インバータ式安定器で点灯させた場合におけるLEDランプのインダクタンス値400μH時の入力電圧波形とLED発光部を流れる電流波形である。 図10(a)は、入力電圧Vinの波形であり、図10(b)は、スイッチング素子Q1のゲート端子の電圧Vg1の波形であり、図10(c)は、集積回路IC1の電流センサ端子電圧Vcsの波形であり、図10(d)は、スイッチング素子Q2のゲート端子の電圧Vg2の波形であり、図10(e)は、LED発光部24を流れる電流iの波形である。 図11(a)は、入力電圧Vinの波形であり、図11(b)は、スイッチング素子Q1のゲート端子の電圧Vg1の波形であり、図11(c)は、集積回路IC1の電流センサ端子の電圧Vcsの波形であり、図11(d)は、スイッチング素子Q2のゲート端子の電圧Vg2の波形であり、図11(e)は、LED発光部24を流れる電流iの波形である。 図12(a)は、入力電圧Vinの波形であり、図12(b)は、スイッチング素子Q1のゲート端子の電圧Vg1の波形であり、図12(c)は、集積回路IC1の電流センサ端子の電圧Vcsの波形であり、図12(d)は、スイッチング素子Q2のゲート端子の電圧Vg2の波形であり、図12(e)は、LED発光部24を流れる電流iの波形である。 図13は、本発明の変形例における照明装置の回路全体を示すブロック図である。 図14(a)は、スレッシュホールド電圧を高電圧(HV)の大きさに応じて可変させる回路の一部を示す図であり、図14(b)は、直列ラピッド式安定器に対して本実施の形態におけるLEDランプを直列に接続した全体構成図である。 図15(a)は、グロースタータ式の安定器の一例を示す図であり、図15(b)は、ラピッドスタート式の安定器の一例を示す図であり、図15(c)は、インバータ式の安定器の一例を示す図である。 図16は、直列ラピッド式安定器の一例を示す図である。
 以下、本発明を実施するための形態について、図面を参照して説明する。
(実施の形態)
 図1は、本発明の実施の形態における照明装置の回路全体を示すブロック図であり、図2は、本発明の実施の形態におけるLEDランプの回路図であり、図3は、集積回路IC1の内部を示すブロック図であり、図4は、可変インダクタンス部を示す回路図であり、図5は、可変インダクタンス部の可変制御パターンを示す図であり、図6は、検出電流に対するインダクタンス値の可変領域と回路遮断領域を示す図であり、図7は、本発明の実施の形態におけるLEDランプの電流制御方法を示すフローチャートであり、図8(a)~(d)及び図9(a)~(d)は、本発明の実施の形態におけるLEDランプを定電力制御型インバータ式安定器で点灯したときのLEDランプの入力電圧波形とLED発光部を流れる電流波形であり、図10(a)~(e)は、本発明の実施の形態における照明装置の安定器としてグロースタータ式を使用した場合の各測定点における電圧波形図であり、図11(a)~(e)は、本発明の実施の形態における照明装置の安定器としてラピッドスタート式を使用した場合の各測定点における電圧波形図であり、図12(a)~(e)は、本発明の実施の形態における照明装置の安定器としてインバータ式を使用した場合の各測定点における電圧波形図であり、図13は、本発明の変形例における照明装置の回路全体を示すブロック図であり、図14(a)は、スレッシュホールド電圧を高電圧(HV)の大きさに応じて可変させる回路の一部を示す図であり、図14(b)は、直列ラピッド式安定器に対して本実施の形態におけるLEDランプを直列に接続した全体構成図である。
 まず、図1で示したように、本発明の実施の形態に係わる照明装置10は、例えば家庭用のAC電圧100~240V(50Hz/60Hz)の外部電源から電力供給のために接続されるプラグ11と、プラグ11から入力される電力を蛍光ランプの点灯のために制御する安定器12と、安定器12の方式に応じて一対の入力端子部間(入力端子部20aと入力端子部20cとの間)に、所定の電圧が入力されるLEDランプ20とを備えている。
 ここで、安定器12は、既存の蛍光ランプを点灯するための公知のグロースタータ式、ラピッドスタート式又はインバータ式のいずれでもよい。
 また、プラグ11に接続される外部電源は、AC電圧100~240V(50Hz/60Hz)であれば、LEDランプ20は正常に動作するため、安定器12を介さずLEDランプ20にその外部電力を直接入力する構成でも差し支えない。
 ここで、安定器12から交流電流を出力する線は、一対の入力端子部間(入力端子部20aと入力端子部20cとの間)、又は一対の入力端子部間(入力端子部20bと入力端子部20dとの間)のいずれか一方又はその両方に入力できるように接続されている。
 一方、LEDランプ20の入力端子部20aと端子T1との間において、抵抗R9とコンデンサC9のRC並列回路から構成される入力回路部Z9が接続されている(図2参照)。
 同様に、LEDランプ20の入力端子部20bと端子T1との間において、抵抗R10とコンデンサC10のRC並列回路から構成される入力回路部Z10が接続されている(図2参照)。
 同様に、LEDランプ20の入力端子部20cと端子T2との間において、抵抗R11とコンデンサC11のRC並列回路から構成される入力回路部Z11が接続されている(図2参照)。
 同様に、LEDランプ20の入力端子部20dと端子T2との間において、抵抗R12とコンデンサC12のRC並列回路から構成される入力回路部Z12が接続されている(図2参照)。
 これにより、入力端子部20aと入力端子部20bとの間における抵抗R9と抵抗R10の抵抗値は、蛍光ランプのフィラメントの抵抗成分に相当するように、各々約数Ω~約100Ωが選択されている。
 同様に、入力端子部20cと入力端子部20dとの間における抵抗R11と抵抗R12の抵抗値は、蛍光ランプのフィラメントの抵抗成分に相当するように、各々約数Ω~約100Ωが選択されている。
 上記のように、抵抗R9~R12の抵抗値を選択すれば、仮に安定器12がインバータ式で、負荷側に蛍光ランプが装着されているか否か(フィラメント抵抗による導通有無)を自動検知し、蛍光ランプが装着されていない場合(フィラメント抵抗による導通無の場合)には電力を出力しないようなタイプであっても、これらの抵抗R9~R12がダミー抵抗として作用するためLEDランプ20に正常に電力が供給される。
 また、端子T1と端子T11との間には、回路遮断部33が接続されており、同様に、端子T2と端子T12との間にも、回路遮断部33が接続されている。回路遮断部33は、例えばB接点タイプのリレーを含み、LED発光部24に流れる電流iの大きさが異常である場合に、一対の入力端子部からの交流電流を遮断することができる。回路遮断部33の詳細は後述する。
 また、端子T11と端子T12との間には、保護回路部21(図2参照)が挿入されている。
 保護回路部21は、ネオンやアルゴンなどの不活性ガスが封入された2極放電管SA1とバリスタSA2が直列に接続されたものである。
 2極放電管SA1の放電開始電圧やバリスタSA2の制限電圧を適宜設定することにより、端子T1と端子T2との間に電源側から侵入するサージ電圧を例えば約400Vのピーク値以下に抑制することができる。また、2極放電管SA1とバリスタSA2とを直列に組み合わせることによって、サージ電圧終息後に、2極放電管SA1が放電し続けることによる続流(follow current)をバリスタSA2によって有効に防止できる。
 これにより、仮に外部の入力電源側から例えば雷サージや誘導雷サージが侵入した場合であっても、サージ電流を吸収し、整流回路部22側へサージ電流が入り込むのを阻止している。
 したがって、整流回路部22やLED発光部24を構成するダイオードやコンデンサなどの電子部品の保護が可能となっている。
 また、端子T12側には、閾値素子34が直列に接続されている。閾値素子34は、例えば、互いに逆向き(双方向)に直列に接続された2つのツェナーダイオードD34a,D34bと、これらのツェナーダイオードに並列に接続されたリレーRY34とを含む(図2参照)。リレーRY34は、LED発光部24に電流が流れてから所定時間経過してから所定の電圧を出力する遅延回路(図示せず)からの出力電圧によって駆動され、2つのツェナーダイオードD34a,D34bの両端を短絡する。この遅延回路は、交流電流が閾値素子34の所定の閾値を超えて後段の整流回路部22に流れ始めてから所定の時間経過後に所定の電圧を出力してリレーRY34を駆動するように設定されている。これにより、閾値素子34は、一対の入力端子部に外部から所定の閾値を超える交流電流が入力されてから所定の時間を経過した後にその両端がリレーRY34により短絡される。なお、閾値素子とは、両端子間に所定の閾値以上の電圧が印加されると素子の内部において通電を開始する素子であると定義し、閾値素子34としては、ツェナーダイオードD34a,D34bに代えて、例えば無ゲート2端子型サイリスタのサイダック(登録商標)、二極放電管等が適用可能である。閾値素子34の詳細は後述する。
 また、端子T11と整流回路部22の一方の入力側の端子T3との間に可変インダクタンス部L50が挿入され、同様に端子T12と整流回路部22の他方の入力側の端子T6との間には、閾値素子34と直列に可変インダクタンス部L60が挿入されている。可変インダクタンス部L50,L60のインダクタンス値(以下、L値とも称する)は、インダクタンス可変制御部32によって制御される。可変インダクタンス部L50,L60のインダクタンス可変の詳細は後述する。
 これにより、可変インダクタンス部L50と可変インダクタンス部L60が高い周波数のパルスに対しては、流れる電流を制限するインピーダンスとして作用する。
 そのため、例えば安定器12がグロースタータ式又はラピッドスタート式の場合であれば、スイッチング素子Q1がオン/オフ動作するため、そのスイッチングノイズ(高い周波数のノイズパルス)が入力端子部20a~20dのいずれかを通じて外部の交流電流側(入力電源)側へ流出するのを阻止できる。
 また、安定器12がインバータ式である場合であれば、高い周波数の20kHz~100kHzの交流電流が入力されるため、可変インダクタンス部L50と可変インダクタンス部L60が有効な電力損失を伴わない(無効電力損失の)負荷として作用する。
 これにより、一対の入力端子部間(入力端子部20aと入力端子部20cとの間)、又は一対の入力端子部間(入力端子部20bと入力端子部20dとの間)のいずれか一方又はその両方からみて、LEDランプ20の負荷インピーダンスが所定の範囲内に入るようにすれば、インバータ式の安定器12から安定して電力が出力されるようにしている。
 また、整流回路部22は、4つのダイオードD4~D7からなるブリッジダイードと、その出力段における全波整流波形を平滑化するため並列に接続された電解コンデンサC4及び電解コンデンサC5と、から構成されている(図2参照)。
 そして、整流回路部22の出力側端子においては、高電圧(HV)側出力端子T7とグランド側出力端子T5との間に、直流電圧が出力される。
 そして、高電圧(HV)側出力端子T7は、平滑回路部23を介してLED発光部24のアノード側端子TAに接続され、LED発光部24のカソード側端子TKは、平滑回路部23を介してPWM制御部25に接続されている。
 ここで、LED発光部24は、順方向電圧が約3VのLED(発光ダイオード)30個直列接続のLED群が3回路並列に接続された回路で構成され、アノード側端子TAからカソード側端子TKの方向(矢印の方向)へ電流iが流れる。
 さらにPWM制御部25のGND端子TGは、整流回路部22の出力側のグランド側出力端子T5に接続されている。
 上記の回路構成により、LED発光部24を流れる電流iは、PWM制御部25により所定の周波数よりも高い周波数のパルス駆動によりPWM制御され、所定の電流値範囲に制御されている。
 一方、LED発光部24のカソード側端子TKと整流回路部22のグランド側出力端子T5との間には、バイパス回路部26が接続されている。
 これにより、整流回路部22の一方の端子T3に入力される交流電流の周波数が所定の周波数よりも高い場合には、スイッチング素子Q1がオン状態(ドレイン端子からソース端子へ電流の流れる状態、以下同じ)であっても抵抗R3、抵抗R4及び抵抗R5が端子T9と端子TGとの間に並列接続されているため、PWM制御部25がバイパス(迂回)され、LED発光部24を流れる電流iは、カソード側端子TKからPWM制御部25のGND端子TGを介して整流回路部22のグランド側出力端子T5に直接流れる。
 したがって、PWM制御部25には、電流iが殆ど流れないため、電流iはPWM制御されない。
 なお、上記及び以降の説明において、電流iをデューティ比に基づいてPWM制御(PWMは、PULSE WIDTH MODULATIONの略、以下同じ)を行うとは、駆動パルスの周期は一定で、入力信号の大きさ(本実施の形態の場合は、電流センサ端子である#2ピンで検知される電圧の大きさ)に応じて、駆動パルスのデューティ比(パルス周期に対するパルス幅の割合でオンデューティと同意とする、以下同じ)に基づき、電流iをオン/オフ制御すること、と定義し、その時のデューティ比は0%より大きく100%より小さいものとする。
 これにより、LED発光部24を流れる電流iの大きさを安定化できる。
 一方、電流iをデューティ比に基づいてPWM制御を行わないとは、PWM制御部は電流iをデューティ比に基づきオン/オフ制御しないこと、と定義し、前述したように、PWM制御部に電流iが殆ど流れない場合に加え、駆動パルスのデューティ比が0%でスイッチング素子Q1が動作中に常にオフ状態である場合と、駆動パルスのデューティ比が100%でスイッチング素子Q1が動作中に常にオン状態である場合と、を含むものとする。
 また、LED発光部24のカソード側端子TKと整流回路部22のグランド側出力端子T5との間において、バイパス回路部26に直列に電流検出部31が接続されている。電流検出部31は、バイパス回路部26によってLED発光部24に流れる電流iをバイパスする場合に(安定器がインバータ方式の場合に)、その直流電流の大きさを検出し、その検出信号(直流電圧)をインダクタンス可変制御部32に出力する。
 そして、インダクタンス可変制御部32は、電流検出部31によって検出された電流の大きさに応じて、可変インダクタンス部L50,L60のインダクタンス値を制御する。インダクタンス可変制御部32の詳細は後述する。
 次に、図2~図6を参照して、各構成部についてさらに詳細に説明する。
 前述したように、入力端子部20aと端子T1との間の抵抗R9は、蛍光ランプのフィラメントに相当するダミー抵抗として作用するが、コンデンサC9は、通常の動作状態(LED発光部24の点灯中)において交流電流を通過させることができる。
 これにより、その交流電流の周波数とコンデンサC9の容量で決まる容量リアクタンスと抵抗R9の抵抗値の比に反比例する形で、分流させることができるので、その分抵抗R9の発熱を抑制している。
 同様に、入力端子部20cと端子T2との間の抵抗R11は、フィラメントに相当するダミー抵抗として作用するが、コンデンサC11は、通常の動作状態において交流電流を通過させることができるため、抵抗R11の発熱を抑制している。
 また、ヒューズF1は一対の入力端子部間(入力端子部20aと入力端子部20cとの間)、又は一対の入力端子部間(入力端子部20bと入力端子部20dとの間)のいずれか一方又はその両方に入力される電源電流の過電流保護用である。
 次に、整流回路部22は、前段にアノードが端子T3に接続され、カソードが高電圧(HV)側出力端子T7に接続されるダイオードD4と、アノードが端子T6に接続され、カソードが高電圧(HV)側出力端子T7に接続されるダイオードD5と、アノードがグランド側出力端子T5に接続され、カソードが端子T3と同電位の端子T4に接続されるダイオードD6と、アノードがグランド側出力端子T5に接続され、カソードが端子T6に接続されるダイオードD7と、から構成されるブリッジダイオードを有している。
 また、上記ブリッジダイオードの後段には、全波整流波形を平滑化するため、高電圧(HV)側出力端子T7とグランド側出力端子T5との間に、高電圧(HV)側出力端子T7側をプラス(+)、グランド側出力端子T5側をマイナス(-)端子として電解コンデンサC4と電解コンデンサC5を並列に接続している。
 これにより、平滑され直流化された出力電圧が高電圧(HV)側出力端子T7に出力され、低電圧側がグランド側出力端子T5に出力されている。
 そして、高電圧(HV)側出力端子T7に出力された高電圧の直流電圧は、平滑回路部23により脈動成分(リップル成分)が取り除かれるが、これは所謂チョークコイル入力形平滑回路と呼ばれるもので、LED発光部24に対してチョークコイルL1~L4の直列回路と電解コンデンサC3の並列回路で構成されている。
 さらに、平滑回路部23を通過することにより、脈動成分が取り除かれた電流iは、LED発光部24のアノード側端子TAからカソード側端子TKへ流れ、前述したLED発光部24を構成する合計90個のLED(発光ダイオード)を発光させるよう機能している。
 さらに、LED発光部24から平滑回路部23を通過した電流iは、PWM制御部25を構成する集積回路IC1と各ピン(#1~#8)に接続された抵抗R1~R8、コンデンサC1、コンデンサC2、ツェナーダイオードD1、ダイオードD2及びスイッチング素子Q1により所定の発振周期tOSC(μs)のパルス駆動によりPWM制御されている。
 例えば、集積回路IC1として、市販されているSUPERTEX INC.製の型式HV9910B(図3参照)を用いた場合であれば、発振周期tOSC(μs)は、#8ピンに接続される抵抗R1の抵抗値R(kΩ)により次の数式1により得られる時間で制御される。
Figure JPOXMLDOC01-appb-M000001
 なお、本実施の形態においては、例えば抵抗R1を約499(kΩ)に設定すれば、発振周期tOSC(μs)として上記数式1により約20.84(μs)が求められる。
 したがって、仮に発振周期が計算値通りの約20.84(μs)とすると、約48kHzの高い周波数のパルス駆動が可能となる。
 また、LED発光部24を流れる電流iのオン/オフ制御を行うスイッチング素子Q1は、ゲート端子の入力電圧に応じて、ドレイン端子とソース端子との間の電流の流れを制御できるNチャンネルMOS型FETである。
 ここで、集積回路IC1において、スイッチング素子Q1のドレイン端子は、平滑回路部23の一部を構成するダイオードD3のアノード端子に接続され、ソース端子は、集積回路IC1の電流センサ端子である#2ピンに抵抗R6を介して接続される端子T9に接続され、ゲート端子には、集積回路IC1の#4ピンから出力された電圧が抵抗R2と抵抗R7により分圧された電圧であって、抵抗R7に相当する分の電圧が入力される。
 また、集積回路IC1の#1ピンは、抵抗R8とツェナーダイオードD1を介して高電圧(HV)側出力端子T7に接続されるため、この#1ピンには整流回路部22から出力される直流の高電圧が供給される。
 これにより、#1ピンから供給された電圧(約DC8V~約DC450V)は、内部のレギュレータにより所定のVDD電圧(約DC12V)に降下・整流・安定化され集積回路IC1の内部回路の駆動用電源として機能するとともに、#6ピンにそのVDD電圧が出力される(図3参照)。
 上記のような接続により、集積回路IC1のパルス駆動により、電流センサ端子である#2ピンで検知される電圧がスレッシュホールド電圧の約DC250mVを超えなければ、スイッチング素子Q1のゲート端子にハイレベル(約DC7.5V)の電圧が出力されて、オン状態となり、電流センサ端子である#2ピンで検知される電圧がスレッシュホールド電圧の約DC250mVに到達すれば、スイッチング素子Q1のゲート端子にローレベル(約0V)の電圧が出力され、オフ状態(ドレイン端子からソース端子へ電流の流れない状態、以下同じ)となる。
 このようにして、LED発光部を流れる電流iは、集積回路IC1の動作によりスイッチング素子Q1のゲート端子の電圧Vg1を出力する駆動パルスの周期は一定で、#2ピンで検知される電圧(電流センサ端子電圧Vcs)のレベルに応じて、ゲート端子の電圧Vg1のパルス幅のデューティ比が可変され、電流iが制御されている。
 すなわち、電流iは、PWM制御部25の高い周波数のパルス駆動により、PWM制御されるため、オン/オフが繰り返されるスイッチング素子Q1に応じて、上記の数式1で得られる発振周期tOSC(μs)でパルス状(三角波的)に増減を繰り返す。
 本実施の形態においては、#7ピンは、#6ピンと接続されている(共通である)ので、#7ピンには上記のスレッシュホールド電圧(約DC250mV)を超える電圧VDD(約DC12V)が入力される。
 なお、本実施の形態では、電流センサ端子である#2ピンで検知される電圧と比較される上記のスレッシュホールド電圧としては、集積回路IC1の内部で発生する上記の約DC250mVが設定されている(図3参照)。
 一方、集積回路IC1の#7ピンに入力する電圧として、約DC250mVを超えない範囲の電圧を設定すれば、その電圧が電流センサ端子(#2ピン)で検出される電圧と比較されるスレッシュホールド電圧として閾値設定できるため、さらにデューティ比を下げる方向に可変することも可能となる。
 これにより、LED発光部24を流れる電流iの実効値(RMS値)を下げて調光(減光)することも可能となる。
 ここで、スイッチング素子Q1がオフ状態になると、チョークコイルL1~L4の直列回路においては、電流iを流そうとする向きの逆起電力が励起されるが、その逆起電力による電流を吸収するためのダイオードD3が、チョークコイルL1の終端の端子T8からLED発光部24のアノード側端子TAへ向けて順方向となるように接続されている。
 一方、前述したように、LED発光部24のカソード側端子TKと整流回路部22のグランド側出力端子T5との間にバイパス回路部26及び電流検出部31が設けられている。
 バイパス回路部26は、スイッチング素子Q2と、そのスイッチング素子Q2に駆動電圧(ゲート端子電圧)を出力するハイパスフィルタ回路と、を含んでいる。
 ここで、バイパス回路部26のスイッチング素子Q2は、ゲート端子に入力される電圧に応じて、ドレイン端子とソース端子との間の電流の流れを制御するNチャンネルMOS型FETであって、ドレイン端子はLED発光部24のカソード側端子TKに接続され、ソース端子は整流回路部22のグランド側出力端子T5に電流検出部31を介して(電気的に)接続され、ゲート端子は、ハイパスフィルタ回路を介して整流回路部22の端子T4に接続されている。
 そのハイパスフィルタ回路は、第1のコンデンサC6と、一端子が第1のコンデンサC6の一端子に接続されて、第1のコンデンサに直列に接続される第1の抵抗R13と、第1の抵抗R13の他端子からスイッチング素子Q2のゲート端子へ順方向に接続される第1のダイオードD9と、スイッチング素子Q2のソース端子とゲート端子との間に電気的に接続される第2のコンデンサC7と、ソース端子とゲート端子との間に電気的に接続される第2の抵抗R14と、ソース端子からゲート端子へ順方向に電気的に接続されるツェナーダイオードD10と、ソース端子から第1の抵抗R13の他端子へ順方向に電気的に接続される第2のダイオードD8と、含んでいる。
 そして、第1のコンデンサC6の他端子は、整流回路部22の入力端子(端子T4を介して端子T3又は端子T6)のいずれか一方に接続されている。
 このハイパスフィルタ回路は、端子T3に入力される交流電流が所定の周波数以下である場合のものをカットオフするように、第1のコンデンサC6、第1の抵抗R13及び第2の抵抗R14の回路定数を選択すれば、コンデンサと抵抗から成るCR回路がハイパスフィルタとして作用するため、所定の周波数を超える周波数の交流電流のみを後段に通過させる。
 つまり、端子T3に入力される所定の周波数よりも高い周波数を有する交流電流により、第2のコンデンサC7と第2の抵抗R14とツェナーダイオードD10の高電圧側に直流電圧が生じ、スイッチング素子Q2をオン状態にできる電圧をゲート端子に出力している。
 このゲ-ト端子の電圧は、第1の抵抗R13と第2の抵抗R14の分圧比とゲート端子に入力される電圧を制限するツェナーダイオードD10のツェナー電圧に応じて適宜設定できるが、スイッチング素子Q2をオン状態にできるハイレベルのゲート端子の電圧範囲に設定すればよい。
 なお、ハイパスフィルタ回路は、交流電流の周波数が所定の周波数よりも高い場合に、その交流電流を通過させてスイッチング素子Q2のゲート端子をハイレベル(例えば、約DC14V)にするためのフィルタ用の入力回路であるため、整流回路部22のグランド側出力端子T5に対しては同じ交流電流(位相が180度異なるのみ)が入力される端子T6に接続されてもよい。
 以上の構成により、ハイパスフィルタ回路は、整流回路部22の入力端子に入力される交流電流が所定の周波数(本実施の形態では、第1のコンデンサC6の容量を100pF、第1の抵抗R13の抵抗値を51kΩ、第2の抵抗R14の抵抗値を51kΩと選定することにより、カットオフ周波数を実測で約5kHzとなるように設定した、以下同じ)よりも高い場合には、ドレイン端子からソース端子へ電流を流す所定のゲート電圧を出力し、交流電流が所定の周波数よりも低い場合には、ドレイン端子からソース端子へ電流を流さないゲート電圧を出力している。
 つまり、スイッチング素子Q2は、整流回路部22の入力端子から入力される交流電流が所定の周波数(約5kHz)よりも低い周波数である場合は、LED発光部24のカソード側端子TKからPWM制御部25のGND端子TGを介して整流回路部22のグランド側出力端子T5へ電流を流さず、整流回路部22の入力端子から入力される交流電流が所定の周波数(以下、カットオフ周波数と称し約5kHzとする)よりも高い周波数である場合は、LED発光部24のカソード側端子TKからPWM制御部25のGND端子TGを介して整流回路部22のグランド側出力端子T5へ電流を流すことを可能としている。
 その結果、一対の入力端子部に入力される外部の交流電流の周波数が所定の周波数よりも低い場合(例えば、グロースタータ式又はラピッドスタート式の安定器から入力された場合)には、LED発光部24を流れる電流iは、PWM制御部25により所定の周波数よりも高い周波数のパルス駆動でPWM制御され、パルス波(三角波)となる。
 一方、一対の入力端子部に入力される外部の交流電流の周波数が所定の周波数よりも高い場合(例えば、インバータ式の安定器から入力された場合)には、PWM制御部25は、バイパス回路部26によりバイパス(迂回)されるため、LED発光部24を流れる電流iは、PWM制御部25によるPWM制御がなされず、整流回路部22のグランド側出力端子T5へそのまま流れる。
 そのため、一対の入力端子部に入力された高い周波数の交流電流は、整流回路部22、平滑回路部23及びLED発光部24を通過するだけであるため、LED発光部24を流れる電流iは、一対の入力端子部に入力される交流電流が全波整流により直流化された波形となる(例えば、図12(e)参照)。
 また、電流検出部31は、抵抗R31とコンデンサC31のRC並列回路から構成されている。電流検出部31は、バイパス回路部26におけるスイッチング素子Q2がオン状態となる場合に、スイッチング素子Q2のドレイン端子からソース端子へ流れる電流の大きさを検出する。すなわち、電流検出部31は、一対の入力端子部に入力される外部の交流電流の周波数が所定の周波数よりも高くなるような場合、例えば安定器がインバータ式である場合に、LED発光部24に流れる電流iを検出する。本実施の形態では、電流検出部31は、自身に流れる電流値に応じた検出信号(直流電圧)をインダクタンス可変制御部32に出力する。
 さらに、インダクタンス可変制御部32は、マイクロプロセッサを含み、電流検出部31によって検出された電流の大きさに応じて(すなわち、電流検出部31からの直流電圧の大きさに応じて)、可変インダクタンス部L50,L60のインダクタンス値を制御する。
 例えば、図4(a)に示すように、可変インダクタンス部L50は、直列に接続されたインダクタL51とインダクタL52と、インダクタL51,L52それぞれに並列に接続されたスイッチ素子32a,32bとを有している。一方、図4(b)に示すように、可変インダクタンス部L60は、直列に接続されたインダクタL51とインダクタL52と、インダクタL51,L52の直列回路の両端に並列に接続されたスイッチ素子32cとを有している。なお、可変インダクタンス部L50,L60には、例えば、摺動式インダクタ、マグアンプ等が適用されてもよい。
 インダクタンス可変制御部32は、スイッチ素子32a,32b,32cをオン/オフ制御することによって、可変インダクタンス部L50,L60の総和インダクタンス値を可変することができる。例えば、図5及び図6に示すように、インダクタンス可変制御部32は、LED発光部24に流れる電流iの大きさが所定の範囲(L値非可変領域)内である場合には、パターン2のようにスイッチ素子32aをオン状態としスイッチ素子32b及び32cをオフ状態とすることにより、可変インダクタンス部L50,L60のインダクタンス値をインダクタL52,L61,L62の総和インダクタンス値に設定する。
 一方、LED発光部24に流れる電流iの大きさが所定の範囲より小さい場合(L値可変(降下)領域内にある場合)には、パターン3のようにスイッチ素子32a~32c全てをオン状態とすることにより、可変インダクタンス部L50,L60の総和インダクタンス値を小さく可変する。すると、定電力制御型のインバータ式安定器の出力電圧が小さくなり、出力電流が大きくなる。すなわち、LED発光部24に流れる電流iを大きくできるため、LED発光部24に流れる電流iの大きさを所定の範囲内に安定化することができる。
 また、LED発光部24に流れる電流iの大きさが所定の範囲より大きい場合(L値可変(上昇)領域内にある場合)には、パターン1のようにスイッチ素子32a~32c全てをオフ状態とすることにより、可変インダクタンス部L50,L60の総和インダクタンス値を大きく可変する。すると、定電力制御型のインバータ式安定器の出力電圧が大きくなり、出力電流が小さくなる。すなわち、LED発光部24に流れる電流iを小さくできるため、LED発光部24に流れる電流iの大きさを所定の範囲内に安定化することができる。
 一方、インダクタンス可変制御部32は、電流検出部31により検出された電流の大きさが所定の上限値を上回った場合(回路遮断領域内の場合)には、回路遮断部33を制御し、一対の入力端子部から整流回路部22へ流れる交流電流を遮断させる(過電流保護)。また、インダクタンス可変制御部32は、電流検出部31により検出された電流の大きさが所定の下限値を下回った場合(回路遮断領域内の場合)には、回路遮断部33を制御し、一対の入力端子部から整流回路部22へ流れる交流電流を遮断させる(何らかの電流異常保護)。
 なお、本実施の形態では、電流検出部31は、閾値素子34の両端が短絡された後に電流検出を行う。例えば、定電力制御型のインバータ式安定器の種類によっては、出力開始時に、蛍光ランプの状態把握(例えば、負荷側に蛍光ランプが装着されているか否かのチェック)のため、あらかじめ出力電圧を定格値よりも低めに設定し、適切な光量の得られないわずかな電流を流してそのときの出力電流の大きさを監視した後に出力電圧を所定の範囲まで上げてから定電力制御を行うものがある。しかしながら、本実施の形態では、一対の入力端子部に外部から所定の閾値を超える交流電流が入力されてから所定時間経過後に閾値素子34の両端が短絡され、閾値素子34の両端短絡後のLED発光部に流れる直流電流の大きさに応じて可変インダクタンス部のインダクタンス値が可変されるので、この種のインバータ式安定器であっても、検出すべきLED発光部を流れる電流(通常の点灯状態での電流)のみを検出し、誤った制御を防止することができる。
 次に、図7を参照して、安定器が定電力制御型のインバータ式である場合のLEDランプの電流制御方法を説明する。
 まず、初期設定として、インダクタンス可変制御部32によって、可変インダクタンス部L50,L60のインダクタンス値をパターン2に設定する(ステップS01)。
 次に、定電力制御型のインバータ式安定器から一対の入力端子部に所定の閾値を超える交流電流が入力されて所定の時間を経過すると、閾値素子34の両端が短絡され、可変インダクタンス部L50,L60及び整流回路部22に通常の点灯が可能な交流電流が流れる。すると、安定器がインバータ式であり、交流電流の周波数が所定の周波数よりも高いので、バイパス回路部26におけるスイッチング素子Q2がオン状態となり、可変インダクタンス部L50,L60を介して整流回路部22に流れてこの整流回路部22によって整流された電流がLED発光部24に供給される(ステップS02)。このとき、LED発光部24を流れる電流iは、PWM制御部25によりPWM制御されず、及び、平滑回路部23により平滑化されない(バイパスされる)。
 次に、電流検出部31によって、LED発光部24に流れる電流iの大きさを検出する(ステップS03)。電流検出部31によって検出された電流の大きさが所定の範囲(図6に示すL値非可変領域)内にある場合、インダクタンス可変制御部32は、可変インダクタンス部L50,L60のインダクタンス値をパターン2のまま不変とする(ステップS04)。
 しかし、電流検出部31によって検出された電流の大きさが所定の範囲より小さい場合(図6に示すL値可変(降下)領域内の場合)、インダクタンス可変制御部32によって、可変インダクタンス部L50,L60のインダクタンス値がパターン3に設定され、総和インダクタンス値が小さく可変される。すると、定電力制御型のインバータ式安定器の出力電圧が小さくなり、出力電流が大きくなる。すなわち、LED発光部24に流れる電流iを大きくできるため、LED発光部24に流れる電流iの大きさが所定の範囲内に安定化される(ステップS04)。
 一方、電流検出部31によって検出された電流の大きさが所定の範囲より大きい場合(図6に示すL値可変(上昇)領域内の場合)、インダクタンス可変制御部32によって、可変インダクタンス部L50,L60のインダクタンス値がパターン1に設定され、総和インダクタンス値が大きく可変される。すると、定電力制御型のインバータ式安定器の出力電圧が大きくなり、出力電流が小さくなる。すなわち、LED発光部24に流れる電流iを小さくできるため、LED発光部24に流れる電流iの大きさが所定の範囲内に安定化される(ステップS04)。
 なお、電流検出部31によって検出された電流の大きさが所定の上限値を上回った場合(図6に示す回路遮断領域内の場合)には、インダクタンス可変制御部32によって回路遮断部33を制御し、一対の入力端子部から整流回路部22に流れる交流電流が遮断される(過電流保護)。また、電流検出部31によって検出された電流の大きさが所定の下限値を下回った場合(図6に示す回路遮断領域内の場合)には、インダクタンス可変制御部32によって回路遮断部33を制御し、一対の入力端子部から整流回路部22に流れる交流電流が遮断される(何らかの電流異常保護)。
 次に、図8及び図9を参照し、安定器12が定電力制御型のインバータ式安定器であり、この安定器12でLEDランプ20を点灯させ、LED発光部24を流れる電流iの大きさに応じて可変インダクタンス部L50,L60のインダクタンス値を変化させたときのLEDランプ20の入力電圧VinとLED発光部24を流れる電流iの観測波形を説明する。
 なお、図8と図9とでは、異なる種別の定電力制御型のインバータ式安定器を用いて同様の観測を行った。図8(a)及び図9(a)は、可変インダクタンス部L50,L60の総和インダクタンス値が100μHであるときのLEDランプ20の入力電圧Vinを観測したものであって、縦軸は50V/divに相当する。また、図8(b)及び図9(b)は、可変インダクタンス部L50,L60の総和インダクタンス値が100μHであるときのLED発光部24を流れる電流iを観測したものであって、縦軸は200mA/divに相当する。一方、図8(c)及び図9(c)は、可変インダクタンス部L50,L60の総和インダクタンス値が400μHであるときのLEDランプ20の入力電圧Vinを観測したものであって、縦軸は50V/divに相当する。また、図8(d)及び図9(d)は、可変インダクタンス部L50,L60の総和インダクタンス値が400μHであるときのLED発光部24を流れる電流iを観測したものであって、縦軸は200mA/divに相当する。
 なお、電流検出部31における抵抗R31の抵抗値は1Ωであり、その両端電圧が390mVであるとき、すなわち、LED発光部24に流れる電流の大きさが390mAであるときを閾値として、それを超える場合に可変インダクタンス部L50,L60の総和インダクタンス値が100μH(パターン2)から400μH(パターン1)に切り替えられるように設定した。
 図8及び図9によれば、可変インダクタンス部L50,L60の総和インダクタンス値を100μHから400μHに大きく変化させることにより、インバータ式安定器の出力電圧が大きくなり、出力電流が小さく制御されて、所定の範囲(L値非可変領域)内の390mA以下に安定化されたことが観測された。
 次に、図10~図12を参照し、安定器12の各方式に応じて、一対の入力端子部(入力端子部20aと入力端子部20cとの間)の入力電圧Vin、スイッチング素子Q1のゲート端子の電圧Vg1、集積回路IC1の#2ピンである電流センサ端子電圧Vcs、スイッチング素子Q2のゲート端子の電圧Vg2、及びLED発光部24を流れる電流iの各観測波形を説明する。
 なお、ゲート端子の電圧Vg1、Vg2及び電流センサ端子電圧Vcsは、いずれもPWM制御部25のGND端子TGを基準(グランドレベル)として計測したものである。
 また、図10(e)、図11(e)、図12(e)に示したLED発光部24を流れる電流iは、LED発光部24(合計90個のLED)を流れる合計電流を挿入抵抗(1Ω)に流し、その抵抗にかかる電圧降下分を観測したものであって、図10(e)と図11(e)の縦軸は500mA/divに相当し、図12(e)の縦軸は200mA/divに相当する。
 まず、図10(a)~(e)は、安定器12としてグロースタータ式(2次電圧200V/2次電流0.42A)を用いた場合であって、図10(a)は、入力電圧Vinの波形を示し、図10(b)は、スイッチング素子Q1のゲート端子の電圧Vg1の波形を示し、図10(c)は集積回路IC1の電流センサ端子電圧Vcsの波形を示し、図10(d)は、スイッチング素子Q2のゲート端子の電圧Vg2の波形を示し、図10(e)は、LED発光部24を流れる電流iの波形を示している。
 まず、図10(a)で示したように、入力電圧Vinの波形の周波数としては商用周波数である60.1Hzが観測されている。
 この周波数は約5kHzに設定したカットオフ周波数より低いため、PWM制御部25の集積回路IC1のパルス駆動により、図10(b)で示したように実測では発振周期tOSC(μs)が約22.78(μs)であるスイッチング素子Q1のゲート端子の電圧Vg1が出力されている。
 ここで、スイッチング素子Q1は、ゲート端子に、ハイレベル(約DC7.5V)とローレベル(約0V)の電圧が約33%のデューティ比で交互に入力されて、周波数約43.9kHzでパルス駆動されている。
 これは、図10(c)で示したように、電流センサ端子電圧Vcsが約DC250mVに到達するまでは、スイッチング素子Q1のゲート端子にハイレベル(約DC7.5V)の電圧を出力し、電流センサ端子電圧Vcsが約DC250mVに到達すれば、スイッチング素子Q1のゲート端子にローレベル(約0V)の電圧を出力する集積回路IC1のPWM制御の動作によるものである。
 ここで、スイッチング素子Q1のゲート端子にハイレベル(約DC7.5V)の電圧が入力されてスイッチング素子Q1がオン状態になると、抵抗R3~R5に電流が流れるためLED発光部24を流れる電流iがリニアに上昇するが、スイッチング素子Q1のゲート端子にローレベル(約0V)の電圧が入力されるとスイッチング素子Q1がオフ状態となるため、電流センサ端子電圧Vcsはグランドレベル(0V)に降下する。
 一方、入力電圧Vinの波形の周波数は、約5kHzに設定したカットオフ周波数より低いため、前述したハイパスフィルタ回路によりスイッチング素子Q2のゲート端子には、図10(d)で示したように約DC50mVしか入力されず、スイッチング素子Q2がオフ状態になるため、ドレイン端子からソース端子へ電流が流れない。
 従って、図10(e)で示したように、LED発光部24を流れる電流iは、スイッチング素子Q1のゲート端子の電圧Vg1と同期して流れ、スイッチング素子Q1がオン状態で上昇し、スイッチング素子Q1がオフ状態で下降を始める(チョークコイルL1~L4による逆起電力により電流iはすぐには0Aには下がらない)。
 すなわち、LED発光部24を流れる電流iは、図10(b)で示したようにPWM制御部25の周波数約43.9kHzのパルス駆動によりPWM制御される。
 その結果、図10(e)に示したように、LED発光部24を流れる電流iは、周波数測定ではカットオフ周波数である5kHzよりも高い43.7kHzのパルス状(三角波)に出力され、実効値(RMS値)測定では約192.2mAと観測された。
 次に、図11(a)~(e)は、安定器12としてラピッドスタート式(2次電圧190V/2次電流0.42A)を用いた場合であって、図11(a)は、入力電圧Vinの波形を示し、図11(b)は、スイッチング素子Q1のゲート端子の電圧Vg1の波形を示し、図11(c)は、集積回路IC1の電流センサ端子電圧Vcsの波形を示し、図11(d)は、スイッチング素子Q2のゲート端子の電圧Vg2の波形を示し、図11(e)は、LED発光部24を流れる電流iの波形を示している。
 まず、図11(a)で示したように、入力電圧Vinの波形の周波数としては60.1Hzが観測されている。
 この周波数は約5kHzに設定したカットオフ周波数より低いため、PWM制御部25の集積回路IC1のパルス駆動により、図11(b)で示したように実測では発振周期tOSC(μs)が約22.78(μs)であるスイッチング素子Q1のゲート端子の電圧Vg1が出力されている。
 ここで、スイッチング素子Q1は、ゲート端子に、ハイレベル(約DC7.5V)とローレベル(約0V)の電圧が約43%のデューティ比で交互に入力されて、周波数約43.9kHzでパルス駆動されている。
 これは、図11(c)で示したように、電流センサ端子電圧Vcsが約DC250mVに到達するまでは、スイッチング素子Q1のゲート端子にハイレベル(約DC7.5V)の電圧を出力し、電流センサ端子電圧Vcsが約DC250mVに到達すれば、スイッチング素子Q1のゲート端子にローレベル(約0V)の電圧を出力する集積回路IC1のPWM制御の動作によるものである。
 ここで、スイッチング素子Q1のゲート端子にハイレベル(約DC7.5V)の電圧が入力されてスイッチング素子Q1がオン状態になると、抵抗R3~R5に電流が流れるためLED発光部24を流れる電流iがリニアに上昇するが、スイッチング素子Q1のゲート端子にローレベル(約0V)の電圧が入力されるとスイッチング素子Q1がオフ状態となるため、電流センサ端子電圧Vcsはグランドレベル(0V)に降下する。
 一方、入力電圧Vinの波形の周波数は、約5kHzに設定したカットオフ周波数より低いため、前述したハイパスフィルタ回路によりスイッチング素子Q2のゲート端子には、図11(d)で示したように約DC50mVしか入力されず、スイッチング素子Q2がオフ状態になるため、ドレイン端子からソース端子へ電流が流れない。
 従って、図11(e)で示したように、LED発光部24を流れる電流iは、スイッチング素子Q1のゲート端子の電圧Vg1と同期して流れ、スイッチング素子Q1がオン状態で上昇し、スイッチング素子Q1がオフ状態で下降を始める(チョークコイルL1~L4による逆起電力により電流iはすぐに0Aには下がらない)。
 すなわち、LED発光部24を流れる電流iは、図11(b)で示したようにPWM制御部25の周波数約43.9kHzのパルス駆動によりPWM制御される。
 その結果、図11(e)に示したように、LED発光部24を流れる電流iは、周波数測定ではカットオフ周波数である5kHzよりも高い43.6kHzのパルス状(三角波)に出力され、実効値(RMS値)測定では約195.7mAと観測された。
 最後に、図12(a)~(e)は、安定器12としてインバータ式(無負荷時2次電圧280V/2次電流0.225A)を用いた場合であって、図12(a)は、入力電圧Vinの波形を示し、図12(b)は、スイッチング素子Q1のゲート端子の電圧Vg1の波形を示し、図12(c)は、集積回路IC1の電流センサ端子電圧Vcsの波形を示し、図12(d)は、スイッチング素子Q2のゲート端子の電圧Vg2の波形を示し、図12(e)は、LED発光部24を流れる電流iの波形を示している。
 まず、図12(a)で示したように、入力電圧Vinの波形においては、周期t1が約13.7(μs)となり、周波数として73.0kHzが観測されている。
 この周波数は、約5kHzに設定したカットオフ周波数より高いため、スイッチング素子Q2のゲート端子には、図12(d)で示したようにハイレベル(約DC14V)の電圧Vg2が入力されるため、スイッチング素子Q2は常にオン状態となる。
 しかしながら、LED発光部24を流れた電流iは、前述したように抵抗R3、抵抗R4及び抵抗R5が端子T9と端子TGとの間に並列接続されているため、PWM制御部25には殆ど流れることなく、LED発光部24のカソード側端子TKからPWM制御部25のGND端子TGを介して整流回路部22のグランド側出力端子T5へ直接流れる。
 その結果、抵抗R3~R5には電流iが流れないため、電流センサ端子電圧Vcsが、図12(c)で示したようにグランドレベル(0V)で一定であるため、図12(b)で示したように駆動パルスのデューティ比が100%となり、PWM制御部25におけるスイッチング素子Q1のゲート端子の電圧Vg1は常にハイレベル(約DC7.5V)であり、スイッチング素子Q1はオン状態である。
 したがって、PWM制御部25は、LED発光部24を流れる電流iのPWM制御を行わない。
 そして、図12(e)で示したように、LED発光部24を流れる電流iは、PWM制御部25によりPWM制御されることなく、入力電圧Vinが全波整流された波形となり実効値(RMS値)測定では約199.3mAと観測された。
 また、PWM制御部25のパルス駆動によるPWM制御がなされないため、直流に重畳するリップル電圧波形分の周期t2が約6.9(μs)となり、LED発光部24を流れる電流iの周波数は、入力電圧Vinの周波数の2倍の約145.4kHzと観測された。
 したがって、LED発光部24を流れる電流iのリップル電圧波形分の周波数は、全波整流により、入力電圧Vinの波形の周波数の約2倍の周波数になっていることが確認できた。
 以上の観測により、照明装置10の安定器12がグロースタータ式、ラピッドスタート式又はインバータ式いずれの点灯方式であっても、LED発光部24を流れる電流iの実行値(RMS値)として190mA~200mAが実測定で得られ、照明用として点灯させることができることを確認した。
 同時に、安定器12がグロースタータ式やラピッドスタート式の場合であれば、入力電圧Vinの周波数は、約60Hzであるため、LED発光部24を流れる電流iは、PWM制御部25によりカットオフ周波数の5kHzよりも高い約43.6~43.7kHzの周波数のパルス駆動によりPWM制御されることも確認した。
 一方、安定器12がインバータ式の場合であれば、入力電圧Vinの周波数は、カットオフ周波数の5kHzよりも高い約73.0kHzであるため、LED発光部24を流れる電流iは、約145.4kHzとPWM制御部25のパルス駆動によるPWM制御はなされていないことを確認した。
 なお、本発明の技術的範囲は、上述したいずれかの実施の形態に限定されるものでなく、請求項に示した範囲で種々の変形が可能であり、かつ、異なる実施の形態にそれぞれ開示された技術的な手段を適宜組み合わせて得られるような実施の形態の変形例についても本発明の技術的範囲に含まれるものとする。
 例えば、本実施の形態では、蛍光ランプ用点灯装置の安定器がグロースタータ式、ラピッドスタート式又はインバータ式のいずれの点灯方式であっても、従前に装着されていた蛍光ランプ(LEDランプでもよい)と交換すれば、パルス駆動によるPWM制御により点灯可能な照明用として点灯させることができるように、PWM制御部25、平滑回路部23及びバイパス回路部26を備える形態を例示したが、変形例の1つである図13に示すように、LEDランプ200は、図1に示したPWM制御部25、平滑回路部23及びバイパス回路部26を備えない形態であってもよい。なお、図13では、図1で示した構成要素と同じ機能を有する要素について同一の符号を付している。
 ここで、LEDランプ200は、PWM制御部25、平滑回路部23及びバイパス回路部26を備えない形態であるため、一対の入力端子部に入力される交流電流の周波数に応じてパルス駆動によるPWM制御を行うことができないため、グロースタータ式、ラピッドスタート式の安定器に装着された場合には高い周波数のパルス駆動によるPWM制御を行えないが、インバータ式の安定器に装着された場合には前述した様にLED発光部24に流れる電流iを所定の範囲に安定化することができる。
 また、一対の入力端子部とは、少なくとも一対の入力端子部を含むことの意味であって、例えば直管型蛍光ランプの両端部の端子のように合計4つ(片側2つずつ)の入力端子部がある場合には、少なくともそのうちの2つの入力端子部(片側から2端子でもよいし、両側から2端子のいずれでもよい)に外部の交流電流が入力されるものであればよい。
 また、本実施の形態の説明においては、ある2端子間において別の端子を介して単に配線で接続されている場合は、配線抵抗等を無視し、その2端子間は直接接続されている(同電位である)ものと見なし説明している。
 また、一対の入力端子部に入力される交流電流の周波数を峻別する所定の周波数は、安定器がグロースタータ式やラピッドスタート式の場合の商用周波数(50Hz/60Hz)と、インバータ式の場合の高い周波数(約20~100kHz)と、を峻別できる周波数(カットオフ周波数)として約5kHzが好ましいが、65Hzよりも大きく、20kHzよりも小さい周波数の範囲において、ハイパスフィルタ回路の回路定数を変更することにより所望の周波数となるように適宜設定すればよい。
 同様に、PWM制御部によるパルス駆動の周波数やデューティ比は、LED発光部を流れる電流(照度)やPWM制御部のスイッチング素子の発熱などを考慮し、集積回路IC1のスペック範囲内で各ピンに接続された抵抗や駆動電圧等を適宜設定することにより設定されればよい。
 特に、参照に用いた回路図における回路構成や回路定数については、本発明の所期の目的を達成し且つ所望の効果が得られれば、上記実施の形態の説明において明示されていなくても、本発明の技術的範囲に含まれる範囲で適宜選択すればよい。
 次に、図14(a)と(b)を参照して、LEDランプ20と同じ構成であるLEDランプ50とLEDランプ60を直列接続して直列ラピッド式安定器に装着し点灯させた場合について説明する。
 まず、図14(a)で示したように、高電圧(HV)側出力端子T7とグランド側出力端子T5との間において、複数の抵抗R20、抵抗R21、ツェナーダイオードD20及び抵抗R22を直列接続し、抵抗R22に分圧された直流電圧(約DC250mVよりも小さく、高電圧(HV)の大きさと比例する電圧)を、集積回路IC1の#7ピンに入力すれば、一対の入力端子部に入力される電圧の大きさに応じて比例的にスレッシュホールド電圧を可変させることもできる。
 例えば、抵抗R20の抵抗値として1MΩ、抵抗R21の抵抗値として1MΩ、ツェナーダイオードD20のツェナー電圧として51V、抵抗R22の抵抗値として3.65kΩ、コンデンサC20の容量として1μFを選択すれば、高電圧(HV)側出力端子T7に165Vが出力された場合に集積回路IC1の#7ピンには実測で約215mVが入力される。
 このように、一対の入力端子部に入力される電圧と、PWM制御されるLED発光部を流れる電流が、比例的に増減する関係となるため、一対の入力端子部側からみたLEDランプ全体の入力インピーダンスが正性化(入力電圧が大きくなるにつれて流れる電流も比例的に増大すること)される。
 したがって、図14(b)で示したように、直列ラピッド式安定器において本実施の形態によるLEDランプ20と同じ構成であるLEDランプ50とLEDランプ60を直列接続した場合であっても、それぞれの入力インピーダンスに応じて直列ラピッド式安定器から入力される電圧が比例配分されるため、両者に同じ駆動電流を流すことが容易となり、本実施の形態におけるLEDランプの直列接続も可能となる。
 以上のように、本発明のLEDランプ、そのLEDランプを含む照明装置、及び、LEDランプの電流制御方法によれば、蛍光ランプ用点灯装置の安定器が定電力制御型のインバータ式であっても、従前に装着されていた蛍光ランプ(LEDランプでもよい)と交換すれば、LED発光部に流れる電流の大きさを所定の範囲に安定化可能なLEDランプ、そのLEDを含む照明装置、及び、LEDランプの電流制御方法としての用途に適用することができる。
 10、100 照明装置
 11 プラグ
 12 安定器
 20、50、60、200 LEDランプ
 20a,20b,20c,20d 入力端子部
 21 保護回路部
 22 整流回路部
 23 平滑回路部
 24 LED発光部
 25 PWM制御部
 26 バイパス回路部
 31 電流検出部
 R31 抵抗
 C31 コンデンサ
 32 インダクタンス可変制御部
 33 回路遮断部
 34 閾値素子
 D34a、D34b ツェナーダイオード
 RY34 リレー
 L50、L60 可変インダクタンス部
 L51、L52、L61,L62 インダクタ
 32a、32b、32c スイッチ素子
 C1、C2、C9、C10、C11、C12、C20 コンデンサ
 C3、C4、C5 電解コンデンサ
 C6 第1のコンデンサ
 C7 第2のコンデンサ
 D2、D3、D4、D5、D6、D7 ダイオード
 D8 第2のダイオード
 D9 第1のダイオード
 D1、D10、D20 ツェナーダイオード
 Z9、Z10、Z11、Z12 入力回路部
 HV 高電圧
 F1 ヒューズ
 IC1 集積回路
 L1、L2、L3、L4 チョークコイル
 Q1,Q2 スイッチング素子
 R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R20、R21、R22 抵抗
 R13 第1の抵抗
 R14 第2の抵抗
 RT 抵抗値
 SA1 2極放電管
 SA2 バリスタ
 S01、S02、S03、S04 ステップ
 T1、T2、T3、T4、T6、T8、T9、T11、T12 端子
 T5 グランド側出力端子
 T7 高電圧(HV)側出力端子
 TA アノード側端子
 TK カソード側端子
 TG GND端子
 Vin 入力電圧
 Vcs 電流センサ端子電圧
 Vg1 スイッチング素子Q1のゲート端子の電圧
 Vg2 スイッチング素子Q2のゲート端子の電圧
 i LED発光部を流れる電流
 tOSC 発振周期
 t1、t2 周期

Claims (6)

  1.  一対の入力端子部と、外部から前記一対の入力端子部に入力される交流電流を直流電流に整流する整流回路部と、前記整流回路部から出力される直流電流の通電により発光するLED発光部と、を含むLEDランプであって、
     前記一対の入力端子部と前記整流回路部との間の回路において、前記一対の入力端子部のいずれか一方の入力端子部から前記整流回路部を通過して他方の入力端子部へ流れる交流電流を流すための可変インダクタンス部と、
     前記整流回路部と前記LED発光部との間の回路において、前記LED発光部に流れる直流電流の大きさを検出する電流検出部と、
     前記電流検出部により検出された直流電流の大きさに応じて前記可変インダクタンス部のインダクタンス値を可変するためのインダクタンス可変制御部と、
     を有することを特徴とするLEDランプ。
  2.  前記一対の入力端子部と前記整流回路部との間の回路において、前記一対の入力端子部のいずれか一方の入力端子部から前記整流回路部を通過して他方の入力端子部へ流れる交流電流を流すための閾値素子が設けられ、
     その閾値素子は、前記一対の入力端子部に外部から所定の閾値を超える交流電流が入力されてから所定の時間を経過した後にその両端が短絡され、
     前記インダクタンス可変制御部は、前記閾値素子の両端が短絡された後に検出された直流電流の大きさに応じて前記可変インダクタンス部のインダクタンス値を可変することを特徴とする請求項1記載のLEDランプ。
  3.  前記一対の入力端子部と前記整流回路部との間の回路において、前記一対の入力端子部のいずれか一方の入力端子部から前記整流回路部を通過して他方の入力端子部へ流れる交流電流を遮断できる回路遮断部が設けられ、
     その回路遮断部は、前記電流検出部により検出された直流電流の大きさが所定の上限値を上回った場合または所定の下限値を下回った場合に、前記交流電流を遮断することを特徴とする請求項1または2記載のLEDランプ。
  4.  前記整流回路部と前記LED発光部との間の回路において、前記LED発光部に流す電流をデューティ比に基づいてPWM制御できるPWM制御部が設けられ、
     そのPWM制御部は、前記一対の入力端子部に入力される外部の交流電流の周波数に応じて、前記LED発光部に流れる電流の前記PWM制御を行う場合と、前記LED発光部に流れる電流の前記PWM制御を行わない場合と、に切り替えられ、
     前記PWM制御部がPWM制御を行わない場合において、前記電流検出部は前記LED発光部に流れる直流電流の大きさを検出し、その直流電流の大きさに応じて、前記インダクタンス可変制御部は前記可変インダクタンス部のインダクタンス値を可変することを特徴とする請求項1から3いずれか1項に記載のLEDランプ。
  5.  請求項1から4いずれか1項に記載のLEDランプを含むことを特徴とする照明装置。
  6.  一対の入力端子部と、外部から前記一対の入力端子部に入力される交流電流を直流電流に整流する整流回路部と、前記整流回路部から出力される直流電流の通電により発光するLED発光部と、を含むLEDランプの電流制御方法であって、
     前記一対の入力端子部と前記整流回路部との間の回路において、前記一対の入力端子部のいずれか一方の入力端子部から可変インダクタンス部を介して前記整流回路部を通過させて他方の入力端子部へ交流電流を流す段階と、
     前記整流回路部と前記LED発光部との間の回路において、前記LED発光部に流れる直流電流の大きさを検出する段階と、
     前記検出された直流電流の大きさに応じて前記可変インダクタンス部のインダクタンス値を可変する段階と、を含み、
     前記LED発光部に流れる直流電流の大きさを所定の範囲内となるように制御することを特徴とするLEDランプの電流制御方法。
PCT/JP2012/077644 2012-10-25 2012-10-25 Ledランプ、そのledランプを含む照明装置、及び、ledランプの電流制御方法 WO2014064813A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020137026518A KR101418579B1 (ko) 2012-10-25 2012-10-25 Led 램프, led 램프를 포함한 조명 장치, 및 led 램프의 전류 제어 방법
CN201280017095.7A CN103907209B (zh) 2012-10-25 2012-10-25 Led灯、包括该led灯的照明装置、以及led灯的电流控制方法
PCT/JP2012/077644 WO2014064813A1 (ja) 2012-10-25 2012-10-25 Ledランプ、そのledランプを含む照明装置、及び、ledランプの電流制御方法
SG11201404002XA SG11201404002XA (en) 2012-10-25 2012-10-25 Led lamp, illumination device including the ledlamp and current control method of the led lamp
US14/110,541 US8779679B2 (en) 2012-10-25 2012-10-25 LED lamp, illumination device including the LED lamp and current control method of the LED lamp
JP2013511435A JP5266594B1 (ja) 2012-10-25 2012-10-25 Ledランプ、そのledランプを含む照明装置、及び、ledランプの電流制御方法
EP12887278.5A EP2793276B1 (en) 2012-10-25 2012-10-25 Led lamp, lighting device including led lamp, and method for controlling electric current of led lamp
TW102136371A TWI432082B (zh) 2012-10-25 2013-10-08 LED lights, including LED lights lighting devices and LED lights current control method
IN6161DEN2014 IN2014DN06161A (ja) 2012-10-25 2014-07-22
HK14109982.5A HK1196704A1 (en) 2012-10-25 2014-10-07 Led lamp, lighting device including led lamp, and method for controlling electric current of led lamp led led led

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/077644 WO2014064813A1 (ja) 2012-10-25 2012-10-25 Ledランプ、そのledランプを含む照明装置、及び、ledランプの電流制御方法

Publications (1)

Publication Number Publication Date
WO2014064813A1 true WO2014064813A1 (ja) 2014-05-01

Family

ID=49179118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077644 WO2014064813A1 (ja) 2012-10-25 2012-10-25 Ledランプ、そのledランプを含む照明装置、及び、ledランプの電流制御方法

Country Status (10)

Country Link
US (1) US8779679B2 (ja)
EP (1) EP2793276B1 (ja)
JP (1) JP5266594B1 (ja)
KR (1) KR101418579B1 (ja)
CN (1) CN103907209B (ja)
HK (1) HK1196704A1 (ja)
IN (1) IN2014DN06161A (ja)
SG (1) SG11201404002XA (ja)
TW (1) TWI432082B (ja)
WO (1) WO2014064813A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6011676B1 (ja) * 2015-04-30 2016-10-19 株式会社リコー 照明灯、照明装置、及び点灯制御回路
US11819621B2 (en) 2019-08-05 2023-11-21 Dynasthetics, Llc Apparatus for connecting oxygen delivery control instrument to patient delivery device

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9497821B2 (en) 2005-08-08 2016-11-15 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US10021742B2 (en) 2014-09-28 2018-07-10 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11131431B2 (en) 2014-09-28 2021-09-28 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
TWI523577B (zh) * 2014-01-14 2016-02-21 鉅東應用工程股份有限公司 發光裝置
JP6354265B2 (ja) * 2014-02-26 2018-07-11 株式会社リコー 照明灯及び照明装置、照明灯の接続方法
JP6330431B2 (ja) * 2014-02-26 2018-05-30 株式会社リコー 照明灯及び照明装置
JP6432147B2 (ja) * 2014-02-26 2018-12-05 株式会社リコー 照明灯及び照明装置
US9635717B2 (en) * 2014-03-04 2017-04-25 Wei-Che Hsieh LED lamp
JP6455030B2 (ja) 2014-09-01 2019-01-23 株式会社リコー 照明灯及び照明装置
CN205213093U (zh) 2014-09-28 2016-05-04 嘉兴山蒲照明电器有限公司 整流滤波电路、灯及led直管灯
US10560989B2 (en) 2014-09-28 2020-02-11 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US10208898B2 (en) 2015-04-29 2019-02-19 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp with operating modes compatible with electrical ballasts
US9689536B2 (en) 2015-03-10 2017-06-27 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US10845008B2 (en) 2014-09-28 2020-11-24 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED filament and LED light bulb
US10054271B2 (en) 2015-03-10 2018-08-21 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US9894732B2 (en) * 2014-10-17 2018-02-13 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp compatible with different sources of external driving signal
US9557044B2 (en) 2014-10-20 2017-01-31 Energy Focus, Inc. LED lamp with dual mode operation
US10514134B2 (en) 2014-12-05 2019-12-24 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US9867239B2 (en) 2015-03-10 2018-01-09 Jiaxing Super Lighting Electric Appliance Co., Ltd. Light emiting diode (LED) tube lamp capable of adapting to different driving environments
US9903577B2 (en) 2015-03-10 2018-02-27 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp including light strip including a pad and an opening formed on the pad
US9897265B2 (en) 2015-03-10 2018-02-20 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp having LED light strip
US9826585B2 (en) 2015-03-10 2017-11-21 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US9820341B2 (en) 2015-03-10 2017-11-14 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp having mode switching circuit and auxiliary power module
US11519565B2 (en) 2015-03-10 2022-12-06 Jiaxing Super Lighting Electric Appliance Co., Ltd LED lamp and its power source module
US11028973B2 (en) 2015-03-10 2021-06-08 Jiaxing Super Lighting Electric Appliance Co., Ltd. Led tube lamp
US10197225B2 (en) 2015-03-10 2019-02-05 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US9801240B2 (en) 2015-03-10 2017-10-24 Jiaxing Super Lighting Electric Appliance Co., Ltd. Light emitting diode (LED) tube lamp
RU2017134541A (ru) * 2015-03-17 2019-04-04 Филипс Лайтинг Холдинг Б.В. Светодиодная лампа в виде трубки
US9750096B2 (en) 2015-03-25 2017-08-29 Jiaxing Super Lighting Electric Appliance Co., Ltd. Dual-Mode LED tube lamp
FI3275289T3 (fi) 2015-03-26 2024-04-02 Silicon Hill Bv LED-valaisujärjestelmä
US9913336B2 (en) 2015-04-03 2018-03-06 Jiaxing Super Lighting Electric Appliance Co., Ltd. Light emiting diode (LED) tube lamp compatible with different ballasts providing external driving signal
US10070498B2 (en) 2015-04-14 2018-09-04 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp with improved compatibility with electrical ballasts
US9841174B2 (en) 2015-04-29 2017-12-12 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
KR101580666B1 (ko) * 2015-05-22 2015-12-28 주식회사 파워웰 컨버터 내장형 led램프의 전원구동장치
DE102015112635B4 (de) * 2015-07-31 2022-11-24 Pictiva Displays International Limited Optoelektronische Baugruppe und Verfahren zum Betreiben einer optoelektronischen Baugruppe
KR102342546B1 (ko) * 2015-08-12 2021-12-30 삼성전자주식회사 Led 구동 장치, 조명 장치 및 전류 제어 회로
JP2017050063A (ja) 2015-08-31 2017-03-09 株式会社リコー 照明灯、照明装置及び照明灯の点灯方法
CN106507556A (zh) * 2015-09-07 2017-03-15 汇能灯光有限公司 Led灯具及其启动器
CN107396498B (zh) * 2015-09-14 2019-07-23 昂宝电子(上海)有限公司 用于发光二极管照明系统中的电流调节的系统和方法
US11035526B2 (en) 2015-12-09 2021-06-15 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US9717123B1 (en) * 2016-10-17 2017-07-25 Integrated Silicon Solution, Inc. Audible noise reduction method for multiple LED channel systems
DK3809803T3 (da) * 2019-10-15 2023-04-11 Silicon Hill Bv Elektronisk sikkerhedsafbryder for LED-rør

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015886A (ja) 2000-06-29 2002-01-18 Matsushita Electric Works Ltd 放電灯点灯装置
WO2006068055A1 (ja) * 2004-12-24 2006-06-29 Minebea Co., Ltd. 多灯式放電灯点灯装置
EP1843639A1 (en) * 2006-04-06 2007-10-10 Kwang Yang Motor Co., Ltd. LED car lamp apparatus
JP2009252344A (ja) * 2008-04-01 2009-10-29 Sharp Corp 照明用白色led駆動回路並びにこれを備えた照明装置及び電子機器
JP2010034012A (ja) 2008-07-25 2010-02-12 Ishii Kk 省エネルギー型光触媒led蛍光灯
JP2010212163A (ja) * 2009-03-11 2010-09-24 Hiroshi Sasaki 発光素子を使用した照明器具
JP2010212162A (ja) * 2009-03-11 2010-09-24 Hiroshi Sasaki 発光素子を使用した照明器具
JP2010218961A (ja) 2009-03-18 2010-09-30 Panasonic Electric Works Co Ltd 低圧放電灯点灯装置及びそれを用いた照明器具
JP2011243331A (ja) * 2010-05-14 2011-12-01 Fkk Co Ltd Led電源回路
JP3174463U (ja) * 2012-01-10 2012-03-22 有限会社テクニカ Led照明灯
JP2012119541A (ja) * 2010-12-01 2012-06-21 Ccs Inc Led照明装置用電源システム及び給電方法
JP5108994B1 (ja) * 2012-04-09 2012-12-26 株式会社エム・システム技研 Ledランプ及びそのledランプを含む照明装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005743A (ja) 2005-06-24 2007-01-11 Core Technology:Kk Led照明用電源装置
RU2009138340A (ru) * 2007-03-20 2011-04-27 Эксесс Бизнесс Груп Интернешнл ЛЛС (US) Источник питания
JP2011024331A (ja) 2009-07-15 2011-02-03 Hitachi Ltd 回転電機
JP2012023001A (ja) * 2009-08-21 2012-02-02 Toshiba Lighting & Technology Corp 点灯回路及び照明装置
CN102244955B (zh) * 2010-05-14 2015-12-30 皇家飞利浦电子股份有限公司 自适应电路
US9178369B2 (en) * 2011-01-18 2015-11-03 Mojo Mobility, Inc. Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system
JP2013020931A (ja) * 2011-06-16 2013-01-31 Sanken Electric Co Ltd Led点灯装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015886A (ja) 2000-06-29 2002-01-18 Matsushita Electric Works Ltd 放電灯点灯装置
WO2006068055A1 (ja) * 2004-12-24 2006-06-29 Minebea Co., Ltd. 多灯式放電灯点灯装置
EP1843639A1 (en) * 2006-04-06 2007-10-10 Kwang Yang Motor Co., Ltd. LED car lamp apparatus
JP2009252344A (ja) * 2008-04-01 2009-10-29 Sharp Corp 照明用白色led駆動回路並びにこれを備えた照明装置及び電子機器
JP2010034012A (ja) 2008-07-25 2010-02-12 Ishii Kk 省エネルギー型光触媒led蛍光灯
JP2010212163A (ja) * 2009-03-11 2010-09-24 Hiroshi Sasaki 発光素子を使用した照明器具
JP2010212162A (ja) * 2009-03-11 2010-09-24 Hiroshi Sasaki 発光素子を使用した照明器具
JP2010218961A (ja) 2009-03-18 2010-09-30 Panasonic Electric Works Co Ltd 低圧放電灯点灯装置及びそれを用いた照明器具
JP2011243331A (ja) * 2010-05-14 2011-12-01 Fkk Co Ltd Led電源回路
JP2012119541A (ja) * 2010-12-01 2012-06-21 Ccs Inc Led照明装置用電源システム及び給電方法
JP3174463U (ja) * 2012-01-10 2012-03-22 有限会社テクニカ Led照明灯
JP5108994B1 (ja) * 2012-04-09 2012-12-26 株式会社エム・システム技研 Ledランプ及びそのledランプを含む照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2793276A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6011676B1 (ja) * 2015-04-30 2016-10-19 株式会社リコー 照明灯、照明装置、及び点灯制御回路
US11819621B2 (en) 2019-08-05 2023-11-21 Dynasthetics, Llc Apparatus for connecting oxygen delivery control instrument to patient delivery device

Also Published As

Publication number Publication date
IN2014DN06161A (ja) 2015-08-21
US20140117853A1 (en) 2014-05-01
JPWO2014064813A1 (ja) 2016-09-05
EP2793276A4 (en) 2015-09-23
TWI432082B (zh) 2014-03-21
KR20140065377A (ko) 2014-05-29
US8779679B2 (en) 2014-07-15
CN103907209A (zh) 2014-07-02
CN103907209B (zh) 2015-10-21
EP2793276B1 (en) 2016-09-21
KR101418579B1 (ko) 2014-07-10
JP5266594B1 (ja) 2013-08-21
TW201404242A (zh) 2014-01-16
HK1196704A1 (en) 2014-12-19
EP2793276A1 (en) 2014-10-22
SG11201404002XA (en) 2014-10-30

Similar Documents

Publication Publication Date Title
WO2014064813A1 (ja) Ledランプ、そのledランプを含む照明装置、及び、ledランプの電流制御方法
JP5108994B1 (ja) Ledランプ及びそのledランプを含む照明装置
JP6356688B2 (ja) レトロフィット発光ダイオード管
JP4944562B2 (ja) スイッチング電源装置
US8049430B2 (en) Electronic ballast having a partially self-oscillating inverter circuit
JP4748026B2 (ja) 位相制御可能な直流定電流電源装置
US8049432B2 (en) Measurement circuit for an electronic ballast
KR101521834B1 (ko) 안정기를 이용한 led 조명 장치
KR20140105658A (ko) 안정기를 이용한 led 조명 장치
US20100225239A1 (en) Methods and apparatus for a high power factor, high efficiency, dimmable, rapid starting cold cathode lighting ballast
JP4748025B2 (ja) 位相制御型電源装置
JP2008104275A (ja) 無負荷時発振停止機能付きの定電流制御型dc−dcコンバータ回路
JP5613424B2 (ja) 発光ダイオード点灯装置
WO2009122232A1 (en) Improved protection circuit for electronic converters and corresponding method
KR101564546B1 (ko) 안정기를 이용한 led조명 장치
JP4706148B2 (ja) 放電ランプ点灯装置
KR20180133604A (ko) 형광램프용 안정기에 적용되는 엘이디램프 점등제어장치
JP2009026466A (ja) 照明制御回路
KR100865746B1 (ko) 램프의 안정기 및 그의 동작 방법
TW200913791A (en) Self-ocillating electronic ballast with no-load protection circuit
JPH0732071B2 (ja) El素子の点灯制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013511435

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137026518

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14110541

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887278

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012887278

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012887278

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE