WO2014063590A1 - 交错式llc均流变换器 - Google Patents

交错式llc均流变换器 Download PDF

Info

Publication number
WO2014063590A1
WO2014063590A1 PCT/CN2013/085402 CN2013085402W WO2014063590A1 WO 2014063590 A1 WO2014063590 A1 WO 2014063590A1 CN 2013085402 W CN2013085402 W CN 2013085402W WO 2014063590 A1 WO2014063590 A1 WO 2014063590A1
Authority
WO
WIPO (PCT)
Prior art keywords
llc
windings
interleaved
output
converter
Prior art date
Application number
PCT/CN2013/085402
Other languages
English (en)
French (fr)
Inventor
黎昆凤
张华丽
邓彦彦
顾亦磊
阳岳丰
Original Assignee
伊顿公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊顿公司 filed Critical 伊顿公司
Priority to US14/437,416 priority Critical patent/US9735685B2/en
Priority to EP13849068.5A priority patent/EP2911285A4/en
Publication of WO2014063590A1 publication Critical patent/WO2014063590A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a LLC converter, and more particularly to an interleaved LLC current sharing converter. Background technique
  • the LLC topology (see Figure 1) is widely used in a variety of products, such as LCD TVs, network power supplies, etc. LLC has at least the following advantages: First, LLC can realize ZVS of the switching tube without external circuit, while meeting the requirements of high efficiency and high frequency; Secondly, the secondary side rectifier ZCS and low VF in LLC further realize high Efficiency, so it is very suitable for the two-stage topology with PFC in the previous stage, which has the efficiency of improving AC input and DC output; Secondly, LLC has no output inductance and low cost; Finally, below 500W In applications, LLC is easy to implement magnetic integration technology.
  • the LLC topology has been widely used because of the above advantages, because the LLC has no output filter inductor, especially for low voltage output, high current, and high power, in order to solve the problem of excessive current ripple, it needs to be output.
  • a large number of capacitors are connected in parallel to absorb current ripple.
  • the interleaved LLC topology (see Figure 2) significantly solves the current ripple problem and reduces the stress of the capacitor, so in high-power or high-current applications, interleaved LLC is applied. Is a better choice.
  • Interleaved LLC is two LLC converters with 90 drivers. Parallel operation in the case of phase difference. In practical applications, the parameters of the two resonant cavities are not necessarily identical. Since the output voltages of the interleaved LLC are equal, they have the same gain, when there are errors in the parameters of the two resonators:
  • G G 2 ⁇ Q, ⁇ Q 2 ⁇ .
  • the present invention is directed to overcoming the current sharing problem of the interleaved LLC topology, making it applicable to high power, high current, and high frequency applications.
  • the present invention provides an interleaved LLC current sharing converter.
  • the interleaved LLC current sharing converter includes: an interleaved LLC circuit consisting of an even number of LLC circuits connected in parallel and a plurality of windings of the same number as the LLC circuit.
  • the first polarity ends of the output DC side of each of the LLC circuits collectively constitute a first output; the first ends of each of the windings together form a second output a first one of the plurality of windings surrounds the magnetic core in a first direction, a second half of the plurality of windings surrounding the magnetic core in a second direction; each of the windings has an equal inductance, and a first one of the plurality of windings is inversely coupled to a second one of the plurality of windings; and a second polarity end of the output DC side of each of the LLC circuits is coupled to one of the windings The second ends are connected.
  • the interleaved LLC current sharing converter further includes an output capacitor connected to the first output end and the second output end. between.
  • the aforementioned output capacitor is an electrolytic capacitor.
  • the magnetic core in the aforementioned interleaved LLC current sharing converter is a closed magnetic core.
  • the interleaved LLC circuit in the aforementioned interleaved LLC current sharing converter is constructed by paralleling two LLC circuits.
  • the inductance of the winding in the interleaved LLC current-sharing converter does not exceed /n 2
  • n is the turns ratio of the transformer in the LLC circuit
  • is the interleaved LLC The sense of the resonant inductance in the LLC circuit when the current sharing converter does not include the plurality of windings.
  • the inductance of the aforementioned winding does not exceed ⁇ 2 ⁇ 2 ).
  • the resonance parameter of the LLC circuit in the aforementioned interleaved LLC current sharing converter does not exceed 10%.
  • Figure 3 shows the current simulation waveform of ⁇ , G with 5% error.
  • Figure 4a is a top view of one embodiment of the present invention.
  • Figure 4b is a schematic diagram of the working principle of the coupled inductor.
  • Figure 5a is a top view of one embodiment of the present invention.
  • Figure 5b is a graph of the output current waveform for the embodiment of Figure 5a without the 5% component error.
  • Figure 5c is a graph of the output current waveform for the embodiment of Figure 5a with 5% component error.
  • Figure 6 is a top view of one embodiment of the present invention.
  • Figure 7 is a top view of one embodiment of the present invention. detailed description
  • an embodiment of the present invention provides an interleaved LLC current equalizer 400 as illustrated in Figure 4a.
  • the interleaved LLC current sharing converter 400 is constructed of an interleaved LLC circuit in which two LLC circuits 401 are connected in parallel and a coupled inductor 402.
  • the LLC circuit 401 can be any of the LLC topologies available on the market.
  • the coupled inductor 402 is comprised of two windings 403 and a magnetic core 404 between the output diode 405 of the LLC circuit 401 and the output capacitor 406 of the LLC current sharing converter 400.
  • the magnetic core 404 can be an open core or a closed core.
  • the magnetic core 404 is a closed magnetic core.
  • the closed core has less interference to surrounding components, and the inductor is easier to manufacture in multiple windings.
  • the positive side 407 of the output DC side of the two LLC circuits 401 together form a first output 408; and the first ends 409 of the two windings 403 together form a second output 410.
  • Second, one of the two windings 403 surrounds the core 404 in a first direction, and the other of the two windings 403 surrounds the core 404 in a second direction.
  • the inductances of the two windings 403 are equal, and a reverse coupling is formed on the magnetic core 404.
  • the output capacitor 406 is coupled between the first output terminal 408 and the second output terminal 410; the output capacitor 406 is a commonly available capacitor on the market, such as a thin film capacitor or an electrolytic capacitor.
  • Figure 4a can be viewed as cutting the resonant inductor r in T ⁇ and ⁇ 2 in a simple interleaved LLC circuit (see Figure 2) into rl , L x ⁇ L rl , L 2 , where ⁇ and 2 Placed in the cavity to participate in resonance, the inductance is ⁇ ⁇ ( ⁇ is the coefficient of the sensed value of the primary side resonant inductance); and 2 are the two windings placed after the secondary output diode 405 and coupled to each other 403 is a sense value generated on the magnetic core 404, and the sense value is (1- ⁇ ) ⁇ 2 , where ⁇ is a transformer turns ratio.
  • the interleaved LLC utilizes the coupled inductor 402 placed in the secondary side portion.
  • the LLC circuit 401 is not evenly flowing, different mutual inductance is generated on the coupled inductor 402 due to the action of the current, and the refracted to the primary side during operation to participate in the resonance to achieve The purpose of current sharing.
  • must be greater than zero, otherwise the primary side will be completely non-inductive and not an LLC circuit. Accordingly, when ⁇ is greater than zero, the secondary side sense value and 2 in one embodiment of the present invention are smaller than ⁇ / ⁇ 2 .
  • the secondary side sense value and 2 do not exceed (2 ⁇ n 2 ).
  • the operating frequency of each LLC circuit 401 in the interleaved LLC current sharing converter 400 may not be the same. However, in a preferred embodiment, the operating frequency of each LLC circuit 401 in the interleaved LLC current sharing converter 400 is the same. In this embodiment, since the operating frequency of each LLC circuit 401 is the same, we can use a controller (not shown in Figure 4a) to control all of the LLC circuits that make up the interleaved LLC circuit 400. 401. This control method is simpler and reduces the production cost of the device compared to devices with different operating frequencies.
  • the phase error angle when the LLC circuit 401 in the interleaved LLC current sharing converter 400 is operated in parallel is not particularly limited.
  • the LLC circuit 401 of the interleaved LLC current sharing converter 400 operates in parallel at a phase misalignment angle of 180/N degrees, where N is the number of the LLC circuits 401.
  • the misalignment angle is 180/N degrees
  • the output current ripple is minimum; and, with respect to the device in which each LLC circuit 401 is not misaligned by 180/N degrees, the output capacitance 406 required by the device in this embodiment is small. .
  • the LLC current sharing converter 400 can also be connected to a single input power source or a plurality of different input power sources. However, in a preferred embodiment, the LLC current sharing converter further includes a single input power source 413.
  • the use of a single power supply 413 facilitates the implementation of a high-power, high-current PFC two-stage topology (not shown in Figure 4a). Because the current sharing circuit can be configured inside the structure, the integration of the module is improved, and the application of high power level is simplified.
  • the component parameters of the LLC circuit 401 have certain errors, and the error direction and the specific error value are not easy to accurately control. In general, component errors can only be controlled within a certain percentage. In one embodiment of the invention, the error of the resonant parameter of the LLC circuit 401 does not exceed 10%. Because the deviation allowed by the LLC circuit 401 component is larger, the larger the required coupling inductance 402 to achieve the required shunt accuracy, the greater the voltage stress that the diode 405 is subjected to, so it is desirable to control the parameter error of the LLC circuit 401 component as much as possible. . Preferably, The error (resonant inductance ⁇ , resonant capacitance C r ) of the LLC circuit 401 component in this embodiment does not exceed 5%.
  • the component parameter error of the LLC circuit 401 is relatively difficult to control. Therefore, compared with the parameter error of the LLC circuit 401, a more feasible current sharing path is to make the distribution of the resonant inductors in the two resonant cavities of T xl and ⁇ ⁇ 2 consistent:
  • L m L 2 + L l2 , where n and r02 are the senses of the actual inductance and mutual inductance of the coupled inductor 402; 12 and 21 are the mutual inductance of the interaction. This is the case, when / 01 > / 02 , because:
  • the coupled inductor 402 in the embodiment shown in FIG. 4a can achieve negative feedback for the purpose of current sharing between the two LLC circuits 401.
  • the interleaved LLC current sharing converter 500 is constructed of 900 W interleaved half-bridge LLC.
  • the interleaved LLC circuit includes two LLC circuits 401 and includes a coupled inductor 402 formed by rewinding the enclosed magnetic core 404 by two windings 504 having the same sense value.
  • the waveform of the output current of the two LLC circuits 401 is as shown in FIG. 5b; if the parameter T of the resonant cavity xl + 5% error increase, to increase the resonance parameters ⁇ ⁇ 2 -5% error, the two circuit LLC
  • the waveform of the output current is shown in Figure 5c.
  • the currents / 01 and / are output. 2 solid state equilibrium; in the case of ⁇ 5% component error in Figure 5c, the output current /
  • can also meet 10% current sharing accuracy. It can be seen that the interleaved LLC current sharing converter 500 in this embodiment effectively overcomes the problem of uneven current distribution due to the elusiveness of the LLC resonator parameters in the prior art.
  • the two LLC circuits in the interleaved LLC current sharing converter of the previous embodiment are the negative connection coupling inductances of the diodes at the output of the DC side.
  • two LLC circuits 401 are connected to the coupled inductor 402 at the anode 407 of the diode at the output of the DC side.
  • the two LLC circuits 401 When the two LLC circuits 401 are connected to the coupled inductor 402 at the anode 407 of the diode 405, the anode 411 of the output DC side of the LLC circuit 401 collectively constitutes the first output terminal 408; and, the two windings 403 The first ends 409 together form a second output 410.
  • one of the two windings 403 surrounds the core 404 of the coupled inductor 402 in a first direction, and the other of the two windings 403 surrounds the core 404 in a second direction.
  • the positive side 407 of the output DC side of the two LLC circuits 401 is respectively associated with the second end 412 of the two windings 403 (i.e., not with the other winding 403)
  • One ends of the second output terminal 410 are connected.
  • the inductances of the two windings 403 are equal, forming a reverse coupling on the magnetic core 404; and, the output capacitor 406 is connected to Between the first output end 408 and the second output end 410.
  • this embodiment is identical to the embodiment of Figs. 4a, 5a in terms of the current sharing effect.
  • the interleaved LLC current sharing converter of the previous embodiment includes two parallel LLC circuits.
  • the embodiment of Figure 7 is coupled to four LLC circuits 401 for illustrating that the interleaved LLC current sharing converter of the present invention is suitable for any even number of interleaved LLC circuits in parallel.
  • the interleaved LLC current sharing converter 700 is constructed of an interleaved LLC circuit in which four LLC circuits 401 are connected in parallel and a coupled inductor 402.
  • the LLC circuit 401 can be any device on the market that can implement an ordinary LLC topology.
  • the coupled inductor 402 is comprised of four windings 403 and a closed core 404 between the output diode 405 of the LLC circuit 401 and the output capacitor 406 of the LLC current sharing converter 700.
  • the positive electrodes 407 on the output DC side of the four LLC circuits 401 together constitute a first output terminal 408; and, the first ends 409 of the four windings 403 together constitute a second output terminal 410.
  • the inductive quantities of 403 are equal, and a reverse coupling is formed on the magnetic core 404.
  • the output capacitor 406 is connected between the first output terminal 408 and the second output terminal 410; the output capacitor 406 is a commonly available capacitor on the market, such as a film capacitor or an electrolytic capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种交错式LLC均流变换器,包括:交错式LLC电路,由偶数个LLC电路(401)并联构成;和与LLC电路相同个数的多个绕组(403),每个LLC电路的输出直流侧的第一极性端(407)共同构成第一输出端(408);每个绕组的第一端(409)共同构成第二输出端(410);多个绕组中的第一半数以第一方向环绕磁芯(404),多个绕组中的第二半数以第二方向环绕磁芯;每个多个绕组的感值相等,并且多个绕组中的第一半数与多个绕组中的第二半数构成反向藕合;和每个LLC电路的输出直流侧的第二极性端(411)与一个绕组的第二端(412)相连接。

Description

交错式 LLC均流变换器 技术领域
本发明涉及一种 LLC变换器, 尤其是一种交错式 LLC均流变换器。 背景技术
LLC拓朴(参见图 1 )被广泛的应用在各类产品中, 如液晶电视, 网络 电源等。 LLC至少具有下列优点: 首先, LLC在无外加电路的条件下能实 现开关管的 ZVS, 同时满足高效率和高频率的需求; 其次, LLC中的副边 整流管 ZCS和低的 VF进一步实现高效率, 因此非常适合用于在前一级为 PFC的两级拓朴结构中, 有提升交流输入、 直流输出时的效率; 再其次, LLC无输出电感, 成本低; 最后, 在低于 500W的应用中, LLC容易实现 磁集成技术。
虽然因为以上的优点使 LLC拓朴得到了广泛的应用,但是因为 LLC无 输出滤波电感, 尤其是低电压输出、 大电流、 大功率的场合, 为了解决电 流纹波过大的问题, 需在输出端并联大量的电容去吸收电流纹波。 相对普 通 LLC拓朴来说, 交错式 LLC拓朴(参见图 2 )显着地解决了电流纹波 的问题, 并减小电容的应力, 故在大功率或大电流的应用中, 应用交错式 LLC是一个较好的选择。 交错式 LLC是两个 LLC变换器在驱动有 90。相 位差的情况下并机工作。在实际应用中,两谐振腔的参数不一定完全一致。 因为交错式 LLC的输出电压是相等的,故有相同的增益, 当两谐振腔的参 数有误差时:
Figure imgf000003_0001
G =G2 → Q,≠Q2 → 。
可见, 当两谐振腔的参数不一致时, 交错式 LLC 的两变压器 T T2 处于不同的负载条件, 愈恶劣的谐振参数的误差导致愈严重的电流不均 衡。 由图 3可见, 当 900W半桥式交错式 LLC的谐振参数存在 ±5%的误差 并且满载运作时, 其中一个 LLC变换器的输出电流 /01几乎为零, 处于轻 载条件。 在实际的应用中, 在最恶劣的误差条件下, 当其中一个 LLC处于 轻载时, 另一个 LLC变换器却已超载, 严重时甚至引起损坏。 不幸的是, 对于交错式 LLC来说, 准确掌握谐振参数(谐振电感 L 谐振电容 Cr,) 向来比较困难, 这种困难构成交错式 LLC应用上的瓶颈。 发明内容
本发明旨在克服交错式 LLC拓朴的均流问题, 使之可应用于大功率、 大电流和高频率的场合。 为解决此技术问题, 本发明提供一种交错式 LLC 均流变换器。 所述交错式 LLC均流变换器包括: 交错式 LLC电路, 由偶数 个 LLC电路并联构成和与所述 LLC电路相同个数的多个绕组。 在所述交错 式 LLC均流变换器中: 每个所述 LLC电路的输出直流侧的第一极性端共同 构成第一输出端; 每个所述绕组的第一端共同构成第二输出端; 所述多个绕 组中的第一半数以第一方向环绕磁芯, 所述多个绕组中的第二半数以第二方 向环绕所述磁芯; 每个所述绕组的感量相等, 并且所述多个绕组中的第一半 数与所述多个绕组中的第二半数构成反向耦合; 并且, 每个所述 LLC 电路 的输出直流侧的第二极性端与一个所述绕组的第二端相连接。
作为本发明的一种改进,在前述交错式 LLC均流变换器的基础上,所述 交错式 LLC均流变换器还包括输出电容, 连接于所述第一输出端和所述第 二输出端之间。 作为本发明的另一种改进, 前述输出电容为电解电容。
作为本发明的又一种改进, 前述交错式 LLC均流变换器中的磁芯为封闭 磁芯。
作为本发明的又一种改进,前述交错式 LLC均流变换器中的交错式 LLC 电路由二个 LLC电路并联构成。
作为本发明的又一种改进, 前述交错式 LLC均流变换器中绕组的感值不 超过 /n2, n为所述 LLC电路中的变压器的匝数比, ^为若所述交错式 LLC 均流变换器不包括所述多个绕组时所述 LLC 电路中的谐振电感的感值。 作 为本发明的再一种改进, 前述绕组的感值不超过 Λ2·η2)。
作为本发明的又一种改进,前述交错式 LLC均流变换器中的 LLC电路的 谐振参数(谐振电感^、 谐振电容 的误差不超过 10%。 附图说明
图 1是现有技术中的半桥式 LLC拓朴图。
图 2是现有技术中的交错式 LLC拓朴图。
图 3具有 5%误差的 ^ , G的电流仿真波形图。
图 4a是本发明的一个实施例的拓朴图。
图 4b是耦合电感工作原理图。 图 5a是本发明的一个实施例的拓朴图。
图 5b是图 5a中的实施例未包含 5%组件误差下的输出电流波形图。
图 5c是图 5a中的实施例包含 5%组件误差下的输出电流波形图。
图 6是本发明的一个实施例的拓朴图。
图 7是本发明的一个实施例的拓朴图。 具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图, 对本发明进一步详细说明。 应当理解, 此处所描述的具体实施例仅用以解 释本发明, 并不用于限定本发明。
援用耦合电感的均流作用, 本发明的一个实施例提供一种图 4a所示意 的交错式 LLC均流变换器 400。所述交错式 LLC均流变换器 400由两个 LLC 电路 401并联构成的交错式 LLC电路和一个耦合电感 402构成。 所述 LLC 电路 401可以是市场上可得到的任何一种 LLC拓朴。 所述耦合电感 402由 两个绕组 403和一个磁芯 404构成, 位于所述 LLC电路中 401的输出二极 管 405和所述 LLC均流变换器 400中的输出电容 406之间。 所述磁芯 404 可以是开放式磁芯或封闭式磁芯。 优选地, 所述磁芯 404是封闭磁芯。 采用 封闭磁芯对周围组件干扰小, 并且在多个绕组时, 电感较易制作。 如图 4a 所示, 此两个 LLC电路 401的输出直流侧的正极 407共同构成第一输出端 408;并且,所述两个绕组 403的第一端 409共同构成第二输出端 410。其次, 所述二个绕组 403的一个以第一方向环绕所述磁芯 404, 所述两个绕组 403 的另一个以第二方向环绕所述磁芯 404。所述两个绕组 403的感量是相等的, 在所述磁芯 404上构成反向耦合。 最后, 所述两个 LLC电路 401的输出直 流侧的负极 411分别与所述两个绕组 403的第二端 412 (也就是不与另一个 绕组 403共同构成所述第二输出端 410的一端)相连接。 前述输出电容 406 连接于所述第一输出端 408和所述第二输出端 410之间; 所述输出电容 406 是市场上寻常可得的电容器, 例如薄膜电容或电解电容。
图 4a的实施例可视为将单纯的交错式 LLC电路(参见图 2 ) 中的 T\和 Τ2中的谐振电感 r分别切割为 rl、 Lx ^ Lrl, L2, 其中 ^和 2置于谐振腔 参加谐振, 其感值为 α · ( α为原边谐振电感所分得感值的系数); 和 2 分别为置于副边输出二极管 405之后并且相互耦合的所述两个绕组 403在磁 芯 404上产生的感值, 所述感值均为( 1- α ) · η2 , 其中 η为变压器匝比。 交错式 LLC利用置于副边部分的耦合电感 402, 当所述 LLC电路 401不均 流时, 由于电流的作用, 在耦合电感 402上产生不同的互感, 工作时折射到 原边参加谐振以达到均流的目的。 由以上说明可知, α必须大于零, 否则原 边就会全无电感而不成其为 LLC 电路了。 准此, 当 α大于零时, 在本发明 的一个实施例中的副边感值 和 2小于 Α·/η2。 因为耦合电感 402的感值愈 大, 二极管 405承受的电压应力就愈大, 出诸效率及耦合电感 402对输出二 极管 405应力的的考虑, 耦合电感 402的感值不宜过大。 因此, 在本发明的 另一个优选实施例中, 副边感值 和 2不超过 (2 · n2)。
所述交错式 LLC均流变换器 400中每个 LLC电路 401的工作频率可以 不是相同的。 但是, 在一个优选的实施例中, 所述交错式 LLC均流变换器 400中每个 LLC电路 401的工作频率是相同的。 在这个实施例中, 因为每 个 LLC电路 401的工作频率都是一样的, 我们可以使用一个控制器(未在 图 4a中示出)来控制所有构成所述交错式 LLC电路 400中的 LLC电路 401。 相对于工作频率相异的装置而言, 这种控制方式更简单, 还降低了装置的生 产成本。
所述交错式 LLC均流变换器 400中的 LLC电路 401并联工作时的错相 角度没有特殊限制。 但是, 在一个优选的实施例中, 所述交错式 LLC均流 变换器 400中的 LLC电路 401并联工作时的错相角度为 180/N度, 其中 N 为所述 LLC电路 401的个数。 当错位角度为 180/N度时, 输出电流纹波最 小; 并且, 相对于每个 LLC电路 401不是错位 180/N度的装置而言, 本实 施例中的装置所需的输出电容 406较小。
所述 LLC均流变换器 400还可以连接单一输入电源或多个不同的输入 电源。 但是, 在一个优选的实施例中, 所述 LLC均流变换器还包括单一输 入电源 413。 使用单一电源 413有利于实施前一级为大功率、 大电流的 PFC 两级拓朴结构(未在图 4a中示出)。 因为可在结构内部配置均流线路, 提高 了模块的集成度, 同时简化大功率等级的应用。
在实际应用中, 所述 LLC电路 401的组件参数都存在一定的误差, 且 误差方向和具体的误差值不易精准控制。 一般来说, 只能做到把组件误差控 制在特定的百分比之内。 在本发明的一个实施例中, 所述 LLC电路 401 的 谐振参数的误差不超过 10%。 因为 LLC电路 401组件允许的偏差愈大, 则 达到所需分流精度的所需耦合电感 402就愈大,从而二极管 405承受的电压 应力也就愈大, 因此宜尽量控制 LLC电路 401组件的参数误差。 优选地, 此实施例中所述 LLC电路 401组件的误差 (谐振电感 ^、 谐振电容 Cr ) 不 超过 5%。
承前, LLC 电路 401 的组件参数误差是比较难控制的。 因此, 相对于 LLC电路 401的参数误差而言, 比较可行的均流途径是使 Txl和 Τχ2两个谐 振腔中谐振电感的分配保持一致:
Lri
Figure imgf000007_0001
n2; 并且
Lrl '=Lr2, Lrl=Lr2, Lj=L2, 其中 n为变压器匝比; Lrl为加入耦合电感 402 后置于原边的谐振电感, Γ为没有加入耦合电感时原边的谐振电感。 参照 图 4b, 对于感值为 L的耦合电感 402而言:
21=— M ' /02//01
12=- M - I0l/I02;
Figure imgf000007_0002
Lm=L2+Ll2, 其中 n 和 r02是耦合电感 402实际感值与互感共同作用 后的感值; 1221是相互作用的互感。 准此, 当 /01>/02时, 因为:
Figure imgf000007_0003
fr frl',
fnl>fn2 \ 和
Qi<Q2 , 导致 /。1</。2。 可见, 图 4a所示的实施例中的耦合电感 402可以 实现负反馈, 达到在所述两个 LLC电路 401之间均流的目的。
参见图 5a。 在本发明的另一个实施例中, 交错式 LLC均流变换器 500 由 900W的交错式半桥 LLC构成。所述交错式 LLC电路包括二个 LLC电路 401 , 并且包括由二个感值相等的绕组 403反绕封闭磁芯 404构成的耦合电 感 402。本实施例中的交错式 LLC均流变换器 500的其它参数如下: =25μΗ; Cr=64nF; =120μΗ; 工作频率为 125kHz; 变压器实际匝比为 15: 4; 输出 负载 R=3 Q。 当所述 LLC电路 401的组件误差为 ± 5%时, 在最恶劣条件下 时 Crl=1.05, , Cr2=0.95-Cr, 我们期待所述交错式 LLC均流变换器 500能达 到 10%的均流精度。 在组件误差为 5%的情况下, Lrl= a Ά· 1.05并且 Α·2= - Lr ■ 0.95。 未通过折算时副边应分得的感值为 k,其中 k在 0到(1- α ) · Lr 之间变化。 当 α =0.6 时, 可计算出增益范围为 1.02〜1.07。 在以上的仿真基 础上, 电感分为 15μΗ和 ΙΟμΗ, 若所述二个 LLC电路没有组件误差的话, 则所述二个 LLC电路 401的输出电流的波形如图 5b;若对谐振腔的参数 Txl 增加 +5%的误差, 对 Τχ2的谐振参数增加 -5%的误差, 所述二个 LLC电路的 输出电流的波形如图 5c。 在图 5a中不存在组件误差的情况下, 输出电流 /01 和 /。2固呈均衡状态; 在图 5c中存在 ± 5%的组件误差的情况下, 输出电流 /
^亦能满足 10%均流精度。 可见, 本实施例中的交错式 LLC均流 变换器 500有效克服了现有技术中因为 LLC谐振腔参数难以捉摸所致的电 流分配不均的问题。
前述实施例 (图 4a, 5a ) 中的交错式 LLC均流变换器中的两个 LLC电 路都是在直流侧的输出端的二极管的负极连接耦合电感。 见图 6, 在本发明 的一个实施例中的交错式 LLC均流变换器 600中, 两个 LLC电路 401在直 流侧的输出端的二极管的正极 407连接耦合电感 402。当所述两个 LLC电路 401在所述二极管 405的正极 407连接所述耦合电感 402时,所述 LLC电路 401的输出直流侧的负极 411共同构成第一输出端 408; 并且, 两个绕组 403 的第一端 409共同构成第二输出端 410。 其次, 所述二个绕组 403的一个以 第一方向环绕所述耦合电感 402的磁芯 404, 所述两个绕组 403的另一个以 第二方向环绕所述磁芯 404。与图 4a, 5a中的实施例不同的是,所述两个 LLC 电路 401 的输出直流侧的正极 407分别与所述两个绕组 403 的第二端 412 (也就是不与另一个绕组 403共同构成所述第二输出端 410的一端)相连接。 与图 4a, 5a中的实施例相同的是, 在本实施例中所述两个绕组 403的感量是 相等的, 在所述磁芯 404上构成反向耦合; 并且, 输出电容 406连接于所述 第一输出端 408和所述第二输出端 410之间。 虽然耦合的极性有别, 就均流 效果而言, 本实施例与图 4a, 5a中的实施例没有二致。
前述实施例(图 4a, 5a, 6 )中的交错式 LLC均流变换器中都包括二个并 连的 LLC电路。 图 7中的实施例并连了四个 LLC电路 401 , 用来说明本发 明中的交错式 LLC均流变换器适用于并联的任何偶数个交错式 LLC电路。 参照图 7, 在本发明的一个实施例中, 交错式 LLC均流变换器 700由四个 LLC电路 401并联构成的交错式 LLC电路和一个耦合电感 402构成。 所述 LLC电路 401可以是市场上任何一种可实现寻常的 LLC拓朴的装置。 所述 耦合电感 402由四个绕组 403和一个封闭磁芯 404构成, 位于所述 LLC电 路中 401的输出二极管 405和所述 LLC均流变换器 700中的输出电容 406 之间。 如图 7所示, 此四个 LLC电路 401的输出直流侧的正极 407共同构 成第一输出端 408; 并且, 所述四个绕组 403的第一端 409共同构成第二输 出端 410。 其次, 所述四个绕组 403的二个以第一方向环绕所述磁芯 404, 所述四个绕组 403的另外二个以第二方向环绕所述磁芯 404。 所述四个绕组 403的感量是相等的,在所述磁芯 404上构成反向耦合。最后,所述四个 LLC 电路 401 的输出直流侧的负极 411分别与所述四个绕组 403 的第二端 412 (也就是不与另一个绕组 403共同构成所述第二输出端 410的一端)相连接。 前述输出电容 406连接于所述第一输出端 408和所述第二输出端 410之间; 所述输出电容 406是市场上寻常可得的电容器, 例如薄膜电容或电解电容。
应该注意到并理解, 在不脱离后附的权利要求所要求的本发明的精神 和范围的情况下, 能够对上述详细描述的本发明做出各种修改和改进。 因 此, 要求保护的技术方案的范围不受所给出的任何特定示范教导的限制。

Claims

权 利 要 求
1.一种交错式 LLC均流变换器, 包括:
交错式 LLC电路, 由偶数个 LLC电路并联构成; 和
与所述 LLC电路相同个数的多个绕组, 每个绕组分别具有第一端和第二端, 其中:
每个所述 LLC电路的输出直流侧的第一极性端共同构成第一输出端; 每个所述绕组的第一端共同构成第二输出端;
所述多个绕组中的第一半数以第一方向环绕磁芯, 所述多个绕组中的第二半 数以第二方向环绕所述磁芯;
每个所述绕组的感值相等, 并且所述多个绕组中的第一半数与所述多个绕组 中的第二半数构成反向耦合; 和
每个所述 LLC 电路的输出直流侧的第二极性端与一个所述绕组的第二端相 连接。
2. 权利要求 1中的交错式 LLC均流变换器, 还包括输出电容, 连接于所述 第一输出端和所述第二输出端之间。
3. 权利要求 1中的交错式 LLC流变换器,其中各个 LLC电路的工作频率是 相同的。
4. 权利要求 1中的交错式 LLC均流变换器, 其中所述磁芯为封闭磁芯。
5. 权利要求 1中的交错式 LLC均流变换器,其中所述交错式 LLC电路由二 个 LLC电路并联构成。
6. 权利要求 1中的交错式 LLC均流变换器,其中所述交错式 LLC电路并联 工作时的错相角度为 180/N度 , Ν为所述 LLC电路的个数。
7. 权利要求 1中的交错式 LLC均流变换器, 还包括单一输入电源。
8. 权利要求 1-7中之一的交错式 LLC均流变换器, 其中所述绕组的感值不 超过 47η2, n为所述 LLC电路中的变压器的匝数比, ^为若所述交错式 LLC 均流变换器不包括所述多个绕组时所述 LLC电路中的谐振电感的感值。
9. 权利要求 1-7中之一的交错式 LLC均流变换器, 其中所述绕组的感值不 超过 /(2·η2), η为所述 LLC电路中的变压器的匝数比, ^为若所述交错式 LLC均流变换器不包括所述多个绕组时所述 LLC电路中的谐振电感的感值。
10. 权利要求 1-7中之一的交错式 LLC均流变换器, 其中所述 LLC电路的 谐振参数的误差, 也就是谐振电感 和谐振电容 的误差, 不超过 10%。
PCT/CN2013/085402 2012-10-22 2013-10-17 交错式llc均流变换器 WO2014063590A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/437,416 US9735685B2 (en) 2012-10-22 2013-10-17 Interleaved LLC current equalizing converter
EP13849068.5A EP2911285A4 (en) 2012-10-22 2013-10-17 Interleaved llc current equalizing converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210404331.2 2012-10-22
CN201210404331.2A CN103780081B (zh) 2012-10-22 2012-10-22 交错式llc均流变换器

Publications (1)

Publication Number Publication Date
WO2014063590A1 true WO2014063590A1 (zh) 2014-05-01

Family

ID=50544007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085402 WO2014063590A1 (zh) 2012-10-22 2013-10-17 交错式llc均流变换器

Country Status (4)

Country Link
US (1) US9735685B2 (zh)
EP (1) EP2911285A4 (zh)
CN (1) CN103780081B (zh)
WO (1) WO2014063590A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001980A (ja) * 2014-05-19 2016-01-07 ローム株式会社 電源装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865440B (zh) * 2015-06-01 2017-10-20 中国科学院电工研究所 智能电能路由器直流单元谐振参数测试方法
CN105071669A (zh) * 2015-07-17 2015-11-18 苏州华电电气股份有限公司 一种并联式直流高压发生器
CN108028606B (zh) * 2015-09-18 2020-03-24 株式会社村田制作所 谐振转换器的模块并联技术
CN106712518B (zh) 2015-11-13 2019-03-12 台达电子企业管理(上海)有限公司 变换器模块、变压器模块及其电路
CN106998142B (zh) * 2016-01-25 2019-08-30 台达电子企业管理(上海)有限公司 多路并联的谐振变换器、电感集成磁性元件和变压器集成磁性元件
US9837925B1 (en) * 2016-11-01 2017-12-05 Jacobo Aguillón-García Capacitor-less power supply
WO2018095797A1 (en) * 2016-11-23 2018-05-31 Danmarks Tekniske Universitet A dual active bridge dc-dc converter comprising current balancing
EP3401935B1 (en) * 2017-05-08 2020-12-02 Delta Electronics (Thailand) Public Co., Ltd. Integrated magnetic component and power converter
CN107612335B (zh) * 2017-09-20 2019-10-25 武汉南华工业设备工程股份有限公司 一种三电平llc谐振变换器的交错并联控制方法
WO2019076874A1 (en) * 2017-10-16 2019-04-25 Danmarks Tekniske Universitet DC-DC CONVERTER ASSEMBLY
CN107666249B (zh) * 2017-11-03 2019-12-03 南京航空航天大学 基于虚拟阻抗的llc谐振变换器并联控制方法
CN108155815B (zh) * 2017-12-18 2021-04-27 上海交通大学 变换器并联均流电路
WO2019126831A1 (en) * 2017-12-22 2019-06-27 Murata Manufacturing Co., Ltd. Interleaved llc resonant converter
TWI669898B (zh) * 2018-09-12 2019-08-21 林景源 具有整合型變壓器的交錯式llc半橋串聯諧振轉換器
CN110572040B (zh) * 2019-09-24 2021-04-02 西北工业大学 半桥llc谐振变换器交错并联电路及其均流控制方法
JP7219688B2 (ja) * 2019-09-26 2023-02-08 株式会社日立製作所 電力変換装置とその制御方法
CN113014112B (zh) * 2021-03-25 2023-06-30 矽力杰半导体技术(杭州)有限公司 控制电路、控制方法以及功率变换器
CN114928253B (zh) * 2022-07-19 2023-01-10 广东首航智慧新能源科技有限公司 一种均流控制方法、谐振变换电路及电源模块

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181576B1 (en) * 1999-04-09 2001-01-30 Sansha Electric Manufacturing Company Limited Power supply apparatus for arc-utilizing apparatuses
JP2003164151A (ja) * 2001-11-28 2003-06-06 Nissin Electric Co Ltd Dc−dcコンバータ
US7239530B1 (en) * 2005-02-17 2007-07-03 Volterra Semiconductor Corporation Apparatus for isolated switching power supply with coupled output inductors
CN102638167A (zh) * 2011-02-12 2012-08-15 艾默生网络能源系统北美公司 一种并联谐振变换器电路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268910A (ja) * 2000-03-21 2001-09-28 Sansha Electric Mfg Co Ltd 電源装置
US6304460B1 (en) * 2000-05-05 2001-10-16 Slobodan Cuk Switching DC-to-DC converter utilizing a soft switching technique
CN1437309A (zh) * 2002-02-08 2003-08-20 张法曾 “零纹波”电抗器
JP4442145B2 (ja) 2003-07-10 2010-03-31 ソニー株式会社 電源装置
JP2007068392A (ja) * 2005-07-26 2007-03-15 Internatl Rectifier Corp 複数の結合インダクタを有する多相バックコンバータ
US8294438B2 (en) * 2007-06-30 2012-10-23 Intel Corporation Circuit and method for phase shedding with reverse coupled inductor
US7893669B2 (en) * 2007-09-10 2011-02-22 Analog Devices, Inc. Efficient voltage converter methods and structures
JP2011072076A (ja) * 2009-09-24 2011-04-07 Sanken Electric Co Ltd 直流変換装置
CN201766748U (zh) * 2009-11-21 2011-03-16 英飞特电子(杭州)有限公司 多路恒流驱动电路
CN101702854A (zh) 2009-11-21 2010-05-05 英飞特电子(杭州)有限公司 一种适用于多路led恒流驱动的电路
CN101951159B (zh) * 2010-09-20 2013-04-24 浙江大学 电容隔离型多路恒流输出谐振式直流/直流变流器
US9065343B2 (en) * 2012-01-13 2015-06-23 Pai Capital Llc Resonant converter with auxiliary resonant components and holdup time control circuitry
US8929109B2 (en) * 2012-11-30 2015-01-06 Chung-Shan Institute Of Science And Technology Double-output half-bridge LLC serial resonant converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181576B1 (en) * 1999-04-09 2001-01-30 Sansha Electric Manufacturing Company Limited Power supply apparatus for arc-utilizing apparatuses
JP2003164151A (ja) * 2001-11-28 2003-06-06 Nissin Electric Co Ltd Dc−dcコンバータ
US7239530B1 (en) * 2005-02-17 2007-07-03 Volterra Semiconductor Corporation Apparatus for isolated switching power supply with coupled output inductors
CN102638167A (zh) * 2011-02-12 2012-08-15 艾默生网络能源系统北美公司 一种并联谐振变换器电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2911285A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001980A (ja) * 2014-05-19 2016-01-07 ローム株式会社 電源装置
EP3148065A4 (en) * 2014-05-19 2018-01-17 Rohm Co., Ltd. Power supply device

Also Published As

Publication number Publication date
EP2911285A4 (en) 2017-02-22
US20150357921A1 (en) 2015-12-10
EP2911285A1 (en) 2015-08-26
US9735685B2 (en) 2017-08-15
CN103780081A (zh) 2014-05-07
CN103780081B (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
WO2014063590A1 (zh) 交错式llc均流变换器
US10283261B2 (en) Power conversion device
US10269484B2 (en) Magnetic component and power conversion device using the same
US10855190B2 (en) Magnetic integrated device including multiple core columns and windings and power conversion circuit
EP2600512B1 (en) Resonant conversion circuit
TWI497908B (zh) 改善濾波器性能的方法及功率變換裝置
US20180269795A1 (en) Bidirectional resonant conversion circuit and converter
TWI511430B (zh) 電源供應裝置
CN106981990B (zh) 单向隔离式多阶直流-直流电能转换装置及其方法
TWI737129B (zh) 直流/直流變換系統
CN106953526A (zh) 一种直流多输入单输出谐振变换器及其控制方法
US20100123450A1 (en) Interleaved llc power converters and method of manufacture thereof
CN111010044B (zh) 一种磁集成双有源桥变换器
WO2015158135A1 (zh) 谐振变换器和其同步整流变换电路
WO2024051317A1 (zh) 一种三相交错宽范围高效隔离双向变换器
WO2018157797A1 (zh) 一种全桥谐振变换器
CN110504836B (zh) 基于STC电路与谐振Buck电路的降压变换器
TW200427201A (en) A DC/DC converter with voltage clamp circuit
CN114884363B (zh) 一种六倍增益比的双llc谐振变换器及其控制方法
TW202021253A (zh) 雙向直流對直流轉換器
CN105991044B (zh) 一种非接触供电副边整流电路及方法
JP2014150690A (ja) 電流共振型スイッチング電源
CN112532067B (zh) 双通道高增益串并联llc谐振变流器
WO2020103831A1 (zh) 一种开关电源
CN219458904U (zh) 一种输入并联输出串联llc谐振变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013849068

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14437416

Country of ref document: US