WO2014063444A1 - 一种制备分子筛的设备和方法 - Google Patents

一种制备分子筛的设备和方法 Download PDF

Info

Publication number
WO2014063444A1
WO2014063444A1 PCT/CN2013/001289 CN2013001289W WO2014063444A1 WO 2014063444 A1 WO2014063444 A1 WO 2014063444A1 CN 2013001289 W CN2013001289 W CN 2013001289W WO 2014063444 A1 WO2014063444 A1 WO 2014063444A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
reactor
gas phase
inlet
gas
Prior art date
Application number
PCT/CN2013/001289
Other languages
English (en)
French (fr)
Inventor
周灵萍
刘子阳
张杰潇
许明德
张蔚琳
田辉平
朱玉霞
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210418315.9A external-priority patent/CN103787353B/zh
Priority claimed from CN201210417837.7A external-priority patent/CN103787352B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to US14/438,566 priority Critical patent/US9993811B2/en
Priority to SG11201503301VA priority patent/SG11201503301VA/en
Priority to GB1508067.4A priority patent/GB2526435B/en
Priority to JP2015538252A priority patent/JP6346188B2/ja
Publication of WO2014063444A1 publication Critical patent/WO2014063444A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/22Stationary reactors having moving elements inside in the form of endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • B01J6/002Calcining using rotating drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/002Feeding of the particles in the reactor; Evacuation of the particles out of the reactor with a moving instrument
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J2029/081Increasing the silica/alumina ratio; Desalumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/0077Baffles attached to the reactor wall inclined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/187Details relating to the spatial orientation of the reactor inclined at an angle to the horizontal or to the vertical plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/16After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride

Definitions

  • the present invention relates to a method and apparatus for making molecular sieves.
  • the invention further relates to a process for the preparation of a catalytic cracking catalyst. Background technique
  • molecular sieves are a very widely used material and a very important component.
  • the performance of molecular sieves directly affects the catalytic performance of catalytic cracking catalysts.
  • the molecular sieve can be modified differently to meet the requirements of use. For example, molecular sieves with a high silicon to aluminum ratio are generally considered to be required for catalytic cracking catalysts.
  • the aluminum fluorosilicate method is also used to remove aluminum from the aluminum fluorosilicate, and the obtained molecular sieve has high crystallinity, high Si/Al ratio and high thermal stability.
  • the insoluble matter A1F 3 and residual fluorosilicate formed during the dealumination process affect the hydrothermal stability and also pollute the environment.
  • Hydrothermal method is still the method commonly used in industry at present. However, in the hydrothermal process, there is no timely replacement of silicon after dealuminization, which is easy to cause lattice collapse, and non-framework aluminum fragments block the pores, which not only affects the active center. Proximity also affects the further improvement of its thermal stability.
  • the cationic water is washed to remove soluble by-products such as Na + and Cl Al 3+ remaining in the zeolite.
  • the molecular sieve of the method is fixed, and the SiCl 4 is carried by using dry air. After the reaction is completed, the air is purged, and continuous production is not realized, and the yield is low.
  • CN1281493C discloses a rare earth-containing high-silica Y-type zeolite containing rare earth, and the zeolite has a silica-alumina ratio of 5-30, an initial unit cell constant of 2.430-2.465 nm, an equilibrium unit cell constant and an initial unit cell. The ratio of the constants is at least 0.985.
  • the method for preparing the zeolite comprises contacting a rare earth-containing Y-type zeolite with silicon tetrachloride, the contacting being carried out in a reaction apparatus, as shown in Fig.
  • reaction kettle (1) comprising a reaction vessel (1), a feed port ( 2) and an air outlet (3), in The inside of the reaction kettle (1) further includes a stirrer (4), and a gas-solid separator (5) is installed on the gas outlet (3), and the pore diameter and porosity of the pores of the gas-solid separator (5) are ensured.
  • the gas can pass and the zeolite solid particles cannot pass, and the stirring rod of the agitator (4) protrudes out of the reaction vessel (1), and the rare earth-containing Y-type zeolite and carbon tetrachloride are stirred by the agitator (4).
  • contact temperature is 100-500 ° C
  • contact time is 5 minutes to 10 hours
  • weight ratio of rare earth-containing Y-type zeolite to carbon tetrachloride is 1: 0.05-0.5
  • the zeolite has a silicon to aluminum ratio of 3-8 and a unit cell constant of 2.45-2.48 nm.
  • the contact time required for the method is generally long, and it takes several hours, plus the loading before the reaction and the unloading after the reaction is completed.
  • SiC is far excess, and the use of excess SiC undoubtedly increases production costs and environmental costs.
  • the above methods all require very complicated manual operations, such as: manual charging, manual unloading, and long-time purging of the pipeline after the reaction is completed, which not only brings labor intensity and productivity, but also has low productivity. Problems, and, in the case of loading and unloading, molecular sieve dust and excess
  • SiC also causes serious environmental pollution and seriously jeopardizes the health of operators. Therefore, the above-mentioned gas phase super-stable process of the kettle type is industrially produced.
  • CN 102049315 A discloses a process for the preparation of a catalyst which comprises carrying a molecular sieve with an inert carrier gas under the carrying of an inert carrier gas stream and contacting the gas phase SiC in a flowing state, the contact time of the molecular sieve with the gas phase SiC being 10 seconds. Up to 100 minutes, then the yield and gas phase
  • the molecular sieve after SiC contact is mixed with binder, clay and water to be beaten and granulated to obtain a catalytic cracking catalyst.
  • the preparation method of the catalytic cracking catalyst provided by the invention can continuously realize the contact reaction between the molecular sieve and the SiC, and can control the contact time of the molecular sieve with the SiC by controlling the flow rate of the carrier gas and the length of the tubular reactor, thereby enabling the molecular sieve and the SiCl.
  • the contact reaction of 4 is sufficiently carried out in the tubular reactor.
  • the method uses a gas-carrying molecular sieve powder material to react with SiCl» gas to carry out gas phase super-stable reaction.
  • the amount of gas for molecular sieve gas must be large enough, and the weight ratio of carrier gas to SiC can reach 10-250, otherwise it is easy to cause the device.
  • the problem of clogging, increasing the amount of gas it is difficult to increase the depth of dealuminization and silicon supplementation, and there is solid material transport and gas phase super 001289 Contradiction between the increase of stable reaction depth.
  • the method requires a large amount of SiCl 4 to be introduced, which inevitably leads to an increase in the amount of residual SiC after the gas phase ultra-stable reaction, which not only aggravates the environment. The harm of pollution is more detrimental to the effective absorption of exhaust gas.
  • a method of preparing a high silica molecular sieve by a gas phase process is disclosed in CN102049315A and CN102452660A.
  • the molecular sieve is contacted with SiC in the presence of an inert carrier gas.
  • the inert carrier gas provides the molecular sieve solid powder material with the power to overcome the gravitational potential energy so that the molecular sieve solid powder can move upward from the bottom of the reactor with the gas phase SiC.
  • the molecular sieve contacts and reacts with the SiC.
  • CN102452660A mentions that the method comprises mixing a molecular sieve with a gas containing a gas phase SiCU to form a mixture stream (the gas containing the gas phase SiC may be a gas phase SiCU), the molecular sieve in the mixture flow flows with the gas, and the gas phase SiC in the gas Contact in a flowing state.
  • the gas containing the gas phase SiC may be a gas phase SiCU
  • SiC can act as both a carrier gas and a reactant, it is not discussed further in this regard.
  • molecular sieves rely on carrier gas transport from bottom to top during the reaction, a large amount of SiC gas is required if only SiCU is used instead of other inert carrier gas.
  • the superstable reaction in the gas phase will be extremely intense at the reaction temperature of the gas phase superstable reaction, which will inevitably cause a great loss of crystallinity of the molecular sieve product after the gas phase superstable reaction, usually, If the weight ratio of SiC to molecular sieve is greater than 1, when the initial reaction of the gas phase superstable reaction is reached, a vigorous gas phase superstable reaction occurs, and the relative crystallinity of the molecular sieve product obtained after the gas phase superstable reaction is less than 40%. Even less than 30%, this is very disadvantageous for the relative crystallinity retention of molecular sieve products.
  • the object of the present invention is to solve the serious shortcomings of the production of molecular sieves and catalytic cracking catalysts by the existing continuous gas phase chemical aluminum extraction method (continuous gas phase super-stable process), and develop a capable P Low SiCl 4 amount of a method for preparing molecular sieves and catalytic cracking catalysts suitable for continuous production.
  • Another object of the present invention is to provide a device for preparing a high silicon molecular sieve by using a Na type molecular sieve, which can be used for continuous production of NaY molecular sieves to prepare a high silicon molecular Xue, which can reduce the amount of SiC used for gas phase chemical synthesis of high silicon molecular sieves.
  • the invention provides a method of preparing a molecular sieve, the method comprising: introducing a molecular sieve into a gas phase ultrastable reactor, and moving the molecular sieve from a gas phase ultrastable reactor without carrier gas transport The molecular sieve inlet moves to the molecular sieve outlet of the gas phase ultrastable reactor, and the molecular sieve is brought into contact with the gas phase SiC in a gas phase ultrastable reactor.
  • the invention provides a method of preparing a catalytic cracking catalyst, the method comprising: introducing a molecular sieve into a gas phase ultrastable reactor, and maximizing the molecular sieve from the gas phase without carrier gas transport
  • the molecular sieve inlet of the reactor is moved to the molecular sieve outlet of the gas phase ultrastable reactor, and the molecular sieve is brought into contact with the gas phase SiC in a gas phase ultrastable reactor, and the obtained molecular sieve after the contact reaction is optionally washed, and
  • the matrix and water are mixed and beaten and granulated (that is, the obtained molecular sieve after the contact reaction is directly mixed with the matrix and water to be beaten and granulated; or; the obtained molecular sieve after the contact reaction is washed, followed by the substrate and water. Mixed beating, granulation).
  • the invention provides an apparatus for preparing a molecular sieve, comprising: a Na type molecular sieve exchange device, a calciner, a molecular sieve gas phase ultrastable reactor and a gas-solid separator, wherein the Na type molecular sieve exchange device is used for Na
  • the calcining furnace is used for roasting the exchanged molecular sieves
  • the molecular sieve gas phase superstable reactor is used for gas phase chemical dealuminization and silicon supplementation reaction of the calcined molecules (also referred to as gas phase superstable reaction).
  • the SiC is contacted in a gas phase ultrastable reactor for separating the molecular sieve discharged from the gas phase ultrastable reactor with the unreacted silicon tetrachloride; the gas phase ultrastable reactor including the molecular sieve inlet, Selected silicon tetrachloride inlet and molecular sieve outlet, said gas phase ultrastable reactor enables Wherein the molecular sieves in the case without a carrier gas from the molecular sieve is a molecular sieve inlet to an outlet.
  • the molecular sieve outlet of the roasting furnace is in communication with the molecular sieve inlet of the gas phase ultrastable reactor, so that the calcined molecular sieve obtained from the roaster is directly introduced into the gas phase super stable reaction.
  • the 001289 reactor reacts to achieve continuous production of molecular sieves. It is not necessary to first cool the molecular sieve or to store the molecular sieve, and then heat the feed.
  • the gas phase ultra-stable reaction device of the present invention can conveniently realize the connection between the gas phase ultra-stable reactor and the calciner because no inert gas is required to transport the molecular sieve.
  • the molecular sieve exchange device may adopt an existing molecular sieve exchange device, including an exchanger, an exchanged molecular sieve filtration device (also referred to as a second filtration device of the present invention), and may further include a first drying device, the first a drying device is used for drying the molecular sieve obtained by the exchanged molecular sieve filtering device, and then the dried molecular sieve is introduced into a roasting furnace for roasting, and the exchanged molecular sieve obtained by the filtering device can also be directly calcined without drying. Furnace roasting.
  • the exchanged molecular sieve filtering device is a belt filter, and the invention is called a second belt filter. Since the belt filter is used, the filtration can be continuously performed, and the filtering device can be directly connected to the exchanger. The second belt filter can be directly connected to the baking furnace.
  • the Na type molecular sieve is commercially available or obtained according to an existing method. When prepared according to the conventional method, it usually comprises crystallizing synthesis, filtering the crystallized synthetic product, and filtering the obtained filter cake to be dry or not including drying to obtain a Na type molecular sieve.
  • the apparatus further includes a filtering device (referred to as a first filtering device in the present invention) for crystallizing the synthesis product, and preferably the first filtering device is a belt filter (this invention is referred to as a first belt type) Filter), drying device for the filter device of the first filter device.
  • the present invention is referred to as a second drying device.
  • the first belt filter, the exchanger, the second belt filter, the second drying device and the baking furnace are sequentially connected, and the Na-type molecular sieve is exchanged and calcined once through the device, and then enters the gas phase to be ultra-stable.
  • the reactor is subjected to aluminum extraction and silicon supplementation.
  • the molecular sieve is moved from the molecular sieve inlet of the gas phase ultrastable reactor to the molecular sieve outlet of the gas phase superstable reactor without carrier gas transport, and the molecular sieve is contacted with the gas phase SiC in the gas phase ultrastable reactor.
  • the nano-component of the contact reaction comprises: the solid content of the molecular sieve raw material introduced into the gas phase ultra-stable reactor is preferably more than 98% by weight (the ignition loss is not more than 2% by weight), and the solid content of the molecular sieve is molecular sieve passing through
  • the weight after calcination at high temperature and the weight ratio before calcination ie, the content of the burning base, see RIPP32-90 analytical method, petrochemical analysis method, (RIPP test method), Yang Cuiding et al., Science Press, 1990
  • the weight ratio of SiC introduced into the gas phase ultrastable reactor to the molecular sieve introduced into the gas phase ultrastable reactor is preferably 0.01-1, further preferably 0.05-0.60, such as 0.05-0.30, and the contact temperature of the molecular sieve with the vapor phase SiC is 250-700 °. C, further preferably 300-65 CTC; molecular sieve stay in the gas phase ultrastable reactor
  • the time is from 10 seconds to 120 minutes, preferably from 1 minute to 60 minutes.
  • the molecular sieve introduced into the reactor can be passed through the machine.
  • the conveyor moves under the action of gravity and/or gravity, and reacts with the SiC in the reactor during the movement. Since the gas carrier gas for fluidizing the molecular sieve is not introduced into the reactor, the molecular sieve in the gas phase ultrastable reactor is in a dense phase state, and the bed density of the molecular sieve is high.
  • the SiC is preferably introduced into a gas phase ultrastable reactor after vaporization, the molecular sieve moves in a space containing SiC, and the SiC in the gas phase enters into the voids of the molecular sieve particles by diffusion and/or by agitation, and further diffuses to The aluminum-reinforcing silicon reaction is carried out in the pores inside the molecular sieve particles. Since the molecular sieve continuously moves from the inlet to the outlet in the gas phase ultrastable reactor, the molecular sieve can be continuously introduced into the reactor from the molecular sieve inlet of the reactor, and the molecular sieve after the gas phase ultrastable reaction is continuously drawn from the outlet of the reactor, thereby realizing Continuous gas phase ultra-stable production.
  • the volume of the reactor can be greatly reduced without diluting the diluent gas or carrying silicon tetrachloride.
  • the introduction of carrier gas can greatly reduce the heat carried by the carrier gas and reduce the cost of purifying the carrier gas.
  • the reaction rate of the ultra-stabilization reaction can be accelerated, the reaction time can be shortened, and the depth of the gas phase ultra-stable reaction can be increased, and the uniformity of the product is better.
  • the method for preparing a molecular sieve and a catalytic cracking catalyst provided by the invention continuously feeds the molecular sieve and the SiCU into a gas phase ultrastable reactor, and the molecular sieve is fully reacted in the tubular reactor by gravity and/or power is supplied.
  • the feed port is discharged into the gas-solid separator, the solid and the gas are separated in the gas-solid separator, the gas phase component is introduced into the absorber, and the gas after absorbing a small excess of SiC can be directly discharged, and the solid material can be continuously taken out of the separator or left.
  • the separator is periodically discharged in the separator. It can be seen that the method for preparing molecular sieve provided by the invention can realize molecular sieve and
  • the contact reaction of SiC is continuously carried out; by controlling the material transport speed or/and the length of the reactor, it is possible to control the residence time of the molecular sieve material in the reactor and control the contact time between the molecular sieve and the SiC, thereby enabling the contact reaction between the molecular sieve and the SiC.
  • the tubular reactor is uniformly and sufficiently carried out; by using a tubular reactor provided with a heater or by adjusting the ratio of the molecular sieve to the SiC addition amount, different reaction temperatures can be controlled, thereby controlling different reaction conditions and reaction degrees, and further obtaining Molecular sieve products with different dealuminization depths.
  • the present invention provides the following technical solutions.
  • a gas phase ultrastable reactor comprising a tube body, a molecular sieve inlet, and a molecular sieve outlet And an optional silicon tetrachloride inlet, a molecular sieve inlet is disposed at one end of the tubular body, and a molecular sieve outlet is disposed at the other end of the tubular body, wherein one end of the inlet of the molecular sieve is not lower than a vertical direction The other end of the molecular sieve outlet is provided.
  • the gas phase ultrastable reactor according to any one of 100 to 111, wherein the reactor is a tubular reactor or a belt conveyor bed reactor.
  • the gas phase ultrastable reactor according to any one of 100 to 111, wherein the reactor comprises a gravity conveying device and/or a mechanical conveying device, such as a circulating piston conveyor, a pipe chain conveyor, a spiral Conveyor, tubular belt conveyor, tubular gravity conveyor, belt conveyor or a combination of them.
  • a gravity conveying device such as a circulating piston conveyor, a pipe chain conveyor, a spiral Conveyor, tubular belt conveyor, tubular gravity conveyor, belt conveyor or a combination of them.
  • the gas phase ultrastable reactor according to any one of 100 to 111, wherein the reactor comprises a gravity conveying device, and at least a part or all of the tube body is provided to be rotatable about an axis of the tube body part.
  • the gas phase ultrastable reactor according to any one of 100 to 111, wherein the axis of the tube body may have an angle of 0 to 90 with respect to a horizontal plane. , for example 10. , 20. , 30. , 40. , 50. , 60. , 70. , 80. And a range of values consisting of any two of them.
  • the gas phase ultrastable reactor according to any one of 100 to 111, wherein the reactor comprises a silicon tetrachloride inlet which is placed at one end of a tube body provided with a molecular sieve inlet, and is close to Molecular sieve inlet.
  • a gas phase ultrastable reactor according to any one of 100 to 111, wherein the reactor comprises at least one copy board and/or at least one raft, the copy board and the raft are installed in the tube body wall.
  • the gas phase ultrastable reactor according to any one of 100 to 111, wherein the length of the tube of the reactor is 5 to 200 m, 7 to 150 m, 15-130 m, or 20 - 80 m; the diameter of the tube of the reactor is 0.01-6 m, 0.02-3 m, 0.1-2 m, 0.2-1.5 m; the length of the tube of the reactor and the inner diameter of the tube diameter The ratio is not less than 1, 3-100:1, 10-100:1.
  • the gas phase ultrastable reactor according to any one of 100 to 111, wherein the portion rotatable about the axis of the tube body is 20% or more, 20% to 100% of the length of the reactor tube body, 20-90%.
  • the gas phase ultrastable reactor according to any one of 100 to 111, wherein a tube is provided in the tube body, and an annulus between the sleeve and the tube body constitutes a reaction zone.
  • a gas phase ultrastable reactor according to any one of 100-111 other than 110, wherein The axis of the tube of the reactor, in the direction of the molecular sieve inlet to the outlet of the molecular sieve, monotonically descends in the vertical direction or does not have any rising portion in the vertical direction.
  • the gas phase ultrastable reactor according to any one of 100 to 111, wherein the tangential line at any point on the axis of the tube body of the reactor, the direction perpendicular to the axis of the molecular sieve inlet to the molecular sieve outlet , the vector in the vertical direction is zero; or the direction of the vector is vertically downward.
  • An apparatus for preparing a molecular sieve comprising a Na type molecular sieve exchange device, a calciner, a molecular sieve gas phase superstable reactor, and a gas-solid separator, wherein the molecular sieve gas phase ultrastable reactor is any one of the above 100-111
  • the Na type molecular sieve exchange device is used for exchanging Na type molecular sieves
  • the roaster is used to roast the exchanged molecules
  • the molecular sieve gas phase ultra-stable reactor is used for gas phase chemical dealuminization and silicon-reinforcing reaction of the calcined molecular sieve.
  • a gas-solid separator is used to separate the molecular sieve discharged from the gas phase ultrastable reactor from the unreacted silicon tetrachloride.
  • a method of preparing a molecular sieve comprising: introducing a molecular sieve into a gas phase ultrastable reactor, moving the molecular sieve from a molecular sieve inlet of the gas phase superstable reactor to a gas phase superstable reaction without carrier gas transport The molecular sieve outlet of the device, and the molecular sieve and the gas phase SiC are contacted and reacted in the gas phase ultrastable reactor.
  • gas phase ultrastable reactor is the reactor of any one of the above 100-111.
  • the gas phase ultrastable reactor is the reactor of the above 103, wherein the reactor tube is a straight tube, at least a portion of the tube body is rotatable about a tube axis,
  • the rotational speed is from 0.05 to 40 rpm, preferably from 0.1 to 15 rpm.
  • a method of preparing a catalytic cracking catalyst comprising: introducing a molecular sieve into a gas phase ultrastable reactor, moving the molecular sieve from a molecular sieve inlet of the gas phase superstable reactor to a gas phase super without carrier gas transport Stabilizing the molecular sieve outlet of the reactor, and contacting the molecular sieve with the gas phase SiC in a gas phase ultrastable reactor, and mixing the obtained molecular sieve after the reaction, optionally washing, and mixing with the base shield and water to make grain.
  • the weight ratio of SiC to molecular sieve is 0.01-1, 0.05-0.60, 0.05-0.30.
  • the gas phase ultrastable reactor is the reactor of the above 103, wherein the reactor tube is a straight tube, at least a portion of the tube body is rotatable about the axis of the tube, and the rotation speed is 0.05. -40 rpm, preferably 0.1-15 rpm.
  • the continuous gas phase super-stable reaction can be realized, and the reaction operation can be fully automated and continuous, the labor intensity is small, the production efficiency is high, and the product performance is stable, so that The industrial production of molecular sieve continuous gas phase super-stable technology has become a reality.
  • the invention adopts a conveying device reactor, which can directly contact the molecular sieve and the vaporized SiC gas at a high reaction temperature and perform a sufficient dealumination and silicon-reinforcing reaction, which not only effectively solves the problem.
  • the reaction can reduce the amount of SiC and greatly reduce the amount of residual SiClt after gas phase reaction, which is very beneficial to the absorption of exhaust gas, thereby reducing environmental pollution from the source.
  • the gas phase ultra-stable reaction depth is increased, the activity and stability of the gas phase ultra-stable molecular sieve are further improved, so that the amount of the molecular sieve used in the preparation of the catalyst can be reduced, and the cost of the catalyst can be further reduced.
  • FIG. 1 is a schematic structural view of an apparatus for preparing a molecular sieve according to the prior art
  • FIG. 2a and 2b are schematic views showing the structure of an apparatus for preparing a molecular sieve provided by the present invention
  • FIG. 3 is a schematic structural view of the tubular reactor provided in Embodiment 2;
  • Figure 4 is a schematic illustration of the angle ⁇ between the axis of the tubular reactor 1 of the apparatus of Figure 2 and the horizontal plane;
  • Figure 5 is a schematic structural view of a tubular reactor apparatus provided in Example 1;
  • FIG. 6 is a schematic structural view of a gas phase super-stable device according to Embodiment 3.
  • Fig. 7 is a schematic view showing a slab and a slab of a ⁇ - ⁇ cross section of the pipe body shown in Example 3; wherein 7 is a slab, 8 is a slab, and 1 is a pipe.
  • Figure 8 is a schematic view showing the structure of an apparatus for preparing a molecular sieve provided by the present invention.
  • Figure 9 is a novel molecular sieve roasting furnace provided by the present invention.
  • Figure 10 is a connection device for connecting the calciner and the gas phase superstable reactor provided by the present invention. detailed description
  • the molecular sieve is continuously introduced into a gas phase ultrastable reactor, and the molecular sieve is continuously moved from the molecular sieve inlet to the molecular sieve outlet without using a carrier gas, and the gas phase is
  • the silicon tetrachloride gas in the ultrastable reactor is contacted to carry out an ultra-stabilization reaction. Simultaneously, silicon tetrachloride was introduced into the reactor.
  • silicon tetrachloride may be introduced into the reactor in a liquid phase and then vaporized in the reactor and reacted with the molecular sieve, but in order to be uniform, it is preferred to introduce silicon tetrachloride after vaporization.
  • the molecular sieve and vaporized silicon tetrachloride are introduced into a gas phase ultrastable reactor in which silicon tetrachloride is subjected to a dealumination and siliconization reaction by agitation and/or diffusion into voids and pores of the molecular sieve particles.
  • the molecular sieve moves under the action of gravity and/or under the action of mechanical force, and the silicon tetrachloride moves along the molecular sieve in the direction of movement and reacts with the molecular sieve; as the gas phase super-stable reaction proceeds, the movement along the molecular sieve In the direction, the concentration of silicon tetrachloride in the pores of the molecular sieve gradually decreases.
  • the concentration of silicon tetrachloride in the molecular sieve material has been lowered to a very low level, that is, four in the molecular sieve material.
  • Silicon chloride participates in the gas phase superstable reaction as an effective reactant in the reactor, which is beneficial to reduce the consumption of silicon tetrachloride and improve the effect of dealuminization and silicon supplementation.
  • the molecular sieve gas phase superstable reaction is carried out in the form of a fluidized bed, a moving bed, a fixed bed or a combination thereof. Since the molecular sieve transport is carried out without using a carrier gas, the molecular sieve particles which are one of the reactants in the reactor have a high concentration and are moved by the transport of the transport device. Further, the present invention directly introduces silicon tetrachloride gas into the reactor, and does not use a diluent gas for dilution, and the concentration of silicon tetrachloride as another reactant is also high.
  • mechanical (power) transport devices and/or gravity transport devices can be used in the reactor.
  • a circulating piston conveyor, a tube chain conveyor, a screw conveyor, a tubular belt conveyor, a tubular gravity conveyor, a belt conveyor, or a combination thereof may be used to move the molecular sieve from the molecular sieve inlet of the reactor.
  • the molecular sieve outlet of the reactor The molecular sieve discharged from the molecular sieve outlet of the gas phase ultrastable reactor is introduced into a gas-solid separator for separation.
  • the reactor may be any reactor which satisfies the contact conditions of the molecular sieve of the present invention with a gas phase SiCU.
  • the gas phase ultrastable reactor can be a tubular reactor or a transport bed reactor (moving bed reactor).
  • the dealuminated silicon supplementation reaction of the present invention is carried out in a tubular reactor or in a belt conveyor bed reactor.
  • the reactor comprises a molecular sieve inlet, an optional silicon tetrachloride inlet, and a molecular sieve outlet, wherein the silicon tetrachloride may share an inlet with the molecular sieve inlet, or a silicon tetrachloride inlet may be separately disposed at a different position from the molecular sieve inlet.
  • the inlet is preferably adjacent to the molecular sieve inlet to move the silicon tetrachloride and the molecular sieve in parallel.
  • the gas phase ultrastable reactor provided by the invention can make the molecular sieve and the SiC are fed into the tube of the reactor from the feed port in the case of only one feed port, but preferably, in order to facilitate industrial continuous production and
  • the molecular sieve is usually a hot molecular sieve from a calciner, that is, the feed port is usually in communication with the calciner, and therefore, preferably, the gas phase ultrastable reactor further comprises silicon tetrachloride.
  • the silicon tetrachloride feed port is located at a position on the pipe body adjacent to the molecular sieve feed port (first feed port); the silicon tetrachloride feed The port may be located upstream of the molecular sieve feed port or at a position downstream of the molecular sieve feed port.
  • the silicon tetrachloride feed port is located downstream of the molecular sieve feed port.
  • the gas includes silicon tetrachloride gas and
  • the gas introduced by the molecular sieve is, for example, air.
  • the gas phase ultrastable reactor may be provided with only one material outlet (also referred to as molecular sieve outlet at this time), and the molecular sieve, the gas brought in by the molecular sieve and the unreacted small amount of silicon tetrachloride may leave the gas phase from the outlet.
  • the ultrastable reactor enters the gas-solids separator.
  • the gas phase ultrastable reactor may be a tubular reactor including a molecular sieve inlet, a tube body, a molecular sieve delivery device and a molecular sieve outlet, and optionally a tetrachloride.
  • the molecular sieve feedstock is introduced into the tubular body from the molecular sieve inlet of the gas phase ultrastable reactor and then moved along the tubular body to the molecular sieve outlet to exit the gas phase ultrastable reactor.
  • the silicon tetrachloride is introduced into the gas phase ultrastable reactor from the optional silicon tetrachloride inlet, and is contacted with the molecular sieve to carry out the reaction.
  • the tube body may be any form of tube capable of moving the molecular sieve therein, and may be, for example, a combination of one or more of a straight tube, a folding tube, and an elbow, for example, one of which may be a straight tube.
  • the other section is an elbow or a spiral tube; the cross section of the tube body may have various shapes, such as a square shape, a circular shape, and a polygonal shape, and the tube body is preferably a circular tube.
  • a gas phase ultra-stable reaction which is considered to be a tubular reactor (also referred to as a tubular reactor, the tubular reactor includes a pipe body, a feed port, and a discharge port.
  • the feed port and the discharge port may be respectively located in the pipe body.
  • the two ends of the molecular sieve are introduced into the reactor from the molecular sieve feed inlet and move along the axial direction of the tubular body, and react with silicon tetrachloride. After the reaction, the molecular sieve is discharged from the molecular sieve outlet to the reactor, and the discharged molecular sieve and An unreacted small amount of silicon tetrachloride enters the gas-solid separator.
  • the molecular sieve can be moved in the tubular reactor by gravity or by mechanical transport, for example, a circulating piston conveyor, a pipe chain conveyor, a spiral can be used.
  • Conveyor, tubular belt conveyor, tubular gravity conveyor, belt conveyor or a combination thereof moves the molecular sieve from the molecular sieve inlet to the molecular sieve outlet in the tube.
  • the contact time between the molecular sieve and the gas phase SiC is 10 seconds to 120 minutes. Preferably, it is 1-60 minutes, for example, may be 4-39 minutes, and the molecular sieve and the gas phase SiC may be heated or not during the contacting process to make the molecular sieve and
  • the temperature of the vapor phase SiC contact is 250-700 °C.
  • the length of the tubular reactor is from 5 to 200 m (the length of the pipe body), and therefore, the length of the tubular reactor is preferably from 5 to 200 m. It is further preferably from 7 to 150 m, still more preferably from 15 to 130 m, still more preferably from 20 to 80 m.
  • the diameter (inner diameter) of the tubular reactor is preferably from 0.01 to 6 meters, further preferably from 0.02-3 meters, still more preferably from 0.1 to 2 meters, and for example from 0.2 to 1.5 meters.
  • the ratio of the length of the tubular body to the inner diameter (diameter) of the tubular body is not less than 1, preferably 3-100:1, and may be, for example, 10-100:1.
  • the introduction amount (flow rate) of the molecular sieve is preferably 50 to 2000 kg/hr, more preferably 100, with respect to the tubular reactor having a diameter of 0.01 to 1.5 m, for example, 0.1 to 1.5 m, and a length of 5 to 130 m, for example, 15 to 130 m. - 1500 kg / hour, still more preferably 200 - 1200 kg / hour.
  • the molecular sieve and the gas phase SiC continuously pass through the tubular reactor, and the contact between the molecular sieve and the vapor phase SiC can be sufficiently performed.
  • the amount of gas phase SiC can be greatly reduced under the same degree of dealumination.
  • the molecular sieve and the vaporized SiC are contacted in a flowing state under a continuous conveying device.
  • the tube body may be horizontal or inclined as long as the molecular sieve can be moved in the tube body without carrier gas transport, for example, the angle between the axis and the horizontal plane may be 0-90. For example, it can be 0-55°.
  • the tubular body is tubular, and may be linear, polygonal, or may be any shape such as a spiral or a wave.
  • the invention preferably uses a straight line or a broken line type pipe.
  • the straight line type or the line type line pipe can not only reduce the size of the device and the floor space of the device, but also reduce the construction difficulty, and can achieve the purpose of fully carrying out the reaction between the molecular sieve and the SiC. It is convenient to control the residence time of the molecular sieve.
  • the tubular reactor can be set by gravity and/or Or moving the molecular sieve therein by mechanical transport, for example, selecting a continuous conveying device inside the tubular reactor or moving the molecular sieve by gravity, which can solve the problem of continuous transportation of the solid powder, and can also increase the total amount of material reaction.
  • the conveyor can be any continuous conveyor to ensure molecular sieve and SiC flow reactions.
  • the gravity conveyor and power transmission are preferred in the present invention.
  • the gas phase ultra-stable reaction device comprises a gas phase ultrastable reactor 1, a gas-solid separator 2, an absorber 3, and a beater 4, and the gas phase ultrastable reactor 1 is provided with a molecular sieve inlet a and a gas phase silicon tetrachloride inlet b, the gas-solid separator 2 is provided with a molecular sieve outlet c, the top gas outlet is in communication with the absorber 3, and the absorber 3 is provided with a gas outlet d for discharging the gas absorbed by the silicon tetrachloride, And an absorption liquid outlet e for discharging the absorption liquid absorbing silicon tetrachloride;
  • the device 4 receives the reacted molecular sieve from the outlet c of the molecular sieve, and can also introduce a base and a binder to prepare a molecular sieve mixed slurry.
  • the molecular sieve obtained by gas-solid separation is directly used for preparing a catalyst or the molecular sieve dry powder is used for preparing a catalyst after being beaten with water, and the molecular sieve washing after the gas phase super-stable reaction is not required.
  • the gas phase ultra-stable reaction device comprises a gas phase ultrastable reactor 1, a gas-solid separator 2 and an absorber 3, and the gas phase ultrastable reactor 1 is provided with a molecular sieve inlet a and a gas phase tetrachlorination.
  • the silicon inlet b, the gas-solid separator 2 is provided with a molecular sieve outlet c, the top gas outlet is in communication with the absorber 3, and the absorber 3 is provided with a gas outlet d for discharging the gas absorbed by the silicon tetrachloride, and the absorption liquid outlet e is used to discharge the absorption liquid that absorbs silicon tetrachloride.
  • the molecular sieve discharged from the molecular sieve outlet c is introduced into the scrubber 4 for washing, and then filtered and dried to obtain a washed molecular sieve.
  • the washed molecular sieve may be dried or not dried, and then introduced into the beater 5, and the matrix introduced into the beater 5.
  • the g is mixed and beaten, and then introduced into a granulation system for granulation.
  • the Na-type molecular sieve exchange device preferably includes an exchanger and a second filter
  • the exchanger may be any device capable of exchanging molecular sieves with exchange liquid.
  • the exchanger may be an exchange tank, such as a circular or trough type vessel, with a molecular sieve inlet and an exchange liquid inlet at the top, a molecular sieve slurry outlet at the bottom, and a slurry drawn from the outlet to the second filter for filtration.
  • the molecular sieve to be exchanged can be placed on a belt filter in an exchange area provided on the belt filter and rinsed with an exchange liquid.
  • the second filter is preferably a vacuum belt filter.
  • the exchange tank can be a cylindrical tank and the bottom can have a conical head.
  • the aspect ratio ratio of height to diameter inner diameter
  • the inlets of the molecular sieve inlet and the inlet of the exchange liquid are all disposed at the top of the tank, and the molecular sieve slurry thereof The outlet is placed at the bottom of the tank.
  • the exchange of the NaY molecular sieve can be carried out as needed, for example, using one or more of an ammonium salt (e.g., ammonium sulfate, ammonium nitrate, ammonium chloride), a rare earth salt (e.g., rare earth nitrate, rare earth chloride).
  • an ammonium salt e.g., ammonium sulfate, ammonium nitrate, ammonium chloride
  • a rare earth salt e.g., rare earth nitrate, rare earth chloride
  • the Na type molecular sieve provided by the present invention is commercially available or prepared according to the existing method, and when prepared according to the existing method, usually includes synthetic gel, crystallization and filtration (the filter used is referred to as a first filter, Preferably, the vacuum belt filter), drying (the dryer used is referred to as a second dryer in the present invention) or not drying to obtain a Na type molecular sieve.
  • the calcining furnace is used for heating the molecular sieve to meet the requirements of the temperature and solid content of the molecular sieve, and any existing apparatus capable of satisfying the purpose can be used as the roasting furnace, for example, In the conventional continuous calcining furnace, as long as the molecular sieve roasting can be achieved, for example, a rotary roasting furnace, the continuous calcination can be easily realized by carrying out the reaction by using the gas phase superstable reactor of the present invention.
  • the furnace is in communication with the gas phase ultrastable reaction unit.
  • the calcination temperature is 200-650 ° C, preferably 300-600 ° C, and the calcination time is usually not less than 0.5 hours, for example, 0.5-10 hours.
  • the present invention uses a novel calciner, as shown in Fig. 9, the calciner comprises a barrel 2, a heating device 1 for heating the barrel of the roaster, the barrel 2 of the roaster comprising a feed end 24. Intermediate cylinder 20 and discharge end 25.
  • a feed port 21 and a discharge port 22 are respectively disposed on the feeding end 24 and the discharge end 25, and the inner wall of the intermediate cylinder 20 is provided with a copy board 3 and a seesaw 4, and the copying
  • the direction in which the plate 3 extends from the molecular sieve inlet of the calciner to the molecular sieve outlet is preferably an acute angle to the axial direction of the intermediate cylinder 20 (the direction from the molecular sieve inlet to the outlet), and the jaw 4 is perpendicular to the axis of the intermediate cylinder 20.
  • the intermediate cylinder 20 is rotatable, and the feed end 24 and the discharge end 25 are fixed.
  • the intermediate cylinder 20 is rotated, the molecular sieve to be calcined is fed from the feed port 21, and the calcined molecular sieve is collected at the discharge port 22, and the two adjacent sheets 3 are not in contact with each other.
  • the number of the copy board 3 and the seesaw 4 may be set to one or more.
  • the markings in Figure 9 are: 1-furnace; 10-temperature controller; 11-insulation layer; 12-heating system; 13-furnace; 2-barrel; 20-intermediate cylinder; 21-feed port; - discharge port; 23 - connection rotation mechanism; 24-feed end; 25 - discharge end; 3-copy plate; 4-plate.
  • the 30° shown in the figure is an illustration of the angle between the plate and the axis, and is not a limitation of the angle.
  • the novel calciner can make the discharge time of the molecular sieve more uniform and facilitate the direct communication with the gas phase ultra-stable reactor.
  • the intermediate cylinder can be rotated counterclockwise or clockwise to make the discharge more uniform.
  • the rotation direction of the baking furnace causes the copy board to extend from the molecular sieve inlet to the molecular sieve outlet direction along the intermediate cylinder.
  • the body extends in the same direction.
  • the calcining furnace and the gas phase ultrastable reactor may be connected through a molecular Xue delivery line, and the molecular sieve outlet position of the roaster is higher than the inlet position of the roasting furnace molecular sieve.
  • at least one section of the molecular sieve transfer line is arranged to be inclined, and the angle between the axis of the inclined section and the horizontal plane is 35-75°.
  • the connecting pipeline may also be provided with a valve or a partition plate to adjust the size of the molecular sieve conveying passage.
  • valve or the shutter When the valve or the shutter is disposed, the angle between the inclined section and the horizontal plane is 55- 65. , which facilitates the control of the flow of the molecular sieve and can be controlled 1289
  • the valve or gate opening degree ensures the flow of the molecular sieve under the condition that the molecular sieve forms a certain molecular sieve layer above it, and isolates the gas flow of the gas phase ultra-stable reactor and the roaster, and organizes the gas phase silicon tetrachloride when fluctuating. Enter the roaster.
  • a communication line preferably includes a first vertical section, a second vertical section and an inclined section. As shown in FIG. 10, the first vertical section 511-end is connected to the molecular sieve outlet of the baking furnace, and the other end is inclined. Section 513 is joined, the other end of inclined section 513 is coupled to one end of second vertical section 512, and the other section of second vertical section 512 is in communication with the molecular sieve inlet of the gas phase ultrastable reactor. The angle between the axis of the inclined section and the horizontal plane is preferably 30-80. .
  • the communication line is preferably further provided with a shutter 514.
  • the flow rate of the molecular sieve can be controlled, and the level of the molecular sieve in the communication line can be controlled to block the silicon tetrachloride. roaster.
  • the increase of the flow channel can increase the flow rate of the molecular sieve or the level of the molecular sieve above the P low gate, and if the gate moves to the lower left, the flow of the molecular sieve can be reduced or Increase the level of the molecular sieve above the gate.
  • a workflow for preparing a molecular sieve by the apparatus provided by the present invention is shown in FIG.
  • a synthetic raw material of a Na type molecular sieve such as a silica-alumina directing agent a1 and a mixture of sodium aluminate, sodium silicate and sodium hydroxide and water a2 are added to the synthesis vessel 5, and crystallization is carried out to obtain crystallization of a Na-type molecular sieve and a synthetic mother liquor.
  • the product is synthesized and then introduced into a belt filter 21 for filtration.
  • the filter cake obtained by filtration is added to an exchange tank 7 for beating with an exchange liquid such as a rare earth chloride solution, and the slurry in the exchange tank is taken out from the bottom of the exchange tank to introduce a belt.
  • the filter 22 is filtered, and the obtained molecular sieve filter cake is introduced into a calcining furnace 4 for calcination, and calcined to obtain a molecular sieve having a temperature of 200-600 ° C, and a solid content of not less than 98% by weight, the molecular sieve and the heated gas phase SiC
  • the raw material b is fed into the tubular reactor 1 from the molecular sieve feed port and the silicon tetrachloride feed port, respectively, and the molecular sieve flows through the conveying device in the tubular reactor 1 and contacts the gas phase SiC, and is disposed on the outer wall of the pipe and/or Or the internal heater heats the tubular reactor 1 to ensure that the reaction temperature in the tubular reactor 1 is 250-700 ° C, after which i gas-solid In the gas-solid separator 2, the molecular sieve is deposited at the bottom of the gas-solid separator 2, directly or periodically, and is added to the wash tank 8 together with water, and then filtered by
  • the molecular sieve is conveyed by gravity.
  • the tube 2013/001289 The body is a bent pipe or a straight pipe, and the angle between the axis of the pipe and the horizontal plane is 30-90.
  • the pipe body is arranged vertically or obliquely, and the inclined pipe body is convenient for controlling the reaction time of the molecular sieve in the pipe body and facilitating the control of the movement of the molecular sieve. It is preferably a straight tube whose cross section is preferably circular.
  • the tube body is preferably inclined, and its angle with the horizontal plane is preferably 30-80.
  • the preferred axis is at an angle to the horizontal plane, which is beneficial for controlling the level of the molecular sieve in the reactor, and the molecular sieve can be discharged, smooth operation, stabilizing the quality of the molecular sieve product and increasing The degree of dealuminization and silicon supplementation of molecular sieves.
  • a molecular sieve inlet and an optional silicon tetrachloride gas inlet are arranged, and the molecular sieve enters the pipe body and settles under the action of gravity, and is mixed with the silicon tetrachloride gas therein, and is super
  • silicon tetrachloride moves toward the material outlet (molecular sieve outlet) as a whole, and gradually decreases along the axial direction of the reactor as the reaction progresses, and the reactor exits at the outlet, and the molecular sieve outlet is disposed in the tube body.
  • the other end is the lower end of the tube.
  • the present invention preferably deposits the molecular sieve on the lower portion of the tubular body and gradually moves, and controls the molecular sieve deposited on the bottom by controlling the resistance at the outlet, for example, by providing a shrinkage, a shutter or a valve at the outlet. Position, thereby controlling the reaction time of the molecular sieve after deposition.
  • the molecular sieve is mixed with silicon tetrachloride in the process of sedimentation, and then the molecular sieve is deposited on the lower part of the tube body, wherein silicon tetrachloride is mixed in the pores and pores of the molecular sieve, and the silicon tetrachloride is carried under the molecular sieve.
  • the silicon tetrachloride As the molecular sieve moves toward the outlet of the molecular sieve and undergoes an ultra-stabilization reaction, the silicon tetrachloride is gradually consumed, and then the gas-solid separator is introduced through the material outlet (molecular sieve outlet) to introduce the gas-solid separator, so that the molecular sieve after the ultra-stabilization reaction is obtained. Separating from the gas carried therein, the gas is introduced into the absorber to absorb the silicon tetrachloride therein, and the molecules are collected at the bottom of the gas-solid separator, and the gas-solid separator is continuously or periodically discharged.
  • the molecular sieve Since the upper part of the pipe body is the sedimentation zone of the molecular sieve, silicon tetrachloride is in the gas phase, so the molecular sieve begins to be super-stabilized with silicon tetrachloride during the sedimentation process, and then deposited in the lower part of the reactor to the molecular sieve. The exit direction moves and undergoes an ultra-stabilization reaction. As the molecular sieve moves, the particle voids and the silicon tetrachloride in the molecular sieve pores gradually react.
  • the reaction time can be controlled so that the silicon tetrachloride in the pores and pores of the molecular sieve particles reacts as completely as possible, due to the higher resistance of the formed buildup layer.
  • the introduced silicon tetrachloride can be prevented from directly entering the gas-solid separator through the molecular sieve accumulation layer due to large fluctuation of pressure, thereby facilitating the utilization of silicon tetrachloride to reduce the amount of silicon tetrachloride.
  • At least a portion of the reactor is filled with a cross-sectional sieve to prevent the silicon tetrachloride from entering the gas-solid separator directly from the material outlet due to pressure fluctuations, which can reduce the reactor size and ensure the reaction effect.
  • a seesaw may also be provided in the reactor.
  • the molecular sieve enters the tube from the higher end, and silicon tetrachloride is also introduced into the tube from the same end and is in contact with the molecular sieve, and the molecular sieve moves along the tube to the other end of the tube.
  • the molecular sieve is deposited in the tube body and moved to the lower end by gravity, and there is silicon tetrachloride in the particle gap of the molecular sieve and the introduction of the molecular sieve into the tube body.
  • the gas moves with the molecular sieve.
  • the molecular sieve outlet is at the lower end, either on the end face of the pipe body or on the pipe wall near the end face.
  • the diameter (inner diameter) of the reactor tube is from 0.1 to 2 meters, more preferably from 0.15 to 1.5 meters, and the aspect ratio of the reactor (the ratio of the length to the diameter (inner diameter) of the tube) ) is greater than 1, usually from 1 to 500, for example from 1.5 to 400:1, more preferably from 3 to 150:1, for example from 10 to 100:1.
  • the reactor is a tubular reactor, and the tubular reactor utilizes gravity to transport a molecular sieve, and in order to facilitate control of movement of the molecular sieve in the tubular body, the molecular sieve is The movement is better and smoother, and the reaction effect is improved.
  • the tubular body of the tubular reactor is arranged to be rotatable, that is, a part or all of the tubular reactor body may be arranged to be rotatable about the axis of the tubular body.
  • the rotating portion is more than 20% of the length of the reactor tube, for example from 20% to 100%, and may also be from 20 to 90°. .
  • the position of the inlet of the molecular sieve material is preferably higher than the position of the outlet of the molecular sieve; preferably, the axis of the tubular body may be at an angle ⁇ (an acute angle) to the horizontal plane, and the angle may be 5-90. It is preferably 5-70. For example, it can be 10-20. , 20-50. , 30-40°, 40-60. Or 60-70. More preferably, it is 30-55. .
  • the inclined pipe body facilitates the control of the reaction time of the molecular sieve in the pipe body and facilitates the control of the movement of the molecular sieve, can promote the mixing of silicon tetrachloride and molecular sieve, and improve the reaction uniformity.
  • the tubular body of the tubular reactor is preferably a straight tube.
  • the molecular sieve is moved in parallel with the silicon tetrachloride.
  • the rotational speed of the tubular body is 0.05-40 rpm, preferably 0.5-25 rpm, for example 0.5-15 rpm.
  • the copying plate may be welded in a straight line inside the pipe body, parallel to the axis, or may be welded at a certain angle (at an angle with respect to the axis), and may also be welded by spiral welding, wave welding, and various shapes.
  • the number of sheets can be one or more in number, usually one copy board can meet the requirements, preferably 1-6 (relative to the cross section)
  • the number of copying plates is, for example, 1/100 to 1/10 of the inner diameter of the pipe body diameter, for example, 1/30-1/10.
  • the plate can be equipped with various shapes and a variety of small steel plates capable of strengthening the molecular sieve agitation to enhance the agitation to enhance the mass transfer effect.
  • the small steel plate can be one of a linear type, a spiral shape, a wave shape and a circular shape. Or a variety.
  • the baffle may be uniformly welded to the inside of the pipe body, or may be unevenly welded.
  • the baffle may be zero or more in number, and the width of the baffle is according to the molecular sieve in the designed pipe body.
  • the feed amount is set, for example, the width of the baffle may be 1/100-1/10 of the inner diameter of the pipe body, and the purpose of the baffle is to reduce the sliding of the molecular sieve in the reactor, for example, the speed of the lower layer is faster than the upper side. The speed is to make the reaction more uniform and reduce the amount of silicon tetrachloride.
  • the alpha angle is preferably from 30 to 50. In this way, the molecular sieve can be transported in the tube body and the product quality can be stabilized.
  • the tube body is preferably provided with a sleeve, which is beneficial to increase the concentration of silicon tetrachloride in the reactor, increase the degree of reaction and thereby reduce the consumption of silicon tetrachloride, and promote Mass transfer.
  • the sleeve may be coaxial with the tubular body, and may be a circular tube, the outer diameter of which is preferably 1/4 to 3/4 of the inner diameter of the tubular body.
  • the rotatable portion of the tubular body is provided with the sleeve.
  • a gas phase ultrastable reactor is shown in FIG. 3.
  • the gas phase ultrastable reactor comprises: a reactor tube, a molecular sieve inlet 31, a gas phase silicon tetrachloride.
  • the inlet 41, the molecular sieve outlet 51, the inner sleeve 61 and the gas outlet 71, the reactor plate 11 and the baffle 21 are disposed in the reactor tube, and the reactor may further include a tube rotation driving mechanism (not shown).
  • the silicon tetrachloride and the molecular sieve are respectively introduced into the gap between the casing 61 and the wall of the gas phase ultrastable reactor through the silicon tetrachloride inlet 14 and the molecular sieve inlet 31, and contact the reaction, wherein the plate 11 can be made in the tube body.
  • the molecular sieve is reversed, which is beneficial to the mixing of the molecular sieve and the silicon tetrachloride.
  • the baffle 21 can prevent the molecular sieve from sliding down along the wall of the reactor, which is favorable for the smooth movement of the molecular sieve, thereby preventing the movement of the molecular sieve material below the movement faster than the movement of the upper molecular sieve. The speed is beneficial to stabilize the product quality.
  • the introduction of the casing 61 causes the molecular sieve to react in the annulus, which is beneficial to stabilize the molecular sieve quality and is beneficial for reducing heat loss.
  • the gas-solid separator is used for collecting the molecular sieve after contact with the SiClt gas. .
  • the reactor uses a power transmission device to transport molecular sieves to move the molecular sieves in the reactor
  • the power transmission device may be any device as long as the molecular sieve and the molecular sieve can be
  • the gas phase SiC continuously moves in the reactor and contacts the reaction.
  • transporting devices for example using a circulating piston conveyor, pipe chain conveyor One or more of a machine, a screw conveyor, a tubular belt conveyor, a tubular gravity conveyor, and a belt conveyor.
  • the molecular sieve can be moved in a tubular reactor, and the voids in the molecular sieve and the gas in the pores are also carried under the molecular sieve to the outlet of the gas phase superstable reactor.
  • One way is to transport the molecular sieve by means of a tubular belt conveyor which is arranged inside the closed tubular reactor, the molecular sieve and the gas phase SiC from the upper end of the tubular reactor
  • the feed port enters the belt conveyor and is conveyed to the discharge port at the lower part of the other end of the tubular reactor through a belt conveyor.
  • the material can be fully reacted on the belt conveyor.
  • the belt conveyor can be
  • the length and width of the belt conveyor depend on the position of the inlet and outlet of the tubular reactor and the amount of molecular sieve feed.
  • the thickness of the molecular sieve on the belt conveyor does not exceed 20 cm, more preferably does not exceed 10 cm.
  • the molecular sieve is conveyed using a belt conveyor, and the angle ⁇ between the axis of the tubular body and the horizontal plane is preferably 0-45°, preferably 0-25°.
  • a reactor for transporting a molecular sieve using a belt conveyor is shown in Fig. 5.
  • the molecular sieve raw material and silicon tetrachloride are introduced into the reactor from the molecular sieve inlet 12 and the silicon tetrachloride inlet 22 at one end of the reactor, and the molecular sieve falls into the reactor.
  • the belt conveyor 52 moves along the conveyor belt on the belt conveyor 52, and the space above the molecular sieve is filled with silicon tetrachloride.
  • the silicon tetrachloride diffuses into the gap between the molecular sieve particles and enters the pores of the molecular sieve.
  • the molecular sieve after the reaction falls into the outlet 32 of the other end of the reactor and exits the reactor. Due to the reaction with the molecular sieve, the concentration of silicon tetrachloride in the gas phase gradually decreases along the direction of movement of the molecular sieve.
  • the opening of the outlet 32 can be controlled to discharge the material at a certain speed, and a certain height of material accumulation is generated in the upper portion of the outlet 32 to prevent excess silicon tetrachloride from being discharged from the outlet 32, wherein the gas outlet 62 is used for the reactor.
  • the air introduced by silicon tetrachloride and molecular sieve is taken out.
  • the air introduced into the reactor with the molecular sieve is diffused from the pores of the molecular sieve particles into the upper gas layer by the action of silicon tetrachloride, and the upper gas is extracted periodically or irregularly. Can facilitate the smooth operation of the reaction.
  • the gas extracted through the gas outlet 62 can be recovered to recover silicon tetrachloride, and the uncooled gas can be evacuated after absorbing a small amount of silicon tetrachloride carried therein.
  • the molecular sieve thickness on the conveyor belt should not be too high, preferably no more than 10 cm, such as no more than 5 cm.
  • a power delivery molecular sieve can also be carried out using a circulating piston conveyor which is provided with a circulation of a plurality of piston push rods in a closed tubular reactor.
  • the conveying device, the tubular reactor is divided into two upper and lower layers, and the upper layer is provided with a molecular sieve and a gas phase SiC.
  • the space from the inlet of the upper part of the tubular reactor is pushed forward by the piston rod, and the lower layer provides the piston rod itself. The space back to the motion, thus forming a continuous feed loop reaction system.
  • the pipe chain conveyor includes a driving sprocket: a corner wheel, a slewing chain, a load chain, a circulating conveying pipe, a feeding port, a discharge port, a slewing chain set on the driving sprocket and the corner sprocket, and a loading chain Vertically inserted on the rotating chain, the circulating conveying pipe is set outside the rotating chain, and the driving sprocket, the corner sprocket, the rotating chain, the loading chain and the circulating conveying pipe form a closed material conveying circuit.
  • the direction of movement of silicon tetrachloride is substantially the same as that of the molecular sieve by providing a silicon tetrachloride inlet at the entrance of the molecular sieve.
  • the ratio of the distance between the conveyor chain plates of the pipe chain conveyor to the inner diameter of the reaction pipe diameter may be 1:1-1:100, for example, 1:2-1:20.
  • the distance between adjacent ones of the carrier chains preferably does not exceed the inner diameter of the reactor tube, preferably from 1/4 to 1/2.
  • the screw conveyor includes a shaft screw conveyor and a shaftless screw conveyor, wherein the shaftless screw conveyor adopts a centerless shaft design.
  • the utility model utilizes a whole steel spiral propelling material with certain flexibility, thereby having strong anti-winding property and no central axis interference and the like;
  • the shaft screw conveyor is a continuous conveying device which uses a spiral steel sheet to rotate and then pushes the material, the conveying device It can be set to horizontal or tilted.
  • the pitch of the screw conveyor is not particularly required as long as the molecular sieve can be moved within the tube body, for example, 1/100-1/10 of the inner diameter of the tube body.
  • the gas phase ultrastable reactor is a straight tube.
  • the molecular sieve material may be filled in at least one part of the reactor around the tube body, that is, at least one cross section of the tube body is filled with the molecular sieve, so that the molecular sieve can be used for sealing, so that the silicon tetrachloride gas is not too fast because the pressure fluctuates too fast. Flow into the gas-solid separator.
  • the transport of molecular sieves can also be carried out using a combination of power and gravity.
  • the present invention is referred to as a combined transport mode, in which case the movement of the molecular sieve is controlled by gravity and mechanical transport means, By controlling the mechanical conveying device, the residence time of the molecular sieve in the reactor can be adjusted, and the reaction time of the molecular sieve with silicon tetrachloride can be controlled. In this way, the reaction of the molecular sieve in the tubular reactor can be more uniform and the back mixing can be reduced.
  • the preferred tubular reactor is a straight tube reactor, and the angle between the axis of the pipe body and the horizontal plane is preferably For 25-55.
  • the mechanical conveying device is less stressed, which is convenient for controlling the movement of the molecular sieve in the reactor, It should be better and evener, which will help reduce equipment maintenance.
  • Preferred mechanical conveying devices are, for example, circulating piston conveyors, pipe chain conveyors, screw conveyors, belt conveyors.
  • the pipe body is disposed in an inclined state, and the angle between the axis of the pipe body and the horizontal plane is preferably 25-55 ° C, which can improve the stability of the prepared molecular sieve. Wenshan product distribution.
  • the present invention also includes a gas-solid separation and absorption process, and accordingly, the apparatus of the present invention further includes a gas-solid separator and an absorber.
  • the gas-solid separation is used to separate the reacted molecular sieve from the unreacted silicon tetrachloride in the gas phase, and remove unreacted silicon tetrachloride in the molecular sieve as much as possible, and the gas-solid separation can be carried out in the gas-solid separator;
  • the absorption is used to absorb silicon tetrachloride in the gas after gas-solid separation, which can be carried out in an absorber.
  • the shape of the present invention is not particularly limited, and for example, it may be cylindrical.
  • the bottom of the gas-solid separator has a tapered shape with an opening at the end. The molecular sieve thus obtained can be discharged from the opening.
  • the position of the gas-solid separator connected to the discharge port is higher than the starting position of the taper .
  • the position where the gas-solid separator is connected to the discharge port is located at the upper middle portion of the gas-solid separator, and the gas-solid separator communicates with the absorber to be described later through the top opening thereof.
  • the gas-solid separator In the gas-solid separator, the solid molecular sieve and the gas are separated to obtain a high-silicon molecular sieve product.
  • the gas-solid separator generally includes a feed port and a top gas outlet. One end of the pipe body is in communication with the gas-solid separator, and the gas-solid separator has a cross-sectional area larger than a cross-sectional area of the tubular reactor pipe body.
  • the ratio of the cross-sectional area of the gas-solid separator to the cross-sectional area of the tubular reactor tube is from 2 to 10:1, so that rapid sedimentation of the molecular sieve can be sufficiently achieved.
  • the gas-solid separator has a height of not less than 5 m, for example, 5 to 10 m.
  • the feed port of the gas-solid separator is located in the middle of the gas-solid separator, so as to ensure that the molecular sieve of the bottom of the gas-solid separator is not stirred on the one hand, and on the other hand Can ensure a sufficient settling time.
  • the reactor and the gas-solid separator may be arranged to operate under a micro-negative pressure, for example, the gas-solid separator may have a vacuum of 100 Pa to 90 KPa, preferably lkpa to 80 kPa.
  • the gas-solids separator further comprises a bottom solids outlet for discharging the separated molecular sieve solids. Still more preferably, the gas-solid separator further comprises The valve for controlling the opening and closing of the bottom solid outlet is capable of discharging the molecular sieve solid collected in the gas-solid separator in a timely manner.
  • the molecular sieve exiting the gas-solid separator can be beaten without being washed and then directly mixed with the substrate and water. Since the gas phase super-stable reaction is a process of dealuminizing silicon supplementation, a large amount of aluminum chloride is generated during the reaction, and silicon tetrachloride is used as the raw material of the reaction, and silicon chloride and hydrochloric acid are immediately contacted with water to form silica gel and hydrochloric acid. Upon completion, the molecular sieve will carry a portion of silicon tetrachloride and aluminum chloride. These materials can be used as a binder in the catalyst gelling process, which reduces the use of binder during catalyst preparation and also reduces wastewater.
  • the generation of waste and sour gas greatly reduces environmental pollution and improves the recycling and efficient use of waste.
  • the process reduces the catalyst preparation process, reduces the amount of molecular sieve washing water, reduces the loss of rare earth ions in the washing process, reuses the rare earth ions in the slurry into the catalyst, improves the utilization rate of the rare earth, and utilizes the high efficiency. raw material.
  • the molecular sieve exiting the gas-solid separator can also be washed.
  • the washing can be carried out by a conventional method, for example, by deionized water or deionized water.
  • the washing causes the content of sodium oxide in the molecular sieve after washing to be not higher than 0.5. % by weight, the washed molecular sieve is then mixed with a matrix and beaten, and the slurry is spray dried.
  • the gas taken out from the gas outlet of the gas-solid separator is absorbed to remove silicon tetrachloride carried therein.
  • the absorption process is preferably carried out in an absorber 3, in which an absorbent is contained in the absorber 3 for absorbing SiC which is not involved in the reaction in order to meet emission standards.
  • the absorber 3 is used to absorb unreacted SiC so that the gas from the gas-solid separator 2 reaches the discharge standard.
  • the absorber 3 may be various absorbers conventionally used in the art as long as it can absorb SiC.
  • an alkali solution such as an aqueous solution of sodium hydroxide is used to absorb the SiCU, and water can also be used for absorption.
  • the absorber 3 preferably includes a gas inlet and an absorption liquid inlet and two outlets, wherein the gas inlet is in communication with the gas-solid separator, preferably at the upper middle portion of the absorber.
  • the two outlets are located at the top and bottom of the absorber, respectively, for exhausting gas and absorbing waste liquid.
  • the absorbers are plural in series. Multiple absorbers in series form multiple levels of absorption of SiC.
  • the gas outlet of the absorber can be connected to an induced draft fan.
  • the gas phase ultrastable reactor of the present invention may further comprise a heater to heat the material in the reactor.
  • the heater can be implemented by a common heating method.
  • the heater can be various heaters.
  • the heating belt can be wound around the outer wall of the reactor, and the outer wall of the reactor can be heated.
  • the heater may be an electric heating belt, a steam sleeve, a coil heating provided at the molecular sieve feed port, the silicon tetrachloride feed port, and the outer wall and/or the inner wall of the pipe.
  • One or more of the devices are provided at the molecular sieve feed port, the silicon tetrachloride feed port, and the outer wall and/or the inner wall of the pipe.
  • the heat exchanger can also be realized by a common heat exchange method, for example, using water vapor and solid SiCl» for heat exchange, or heat exchange with other steam heat.
  • the heater can be set to control the temperature of the material in the tubular reactor, thereby lowering the requirement of the molecular sieve feed temperature, and controlling the realization of the tubular reactor from the inlet according to the requirements of the final aluminum-supplemented molecular sieve.
  • the temperature of each part to the discharge port is the same or different. It is also possible to adjust the temperature of the reactor material by using the reaction heat of the molecular sieve and SiC without setting a heater, for example, adjusting the ratio of the feed amount of the molecular sieve to the SiC, which simplifies the device flow.
  • the heater is an electric heater such as an electric heating belt or an electric furnace wire, and the electric heating belt is plural, and at the same time, the tube body Divided into multiple sections, an electric heating belt or electric furnace wire is wound around the outer wall of each section of the pipe.
  • a temperature measuring device can be respectively disposed inside the pipe body, and the actual temperature of the pipe body is measured according to the temperature requirement of the aluminum-reduction silicon-reaction reaction and the temperature measuring device, and the electric heating belt wound around the outer wall of each pipe is controlled.
  • Current and voltage for temperature control in each segment of the tube may be 2-20 meters, preferably 2-8 meters.
  • the contact temperature between the molecular sieve and the gas phase SiCl 4 can be controlled, and the temperature of the molecular sieve entering the reactor and the temperature of the gas phase SiC are not required, and the molecular sieve and the gas phase SiC can be any temperature.
  • the molecular sieve of the present invention preferably introduced into the gas phase ultrastable reactor has a temperature of 200 to 600 ° C and a temperature of SiC of 60 to 150 ° C.
  • the temperature of the molecular sieve after calcination is usually 300 ° C or more
  • the temperature of the above molecular sieve can be obtained by combining the reactor with the calcining furnace at the beginning of the reaction, that is, preferably, the molecular sieve is just from
  • the molecular sieve discharged from the roasting furnace can use the high temperature of the molecular sieve after roasting as a heat source for the dealuminization and silicon-removing reaction, and start the dealuminization and silicon-reinforcing reaction, thereby saving energy; on the other hand, saving the time for heating the molecular sieve, thereby making the reaction It can be fully carried out in a short period of time.
  • the method provided by the present invention is further described below in conjunction with Figure 2a.
  • the molecular sieve a at a temperature of 200-600 ° C and the SiC raw material b after the heat exchange are respectively fed into the tubular reactor 1 (the reactor may be provided with or without a heater), and the molecular sieve and the gaseous SiC are in the tubular reactor 1 Contact reaction, And moving toward the outlet of the molecular sieve, the tubular reactor 1 can be heated by a heater disposed on the outer wall and/or inside of the tube to adjust the reaction temperature in the tubular reactor 1 to 250-700 ° C, and then enter
  • the gas-solid separator 2, in the gas-solid separator 2, the high silicon molecular sieve c obtained by the reaction sinks at the bottom of the gas-solid separator 2, is discharged directly or periodically, and is then introduced into the beater 4 and a substrate such as a binder and clay.
  • the mixture is beaten and the prepared slurry is introduced into a granulation apparatus such as a spray dryer for granulation.
  • the gas phase SiC enters the absorber 3 through the outlet at the top of the gas-solid separator 2, and is in contact with an absorbent such as lye in the absorber 3, and the exhaust gas d overflows from the lye and is discharged from the outlet at the top of the absorber 3, SiC
  • the reaction with the lye is followed by direct or periodic discharge of the wastewater e through the bottom outlet.
  • Molecular sieve a at a temperature of 200-600 ° C and gaseous SiC raw material b after heat transfer are respectively fed into the tubular reactor 1 (the reactor may or may not be provided with a heater), and the molecular sieve and the gas phase SiC 3 ⁇ 4 are in the tubular reactor 1
  • the tubular reactor 1 can be heated by a heater disposed on the outer wall and/or inside of the tube to adjust the reaction temperature in the tubular reactor 1 to 250-700 ° C
  • the high silicon molecular sieve c obtained by the reaction is settled at the bottom of the gas-solid separator 2, discharged directly or periodically, introduced into the scrubber 4 for washing, and then introduced into the filter and dried.
  • the system 6 is filtered and dried, then introduced into a beater 5, mixed with a matrix g introduced into the beater 5, and then introduced into a granulator such as a spray dryer for granulation; the unreacted gaseous SiC passes through the top of the gas-solid separator 2
  • the outlet enters the absorber 3, contacts the absorbent in the absorber 3, for example, the liquid is removed, the exhaust gas d overflows from the lye, is discharged from the outlet at the top of the absorber 3, and SiC is mixed with the lye.
  • the reaction is followed by direct or periodic discharge of wastewater e through the bottom outlet.
  • the method provided by the present invention is further described below in conjunction with FIG.
  • the crystallization synthesis product taken out from the crystallization synthesizer 5 is led to a vacuum belt filter 21 for filtration, and the molecular sieve cake is introduced into the exchange tank 7 from the top of the exchange tank 7 and introduced into the exchange tank 7 in an exchange ratio.
  • Mixing, the exchange reaction is carried out in the exchange tank 7, and the slurry containing the molecular sieve is taken out from the bottom of the exchange tank, led to the vacuum belt filter 22 for filtration, and the molecular sieve filter cake is introduced into the roaster 4 to be calcined to obtain a temperature of 200-600 °.
  • the reactor may or may not be provided with a heater
  • molecular sieve and gas phase SiC in a tubular reactor 1 is contacted with the reaction and moved toward the outlet of the molecular sieve, and the tubular reactor 1 can be heated by a heater disposed on the outer wall and/or the inside of the tube to adjust the reaction temperature in the tubular reactor 1 to 250-700.
  • the catalyst is prepared by mixing with other raw materials used in the preparation of the catalytic cracking catalyst to prepare the catalyst; the unreacted gas phase SiC enters the absorber 3 through the outlet at the top of the gas-solid separator 2, and the absorber 3
  • the absorbent is contacted with, for example, an alkali solution, and the exhaust gas d overflows from the alkali liquid, is discharged from the outlet at the top of the absorber 3, and SiC is reacted with the alkali liquid, and then the wastewater e is directly or periodically discharged through the bottom outlet.
  • the invention can be used for vapor phase dealuminization of various molecular sieves.
  • the molecular sieve can be a Y-type molecular sieve, and the rare earth content of the Y-type molecular sieve can be 0-18% by weight, the ratio of silicon to aluminum (Si0 2 / The Al 2 0 3 molar ratio may be 4-6.
  • the invention can also be used for gas phase chemical dealumination of various Na type molecular sieves.
  • the Na type molecular sieve for example, a NaY type molecular sieve; crystallizes a mixture of a directing agent for NaY molecular sieve synthesis, a silica-alumina gel, and water (the method of crystallizing and synthesizing can be carried out by an existing method, for example, disclosed in Patent CN101468804 B Method), the crystallization product is filtered to obtain a filter cake, and the filter cake may be dried or not dried to obtain the NaY molecular sieve, and then introduced into an exchange device for exchange.
  • NaY molecular sieves can be ion exchanged to obtain NaY molecular sieves with different exchange degrees.
  • the exchange may be carried out by an existing method, for example, using an ammonium salt such as ammonium chloride, ammonium nitrate or ammonium sulfate, or a rare earth salt such as chlorine. Rare earth and / or rare earth nitrate.
  • the NaY molecular sieve may be subjected to rare earth exchange or Y-type molecular sieves having different rare earth contents without undergoing rare earth exchange, and the rare earth content of the Y-type molecular sieve may be 0-18 weight 0 / 0 , silicon-aluminum ratio (Si0 2 /Al 2 0 3 molar ratio) can be 4-6.
  • the molecular sieve obtained by the process of the present invention can be used to prepare a catalytic cracking catalyst, and other materials and methods of operation for preparing a substrate for a catalytic cracking catalyst can be carried out by techniques well known in the art.
  • the substrate is, for example, one or more of a binder or a clay which is commonly used as a catalytic cracking catalyst.
  • the molecular weight of the obtained catalyst is 5-50% by weight based on the total weight of the catalytic cracking catalyst, and the content of the binder is 0.5-50% by weight based on the oxide. It is 5 to 90% by weight.
  • the binder may be one or more of alumina, hydrated alumina, aluminum sol, silica sol, silica-alumina gel, silica alumina sol, and precursors thereof, and the clay may be kaolin, water One or more of kaolin, montmorillonite, diatomaceous earth, halloysite, saponite, rectorite, sepiolite, attapulgite, hydrotalcite, bentonite The present invention will not be described herein.
  • a method for preparing a catalytic cracking catalyst comprising: introducing a molecular sieve into a gas phase ultrastable reactor, moving the molecular sieve from a molecular sieve inlet of the gas phase superstable reactor to a gas phase super stable without carrier gas transport The molecular sieve outlet of the reactor is contacted with the gas phase SiC in a gas phase ultrastable reactor, and the molecular sieve obtained after the reaction is mixed with the matrix to be beaten and granulated.
  • A-2 The method according to the technical scheme a-1, characterized in that, in the gas phase ultrastable reactor, the temperature at which the molecular sieve and the gas phase SiC are contacted is 250-700 ° C, and the molecular sieve is in the The residence time of the gas phase ultrastable reactor is from 10 seconds to 100 minutes.
  • A-3 The method according to claim a-1, wherein the moving from the molecular sieve inlet of the gas phase superstable reactor to the outlet of the gas phase superstable reactor without using a carrier gas is carried out, using a belt type Conveyor, pipe chain conveyor, screw conveyor, circulating piston conveyor, tubular gravity conveyor or a combination of one or more of them.
  • the gas phase ultrastable reactor comprises a molecular sieve inlet, a silicon tetrachloride inlet, a reactor tube and a molecular sieve outlet, and the molecular sieve inlet has a high position. At the exit position of the molecular sieve.
  • A-5 The method according to the technical scheme a-1 or a-4, wherein the molecular sieve and the silicon tetrachloride share a material inlet, or the molecular sieve inlet and the silicon tetrachloride inlet are in the gas phase super Stabilize the same end of the reactor.
  • A-6 The method according to claim a-4, characterized in that the ratio of the length of the reactor to the inner diameter of the diameter is greater than 1, preferably from 3 to 100:1.
  • the gas phase ultrastable reactor comprises a molecular sieve inlet, a silicon tetrachloride inlet, a reactor tube, and a molecular sieve outlet, and the reaction is The angle between the tube body and the horizontal plane is 30-90°, the inlet of the molecular sieve is at the higher end of the tube body, the molecular outlet is located at the lower end of the tube body, and the outlet of the molecular sieve is connected with the gas-solid separation device.
  • the distance between the silicon tetrachloride inlet and the molecular sieve inlet is greater than the distance between the silicon tetrachloride inlet and the molecular sieve outlet, and the molecular sieve moves in the reactor by the action of gravity.
  • A-8 The method according to claim a-7, characterized in that the axis of the reactor tube is at an angle of 40-80 to the horizontal. .
  • the gas phase ultrastable reactor comprises a molecular sieve inlet, a silicon tetrachloride inlet, a reactor tube, a molecular sieve outlet, and a reactor. At least a portion of the tubular body is configured to be rotatable about an axis of the tubular body.
  • gas phase ultrastable reactor comprises a slab and a copy board in a portion rotatable about the axis of the tube body.
  • A-12 The method according to claim a-9, characterized in that the angle between the tube body and the horizontal plane is 5-80°.
  • A-14 The method according to claim a-13, characterized in that the ratio of the outer diameter of the sleeve to the inside of the reactor tube is 1/4-/3/4.
  • the gas phase ultrastable reactor comprises a molecular sieve inlet, a silicon tetrachloride inlet, a reactor tube and a molecular sieve outlet, and the reactor A mechanical conveying device is disposed in the tubular body, and the conveying mechanical conveying device is capable of moving the molecular sieve from the molecular sieve inlet of the gas phase superstable reactor to the molecular sieve outlet.
  • A-16 The method according to claim a-15, wherein the mechanical conveying device is one or more of a belt conveyor, a piston conveyor, a pipe chain conveyor or a screw conveyor. kind.
  • A-17 The method according to claim a-15 or a-16, characterized in that the angle between the axis of the reactor body and the horizontal plane is 0-70°.
  • A-18 The method according to claim a-17, wherein the reactor tube has an angle of 25 to 55 with respect to a horizontal plane. .
  • A-19 The method according to the technical scheme a-1, wherein the reactor is a tubular reactor, the length of the tubular body of the reactor is 5-200 m, and the diameter of the tubular body is 0.1- 6 meters.
  • A-20 The method according to claim a-19, characterized in that the diameter of the tubular body of the reactor is 0.2-1.5 m.
  • A-21 The method according to the technical scheme a-1 or a-20, characterized in that the molecular sieve has a flow rate of 50 to 2000 kg/hr.
  • Bl a method for preparing a catalytic cracking catalyst, the method comprising: introducing a molecular sieve into In the gas phase ultrastable reactor, the molecular sieve is moved from the molecular sieve inlet of the gas phase ultrastable reactor to the molecular sieve outlet of the gas phase superstable reactor without carrier gas transport, and is contacted with the gas phase SiC in the gas phase ultrastable reactor.
  • the molecular sieve after the reaction is washed, mixed with a matrix, and granulated.
  • the gas phase ultrastable reactor comprises a molecular sieve inlet, a silicon tetrachloride inlet, a reactor tube and a molecular sieve outlet, and the molecular sieve inlet is at a higher position.
  • the molecular sieve outlet location is at a higher position.
  • the gas phase ultrastable reactor comprises a molecular sieve inlet, a silicon tetrachloride inlet, a reactor tube, and a molecular sieve outlet, and the reactor is The angle between the pipe and the horizontal plane is 30-90.
  • the inlet of the molecular sieve is at the higher end of the tubular body, the molecular outlet is located at the lower end of the tubular body, the outlet of the molecular sieve is connected with the gas-solid separation device, and the distance between the inlet of the silicon tetrachloride and the inlet of the molecular sieve is greater than that of the tetrachloride.
  • the distance between the silicon inlet and the molecular sieve outlet, the molecular sieve moves in the reactor by the action of gravity.
  • the gas phase ultrastable reactor comprises a molecular sieve inlet, a silicon tetrachloride inlet, a reactor tube, a molecular sieve outlet, and at least a reactor tube body. A portion is arranged to be rotatable about the axis of the tubular body.
  • the reactor tube is a straight tube, at least a portion of which is rotatable about the axis of the tube at a rotational speed of from 0.05 to 40 rpm, preferably from 0.1 to 15 rpm.
  • gas phase ultrastable reactor comprises a seesaw and a copy board in a portion rotatable about the axis of the tube body.
  • the gas phase ultrastable reactor comprises a molecular sieve inlet, a silicon tetrachloride inlet, a reactor tube and a molecular sieve outlet, and the reactor tube
  • a mechanical conveying device is provided in the body, and the conveying mechanical conveying device is capable of moving the molecular sieve from the molecular sieve inlet of the gas phase superstable reactor to the molecular sieve outlet.
  • a method for preparing a molecular sieve comprising: introducing a molecular sieve into a gas phase ultrastable reactor, moving the molecular sieve from a molecular sieve inlet of the gas phase superstable reactor to a gas phase ultrastable reactor without carrier gas transport Molecular sieve outlet, and with gas phase SiC in the gas phase ultra stable Contact reaction in the reactor.
  • the gas phase ultrastable reactor comprises a molecular sieve inlet, a silicon tetrachloride inlet, a reactor tube and a molecular sieve outlet, and the molecular sieve inlet is at a higher position.
  • the molecular sieve outlet location is at a higher position.
  • the gas phase ultrastable reactor comprises a molecular sieve inlet, a silicon tetrachloride inlet, a reactor tube, and a molecular sieve outlet, the reactor.
  • the angle between the pipe and the horizontal plane is 30-90.
  • the inlet of the molecular sieve is at the higher end of the tubular body, the molecular outlet is located at the lower end of the tubular body, the outlet of the molecular sieve is connected with the gas-solid separation device, and the distance between the inlet of the silicon tetrachloride and the inlet of the molecular sieve is greater than that of the tetrachloride.
  • the distance between the silicon inlet and the molecular sieve outlet, the molecular sieve moves in the reactor by the action of gravity.
  • the gas phase ultrastable reactor comprises a molecular sieve inlet, a silicon tetrachloride inlet, a reactor tube, a molecular sieve outlet, and at least a reactor tube.
  • a portion is arranged to be rotatable about the axis of the tubular body.
  • the reactor tube is a straight tube, and at least a portion of the tube body is rotatable about the axis of the tube body,
  • the rotational speed is from 0.05 to 40 rpm, preferably from 0.1 to 15 rpm.
  • the gas phase ultrastable reactor comprises a molecular sieve inlet, a silicon tetrachloride inlet, a reactor tube and a molecular sieve outlet, and the reactor tube
  • a mechanical conveying device is provided in the body, and the conveying mechanical conveying device is capable of moving the molecular sieve from the molecular sieve inlet of the gas phase superstable reactor to the molecular sieve outlet.
  • an apparatus for preparing molecular sieves comprising: a Na type molecular sieve exchange device, a calcining furnace, a molecular sieve gas phase superstable reactor and a gas-solid separation device, wherein the Na type molecular sieve exchange device is used for exchanging Na type molecular sieves, and the baking furnace is used for The exchanged molecular sieve is calcined, and the molecular sieve gas phase ultrastable reactor is used for gas phase chemical dealuminization and silicon supplementation reaction on the calcined molecular sieve, and the gas-solid separator is used for removing the molecular sieve and the unreacter from the gas phase ultrastable reactor.
  • the gas phase ultrastable reactor comprises a molecular sieve inlet, a silicon tetrachloride inlet and a molecular sieve outlet,
  • the gas phase ultrastable reactor is capable of moving the molecular sieve introduced therein from the molecular sieve inlet to the molecular sieve outlet without carrier gas transport.
  • the position is higher than the molecular sieve outlet position.
  • the angle between the reactor tube and the horizontal plane is 30-90.
  • the inlet of the molecular sieve is at the higher end of the tubular body, the molecular outlet is located at the lower end of the tubular body, the outlet of the molecular sieve is connected with the gas-solid separation device, and the distance between the inlet of the silicon tetrachloride and the inlet of the molecular sieve is greater than that of the tetrachloride.
  • the apparatus for preparing a molecular sieve according to any one of the items d-1 or d-7, wherein the gas phase ultrastable reactor tube is a straight tube, and at least a part of the tube body is Rotating around the axis of the tube, the rotational speed is 0.05-40 rpm, preferably 0.1-15 rpm.
  • the apparatus for preparing a molecular sieve according to any one of the items d-7 to d-10 characterized in that In the reactor tube, there is a sleeve, and the molecular sieve and silicon tetrachloride contact the reaction in the annulus between the tube body and the sleeve.
  • a mechanical conveying device is provided in the reactor tube, and the mechanical conveying device is one or more of a belt conveyor, a piston conveyor, a pipe chain conveyor or a screw conveyor. .
  • the apparatus for producing a molecular sieve according to any one of the aspects of the invention, wherein the ratio of the length of the reactor to the inner diameter of the diameter is from 3 to 100:1.
  • the apparatus for preparing a molecular sieve according to the formula d-1 wherein the roasting furnace comprises a roasting furnace body, a heating device for heating the roasting furnace body, and the roasting furnace cylinder comprises a feed port, a discharge port and an intermediate cylinder between the feed port and the discharge port, wherein the intermediate cylinder body is provided with a seesaw plate and a copy board.
  • the Na-type molecular sieve exchange device comprises an exchanger, a second belt filter, or further comprises a first dryer;
  • the exchanger is for using a Na-type molecular sieve Exchanging with exchanged ions,
  • the second belt filter is used to separate the exchange mother liquor from the exchanged molecular sieve;
  • the first dryer is used to exchange the second belt filter The molecular sieve is dried.
  • a method for producing a molecular sieve which comprises modifying a Na type molecular sieve into a device for preparing a molecular sieve according to any one of the schemes d-1-d-22.
  • the molecular sieve vapor-supplementing device shown in Fig. 2a or 2b or Fig. 8 is made of stainless steel of industrial grade No. NiCrl8Ti having a thickness of 3 mm, wherein the upper part of the gas-solid separator 2 is a cylindrical shape having a diameter of 6 m and a height of 14 m. The lower part has an open cone with a cone angle of 45. , and the opening is provided with a wide opening, the discharge port is located 1 meter away from the top of the gas-solid separator (is the discharge port or the feed port?;), and the absorber 3 contains the hydrogen peroxide at a concentration of 10 mol/liter.
  • the sodium aqueous solution, the absorber 3 and the gas-solid separator 2 are connected by a conduit which penetrates into the aqueous sodium hydroxide solution.
  • Reactor 1 is a tubular reactor, as shown in Figure 5, the total length of the tube is 80 meters, the diameter of the tube
  • the tube body of the reactor is made into a ring shape, and the reactor comprises an upper straight pipe portion and a lower straight pipe portion, and the upper and lower straight pipes are horizontally installed, and the angle between the axis and the horizontal plane is 0.
  • the two ends of the upper and lower straight pipes are respectively connected by curved pipes, each of which is semicircular, each pipe has a length of 6 meters, and the upper and lower straight pipes are 34 meters, so that the pipe body is integrally formed.
  • the belt conveyor 52 is placed inside the annular pipe body, the upper layer of one end of the annular pipe body is provided with a first feed port 12 (molecular sieve feed port), and the second feed port 22 is disposed downstream of 2 meters;
  • the upper end of the other end of the annular pipe body is provided with an air guiding opening 62, the lower layer is provided with a discharging port 32, and the air guiding port 62 is connected with a gas-solid separator to prevent the molecular sieve from being lost from the air guiding opening.
  • the molecular sieve is conveyed on a belt conveyor which uses a corrosion-resistant metal conveyor belt having a width almost equal to the diameter of the annular body.
  • the molecular sieve enters the tube of the reactor from the first feed port 12 at the upper left end of the reactor, falls onto the conveyor belt 52 in the upper layer of the reactor tube, moves to the right with the conveyor belt, and tetrachloride
  • the siliconized gas enters the reactor from the second feed inlet, that is, the silicon tetrachloride feed port 22, and flows in the direction of the gas outlet 62 as a whole.
  • the silicon tetrachloride gas and the molecular sieve are aluminum-plated.
  • the ultra-stabilization reaction of silicon supplementation gradually decreases the concentration.
  • the concentration of silicon tetrachloride in the gas phase is lowered to a very low level, and the reaction rate of aluminum-supplementing silicon is also greatly reduced; from the gas outlet 62 (also referred to as the air inlet, the gas is extracted, and the molecular sieve is separated from the conveyor belt as the conveyor belt enters the elbow, and then the gas phase superstable reactor is discharged through the molecular sieve outlet 32.
  • the conveyor belt separated from the molecular sieve is rotated through the lower tube to the entrance of the molecular sieve.
  • the SiC gas of C is continuously fed into the tube of the tubular reactor 1 from the first feed port 12 and the second feed port 22, respectively, and the annular pipe body of the tubular reactor is divided into 10 segments, each segment length 10 Rice, an electric heating belt is wound around the outer wall of each pipe body to heat the tubular reactor, so that the temperature of each heating section in the tubular reactor 1 is 400 ° C, and the flow rate of the SiCU is controlled by the mass flow meter and The weight ratio of SiC to molecular sieve was 0.25, the feed amount of molecular sieve was 800 kg/hr, and the residence time of molecular sieve in tubular reactor 1 was 10 minutes.
  • the molecular sieve in the gas-solid separator 2 was discharged from the opening at the bottom of the cone to obtain a high-silicon molecular sieve Al, A1 and deionized water were beaten, washed, filtered and dried at 120 ° C to obtain high silicon.
  • Molecular sieve A its main properties are listed in Table 1.
  • the molecular sieve on the conveyor belt has a thickness of about 2 cm.
  • the limiting plate can be installed in the reactor tube body, and the thickness of the molecules and the sieve layer on the conveyor belt can be controlled by controlling the distance from the bottom of the limiting plate to the conveyor belt.
  • the molecular sieve vapor-supplementing device shown in Fig. 2a or 2b or Fig. 8 is made of stainless steel of industrial grade No. NiCrl8Ti having a thickness of 3 mm, wherein the upper part of the gas-solid separator 2 is a cylindrical shape having a diameter of 6 m and a height of 14 m. The lower part has an open cone with a cone angle of 45.
  • a valve is arranged at the opening, the discharge port is located 1 meter away from the top of the gas-solid separator, the absorber 3 contains a sodium hydroxide aqueous solution having a concentration of 10 mol/liter, the absorber 3 and the gas-solid separator 2 Connected through a conduit, The catheter is deep into the aqueous sodium hydroxide solution.
  • the tubular reactor 1 has a length of 60 m and is a straight pipe.
  • the axis of the tubular reactor is at an angle of 45 to the horizontal plane.
  • the diameter of the pipe body is 1 m. It is transported by gravity as shown in Fig. 3, and the pipe body is inclined 45.
  • the distance from the entrance end of the molecular sieve to the higher end is 1 m
  • the distance from the silicon tetrachloride inlet to the end is 2.5 m
  • the middle portion of the tube (the total length of the rotating portion is 53 m, 4 m from the end face of the inlet)
  • three rotating plates 11 are arranged inside the rotatable part of the pipe body, and the width of the copying plate is 5cm, parallel to the axis of the pipe body, perpendicular to the cutting plane crossing the line with the pipe wall;
  • two slabs 21 are welded on the inner wall of the pipe, wherein the first slab is 30 meters away from the end of the molecular sieve inlet, the second raft is 55 meters from the end, and the other end is about 5 meters
  • two The jaws are all ring-shaped and have a height of 8 cm, perpendicular to the axis of the tube.
  • a feeding port 31 is arranged at one end of the pipe body, a second feeding port 41 is arranged at a distance of 1.5 m, and a discharging port 51 and an air guiding port 71 are arranged at the other end of the pipe body, and an insulating cylinder 61 is disposed in the middle of the pipe body, and the outer diameter thereof is The diameter is 60cm, and the length is the same as the length of the tube body, which is used to reduce the heat loss and make the gas phase super stable reaction uniform.
  • a rare earth-containing Y-type molecular sieve having a temperature of 300 ° C from a baking furnace solid content: 98.5 wt%, rare earth content: 15.0 wt%, silicon-aluminum ratio: 5.26, sodium oxide content: 4.8% by weight
  • the SiC gas having a temperature of 80 ° C is continuously fed into the tube of the tubular reactor 1 from the first feed port 31 and the second feed port 41, respectively, and the tubular body of the tubular reactor is divided into 12 segments, each The length of the section is 5 meters.
  • An electric heating belt is wound around the outer wall of each section to heat the tubular reactor, so that the reaction temperature in the tubular reactor 1 is 300 ° C (the temperature of the molecular sieve outlet), and the flow rate of SiC Controlled by a mass flow meter and having a weight ratio of SiC to molecular sieve of 0.05, a molecular sieve feed of 1000 kg/hr, and a molecular sieve residence time of 5 minutes in the tubular reactor 1.
  • the molecular sieve in the gas-solid separator 2 was discharged from the opening at the bottom of the cone to obtain a molecular sieve B1.
  • the B1 and the deionized water were beaten, washed, filtered and dried at 120 ° C to obtain high silicon.
  • Molecular sieve B the main properties of which are listed in Table 1.
  • the molecular sieve gas-filled silicon device shown in Fig. 2a or 2b or Fig. 8 is made of stainless steel of industrial grade No. NiCrl8Ti with a thickness of 3 mm.
  • the axis of the reactor tube is 55° with the horizontal plane, and the diameter (inner diameter) of the tube is 0.5 m.
  • the upper part of the gas-solid separator 2 has a cylindrical shape with a diameter of 6 meters and a height of 14 meters, and the lower part has an open cone shape with a taper angle of 45.
  • the valve is provided at the opening, the discharge port is located 1 meter away from the top of the gas-solid separator, and the concentration of the absorber 3 is 10 mol/liter.
  • the sodium hydroxide ice solution, the absorber 3 and the gas-solid separator 2 are connected by a conduit which penetrates into the aqueous sodium hydroxide solution.
  • the gas phase ultra-stable reactor is shown in Figure 6.
  • the molecular sieve transport of the gas phase ultrastable reactor relies on gravity transport.
  • the reactor comprises a molecular sieve inlet 5, a gas phase silicon tetrachloride inlet 6, and the reactor body 1 is a straight tube comprising a molecular sieve inlet end 12, a rotatable portion 11 and a molecular sieve outlet end 13, a molecular sieve inlet end 12 and a molecular sieve outlet end 13 Supported by the support means 9, the drive means 3 is used to drive the rotatable portion 11 to rotate about the axis of the tubular body 1, and the support means 2 is used to support the rotatable portion 11.
  • the rotatable portion is provided with a copy board 8 and a seesaw 7, the joint of the rotatable portion 11 and the molecular sieve inlet end 12 and the molecular sieve outlet end 13 is movably connected and sealed to the outside, and the outlet of the molecular sieve is disposed on the end surface of the outlet end 13. , a baffle is arranged on the end surface, and the size of the molecular sieve outlet can be adjusted by adjusting the baffle;
  • the tubular body is a circular straight tube, wherein the length of the tubular body is 12 meters, the length of the rotatable portion 11 is 9 meters, the length of the molecular sieve feeding end 12 is 1.8 meters, and the length of the molecular sieve discharge end 13 is 1.2 m, the diameter of the pipe body 1 (inner diameter) is 0.8 m, and the angle between the axis of the pipe body and the horizontal plane is 35.
  • the rotatable portion 11 of the tubular body 1 is rotated at a speed of 5r/min, and three copying plates 7 are disposed inside the tubular body, and the height of the copying plate is 5 cm.
  • the copying plate is disposed parallel to the axis and perpendicular to the copying plate and the pipe wall.
  • the cut surface of the pipe wall of the contact line is welded with two slabs 7 on the inner wall of the pipe, the plate surface is perpendicular to the axis of the pipe body 1, the height is 6 cm, and the distance between the block slab and the end face of the inlet of the molecular sieve is 3 meters, and the other piece The distance between the seesaw and the aforementioned seesaw is 6 meters; wherein FIG. 7 is a schematic view of the AA cross section in FIG.
  • a rare earth-containing Y-type molecular sieve having a temperature of 300 ° C from a calcining furnace (solid content: 98.5 wt%, rare earth content: 15.0 wt%, silicon-aluminum ratio: 5.26, sodium oxide content: 4.8% by weight) and a temperature of 80 ° C
  • the SiC gas is continuously fed into the tubular body 1 of the tubular reactor from the molecular sieve inlet 5 and the vapor phase silicon tetrachloride inlet 6, respectively, and the tubular reactor is heated by winding an electric furnace wire on the outer wall of the rotatable portion 11 of the tubular body, and is controlled.
  • the reaction temperature is 300 ° C (reactor molecular sieve outlet temperature)
  • the flow rate of SiC is controlled by mass flow meter and the weight ratio of SiC to molecular sieve is 0.08 molecular sieve
  • the feed amount is 1000 kg / hour
  • the molecular sieve stays in the tubular reactor.
  • the time is 5 minutes.
  • the molecular sieve in the gas-solid separator 2 was discharged from the opening at the bottom of the cone to obtain a molecular sieve Cl, and the C1 and the deionized water were beaten, washed, filtered, and dried in an oven at 120 ° C to obtain High silicon molecular sieve C, the main properties of which are listed in Table 1.
  • Comparative example 1 Molecular sieve E was prepared according to the method disclosed in Example 1 of CN102049315A.
  • the rare earth-containing Y-type molecular sieve was used in the same manner as in Example 1, and it was divided into heating belts every 5 m for heating, and the reaction temperature and reaction time were the same as those in Example 3 at 300 ° C and 5 minutes, tetrachloroethylene.
  • the ratio of silicon to molecular sieve was 0.3, the feed amount was 1 p ⁇ /hr, and molecular sieve E was obtained after washing.
  • the corresponding molecular sieve after the unwashing reaction was recorded as El, and its properties are shown in Table 1. It can be seen that at the same reaction temperature and time, the present invention can obtain a better dealumination effect and greatly save the amount of silicon tetrachloride.
  • the unit cell constant, the relative crystallinity, and the framework ratio are measured by X-diffraction powder diffraction, and the experimental apparatus: D5005 X-ray diffractometer from Siemens AG, Germany.
  • Experimental conditions Cu ⁇ , ⁇ radiation, solid detector, tube voltage 40 kV, tube current 40 mA, step scan, step 0.02. , Pre-made time 2s, scan range 5-70. .
  • the lattice collapse temperature of the molecular sieve is determined by differential thermal analysis, and the experimental instrument is: Dupontl 600 thermal analyzer of DuPont, USA. Experimental conditions: The air was a carrier gas, the flow rate was 140 mL/min, and the heating rate was 10 ° C/min.
  • the specific surface area is measured by a static low-temperature nitrogen adsorption capacity method, and an experimental apparatus: Micromeritics ASAP 2400 static nitrogen adsorption apparatus. Experimental conditions: The sample was degassed under vacuum at 1.33 Pa and 300 °C for 4 h, then contacted with liquid nitrogen at 77 K, isothermal adsorption and desorption, and the adsorption and desorption isotherms were determined. The specific surface area was calculated by the BET formula.
  • the composition analysis of the object shield is measured by X-ray fluorescence light
  • the experimental instrument is: Model 3271E X-ray fluorescence optical language instrument of Sakamoto Rigaku Electric Co., Ltd.
  • Experimental conditions Powder sample compression molding, ⁇ target, excitation voltage 50kV, excitation current 50mA, the spectral line intensity of each element was detected by scintillation counter and proportional counter, and the element content was quantitatively and semi-quantitatively analyzed by external standard method.
  • Example 1 Example 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 1 Unit cell constant, nm 2.450 2.448 2.451 2.450 2.448 2.451 2.453 2.455 2.453 2.465 Relative crystallinity,
  • the above materials are mixed, beaten, and then spray dried at 450 ° C to obtain a spherical catalytic cracking catalyst .
  • the molecular sieves were respectively selected from the high silicon molecular sieves A, B and C prepared in Examples 1-3 to obtain catalysts A-1, A-2 and A-3, respectively, the main properties of which are shown in Table 2.
  • the above materials were mixed, beaten, and then spray dried at 450 ° C, and washed with deionized water to obtain a spherical catalytic cracking catalyst.
  • the molecular sieves were respectively selected from the examples 1-3.
  • High silicon molecular sieves Al, Bl and CI obtained catalysts A-4, A-5 and A-6, respectively, the main properties of which are listed in Table 2.
  • the catalyst was prepared by industrial REY type molecular sieve according to the method of Examples 4-6.
  • the industrial REY type molecular sieve was obtained by two rare earth exchanges and one calcination of NaY molecular sieve, and the main properties thereof are listed in Table 1, and the obtained catalyst was counted as a reference.
  • Catalyst CC-1, its main properties are listed in Table 2.
  • a catalyst was prepared in the same manner as in Example 6 except that the molecular sieve used was molecular sieve E to obtain a catalyst CC-2.
  • the test method for the ignition reduction of the catalyst is the reduced weight after calcination at a high temperature and the weight ratio before calcination (ie, the ignition loss, see
  • the calcination temperature is usually 800 °C
  • the calcination time is 2 hours
  • the calcined sample is placed. Weighed in a desiccator and weighed.
  • the method for measuring the wear index of the catalyst the catalyst spray-dried sample is calcined at 600 ° C for 2 h, and after cooling, 10 g is weighed into a vertical tube of the fluidized wear index measuring instrument, and a certain flow of moisture is introduced from the bottom of the tube.
  • the fluidized wear index is calculated according to the following formula Experimental conditions: Air is carrier gas, flow rate is 140 mL / min, and heating rate is 10 ° C / min.
  • the apparent bulk density measurement method of the catalyst the apparent density of the test sample is determined by a free sedimentation method; the measuring instrument: a 25 mL graduated cylinder having an inner diameter of 20 mm, and cut and ground at exactly 25 mL scale. The measuring cylinder is measured. Place it under the funnel, pour the sample onto the funnel, make the sample continuously fill the tube within 30s and overflow, scrape the excess catalyst with a spatula, wipe the outer catalyst and weigh it. Calculate the appearance of the catalyst. Loose density. The unit is g/mL.
  • the sieve distribution of the catalyst and the average particle diameter are measured by a laser method.
  • Light oil micro-reaction activity (MA) (gasoline production below + 216 ° C + gas production + Coke production) / total amount of feed ⁇ ⁇ %
  • Heavy oil cracking performance evaluation conditions The catalyst was first aged at 800 ° C, 100% steam for 12 hours, and then evaluated on an ACE (fixed fluidized bed) unit.
  • the feedstock oil was a turmeric triple oil (see Table 3 for properties), reaction temperature. At 500 ° C, the weight ratio of the agent oil is 4.
  • Liquid yield liquefied gas + gasoline + diesel
  • the catalyst prepared by using the molecular sieve prepared by the apparatus provided by the present invention as the active component has a higher conversion rate and a higher light shield oil ratio than the reference catalyst CC-1. Rate and liquid yield, lower coke selectivity.
  • the method of the present invention has a higher light oil yield and liquid yield in the case where the amount of silicon tetrachloride is greatly reduced.
  • the NaY molecular sieve and the rare earth chloride solution are introduced into the exchange tank for exchange, the exchange temperature is 75 ° C, the exchange time is 1 hour, the slurry is filtered on a belt filter, and the filtered cake is sent to a dryer for drying.
  • the dried molecular sieve is introduced into a roasting furnace, and the molecular sieve outlet of the roasting furnace is connected with the molecular sieve inlet of the gas phase ultrastable reactor, wherein the connecting device is as shown in FIG. 10, which comprises three sections, and the 511 is vertically disposed and the molecular sieve outlet of the roaster Connected, 512 segments are vertically disposed, in communication with the molecular sieve inlet of the gas phase ultrastable reactor, the axis of the line 513 is at an angle of 60° to the horizontal plane.
  • the connecting line 511 and the lines 512, 514 are gates which are perpendicular to the axis of the line 513.
  • the shutter 514 can be moved in the cross section of the line 513 to control the size of the molecular sieve passage of the line 513.
  • the connection between the shutter 514 and the line 513 is sealed with a sealing material to seal the inside of the tube 513. 1.
  • Both 512 and 513 are round tubes with a diameter of 600 mm.
  • the gas phase ultrastable reactor adopts the gas phase ultrastable reactor described in Example 1, and the reaction conditions are the same. Example 2.
  • the baking furnace used is as shown in Fig. 9, and a copy board 3 and a seesaw 4 are provided on the inner wall of the intermediate cylinder 20.
  • the entire cylinder 2 has a diameter of lm, and the entire cylinder 2 has a length of 7 m, wherein the feed end 24 and the discharge end 25 each have a length of 0.5 m, and the intermediate cylinder 20 has a length of 6 m.
  • the seesaw 4 is an annular plate which is erected and welded on the inner wall of the intermediate cylinder 20.
  • the height of the raft 4 is 10 cm, the thickness is 5 mm, and the raft 4 is two, and the 6 m long intermediate cylinder 20 is equally divided into three.
  • the first block extends 2 m from the junction of the intermediate cylinder 20 and the feed end 24 in the direction of the discharge end 25 in the axial direction of the intermediate cylinder 20, and continues to extend to a position of 4 m as the second block;
  • a copy board 3 is provided in each section, and the copy board 3 is elongated, and the longitudinal direction of the copy board 3 is at an angle of 30° with the axial direction of the intermediate cylinder 20,
  • the copy board 3 is erected and welded on the inner wall of the intermediate cylinder 20, having a height of 10 cm and a thickness of 5 mm, on the inner wall of the three-stage intermediate cylinder 20 equally divided by the raft 4, and along each of the intermediate cylinders 20
  • the number of copy boards 3 set in the circumferential direction is equal to three.
  • the intermediate cylinder 20 is disposed to be rotated by the rotation mechanism 23.
  • the direction of rotation of the sheet 3 along the intermediate cylinder 20 extends from the inlet direction of the molecular sieve
  • the entire calciner is inclined 1 with respect to the horizontal line in the axial direction of the cylinder 2. Place, the feed port 21 is high, and the discharge port 22 is low.
  • the calciner is heated to a calcination temperature of 400 ° C, and the intermediate cylinder 20 is rotated (the direction of rotation is the same as the copying plate from the molecular sieve inlet to the molecular sieve outlet, and the direction extending along the circumference is the same), and the Y-type molecular sieve to be calcined is removed from the cylinder 2
  • the feed port 21 is continuously fed into the barrel 2, and the calcined Y-type sieve is collected at the port 22 of the Y-shaped barrel body 2 to be calcined.
  • the firing time was set to 1 hour while setting the intermediate cylinder 20 at a speed of 1.8 rpm.
  • the solid content of the molecular sieve at the exit of the roaster is greater than 98.5 wt%, and the molecular sieve temperature is 310 °C.
  • the test method is as follows: 50 kg of the material is added to the above calcining furnace, and then the molecular sieve is collected at the outlet of the roasting furnace. It can be found that the molecular sieve has a discharge time of 56-64 minutes, and 100% of the molecular sieve can be collected.
  • the same specification of the baking furnace parallel to the axis is used, the material is divided out three times, the first time is 25-29 minutes, the discharge amount accounts for 10% of the total discharge amount, and the second time is 40-44 minutes. The amount of material accounts for 30% of the total discharge amount, the third time is 52-60 minutes, and the discharge amount accounts for 60% of the total discharge amount. It can be seen that the calciner discharge is more uniform, which is beneficial to reduce the volume of the roaster. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明公开了一种制备分子筛的设备和一种制备分子筛的方法,所述设备包括Na型分子筛交换装置,焙烧炉、分子筛气相超稳反应器和气固分离器,其中焙烧炉的出口与气相超稳反应器的分子筛入口直接相连;所述分子筛气相超稳反应器包括管体、分子筛入口、分子筛出口以及任选的四氯化硅入口,在管体的一端设置有分子筛入口,而在管体的另一端设置有分子筛出口,其特征在于,设置有分子筛入口的一端在竖直方向上不低于设置有分子筛出口的另一端。所述方法包括:将分子筛引入到气相超稳反应器中,在不用载气输送的情况下,使分子筛从气相超稳反应器的分子筛入口移动到气相超稳反应器的分子筛出口,并且使分子筛与气相SiCl4在气相超稳反应器中接触反应。

Description

一种制备分子筛的设备和方法 技术领域
本发明涉及一种用于制造分子筛的方法和设备。 本发明还涉及一种催 化裂化催化剂的制备方法。 背景技术
在催化裂化催化剂中, 分子筛是一种应用非常广泛的材料, 同时也是 非常重要的一种组分, 分子筛的性能直接影响到了催化裂化催化剂的反应 性能。根据不同的需要,可以对分子筛进行不同的改性以达到使用的要求。 比如高硅铝比的分子筛普遍被认为是催化裂化催化剂所需求的。
在制备高硅铝比的分子筛方面, 主要有以下几种方法: 氟硅酸铵法抽 铝补硅、 水热法和气相化学法抽铝补硅(本发明称为气相超稳方法)。
氟硅酸铵法抽铝补硅(也称为化学法抽铝补硅)主要是用氟硅酸铵脱 铝补硅, 获得的分子筛的结晶度高, Si/Al比及热稳定性高, 但脱铝过程中 形成的难溶物 A1F3和残留的氟硅酸盐影响水热稳定性, 还会污染环境。
水热法仍是目前工业上普遍采用的方法, 但是在水热过程中存在脱铝 后补硅不及时, 易造成晶格塌陷, 且非骨架铝碎片堵塞孔道, 这不仅影响 了活性中心的可接近性, 也影响其热稳定性的进一步提高。
气相化学法抽铝补硅的特点是脱铝均匀, 补硅及时, 产品结晶保留度 高, 热稳定性好, 孔道畅通。 CN1I21903C公开了一种稀土高硅 Y型沸石 的制备方法, 该方法包括将含稀土的 Y型沸石进行干燥处理, 使其水含量 低于 10重量%后, 按照四氯化硅: Y沸石 = 0.1-0.9:1的重量比, 通入干燥 空气携带的四氯化硅气体, 在温度 150-60CTC下, 反应 10分钟至 6小时, 反应后, 用干燥空气吹扫 5分钟至 2小时, 用脱阳离子水洗涤除去沸石中 残存的 Na+、 Cl Al3+等可溶性副产物。 该方法分子筛固定不动, 使用干 燥空气携带 SiCl4, 反应完成后用空气吹扫, 未实现连续化生产, 产量低。
CN1281493C公开了含稀土高硅 Y型沸石及其制备方法, 该沸石含有 稀土, 且该沸石的硅铝比为 5-30, 初始晶胞常数为 2.430-2.465nm, 平衡晶 胞常数与初始晶胞常数的比值至少为 0.985。该沸石的制备方法包括将含稀 土 Y型沸石与四氯化硅接触, 所述接触在一个反应设备中进行, 该设备如 图 1所示, 包括一个反应釜(1 ), 一个进料口 (2 )和一个出气口 (3 ), 在 反应釜(1 )的内部还包括一个搅拌器(4 ), 出气口 (3 )上安装有一个气 固分离器(5 ), 气固分离器(5 )所含孔的孔直径和孔隙度保证气体能通过 而沸石固体颗粒不能通过, 搅拌器(4 )的搅拌杆伸出反应釜(1 )外, 在 搅拌器(4 )的搅拌下, 所述含稀土的 Y型沸石与四氯化碳气体接触, 接 触的温度为 100-500°C , 接触的时间为 5分钟至 10小时, 含稀土的 Y型沸 石与四氯化碳的重量比为 1: 0.05-0.5, 所述含稀土的 Y型沸石的硅铝比为 3-8, 晶胞常数为 2.45-2.48nm。 显然, 该方法所需的接触时间一般都比较 长, 需要数小时, 加上反应前的装料和反应完毕后的卸料, 一般一个白班 至多只能进行一次上述脱铝补硅反应, 即便采用倒班的作业方式也只能进 行两次上述脱铝补硅反应, 而且由于反应釜中需要搅拌, 因此反应釜也不 可能无限大, 基于目前的水平, 能用于上述脱铝补硅反应的最大的反应釜 的产能为 600kg, 继续增大反应釜, 则反应釜内很难保证充分搅拌, 因此, 采用上述反应釜的方式, 一天至多可以获得 1200kg的高硅分子筛。 而且, 在上述现有技术的方法中, 为了保证获得的分子筛的高硅含量, 一般都使
SiC 远远过量, 过量的 SiC 的使用无疑增加了生产成本和环保费用。 另 一方面, 上述方法都需要非常繁杂的人工操作, 诸如: 人工装料、 人工卸 料及在反应完成后需要长时间的吹扫管线等, 这些不但带来人工劳动强度 大, 生产效率很低的问题, 而且, 装料和卸料时的分子筛粉尘以及过量的
SiC 还造成严重的环境污染和严重危害操作人员的健康。 因此, 上述釜式 的气相超稳工艺 ^进行工业化生产。
CN 102049315A公开了一种催化剂的制备方法, 该方法包括在惰性载 气流的携带下,使分子筛随惰性载气流动,并且与气相 SiC 在流动状态下接 触,分子筛与气相 SiC 的接触时间为 10秒至 100分钟,然后将所得与气相
SiC 接触后的分子筛与粘结剂、粘土和水混合打浆并造粒,得到催化裂化催 化剂。 该发明提供的催化裂化催化剂的制备方法能够实现分子筛与 SiC 的接触反应连续进行,通过控制载气的流速和管式反应器的长度,能够控制 分子筛与 SiC 接触的时间,从而能够使分子筛与 SiCl4的接触反应在管式反 应器内充分的进行。然而该方法采用气体携带分子筛粉末物料与 SiCL»气体 接触反应的方式进行气相超稳反应,为了流化分子筛气体的量必须足够大, 载气与 SiC 重量比例可达 10-250, 不然容易造成装置堵塞的问题, 增大 气体的量造成脱铝补硅反应深度难以提高, 存在着固体物料输送与气相超 001289 稳反应深度的提高间的矛盾, 另外, 该方法为了达到一定的反应程度需要 较大的 SiCl4的通入量, 必然造成经过气相超稳反应后残余的 SiC 的量增 多, 不但加重了环境污染的危害更不利于尾气的有效吸收。
CN102049315A和 CN102452660A公开了气相法制备高硅分子筛的方 法。 在所述方法中, 在惰性载气的存在下, 使分子筛与 SiC 接触。 惰性载 气可以为分子筛固体粉末物料提供克服重力势能的动力, 以便使得分子筛 固体粉末能够随气相 SiC —起从反应器的底部向上运动,在此过程中,分 子筛与 SiC 进行接触和反应。 CN102452660A提及了所述方法包括将分子 筛与含有气相 SiCU的气体混合而形成混合物流(其中含有气相 SiC 的气 体可以为气相 SiCU ), 混合物流中的分子筛随气体流动, 并且与气体中的 气相 SiC 在流动状态下接触。 尽管 CN102452660A暗示了 SiC 可以同时 作为载气和反应物, 但是没有在这方面进行进一步的讨论。 实际上, 由于 分子筛在反应过程中自下而上地依靠载气输送, 因而如果仅仅使用 SiCU 而不使用其它的惰性载气的话, 就需要大量的 SiC 气体。 然而,如果使用 大量 SiC 与分子筛接触,在气相超稳反应的反应温度下会造成气相超稳反 应十分剧烈, 必然会使气相超稳反应后的分子筛产品的结晶度造成很大的 损失,通常, 如果 SiC 与分子筛的重量比大于 1时,在达到气相超稳反应 的起始反应时, 就会发生剧烈的气相超稳反应, 气相超稳反应后得到的分 子筛产品的相对结晶度小于 40%, 甚至会小于 30%, 这对分子筛产品的相 对结晶度保留是非常不利的。 另外, 从气相超稳反应后尾气的吸收及环境 污染方面分析, 如果用 SiC 作为载气进行分子筛固体粉末物料的输送, SiC 的量是相当大量的, 必然造成气相超稳反应后依然剩余有大量的 SiCU, 那么, 尾气吸收方面难度很大, 也会造成严重的环境污染。 再者, 从经济成本上分析, SiC 的价格较高, 使用大量的 SiC 作载气, 在经济 上也是不允许的。 因此, 无论是从理论上分析还是实际应用上考虑, 使用
SiC 作载气进行分子筛固体粉末物料的输送都是十分不利的, 因而, 在 CN102452660A中的气相超稳反应中是不可能用 SiC 作为载气进行分子筛 固体粉末物料的输送的。 发明内容
本发明的目的是针对现有连续气相化学法抽铝补硅方法(连续气相超 稳工艺)生产分子筛以及催化裂化催化剂存在的严重缺点, 开发一种能够 P 低 SiCl4用量的适于连续化生产的制备分子筛以及催化裂化催化剂的方 法。
本发明的目的还在于提供一种用 Na型分子筛制备高硅分子筛的装置, 该装置可用于由 NaY分子筛连续化生产制备高硅分子薛,能够降低气相化 学法制备高硅分子筛的 SiC 用量。
在本发明的一个方面中, 本发明提供一种制备分子筛的方法, 该方法 包括: 将分子筛引入到气相超稳反应器中, 在不用载气输送的情况下, 使 分子筛从气相超稳反应器的分子筛入口移动到气相超稳反应器的分子筛出 口, 并且使分子筛与气相 SiC 在气相超稳反应器中接触反应。
在本发明的一个方面中,本发明提供一种制备催化裂化催化剂的方法, 该方法包括: 将分子筛引入到气相超稳反应器中, 在不用载气输送的情况 下, 使分子筛从气相超稳反应器的分子筛入口移动到气相超稳反应器的分 子筛出口,并且使分子筛与气相 SiC 在气相超稳反应器中接触反应,将所 得到的接触反应后的分子筛, 经任选的洗涤后, 与基质和水混合打浆、 造 粒(即, 将所得到的接触反应后的分子筛直接与基质和水混合打浆、造粒; 或者;将所得到的接触反应后的分子筛洗涤后,接着与基质和水混合打浆、 造粒)。
在本发明的一个方面中, 本发明提供一种制备分子筛的设备, 包括: Na型分子筛交换装置, 焙烧炉、 分子筛气相超稳反应器和气固分离器, 其 中 Na型分子筛交换装置用以对 Na型分子筛进行交换,焙烧炉用于对交换 过的分子筛进行焙烧, 分子筛气相超稳反应器用以对焙烧过的分子 进行 气相化学脱铝补硅反应(本发明也称为气相超稳反应),其中将焙烧得到的 分子筛引入到气相超稳反应器中, 在不用载气输送的情况下, 使分子筛从 气相超稳反应器的分子筛入口移动到气相超稳反应器的分子筛出口, 并且 使分子筛与气相 SiC 在气相超稳反应器中接触反应,气固分离器用于将从 气相超稳反应器排出的分子筛与未反应器的四氯化硅分离; 所述的气相超 稳反应器包括分子筛入口、 任选的四氯化硅入口和分子筛出口, 所述的气 相超稳反应器能够使引入其中的分子筛在不用载气输送的情况下从分子筛 入口移动到分子筛出口。
优选的, 所述焙烧炉的分子筛出料口与所述气相超稳反应器的分子筛 进料口连通, 使得从焙烧炉得到的焙烧后的分子筛直接引入气相超稳反应 001289 器进行反应, 实现分子筛的连续生产。 无需先将分子筛冷却包装或将分子 筛贮存, 然后再升温投料。 本发明的气相超稳反应装置由于不需要惰性气 体输送分子筛, 可以很方便地实现所述气相超稳反应器与焙烧炉连接。
所述的分子筛交换装置可以采用现有的分子筛交换装置 ,包括交换器、 交换后的分子筛过滤装置(本发明也称为第二过滤装置),其中还可以包括 第一干燥装置、 所述的第一干燥装置用以将交换后的分子筛过滤装置得到 的分子筛进行干燥, 然后将千燥后的分子筛引入焙烧炉焙烧, 也可以将所 述过滤装置得到的交换后的分子筛不经过干燥直接 1入焙烧炉焙烧。 所述 的交换后的分子篩过滤装置为带式过滤机, 本发明称为第二带式滤机, 由 于使用带式滤机, 可以连续进行过滤, 所述的过滤装置可直接与交换器连 接, 所述的第二带式滤机可直接与焙烧炉连接。
由于所述的 Na型分子筛可以商购或者按照现有方法得到。 当按照现 有方法制备的时候, 通常包括晶化合成、 将晶化合成产物过滤, 过滤得到 的滤饼千燥或不包括干燥即得到 Na型分子筛。 通常, 所述的设备还包括 用于晶化合成产物过滤的过滤装置(本发明称第一过滤装置),优选所述的 第一过滤装置为带式滤机(本发明称为第一带式过滤机),用于第一过滤装 置滤饼千燥的干燥装置本发明称为第二干燥装置。 第一带式过滤机、 交换 器、 第二带式过滤机、 第二干燥装置和焙烧炉依次连通, 使所述的 Na型 分子筛一次通过所述的装置进行交换和焙烧, 然后进入气相超稳反应器进 行抽铝补硅反应。
根据本发明, 在不用载气输送的情况下, 使分子筛从气相超稳反应器 的分子筛入口移动到气相超稳反应器的分子筛出口, 并且使分子筛与气相 SiC 在气相超稳反应器中接触反应, 所述接触反应的奈件包括: 引入所述 气相超稳反应器的分子筛原料的固含量优选大于 98重量%(灼烧减量不超 过 2重量%), 所述分子筛的固含量为分子筛经过高温焙烧后的重量与焙烧 前的重量比(即灼烧基含量, 参见 RIPP32-90分析方法, 石油化工分析方 法, (RIPP试验方法), 杨翠定等编, 科学出版社, 1990年), 焙烧的温度 通常为 800°C , 分子筛的固含量 =100%-分子筛的含水量。 引入气相超稳反 应器的 SiC 与引入气相超稳反应器的分子筛的重量比优选为 0.01-1 ,进一 步优选为 0.05-0.60, 例如 0.05-0.30, 分子筛与气相 SiC 的接触温度为 250-700 °C , 进一步优选为 300-65CTC; 分子筛在气相超稳反应器内的停留 时间为 10秒至 120分钟, 优选为 1分钟至 60分钟。
为了在不用载气输送的情况下使分子筛从气相超稳反应器(以下也简 称反应器)的分子筛入口移动到气相超稳反应器的出口, 可通过使引入所 述反应器中的分子筛在机械输送装置和 /或重力的作用下移动,在移动的过 程中与反应器中的 SiC 接触反应。由于不向反应器中引入用于流化分子筛 的气体载气, 从而使得处于气相超稳反应器中的分子筛处于密相状态, 其 分子筛的床层密度较高。所述的 SiC 优选在汽化后引入到气相超稳反应器 中, 分子筛在含有 SiC 的空间移动, 气相的 SiC 通过扩散作用和 /或通过 搅动作用, 进入到分子筛颗粒的空隙中, 并进一步扩散到分子筛颗粒内部 的孔中进行抽铝补硅反应。 由于分子筛在气相超稳反应器中从入口到出口 连续移动, 可以从反应器的分子筛入口连续地向反应器中引入分子筛, 从 反应器的出口连续引出气相超稳反应后的分子筛, 从而可实现连续气相超 稳化生产。 由于不需要引入输送分子筛的载气, 不用稀释气体稀释或携带 四氯化硅, 可以大大缩小反应器的体积。 并且不引入载气可以大大降低载 气所带走的热量和降低载气的净化费用。 意外的是, 可以加快超稳化反应 速率, 缩短反应时间, 并且, 可以提高气相超稳反应的深度, 产物的均匀 性更好。
本发明提供的制备分子筛和催化裂化催化剂的方法,将分子筛与 SiCU 连续地送入气相超稳反应器内,通过重力作用和 /或者提供动力使分子筛在 管式反应器内充分反应后再从出料口排出至气固分离器中, 固体与气体在 气固分离器中分离,气相组分引入吸收器,吸收掉少量过量的 SiC 后的气 体能够直接排放, 固体物料可以连续引出分离器或者留在分离器中定期排 出分离器。 由此可见, 本发明提供的制备分子筛的方法能够实现分子筛与
SiC 的接触反应连续进行;通过控制物料输送速度或 /和反应器的长度,能 够控制分子筛物料在反应器内的停留时间, 控制分子筛与 SiC 接触的时 间, 从而能够使分子筛与 SiC 的接触反应在管式反应器内均匀充分的进 行;通过使用设置有加热器的管式反应器或者调控分子筛与 SiC 加入量比 值, 可以控制不同的反应温度, 从而可以控制不同反应条件及反应程度, 进而可以得到不同脱铝深度的分子筛产品。
具体来说, 本发明提供了以下技术方案
100.一种气相超稳反应器, 其包括管体、 分子筛入口、 分子筛出口以 及任选的四氯化硅入口, 在管体的一端设置有分子筛入口, 而在管体的另 一端设置有分子筛出口, 其特征在于, 设置有分子筛入口的一端在竖直方 向上不低于设置有分子筛出口的另一端。
101.根据除 101以外的 100-111中任一项的气相超稳反应器, 其中所 述反应器是管式反应器或带式输送床反应器。
102.根据除 102以外的 100-111中任一项的气相超稳反应器, 其中所 述反应器包括重力输送装置和 /或机械输送装置, 例如循环活塞输送机、 管 链式输送机、 螺旋输送机、 管状带式输送机、 管式重力输送机、 带式输送 机或他们的组合。
103.根据除 103以外的 100-111中任一项的的气相超稳反应器, 其中 所述反应器包括重力输送装置, 并且管体的至少一部分或者全部设置有可 绕着管体的轴线转动的部分。
104.根据除 104以外的 100-111中任一项的的气相超稳反应器, 其中 所述管体的轴线与水平面的夹角可以为 0-90。, 例如 10。, 20。, 30。, 40。, 50。, 60。, 70。, 80。及其中任两个值构成的数值范围。
105.根据除 105以外的 100-111中任一项的的气相超稳反应器, 其中 所述反应器包括四氯化硅入口,其被置于设置有分子筛入口的管体的一端, 并且靠近分子筛入口。
106.根据除 106以外的 100-111中任一项的的气相超稳反应器, 其中 所述反应器包括至少一个抄板和 /或至少一个堰板,抄板和堰板被安装在管 体内壁。
107.根据除 107以外的 100-111中任一项的的气相超稳反应器, 其中 所述反应器的管体的长度为 5-200米, 7-150米, 15-130米, 或 20-80米; 所述反应器的管体的直径内径为 0.01-6米, 0.02-3米, 0.1-2米, 0.2-1.5米; 所述反应器的管体的长度与管体直径内径之比不低于 1 , 3-100:1 , 10-100:1。
108.根据除 108以外的 100-111中任一项的的气相超稳反应器, 其中 可绕着管体的轴线转动的部分为反应器管体长度的 20%以上, 20%-100%, 20-90%。
109.根据除 109以外的 100-111中任一项的气相超稳反应器, 其中管 体内设置有套管, 套管和管体之间的环隙构成反应区。
110.根据除 110以外的 100-111中任一项的气相超稳反应器, 其中反 应器的管体的轴线, 在分子筛入口至分子筛出口的方向上, 单调地在竖直 方向下降或者没有任何在竖直方向的上升部分。
111.根据除 111以外的 100-111中任一项的气相超稳反应器, 其中反 应器的管体的轴线上任何一点处的切线, 以分子篩入口至分子筛出口的方 向为轴线切线的正方向, 在竖直方向上的矢量为零; 或该矢量的方向是竖 直向下的。
201. 一种制备分子筛的设备, 所述设备包括 Na型分子筛交换装置, 焙烧炉、 分子筛气相超稳反应器和气固分离器, 所述分子筛气相超稳反应 器是上述 100-111 中任一项的分子筛气相超稳反应器, 其中焙烧炉的出口 与气相超稳反应器的分子筛入口直接相连。
其中 Na型分子筛交换装置用以对 Na型分子筛进行交换,
焙烧炉用于对交换过的分子 进行焙烧,
分子筛气相超稳反应器用以对焙烧过的分子筛进行气相化学脱铝补硅 反应,
气固分离器用于将从气相超稳反应器排出的分子筛与未反应器的四氯 化硅分离。
300. 一种制备分子筛的方法, 该方法包括: 将分子筛引入到气相超稳 反应器中, 在不用载气输送的情况下, 使分子筛从气相超稳反应器的分子 筛入口移动到气相超稳反应器的分子筛出口, 并且使分子筛与气相 SiC 在气相超稳反应器中接触反应。
301. 根据 300 的方法, 其中 SiC 与分子筛的重量比为 0.01-1, 0.05-0.60, 0.05-0.30。
302.根据 300的方法, 其中分子筛与气相 SiC 在气相超稳反应器中 接触反应得到超稳分子筛, 该超稳分子筛的相对结晶度指标为大于 50%。
303.根据 300的方法, 其中在所述的反应器中, 分子筛和气相 SiCU 接触的温度为 250-700°C, 所述的分子筛在所述气相超稳反应器的反应时 间为 10秒至 100分钟。
304.根据 300的方法, 其中气相超稳反应器是上述 100-111中任一项 的的反应器。
305.根据 300的方法, 其中气相超稳反应器是上述 103的反应器, 其 中所述的反应器管体为直管,所述管体的至少一部分可围绕管体轴线转动, 转动速度为 0.05-40转 /分钟, 优选 0.1-15转 /分钟。
400. 一种制备催化裂化催化剂的方法, 该方法包括: 将分子筛引入到 气相超稳反应器中, 在不用载气输送的情况下, 使分子筛从气相超稳反应 器的分子筛入口移动到气相超稳反应器的分子筛出口, 并且使分子筛与气 相 SiC 在气相超稳反应器中接触反应, 将所得到的接触反应后的分子筛, 经任选的洗涂后, 与基盾和水混合打浆、 造粒。
401. 根据 400 的方法, 其中 SiC 与分子筛的重量比为 0.01-1, 0.05-0.60, 0.05-0.30。
402.根据 400的方法, 其中分子筛与气相 SiC 在气相超稳反应器中 接触反应得到超稳分子筛, 该超稳分子筛的相对结晶度指标为大于 50%。
403.根据 400的方法, 其中在所述的反应器中, 分子筛和气相 SiCU 接触的温度为 250-700°C , 所述的分子筛在所述气相超稳反应器的反应时 间为 10秒至 100分钟。
404.根据 400的方法, 其中气相超稳反应器是上述 100-111中任一项 的的反应器。
405.根据 400的方法, 其中气相超稳反应器是上述 103的反应器, 其 中所述的反应器管体为直管,所述管体的至少一部分可围绕管体轴线转动, 转动速度为 0.05-40转 /分钟, 优选 0.1-15转 /分钟。 与现有的釜式气相超稳工艺相比, 根据本发明能够实现连续化气相超 稳反应, 且反应操作可以全部自动化连续化进行, 人工劳动强度小, 而且 生产效率高, 产品性能稳定, 使得分子筛连续化气相超稳工艺的工业化生 产成为现实。 实验证明, 采用 CN1281493C公开的釜式反应法, 即便采用 倒班的作业方式,每天也至多能够生产 1200kg的高硅分子筛, 而采用本发 明提供的上述设备, 每小时即可生产 1000kg 的高硅分子筛, 每天可生产
24000kg的高硅分子筛, 其生产效率是 CN1281493C公开的釜式反应法的
20倍, 而且工人的劳动作业强度也大大降低了, 由此可见, 本发明提供的 设备的经济效益是非常显著的。 与现有的连续式气相超稳工艺比较, 本发 明采用输送装置反应器可以让分子筛与汽化的 SiC 气体在较高的反应温 度下直接接触并进行充分的脱铝补硅反应, 不但有效地解决了现有分子筛 连续超稳技术中分子筛固体粉末输送、 反应时间与气相超稳反应深度的提 高之间的矛盾, 而且, 由于气相超稳反应的深度的提高及反应物料间充分 的反应, 可以降低 SiC 的用量并可以使气相反应后残余的 SiCLt的量大大 减少, 非常有利于尾气的吸收, 进而从源头上降低环境污染。 并且由于气 相超稳反应深度提高, 使得气相超稳分子筛的活性及稳定性进一步提高, 因此,可以降低催化剂制备中的分子筛的用量,进一步降低催化剂的成本。 附图说明
图 1为现有技术的用于制备分子筛的设备的结构示意图;
图 2a和 2b为本发明提供的用于制备分子筛的设备的结构示意图; 图 3为实施例 2所提供的管式反应器的结构示意图;
图 4为图 2所示设备的管式反应器 1轴线与水平面之间的夹角 α的示 意图;
图 5为实施例 1所提供的管式反应器设备的结构示意图;
图 6为实施例 3所述气相超稳设备的结构示意图。
图 7为实施例 3所示管体的 Α-Α横截面的抄板和堰板的示意图; 其中 7为堰板, 8为抄板, 1为管体。
图 8为本发明提供的用于制备分子筛的设备的结构示意图。
图 9为本发明提供的一种新型的分子筛焙烧炉。
图 10 为本发明提供的一种连通所述的焙烧炉和气相超稳反应器的连 接装置。 具体实施方式
根据本发明提供的制备分子筛和催化裂化催化剂的方法, 将分子筛连 续地引入到气相超稳反应器中, 使分子筛在不用载气输送的情况下从分子 筛入口连续地移动到分子筛出口, 并与气相超稳反应器中的四氯化硅气体 接触进行超稳化反应。 同时连续地向反应器中引入四氯化硅。
根据本发明提供的制备分子筛和催化裂化催化剂的方法, 四氯化硅可 以以液相引入反应器中然后在反应器中汽化并与分子筛反应, 但为了 应均匀, 优选四氯化硅汽化后引入到气相超稳反应器中。 将分子筛和汽化 的四氯化硅引入到气相超稳反应器中, 在反应器中四氯化硅通过搅动和 / 或扩散进入到分子筛颗粒的空隙和孔道中进行脱铝补硅反应。 分子筛在重 力作用下和 /或在机械力的作用下移动, 四氯化硅整体上沿着分子筛移动的 方向运动并且与分子筛反应; 由于气相超稳反应的进行, 沿着分子筛运动 的方向, 分子筛空隙中的四氯化硅浓度逐渐降低, 当分子筛到达反应器的 分子筛出口时, 分子筛物料中的四氯化硅的浓度已经降低至很低的水平, 也即分子筛物料中的四氯化硅在反应器中基本上都作为有效的反应物参与 了气相超稳反应, 因而有利于降低四氯化硅的消耗量,提高脱铝补硅效果。
本发明中所述的气相超稳反应器(以下也简称反应器) 中, 所述的分 子筛气相超稳反应是以流化床、 移动床、 固定床或其组合的形式进行。 由 于不使用输送载气进行分子筛输送 , 因而在反应器中作为反应物之一的分 子筛颗粒浓度较高, 通过输送装置的输送进行移动。 并且本发明向反应器 中直接引入四氯化硅气体,不用稀释气体进行稀释, 作为另一反应物的四 氯化硅的浓度也较高。 为了实现分子筛在反应器中的不用载气输送进行移 动,可以在反应器中使用机械(动力)输送装置和 /或重力输送装置。例如, 可以使用循环活塞输送机、管链式输送机、螺旋输送机、管状带式输送机、 管式重力输送机、 带式输送机或他们的组合, 以使分子筛从反应器的分子 筛入口移动的反应器的分子筛出口。 从气相超稳反应器的分子筛出口排出 的分子筛则引入气固分离器进行分离。
所述反应器可以是任何能满足本发明中分子筛与气相 SiCU的接触条 件的反应器。 所述气相超稳反应器可以是管式反应器或输送床反应器(移 动床反应器)。但优选情况下本发明所述脱铝补硅反应在管式反应器中进行 或带式输送床反应器中进行。 所述的反应器包括分子筛入口、 任选的四氯 化硅入口以及分子筛出口,其中四氯化硅可以和分子筛入口共用一个入口 , 也可以在与分子筛入口不同的位置单独设置四氯化硅入口, 该入口优选靠 近分子筛入口, 使四氯化硅与分子筛并流移动。 本发明提供的气相超稳反 应器在只有一个进料口的情况下,可以使分子筛与 SiC 均由该进料口送入 反应器的管体内, 但优选情况下, 为了便于工业化连续生产时与其他装置 的配合, 所述分子筛通常为来自焙烧炉的热分子筛, 也就是说, 该进料口 通常与焙烧炉连通, 因此, 优选情况, 所述气相超稳反应器还包括四氯化 硅进料口(第二进料口),所述四氯化硅进料口位于管体上与所述分子筛进 料口 (第一进料口)相邻的位置; 所述四氯化硅进料口可以处于分子筛进 料口上游的位置, 也可以处于分子筛进料口下游的位置, 优选, 四氯化硅 进料口处于分子筛进料口下游的位置。 所述的上下游相对于分子筛在反应 器中的移动方向而言 (即, 从分子筛入口至分子筛出口的方向为从上游至 013 001289 下游的方向)。
对于本发明而言, 由于四氯化硅引入到气相超稳反应器后, 不需要载 气输送, 因而在所述的气相超稳反应器中, 所述的气体包括四氯化硅气体 和由分子筛带入的气体例如空气。 由于四氯化硅气体与分子筛进行超稳反 应, 硅可以和分子筛中的铝进行同晶取代反应而进入到分子筛的骨架结构 中, 而脱除的铝可以和氯形成铝 -氯化合物, 因而, 所述的气相超稳反应器 可以仅仅设置一个物料出口(此时本发明也称为分子筛出口), 分子筛、 由 分子筛带入的气体和未反应的少量四氯化硅均可从该出口离开气相超稳反 应器进入到气固分离器中。
根据本发明提供的制备分子筛和催化裂化催化剂的方法和设备, 所述 的气相超稳反应器可以是管式反应器, 包括分子筛入口、 管体、 分子筛输 送装置和分子筛出口以及任选的四氯化硅入口, 或还包括气体引出口。 所 述的分子筛原料从气相超稳反应器的分子筛入口引入到管体中, 然后沿着 管体移动到分子筛出口, 离开所述的气相超稳反应器。 所述的四氯化硅从 任选的四氯化硅入口引入到气相超稳反应器中,与分子筛接触,进行反应。 所述的管体可以是能够使分子筛在其中移动的任何形式的管, 例如可以是 直管、 折线管、 弯管中的一种或多种的组合, 例如可以是其中的一段为直 线管, 另外一段为弯管或螺旋管; 所述管体的横截面可以为各种形状, 例 如为方形、 圆形, 多边形, 所述的管体优选为圓管。 的气相超稳反应 ^以为管式反应器(也称管状反应器 所述管式反应器 包括管体、 进料口和出料口。 其中进料口和出料口可以分别位于所述管体 的两端。 其中分子筛从分子筛进料口引入到反应器中并且沿着管体的轴向 移动, 与四氯化硅接触反应, 反应后分子筛从分子筛出料口排出反应器, 排出的分子筛和未反应的少量四氯化硅进入气固分离器。 可以通过重力作 用或者通过机械输送作用使分子筛在所述的管式反应器中移动, 例如可以 使用循环活塞输送机、 管链式输送机、 螺旋输送机、 管状带式输送机、 管 式重力输送机、 带式输送机或他们的组合使分子筛在管体中从分子筛入口 移动至分子筛出口。 分子筛与气相 SiC 的接触时间为 10秒至 120分钟, 优选 1-60分钟, 例如可以为 4-39分钟, 并在接触过程中可选择对分子筛 和气相 SiC 加热与否, 以使分子筛和气相 SiC 接触的温度为 250-700°C。 001289 本发明的发明人发现, 所述管式反应器的长度为 5-200米(管体的长度) 是较佳的, 因此, 本发明优选所述管式反应器的长度为 5-200米, 进一步 优选为 7-150米, 更进一步优选为 15-130米, 更优选为 20-80米。 所述管 式反应器的直径(内径)优选为 0.01-6米, 进一步优选为 0.02-3米, 更进 一步优选为 0.1-2米, 例如可以是 0.2-1.5米。 所述管体的长度与管体内径 (直径)之比不低于 1, 优选 3-100:1,例如可以为 10-100:1。 相对于直径为 0.01-1.5米例如 0.1-1.5米、 长度为 5-130米例如 15-130米的管式反应器, 分子筛的引入量(流量)优选为 50-2000kg/小时,进一步优选为 100-1500kg/ 小时, 更进一步优选为 200-1200kg/小时。 在上述条件下, 既可保证分子筛 与气相 SiC 连续地通过管式反应器, 又可保证分子筛与气相 SiC 的接触 能够充分进行。 采用本发明提供的方法在同样的脱铝程度下, 可以大大降 低气相 SiC 的用量。 分子筛与加热后汽化的 SiC 在连续输送装置下以流 动状态进行接触。 所述管体可以水平或者倾斜, 只要能够使分子筛在不用 载气输送的情况下在管体中移动, 例如其轴线与水平面的夹角可以为 0-90。, 例如可以为 0-55°。
所述的管体为管状, 可以是直线型的, 折线型的, 也可以是螺旋或者 波浪等任意形状。 本发明优选使用直线型或折线型的管道, 直线型管道或 折线型管道不但可以减小装置规模的大小以及装置占地面积, 降低施工难 度,而且能够实现分子筛与 SiC 的反应充分进行的目的,便于控制分子筛 的停留时间。 为了进一步充分保证在较短的管道内实现较充分的接触, 以 及防止或减少在管式反应器内反应不均匀导致分子筛的质量较差, 所述的 管式反应器可以设置通过重力作用和 /或者通过机械输送作用使分子筛在 其中移动, 例如选择在管式反应器内部安装连续输送装置或利用重力使分 子筛移动, 这样可以解决固体粉末的连续输送问题, 还可以提高物料反应 总量,所述的输送机可以是任意的连续输送装置以保证分子筛和 SiC 流动 反应, 本发明优选重力输送装置以及动力输送装置。
如图 2a所示, 所述的气相超稳反应装置包括气相超稳反应器 1, 气固 分离器 2以及吸收器 3、打浆器 4,所述气相超稳反应器 1设置有分子筛入 口 a和气相四氯化硅入口 b, 气固分离器 2设置有分子筛出口 c, 其顶部气 体出口与吸收器 3连通, 吸收器 3设置有气体出口 d用以排出吸收了四氯 化硅后的气体, 和吸收液出口 e用以排出吸收了四氯化硅的吸收液; 打浆 器 4接收来自分子筛出口 c的反应后的分子筛, 还可以引入基 ^:和粘结剂 进行打浆, 制备分子筛混合浆液。 本发明提供的方法, 将气固分离得到的 分子筛用水打浆后直接用于制备催化剂或将分子筛干粉用于制备催化剂, 无需对气相超稳反应后的分子筛洗涤。
如图 2b所示, 所述的气相超稳反应装置包括气相超稳反应器 1, 气固 分离器 2以及吸收器 3, 所述气相超稳反应器 1设置有分子筛入口 a和气 相四氯化硅入口 b, 气固分离器 2设置有分子筛出口 c,其顶部气体出口与 吸收器 3连通, 吸收器 3设置有气体出口 d用以排出吸收了四氯化硅后的 气体, 和吸收液出口 e用以排出吸收了四氯化硅的吸收液。 分子筛出口 c 排出的分子筛引入洗涤器 4洗涤, 然后过滤干燥 6得到洗涂后的分子筛, 该洗涂后的分子筛可以经过干燥或不经过干燥, 然后引入打浆器 5, 与引 入打浆器 5的基质 g混合打浆, 然后引入造粒系统造粒。
根据本发明, 所述的 Na型分子筛交换装置, 优选包括交换器和第二 过滤机, 所述的交换器可以为能够实现分子筛与交换液进行交换的任何装 置。 所述的交换器可以是交换罐, 例如为圆形或者槽型的容器, 在顶部设 置分子筛入口和交换液入口, 在底部设置分子筛浆液出口, 从出口引出的 浆液引入第二过滤机过滤, 也可以在带式滤机上设置的交换区域, 将待交 换的分子筛置于带式滤机上, 用交换液淋洗。 所述的第二过滤机优选真空 带式过滤机。 例如所述的交换罐可以为圆柱状罐, 底部可以有锥形封头。 优选其高径比(高度与直径内径之比)优选不低于 1:1, 例如为 1:1-5:1 , 其分子筛入口和交换液的入口均设置于罐的顶部, 其分子筛浆液的出口设 置在罐的底部。 所述 NaY分子筛的交换可以根据需要, 例如使用铵盐(例 如硫酸铵、 硝酸铵、 氯化铵)、 稀土盐(例如硝酸稀土、 氯化稀土)中的一 种或多种进行交换。 使用带式滤机, 可以使分子筛的交换过程实现连续生 产, 并且实现向焙烧炉连续自动供料。
本发明提供的 Na型分子筛可以商购, 或者按照现有方法制备, 当按 照现有方法制备的时候, 通常包括合成凝胶、 晶化以及过滤(所用过滤机 本发明称为第一过滤机,优选真空带式过滤机), 干燥(所用干燥器本发明 称为第二干燥器)或不干燥得到 Na型分子筛。
所述的焙烧炉用以对分子筛进行加热, 使分子筛的温度和固含量满足 要求, 可以采用任何现有的能够满足所述目的的装置作为焙烧炉, 例如可 以采用现有的连续式焙烧炉, 只要能够实现所述的分子筛焙烧即可, 例如 回转焙烧炉, 由于采用本发明所述的气相超稳反应器进行反应, 可以容易 的实现所述连续式焙烧炉与气相超稳反应装置连通。 优选的, 所述的焙烧 温度为 200-650°C, 优选为 300-600°C, 所述的焙烧时间通常不低于 0.5小 时, 例如为 0.5-10小时。
优选, 本发明使用一种新型的焙烧炉, 如图 9所示, 所述的焙烧炉包 括筒体 2、用于加热焙烧炉筒体的加热装置 1,该焙烧炉筒体 2包括进料端 24、 中间筒体 20和出料端 25。 在所述进料端 24和所述出料端 25上分别 开设有进料口 21和出料口 22, 所述中间筒体 20的内壁上设置有抄板 3和 堰板 4, 所述抄板 3从焙烧炉的分子筛入口到分子筛出口延伸的方向与中 间筒体 20的轴向 (从分子筛入口到出口的方向)优选为锐角, 所述堰板 4 垂直于所述中间筒体 20的轴线。 所述中间筒体 20是可转动的, 所述进料 端 24和所述出料端 25是固定的。操作时, 所述中间筒体 20转动, 从进料 口 21加入待焙烧的分子筛, 再在出料口 22收集焙烧后的分子筛, 所述抄 邻两个抄板 3之间不接触。 所述抄板 3和所述堰板 4设置的数目均可以为 1或多个。 图 9中的标记为: 1-炉体; 10-控温器; 11-保温层; 12-加热系统; 13-炉膛; 2-筒体; 20-中间筒体; 21-进料口; 22-出料口; 23-连接转动机构; 24-进料端; 25-出料端; 3-抄板; 4-堰板。 图中所示的 30°为抄板与轴线夹 角的示意, 并非对所述夹角的限制。 该新型的焙烧炉, 可以使分子筛的出 料时间更佳均匀, 有利于与所述气相超稳反应器的直接联通。 所述的中间 筒体可以逆时针旋转也可以顺时针旋转, 均可以使出料更加均匀,优选的, 所述焙烧炉的旋转方向使得抄板从分子筛进口向分子筛出口方向延伸中沿 着中间筒体圆周延伸的方向相同。
所述的焙烧炉和所述的气相超稳反应器可以通过分子薛输送管线连 通, 焙烧炉的分子筛出口位置高于焙烧炉分子筛入口位置。 为了使分子筛 从焙烧炉出口流向气相超稳反应器入口的过程中更平稳, 所述的分子筛输 送管线的至少一段设置为倾斜, 所述倾斜段的轴线与水平面的夹角为 35-75°, 为了便于控制分子筛的流量, 所述连接管线上还可设置有阀门或 间板以调节分子筛输送通道的大小, 当设置阀门或闸板的时候, 所述的倾 斜段与水平面的夹角为 55-65。, 这便于控制分子筛的流量, 并且可通过控 1289 制阀门或闸板开度, 使分子筛在其上方形成一定的分子筛层的情况下保证 分子筛流动, 起到隔绝气相超稳反应器和焙烧炉的气流, 当波动的时候组 织气相四氯化硅进入焙烧炉。
一种所述的连通管线优选包括第一竖直段、 第二竖直段以及倾斜段, 如图 10所示, 第一竖直段 511—端与焙烧炉的分子筛出口连接, 另外一端 与倾斜段 513连接,倾斜段 513的另外一端与第二竖直段 512的一端连接, 第二竖直段 512的另外一段与气相超稳反应器的分子筛入口连通。 所述倾 斜段的轴线与水平面的夹角优选为 30-80。。 所述的连通管线优选还设置有 闸板 514, 通过设置闸板一方面可以控制分子筛的流量, 另外可以控制分 子筛在所述连通管线中的料位,起到封闭作用, 阻止四氯化硅进入焙烧炉。 如图 10所示, 闸板向右上方移动, 则流动道增大可以增加分子筛的流量或 P条低闸板上方分子筛的料位, 反之闸板向左下方移动, 则可以降低分子筛 的流量或提高闸板上方分子筛的料位。
一种本发明提供的设备制备分子筛的工作流程如图 8所示。 Na型分子 筛的合成原料例如硅铝导向剂 al与铝酸钠、硅酸钠和氢氧化钠以及水的混 合物 a2—同加入合成釜 5中, 晶化得到包括 Na型分子筛和合成母液的晶 化合成产物, 然后引入带式过滤机 21进行过滤,过滤得到的滤饼与交换液 例如氯化稀土溶液一起加入交换罐 7进行打浆, 同时从交换罐的底部引出 交换罐中的浆液, 引入带式过滤机 22进行过滤,过滤得到的分子筛滤饼引 入进行焙烧炉 4进行焙烧, 焙烧后得到温度为 200-600 °C的分子筛, 其固 含量不低于 98重量%, 该分子筛与加热后气相 SiC 原料 b分别从分子筛 进料口和四氯化硅进料口送入管状反应器 1 内, 分子筛随在管状反应器 1 内通过输送装置流动并与气相 SiC 接触, 通过设置在管体外壁和 /或内部 的加热器对管状反应器 1进行加热, 以保证管状反应器 1内的反应温度为 250-700 °C , 之后i 气固分离器 2, 在气固分离器 2内, 分子筛沉降在气 固分离器 2的底部, 直接或定期排出, 与水一并加入洗涂罐 8, 再经过带 式过滤机 23过滤,得到高硅分子筛 c,与分子筛分离的未反应的气相 SiC 则通过气固分离器 2顶部的出口进入吸收器 3内, 与吸收器 3中的吸收剂 碱液接触, 尾气 d从碱液中溢出, 从吸收器' 3顶部的出口排出, SiC 则与 碱液反应, 之后通过底部出口直接或定期排出废水 e。
根据本发明的第一种具体的实施方式, 通过重力输送分子筛。 所述管 2013/001289 体为弯管或直管, 管体轴线与水平面的夹角为 30-90。, 所述的管体竖直或 倾斜设置, 倾斜的管体便于控制分子筛在管体中的反应时间和便于控制分 子筛的移动。优选为直管, 其横截面优选为圓形。 所述的管体优选为倾斜, 其轴线与水平面的夹角优选为 30-80。, 例如为 40-80°, 或 40-70°, 该优选 的轴线与水平面夹角, 有利于控制分子筛在反应器中的料位, 并且分子筛 能够排出, 平稳操作、 稳定分子筛产品的质量以及增加分子筛脱铝补硅反 应程度。 在管体位置较高的一端设置有分子筛入口和任选的四氯化硅气体 入口, 分子筛进入管体后在重力的作用下沉降, 并与其中的四氯化硅气体 混合接触, 并进行超稳化反应, 四氯化硅整体上向物料出口(分子筛出口) 方向移动, 并且随着反应的进行沿着反应器的轴向浓度逐渐降低, 至出口 处排出反应器, 分子筛出口设置在管体的另一端即管体位置较低的一端。 为了减少反应器的尺寸, 本发明优选使分子筛沉积在管体的下部并逐渐移 动, 通过控制出口处的阻力例如在出口处设置缩口、 闸板或者设置阀门, 控制沉积在底部的分子筛的料位, 从而可以控制在沉积后的分子筛的反应 时间。 分子筛在沉降的过程中与四氯化硅接触混合, 然后分子筛堆积在管 体的下部, 其中在分子筛的空隙和孔中混合有四氯化硅, 这部分四氯化硅 在分子筛的携带下, 随着分子筛一起向分子筛的出口移动, 并进行超稳化 反应, 四氯化硅逐渐消耗, 然后通过物料出口 (分子筛出口) 引出管体而 引入气固分离器, 使超稳化反应后的分子筛与其中携带的气体进行分离, 气体 ]入吸收器来吸收其中的四氯化硅,分子薛收集在气固分离器的底部, 连续或定期排出气固分离器。 由于在管体的上部为分子筛的沉降区, 四氯 化硅处于气相中, 因此分子筛在沉降的过程中即开始与四氯化硅进行超稳 化反应, 然后沉积在反应器的下部, 向分子筛的出口方向移动, 并进行超 稳化反应, 随着分子筛的移动, 其颗粒空隙和分子筛孔中的四氯化硅逐渐 反应。 通过控制反应器的高度、 沉降段的高度以及堆积层的高度, 可以控 制反应时间, 以使处于分子筛颗粒空隙和孔中的四氯化硅尽量反应完全, 由于形成的堆积层具有较高阻力, 可以防止引入的四氯化硅因为压力的较 大波动通过分子筛堆积层直接进入气固分离器中, 从而有利于提高四氯化 硅的利用率降低四氯化硅的用量。 因此优选的情况下, 所述的反应器至少 一部分横截面填充满分子筛, 可以阻止由于压力波动引起四氯化硅直接从 物料出口进入气固分离器, 可以减少反应器尺寸并且能够保证反应效果。 所述的反应器中还可以设置堰板。 分子筛从位置较高的一端进入管体内, 四氯化硅也从同一端引入管体内, 并与分子筛接触, 分子筛沿着管体向管 体的另外一端运动。 在该种情况下, 分子筛堆积在管体中, 并在重力的作 用下向位置较低的一端移动, 在分子筛的颗粒空隙中有四氯化硅和向管体 中引入分子筛时所带入的气体, 随分子筛一起移动。 其中分子筛出口处于 位置较低的一端, 可以在管体的端面上, 也可以在靠近端面的管壁上。 优 选的,所述反应器管体直径(内径)为 0.1-2米圆管,更优选为 0.15-1.5米, 所述反应器的长径比(长度与所述管体直径(内径) 的比值) 大于 1, 通 常为 1-500, 例如为 1.5-400:1 , 更优选为 3-150:1例如为 10-100:1。
根据本发明的第二种具体的实施方式, 所述的反应器为管式反应器, 所述管式反应器利用重力输送分子筛, 为了便于控制所述分子筛在管体中 的移动, 使分子筛的运动更佳平稳, 改善反应效果, 所述的管式反应器的 管体设置为可以转动, 即所述管式反应器管体的一部分或全部可以设置为 可绕着管体的轴线转动。 通常旋转部分为反应器管体长度的 20%以上, 例 如为 20%-100%, 也可以是 20-90°/。。 通过旋转可以大幅度增加分子筛与 SiC 接触程度, 分子筛的超稳化过程更平稳, 产品质量更稳定。 该情况下 其分子筛物料入口的位置优选高于分子筛出口的位置; 优选情况下, 所述 管体的轴线可以与水平面成 α夹角(锐角),夹角可以为 5-90。,优选为 5-70。, 例如可以为 10-20。, 20-50。、 30-40°, 40-60。或 60-70。, 更优选为 30-55。。 倾斜的管体便于控制分子筛在管体中的反应时间和便于控制分子筛的移 动, 能够促进四氯化硅与分子筛的混合, 提高反应均匀性。 所述的管式反 应器的管体优选为直管。 优选使分子筛与四氯化硅并流移动。 当管体的一 部分或全部设置为转动的时候, 管体的转动速度为 0.05-40转 /分钟, 优选 为 0.5-25转 /分钟例如为 0.5-15转 /分钟。 当管体为转动的时候, 管体内部 可以设置不同形式的抄板和挡板, 其中抄板和挡板能够充分混合物料分子 筛和 SiC ,挡板也称堰板, 可以防止分子筛过快滑动引起产品质量巨大波 动, 避免部分分子筛过快通过反应器, 抄板可以促进分子筛和四氯化硅的 混合。 所述抄板可以是直线焊接在管体内部, 与轴线平行, 也可以是倾斜 一定角度(相对于轴线成一定角度)焊接, 还可以进行螺旋焊接、 波浪焊 接以及各种形状进行焊接, 所述抄板在数量上可以是一个也可以是多个, 通常一个抄板即可以满足要求, 优选 1-6个(相对于横截面而言所具有的 抄板个数), 所述抄板的宽度例如为管体直径内径的 1/100-1/10 , 例如 1/30-1/10。 所述抄板上可以安装各种形状各种数量能够强化分子筛搅动的 小钢板, 以强化搅动, 以增强传质效果, 小钢板可以是直线型、 螺旋形、 波浪形、 圓形中的一种或多种。 所述挡板可以是均勾焊接在管体内部, 也 可以不均匀焊接, 所述档板在数量上可以是零个也可以是多个, 所述挡板 的宽度根据所设计管体内的分子筛进料量大小设置, 例如, 所述挡板的宽 度可以为管体直径内径的 1/100-1/10, 挡板的目的减少反应器中分子筛的 滑行, 例如减少下层的速度快于上侧的速度, 以使反应更均匀, 减少四氯 化硅用量。 所述的 α角优选为 30-50。, 这样既可以保证分子筛在管体内输 送, 又有利于稳定产品质量。
当管体的一部分或全部设置为可以转动时, 所述的管体内优选还设置 套管, 有利于提高反应器中四氯化硅的浓度, 提高反应程度进而降低四氯 化硅的消耗, 促进传质。 所述套管可以是与所述管体同轴, 可以是圆管, 其外径优选为管体直径内径的 1/4-3/4。 优选的, 所述的管体的可旋转部分 设置有所述套管。
根据本发明提供的第二种具体实施方式, 一种所述的气相超稳反应器 如图 3所示, 该气相超稳反应器包括: 反应器管体, 分子筛入口 31, 气相 四氯化硅入口 41 , 分子筛出口 51、 内部套管 61和气体出口 71 , 反应器管 体内设置反应器抄板 11和挡板 21 , 该反应器还可以包括管体旋转驱动机 构(未标出)。 四氯化硅与分子筛分别通过四氯化硅入口 14和分子筛入口 31引入套管 61和气相超稳反应器管壁之间的空隙中, 并接触反应, 其中 抄板 11可以使管体中的分子筛翻转,有利于分子筛与四氯化硅的混合,挡 板 21可以阻止分子筛沿着反应器管壁下滑,有利于分子筛平稳移动,从而 有利于防止下方的分子筛物料移动速度快于上方分子筛的移动速度, 有利 于稳定产品质量,套管 61的引入使分子筛在环隙中进行反应,有利于稳定 分子筛质量, 并且有利于减少热量损失, 所述气固分离器用于收集与 SiCLt 气体接触后的分子筛。
根据本发明提供的第三种的具体实施方式, 所述反应器利用动力输送 装置进行分子筛的输送, 使分子筛在反应器中移动, 所述的动力输送装置 可以是任意的装置,只要能够使得分子筛和气相 SiC 在反应器内连续移动 并接触反应即可。 用于输送的装置例如使用循环活塞输送机、 管链式输送 机、 螺旋输送机、 管状带式输送机、 管式重力输送机、 带式输送机中的一 种或多种。 通过使用动力输送装置, 可以使分子筛在管式反应器中移动, 分子筛的空隙和孔中的气体也在分子筛的携带下移动至气相超稳反应器的 出口。
一种方式是利用管状带式输送机进行分子筛的输送, 所述管状带式输 送机是将带式输送机设置在密闭的管式反应器内部, 分子筛和气相 SiC 从管式反应器一端上部的进料口进入掉落到带式输送机上, 通过带式输送 机输送到管式反应器另一端下部的出料口, 在带式输送机上物料可以充分 进行反应, 所述带式输送机可以是常规使用的任意输送机, 带式输送机长 度和宽度取决于管式反应器进料口和出料口的位置以及分子筛进料量的大 小。优选情况下, 所述带式输送机上分子筛的厚度不超过 20cm, 更优选不 超过 10cm。 使用带式输送装置输送分子筛, 管体的轴线与水平面的夹角 α 优选为 0-45°, 优选 0-25°。
一种使用带式输送装置输送分子筛的反应器如图 5所示, 分子筛原料 和四氯化硅从反应器的一端的分子筛入口 12和四氯化硅入口 22引入到反 应器中, 分子筛落入带式输送装置 52上, 在带式输送装置 52上随输送带 移动, 在分子筛上面的空隙中充满四氯化硅, 四氯化硅通过扩散进入分子 筛颗粒间的空隙中,进而进入分子筛的孔道中参与抽铝补硅的超稳化反应, 反应后的分子筛落入到反应器另一端出口 32排出反应器。由于与分子筛反 应, 沿着分子筛的运动方向, 气相中的四氯化硅浓度逐渐降低。 其中可以 控制出口 32的开度, 使物料以一定的速度排出, 在出口 32上部产生一定 高度的物料堆积, 避免过量的四氯化硅从出口 32排出, 其中, 气体出口 62用于从反应器中引出四氯化硅和分子筛带入的空气。这样由于四氯化硅 的挤出作用, 使得随分子筛引入反应器的空气在四氯化硅的作用下, 从分 子筛颗粒空隙扩散到上方的气体层中,通过定期或不定期的引出上方气体, 可以有利于反应平稳运行。通过气体出口 62引出的气体经过冷却以后可以 回收四氯化硅, 未冷却的气体经过吸收掉其中携带的少量四氯化硅以后可 以排空。 通常, 输送带上的分子筛厚度不应过高, 优选不超过 10cm, 例如 可以是不超过 5cm。
利用动力输送分子筛还可以使用循环活塞输送机进行输送, 所述循环 活塞输送机是在密闭的管式反应器设置一个由多个活塞推进杆构成的循环 输送装置,管式反应器中分上下两层,上层是提供分子筛和气相 SiC 从管 式反应器上部的进料口进入后由活塞杆推着向前运动的空间, 下层是提供 活塞杆自身往回运动的空间, 这样构成一个连续进料的循环反应系统。 管链式输送机包括主动链轮: 转角 轮、 回转链 、 载料链片、 循环输送 管、 进料口、 出料口, 回转链条套装在主动链轮和转角链轮上, 载料链片 垂直插装在回转链条上, 循环输送管套装在回转链条外, 主动链轮、 转角 链轮、 回转链条、 载料链片和循环输送管构成一个封闭的物料输送回路。 通过在分子筛入口处设置四氯化硅入口, 使四氯化硅的运动方向与分子筛 大体相同。 所述管链式输送机的输送链板间的距离与反应管直径内径之比 可以为 1: 1-1:100,例如为 1:2-1:20。相邻的所述载料链片的距离优选不超过 所述反应器管体内径直径, 优选为 1/4-1/2。
所述的气相超稳反应器中,优选的还可以利用螺旋输送机输送分子筛, 所述螺旋输送机包括有轴螺旋输送机和无轴螺旋输送机, 其中无轴螺旋输 送机采用无中心轴设计, 利用具有一定柔性的整体钢制螺旋推送物料, 因而具有抗缠绕性强, 无中心轴干扰等性质; 有轴螺旋输送机是利用螺 旋钢片旋转进而推移物料的连续输送设备, 该种输送装置即可设置为水平 状态也可以设置为倾斜状态。 所述螺旋输送机的螺距没有特殊要求, 只要 能够使分子筛在管体内移动, 例如可以是管体内径的 1/100-1/10。
优选情况下, 所述的气相超稳反应器为的管体为直管。 分子筛物料可 以在反应器内至少一处充满管体的四周, 即管体的至少一处横截面充满分 子筛, 这样, 可以用分子筛起密封作用, 使得四氯化硅气体不至于因为压 力波动过快流动到气固分离器中。
根据本发明提供的第四种的具体实施方式, 还可以使用动力和重力联 合进行分子筛的输送, 本发明称为联合输送方式, 该种情况下, 通过重力 和机械输送装置来控制分子筛的运动, 通过控制机械输送装置可以调节分 子筛在反应器中的停留时间, 控制分子筛与四氯化硅的反应时间。 该方式 下, 可以使分子筛在管式反应器中的反应更加均匀, 减少返混, 在联合输 送方式下, 优选的管式反应器为直管反应器, 管体的轴线与水平面的夹角 优选为 25-55。, 这样, 不仅可以实现对分子筛进行抽铝补硅的气相超稳反 应, 且机械输送装置的受力较小, 便于控制分子筛在反应器中的移动, 反 应更佳均匀, 有利于减少设备维修。 优选的机械输送装置例如循环活塞输 送机、 管链式输送机、 螺旋输送机、 带式输送机。 优选管体设置为倾斜状 态, 管体的轴线与水平面的夹角优选为 25-55°C , 可以提高所制备分子筛 的稳定性, ?文善产品分布。
本发明还包括气固分离和吸收过程, 因此相应地, 本发明的设备还包 括气固分离器和吸收器。 所述的气固分离用于将反应后的分子筛与气相中 未反应的四氯化硅分离, 尽可能除去分子筛中未反应的四氯化硅, 气固分 离可在气固分离器中进行; 所述的吸收用于吸收气固分离后的气体中的四 氯化硅, 这可在吸收器中进行。 各种能够实现上述气固分离目的的容器均 可作为本发明的气固分离器, 本发明对其形状可以没有特别的限定, 例如 可以为圆柱状。 进一步优选情况下, 所述气固分离器的底部为端部具有开 口的锥形。 从而获得的分子筛能够从所述开口排出。 为了使反应后的混合 物中的气体组分尽可能进入吸收器而不从上述开口排出, 优选情况下, 所 述气固分离器与出料口连接的位置高于所述锥形的起始位置。 进一步优选 情况下, 所述气固分离器与出料口连接的位置位于所述气固分离器的中上 部, 气固分离器通过其顶部开口与下文将要描述的吸收器连通。
在气固分离器内, 固体分子筛和气体分离,从而获得高硅分子筛产品。 所述气固分离器一般包括进料口和顶部气体出口。 所述管体的一端与所述 气固分离器连通, 所述气固分离器的截面积大于所述管式反应器管体的横 截面积。 通过使所述气固分离器的截面积大于所述管式反应器管体的横截 面积, 可以实现使反应后的分子筛粉末物料在重力作用下的沉降, 从而实 现气固分离。 进一步优选情况, 所述气固分离器的截面积与所述管式反应 器管体的横截面积之比为 2-10:1 , 这样即可充分实现分子筛的快速沉降。 为了进一步保证分子筛充分沉降到气固分离器中, 本发明还优选所述气固 分离器的高度不小于 5米, 例如 5-10米。 更进一步优选情况下, 所述气固 分离器的进料口位于所述气固分离器的中部, 这样一方面可以保证不对沉 P条在气固分离器底部的分子筛产生搅动, 另一方面还能保证较充分的沉降 时间。 所述的反应器和气固分离器可以设置为微负压操作, 例如气固分离 器的真空度可以为 100Pa-90KPa, 优选 lkpa-80kpa。
进一步优选情况下, 所述气固分离器还包括底部固体出口, 用于排出 分离得到的分子筛固体。 更进一步优选情况下, 所述气固分离器还包括用 于控制所述底部固体出口开和关的阀门, 从而能够适时的将气固分离器中 收集的分子筛固体排出。
排出气固分离器的分子筛可以不经过洗涤, 然后直接与基质、 水混合 进行打浆。 由于气相超稳反应是一个脱铝补硅的过程, 因此反应过程中会 产生大量的氯化铝, 同时该反应原料使用四氯化硅, 四氯化硅与水接触立 刻生成硅胶和盐酸,反应完成后分子筛中会携带一部分四氯化硅和氯化铝, 这些物质可以在催化剂成胶过程作为粘结剂使用, 这样在催化剂制备过程 中减少了粘结剂的使用, 同时也减少了污水、 废料和酸气的产生, 很大程 度上减少了环境污染, 提高了废物的回收和有效利用。 此工艺过程缩减了 催化剂制备流程, 减少了分子筛洗涤水用量, 同时减少了分子筛在洗涤过 程中稀土的流失, 将浆液中的稀土离子回用到催化剂中, 提高了稀土的利 用率, 高效利用了原料。
排出气固分离器的分子筛也可以进行洗涤, 所述洗涤可以采用现有方 法, 例如可以用脱阳离子水或去离子水洗涤, 通常所述洗涤使洗涤后分子 筛中的氧化钠含量不高于 0.5 重量%, 然后将洗涂得到的分子筛与基质混 合打浆, 将浆液喷雾干燥。
本发明中, 从气固分离器气体出口引出的气体进行吸收以除去其中携 带的四氯化硅。 如图 2a、 2b和 8所示, 所述吸收过程优选在吸收器 3中进 行, 吸收剂容纳于所述吸收器 3中, 用于吸收未参与反应的 SiC , 以便达 到排放标准。 吸收器 3用于吸收未反应的 SiC , 从而使气固分离器 2出来 的气体达到排放标准。所述吸收器 3可以是本领域常规使用的各种吸收器, 只要能吸收 SiC 即可。 一般使用碱液如氢氧化钠水溶液吸收 SiCU, 也可 以使用水进行吸收。 因此, 本发明中, 所述吸收器 3优选包括气体入口和 吸收液入口和两个出口, 其中气体入口与气固分离器连通, 优选位于所述 吸收器的中上部。 所述两个出口分别位于所述吸收器的顶部和底部, 分别 用于排放气体和吸收废液。为了保证排出的气体中 SiCLt含量足够低,优选 情况下,所述吸收器为串联的多个。 串联的多个吸收器对 SiC 形成多级吸 收。 吸收器的气体出口可以连接引风机。
本发明所述的气相超稳反应器还可包括加热器, 以对反应器内的物料 进行加热。 所述加热器可采用常用的加热方式来实现, 所述加热器可以是 各种加热器, 例如可以通过反应器外壁缠绕加热带、 反应器外壁加装加热 的电炉丝、反应器用蒸汽加热 /反应器内部盘管加热 /热辐射加热 /微波加热。 优选情况下, 本发明中, 所述加热器可以是设置在所述分子筛进料口、 四 氯化硅进料口和管体外壁和 /或内部的电加热带、 蒸汽套管、盘管加热器中 的一种或多种。 所述的换热器也可以采用常用的换热方式来实现, 例如使 用水蒸汽和固体 SiCL»进行换热,或者与其他蒸汽热量进行换热。设置加热 器, 可以控制管式反应器内物料的温度, 由此对分子筛进料温度的要求降 低, 并且能够根据对最终抽铝补硅分子筛的要求, 控制实现管式反应器内 从进料口到出料口各部分温度相同或者不同。 也可以不设置加热器, 利用 分子筛与 SiC 的反应热进行反应器物料温度的调控, 例如调控分子筛与 SiC 的进料量比值, 可简化了装置流程。 通过控制分子筛与气相 SiC 不 同的接触温度, 进而可以得到不同脱铝深度的分子筛产品。
为了能够更精确地控制管式反应器内的温度, 优选情况下, 所述加热 器为电加热器例如为电加热带或电炉丝, 且所述电加热带为多条, 同时, 将管体分为多段, 在每段管体的外壁分别缠绕一条电加热带或电炉丝。 这 样就可以分别在管体的内部设置温度测量装置, 根据抽铝补硅反应的温度 要求和温度测量装置测得该段管体的实际温度, 通过控制缠绕在每段管体 外壁的电加热带电流和电压, 实现对每段管体内的温度控制。 例如, 每段 管体的长度可以为 2-20米, 优选为 2-8米。
对分子筛与气相 SiCl4的接触温度进行控制,可以对进入反应器的分子 筛的温度与气相 SiC 的温度无任何要求,可以为任意温度的分子筛与气相 SiC 。 为了使反应能够在分子筛与气相 SiCl4接触后快速进行, 本发明优 选引入所述气相超稳反应器的所述分子筛的温度为 200-600°C, SiC 的温 度为 60-150°C。 由于焙烧后的分子筛的温度通常为 300°C以上, 因此上述 分子筛的温度在反应开始时可以通过将反应器与焙烧炉相结合而获得, 也 就是说, 优选情况下, 所述分子筛为刚从焙烧炉排出的分子筛, 这样一方 面能够利用焙烧后分子筛的高温作为脱铝补硅反应的热源, 启动脱铝补硅 反应, 从而节约能源; 另一方面还能节约加热分子筛的时间, 从而使反应 在较短的时间内即可充分进行。
下面结合图 2a对本发明提供的方法进一步叙述。 温度为 200-600°C的 分子筛 a和换热后气相 SiC 原料 b分别送入管式反应器 1内(反应器可以 设置或不设置加热器), 分子筛与气相 SiC 在管式反应器 1内接触反应, 并向分子筛出口方向移动,可通过设置在管体外壁和 /或内部的加热器对管 式反应器 1进行加热, 以调整管式反应器 1 内的反应温度为 250-700°C , 之后进入气固分离器 2, 在气固分离器 2内, 反应得到的高硅分子筛 c沉 在气固分离器 2的底部, 直接或定期排出, 然后引入到打浆器 4与基质 例如粘结剂和粘土混合打浆, 制备的浆液引入造粒设备例如喷雾干燥器造 粒。气相 SiC 则通过气固分离器 2顶部的出口进入吸收器 3内, 与吸收器 3中的吸收剂例如碱液接触, 尾气 d从碱液中溢出, 从吸收器 3顶部的出 口排出, SiC 则与碱液反应, 之后通过底部出口直接或定期排出废水 e。
下面结合图 2b对本发明提供的方法进一步叙述。 温度为 200-600°C的 分子筛 a和换热后气相 SiC 原料 b分别送入管式反应器 1内(反应器可以 设置或不设置加热器), 分子筛与气相 SiC¾在管式反应器 1内接触反应, 并向分子筛出口方向移动,可通过设置在管体外壁和 /或内部的加热器对管 式反应器 1进行加热, 以调整管式反应器 1 内的反应温度为 250-700°C, 之后进入气固分离器 2, 在气固分离器 2内, 反应得到的高硅分子筛 c沉 降在气固分离器 2的底部, 直接或定期排出, 引入洗涤器 4洗涤, 然后引 入过滤和干燥系统 6进行过滤和干燥, 然后引入打浆器 5,与引入打浆器 5 的基质 g混和打浆, 然后引入造粒器例如喷雾干燥器造粒; 未反应的气相 SiC 则通过气固分离器 2顶部的出口进入吸收器 3内, 与吸收器 3中的吸 收剂例如减液接触, 尾气 d从碱液中溢出, 从吸收器 3顶部的出口排出, SiC 则与碱液反应, 之后通过底部出口直接或定期排出废水 e。
下面结合图 8对本发明提供的方法进一步叙述。 从晶化合成釜 5中引 出的晶化合成产物, 引至真空带式过滤机 21过滤, 分子筛滤饼从交换罐 7 的顶部引入交换罐 7中与按照交换比例引入交换罐 7中的交换液混合, 在 交换罐 7中进行交换反应, 同时从交换罐的底部引出含分子筛的浆液, 引 至真空带式过滤机 22过滤,分子筛滤饼引入焙烧炉 4中焙烧,得到温度为 200-600 °C , 优选 300-600°C的分子筛, 与加热后得到的气相 SiC 原料 b 分别送入管式反应器 1内(反应器可以设置或不设置加热器),分子筛与气 相 SiC 在管式反应器 1内接触反应, 并向分子筛出口方向移动,可通过设 置在管体外壁和 /或内部的加热器对管式反应器 1进行加热, 以调整管式反 应器 1内的反应温度为 250-700°C, 之后进入气固分离器 2, 在气固分离器 2内, 反应得到的高硅分子筛沉降在气固分离器 2的底部, 直接或定期排 出, 引入到洗、 8中进行洗涤,然后经过真空带式过滤机 23过滤得到硅 铝比提高了的高硅分子筛 c (或者, 可以不引入到洗涤罐 8中进行洗涤, 而是直接引入到成胶装置中, 与催化裂化催化剂制备所使用的其它原料混 合进行打浆来制备催化剂); 未反应的气相 SiC 则通过气固分离器 2顶部 的出口进入吸收器 3内, 与吸收器 3中的吸收剂例如碱液接触, 尾气 d从 碱液中溢出, 从吸收器 3顶部的出口排出, SiC 则与碱液反应, 之后通过 底部出口直接或定期排出废水 e。
本发明可以用于对各种分子筛进行气相脱铝补硅, 例如所述分子筛可 以是 Y型分子筛, 所述的 Y型分子筛的稀土含量可以是 0-18重量%, 硅 铝比 ( Si02/Al203摩尔比)可以为 4-6。
本发明也可以用于对各种 Na型分子筛进行气相化学脱铝补硅。 所述 的 Na型分子筛, 例如为 NaY型分子筛; 将 NaY分子筛合成用的导向剂、 硅铝凝胶以及水的混合物晶化(晶化合成的方法可采用现有方法, 例如专 利 CN101468804 B公开的方法), 晶化产物经过过滤后得到滤饼, 滤饼可 以干燥或者不干燥得到所述 NaY分子筛,然后引入交换装置交换。 NaY分 子筛经过离子交换可以得到不同交换度的 NaY分子筛。所述交换可以采用 现有方法, 例如使用铵盐和或稀土盐进行交换, 所述的铵盐例如氯化铵、 硝酸铵、硫酸铵中的一种或多种, 所述的稀土盐例如氯化稀土和 /或硝酸稀 土。例如所述 NaY分子筛可以经过稀土交换或者不经过稀土交换得到不同 稀土含量的 Y型分子筛, 所述 Y型分子筛的稀土含量可以是 0-18重量0 /0, 硅铝比(Si02/Al203摩尔比)可以为 4-6。
本发明提供的方法得到的分子筛可用于制备催化裂化催化剂, 制备催 化裂化催化剂所用的基质等其它原料和操作方法可以采用本领域公知的技 术进行。 所述的基质例如常用做催化裂化催化剂制备的粘结剂、 粘土中的 一种或多种。 例如, 所述以催化裂化催化剂的总重量为基准, 所得到的催 化剂中所述分子筛的含量为 5-50 重量%, 以氧化物计粘结剂的含量为 0.5-50重量%, 粘土的含量为 5-90重量%。 所述粘结剂可以为氧化铝、 水 合氧化铝、 铝溶胶、 硅溶胶、 硅铝凝胶、 硅铝溶胶以及它们的前身物中的 一种或多种, 所述粘土可以为高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃 洛石、 皂石、 累托土、 海泡石、 凹凸棒石、 水滑石、 膨润土中的一种或多 法, 本发明在此不再赘述。
本发明还提供了下述技术方案
a-l、 一种制备催化裂化催化剂的方法, 该方法包括: 将分子筛引入到 气相超稳反应器中, 使分子筛在不用载气输送的情况下从气相超稳反应器 的分子筛入口移动到气相超稳反应器的分子筛出口,并且与气相 SiC 在气 相超稳反应器中接触反应,将反应后得到的分子筛与基质混合打浆、造粒。
a-2、 按照技术方案 a-1所述的方法, 其特征在于, 在所述的气相超稳 反应器中, 分子筛和气相 SiC 接触的温度为 250- 700°C, 所述的分子筛在 所述气相超稳反应器的停留时间为 10秒至 100分钟。
a-3、 按照技术方案 a-1所述的方法, 其特征在于, 所述不用载气输送 的情况下从气相超稳反应器的分子筛入口移动到气相超稳反应器的出口, 使用带式输送机、 管链式输送器、 螺旋输送机、 循环活塞输送器、 管式重 力输送机或它们中一种或多种的组合。
a-4、 按照技术方案 a-1所述的方法, 其特征在于, 所述的气相超稳反 应器包括分子筛进口、 四氯化硅进口、反应器管体和分子筛出口, 分子筛 进口的位置高于所述的分子筛出口位置。
a-5、 按照技术方案 a-1或 a-4所述的方法, 其特征在于, 所述的分子 筛和四氯化硅共用物料进口, 或者分子筛进口和四氯化硅进口处于所述气 相超稳反应器的同一端。
a-6、 按照技术方案 a-4所述的方法, 其特征在于, 所述反应器的长度 与直径内径之比大于 1 , 优选为 3-100: 1。
a-7、 按照技术方案 a-1所述的方法, 其特征在于, 所述的气相超稳反 应器由分子筛入口、 四氯化硅入口、 反应器管体、 分子筛出口组成, 所述 的反应器管体与水平面的夹角为 30-90°, 分子筛的入口处于所述管体位置 较高的一端, 分子出口位于所述管体位置较低的一端, 分子筛出口与气固 分离装置连通, 四氯化硅入口与分子筛入口的距离大于四氯化硅入口与分 子筛出口的距离, 所述的分子筛在反应器中依靠重力的作用移动。
a-8、 按照技术方案 a-7所述的方法, 其特征在于, 所述反应器管体的 轴线与水平面的夹角为 40-80。。
a-9、 按照技术方案 a-1所述的方法, 其特征在于, 所述的气相超稳反 应器包括分子筛入口、 四氯化硅入口、 反应器管体、 分子筛出口, 反应器 管体的至少一部分设置为可以绕管体的轴线旋转。
a-10、 按照技术方案 a-1或 a-9任一项所述的方法, 其特征在于, 所 述的反应器管体为直管, 所述管体的至少一部分可围绕管体轴线转动, 转 动速度为 0.05-40转 /分钟, 优选 0.1-15转 /分钟。
a-l 按照技术方案 a-1或 a-9所述的方法, 其特征在于, 所述的气 相超稳反应器可围绕管体轴线转动的部分中包括堰板和抄板。
a-12、 按照技术方案 a-9所述的方法, 其特征在于, 所述管体与水 平面的夹角为 5-80°。
a-13、 按照技术方案 a-9- a-12任一项所述的方法, 其特征在于, 所 述的反应器管体内有套管, 所述的分子筛和四氯化硅在管体和套管之间的 环隙中接触反应。
a-14、 按照技术方案 a-13所述的方法, 其特征在于, 所述的套管外 径与所述反应器管体内经之比为 1/4-/3/4。
a-15、 按照技术方案 a-1 所述的方法, 其特征在于, 所述的气相超 稳反应器包括分子筛入口、 四氯化硅入口、 反应器管体和分子筛出口, 所 述的反应器管体中设置有机械输送装置, 所述的输送机械输送装置能够使 分子筛从气相超稳反应器的分子筛入口移动到分子筛出口。
a-16、 按照技术方案 a-15所述的方法, 其特征在于, 所述的机械输 送装置为带式输送机、 活塞输送机、 管链式输送器或螺旋输送机中的一种 或多种。
a-17、 按照技术方案 a-15或 a-16所述的方法, 其特征在于, 所述的 反应器管体轴线与水平面的夹角为 0-70°。
a-18、 按照技术方案 a-17所述的方法, 其特征在于, 所述的反应器 管体与水平面的夹角为 25-55。。
a-19、 按照技术方案 a-1 所述的方法, 其特征在于, 所述反应器为 管式反应器,所述反应器的管体长度为 5-200米,管体直径内经为 0.1-6米。
a-20、 按照技术方案 a-19所述的方法, 其特征在于, 所述反应器的 管体直径内经为 0.2-1.5米。
a-21、 按照技术方案 a-1或 a-20所述的方法, 其特征在于, 分子筛 的流量为 50-2000kg/小时。
b-l、 一种制备催化裂化催化剂的方法, 该方法包括: 将分子筛引入到 气相超稳反应器中, 使分子筛在不用载气输送的情况下从气相超稳反应器 的分子筛入口移动到气相超稳反应器的分子筛出口,并且与气相 SiC 在气 相超稳反应器中接触反应, 将反应后的分子筛洗涤, 与基质混合打浆、 造 粒。
b-2、 按照方案 b-1所述的方法, 其特征在于, 在所述的气相超稳反应 器中, 分子筛和气相 SiC 接触的温度为 250-700 °C , 所述的分子筛在所述 气相超稳反应器的反应时间为 10秒至 100分钟。
b-3、 按照方案 b-1所述的方法, 其特征在于, 所述不用载气输送的情 况下从气相超稳反应器的分子筛入口移动到气相超稳反应器的出口, 使用 带式输送机、 管链式输送器、 螺旋输送机、 循环活塞输送器、 管式重力输 送机或它们中一种或多种的组合。
b-4、 按照方案 b-1所述的方法, 其特征在于, 所述的气相超稳反应器 包括分子筛进口、 四氯化硅进口、反应器管体和分子筛出口, 分子筛进口 的位置高于所述的分子筛出口位置。
b-5、 按照方案 b-1或 b-4所述的方法, 其特征在于, 所述的分子筛和 四氯化硅共用物料进口, 或者分子筛进口和四氯化硅进口处于所述气相超 稳反应器的同一端。
b-6、 按照方案 b-4所述的方法, 其特征在于, 所述反应器的长度与直 径内径之比为 3-100:1。
b-7、 按照方案 b-1所述的方法, 其特征在于, 所述的气相超稳反应器 由分子筛入口、 四氯化硅入口、 反应器管体、 分子筛出口组成, 所述的反 应器管体与水平面的夹角为 30-90。, 分子筛的入口处于所述管体位置较高 的一端, 分子出口位于所述管体位置较低的一端, 分子筛出口与气固分离 装置连通, 四氯化硅入口与分子筛入口的距离大于四氯化硅入口与分子筛 出口的距离, 所述的分子筛在反应器中依靠重力的作用移动。
b-8、 按照方案 b-7所述的方法, 其特征在于, 所述反应器管体的轴线 与水平面的夹角为 40-80°。
b-9、 按照方案 b-1所述的方法, 其特征在于, 所述的气相超稳反应器 包括分子筛入口、 四氯化硅入口、 反应器管体、 分子筛出口, 反应器管体 的至少一部分设置为可以绕管体的轴线旋转。
b-10、 按照方案 b-1或 b-9任一项所述的方法,其特征在于,所述的 反应器管体为直管, 所述管体的至少一部分可围绕管体轴线转动, 转动速 度为 0.05-40转 /分钟, 优选 0.1-15转 /分钟。
b-ll、 按照方案 b-1或 b-9所述的方法,其特征在于, 所述的气相超 稳反应器可围绕管体轴线转动的部分中包括堰板和抄板。
b-12、 按照方案 b-9所述的方法, 其特征在于, 所述管体与水平面 的夹角为 5-80°。
b-13、 按照方案 b-9- b-12任一项所述的方法, 其特征在于, 所述的 反应器管体内有套管, 所述的分子筛和四氯化硅在管体和套管之间的环隙 中接触反应。
b-14 按照方案 b-13所述的方法, 其特征在于, 所述的套管外径与 所述反应器管体内经之比为 1/4-/3/4。
b-15、 按照方案 b-1 所述的方法, 其特征在于, 所述的气相超稳反 应器包括分子筛入口、 四氯化硅入口、 反应器管体和分子筛出口, 所述的 反应器管体中设置有机械输送装置, 所述的输送机械输送装置能够使分子 筛从气相超稳反应器的分子筛入口移动到分子筛出口。
b-16、 按照方案 b-15所述的方法, 其特征在于, 所述的机械输送装 置为带式输送机、 活塞输送机、 管链式输送器或螺旋输送机中的一种或多 种。
b-17、 按照方案 b-15或 b-16所述的方法, 其特征在于, 所述的反应 器管体轴线与水平面的夹角为 0-70°。
b-18、 按照方案 b-17所述的方法, 其特征在于, 所述的反应器管体 与水平面的夹角为 25-55°。
b-19、 按照方案 b-1 所述的方法, 其特征在于, 所述反应器为管式 反应器, 所述反应器的管体长度为 5-200米, 管体直径内经为 0.1-6米。
b-20、 按照方案 b-19所述的方法, 其特征在于, 所述反应器的管体 直径内经为 0.2-1.5米。
b-21、 按照方案 b-1或 b-20所述的方法, 其特征在于, 分子筛的流 量为 50-2000kg/小时。
c-l、 一种制备分子筛的方法, 该方法包括: 将分子筛引入到气相超稳 反应器中, 使分子筛在不用载气输送的情况下从气相超稳反应器的分子筛 入口移动到气相超稳反应器的分子筛出口,并且与气相 SiC 在气相超稳反 应器中接触反应。
c-2、 按照方案 c-1所述的方法, 其特征在于, 在所述的反应器中, 分 子筛和气相 SiCl4接触的温度为 250-700°C, 所述的分子筛在所述气相超稳 反应器的反应时间为 10秒至 100分钟。
c-3、 按照方案 c-1所述的方法, 其特征在于, 所述不用载气输送的情 况下从气相超稳反应器的分子筛入口移动到气相超稳反应器的出口, 使用 带式输送机、 管链式输送器、 螺旋输送机、 循环活塞输送器、 管式重力输 送机或它们中一种或多种的组合。
c-4、 按照方案 c-1所述的方法, 其特征在于, 所述的气相超稳反应器 包括分子筛进口、 四氯化硅进口、反应器管体和分子筛出口, 分子筛进口 的位置高于所述的分子筛出口位置。
c-5、 按照方案 c-1或 c-4所述的方法, 其特征在于, 所述的分子筛和 四氯化硅共用物料进口 , 或者分子筛进口和四氯化硅进口处于所述气相超 稳反应器的同一端。
c-6、 按照方案 c-4所述的方法, 其特征在于, 所述反应器的长度与直 径内径之比为 3-100:1。
c-7、 按照方案 c-1所述的方法, 其特征在于, 所述的气相超稳反应器 由分子筛入口、 四氯化硅入口、 反应器管体、 分子筛出口组成, 所述的反 应器管体与水平面的夹角为 30-90。, 分子筛的入口处于所述管体位置较高 的一端, 分子出口位于所述管体位置较低的一端, 分子筛出口与气固分离 装置连通, 四氯化硅入口与分子筛入口的距离大于四氯化硅入口与分子筛 出口的距离, 所述的分子筛在反应器中依靠重力的作用移动。
c-8、 按照方案 c-7所述的方法, 其特征在于, 所述反应器管体的轴线 与水平面的夹角为 40-80°。
c-9、 按照方案 c-1所述的方法, 其特征在于, 所述的气相超稳反应器 包括分子筛入口、 四氯化硅入口、 反应器管体、 分子筛出口, 反应器管体 的至少一部分设置为可以绕管体的轴线旋转。
c-10、 按照方案 c-1或 c-9任一项所述的方法, 其特征在于, 所述的 反应器管体为直管, 所述管体的至少一部分可围绕管体轴线转动, 转动速 度为 0.05-40转 /分钟, 优选 0.1-15转 /分钟。
c-l 按照方案 c-1或 c-9所述的方法, 其特征在于, 所述的气相超 稳反应器可围绕管体轴线转动的部分中包括堰板和抄板。
c-12、 按照方案 c-9 所述的方法, 其特征在于, 所述管体与水平面 的夹角为 5-80°。
c-13、 按照方案 c-9- c-12任一项所述的方法, 其特征在于, 所述的 反应器管体内有套管, 所述的分子筛和四氯化硅在管体和套管之间的环隙 中接触反应。
c-14、 按照方案 c-13所述的方法, 其特征在于, 所述的套管外径与 所述反应器管体内经之比为 1/4-/3/4。
c-15、 按照方案 c-1 所述的方法, 其特征在于, 所述的气相超稳反 应器包括分子筛入口、 四氯化硅入口、 反应器管体和分子筛出口, 所述的 反应器管体中设置有机械输送装置, 所述的输送机械输送装置能够使分子 筛从气相超稳反应器的分子筛入口移动到分子筛出口。
c-16、 按照方案 c-15所述的方法, 其特征在于, 所述的机械输送装 置为带式输送机、 活塞输送机、 管链式输送器或螺旋输送机中的一种或多 种。
c-17> 按照方案 c-15或 c-16所述的方法, 其特征在于, 所述的反应 器管体轴线与水平面的夹角为 0-70°。
c-18、 按照方案 c-17所述的方法, 其特征在于, 所述的反应器管体 与水平面的夹角为 25-55°。
c-19、 按照方案 c-1 所述的方法, 其特征在于, 所述反应器为管式 反应器, 所述反应器的管体长度为 5-200米, 管体直径内经为 0.1-6米。
c-20、 按照方案 c-19所述的方法, 其特征在于, 所述反应器的管体 直径内经为 0.2-1.5米。
c-21、 按照方案 c-1或 c-20所述的方法, 其特征在于, 分子筛的流 量为 50-2000kg/小时。
d-l、 一种制备分子筛的设备, 包括: Na型分子筛交换装置, 焙烧炉、 分子筛气相超稳反应器和气固分离装置, 其中 Na型分子筛交换装置用以 对 Na型分子筛进行交换, 焙烧炉用于对交换过的分子筛进行焙烧, 分子 筛气相超稳反应器用以对焙烧过的分子筛进行气相化学脱铝补硅反应, 气 固分离器用于将从气相超稳反应器排出的分子筛与未反应器的四氯化硅分 离; 所述的气相超稳反应器包括分子筛入口、四氯化硅入口和分子筛出口, 所述的气相超稳反应器能够使引入其中的分子筛在不用载气输送的情况下 从分子筛入口移动到分子筛出口。
d-2、 按照方案 d-1所述的制备分子筛的设备, 其特征在于, 所述不用 载气输送的情况下从气相超稳反应器的分子筛入口移动到气相超稳反应器 的出口, 使用带式输送机、 管链式输送器、 螺旋输送机、循环活塞输送器、 管式重力输送机或它们中一种或多种的组合。
d-3、 按照方案 d-1所述的制备分子筛的设备, 其特征在于, 所述的气 相超稳反应器包括分子筛进口、四氯化硅进口、反应器管体和分子筛出口, 分子筛进口的位置高于所述的分子筛出口位置。
d-4、 按照方案 d-1或 d-3所述的制备分子筛的设备, 其特征在于, 所 述的分子筛和四氯化硅共用物料进口, 或者分子筛进口和四氯化硅进口处 于所述气相超稳反应器的同一端。
d-5、 按照方案 d-1所述的制备分子筛的设备, 其特征在于, 所述的气 相超稳反应器由分子筛入口、 四氯化硅入口、 反应器管体、 分子筛出口组 成, 所述的反应器管体与水平面的夹角为 30-90。, 分子筛的入口处于所述 管体位置较高的一端, 分子出口位于所述管体位置较低的一端, 分子筛出 口与气固分离装置连通, 四氯化硅入口与分子筛入口的距离大于四氯化硅 入口与分子筛出口的距离,所述的分子筛在反应器中依靠重力的作用移动。
d-6、 按照方案 d-5所述的制备分子筛的设备, 其特征在于, 所述反应 器管体的轴线与水平面的夹角为 40-80°。
d-7、 按照方案 d-1所述的制备分子筛的设备, 其特征在于, 所述的气 相超稳反应器包括分子筛入口、 四氯化硅入口、反应器管体、分子筛出口, 反应器管体的至少一部分设置为可以绕管体的轴线旋转。
d-8、 按照方案 d-1或 d-7任一项所述的制备分子筛的设备, 其特征在 于, 所述的气相超稳反应器管体为直管, 所述管体的至少一部分可围绕管 体轴线转动, 转动速度为 0.05-40转 /分钟, 优选 0.1-15转 /分钟。
d-9、 按照方案 d-1或 d-7所述的制备分子筛的设备, 其特征在于, 所 述的气相超稳反应器可围绕管体轴线转动的部分中包括堰板和抄板。
d-10、 按照方案 d-7所述的制备分子筛的设备, 其特征在于, 所述 管体与水平面的夹角为 5-80°。
d-ll、 按照方案 d-7- d-10任一项所述的制备分子筛的设备, 其特征 在于, 所述的反应器管体内有套管, 所述的分子筛和四氯化硅在管体和套 管之间的环隙中接触反应。
d-12、 按照方案 d-11所述的制备分子筛的设备, 其特征在于, 所述 的套管外径与所述反应器管体内经之比为 1/4-/3/4。
d-13、 按照方案 d-1 所述的制备分子筛的设备, 其特征在于, 所述 的气相超稳反应器包括分子筛入口、 四氯化硅入口、 反应器管体和分子筛 出口, 所述的反应器管体中设置有机械输送装置, 所述的机械输送装置为 带式输送机、 活塞输送机、 管链式输送器或螺旋输送机中的一种或多种。。
d-14、 按照方案 d-13所述的制备分子筛的设备, 其特征在于, 所述 的反应器管体轴线与水平面的夹角为 0-70°。
d-15 按照方案 d-14所述的制备分子筛的设备, 其特征在于, 所述 的反应器管体与水平面的夹角为 25-55°。
d-16、 按照方案 d-1 所述的制备分子筛的设备, 其特征在于, 所述 反应器为管式反应器, 所述反应器的管体长度为 5-200米, 管体直径内经 为 0.1-6米。
d-17、 按照方案 d-16所述的制备分子筛的设备, 其特征在于, 所述 反应器的管体直径内经为 0.2-1.5米。
d-18、 按照方案 d-1- d-18任一项所述的制备分子筛的设备, 其特征 在于, 所述反应器的长度与直径内径之比为 3-100:1。
d-19、 按照方案 d-1 所述的制备分子筛的设备, 其特征在于, 所述 的焙烧炉包括焙烧炉筒体、 用于加热焙烧炉筒体的加热装置, 所述焙烧炉 筒体包括进料口、 出料口和处于进料口和出料口之间的中间筒体, 所述的 中间筒体内设置有堰板和抄板。
d-20、 按照方案 d-21所述的制备分子筛的设备, 其特征在于, 所述
' d-21 , 按,^ 案 22所述的制备 ^分子 的设备: 其特 ^£在于, 所的 夹角大于 0°小于 45°。
d-22、 按照方案 d-1所述的设备,所述的 Na型分子筛交换装置包括 交换器、 第二带式过滤机, 或者还包括第一干燥器; 所述交换器用于将 Na 型分子筛与交换离子进行交换 , 所述的第二带式过滤机用于将交换母液与 交换后的分子筛分离; 所述的第一干燥器用于将第二带式滤机得到的交换 后分子筛干燥。
d-23、 一种制备分子筛的方法, 其特征在于, 包括将 Na型分子筛引 入方案 d-1- d-22任一项所述的制备分子筛的装置中进行改性。
d-24、 按照方案 d-23所述的制备分子筛的方法, 其特征在于, 在所 述的气相超稳反应器中, 分子筛和气相 SiC 接触的温度为 250-700°C , 所 述的分子筛在所述气相超稳反应器的反应时间为 10秒至 100分钟。
d-25、 按照方案 d-23所述的制备分子筛的方法, 其特征在于, 所述 焙烧炉的焙烧温度为 300-500 °C。
d-26、 按照方案 d-23所述的制备分子筛的方法, 其特征在于, 所述 的交换设备中, 用于 Na型分子筛交换的交换离子为稀土离子、 铵离子中 的一种或多种。
d-27、 按照方案 d-23所述的制备分子筛的方法, 其特征在于, 所述 Na型分子筛的加料量为 50-2000kg/小时。 实施例
下面的实施例将对本发明予以进一步的说明, 但并不因此而限制本发 明。
实施例 1
使用厚度为 3毫米的工业牌号为 NiCrl8Ti的不锈钢制作图 2a或 2b或 图 8所示的分子筛气相补硅设备,其中气固分离器 2的上部为直径为 6米、 高为 14米的圆柱形, 下部为具有开口锥形, 锥角为 45。, 且开口处设置有 阔, 出料口位于距气固分离器顶部 1米的位置 (是出料口还是进料口? ;), 吸收器 3内盛有浓度为 10摩尔 /升的氢氧化钠水溶液, 吸收器 3和气固分 离器 2之间通过导管连接, 导管深入氢氧化钠水溶液中。
反应器 1为管式反应器, 其如图 5所示, 管体总长度 80米, 管体直径
0.8米,反应器的管体制成环状,反应器包括上层直管部分和下层直管部分, 上下层直管水平安装, 轴线与水平面夹角为 0。, 上、 下层直管的两端分别 用弯管连通, 每个弯管为半圓形, 每个弯管的长度为 6米, 上下层直管部 分为 34米,从而使管体整体上成环状, 带式输送机 52放在环状管体内部, 环状管体一端的上层设置第一进料口 12 (分子筛进料口), 相距 2米的下 游设置第二进料口 22; 环状管体另一端的上层设置引风口 62, 下层设置出 料口 32, 引风口 62连接一个气固分离器, 防止分子筛从引风口处损失。 分子筛在带式输送带上进行输送, 带式输送机所使用的是防腐蚀的金属传 送带, 金属带宽度几乎等于环状管体直径。 如图 5所示, 分子筛从反应器 左端上部的第一进料口 12进入反应器的管体中,落到反应器管体上层中的 输送带 52上, 随输送带向右移动, 四氯化硅气体自第二进料口即四氯化硅 进料口 22进入反应器中, 整体上向气体引出口 62的方向流动, 在移动的 过程中, 四氯化硅气体与分子筛进行抽铝补硅的超稳化反应, 浓度逐渐降 低, 当到达气体引出口 62处时, 气相中的四氯化硅浓度降低到很低,抽铝 补硅反应速率也大大降低; 从气体引出口 62 (也称引风口)引出气体, 分 子筛则随着输送带进入弯管处与输送带脱离,随后通过分子筛出口 32排出 气相超稳反应器。 与分子筛分离后的输送带则经过下层的管体回转到分子 筛入口处。
将来自焙烧炉的温度为 350°C的含稀土的 Y型分子筛(固含量 98.5重 量%, 稀土含量为 15.0重量%, 硅铝比(氧化硅 /氧化铝) 5.26, 氧化钠含 量 4.8重量%, 下同)和温度为 9Q。C的 SiC 气体分别由第一进料口 12和 第二进料口 22连续送入管式反应器 1的管体内,同时将管式反应器的环状 管体分成 10段, 每段长 10米, 在每段管体上的外壁缠绕一个电加热带对 管式反应器进行加热,使管式反应器 1内各加热段的温度均为 400°C , SiCU 的流量由质量流量计控制且 SiC 与分子筛的重量比为 0.25,分子筛的进料 量为 800kg/小时,分子筛在管式反应器 1内的停留时间为 10分钟。反应进 行 1.5小时后, 将气固分离器 2内的分子筛从锥形底部的开口排出, 得到 高硅分子筛 Al, A1与脱阳离子水打浆、 洗涤、 过滤并在 120°C洪干, 得 到高硅分子筛 A, 其主要性质列于表 1中。 输送带上分子筛厚度约 2cm。 为了使分子筛的厚度不至于过高而不均匀,可以反应器管体内安装限位板, 通过控制限位板底部距离输送带的距离, 可以控制输送带上分子,筛层的厚 度。
实施例 2
使用厚度为 3毫米的工业牌号为 NiCrl8Ti的不锈钢制作图 2a或 2b或 图 8所示的分子筛气相补硅设备,其中气固分离器 2的上部为直径为 6米、 高为 14米的圆柱形, 下部为具有开口锥形, 锥角为 45。, 且开口处设置有 阀, 出料口位于距气固分离器顶部 1米的位置, 吸收器 3内盛有浓度为 10 摩尔 /升的氢氧化钠水溶液, 吸收器 3和气固分离器 2之间通过导管连接, 导管深入氢氧化钠水溶液中。
管式反应器 1的管体长度 60米, 为直管, 管体反应器轴线与水平面夹 角成 45。, 管体直径(内径) 1米, 如图 3所示利用重力进行输送, 管体倾 斜 45。, 分子筛入口中心距离位置较高的端面距离为 1米, 四氯化硅入口 距离该端面的距离为 2.5米, 管体中间部分(该旋转部分总长度为 53米, 距离入口一端端面 4米)以 5r/min的速度进行旋转, 管体可旋转的部分内 部设置三块抄板 11 , 抄板的宽度为 5cm, 平行于管体轴线, 与过其与管壁 交线的切平面垂直; 并同时在管体内壁焊接两块堰板 21, 其中第一块堰板 距离分子筛入口一段的端面为 30米, 第二块堰板距该端面 55米, 距离另 一端面为约 5米, 两块堰板均为圆环形状, 高度为 8cm, 垂直于管体轴线。 管体一端设置进料口 31 , 相距 1.5米设置第二进料口 41, 管体另一端设置 出料口 51和引风口 71 , 管体中间还设置一个隔热圓筒 61, 其外径(直径) 为 60cm, 长度与管体长度相同, 用来减少热量的损失, 使气相超稳反应均 匀进行。
按照图 3所示, 将来自焙烧炉的温度为 300°C的含稀土的 Y型分子筛 (固含量 98.5重量%, 稀土含量为 15.0重量%, 硅铝比 5.26, 氧化钠含量 4.8重量%, )和温度为 80°C的 SiC 气体分别由第一进料口 31和第二进料 口 41连续送入管式反应器 1的管体内, 同时将管式反应器的管体分成 12 段, 每段长 5米, 在每段管体上的外壁缠绕一个电加热带对管式反应器进 行加热,使管式反应器 1内的反应温度为 300 °C(分子筛出口的温度), SiC 的流量由质量流量计控制且 SiC 与分子筛的重量比为 0.05,分子筛的进料 量为 1000kg/小时,分子筛在管式反应器 1内的停留时间为 5分钟。反应进 行 1小时后, 将气固分离器 2内的分子筛从锥形底部的开口排出, 得到分 子筛 B1 , 将 B1与脱阳离子水打浆、 洗涤、 过滤并在 120 °C烘干后, 得到 高硅分子筛 B, 其主要性质列于表 1中。
实施例 3
使用厚度为 3毫米的工业牌号为 NiCrl8Ti的不锈钢制作图 2a或 2b或 图 8所示的分子筛气相补硅设备, 反应器管体轴线与水平面夹角成 55°, 管体直径 (内径) 0.5米, 气固分离器 2的上部为直径为 6米、 高为 14米 的圆柱形, 下部为具有开口锥形, 锥角为 45。, 且开口处设置有阀, 出料 口位于距气固分离器顶部 1米的位置, 吸收器 3内盛有浓度为 10摩尔 /升 的氢氧化钠氷溶液, 吸收器 3和气固分离器 2之间通过导管连接, 导管深 入氢氧化钠水溶液中。
气相超稳反应装置如图 6所示, 气相超稳反应器的分子筛输送依靠重 力输送。 反应器包括分子筛入口 5、 气相四氯化硅入口 6, 反应器的管体 1 为直管, 包括分子筛入口端 12、 可旋转部分 11和分子筛出口端 13, 分子 筛入口端 12和分子筛出口端 13通过支撑装置 9支撑, 驱动装置 3用以驱 动可旋转部分 11绕着管体 1的轴线旋转,支撑装置 2用于支撑可旋转部分 11。可旋转部分设置有抄板 8和堰板 7,可旋转部分 11和分子筛入口端 12 以及分子筛出口端 13的连接处为活动连接,且与外界密封,分子筛的出口 设置在出口端 13的端面上,在端面上设置挡板,通过调节挡板可以调节分 子筛出口的大小;
在本实施例中, 管体为圆形直管, 其中管体长度 12米, 可旋转部分 11的长度为 9米, 分子筛进料端 12的长度为 1.8米, 分子筛出料端 13的 长度为 1.2米, 管体 1直径(内径)0.8米, 管体轴线与水平面夹角为 35。, 管体 1的可旋转部分 11以 5r/min的速度进行旋转, 管体内部设置三块抄 板 7, 抄板高度为 5cm, 抄板平行于轴线设置, 且垂直于过抄板与管壁接 触线的管壁切面, 在管体内壁焊接两块堰板 7, 其板面垂直于管体 1的轴 线, 高度为 6cm, —块堰板距离分子筛入口一端端面的距离为 3米, 另外 一块堰板距离前述堰板的距离为 6米; 其中图 7为图 6中 A-A截面的示意 图。
将来自焙烧炉的温度为 300°C的含稀土的 Y型分子筛(固含量 98.5重 量%, 稀土含量为 15.0重量%, 硅铝比 5.26, 氧化钠含量 4.8重量%)和温 度为 80°C的 SiC 气体分别由分子筛入口 5和气相四氯化硅入口 6连续送 入管式反应器的管体 1内,在管体的可旋转部分 11的外壁缠绕电炉丝对管 式反应器进行加热,控制反应温度为 300°C (反应器分子筛出口温度), SiC 的流量由质量流量计控制且 SiC 与分子筛的重量比为 0.08分子筛的进料 量为 1000kg/小时,分子筛在管式反应器内的停留时间为 5分钟。反应进行 1小时后, 将气固分离器 2内的分子筛从锥形底部的开口排出, 得到分子 筛 Cl, 将 C1与脱阳离子水打浆、 洗涤、 过滤并在 120°C烘箱中烘干后, 得到高硅分子筛 C, 其主要性质列于表 1中。
对比例 1 按照 CN102049315A实施例 1公开的方法制备分子筛 E。 所用含稀土 的 Y型分子筛同实施例 1 , 且将其分成每 5米为一段设置加热带, 对其进 行加热, 其反应温度和反应时间同实施例 3为 300°C和 5分钟, 四氯化硅 与分子筛的比例为 0.3 , 进料量为 1 p屯 /小时, 洗涤后得到分子筛 E, 相应 的未经洗涤反应后的分子筛记为 El, 其性质见表 1。 可见, 在同样的反应 温度和时间下,本发明可以获得更好的脱铝效果, 大大节省四氯化硅用量。
对比例 2
将对比例 1的四氯化硅与分子筛的重量比调整为 0.16, 得到分子筛记 为 F, 其性质见表 1。
在本发明中, 晶胞常数、 相对结晶度及骨架比的测定方法是采用 X衍 射粉末衍射法, 实验仪器: 德国西门子公司的 D5005型 X射线衍射仪。 实 验条件: Cu耙, Κα辐射, 固体探测器, 管电压 40kV, 管电流 40mA, 步 进扫描, 步幅 0.02。, 预制时间 2s, 扫描范围 5-70。。
在本发明中, 分子筛的晶格崩塌温度采用差热分析方法测定, 实验仪 器: 美国杜邦公司的 Dupontl600热分析仪。 实验条件:空气为载气, 流量 140mL/min, 升温速率 10°C/min。
在本发明中, 比表面积是采用静态低温氮吸附容量法测定, 实验仪器: Micromeritics公司 ASAP2400静态氮吸附仪。 实验条件: 样品在 1.33Pa、 300°C条件下抽真空脱气 4h, 然后在 77K下与液氮接触, 等温吸附、脱附, 测定吸附、 脱附等温线, 利用 BET公式计算比表面积。
在本发明中,物盾组成分析是采用 X射线荧光光借法测定,实验仪器: 曰本理学电机工业株式会社 3271E型 X射线荧光光语仪。 实验条件: 粉末 样品压片成型, 铑靶, 激发电压 50kV, 激发电流 50mA, 以闪烁计数器和 正比计数器探测各元素谱线强度, 用外标法对元素含量进行定量和半定量 分析。 工 业 分子筛编号 A B C A1 B1 C1 E F E1
REY
实施 实施 实施 实施 实施 实施 对比 对比 对比 实施例编号
例 1 例 2 例 3 例 1 例 2 例 3 例 1 例 2 例 1 晶胞常数, nm 2.450 2.448 2.451 2.450 2.448 2.451 2.453 2.455 2.453 2.465 相对结晶度,
60 59 62 54 52 57 56 58 50 46 %
骨架娃铝比
( Si02/Al203 8.79 9.54 8.45 8.79 9.54 8.45 7.83 7.30 7.83 5.26 摩尔比)
晶格崩塌温
1030 1038 1028 - - - 1026 1022 - 972 度, V
比表面积,
668 685 662 - - - 650 648 - 588 m2/g
Na20含量,重
0.25 0.23 0.28 4.5 4.4 4.5 0.30 0.35 4.6 2.21 量0 /0
RE203含量,
12.0 11.9 12.6 13.6 13.0 14.1 12.3 12.9 12.8 16.6 重量%
从表 1的结果可以看出,与工业 REY相比,采用本发明提供的方法制 得的分子筛的骨架硅铝比即 Si02/Al203摩尔比大大提高, 表明脱铝补硅效 果好。 另外, 从表 1的结果可以看出, 与工业 REY相比, 采用本发明提供 的方法制得的分子筛的相对结晶度、 晶格崩塌温度及比表面积明显提高, 氧化钠含量明显 P争低, 表明根据本发明制得的分子筛的性能优异。 实施例 4-6
用于说明采用实施例 1-3制得的高硅分子筛制备催化剂。
按照(物料干基)分子筛: 高岭土:拟薄水铝石:铝溶胶 =38: 30: 22:10 的重量比例将上述物料混合、 打浆, 然后在 450°C下喷雾干燥, 得到球形 催化裂化催化剂。分子筛分别选用实施例 1-3制得的高硅分子筛 A、B和 C, 分别获得催化剂 A- 1、 A-2和 A-3 , 其主要性质列于表 2中。
实施例 7-9
按照(物料干基)分子筛: 高岭土: 拟薄水铝石: 铝溶胶 =38: 30:18:
9的重量比例将上述物料混合、打浆, 然后在 450°C下喷雾干燥, 用脱阳离 子水洗涤, 得到球形催化裂化催化剂。 分子筛分别选用实施例 1-3制得的 高硅分子筛 Al、 Bl和 CI , 分别获得催化剂 A-4、 A-5和 A-6, 其主要性 质列于表 2中。
对比例 3
按照实施例 4-6方法采用工业 REY型分子筛制备催化剂, 工业 REY 型分子筛是由 NaY分子筛经过两次稀土交换和一次焙烧所得到的,其主要 性质列于表 1中, 所得催化剂计为参比催化剂 CC-1 , 其主要性质列于表 2 中。
对比例 4
按照实施例 6的方法制备催化剂,不同的是所用的分子筛为分子筛 E, 得到催化剂 CC-2。
对比例 5
用等量的分子筛 E1代替对比例 4中的分子筛 E, 得到催化剂 CC-3。 表 2
Figure imgf000043_0001
在本发明中, 催化剂的灼烧减量的测试方法: 催化剂的灼烧减量为经 过高温焙烧后的减少的重量与焙烧前的重量比 (即灼烧减量, 参见
RIPP32-90分析方法,石油化工分析方法,(RIPP试验方法),杨翠定等编, 科学出版社, 1990年), 焙烧的温度通常为 800 °C, 焙烧时间为 2小时, 焙 烧后的样品置于干燥器中冷却后称重。
在本发明中, 催化剂的孔体积的测定方法: 采用滴水法测孔体积, 40 目 -200目的样品 600°C焙烧 2h, 冷却后取 25 mL加入 100 mL锥形瓶中 , 称量加入样品质量 (w2), 酸式滴定管滴加蒸馏水到预期量的 90%左右, 塞 紧瓶塞, 强烈摇动瓶子约 20s, 然后慢速滴定。 若放热升温过高, 以冷水 冷却到室温。 滴定到样品粘在瓶壁上可达 2s即为终点。记录滴定消耗的蒸 馏水体积 (VH2O)。 样品的滴水孔体积为: VG= VH2O / w2-0.01。
在本发明中,催化剂的磨损指数测定方法:催化剂喷雾干燥样品 600°C 焙烧 2 h,冷却后称取 10g于流化磨损指数测定仪的垂直管中,从管底通入 流量一定的含湿的压缩空气, 流化 1 h后, 弃去滤纸筒 (细粉收集器) 中 的细粉,重新装好滤纸筒,继续流化 4 h,称量细粉收集器中的细粉重量( Wl ) 和垂直管中残留的样品重量 ( w2 ), 流化磨损指数根据下式计算
Figure imgf000044_0001
实验条件:空气为载气, 流量 140 mL /min, 升温速率 10°C/min。
在本发明中, 催化剂的表观松密度测定方法: 用自由沉降法测定试验 样品的表观密度; 测定仪器: 内径为 20mm的 25mL量筒,并恰好在 25mL 刻度处割断磨平. 测量时将量筒放在漏斗下,把样品倒在漏斗上,使样品在 30s内连续装一筒并溢出,用刮刀将多余的催化剂刮平,擦净量筒外催化剂并 称重.由此计算出催化剂的表观松密度.单位为 g/mL.
在本发明中, 催化剂的筛分分布及平均颗粒直径用激光法测定。
催化剂的催化裂化性能测试。
轻油微反活性评价: 采用 RIPP92-90的标准方法(见《石油化工分析 方法》(RIPP试验方法)杨翠定等编, 科学出版社, 1990年出版)评价样 品的轻油微反活性, 催化剂装量为 5.0g, 反应温度为 460°C, 原料油为镏 程 235-337°C的大港轻柴油, 产物组成由气相色谱分析, 才艮据产物组成计 算出轻油微反活性, 结果在表 2中。
轻油微反活性(MA ) = (产物中低于 216°C的汽油产量 +气体产量 + 焦炭产量) /进料总量 χ ΐοο %
重油裂化性能评价条件: 催化剂先在 800°C , 100 %水蒸汽老化 12小 时, 然后在 ACE (固定流化床)装置上评价, 原料油为武混三重油(性质 见表 3 ), 反应温度 500°C, 剂油重量比为 4。
其中, 转化率 =汽油收率 +液化气收率 +干气收率 +焦炭收率 轻质油收率 =汽油收率 +柴油收率
液体收率=液化气 +汽油 +柴油
焦炭选择性 =焦炭产率 /转化率
按照上述方法分别评价实施例 4-6及对比例 3、 4制备的催化剂的催化 裂化性能, 结果列于表 4。
从表 2的结果可以看出, 采用由根据本发明制得的分子筛制备催化剂 时,与 REY分子筛催化剂相比,所得催化剂的孔体积和比表面积明显增大, 微反活性明显提高。 与现有用载气输送的方法得到的催化剂相比, 性能没 有变差, 甚至更好。
表 3
Figure imgf000045_0001
表 4
Figure imgf000046_0001
从表 4的结果可以看出, 与参比催化剂 CC-1相比, 采用由本发明提 供的设备制得的分子筛为活性组分制备的催化剂具有较高的转化率, 更高 的轻盾油收率和液体收率, 较低的焦炭选择性。 与 CC-2相比, 本发明方 法在四氯化硅用量大幅度降低的情况下, 所得到的催化剂具有更高的轻质 油收率和液体收率。
实施例 10
将 NaY分子筛(中石化催化剂齐鲁分公司提供, 硅铝比 4.95, 氧化钠 含量 13.5, 相对结晶度 85% ), 按照 RE203:分子筛:水 =0.18:1:100的重量比 例将所述的 NaY分子筛与氯化稀土溶液引入交换罐中进行交换,交换温度 为 75°C, 交换时间为 1小时, 将所述的浆液在带式滤机上过滤, 过滤后的 滤饼送入干燥器干燥, 干燥后的分子筛引入焙烧炉焙烧, 焙烧炉的分子筛 出口与气相超稳反应器的分子筛入口连通, 其中的连接设备如图 10所示, 其中包括三段, 511竖直设置与焙烧炉的分子筛出口连通, 512段竖直设置 , 与气相超稳反应器的分子筛入口连通, 管线 513的轴线与水平面的夹角为 60°连接管线 511和管线 512, 514为闸板, 其与管线 513的轴线垂直, 闸 板 514可以在管线 513横截面上移动以控制管线 513分子筛通路的大小 , 闸板 514与管线 513连接处用密封材料使 513管内与外界密封, 511、 512、 513均为直径内径 600mm的圆管。
气相超稳反应器采用实施例 1所述的气相超稳反应器, 反应条件同实 施例 2。
所用焙烧炉如图 9所示,在中间筒体 20的内壁上设置抄板 3和堰板 4。 整个筒体 2的直径为 lm,整个筒体 2的长度为 7m,其中进料端 24和出料 端 25各自长度为 0.5m, 中间筒体 20的长度为 6m。 堰板 4为环形板, 被 竖立焊接在中间筒体 20的内壁上, 堰板 4的高度为 10cm, 厚度为 5mm, 堰板 4共两块, 将 6m长的中间筒体 20三等分, 第一块在沿中间筒体 20 轴向从中间筒体 20与进料端 24连接处向出料端 25方向延伸 2m的位置, 继续延伸至 4m的位置为第二块; 在被堰板 4等分的三段中间筒体 20的内 壁上, 在每段设置抄板 3, 抄板 3为长条形, 抄板 3的长度方向上与中间 筒体 20的轴向成 30°夹角, 抄板 3被竖立焊接在中间筒体 20的内壁上, 高度为 10cm,厚度为 5mm,在被堰板 4等分的三段中间筒体 20的内壁上, 在每段沿中间筒体 20的周向均等设置的抄板 3的数量为 3。 中间筒体 20 设置为在转动机构 23的带动下转动。 其中抄板 3的沿着中间筒体 20的转 动方向从分子筛的入口方向到分子筛的出口方向延伸。
整个焙烧炉以筒体 2的轴向相对于水平线倾斜 1。放置, 进料口 21高, 出料口 22低。
将焙烧炉加热达到焙烧温度 400 °C , 转动中间筒体 20 (其转动方向与 抄板从分子筛入口到分子筛出口, 沿着圓周延伸的方向相同),将待焙烧的 Y型分子筛从筒体 2的进料口 21连续加入到筒体 2中, 待焙烧的 Y型分 筒体 2的 料口 22处收集焙烧后的 Y型分 筛。在设定中间筒体 20转速 1.8rpm条件下, 焙烧时间为 1小时。 焙烧炉出口分子筛的固含量大于 98.5 重量%, 分子筛温度为 310°C
试验表明该焙烧炉具有更好的出料均勾性。试验方法如下: 将 50公斤 物料加入到上述焙烧炉中, 然后在焙烧炉的出口收集分子筛, 可以发现, 所述分子筛的出料时间在 56-64分钟之间, 可以收集到 100%的分子筛, 而 采用抄板与轴线平行的相同规格的焙烧炉, 物料分三次出来, 第一次在 25-29分钟, 出料量占总出料量的 10%, 第二次在 40-44分钟, 出料量占总 出料量的 30%, 第三次在 52-60分钟, 出料量占总出料量的 60%, 可见所 述的焙烧炉出料更均匀, 这有利于减少焙烧炉体积。

Claims

权 利 要 求
1. 一种制备分子筛的设备, 所述设备包括 Na型分子筛交换装置, 焙 烧炉、 分子筛气相超稳反应器和气固分离器, 其中焙烧炉的出口与气相超 稳反应器的分子筛入口直接相连,
其中 Na型分子筛交换装置用以对 Na型分子筛进行交换,
焙烧炉用于对交换过的分子薛进行焙烧,
分子筛气相超稳反应器用以对焙烧过的分子筛进行气相化学脱铝补硅 反应,
气固分离器用于将从气相超稳反应器排出的分子筛与未反应器的四氯 化硅分离;
所述分子筛气相超稳反应器包括管体、 分子筛入口、 分子筛出口以及 任选的四氯化硅入口, 在管体的一端设置有分子筛入口, 而在管体的另一 端设置有分子筛出口, 其特征在于, 设置有分子筛入口的一端在竖直方向 上不低于设置有分子筛出口的另一端。
2.根据权利要求 1的制备分子筛的设备, 其中所述反应器是管式反应 器或带式输送床反应器。
3.根据权利要求 1的制备分子筛的设备, 其中所述反应器包括重力输 送装置和 /或机械输送装置, 例如循环活塞输送机、 管链式输送机、 螺旋输 送机、 管状带式输送机、 管式重力输送机、 带式输送机或他们的组合。
4.根据权利要求 1的制备分子筛的设备, 其中所述反应器包括重力输 送装置, 并且管体的至少一部分或者全部设置有可绕着管体的轴线转动的 部分。
5.根据权利要求 1的制备分子筛的设备, 其中所述管体的轴线与水平 面的夹角可以为 0-90。, 例如 10。, 20。, 30。, 40。, 50。, 60。, 70。, 80。及 其中任两个值构成的数值范围。
6.根据权利要求 1的制备分子筛的设备, 其中所述反应器包括四氯化 硅入口,其被置于设置有分子筛入口的管体的一端,并且靠近分子筛入口。
7.根据权利要求 1的制备分子筛的设备, 其中所述反应器包括至少一 个抄板和 /或至少一个堰板, 抄板和堰板被安装在管体内壁。
8.根据权利要求 1的制备分子筛的设备, 其中所述反应器的管体的长 度为 5- 200米, 7-150米, 15-130米, 或 20-80米; 所述反应器的管体的直 径内径为 0.01-6米, 0.02-3米, 0.1-2米, 0.2-1.5米; 所述反应器的管体的 长度与管体直径内径之比不低于 1, 3-100:1 , 10-100:1。
9.根据权利要求 1的制备分子筛的设备, 其中可绕着管体的轴线转动 的部分为反应器管体长度的 20%以上, 20%-100%, 20-90%。
10.根据权利要求 1 的制备分子筛的设备, 其中管体内设置有套管, 套管和管体之间的环隙构成反应区。
11.根据权利要求 1的制备分子筛的设备, 其中反应器的管体的轴线, 在分子筛入口至分子筛出口的方向上, 单调地在竖直方向下降或者没有任 何在竖直方向的上升部分。
12.根据权利要求 1 的制备分子筛的设备, 其中反应器的管体的轴线 上任何一点处的切线, 以分子筛入口至分子筛出口的方向为轴线切线的正 方向, 在竖直方向上的矢量为零; 或该矢量的方向是竖直向下的。
13. 一种制备分子筛的方法, 该方法包括: 将分子筛引入到气相超稳 反应器中, 在不用载气输送的情况下, 使分子筛从气相超稳反应器的分子 筛入口移动到气相超稳反应器的分子筛出口, 并且使分子筛与气相 SiC 在气相超稳反应器中接触反应,其中所述分子筛气相超稳反应器包括管体、 分子筛入口、 分子筛出口以及任选的四氯化硅入口, 在管体的一端设置有 分子筛入口, 而在管体的另一端设置有分子筛出口, 其特征在于, 设置有 分子筛入口的一端在竖直方向上不低于设置有分子筛出口的另一端。
14.根据权利要求 13的方法, 其中 SiC 与分子筛的重量比为 0.01-1 , 0.05-0.60, 0.05-0.30。
15.根据权利要求 13的方法, 其中分子筛与气相 SiC 在气相超稳反 应器中接触反应得到超稳分子筛, 该超稳分子筛的相对结晶度指标是大于 50%。
16.根据权利要求 13的方法, 其中在所述的反应器中, 分子筛和气相 SiCl4接触的温度为 250-700°C , 所述的分子筛在所述气相超稳反应器的反 应时间为 10秒至 100分钟。
17.根据权利要求 13 的方法, 其中气相超稳反应器是根据权利要求 2- 12中任一项的制备分子筛的设备中所述的气相超稳反应器。
18.根据权利要求 13的方法, 其中气相超稳反应器是根据权利要求 4 的制备分子筛的设备中所述的气相超稳反应器, 其中所述的反应器管体为 直管, 所述管体的至少一部分可围绕管体轴线转动, 转动速度为 0.05-40 转 /分钟, 优选 0.1-15转 /分钟。
PCT/CN2013/001289 2012-10-26 2013-10-25 一种制备分子筛的设备和方法 WO2014063444A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/438,566 US9993811B2 (en) 2012-10-26 2013-10-25 Process and apparatus for preparing a molecular sieve and a catalytic cracking catalyst
SG11201503301VA SG11201503301VA (en) 2012-10-26 2013-10-25 Process and apparatus for preparing a molecular sieve and a catalytic cracking catalyst
GB1508067.4A GB2526435B (en) 2012-10-26 2013-10-25 Process and apparatus for preparing a molecular sieve and a catalytic cracking catalyst
JP2015538252A JP6346188B2 (ja) 2012-10-26 2013-10-25 ゼオライトを作製する方法および装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210418315.9A CN103787353B (zh) 2012-10-26 2012-10-26 一种制备分子筛的设备
CN201210417837.7 2012-10-26
CN201210417837.7A CN103787352B (zh) 2012-10-26 2012-10-26 一种制备分子筛的方法
CN201210418315.9 2012-10-26

Publications (1)

Publication Number Publication Date
WO2014063444A1 true WO2014063444A1 (zh) 2014-05-01

Family

ID=50543936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001289 WO2014063444A1 (zh) 2012-10-26 2013-10-25 一种制备分子筛的设备和方法

Country Status (6)

Country Link
US (1) US9993811B2 (zh)
JP (1) JP6346188B2 (zh)
GB (1) GB2526435B (zh)
SG (1) SG11201503301VA (zh)
TW (1) TWI614214B (zh)
WO (1) WO2014063444A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111686684A (zh) * 2020-06-23 2020-09-22 萍乡市华顺环保化工填料有限公司 一种ⅲ型高效分子筛自动生产线
CN114699894A (zh) * 2022-03-07 2022-07-05 中船(邯郸)派瑞特种气体股份有限公司 一种气液水解反应残气的回收装置及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2770421C2 (ru) * 2017-02-21 2022-04-18 Чайна Петролеум Энд Кемикал Корпорейшен Модифицированное магнием молекулярное сито типа y, его получение и содержащий его катализатор
US11052381B2 (en) * 2017-02-21 2021-07-06 China Petroleum & Chemical Corporation Modified Y-type molecular sieve, preparation thereof and catalyst comprising the same
SG11202013116TA (en) * 2018-06-29 2021-02-25 China Petroleum & Chem Corp Modified Y-type molecular sieve, catalytic cracking catalyst comprising the same, its preparation and application thereof
CN114100672A (zh) * 2020-08-26 2022-03-01 中国石油天然气股份有限公司 八面沸石分子筛的改性方法、所得到的改性八面沸石分子筛及应用
CN114308139B (zh) * 2021-12-31 2023-10-24 中触媒新材料股份有限公司 一种球形催化剂粒子的连续化生产装置及其应用方法
CN115974430B (zh) * 2023-03-17 2023-06-20 山西富渊通科技有限公司 立式活性石灰煅烧炉及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240372A (zh) * 2008-01-08 2008-08-13 上海大学 一种将铁矿粉在输送过程中还原的方法
CN201339054Y (zh) * 2009-01-04 2009-11-04 上海大学 用于铁矿粉输送还原的斜管式反应器
CN102049315A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种催化裂化催化剂的制备方法
CN102049316A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种制备催化裂化催化剂的设备
CN102050459A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种制备高硅分子筛的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273753A (en) * 1979-09-10 1981-06-16 Mobil Oil Corporation De-aluminization of aluminosilicates
US4701313A (en) * 1984-12-19 1987-10-20 Mobil Oil Corporation Replacing boron with silicon in zeolite beta using SiCl4
DE3719049A1 (de) * 1987-06-06 1988-12-15 Akzo Gmbh Verfahren zum einbau von silicium-atomen anstelle von aluminiumatomen im kristallgitter eines zeolithen des faujasit-typs
DE3927034A1 (de) * 1989-08-16 1991-02-28 Degussa Verfahren zur herstellung von zeolith y
DE19532500A1 (de) * 1995-09-02 1997-03-06 Degussa Verfahren zur Herstellung von Zeolith Y
FR2750893B1 (fr) * 1996-07-12 1998-10-30 Elf Aquitaine Procede de synthese de zeolithe avec agitation homogene du milieu, dispositif et application
CN1121903C (zh) 2001-04-28 2003-09-24 中国石油化工股份有限公司 一种稀土高硅y型沸石的制备方法
JP3904994B2 (ja) * 2002-08-27 2007-04-11 有限会社ユーシン産業 人工ゼオライトの製造装置
CN1286721C (zh) 2004-04-14 2006-11-29 中国石油化工股份有限公司 一种分子筛的气相抽铝补硅方法
CN1281493C (zh) 2004-04-14 2006-10-25 中国石油化工股份有限公司 一种含稀土高硅y型沸石及其制备方法
JP4619758B2 (ja) * 2004-12-03 2011-01-26 財団法人地球環境産業技術研究機構 水処理用ゼオライト触媒
CN100357399C (zh) * 2005-03-31 2007-12-26 中国石油化工股份有限公司 一种裂化催化剂的制备方法
CN103272637A (zh) 2007-04-10 2013-09-04 赢创德固赛有限责任公司 用于制备通式R(4-m-n)AClmHn,特别是硅烷的化合物或高纯化合物的方法和装置
JP5142201B2 (ja) * 2008-01-18 2013-02-13 一般財団法人電力中央研究所 ゼオライト製造装置及び発電設備
CN102050460B (zh) 2009-10-30 2012-10-24 中国石油化工股份有限公司 一种制备分子筛的设备
CN102451736B (zh) 2010-10-22 2014-03-12 中国石油化工股份有限公司 一种催化裂化催化剂的制备方法
CN102452660B (zh) 2010-10-22 2013-11-06 中国石油化工股份有限公司 一种制备分子筛的方法
CN102451657B (zh) 2010-10-22 2014-05-28 中国石油化工股份有限公司 一种制备分子筛的设备
CN102320621B (zh) 2011-08-20 2013-08-28 广东科艺普实验室设备研制有限公司 一种y型分子筛疏水改性的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240372A (zh) * 2008-01-08 2008-08-13 上海大学 一种将铁矿粉在输送过程中还原的方法
CN201339054Y (zh) * 2009-01-04 2009-11-04 上海大学 用于铁矿粉输送还原的斜管式反应器
CN102049315A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种催化裂化催化剂的制备方法
CN102049316A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种制备催化裂化催化剂的设备
CN102050459A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种制备高硅分子筛的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111686684A (zh) * 2020-06-23 2020-09-22 萍乡市华顺环保化工填料有限公司 一种ⅲ型高效分子筛自动生产线
CN111686684B (zh) * 2020-06-23 2023-04-18 萍乡市华顺环保化工填料有限公司 一种ⅲ型高效分子筛自动生产线
CN114699894A (zh) * 2022-03-07 2022-07-05 中船(邯郸)派瑞特种气体股份有限公司 一种气液水解反应残气的回收装置及方法
CN114699894B (zh) * 2022-03-07 2023-06-20 中船(邯郸)派瑞特种气体股份有限公司 一种气液水解反应残气的回收装置及方法

Also Published As

Publication number Publication date
GB201508067D0 (en) 2015-06-24
JP6346188B2 (ja) 2018-06-20
SG11201503301VA (en) 2015-06-29
GB2526435A (en) 2015-11-25
US9993811B2 (en) 2018-06-12
TW201434748A (zh) 2014-09-16
TWI614214B (zh) 2018-02-11
GB2526435B (en) 2021-03-24
JP2015532260A (ja) 2015-11-09
US20150314278A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
WO2014063444A1 (zh) 一种制备分子筛的设备和方法
CN103785438B (zh) 一种制备催化裂化催化剂的设备
CN102451736B (zh) 一种催化裂化催化剂的制备方法
CN103787352A (zh) 一种制备分子筛的方法
CN103787353B (zh) 一种制备分子筛的设备
CN103785436B (zh) 一种制备催化裂化催化剂的设备
CN104556132B (zh) 一种高硅铝比zsm‑5分子筛的制备方法
TWI579047B (zh) Methods and apparatus for preparing molecular sieves and catalyst for catalytic cracking
CN108927211B (zh) 催化裂化催化剂及其制备方法
CN108928833B (zh) 分子筛的改性方法及改性分子筛和应用
CN104549445B (zh) 一种催化裂化助剂的制备方法
CN102451655B (zh) 一种制备分子筛的设备
CN102452661B (zh) 一种制备分子筛的方法
CN102452660B (zh) 一种制备分子筛的方法
CN103769193B (zh) 一种制备催化裂化催化剂的方法
CN102451658B (zh) 一种制备催化裂化催化剂的设备
CN102451730B (zh) 一种催化裂化催化剂的制备方法
CN111017948B (zh) 高硅铝比Beta分子筛及其制备方法和催化裂化助剂及其应用
CN103785437B (zh) 一种制备催化裂化催化剂的方法
CN102452658B (zh) 一种分子筛的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848682

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14438566

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015538252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 1508067

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20131025

WWE Wipo information: entry into national phase

Ref document number: 1508067.4

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 13848682

Country of ref document: EP

Kind code of ref document: A1