WO2014061718A1 - 透明フィルム及びその使用方法並びにタッチパネル - Google Patents

透明フィルム及びその使用方法並びにタッチパネル Download PDF

Info

Publication number
WO2014061718A1
WO2014061718A1 PCT/JP2013/078135 JP2013078135W WO2014061718A1 WO 2014061718 A1 WO2014061718 A1 WO 2014061718A1 JP 2013078135 W JP2013078135 W JP 2013078135W WO 2014061718 A1 WO2014061718 A1 WO 2014061718A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent film
film
particles
meth
transparent
Prior art date
Application number
PCT/JP2013/078135
Other languages
English (en)
French (fr)
Inventor
綾 横山
伊藤 久義
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to KR1020157012818A priority Critical patent/KR102064144B1/ko
Priority to CN201380054315.8A priority patent/CN104736333B/zh
Priority to US14/436,302 priority patent/US9862855B2/en
Publication of WO2014061718A1 publication Critical patent/WO2014061718A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers

Definitions

  • the present invention relates to a transparent film which is used for a display such as a touch panel and has improved writing feeling (tactile sensation) by pen input on the surface, a method of using the transparent film, and a pen input touch panel.
  • a touch panel is a device that inputs predetermined information or the like to a computer or the like by pressing a predetermined position with an input means such as a finger or a pen.
  • an optical method, an ultrasonic method, a capacitance method Can be classified into resistive film type.
  • the electrostatic capacitance method is a method for detecting a position by using a change in electrostatic capacitance.
  • the electrostatic capacitance method adopts an ITO grid method because of its excellent functionality.
  • Capacitive touch panels are in the spotlight as they are used in mobile devices such as smartphones, mobile phones, electronic paper, tablet personal computers (PCs), pen tablets, and game machines.
  • a pen input type touch panel using a pen as an input means has become widespread, and its use is increasing in smartphones, electronic paper, tablet PCs, pen tablets, game machines, PCs, and the like.
  • a hard coat film, an anti-Newton ring film, a soft film, or the like is used on the surface of the touch panel display depending on the application.
  • Patent Document 1 discloses a laminate in which a hard coat layer is laminated on one side of a substrate made of a polyester film and a transparent conductive layer made of a metal oxide is laminated on the other side.
  • the hard coat layer has a surface average surface roughness of 0.08 to 0.30 ⁇ m, a KES surface friction characteristic value average friction coefficient MIU of 0.13 to 0.17, and a coefficient of friction MMD of 0.1.
  • a laminated film for a touch panel having a size of 006 to 0.015 is disclosed.
  • This document discloses a hard coat solution in which inorganic or organic particles having an average particle diameter of 2 to 7 ⁇ m are contained in an acrylic hard coat solution. Further, the ratio of the inorganic or organic particles is 0.5 to 20 parts by weight with respect to 100 parts by weight of the cured resin, and the inorganic or organic particles have a pore volume of 1.7 ml / It is described that g or more porous silica-based fine particles are preferable.
  • the hard coat layer is formed of fine particles and a crosslinkable polymer
  • the touch feeling with a finger is improved to some extent, but when used for pen input, the touch pen slips too much.
  • the writing taste was not constant between the beginning of writing and the middle of writing (while writing), and it was far from writing like a pencil.
  • JP 2010-153298 A (Claim 1, paragraphs [0004] [0013] [0017])
  • an object of the present invention is to provide a transparent film for display capable of inputting with a writing feel like a pencil on paper, a method of using the transparent film, and a pen input touch panel provided with the film.
  • Another object of the present invention is to provide a transparent film for a display whose writing quality is substantially constant at the beginning and halfway of writing pen input, a method for using the same, and a pen input touch panel provided with the film.
  • Still another object of the present invention is to provide a transparent film for display having high transparency and hardness, and excellent durability against repeated pen input, a method for using the same, and a pen input touch panel including the film. is there.
  • a pen-input touch panel can be obtained by controlling the surface convex shape (uneven shape) of the coat layer included in the transparent film located on the outermost surface of the display. Found that information can be input using a pen with a writing feel like a pencil on paper, and the present invention was completed.
  • the transparent film of the present invention is a transparent film (transparent laminated film) including a transparent substrate film and a coating layer formed on at least one surface of the transparent substrate film, and conforms to JIS K7136.
  • the total light transmittance is 85% or more
  • the coat layer has a surface shape having a rolling circle maximum height waviness (W EM ) of 15 ⁇ m or more in accordance with JIS B0610.
  • the coat layer may contain fine particles and a binder component.
  • the average particle diameter of the fine particles may be about 1 to 5 times the thickness of the coat layer.
  • the CV value of the particle diameter of the fine particles may be 20% or less.
  • the maximum rolling waviness of the rolling circle may be about 15 to 50 ⁇ m.
  • the fine particles may be crosslinked poly (meth) acrylic acid ester particles having an average particle diameter of 10 ⁇ m or more.
  • the number of convex portions having a height of 1.0 ⁇ m or more is about 30 to 200 / mm 2 (particularly 50 to 150 pieces / mm 2 ), and the average height of the convex portions is 3.5 ⁇ m. It may have a surface shape of about (especially 4 to 5 ⁇ m).
  • the binder component may contain a thermoplastic elastomer.
  • the transparent base film may be formed of a polyalkylene arylate resin.
  • the transparent film of the present invention may have a haze of 80% or less.
  • the present invention also includes a method of using the transparent film for a pen input type touch panel display. Further, the present invention includes a pen input type touch panel provided with the transparent film.
  • the writing (working distance) is started in the middle of writing the pen input.
  • the profile of the coefficient of friction with respect to the paper) can be adjusted to be constant, and information can be input using a pen with a writing feel like a pencil on paper. Therefore, delicate pen input is possible, and it is possible to cope with a pen input type touch panel having advanced functions. Furthermore, transparency and hardness are high, and durability against repeated pen input can be improved.
  • FIG. 1 is a graph of the coefficient of friction against the operating distance when a 6B pencil is slid on paper.
  • FIG. 2 is a graph of the friction coefficient with respect to the operating distance when the HB pencil is slid on the paper.
  • FIG. 3 is a graph of the coefficient of friction against the operating distance of the commercially available hard coat film of Comparative Example 1.
  • FIG. 4 is a graph of the coefficient of friction against the operating distance of the transparent film obtained in Comparative Example 2.
  • FIG. 5 is a graph of the coefficient of friction against the operating distance of the transparent film obtained in Comparative Example 3.
  • FIG. 6 is a graph of the friction coefficient with respect to the operating distance of the transparent film obtained in Comparative Example 4.
  • FIG. 1 is a graph of the coefficient of friction against the operating distance when a 6B pencil is slid on paper.
  • FIG. 2 is a graph of the friction coefficient with respect to the operating distance when the HB pencil is slid on the paper.
  • FIG. 3 is a graph of the coefficient of friction
  • FIG. 7 is a graph of the friction coefficient with respect to the operating distance of the transparent film obtained in Comparative Example 5.
  • FIG. 8 is a graph of the coefficient of friction against the operating distance of the transparent film obtained in Comparative Example 6.
  • FIG. 9 is a graph of the coefficient of friction against the operating distance of the transparent film obtained in Comparative Example 7.
  • FIG. 10 is a graph of the coefficient of friction against the operating distance of the transparent film obtained in Comparative Example 8.
  • FIG. 11 is a graph of the coefficient of friction against the operating distance of the transparent film obtained in Example 1.
  • FIG. 12 is a graph of the coefficient of friction against the operating distance of the transparent film obtained in Example 2.
  • FIG. 13 is a graph of the coefficient of friction against the operating distance of the transparent film obtained in Example 3.
  • FIG. 14 is a graph of the coefficient of friction against the operating distance of the transparent film obtained in Example 4.
  • FIG. 15 is a graph of the coefficient of friction against the operating distance of the transparent film obtained in Example 5.
  • FIG. 16 is a graph of the coefficient of friction with respect to the operating distance of the transparent film obtained in Example 6.
  • FIG. 17 is a graph of the coefficient of friction against the operating distance of the transparent film obtained in Example 7.
  • the transparent film of the present invention is a transparent film including a coating layer for disposing on the outermost surface of the display, and is usually a laminated film in which a coating layer is formed on at least one surface of the transparent substrate film.
  • the coat layer is disposed on the outermost surface of the display, and the profile of the coefficient of friction with respect to the operating distance can be adjusted to be substantially constant at the beginning and during the writing of the pen input (during the pen input). If you use it, you can input with a writing feel like a pencil on paper.
  • the transparent substrate film only needs to be formed of a transparent material, and can be selected according to the use, and may be an inorganic material such as glass, but an organic material is widely used from the viewpoint of strength and moldability.
  • the organic material include polymers such as cellulose derivatives, polyester resins, polyamide resins, polycarbonate resins, and (meth) acrylic resins. Of these, cellulose esters, polyester resins and the like are widely used.
  • cellulose ester examples include cellulose acetate such as cellulose triacetate (TAC), cellulose acetate C 3-4 acylate such as cellulose acetate propionate, and cellulose acetate butyrate.
  • polyester examples include polyalkylene arylates such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
  • the base film formed of an organic material may be a biaxially stretched film.
  • the transparent base film contains additives such as stabilizers (antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, etc.), crystal nucleating agents, plasticizers, antistatic agents and the like as necessary. You may go out. These additives can be used alone or in combination of two or more.
  • the thickness of the transparent substrate film can be selected from the range of about 10 ⁇ m to 1 mm depending on the application, and is, for example, about 10 to 500 ⁇ m, preferably about 20 to 300 ⁇ m, and more preferably about 30 to 200 ⁇ m.
  • the coat layer has an appropriate uneven structure, and has a rolling circle maximum height waviness (W EM ) conforming to JIS B0610 of 15 ⁇ m or more (for example, about 15 to 100 ⁇ m) on the surface. It is about 50 ⁇ m, preferably 16 to 45 ⁇ m, more preferably 17 to 40 ⁇ m (particularly 17.5 to 38 ⁇ m).
  • W EM rolling circle maximum height waviness
  • the W EM is adjusted to such a range
  • the pen tip is formed on the convex portion.
  • the writing quality can be adjusted to be substantially constant in the middle of the beginning of writing or during the writing of pen input, for appropriate catching. If the WEM is too small, the pen input type touch panel display will be caught too much without slipping, resulting in resistance.
  • the rolling circle maximum height waviness (W EM ) can be measured according to JIS B0610, and in detail, it can be measured by the method described in Examples described later.
  • the number of convex portions having a height of 1.0 ⁇ m or more is about 30 to 200 / mm 2 , for example, 40 to 180 / mm 2 , preferably Is about 45 to 150 pieces / mm 2 , more preferably about 50 to 130 pieces / mm 2 (particularly 70 to 120 pieces / mm 2 ).
  • the pen tip is It is possible to adjust the writing quality to be substantially constant during the start and halfway of writing pen input, because each convex part is caught at an appropriate interval.
  • the number of convex portions having a height of 1.0 ⁇ m or more is too small, the pen input type touch panel display is caught too much without slipping, and a sense of resistance is generated.
  • the amount is too large, the frictional resistance in the middle of the frictional resistance at the beginning of writing of the pen input becomes small, slipping too much, making subtle input difficult, and the touch panel having advanced functions cannot be supported.
  • the coat layer (particularly a coat layer containing a thermoplastic elastomer) may have an average height of protrusions having a height of 1.0 ⁇ m or more on the surface, for example, 3.5 to 10 ⁇ m, preferably 3.5 to 10 ⁇ m, preferably Is 3.6 to 8 ⁇ m (for example, 3.8 to 6 ⁇ m), more preferably about 3.9 to 5.5 ⁇ m (particularly 4 to 5 ⁇ m).
  • the number of the convex portions is adjusted in such a range, in the pen input type touch panel display, the pen tip of the plastic pen is surely and appropriately caught for each convex portion.
  • the writing quality can be adjusted to be substantially constant at the beginning and during the writing of the input.
  • the pen tip can be reliably and moderately hooked at an appropriate interval for each convex portion, or the writing quality can be adjusted to be substantially constant during the start and halfway of writing the pen input, You can achieve a pencil-like taste on paper.
  • the average height of the protrusions having a height of 1.0 ⁇ m or more is too low, there is a tendency to slip too much, and if it is too high, the catch is too large.
  • the number of convex portions having a height of 2.0 ⁇ m or more is, for example, 10 to 150 pieces / mm 2 , preferably 20 to 120 pieces / mm 2 , It is preferably about 30 to 100 pieces / mm 2 (particularly 50 to 80 pieces / mm 2 ). If the number of protrusions having a height of 2.0 ⁇ m or more is too small, the pen input type touch panel display is too caught. On the other hand, if the amount is too large, the frictional resistance in the middle of the frictional resistance at the beginning of writing of pen input becomes small and slipping is too much.
  • the average height of the protrusions having a height of 2.0 ⁇ m or more is, for example, 4 to 15 ⁇ m, preferably 4.5 to 10 ⁇ m, more preferably 4. It is about 8 to 8 ⁇ m (especially 5 to 6 ⁇ m). If the average height of the protrusions having a height of 2.0 ⁇ m or more is too low, there is a tendency to slip too much, and if it is too high, it will be caught too much.
  • the number of protrusions and the average height can be measured by particle analysis at a threshold value of 1 ⁇ m or 2 ⁇ m using a non-contact surface shape measuring device, and details are described in Examples described later. It can be measured by the method.
  • the thickness (average thickness) of the coating layer is, for example, about 1 to 100 ⁇ m, preferably 1.5 to 50 ⁇ m, more preferably 2 to 20 ⁇ m (particularly 3 to 15 ⁇ m).
  • the thickness of a coating layer can be measured as an average value of arbitrary 10 places, for example using an optical film thickness meter.
  • the method for producing the coat layer having such a surface shape is not particularly limited, and a method using a mold may be used, but a method using fine particles is preferable from the viewpoint of simplicity.
  • the coat layer obtained by the method using fine particles may contain fine particles and a binder component.
  • Fine particles examples include a spherical shape, an ellipsoidal shape, a polygonal shape (polygonal pyramid shape, a rectangular parallelepiped shape, a rectangular parallelepiped shape, etc.), a plate shape, a rod shape, and an indefinite shape.
  • a shape that does not have an acute angle portion for example, a spherical shape or an ellipsoid shape, is preferable because it can be appropriately hooked to the pen tip and input with a writing feeling (tactile feeling) like a pencil.
  • a true spherical shape is particularly preferable.
  • the particle size of the fine particles can be appropriately selected according to the viscosity of the coating layer coating solution in order to form the concavo-convex structure on the surface of the coat layer, and from the point that the concavo-convex structure can be easily formed, A particle size that is substantially the same or larger than the thickness of the coat layer is preferred.
  • the average particle diameter of the fine particles can be selected from a range of about 0.5 to 10 times the thickness of the coat layer, and is preferably 0.8 to 5 times (for example, 1 to 5 times), preferably May be 0.9 to 4 times, more preferably 1 to 3 times (particularly 1.1 to 2.5 times).
  • the average particle size of the fine particles is, for example, an average particle size of 10 ⁇ m or more (for example, 10 to 100 ⁇ m), preferably 11 to 50 ⁇ m, and more preferably 12 to 40 ⁇ m (particularly 13 to 30 ⁇ m). If the average particle size is too large, the surface roughness increases and the frictional force increases, so that the catch becomes large and the mechanical properties such as strength also decrease. On the other hand, if it is too small, it will slip too much.
  • the average particle diameter can be measured by a method using laser diffraction.
  • the particle size distribution of the fine particles is preferably narrow from the viewpoint that the desired uneven shape can be obtained with a small amount and the transparency and mechanical strength can be improved.
  • the particle size distribution of the fine particles is represented by a CV value (correlation coefficient: ratio of standard deviation to average particle size), and the CV value may be 20% or less, for example, 1 to 18%, preferably 2 to It is about 17%, more preferably about 3 to 15% (particularly 4 to 10%).
  • the fine particles need only have the average particle diameter and can form an appropriate uneven shape on the surface of the coat layer, and the material is not particularly limited, and may be inorganic particles or organic particles.
  • the inorganic particles include simple metals, metal oxides, metal sulfates, metal silicates, metal phosphates, metal carbonates, metal hydroxides, silicon compounds, fluorine compounds, and natural minerals.
  • the inorganic particles may be surface-treated with a coupling agent (titanium coupling agent, silane coupling agent).
  • a coupling agent titanium coupling agent, silane coupling agent.
  • metal oxide particles such as titanium oxide
  • silicon compound particles such as silicon oxide
  • fluorine compound particles such as magnesium fluoride are preferable from the viewpoint of transparency and the like, and low reflection and low haze are preferable.
  • Silica particles are particularly preferable in that
  • the organic particles include thermoplastic resins such as acrylic resins, polyamide resins, polyamideimide resins, and polyacetal resins, crosslinked polyolefin resins, crosslinked acrylic resins or crosslinked (meth) acrylic resins, crosslinked polystyrene resins, and crosslinked polyurethane resins. And particles formed of a thermosetting resin such as a crosslinked thermoplastic resin or an epoxy resin. These organic particles can be used alone or in combination of two or more. Among these organic particles, polyamide polymer particles, crosslinked acrylic resins or crosslinked poly (meth) acrylate particles, crosslinked polymer particles such as crosslinked polystyrene particles and crosslinked polyurethane particles are widely used.
  • organic particles are preferable because they are excellent in the balance between catching feeling and slipperiness, haze can be suppressed, and cross-linked poly (meth) acrylic acid ester-based compounds are excellent in the balance between optical properties and mechanical strength. Particles are particularly preferred.
  • Examples of the poly (meth) acrylate ester constituting the crosslinked poly (meth) acrylate particle include poly (meth) acrylates such as poly (meth) methyl acrylate, poly (meth) ethyl acrylate, and poly (meth) butyl acrylate. And poly (meth) acrylic acid alkyl ester resins containing C 1-6 alkyl acrylate (especially C 2-6 alkyl) as the main component (50 to 100% by weight, preferably about 70 to 100% by weight).
  • the crosslinking agent a conventional crosslinking agent can be used.
  • a compound having two or more ethylenically unsaturated bonds (ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate) (Poly) C 2-10 alkylene glycol di (meth) acrylate, bifunctional vinyl compounds such as divinylbenzene, trifunctional or more polyfunctional vinyl compounds such as trimethylolpropane tri (meth) acrylate, etc. can be used.
  • the ratio of the crosslinking agent may be about 0.1 to 10 mol% (particularly 1 to 5 mol%) of all monomers.
  • the cross-linked poly (meth) acrylic acid ester particles may be cross-linked polymethacrylic acid ester particles such as cross-linked polymethyl methacrylate particles in order to improve slidability. Moreover, you may improve a softness
  • the refractive index of the fine particles is, for example, from 1.4 to 1.6, preferably from 1.41 to 1.58, more preferably from 1.42 to 1.55 (particularly from 1.45 to 1.5), from the viewpoint of improving transparency. It may be about 1.53).
  • the fine particles preferably have a predetermined hardness, and have a strength (S10 strength) of about 0.1 to 10 kgf / mm 2 when compressed by 10% using a micro compression tester, preferably 0. It is about 5 to 8 kgf / mm 2 , more preferably about 1 to 5 kgf / mm 2 (especially 1.5 to 3 kgf / mm 2 ).
  • the proportion of the fine particles is, for example, 1 to 50 parts by weight, preferably 1.5 to 30 parts by weight, and more preferably 2 to 2 parts by weight with respect to 100 parts by weight of the binder component (for example, the total amount of vinyl compound and thermoplastic elastomer). About 15 parts by weight (particularly 3 to 10 parts by weight). If the proportion of the fine particles is too small, there is a tendency to slip too much, and if it is too large, the mechanical properties are lowered and the haze is also increased.
  • the binder component may be any inorganic binder component or organic binder component as long as the fine particles can be fixed to the coating layer, but the organic binder component can be used because the fine particles can be firmly fixed. preferable. Further, among the organic binder components, an organic binder component containing at least a vinyl compound is particularly preferable because it is excellent in film formability, can firmly fix fine particles, and is excellent in film strength such as scratch resistance.
  • (B1) Vinyl compounds
  • (meth) acrylates having 2 or more (for example, about 2 to 8) (meth) acryloyl groups in the molecule are widely used.
  • 2 to 8 functional (meth) Acrylate, bifunctional or higher oligomer or resin is included.
  • bifunctional (meth) acrylate examples include alkanediol di (meth) acrylates such as ethylene glycol di (meth) acrylate and 1,4-butanediol di (meth) acrylate; alkane polyols such as glycerin di (meth) acrylate Di (meth) acrylates; polyalkylene glycol di (meth) acrylates such as diethylene glycol di (meth) acrylate; di (meth) acrylates of C 2-4 alkylene oxide adducts of bisphenols; bridges such as adamantane di (meth) acrylate Examples thereof include a cross-linked di (meth) acrylate.
  • alkanediol di (meth) acrylates such as ethylene glycol di (meth) acrylate and 1,4-butanediol di (meth) acrylate
  • alkane polyols such as glycerin di (meth) acryl
  • Examples of trifunctional or higher (about 3 to 8 functional) (meth) acrylates include, for example, esterified products of polyhydric alcohol and (meth) acrylic acid, such as glycerin tri (meth) acrylate, trimethylolpropane tri (meth).
  • Examples include acrylate, pentaerythritol tri (meth) acrylate; ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate; dipentaerythritol penta (meth) acrylate; dipentaerythritol hexa (meth) acrylate, and the like.
  • the polyhydric alcohol may be an adduct of alkylene oxide (for example, C 2-4 alkylene oxide such as ethylene oxide).
  • alkylene oxide for example, C 2-4 alkylene oxide such as ethylene oxide.
  • Examples of the bifunctional or higher oligomer or resin include urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, and silicone (meth) acrylate.
  • urethane (meth) acrylate is widely used because the mechanical properties of the coating layer can be easily controlled.
  • the weight average molecular weight of the vinyl-based compound is not particularly limited, but may be 500 or more in terms of polystyrene in gel permeation chromatography (GPC), for example, 500 to 10,000, preferably from the viewpoint of improving tactile sensation. It may be about 600 to 9000, more preferably about 700 to 8000 (particularly about 1000 to 5000). If the molecular weight is too small, the tactile sensation is lowered, and if the molecular weight is too large, the film formability and handleability are lowered.
  • GPC gel permeation chromatography
  • the binder component may further contain a thermoplastic elastomer in order to improve film flexibility and film formability.
  • the thermoplastic elastomer may be a styrene-based elastomer, an olefin-based elastomer, a polyester-based elastomer, a polyamide-based elastomer, or the like, but a thermoplastic polyurethane elastomer is preferable in terms of adhesiveness and flexibility.
  • a thermoplastic polyurethane elastomer can be obtained by reaction of polyisocyanates, polyols, and, if necessary, a chain extender (or chain extender).
  • polyisocyanates conventional polyisocyanates can be used, for example, aliphatic diisocyanates such as hexamethylene diisocyanate (HDI), alicyclic rings such as isophorone diisocyanate (IPDI), hydrogenated xylylene diisocyanate (hydrogenated XDI), and the like.
  • Non-yellowing diisocyanates such as aliphatic diisocyanates or derivatives thereof, in particular trimers of aliphatic diisocyanates (trimers, trimers having an isocyanurate ring, etc.) can be preferably used.
  • polystyrene resins As the polyols, conventional polymer polyols can be used, and polyether polyols, polyester polyols, and polycarbonate polyols are generally used.
  • polyether polyol examples include a ring-opening polymer or copolymer of an oxirane compound [for example, poly (C 2-4 alkylene glycol) such as polyethylene glycol, polypropylene glycol, polytrimethylene ether glycol, polytetramethylene ether glycol, etc. ], An alkylene oxide adduct of bisphenol A or hydrogenated bisphenol A can be preferably used.
  • poly (C 2-4 alkylene glycol) such as polyethylene glycol, polypropylene glycol, polytrimethylene ether glycol, polytetramethylene ether glycol, etc.
  • An alkylene oxide adduct of bisphenol A or hydrogenated bisphenol A can be preferably used.
  • the polyester polyol may be a reaction product of polycarboxylic acid (or its anhydride) and polyol, or a reaction product obtained by ring-opening addition polymerization of lactones.
  • polycarboxylic acid a conventional polycarboxylic acid or the like can be used.
  • aliphatic dicarboxylic acid or an anhydride thereof C 6-20 alkane dicarboxylic acid such as adipic acid, azelaic acid, sebacic acid, etc.
  • C 6-20 alkane dicarboxylic acid such as adipic acid, azelaic acid, sebacic acid, etc.
  • polyol a conventional polyol or the like can be used.
  • An aliphatic diol alkanediol (ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6 -C2-22 alkanediol such as hexanediol)
  • alicyclic diol cycloalkanediols such as 1,4-cyclohexanediol and 1,4-cyclohexanedimethanol, hydrogenated bisphenol such as hydrogenated bisphenol A
  • a C 2-4 alkylene oxide adduct thereof can be preferably used.
  • lactones conventional lactones can be used, and C 4-8 lactones such as valerolactone and caprolactone can be preferably used.
  • Polycarbonate polyols include, for example, glycols (ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol and other alkane diols; diethylene glycol, dipropylene glycol, etc.
  • chain extender a conventional chain extender can be used.
  • diols such as alkane diols such as ethylene glycol and 1,4-butanediol
  • diamines such as tetramethylene diamine and hexamethylene diamine
  • the polyurethane elastomer is a hard segment (hard block) containing polyurethane of short chain diols and diisocyanates, and a soft segment (soft) containing polyurethane of polymer diols (polyester diol, polyether diol, polycarbonate diol, etc.) and diisocyanates. And an elastomer composed of (block).
  • This polyurethane elastomer is usually classified into a polyester type polyurethane elastomer, a polyether type polyurethane elastomer, a polycarbonate type polyurethane elastomer and the like according to the type of polymer diol constituting the soft segment.
  • thermoplastic polyurethane elastomers in terms of flexibility and stability, polyester type polyurethane elastomers, polyether type polyurethane elastomers, polycarbonate polyols (particularly polyester type polyurethane elastomers using non-yellowing diisocyanates, Polycarbonate polyol) is preferred.
  • the thermoplastic polyurethane elastomer may be modified with a silicone component.
  • the silicone component may be contained in the elastomer or may be incorporated as a copolymer.
  • the silicone component is usually formed of an organosiloxane unit [—Si (—R) 2 —O—] (the group R represents a substituent), and the substituent represented by the group R includes an alkyl group ( Methyl group and the like), aryl group (phenyl group and the like), cycloalkyl group and the like.
  • the ratio of the silicone component is about 60% by weight or less with respect to the entire silicone-modified polyurethane elastomer, for example, 0.1 to 50% by weight, preferably 1 to 40% by weight, more preferably 2 to 30% by weight (particularly 3 to 20% by weight).
  • the number average molecular weight of the thermoplastic elastomer is, for example, 10,000 to 500,000, preferably 20,000 to 300,000, and more preferably 30,000 to 300,000 in terms of polystyrene in GPC. It may be about 100,000.
  • the ratio of the thermoplastic elastomer is too small, the effect of improving the flexibility and film formability of the film is small, and when it is too large, the catching is large and tackiness is exhibited.
  • the binder component may contain a polymerization initiator.
  • the polymerization initiator may be a thermal polymerization initiator (thermal radical generator such as a peroxide such as benzoyl peroxide) or a photopolymerization initiator (photo radical generator).
  • a preferred polymerization initiator is a photopolymerization initiator. Examples of the photopolymerization initiator include acetophenones or propiophenones, benzyls, benzoins, benzophenones, thioxanthones, and acylphosphine oxides.
  • the photopolymerization initiator may contain a conventional photosensitizer and a photopolymerization accelerator (for example, tertiary amines).
  • the ratio of the photopolymerization initiator is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, more preferably 1 to 8 parts by weight (particularly 1 to 5 parts by weight) with respect to 100 parts by weight of the vinyl compound. ) Degree.
  • the binder component may further contain conventional additives such as other particles, other thermoplastic polymers, stabilizers (antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, etc.), Flame retardants, flame retardant aids, fillers, plasticizers, impact resistance improvers, reinforcing agents, dispersants, antistatic agents, antibacterial agents and the like may be included. These additives can be used alone or in combination of two or more.
  • the binder component preferably further contains a solvent from the viewpoint of coating properties.
  • the solvent can be selected according to the type and solubility of the binder component (such as the vinyl compound and thermoplastic elastomer), and may be any solvent that can dissolve at least the solid content uniformly. Examples of such solvents include ketones, ethers, hydrocarbons, esters, water, alcohols, cellosolves, sulfoxides, amides, and the like. These solvents can be used alone or in combination of two or more, and may be a mixed solvent. Of these solvents, alcohols such as isopropanol, esters such as ethyl acetate, aromatic hydrocarbons such as toluene, etc. are widely used.
  • the binder component containing the vinyl compound may be a thermosetting composition, but may be a photocurable compound that can be cured in a short time, for example, an ultraviolet curable compound or an EB curable compound.
  • a practically advantageous composition is an ultraviolet curable resin.
  • the transparent film of the present invention has an appropriate hardness, has a hard coat function, and can be input with a writing feel like a pencil on paper on a pen input type touch panel.
  • the pencil hardness (load 750 gf) of the coat layer in the transparent film is, for example, B or more, preferably HB or more, more preferably about F to 4H (particularly H to 3H). If the hardness of the coat layer is too high, it tends to slip too much, and if it is too low, it will be caught too much.
  • the transparent film of the present invention retains transparency necessary for a display in addition to having such surface hardness. That is, the transparent film of the present invention may have a total light transmittance of 85% or more based on JIS K7136, for example, 85 to 99.9%, preferably 86 to 99.5%, and more preferably 88. It is about 99% (particularly 90-95%). Furthermore, the transparent film of the present invention (particularly, the transparent film having an antiglare layer containing a thermoplastic elastomer) has an appropriate uneven structure on the surface and has a high total light transmittance, and the total light transmittance. May be about 91 to 99% (for example, 91.5 to 98%), preferably about 92 to 97%, more preferably about 92.5 to 96% (especially 93 to 95%).
  • the transparent film of the present invention has an appropriate haze that can impart anti-glare properties and anti-Newton ring properties.
  • the haze according to JIS K7136 can be selected from a range of about 1 to 99%. For example, it may be about 2 to 95%.
  • the haze can be adjusted, and in applications where transparency is important, the ratio may be adjusted to 50% or less, for example, by reducing the proportion of fine particles. , 40% or less (eg 1 to 40%), preferably 5 to 35%, more preferably about 10 to 30%.
  • haze is 80% or less (eg, 20 to 80%), preferably 70% or less (eg, 30 to 70%), more preferably 60% or less (eg, 40 to 60%). ).
  • the transparent film of the present invention may be combined with other functional layers such as a transparent conductive layer, an anti-Newton ring layer, an antiglare layer, a light scattering layer, an antireflection layer, a polarizing layer, and a retardation layer. .
  • the transparent film of the present invention can be used for a display of a touch panel (particularly, a pen input type touch panel), and is disposed so that a coat layer excellent in pen input feel (tactile sensation) is located on the outermost surface of the display. .
  • the coat layer can be adjusted to a substantially constant writing quality at the start and halfway of pen input, and can be input with a writing feeling like a pencil on paper, so that various pen input type touch panels (especially projections employing the ITO grid method).
  • Type capacitive touch panel can be adjusted to a substantially constant writing quality at the start and halfway of pen input, and can be input with a writing feeling like a pencil on paper, so that various pen input type touch panels (especially projections employing the ITO grid method).
  • the pen (contactor) used in the pen input type touch panel may be made of a hard material such as plastic or metal, and is usually made of plastic.
  • the plastic include, for example, a polyacetal resin, an aromatic polyester resin, a polyamide resin, a polycarbonate resin, a polyphenylene ether resin, a polyphenylene sulfide resin, and a polysulfone resin from the viewpoint of strength and durability. These resins can be used alone or in combination of two or more. Of these, polyacetal resins such as polyoxymethylene are preferable because they are lightweight, have high strength, and are excellent in durability such as wear resistance and sliding properties.
  • the shape of the nib is not particularly limited, but is usually a curved surface shape (R shape).
  • the average diameter of the nib is not particularly limited, but can be selected from a range of, for example, about 0.1 to 10 mm, preferably about 0.3 to 8 mm, and more preferably about 0.3 to 5 mm. About 5 to 3 mm (especially 0.6 to 2 mm).
  • the transparent film of the present invention can be obtained by applying a polymerizable composition to at least one surface of a base film and then curing.
  • a coating method of the polymerizable composition conventional methods such as roll coater, air knife coater, blade coater, rod coater, reverse coater, bar coater, comma coater, dip squeeze coater, die coater, gravure coater, microgravure coater Examples include coater, silk screen coater method, dip method, spray method, spinner method and the like. Of these methods, the bar coater method and the gravure coater method are widely used. If necessary, the polymerizable composition may be applied multiple times.
  • the polymerizable composition may be dried as necessary after coating.
  • the drying may be performed at a temperature of, for example, 40 to 150 ° C., preferably 50 to 120 ° C., more preferably 60 to 100 ° C.
  • a method such as a method of adjusting the thickness of the polymerizable composition (coating film) and the particle size of the fine particles, or a method of adjusting the viscosity of the coating solution is used.
  • the method of adjusting the thickness of the coating film and the particle diameter of the fine particles may be a method using fine particles having a particle diameter larger than the thickness of the coating film.
  • a method for adjusting the viscosity of the coating solution for example, by adding a high-viscosity component such as a thermoplastic elastomer, the particles are less likely to settle in the coating solution, thereby forming an appropriate uneven structure on the surface of the coating layer. May be.
  • the polymerizable composition may be cured by heating depending on the type of the polymerization initiator, but it can usually be cured by irradiation with active energy rays.
  • active energy rays for example, radiation (gamma rays, X-rays, etc.), ultraviolet rays, visible rays, electron beams (EB) and the like can be used, and usually ultraviolet rays and electron beams are often used.
  • a Deep UV lamp for example, in the case of ultraviolet rays, a Deep UV lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a halogen lamp, a laser light source (light source such as helium-cadmium laser or excimer laser), etc. may be used. it can.
  • Irradiation light amount varies depending on the thickness of the coating film, for example, 50 ⁇ 10000mJ / cm 2, preferably 70 ⁇ 7000mJ / cm 2, more preferably may be 100 ⁇ 5000mJ / cm 2 approximately.
  • a method of irradiating an electron beam with an exposure source such as an electron beam irradiation apparatus can be used.
  • the irradiation amount (dose) varies depending on the thickness of the coating film, but is, for example, about 1 to 200 kGy (gray), preferably 5 to 150 kGy, more preferably 10 to 100 kGy (particularly 20 to 80 kGy).
  • the acceleration voltage is, for example, about 10 to 1000 kV, preferably about 50 to 500 kV, and more preferably about 100 to 300 kV.
  • inert gas for example, nitrogen gas, argon gas, helium gas etc.
  • the coating layer may be subjected to a surface treatment.
  • the surface treatment include conventional surface treatments such as corona discharge treatment, flame treatment, plasma treatment, ozone and ultraviolet irradiation treatment.
  • the surface of the base film may be subjected to easy adhesion treatment.
  • a scanning electron microscope (SEM) photograph of the fine particles (dry state) was imaged by two-dimensional processing, and the average particle size was calculated. Specifically, using the obtained SEM photograph, draw a rectangle of an arbitrary size so that at least 200 particles are included on the photograph, and the particle diameter at the time of true sphere of all particles present in the rectangle Measured. The average particle size was calculated based on the obtained at least 200 particle sizes.
  • Rolling circle maximum height waviness (W EM ) In accordance with JIS B0610, the rolling circle maximum height waviness (W EM ) was measured under the following conditions using a surface roughness profile measuring machine (“Surfcom 570A” manufactured by Tokyo Seimitsu Co., Ltd.).
  • Measuring element Waviness measuring element (0102505) Probe specifications: 800 ⁇ m R, ruby Drive speed: 3 mm / s ⁇ f reduction cutoff value: 8mm Measurement length: 15 mm.
  • the surface shape of the sample was measured using a non-contact surface shape measuring device [“Vert Scan 2.0” manufactured by Ryoka System Co., Ltd.]. Further, from the observed image, particle analysis of a height of 1.0 m or more (threshold value 1 ⁇ m) and 2.0 ⁇ m or more (threshold value 2 ⁇ m) is performed to obtain the number of convex portions (convex particles) and average area, and the number per 1 mm 2. was calculated, and the average value (average height) of the highest degree of convex portions was obtained.
  • the objective lens was observed with a field of view of 2507 ⁇ m ⁇ 1881 ⁇ m using a 5 ⁇ lens.
  • Multifunctional acrylate Multifunctional acrylic UV curable monomer (dipentaerythritol penta-hexaacrylate), “DPHA” manufactured by Daicel Ornex Co., Ltd.
  • Urethane acrylate Trifunctional urethane acrylate, “KRM8264” manufactured by Daicel Ornex Co., Ltd.
  • Urethane elastomer Polyurethane elastomer (carbonate polyurethane), “Diaroma SP-2165” manufactured by Dainichi Seika Kogyo Co., Ltd.
  • Initiator 1 Photopolymerization initiator, “Irgacure 184” manufactured by Ciba Japan Co., Ltd.
  • Initiator 2 Photopolymerization initiator, “Irgacure 907” manufactured by Ciba Japan Co., Ltd.
  • Table 1 shows the results of measuring the number and average height of convex particles, optical properties, pencil hardness, SW durability, and pen sliding durability of a commercially available hard coat film ("KB film N10" manufactured by Kimoto Co., Ltd.). .
  • the initiator was blended in a proportion of 2.5 parts by weight with respect to 100 parts by weight of the polymerizable monomer (polyfunctional acrylate and / or urethane acrylate), respectively, and the solid content concentration was adjusted to 25% by weight.
  • the film was cast on a polyethylene terephthalate film (“A4300” manufactured by Toyobo Co., Ltd., thickness 125 ⁇ m) using wire bar # 38, and then left in an oven at 60 ° C. for 1 minute, and then coated film Is passed through a UV irradiation device (USHIO INC., High pressure mercury lamp, UV irradiation amount: 800 mJ / cm 2 ), UV curing treatment is performed, the coating film is cured, and the coating layer (dry thickness: 10 ⁇ m or 13 ⁇ m) ) Was formed.
  • a UV irradiation device USHIO INC., High pressure mercury lamp, UV irradiation amount: 800 mJ / cm 2
  • Table 1 shows the results of measuring the W EM , the number and average height of convex particles, optical properties, pencil hardness, SW durability, and pen sliding durability of the obtained transparent film.
  • the transparent films of the examples have an appropriate surface uneven structure and are excellent in the balance of optical characteristics and mechanical characteristics as compared with the transparent films of the comparative examples.
  • FIGS. 1 and 2 show graphs of the friction coefficient with respect to the operating distance when the pencil is slid on the paper, and when the pen is slid on the transparent films of Comparative Examples 1 to 8 and Examples 1 to 7. Graphs of the friction coefficient with respect to the operating distance are shown in FIGS.
  • the transparent film of the example has a constant coefficient of friction coefficient with respect to the operating distance in the middle of writing the pen input, and the profile when the pencil is slid on the paper.
  • the transparent film of the comparative example is greatly different from the profile obtained when the pencil is slid on the paper, for example, the initial frictional resistance is large or the amplitude of the friction coefficient is small.
  • the transparent film of the present invention can be used for displays of various optical display devices, for example, electric / electronic or precision devices such as PCs, televisions, mobile phones (smartphones), electronic paper, gaming machines, mobile devices, watches, and calculators.
  • a display device liquid crystal display device, plasma display device, organic or inorganic EL display device, etc.
  • a projection capacitive touch panel display using an ITO grid method it can.
  • a plastic pen with a writing feel like a pencil on paper
  • it can be displayed on a pen input type touch panel display such as a smartphone, mobile phone, electronic paper, tablet PC, pen tablet, game machine, PC.
  • a pen input type touch panel display such as a smartphone, mobile phone, electronic paper, tablet PC, pen tablet, game machine, PC. Useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Position Input By Displaying (AREA)

Abstract

 ペン入力型タッチパネルにおいて、紙に対する鉛筆のような書き味で入力できるディスプレイ用透明フィルムを提供する。透明基材フィルムと、この透明基材フィルムの少なくとも一方の面に形成されたコート層とを含む透明フィルムにおいて、JIS K7136に準拠した全光線透過率を85%以上に調整し、かつ前記コート層の表面形状を、JIS B0610に準拠した転がり円最大高さうねり(WEM)を15μm以上に調製し、ペン入力型タッチパネルのディスプレイの最表面に配設する。前記コート層は、微粒子及びバインダー成分を含んでいてもよい。前記微粒子の平均粒径はコート層の厚みに対して1~5倍程度であってもよい。前記バインダー成分はさらに熱可塑性エラストマーを含んでいてもよい。

Description

透明フィルム及びその使用方法並びにタッチパネル
 本発明は、タッチパネルなどのディスプレイに利用され、表面のペン入力による書き味(触感)が改善された透明フィルム及びその使用方法並びにペン入力型タッチパネルに関する。
 マンマシンインターフェースとしての電子ディスプレイの進歩に伴い、対話型の入力システムが普及し、なかでもタッチパネル(座標入力装置)をディスプレイと一体化した装置がATM(現金自動受払機)、商品管理、アウトワーク(外交、セールス)、案内表示、娯楽機器などで広く使用されている。液晶ディスプレイなどの軽量・薄型ディスプレイでは、キーボードレスにでき、その特長が生きることから、モバイル機器にもタッチパネルが使用されるケースが増えている。タッチパネルは、指やペンなどの入力手段によって所定位置を押圧することにより、コンピューターなどに所定の情報等を入力する装置であり、位置検出の方法により、光学方式、超音波方式、静電容量方式、抵抗膜方式などに分類できる。これらの方式のうち、静電容量方式は、静電容量の変化を利用し、位置の検出を行う方式であるが、近年、機能性に優れる点から、ITOグリッド方式を採用する投影型静電容量方式タッチパネルが、スマートフォン、携帯電話、電子ペーパー、タブレット型パーソナルコンピュータ(PC)、ペンタブレット、遊戯機器などのモバイル機器で採用されて脚光を浴びている。なかでも、近年、入力手段としてペンを利用したペン入力型タッチパネルも普及しており、スマートフォン、電子ペーパー、タブレット型PC、ペンタブレット、遊戯機器、PCなどにおいて利用が増加している。タッチパネルのディスプレイの表面には、用途に応じて、ハードコートフィルム、アンチニュートンリングフィルム、軟質フィルムなどが利用されている。
 しかし、ペン入力型タッチパネルが様々な用途に普及するにつれて、ペン入力における書き味についても高度な機能が要求されており、例えば、紙に鉛筆で書くような書き味が要求されているが、軟質フィルムでは、抵抗感が大きすぎて、鉛筆のような書き味にはほど遠かった。
 一方、ハードコートフィルムやアンチニュートンリングフィルムなどのフィルムにおいて、表面に凹凸構造を形成する方法で、指でのタッチ感(触感)を向上させるフィルムも提案されている。特開2010-153298号公報(特許文献1)には、ポリエステルフィルムからなる基材の片方の面にハードコート層が積層され、他方の面に金属酸化物からなる透明導電層が積層された積層フィルムであって、ハードコート層の領域表面平均粗さが0.08~0.30μm、KES表面摩擦特性値の平均摩擦係数MIUが0.13~0.17、摩擦係数の変動MMDが0.006~0.015であるタッチパネル用積層フィルムが開示されている。この文献には、アクリル系ハードコート液に、平均粒子径2~7μmの無機又は有機粒子を含有させたハードコート液が開示されている。さらに、前記無機又は有機粒子の割合が硬化樹脂100重量部に対して0.5~20重量部であること、前記無機又は有機粒子としては、透明性の点から、細孔容積1.7ml/g以上の多孔質シリカ系微粒子が好ましいことが記載されている。
 しかし、このフィルムでも、ハードコート層は、微粒子と架橋性ポリマーとで形成されているため、指での触感はある程度改良されるものの、ペン入力に利用した場合、タッチペンが滑りすぎる。特に、ペン入力の書き始めと途中(書いている最中)とで書き味が一定でなく、鉛筆のような書き味にはほど遠かった。
特開2010-153298号公報(請求項1、段落[0004][0013][0017])
 従って、本発明の目的は、ペン入力型タッチパネルにおいて、紙に対する鉛筆のような書き味で入力できるディスプレイ用透明フィルム及びその使用方法並びに前記フィルムを備えたペン入力型タッチパネルを提供することにある。
 本発明の他の目的は、ペン入力の書き始め及び途中で書き味が略一定であるディスプレイ用透明フィルム及びその使用方法並びに前記フィルムを備えたペン入力型タッチパネルを提供することにある。
 本発明のさらに他の目的は、透明性及び硬度が高く、繰り返しのペン入力に対する耐久性にも優れたディスプレイ用透明フィルム及びその使用方法並びに前記フィルムを備えたペン入力型タッチパネルを提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、ディスプレイの最表面に位置する透明フィルムに含まれるコート層の表面凸部形状(凹凸形状)を制御することにより、ペン入力型タッチパネルにおいて、紙に対する鉛筆のような書き味でペンを用いて情報を入力できることを見出し、本発明を完成した。
 すなわち、本発明の透明フィルムは、透明基材フィルムと、この透明基材フィルムの少なくとも一方の面に形成されたコート層とを含む透明フィルム(透明積層フィルム)であって、JIS K7136に準拠した全光線透過率が85%以上であり、かつ前記コート層が、JIS B0610に準拠した転がり円最大高さうねり(WEM)が15μm以上である表面形状を有する。前記コート層は、微粒子及びバインダー成分を含んでいてもよい。前記微粒子の平均粒径はコート層の厚みに対して1~5倍程度であってもよい。前記微粒子の粒径のCV値は20%以下であってもよい。前記転がり円最大高さうねりは15~50μm程度であってもよい。前記微粒子は平均粒径10μm以上の架橋ポリ(メタ)アクリル酸エステル系粒子であってもよい。前記コート層は、高さ1.0μm以上の凸部の個数が30~200個/mm(特に50~150個/mm)程度であり、かつ前記凸部の平均高さが3.5μm以上(特に4~5μm)程度である表面形状を有していてもよい。前記バインダー成分は、熱可塑性エラストマーを含んでいてもよい。前記透明基材フィルムはポリアルキレンアリレート系樹脂で形成されていてもよい。本発明の透明フィルムは、ヘイズが80%以下であってもよい。
 本発明には、前記透明フィルムをペン入力型タッチパネルのディスプレイに使用する方法も含まれる。さらに、本発明には、前記透明フィルムを備えたペン入力型タッチパネルも含まれる。
 本発明では、透明フィルムに含まれるコート層の表面凸部形状が制御されているため、ペン入力型タッチパネルのディスプレイの最表面に配設すると、ペン入力の書き始め及び途中で書き味(動作距離に対する摩擦係数のプロファイル)を一定に調整でき、紙に対する鉛筆のような書き味でペンを用いて情報を入力できる。そのため、微妙なペン入力が可能となり、高度な機能を有するペン入力型タッチパネルにも対応できる。さらに、透明性及び硬度が高く、繰り返しのペン入力に対する耐久性も向上できる。
図1は、紙に6B鉛筆を摺動させたときの動作距離に対する摩擦係数のグラフである。 図2は、紙にHB鉛筆を摺動させたときの動作距離に対する摩擦係数のグラフである。 図3は、比較例1の市販のハードコートフィルムの動作距離に対する摩擦係数のグラフである。 図4は、比較例2で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。 図5は、比較例3で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。 図6は、比較例4で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。 図7は、比較例5で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。 図8は、比較例6で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。 図9は、比較例7で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。 図10は、比較例8で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。 図11は、実施例1で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。 図12は、実施例2で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。 図13は、実施例3で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。 図14は、実施例4で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。 図15は、実施例5で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。 図16は、実施例6で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。 図17は、実施例7で得られた透明フィルムの動作距離に対する摩擦係数のグラフである。
 [透明フィルム]
 本発明の透明フィルムは、ディスプレイの最表面に配設するためのコート層を含む透明フィルムであり、通常、透明基材フィルムの少なくとも一方の面にコート層が形成された積層フィルムである。前記コート層は、ディスプレイの最表面に配設され、ペン入力の書き始め及び途中で(ペン入力の間)、動作距離に対する摩擦係数のプロファイルを略一定に調整できるため、ペン入力型タッチパネルのディスプレイに利用すると、紙に対する鉛筆のような書き味で入力できる。
 (透明基材フィルム)
 透明基材フィルムは、透明材料で形成されていればよく、用途に応じて選択でき、ガラスなどの無機材料であってもよいが、強度や成形性などの点から、有機材料が汎用される。有機材料としては、例えば、セルロース誘導体、ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、(メタ)アクリル系樹脂などの高分子が挙げられる。これらのうち、セルロースエステル、ポリエステル樹脂などが汎用される。
 セルロースエステルとしては、セルローストリアセテート(TAC)などのセルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロースアセテートC3-4アシレートなどが挙げられる。ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリアルキレンアリレートなどが挙げられる。
 これらのうち、PETやPENなどのポリC2-4アルキレンアリレートが好ましく、耐熱性の点から、PENなどのポリC2-4アルキレンナフタレート樹脂が特に好ましい。さらに、有機材料で形成された基材フィルムは、二軸延伸したフィルムであってもよい。
 透明基材フィルムは、必要に応じて、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤など)、結晶核剤、可塑剤、帯電防止剤などの添加剤を含んでいてもよい。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。
 透明基材フィルムの厚みは、用途に応じて、10μm~1mm程度の範囲から選択でき、例えば、10~500μm、好ましくは20~300μm、さらに好ましくは30~200μm程度である。
 (コート層)
 コート層は、適度な凹凸構造が形成されており、表面において、JIS B0610に準拠した転がり円最大高さうねり(WEM)が15μm以上(例えば、15~100μm程度)であり、例えば、15~50μm、好ましくは16~45μm、さらに好ましくは17~40μm(特に17.5~38μm)程度である。本発明では、WEMがこのような範囲に調整されているため、ペン入力型タッチパネルのディスプレイにおいて、プラスチックペン(例えば、ポリオキシメチレンで形成されたペン)で入力すると、ペン先が凸部に適度に引っ掛かるためか、ペン入力の書き始め及び途中で書き味を略一定に調整できる。WEMが小さすぎると、ペン入力型タッチパネルのディスプレイにおいて、滑らずに引っ掛かりすぎて、抵抗感が発生する。
 本明細書では、転がり円最大高さうねり(WEM)は、JIS B0610に準拠して測定でき、詳細には、後述の実施例に記載された方法で測定できる。
 コート層(特に熱可塑性エラストマーを含むコート層)の表面において、高さ1.0μm以上の凸部の個数は30~200個/mm程度であり、例えば、40~180個/mm、好ましくは45~150個/mm、さらに好ましくは50~130個/mm(特に70~120個/mm)程度である。本発明では、前記凸部の個数がこのような範囲に調整されているため、ペン入力型タッチパネルのディスプレイにおいて、プラスチックペン(例えば、ポリオキシメチレンで形成されたペン)で入力すると、ペン先が各凸部毎に適度な間隔で引っ掛かるためか、ペン入力の書き始め及び途中で書き味を略一定に調整できる。一方、高さ1.0μm以上の凸部の個数が少なすぎると、ペン入力型タッチパネルのディスプレイにおいて、滑らずに引っ掛かりすぎて、抵抗感が発生する。一方、多すぎると、ペン入力の書き始めの摩擦抵抗に対して途中の摩擦抵抗が小さくなり、滑りすぎて、微妙な入力が困難となり、高度な機能を有するタッチパネルに対応できない。
 コート層(特に熱可塑性エラストマーを含むコート層)は、表面において、高さ1.0μm以上の凸部の平均高さは3.5μm以上であってもよく、例えば、3.5~10μm、好ましくは3.6~8μm(例えば、3.8~6μm)、さらに好ましくは3.9~5.5μm(特に4~5μm)程度である。本発明では、前記凸部の個数がこのような範囲に調整されているため、ペン入力型タッチパネルのディスプレイにおいて、プラスチックペンのペン先が各凸部毎に確実にかつ適度に引っ掛かるためか、ペン入力の書き始め及び途中で書き味を略一定に調整できる。すなわち、前述の凸部個数との組み合わせにより、ペン先が各凸部毎に適度な間隔で確実にかつ適度に引っ掛かるためか、ペン入力の書き始め及び途中で書き味を略一定に調整でき、紙に対する鉛筆のような書き味を実現できる。一方、高さ1.0μm以上の凸部の平均高さが低すぎると、滑りすぎる傾向があり、高すぎると、引っ掛かりが大きすぎる。
 コート層(特に熱可塑性エラストマーを含むコート層)の表面において、高さ2.0μm以上の凸部の個数は、例えば、10~150個/mm、好ましくは20~120個/mm、さらに好ましくは30~100個/mm(特に50~80個/mm)程度である。高さ2.0μm以上の凸部の個数が少なすぎると、ペン入力型タッチパネルのディスプレイにおいて、引っ掛かりが大きすぎる。一方、多すぎると、ペン入力の書き始めの摩擦抵抗に対して途中の摩擦抵抗が小さくなり、滑りすぎる。
 コート層(特に熱可塑性エラストマーを含むコート層)の表面において、高さ2.0μm以上の凸部の平均高さは、例えば、4~15μm、好ましくは4.5~10μm、さらに好ましくは4.8~8μm(特に5~6μm)程度である。高さ2.0μm以上の凸部の平均高さが低すぎると、滑りすぎる傾向があり、高すぎると、引っ掛かりすぎる。
 本明細書では、前記凸部の個数及び平均高さは、非接触表面形状計測装置を用いて閾値1μm又は2μmで粒子解析することにより測定でき、詳細には、後述の実施例に記載された方法で測定できる。
 コート層の厚み(平均厚み)は、例えば、1~100μm、好ましくは1.5~50μm、さらに好ましくは2~20μm(特に3~15μm)程度である。なお、コート層の厚みは、例えば、光学式膜厚計を用いて、任意の10箇所の平均値として測定できる。
 このような表面形状を有するコート層の製造方法は、特に限定されず、成形型を利用する方法などであってもよいが、簡便性の点から、微粒子を利用する方法が好ましい。微粒子を利用する方法で得られたコート層は、微粒子及びバインダー成分を含んでいてもよい。
 (A)微粒子
 微粒子の形状としては、球状、楕円体状、多角体形(多角錘状、正方体状、直方体状など)、板状、棒状、不定形状などが挙げられる。これらの形状のうち、ペン先に適度に引っ掛かり、鉛筆のような書き味(触感)で入力できる点から、鋭角部を有さない形状、例えば、球状又は楕円体状が好ましく、真球状又は略真球状が特に好ましい。
 微粒子の粒径は、コート層の表面に前記凹凸構造を形成するために、コート層塗布液の粘度などに応じて適宜選択でき、前記凹凸構造を容易に形成できる点から、コート層の厚みと略同一の粒径か、又はコート層の厚みよりも大きい粒径が好ましい。具体的には、微粒子の平均粒径は、コート層の厚みに対して0.5~10倍程度の範囲から選択でき、例えば、0.8~5倍(例えば、1~5倍)、好ましくは0.9~4倍、さらに好ましくは1~3倍(特に1.1~2.5倍)程度であってもよい。
 微粒子の平均粒径は、例えば、平均粒径10μm以上(例えば、10~100μm)、好ましくは11~50μm、さらに好ましくは12~40μm(特に13~30μm)程度である。平均粒径が大きすぎると、表面粗さが大きくなり、摩擦力が増加するためか、引っ掛かりが大きくなるとともに、強度などの機械的特性も低下する。一方、小さすぎると、滑りすぎる。平均粒径は、レーザー回折を用いた方法で測定できる。
 微粒子の粒径分布は、少量で目的の凹凸形状を得ることができ、透明性及び機械的強度を向上できる点から、狭い方が好ましい。微粒子の粒径分布は、CV値(相関係数:平均粒径に対する標準偏差の割合)で表され、CV値が20%以下であってもよく、例えば、1~18%、好ましくは2~17%、さらに好ましくは3~15%(特に4~10%)程度である。
 微粒子は、前記平均粒径を有し、コート層の表面で適度な凹凸形状を形成できればよく、材質は特に限定されず、無機粒子であってもよく、有機粒子であってもよい。
 無機粒子としては、例えば、金属単体、金属酸化物、金属硫酸塩、金属珪酸塩、金属リン酸塩、金属炭酸塩、金属水酸化物、ケイ素化合物、フッ素化合物、天然鉱物などが挙げられる。無機粒子は、カップリング剤(チタンカップリング剤、シランカップリング剤)により表面処理されていてもよい。これらの無機粒子は、単独で又は二種以上組み合わせて使用できる。これらの無機粒子のうち、透明性などの点から、酸化チタンなどの金属酸化物粒子、酸化ケイ素などのケイ素化合物粒子、フッ化マグネシウムなどのフッ素化合物粒子などが好ましく、低反射化や低ヘイズ化を実現できる点から、シリカ粒子が特に好ましい。
 有機粒子としては、例えば、アクリル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリアセタール樹脂などの熱可塑性樹脂、架橋ポリオレフィン樹脂、架橋アクリル樹脂又は架橋(メタ)アクリル系樹脂、架橋ポリスチレン系樹脂、架橋ポリウレタン樹脂などの架橋熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂で形成された粒子が挙げられる。これらの有機粒子は、単独で又は二種以上組み合わせて使用できる。これらの有機粒子のうち、ポリアミド粒子、架橋アクリル樹脂又は架橋ポリ(メタ)アクリル酸エステル粒子、架橋ポリスチレン系粒子、架橋ポリウレタン粒子などの架橋高分子粒子などが汎用される。
 これらのうち、引っ掛かり感と滑り性とのバランスに優れる点から、有機粒子が好ましく、ヘイズを抑制でき、光学特性と機械的強度とのバランスに優れる点から、架橋ポリ(メタ)アクリル酸エステル系粒子が特に好ましい。
 架橋ポリ(メタ)アクリル酸エステル粒子を構成するポリ(メタ)アクリル酸エステルとしては、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸ブチルなどのポリ(メタ)アクリル酸C1-6アルキル(特にC2-6アルキル)を主成分(50~100重量%、好ましくは70~100重量%程度)とするポリ(メタ)アクリル酸アルキルエステル樹脂などが挙げられる。架橋剤としては、慣用の架橋剤を利用でき、例えば、2以上のエチレン性不飽和結合を有する化合物(エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレートなどの(ポリ)C2-10アルキレングリコールジ(メタ)アクリレート、ジビニルベンゼンなどの2官能ビニル化合物、トリメチロールプロパントリ(メタ)アクリレートなどの3官能以上の多官能ビニル化合物など)などが利用できる。架橋剤の割合は、全単量体のうち0.1~10モル%(特に1~5モル%)程度であってもよい。架橋ポリ(メタ)アクリル酸エステル粒子は、摺動性を向上させるために、架橋ポリメタクリル酸メチル粒子などの架橋ポリメタクリル酸エステル粒子であってもよい。また、架橋ポリアクリル酸エステル粒子を用いて、柔軟性を向上してもよい。
 微粒子の屈折率は、透明性を向上できる点から、例えば、1.4~1.6、好ましくは1.41~1.58、さらに好ましくは1.42~1.55(特に1.45~1.53)程度であってもよい。
 微粒子は、所定の硬さを有しているのが好ましく、微小圧縮試験機を用いて10%圧縮したときの強度(S10強度)が0.1~10kgf/mm程度であり、好ましくは0.5~8kgf/mm、さらに好ましくは1~5kgf/mm(特に1.5~3kgf/mm)程度である。
 微粒子の割合は、バインダー成分(例えば、ビニル系化合物及び熱可塑性エラストマーの総量)100重量部に対して、例えば、1~50重量部、好ましくは1.5~30重量部、さらに好ましくは2~15重量部(特に3~10重量部)程度である。微粒子の割合が少なすぎると、滑りすぎる傾向があり、多すぎると、機械的特性が低下し、ヘイズも上昇する。
 (B)バインダー成分
 バインダー成分としては、前記微粒子をコート層に固定できればよく、無機バインダー成分、有機バインダー成分のいずれであってもよいが、微粒子を強固に固定できる点などから、有機バインダー成分が好ましい。さらに、有機バインダー成分の中でも、成膜性に優れ、微粒子を強固に固定でき、耐擦傷性などの膜強度にも優れる点から、ビニル系化合物を少なくとも含む有機バインダー成分が特に好ましい。
 (B1)ビニル系化合物
 ビニル系化合物としては、分子内に2以上(例えば、2~8程度)の(メタ)アクリロイル基を有する(メタ)アクリレートが汎用され、例えば、2~8官能(メタ)アクリレート、2官能以上のオリゴマー又は樹脂などが含まれる。
 2官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレートなどのアルカンジオールジ(メタ)アクリレート;グリセリンジ(メタ)アクリレートなどのアルカンポリオールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレートなどのポリアルキレングリコールジ(メタ)アクリレート;ビスフェノール類のC2-4アルキレンオキサイド付加体のジ(メタ)アクリレート;アダマンタンジ(メタ)アクリレートなどの橋架け環式ジ(メタ)アクリレートなどが例示できる。
 3官能以上(3~8官能程度)の(メタ)アクリレートとしては、例えば、多価アルコールと(メタ)アクリル酸とのエステル化物、例えば、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート;ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート;ジペンタエリスリトールペンタ(メタ)アクリレート;ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。さらに、これらの多官能(メタ)アクリレートにおいて、多価アルコールは、アルキレンオキシド(例えば、エチレンオキシドなどのC2-4アルキレンオキシド)の付加体であってもよい。これらの多官能(メタ)アクリレートは、単独で又は二種以上組み合わせて使用できる。
 2官能以上のオリゴマー又は樹脂としては、例えば、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、シリコーン(メタ)アクリレートなどが挙げられる。これらのうち、コート層の機械的特性を容易に制御できる点から、ウレタン(メタ)アクリレートが汎用される。
 これらのビニル系化合物のうち、微粒子を強固に固定でき、コート層表面における平坦部での滑り性を向上できる点から、ジペンタエリスリトールペンタ(メタ)アクリレートやジペンタエリスリトールヘキサ(メタ)アクリレートなどの3官能以上(特に4~8官能)の(メタ)アクリレートが好ましい。
 ビニル系化合物の重量平均分子量は、特に限定されないが、触感を向上させる点から、ゲルパーミエーションクロマトグラフィ(GPC)において、ポリスチレン換算で、500以上であってもよく、例えば、500~10000、好ましくは600~9000、さらに好ましくは700~8000(特に1000~5000)程度であってもよい。分子量が小さすぎると、触感が低下し、分子量が大きすぎると、成膜性や取り扱い性が低下する。
 (B2)熱可塑性エラストマー
 バインダー成分は、前記ビニル系化合物に加えて、膜の柔軟性や成膜性などを改良するために、さらに熱可塑性エラストマーを含んでいてもよい。
 熱可塑性エラストマーとしては、スチレン系エラストマー、オレフィン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマーなどであってもよいが、接着性や可撓性などの点から、熱可塑性ポリウレタンエラストマーが好ましい。熱可塑性ポリウレタンエラストマーは、ポリイソシアネート類と、ポリオール類と、必要に応じて鎖伸長剤(又は鎖延長剤)との反応により得ることができる。
 ポリイソシアネート類としては、慣用のポリイソシアネート類などを使用でき、例えば、ヘキサメチレンジイソシアネート(HDI)などの脂肪族ジイソシアネート、イソホロンジイソシアネート(IPDI)、水添キシリレンジイソシアネート(水添XDI)などの脂環族ジイソシアネートなどの無黄変性ジイソシアネート又はその誘導体、特に、脂肪族ジイソシアネートのトリマー(三量体、イソシアヌレート環を有するトリマーなど)などを好ましく使用できる。
 ポリオール類としても、慣用のポリマーポリオール類などを使用でき、通常、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオールが汎用される。
 ポリエーテルポリオールとしては、例えば、オキシラン化合物の開環重合体又は共重合体[例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリトリメチレンエーテルグリコール、ポリテトラメチレンエーテルグリコールなどのポリ(C2-4アルキレングリコール)]、ビスフェノールA又は水添ビスフェノールAのアルキレンオキシド付加体などを好ましく利用できる。
 ポリエステルポリオールは、ポリカルボン酸(又はその無水物)とポリオールとの反応生成物、ラクトン類を開環付加重合させた反応生成物であってもよい。
 ポリカルボン酸としては、慣用のポリカルボン酸などを使用でき、例えば、脂肪族ジカルボン酸又はその無水物(アジピン酸、アゼライン酸、セバシン酸などのC6-20アルカンジカルボン酸など)などを好ましく利用できる。
 ポリオールとしても、慣用のポリオールなどを使用でき、脂肪族ジオール[アルカンジオール(エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオールなどのC2-22アルカンジオール)など]、脂環族ジオール(1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールなどのシクロアルカンジオール類、水添ビスフェノールAなどの水添ビスフェノール類、又はこれらのC2-4アルキレンオキサイド付加体など)などを好ましく利用できる。
 ラクトン類としても、慣用のラクトン類などを使用でき、バレロラクトンやカプロラクトンなどのC4-8ラクトンなどを好ましく使用できる。
 ポリカーボネートポリオールとしては、例えば、グリコール(エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールなどのアルカンジオール;ジエチレングリコール、ジプロピレングリコールなどの(ポリ)オキシアルキレングリコール;1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水添ビスフェノールAなどの脂環族ジオール;ビスフェノールAなどのビスフェノール類、ビスフェノール類のアルキレンオキサイド付加体などの芳香族ジオールから選択された一種又は二種以上のグリコール)とカーボネート(ジメチルカーボネート、エチレンカーボネート、ジフェニルカーボネートなど)又はホスゲンなどとの重合体などが挙げられる。
 鎖伸長剤としては、慣用の鎖伸長剤を使用でき、例えば、ジオール類(エチレングリコール、1,4-ブタンジオールなどのアルカンジオールなど)、ジアミン類(テトラメチレンジアミン、ヘキサメチレンジアミンなど)などを好ましく利用できる。
 ポリウレタンエラストマーは、短鎖ジオール類とジイソシアネート類とのポリウレタンを含むハードセグメント(ハードブロック)と、ポリマージオール(ポリエステルジオール、ポリエーテルジオール、ポリカーボネートジオールなど)とジイソシアネート類とのポリウレタンを含むソフトセグメント(ソフトブロック)とで構成されたエラストマーであってもよい。このポリウレタンエラストマーは、通常、ソフトセグメントを構成するポリマージオールの種類に応じて、ポリエステル型ポリウレタンエラストマー、ポリエーテル型ポリウレタンエラストマー、ポリカーボネート型ポリウレタンエラストマーなどに分類される。
 これらの熱可塑性ポリウレタンエラストマーのうち、柔軟性や安定性などの点から、ポリエステル型ポリウレタンエラストマー、ポリエーテル型ポリウレタン系エラストマー、ポリカーボネートポリオール(特に、無黄変性ジイソシアネートを用いたポリエステル型ポリウレタン系エラストマーや、ポリカーボネートポリオール)が好ましい。
 熱可塑性ポリウレタンエラストマーはシリコーン成分で変性されていてもよい。シリコーン成分は、エラストマー中に含有されていてもよく、共重合体として組み込まれていてもよい。シリコーン成分は、通常、オルガノシロキサン単位[-Si(-R)-O-](基Rは置換基を示す)で形成されており、基Rで表される置換基としては、アルキル基(メチル基など)、アリール基(フェニル基など)、シクロアルキル基などが挙げられる。シリコーン成分の割合は、シリコーン変性ポリウレタンエラストマー全体に対して60重量%以下程度であり、例えば、0.1~50重量%、好ましくは1~40重量%、さらに好ましくは2~30重量%(特に3~20重量%)程度である。
 熱可塑性エラストマー(特に熱可塑性ポリウレタンエラストマー)の数平均分子量は、GPCにおいて、ポリスチレン換算で、例えば、10,000~500,000、好ましくは20,000~300,000、さらに好ましくは30,000~100,000程度であってもよい。
 ビニル系化合物と熱可塑性エラストマーとの割合(重量比)は、前者/後者=1/99~70/30程度であり、好ましくは10/90~50/50、さらに好ましくは20/80~45/55(特に30/70~40/60)程度である。熱可塑性エラストマーの割合が少なすぎると、膜の柔軟性や成膜性を向上する効果が小さく、多すぎると、引っ掛かり大きく、タック性が発現する。
 (B3)他の添加剤
 バインダー成分がビニル系化合物を含む場合、バインダー成分は、重合開始剤を含んでいてもよい。重合開始剤は、熱重合開始剤(ベンゾイルパーオキサイドなどの過酸化物などの熱ラジカル発生剤)であってもよく、光重合開始剤(光ラジカル発生剤)であってもよい。好ましい重合開始剤は、光重合開始剤である。光重合開始剤としては、例えば、アセトフェノン類又はプロピオフェノン類、ベンジル類、ベンゾイン類、ベンゾフェノン類、チオキサントン類、アシルホスフィンオキシド類などが例示できる。光重合開始剤には、慣用の光増感剤や光重合促進剤(例えば、第三級アミン類など)が含まれていてもよい。光重合開始剤の割合は、ビニル系化合物100重量部に対して0.1~20重量部、好ましくは0.5~10重量部、さらに好ましくは1~8重量部(特に1~5重量部)程度であってもよい。
 バインダー成分は、必要に応じて、さらに慣用の添加剤、例えば、他の粒子、他の熱可塑性ポリマー、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤など)、難燃剤、難燃助剤、充填剤、可塑剤、耐衝撃改良剤、補強剤、分散剤、帯電防止剤、抗菌剤などを含んでいてもよい。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。
 バインダー成分は、塗工性などの点から、さらに溶媒を含んでいるのが好ましい。溶媒は、バインダー成分(前記ビニル系化合物や熱可塑性エラストマーなど)の種類及び溶解性に応じて選択でき、少なくとも固形分を均一に溶解できる溶媒であればよい。そのような溶媒としては、例えば、ケトン類、エーテル類、炭化水素類、エステル類、水、アルコール類、セロソルブ類、スルホキシド類、アミド類などが例示できる。これらの溶媒は、単独で又は二種以上組み合わせて使用でき、混合溶媒であってもよい。これらの溶媒のうち、イソプロパノールなどのアルコール類、酢酸エチルなどのエステル類、トルエンなどの芳香族炭化水素類などが汎用される。
 ビニル系化合物を含むバインダー成分は、熱硬化性組成物であってもよいが、短時間で硬化できる光硬化性化合物、例えば、紫外線硬化性化合物、EB硬化性化合物であってもよい。特に、実用的に有利な組成物は、紫外線硬化性樹脂である。
 (透明フィルムの特性)
 本発明の透明フィルムは、適度な硬度を有しており、ハードコート機能を有するともに、ペン入力型タッチパネルにおいて、紙に対する鉛筆のような書き味で入力できる。透明フィルムにおけるコート層の鉛筆硬度(荷重750gf)は、例えば、B以上であり、好ましくはHB以上、さらに好ましくはF~4H(特にH~3H)程度である。コート層の硬度が高すぎると、滑りすぎる傾向があり、低すぎると、引っ掛かりすぎる。
 本発明の透明フィルムは、このような表面硬度を備えることに加えて、ディスプレイに必要な透明性も保持している。すなわち、本発明の透明フィルムは、JIS K7136に準拠した全光線透過率が85%以上であってもよく、例えば、85~99.9%、好ましくは86~99.5%、さらに好ましくは88~99%(特に、90~95%)程度である。さらに、本発明の透明フィルム(特に熱可塑性エラストマーを含む防眩層を有する透明フィルム)は、表面に適度な凹凸構造を有し、かつ高い全光線透過率を有しており、全光線透過率が91~99%(例えば、91.5~98%)、好ましくは92~97%、さらに好ましくは92.5~96%(特に93~95%)程度であってもよい。
 さらに、本発明の透明フィルムは、防眩性やアンチニュートンリング性なども付与可能な適度なヘイズを有しており、例えば、JIS K7136に準拠したヘイズが1~99%程度の範囲から選択でき、例えば、2~95%程度であってもよい。さらに、コート層の成分比を調整することにより、ヘイズを調整でき、透明性が重視される用途では、例えば、微粒子の割合を低下させることなどにより、50%以下に調整してもよく、例えば、40%以下(例えば、1~40%)、好ましくは5~35%、さらに好ましくは10~30%程度である。透明性が重視されない用途では、ヘイズは、80%以下(例えば、20~80%)、好ましくは70%以下(例えば、30~70%)、さらに好ましくは60%以下(例えば、40~60%)であってもよい。
 本発明の透明フィルムは、さらに他の機能層、例えば、透明導電層、アンチニュートンリング層、防眩層、光散乱層、反射防止層、偏光層、位相差層などの層と組み合わせてもよい。
 本発明の透明フィルムは、タッチパネル(特に、ペン入力型タッチパネル)のディスプレイに利用でき、ペン入力の書き味(触感)に優れたコート層が、ディスプレイの最表面に位置するように配設される。前記コート層は、ペン入力の書き始め及び途中で書き味を略一定に調整でき、紙に対する鉛筆のような書き味で入力できるため、各種のペン入力型タッチパネル(特にITOグリッド方式を採用する投影型静電容量方式タッチパネル)のディスプレイの操作に適している。
 ペン入力型タッチパネルで用いられるペン(接触子)は、プラスチックや金属などの硬質材料で形成されていればよく、通常、プラスチックで形成されている。プラスチックとしては、例えば、強度や耐久性などの点から、例えば、ポリアセタール樹脂、芳香族ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン系樹脂などが挙げられる。これらの樹脂は、単独で又は二種以上組み合わせて使用できる。これらのうち、軽量で強度が高く、耐摩耗性などの耐久性や摺動性にも優れる点から、ポリオキシメチレンなどのポリアセタール樹脂が好ましい。ペン先の形状は、特に限定されないが、通常、曲面形状(R状)である。ペン先の平均径は、特に限定されないが、例えば、0.1~10mm程度の範囲から選択でき、好ましくは0.3~8mm、更に好ましくは0.3~5mm程度であるが、通常、0.5~3mm(特に0.6~2mm)程度である。
 [透明フィルムの製造方法]
 本発明の透明フィルムは、基材フィルムの少なくとも一方の面に重合性組成物を塗布した後、硬化することにより得ることができる。
 重合性組成物の塗布方法としては、慣用の方法、例えば、ロールコーター、エアナイフコーター、ブレードコーター、ロッドコーター、リバースコーター、バーコーター、コンマコーター、ディップ・スクイズコーター、ダイコーター、グラビアコーター、マイクログラビアコーター、シルクスクリーンコーター法、ディップ法、スプレー法、スピナー法などが挙げられる。これらの方法のうち、バーコーター法やグラビアコーター法などが汎用される。なお、必要であれば、重合性組成物は複数回に亘り塗布してもよい。
 重合性組成物が有機溶媒を含有する場合など、塗布後は、必要に応じて乾燥を行ってもよい。乾燥は、例えば、40~150℃、好ましくは50~120℃、さらに好ましくは60~100℃程度の温度で行ってもよい。
 コート層に適度な凹凸構造を形成するためには、前記重合性組成物(塗布膜)の厚みと微粒子の粒子径とを調整する方法や、塗布液の粘度を調整する方法などの方法を利用できる。塗布膜の厚みと微粒子の粒子径とを調整する方法としては、塗布膜の厚みよりも大きい粒子径を有する微粒子を用いる方法であってもよい。塗布液の粘度を調整する方法としては、例えば、熱可塑性エラストマーなどの高粘性成分を添加して、粒子が塗布液の中で沈降し難くすることにより、コート層表面に適度な凹凸構造を形成してもよい。すなわち、粘度を調整することにより、例えば、塗布膜の厚みが微粒子の粒径と略同程度の厚みであっても、適度な凹凸構造を形成でき、特に、粘度を高めに設定することにより、比較的高い凸部を有する凹凸構造も形成できる。また、前記方法を組み合わせて、微粒子の粒径と塗布液の粘度とを調整することにより、うねりの大きさや凸部の高さを調整してもよい。
 硬化工程において、重合性組成物は、重合開始剤の種類に応じて加熱して硬化させてもよいが、通常、活性エネルギー線を照射することにより硬化できる。活性エネルギー線としては、例えば、放射線(ガンマー線、X線など)、紫外線、可視光線、電子線(EB)などが利用でき、通常、紫外線、電子線である場合が多い。
 光源としては、例えば、紫外線の場合は、Deep UV ランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、ハロゲンランプ、レーザー光源(ヘリウム-カドミウムレーザー、エキシマレーザーなどの光源)などを用いることができる。照射光量(照射エネルギー)は、塗膜の厚みにより異なるが、例えば、50~10000mJ/cm、好ましくは70~7000mJ/cm、さらに好ましくは100~5000mJ/cm程度であってもよい。
 電子線の場合は、電子線照射装置などの露光源によって、電子線を照射する方法が利用できる。照射量(線量)は、塗膜の厚みにより異なるが、例えば、1~200kGy(グレイ)、好ましくは5~150kGy、さらに好ましくは10~100kGy(特に20~80kGy)程度である。加速電圧は、例えば、10~1000kV、好ましくは50~500kV、さらに好ましくは100~300kV程度である。
 なお、活性エネルギー線の照射は、必要であれば、不活性ガス(例えば、窒素ガス、アルゴンガス、ヘリウムガスなど)雰囲気中で行ってもよい。
 基材フィルムに対するコート層の密着性を向上させるために、コート層を表面処理に供してもよい。表面処理としては、慣用の表面処理、例えば、コロナ放電処理、火炎処理、プラズマ処理、オゾンや紫外線照射処理などが挙げられる。基材フィルムは、表面が易接着処理されていてもよい。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例及び比較例で得られた透明フィルムを以下の項目で評価した。
 [微粒子の平均粒径]
 微粒子(乾燥状態)の走査型電子顕微鏡(SEM)写真を2次元処理してイメージ化し、平均粒径を算出した。詳しくは、得られたSEM写真を用いて、写真上に少なくとも200個の粒子が含まれるように、任意のサイズの長方形を描き、その長方形内に存在する全粒子の真球換算時の粒子径を採寸した。得られた少なくとも200個の粒子径に基づいて平均粒子径を算出した。
 [転がり円最大高さうねり(WEM)]
 JIS B0610に準拠し、表面粗さ形状測定機((株)東京精密製「サーフコム570A」)を用いて、以下の条件で転がり円最大高さうねり(WEM)を測定した。
  測定子:うねり測定子(0102505)
  測定子の仕様:800μmR、ルビー
  駆動速度:3mm/s
  λf低減カットオフ値:8mm
  測定長さ:15mm。
 [凸部の個数及び平均高さ]
 非接触表面形状計測装置[(株)菱化システム製「VertScan2.0」]を用いて、サンプルの表面形状を測定した。さらに、観察画像より、高さ1.0m以上(閾値1μm)及び2.0μm以上(閾値2μm)の粒子解析を行い、凸部(凸粒子)の個数、平均面積を求め、1mm当たりの個数を算出し、凸部の最高度の平均値(平均高さ)を求めた。なお、対物レンズは、5倍のレンズを用いて、視野2507μm×1881μmの観察を行った。
 [光学特性]
 ヘイズメーター(日本電色(株)製、商品名「NDH-5000W」)を用いて、JIS K7136に準拠して、ヘイズ、全光線透過率(TPP)を測定した。
 [鉛筆硬度]
 JIS K5400に準拠し、荷重750gfで鉛筆硬度を測定した。
 [SW耐久性]
 スチールウール耐久性試験機を用いて、400g荷重、直径φ2.5cmのスチールウール♯0000で10往復し、サンプルの傷の度合いを以下の基準で評価した。
  ○:傷が見えない
  △:1~2本傷が見える
  ×:3本以上傷が見える。
 [ペン摺動耐久性]
 タッチパネル摺動試験機を用いて、500g荷重、NintendoDS(登録商標)用タッチペンで10000往復し、サンプルの傷の度合いを以下の基準で評価した。
  ○:傷が見えない
  △:1~2本傷が見える
  ×:3本以上傷が見える。
 [摩擦係数]
 静動摩擦測定機((株)トリニティーラボ製「ハンディートライボマスターTL201Ts」)を用いて、測定条件(荷重50g重、速度50mm/秒)で摩擦力を測定した。接触子としては、ポリオキシメチレン製ペン(ペン先径0.8mmφ)を使用し、フィルムに対して45°の角度で摺動させた。なお、参考例として、紙((株)カウネット製「コピーペーパー スタンダードタイプ」)に対して鉛筆(三菱鉛筆(株)製「ユニ6B」及び「ユニHB」)を摺動させた。
 [コート層の厚み]
 光学式膜厚計を用いて、任意の10箇所を測定し、平均値を算出した。
 [コート層の配合成分]
 多官能アクリレート:多官能アクリル系UV硬化モノマー(ジペンタエリスリトールペンタ乃至ヘキサアクリレート)、ダイセル・オルネクス(株)製「DPHA」
 ウレタンアクリレート:3官能ウレタンアクリレート、ダイセル・オルネクス(株)製「KRM8264」
 ウレタンエラストマー:ポリウレタンエラストマー(カーボネート系ポリウレタン)、大日精化工業(株)製「ダイアロマーSP-2165」
 アクリル粒子(5μm):東洋紡績(株)製「FH-S005」、平均粒径5μm、架橋ポリメタクリル酸エステル粒子
 アクリル粒子(10μm):東洋紡績(株)製「FH-S010」、平均粒径10μm、架橋ポリメタクリル酸エステル粒子
 アクリル粒子(15μm):東洋紡績(株)製「FH-S015」、平均粒径15μm、架橋ポリメタクリル酸エステル粒子
 アクリル粒子(27μm):積水化成品工業(株)製「テクポリマーSSX-127」、平均粒径27μm、架橋ポリメタクリル酸エステル粒子
 単分散アクリル粒子(15μm):綜研化学(株)製「ケミスノーMX-1500H」、平均粒径13.5~16.5μm、CV値5.0%、架橋ポリメタクリル酸エステル粒子
 単分散アクリル粒子A(20μm):積水化成品工業(株)製「テクポリマーSSX120」、平均粒径20μm、S10強度2.56kgf/mm、架橋ポリメタクリル酸メチル粒子
 単分散アクリル粒子B(20μm):綜研化学(株)製(株)製「ケミスノーMX-2000」、平均粒径18~22μm、CV値17.1%、架橋ポリメタクリル酸エステル粒子
 ポリウレタン粒子:大日精化工業(株)製「ダイミックビーズ5070D」、平均粒径7μm
 開始剤1:光重合開始剤、チバ・ジャパン(株)製「イルガキュア(Irgacure)184」
 開始剤2:光重合開始剤、チバ・ジャパン(株)製「イルガキュア(Irgacure)907」。
 比較例1
 市販のハードコートフィルム((株)きもと製「KBフィルムN10」)の凸粒子個数及び平均高さ、光学特性、鉛筆硬度、SW耐久性、ペン摺動耐久性を測定した結果を表1に示す。
 比較例2~8及び実施例1~7
 表1に示す樹脂成分、樹脂粒子及び開始剤を、酢酸エチル及びイソプロパノールの混合溶媒(酢酸エチル/イソプロパノール=6/4(容積比))に、表1に示す割合で溶解した。なお、開始剤は、それぞれ重合性モノマー(多官能アクリレート及び/又はウレタンアクリレート)100重量部に対して2.5重量部の割合で配合し、固形分濃度は25重量%に調製した。
 この溶液を用いて、ポリエチレンテレフタレートフィルム(東洋紡績(株)製「A4300」、厚み125μm)上にワイヤーバー#38を用いて流延したのち、60℃のオーブン内で1分間放置後、コートフィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:800mJ/cm)に通して、紫外線硬化処理を行い、塗工膜を硬化させてコート層(乾燥厚み10μm又は13μm)を形成した。
 得られた透明フィルムのWEM、凸粒子個数及び平均高さ、光学特性、鉛筆硬度、SW耐久性、ペン摺動耐久性を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例の透明フィルムは、比較例の透明フィルムに比べて、適度な表面凹凸構造を有し、光学特性及び機械的特性のバランスに優れている。
 さらに、紙に鉛筆を摺動させたときの動作距離に対する摩擦係数のグラフを図1及び2に示し、比較例1~8及び実施例1~7の透明フィルムにペンを摺動させたときの動作距離に対する摩擦係数のグラフを図3~17に示す。図1~17の結果から明らかなように、実施例の透明フィルムは、ペン入力の書き始め及び途中で動作距離に対する摩擦係数のプロファイルが一定であり、紙に鉛筆を摺動させたときのプロファイルに類似するのに対して、比較例の透明フィルムは、初期の摩擦抵抗が大きかったり、摩擦係数の振幅が小さいなど、紙に鉛筆を摺動させたときのプロファイルとは大きく異なる。
 本発明の透明フィルムは、各種の光学表示装置のディスプレイに利用でき、例えば、PC、テレビ、携帯電話(スマートフォン)、電子ペーパー、遊技機器、モバイル機器、時計、電卓などの電気・電子又は精密機器の表示部において、表示装置(液晶表示装置、プラズマディスプレイ装置、有機又は無機EL表示装置など)と組み合わせて用いられるタッチパネル、特に、ITOグリッド方式を採用する投影型静電容量方式タッチパネルのディスプレイに利用できる。なかでも、プラスチックペンでの入力を紙に対する鉛筆のような書き味で入力できるため、スマートフォン、携帯電話、電子ペーパー、タブレット型PC、ペンタブレット、遊戯機器、PCなどのペン入力型タッチパネルのディスプレイに有用である。

Claims (6)

  1.  透明基材フィルムと、この透明基材フィルムの少なくとも一方の面に形成されたコート層とを含む透明フィルムであって、JIS K7136に準拠した全光線透過率が85%以上であり、かつ前記コート層が、JIS B0610に準拠した転がり円最大高さうねり(WEM)が15μm以上である表面形状を有する透明フィルム。
  2.  コート層が、微粒子及びバインダー成分を含み、微粒子の平均粒径がコート層の厚みに対して1~5倍である請求項1記載の透明フィルム。
  3.  微粒子の粒径のCV値が20%以下である請求項2記載の透明フィルム。
  4.  コート層が、JIS B0610に準拠した転がり円最大高さうねり(WEM)が15~50μmである表面形状を有する請求項1~3のいずれかに記載の透明フィルム。
  5.  バインダー成分が熱可塑性エラストマーを含む請求項2~4のいずれかに記載の透明フィルム。
  6.  コート層が、高さ1.0μm以上の凸部の個数が30~200個/mmであり、かつ前記凸部の平均高さが3.5μm以上である表面形状を有する請求項5記載の透明フィルム。
PCT/JP2013/078135 2012-10-17 2013-10-17 透明フィルム及びその使用方法並びにタッチパネル WO2014061718A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157012818A KR102064144B1 (ko) 2012-10-17 2013-10-17 투명 필름 및 그 사용 방법 그리고 터치 패널
CN201380054315.8A CN104736333B (zh) 2012-10-17 2013-10-17 透明膜及其使用方法以及触摸面板
US14/436,302 US9862855B2 (en) 2012-10-17 2013-10-17 Transparent film, method for using the same, and touch panel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012229501 2012-10-17
JP2012-229501 2012-10-17
JP2013-002034 2013-01-09
JP2013002034A JP5918701B2 (ja) 2012-10-17 2013-01-09 透明フィルム及びその使用方法並びにタッチパネル

Publications (1)

Publication Number Publication Date
WO2014061718A1 true WO2014061718A1 (ja) 2014-04-24

Family

ID=50488278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078135 WO2014061718A1 (ja) 2012-10-17 2013-10-17 透明フィルム及びその使用方法並びにタッチパネル

Country Status (5)

Country Link
US (1) US9862855B2 (ja)
JP (1) JP5918701B2 (ja)
KR (1) KR102064144B1 (ja)
CN (1) CN104736333B (ja)
WO (1) WO2014061718A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018097670A (ja) * 2016-12-14 2018-06-21 リンテック株式会社 書き味向上フィルム
JP2018173906A (ja) * 2017-03-31 2018-11-08 リンテック株式会社 書き味向上シート

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6258249B2 (ja) * 2015-04-02 2018-01-10 株式会社ダイセル 透明積層フィルム
JP6258248B2 (ja) * 2015-04-02 2018-01-10 株式会社ダイセル 透明積層フィルム
CN112860086B (zh) * 2015-12-07 2024-08-20 大日本印刷株式会社 触控面板笔用书写片、触控面板、显示装置和触控面板笔用书写片的筛选方法
KR102231025B1 (ko) 2016-06-06 2021-03-23 다이니폰 인사츠 가부시키가이샤 터치 패널 펜용 필기 시트의 선별 방법, 터치 패널 시스템, 터치 패널 펜용 필기 시트, 터치 패널 및 표시 장치
JP6790524B2 (ja) * 2016-07-08 2020-11-25 大日本印刷株式会社 タッチパネルペン用筆記シート、タッチパネル、表示装置、及びタッチパネルペン用筆記シートの選別方法
CN108070326B (zh) * 2016-11-16 2021-09-17 琳得科株式会社 书写感改善膜
JP6325637B1 (ja) * 2016-11-16 2018-05-16 リンテック株式会社 書き味向上フィルム
JP6345220B2 (ja) * 2016-11-16 2018-06-20 リンテック株式会社 書き味向上フィルム
JP6783680B2 (ja) * 2017-02-08 2020-11-11 株式会社ダイセル ペン入力デバイス用フィルム及びペン入力デバイス
JP6871756B2 (ja) * 2017-02-20 2021-05-12 リンテック株式会社 位置検出機能付き画像表示装置
JP6805053B2 (ja) * 2017-03-31 2020-12-23 リンテック株式会社 書き味向上シート
CN107083170B (zh) * 2017-06-02 2019-03-12 青岛光辉彩饰有限公司 一种水性漆及其制备与使用方法
CN107383325B (zh) * 2017-06-28 2020-02-07 苏州奥斯汀新材料科技有限公司 一种高透明热塑性聚氨酯弹性体的制备方法
WO2019124202A1 (ja) * 2017-12-18 2019-06-27 キヤノン化成株式会社 表面反射防止塗料および表面反射防止塗膜
US11891491B2 (en) 2018-12-14 2024-02-06 Lintec Corporation Writing feel improving sheet with which a writing feel of writing on paper with a ballpoint pen is obtained
WO2020128707A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Polymeric film having structured surface
US11313998B2 (en) * 2019-12-27 2022-04-26 Intel Corporation Display cover for digital writing and optical performance
CN114012953B (zh) * 2021-11-02 2024-01-09 东莞正广精密科技有限公司 用液晶制作手机后壳的加工工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06309090A (ja) * 1992-03-31 1994-11-04 Pentel Kk 情報入力装置
JPH07253504A (ja) * 1993-12-22 1995-10-03 Sekisui Chem Co Ltd 無機質組成物の製造方法、積層体の製造方法及びペン入力パネル用保護材料の製造方法
WO2003067416A1 (en) * 2002-02-04 2003-08-14 Nof Corporation Pen-input device surface member, and pen-input device
JP2004240548A (ja) * 2003-02-04 2004-08-26 Asahi Glass Co Ltd ペン入力装置用カバーガラス

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020500A1 (en) 1992-03-31 1993-10-14 Pentel Kabushiki Kaisha Information input device
JPH09230985A (ja) * 1996-02-23 1997-09-05 Kimoto & Co Ltd タブレット用オーバーレイシート
JPH10172377A (ja) * 1996-12-04 1998-06-26 Gunze Ltd タッチパネルのタッチ側用透明フィルム基板の製造方法
JP2001009983A (ja) * 1999-06-30 2001-01-16 Toray Ind Inc ガスバリアフィルム
CN1188869C (zh) * 1999-08-31 2005-02-09 帝人株式会社 透明导电叠层板和使用这种板的触摸屏
JP4178975B2 (ja) * 2002-02-04 2008-11-12 日油株式会社 ペン入力装置用表面材およびペン入力装置
CN1717646B (zh) * 2003-10-22 2011-02-02 日油株式会社 笔输入装置用表面材料
CN101263564B (zh) * 2005-09-12 2011-12-14 日东电工株式会社 透明导电性膜、触摸面板用电极板及触摸面板
EP2328695A1 (en) * 2008-08-07 2011-06-08 Uni-Pixel Displays, Inc. Microstructures to reduce the apperance of fingerprints on surfaces
JP5526542B2 (ja) 2008-12-26 2014-06-18 東洋紡株式会社 タッチパネル用積層フィルム
JP5703187B2 (ja) * 2010-10-14 2015-04-15 富士フイルム株式会社 光学フィルム、偏光板、及び画像表示装置
WO2012160894A1 (ja) * 2011-05-26 2012-11-29 株式会社ダイセル ディスプレイ用透明積層フィルム及びその使用方法並びにタッチパネル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06309090A (ja) * 1992-03-31 1994-11-04 Pentel Kk 情報入力装置
JPH07253504A (ja) * 1993-12-22 1995-10-03 Sekisui Chem Co Ltd 無機質組成物の製造方法、積層体の製造方法及びペン入力パネル用保護材料の製造方法
WO2003067416A1 (en) * 2002-02-04 2003-08-14 Nof Corporation Pen-input device surface member, and pen-input device
JP2004240548A (ja) * 2003-02-04 2004-08-26 Asahi Glass Co Ltd ペン入力装置用カバーガラス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018097670A (ja) * 2016-12-14 2018-06-21 リンテック株式会社 書き味向上フィルム
JP2018173906A (ja) * 2017-03-31 2018-11-08 リンテック株式会社 書き味向上シート

Also Published As

Publication number Publication date
JP5918701B2 (ja) 2016-05-18
KR102064144B1 (ko) 2020-01-08
CN104736333A (zh) 2015-06-24
US20150291828A1 (en) 2015-10-15
CN104736333B (zh) 2017-05-31
US9862855B2 (en) 2018-01-09
KR20150074064A (ko) 2015-07-01
JP2014097649A (ja) 2014-05-29

Similar Documents

Publication Publication Date Title
JP5918701B2 (ja) 透明フィルム及びその使用方法並びにタッチパネル
JP5819952B2 (ja) ディスプレイ用透明積層フィルム及びその使用方法並びにタッチパネル
JP6196164B2 (ja) ペン入力デバイス
JP6258248B2 (ja) 透明積層フィルム
TWI725085B (zh) 觸控面板筆用書寫片、觸控面板、觸控面板系統、顯示裝置及觸控面板筆用書寫片之揀選方法
JP6349126B2 (ja) ペン入力デバイス用透明積層フィルム及びその製造方法
JP6258249B2 (ja) 透明積層フィルム
JP6151611B2 (ja) 透明触感フィルム及びその製造方法
JP2014092657A (ja) マルチタッチディスプレイ用表面フィルム
JP6013202B2 (ja) 触感改良フィルム及びその製造方法
JP6147620B2 (ja) 透明触感フィルム及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14436302

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157012818

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13847483

Country of ref document: EP

Kind code of ref document: A1