WO2014061601A1 - 無段変速機及びその制御方法 - Google Patents

無段変速機及びその制御方法 Download PDF

Info

Publication number
WO2014061601A1
WO2014061601A1 PCT/JP2013/077808 JP2013077808W WO2014061601A1 WO 2014061601 A1 WO2014061601 A1 WO 2014061601A1 JP 2013077808 W JP2013077808 W JP 2013077808W WO 2014061601 A1 WO2014061601 A1 WO 2014061601A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
variator
speed
continuously variable
torque
Prior art date
Application number
PCT/JP2013/077808
Other languages
English (en)
French (fr)
Inventor
真美子 井上
田中 寛康
森 真人
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to EP13846525.7A priority Critical patent/EP2907714B1/en
Priority to CN201380050287.2A priority patent/CN104684777B/zh
Priority to US14/430,367 priority patent/US9421978B2/en
Priority to KR1020157006596A priority patent/KR101633592B1/ko
Priority to JP2014514662A priority patent/JP5736508B2/ja
Publication of WO2014061601A1 publication Critical patent/WO2014061601A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66227Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling shifting exclusively as a function of speed and torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/70Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements
    • F16H61/702Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements using electric or electrohydraulic control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H2061/6604Special control features generally applicable to continuously variable gearings
    • F16H2061/6605Control for completing downshift at hard braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H2061/6604Special control features generally applicable to continuously variable gearings
    • F16H2061/6614Control of ratio during dual or multiple pass shifting for enlarged ration coverage

Definitions

  • the present invention relates to a continuously variable transmission and a control method thereof, and more particularly to a continuously variable transmission including a continuously variable transmission mechanism and an auxiliary transmission mechanism.
  • a continuously variable transmission (hereinafter referred to as “CVT with an auxiliary transmission mechanism”) in which a continuously variable transmission mechanism (variator) and an auxiliary transmission mechanism are combined, the speed change region can be expanded as compared with a normal continuously variable transmission. This can improve fuel efficiency.
  • the gear ratio of the entire transmission is obtained by performing a coordinated shift in which the transmission ratio of the variator is shifted in the direction opposite to the transmission direction of the sub-transmission mechanism. It is possible to suppress the change in the through speed ratio before and after the shift, and to suppress the shift shock.
  • JP2012-57710A discloses a CVT with a sub-transmission mechanism having a manual mode for controlling a through speed ratio to a speed ratio corresponding to a speed selected by a driver.
  • the shift responsiveness is improved by a variator shift that changes only the speed ratio of the variator according to the shift operation of the driver and changes the through speed ratio.
  • the shift stage of the sub-transmission mechanism is switched by cooperative shift immediately after the variator shift. This is due to the following reason.
  • the gear position of the sub-transmission mechanism is a high gear position and the driver instructs a downshift from the M3 speed to the M2 speed in the manual mode, even if the variator is shifted to the lowest side, the speed changes to the M2 speed.
  • the corresponding through gear ratio cannot be realized.
  • the through speed ratio corresponding to the M3 speed is realized by the variator shift, and then the cooperative shift is performed to perform the shift stage of the auxiliary transmission mechanism.
  • the gear ratio of the variator is changed to the high side while switching to the low gear.
  • This through shift does not change the through speed ratio, but increases the secondary rotational speed of the variator, that is, the input rotational speed of the subtransmission mechanism. Therefore, the engagement-side friction element of the sub-transmission mechanism is gradually engaged while absorbing the difference in rotational speed before and after the cooperative shift, whereby torque is transferred before and after the shift, and the deceleration G is generated.
  • the sub-transmission mechanism shifts in the order of torque phase and inertia phase, so that the generation of the deceleration G is delayed from the deceleration G generated by the variator shift. Due to the drag feeling caused by the prolonged G, the G fluctuation may occur even though the driver is not operating the manual mode, and the driver may feel uncomfortable.
  • An object of the present invention is to suppress the occurrence of drag feeling when a downshift is performed during coasting in manual mode.
  • a continuously variable transmission that is mounted on a vehicle and that shifts and transmits an output rotation of a power source, the speed ratio being continuously variable, and a variator
  • the stepped sub-transmission mechanism provided in series and the shift instruction from the driver are determined, one corresponding to the shift instruction is selected from a plurality of preset shift stages and selected.
  • Target value setting means for setting the gear ratio corresponding to the selected gear position as a target value of the through gear ratio that is the overall gear ratio of the variator and the sub-transmission mechanism; Is established, the variator shift for downshifting the variator so that the through gear ratio becomes the target value and the subshift mechanism while downshifting immediately after the variator downshift -Shift control means for upshifting the variator to maintain the gear ratio, and torque input from the power source to the continuously variable transmission during the cooperative shift when the vehicle is on coast
  • a continuously variable transmission is provided that includes torque increasing means for increasing the torque before the downshift instruction is determined.
  • a variator capable of continuously changing a gear ratio and a stepped sub-transmission mechanism provided in series with the variator are provided and mounted on a vehicle.
  • a control method for a continuously variable transmission that shifts and transmits the output rotation of a power source.
  • the shift instruction corresponds to the shift instruction from a plurality of preset shift speeds.
  • the torque input from the power source to the continuously variable transmission is increased during the coordinated shift when the downshift is performed based on the instruction from the driver. Accordingly, it is possible to suppress the occurrence of deceleration G due to the fact that the engagement-side friction element of the sub-transmission mechanism absorbs the rotational speed difference before and after the cooperative shift during the cooperative shift, and it is possible to suppress the unintended drag feeling.
  • FIG. 1 is a schematic configuration diagram of a vehicle equipped with a continuously variable transmission according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an internal configuration of the transmission controller.
  • FIG. 3 is a diagram showing an example of a shift map used in the auto mode.
  • FIG. 4 is a diagram showing an example of a shift map used in the manual mode.
  • FIG. 5 is a flowchart showing the contents of the shift control during the power OFF downshift in the manual mode.
  • FIG. 6 is a time chart showing a state during power OFF downshift in the manual mode.
  • the “transmission ratio” of a transmission mechanism is a value obtained by dividing the input rotational speed of the transmission mechanism by the output rotational speed of the transmission mechanism. Further, “lowest speed ratio” means the maximum speed ratio of the transmission mechanism, and “highest speed ratio” means the minimum speed ratio of the speed change mechanism.
  • FIG. 1 is a schematic configuration diagram of a vehicle equipped with a continuously variable transmission according to this embodiment.
  • This vehicle includes an engine 1 as a power source. Output rotation of the engine 1 is via a torque converter 2 with a lock-up clutch, a first gear train 3, a continuously variable transmission (hereinafter simply referred to as "transmission 4"), a second gear train 5, and a differential 6. Is transmitted to the drive wheel 7.
  • the second gear train 5 is provided with a parking mechanism 8 that mechanically locks the output shaft of the transmission 4 at the time of parking.
  • the vehicle includes an oil pump 10 that is driven using a part of the power of the engine 1, a hydraulic control circuit 11 that regulates the hydraulic pressure from the oil pump 10 and supplies the hydraulic pressure to each part of the transmission 4, A transmission controller 12 that controls the hydraulic control circuit 11 and an engine controller 13 that controls the torque of the engine 1 based on a command from the transmission controller 12 are provided.
  • the transmission 4 includes a continuously variable transmission mechanism (hereinafter referred to as “variator 20”) and a sub-transmission mechanism 30 provided in series with the variator 20.
  • “To be provided in series” means that the variator 20 and the auxiliary transmission mechanism 30 are provided in series in the same power transmission path.
  • the auxiliary transmission mechanism 30 may be directly connected to the output shaft of the variator 20 as in this example, or may be connected via another transmission or power transmission mechanism (for example, a gear train).
  • the variator 20 is a belt-type continuously variable transmission mechanism that includes a primary pulley 21, a secondary pulley 22, and a V-belt 23 that is wound around the pulleys 21 and 22.
  • Each of the pulleys 21 and 22 includes a fixed conical plate, a movable conical plate that is arranged with a sheave surface facing the fixed conical plate, and forms a V-groove between the fixed conical plate, and the movable conical plate.
  • the hydraulic cylinders 23a and 23b are provided on the back surface of the movable cylinder to displace the movable conical plate in the axial direction.
  • the auxiliary transmission mechanism 30 is a transmission mechanism having two forward speeds and one reverse speed.
  • the sub-transmission mechanism 30 is connected to a Ravigneaux type planetary gear mechanism 31 in which two planetary gear carriers are connected, and a plurality of friction elements connected to a plurality of rotating elements constituting the Ravigneaux type planetary gear mechanism 31 to change their linkage state.
  • Fastening elements Low brake 32, High clutch 33, Rev brake 34
  • the gear position of the auxiliary transmission mechanism 30 is changed.
  • the gear position of the subtransmission mechanism 30 is the first speed. If the high clutch 33 is engaged and the low brake 32 and the rev brake 34 are released, the speed stage of the subtransmission mechanism 30 becomes the second speed having a smaller speed ratio than the first speed. Further, if the Rev brake 34 is engaged and the Low brake 32 and the High clutch 33 are released, the shift speed of the subtransmission mechanism 30 is reverse. In the following description, it is expressed that “the transmission 4 is in the low speed mode” when the shift speed of the auxiliary transmission mechanism 30 is the first speed, and “the transmission 4 is in the high speed mode” when the speed is the second speed. Express.
  • the transmission controller 12 includes a CPU 121, a storage device 122 including a RAM and a ROM, an input interface 123, an output interface 124, and a bus 125 that interconnects them.
  • the output signal of the primary rotation speed sensor 42p for detecting the “primary rotation speed Npri”), the output rotation speed of the transmission 4 ( the rotation speed of the secondary pulley 22, hereinafter referred to as “secondary rotation speed Nsec”).
  • the output signal of the vehicle speed sensor 43 for detecting the vehicle traveling speed (hereinafter referred to as “vehicle speed VSP”), and the oil temperature sensor 44 for detecting the oil temperature of the transmission 4.
  • VSP vehicle traveling speed
  • the oil temperature sensor 44 for detecting the oil temperature of the transmission 4.
  • Output signal, the output signal of the inhibitor switch 46 for detecting the position of the select lever 45, the brake pedal is The output signal of the brake switch 47 which detects that it is incorporated seen, is disposed about the periphery of the steering, and the output signal of the paddle switch 48 for selecting the gear position in manual mode to be described later is input.
  • the storage device 122 stores a shift control program for the transmission 4 and shift maps (FIGS. 3 and 4) used in the shift control program.
  • the CPU 121 reads out and executes a shift control program stored in the storage device 122 and performs various arithmetic processes on various signals input via the input interface 123 to generate a shift control signal and an engine control signal.
  • the generated shift control signal and engine control signal are output to the hydraulic control circuit 11 and the engine controller 13 via the output interface 124, respectively.
  • Various values used in the arithmetic processing by the CPU 121 and the arithmetic results are appropriately stored in the storage device 122.
  • the hydraulic control circuit 11 includes a plurality of flow paths and a plurality of hydraulic control valves. Based on the shift control signal from the transmission controller 12, the hydraulic control circuit 11 controls a plurality of hydraulic control valves to switch the hydraulic pressure supply path, and prepares the necessary hydraulic pressure from the hydraulic pressure generated by the oil pump 10, Is supplied to each part of the transmission 4. As a result, the gear ratio vRatio of the variator 20 and the gear position of the auxiliary transmission mechanism 30 are changed, and the transmission 4 is changed.
  • the engine controller 13 controls the torque of the engine 1 based on the engine control signal from the transmission controller 12.
  • FIG. 3 shows an example of a shift map stored in the storage device 122 of the transmission controller 12.
  • This shift map is a mode in which the select lever 45 is in the D range and the shift of the transmission 4, that is, the shift of the variator 20 and the auxiliary transmission mechanism 30 is automatically performed based on the accelerator opening APO and the vehicle speed VSP (hereinafter referred to as “ This is a map used in “Auto mode”.
  • the operating point of the transmission 4 is determined based on the vehicle speed VSP and the primary rotational speed Npri.
  • the slope of the line connecting the operating point of the transmission 4 and the zero point of the lower left corner of the transmission map is the overall transmission ratio obtained by multiplying the transmission ratio of the transmission 4 (the transmission ratio vRatio of the variator 20 by the transmission ratio subRatio of the subtransmission mechanism 30). , Hereinafter referred to as “through transmission ratio Ratio”).
  • a shift line is set for each accelerator opening APO, and the shift of the transmission 4 is selected according to the accelerator opening APO.
  • the transmission 4 When the transmission 4 is in the low speed mode, the transmission 4 has a low speed mode lowest line obtained by maximizing the transmission ratio vRatio of the variator 20, and a low speed mode highest line obtained by minimizing the transmission ratio vRatio of the variator 20. You can shift between them. At this time, the operating point of the transmission 4 moves in the A region and the B region. On the other hand, when the transmission 4 is in the high speed mode, the transmission 4 has the maximum low speed line obtained by maximizing the transmission ratio vRatio of the variator 20 and the maximum high speed mode obtained by minimizing the transmission ratio vRatio of the variator 20. You can shift between the lines. At this time, the operating point of the transmission 4 moves in the B region and the C region.
  • the gear ratio of each gear stage of the sub-transmission mechanism 30 is such that the gear ratio corresponding to the low speed mode highest line (low speed mode highest high gear ratio) corresponds to the high speed mode lowest line (high speed mode lowest gear ratio). It is set to be smaller than that. Accordingly, a low speed mode ratio range that is a range of the through speed ratio Ratio of the transmission 4 that can be taken in the low speed mode and a high speed mode ratio range that is a range of the through speed ratio Ratio of the transmission 4 that can be taken in the high speed mode are partially obtained.
  • the transmission 4 can select either the low-speed mode or the high-speed mode. ing.
  • the transmission controller 12 refers to this shift map and sets the through speed ratio Ratio corresponding to the vehicle speed VSP and the accelerator opening APO as the ultimate through speed ratio DRatio.
  • the reaching through speed ratio DRatio is a target value that the through speed ratio Ratio should finally reach in the driving state.
  • the transmission controller 12 sets a target through speed ratio tRatio that is a transient target value for causing the through speed ratio Ratio to follow the reached through speed ratio DRatio with a desired response characteristic, and the through speed ratio Ratio is the target.
  • the variator 20 and the subtransmission mechanism 30 are controlled so as to coincide with the through speed ratio tRatio.
  • the mode switching shift line for performing the shift of the subtransmission mechanism 30 is set so as to overlap the low speed mode highest line.
  • the through speed ratio corresponding to the mode switching speed line (hereinafter referred to as “mode switching speed ratio mRatio”) is equal to the low speed mode maximum High speed ratio.
  • the transmission controller 12 When the operating point of the transmission 4 crosses the mode switching speed line, that is, when the through speed ratio Ratio of the transmission 4 changes across the mode switching speed ratio mRatio, the transmission controller 12 performs the mode switching speed change. Take control. In this mode switching shift control, the transmission controller 12 performs a shift of the sub-transmission mechanism 30, and changes the transmission ratio vRatio of the variator 20 in a direction opposite to the direction in which the transmission ratio subRatio of the sub-transmission mechanism 30 changes. Change gears.
  • the transmission controller 12 changes the speed of the subtransmission mechanism 30 from the first speed to the second speed. Up-shift (1-2 shift), and change the gear ratio vRatio of the variator 20 to the larger gear ratio. Conversely, when the through speed ratio Ratio of the transmission 4 changes from a state smaller than the mode switching speed ratio mRatio to a larger state, the transmission controller 12 changes the gear position of the subtransmission mechanism 30 from the second speed to the first speed. While downshifting (2-1 shift), the gear ratio vRatio of the variator 20 is changed to the smaller gear ratio.
  • the reason why the coordinated shift is performed at the time of the mode switching shift is to suppress the driver's uncomfortable feeling due to the change in the input rotation caused by the step of the through speed ratio Ratio of the transmission 4. Further, the mode switching shift is performed when the gear ratio vRatio of the variator 20 is the highest gear ratio. In this state, the torque input to the auxiliary transmission mechanism 30 is based on the torque input to the variator 20 at that time. This is because shifting shock of the subtransmission mechanism 30 can be mitigated by shifting the subtransmission mechanism 30 in this state.
  • FIG. 4 shows an example of a shift map stored in the storage device 122 of the transmission controller 12.
  • this shift map when a driver gives a shift instruction by a select lever operation or a paddle operation, one corresponding to the shift instruction is selected from a plurality of preset shift speeds, and the gear ratio is changed to the selected shift speed. It is used in a mode in which at least one of the variator 20 and the auxiliary transmission mechanism 30 is controlled so as to fix (hereinafter referred to as “manual mode”).
  • the shift speed in the manual mode refers to a fixed shift line that is set in a pseudo manner on the shift map, and in order to distinguish it from the shift speed of the subtransmission mechanism 30, in the following description, in the manual mode
  • the transmission speeds of the transmission 4 are respectively referred to as M1 speed to M7 speed.
  • the M1 speed line set to be substantially along the lowest line in the low speed mode, the low side from the highest line in the high speed mode, and the high side from the low speed mode highest line. Shift lines for a total of seven speeds are set, including the M7 speed line set to, and the M2 speed line to M6 speed line set between the M1 speed line and the M7 speed line.
  • the transmission controller 12 changes the shift map from the shift map in the auto mode in FIG. 3 to the shift map in the manual mode in FIG. This shifts to manual mode.
  • the transmission controller 12 When shifting to the manual mode, the transmission controller 12 first changes the speed ratio to the manual mode speed line closest to the current speed ratio in the manual mode speed map.
  • the current gear ratio may be fixed when shifting to the manual mode, and the gear may be shifted along the shift line when a gear shift instruction is issued from the driver.
  • the M1 speed line and the M2 speed line can be realized only when the auxiliary transmission mechanism 30 is in the low speed mode, and the M7 speed line is realized only when the auxiliary transmission mechanism 30 is in the high speed mode. Is possible. Further, the M3 speed line, the M4 speed line, the M5 speed line, and the M6 speed line can be realized regardless of whether the auxiliary transmission mechanism 30 is in the low speed mode or the high speed mode.
  • the sub-transmission mechanism 30 is downshifted from the high-speed mode to the low-speed mode in a region (B region) that can be realized regardless of whether the sub-transmission mechanism 30 is in the low speed mode or the high speed mode.
  • the 1-2UP line for upshifting the speed change mechanism 30 from the low speed mode to the high speed mode is set. That is, the 2-1 DOWN line is set between M3 speed and M4 speed, and the 1-2 UP line is set between M5 speed and M6 speed.
  • the transmission controller 12 It is determined that there is a high possibility of shifting to the M2 speed that requires a shift, and immediately after the shift from the M4 speed to the M3 speed by only the variator 20 is performed, the sub-shift mechanism 30 is downshifted.
  • the transmission controller 12 will continue to use the sub-transmission mechanism.
  • an upshift of the subtransmission mechanism 30 is executed immediately after the shift from the M5 speed to the M6 speed by only the variator 20 is performed.
  • the transmission controller 12 executes the shift of the auxiliary transmission mechanism 30 immediately after the shift of the variator 20 based on the shift instruction of the driver.
  • the variator 20 is shifted to set the through speed ratio Ratio to the target through speed ratio tRatio.
  • the variator 20 and the auxiliary transmission mechanism 30 cooperate so that the through speed ratio Ratio does not change. Change gears.
  • the shift based on the driver's instruction ensures the shift response by the variator shift, and the next
  • the shift of the sub-transmission mechanism 30 can be shifted in advance by cooperative control. Therefore, when the gear ratio corresponding to the gear position based on the subsequent gear shift instruction from the driver is the gear ratio in the A region or the C region, the gear shift of the subtransmission mechanism 30 has already been completed. Responsiveness can be ensured.
  • the cooperative shift is performed.
  • the subtransmission mechanism 30 is downshifted to the low speed mode, and at the same time, the transmission ratio vRatio of the variator 20 changes to the High side.
  • This through gear ratio does not change the through gear ratio Ratio, but increases the secondary rotational speed of the variator 20, that is, the input rotational speed of the subtransmission mechanism 30. Therefore, the Low brake 32 that is the engagement-side friction element of the sub-transmission mechanism 30 is engaged while absorbing the difference in rotational speed before and after the cooperative shift, whereby torque is transferred before and after the shift, and the deceleration G is generated.
  • the shift of the subtransmission mechanism 30 is performed in the order of the torque phase and the inertia phase. Therefore, in the torque phase of the subtransmission mechanism 30 in the cooperative shift immediately after the variator shift.
  • the generation of the deceleration G is delayed from the deceleration G generated by the variator shift before the cooperative shift, and there is a possibility that the driver feels uncomfortable due to the drag feeling caused by the prolonged deceleration G.
  • FIG. 5 is a flowchart showing the contents of control executed by the transmission controller 12 to output a command from the transmission controller 12 to the engine controller 13 in the manual mode. Therefore, in addition to this flowchart, there is a flowchart for outputting a command from the transmission controller 12 to the hydraulic control circuit 11, which is executed separately from this flowchart. Note that these flowcharts are repeatedly executed at regular time intervals (for example, 10 msec).
  • step S1 the transmission controller 12 determines whether or not the transmission 4 is in the manual mode. For example, the transmission controller 12 determines that the manual mode is set when the select lever 45 is in the M range or when the paddle switch 48 is operated. If it is determined that the manual mode is selected, the process proceeds to step S2, and if it is determined that the manual mode is not selected, the process ends.
  • step S2 the transmission controller 12 determines whether or not a downshift instruction from the driver is input. For example, when the select lever 45 or the paddle switch 48 is operated to the downshift side, the transmission controller 12 determines that a downshift instruction has been input. If it is determined that a downshift instruction has been input, the process proceeds to step S3. If it is determined that a downshift instruction has not been input, the process ends.
  • step S3 the transmission controller 12 determines whether or not the 2 ⁇ 1 shift of the auxiliary transmission mechanism 30 is necessary. For example, the transmission controller 12 receives a shift instruction in which the operating point crosses the 2-1 DOWN line on the shift map in the manual mode shown in FIG. 4, that is, when a shift instruction from the M4 speed to the M3 speed is input. It is determined that 2 ⁇ 1 shift of the auxiliary transmission mechanism 30 is necessary. If it is determined that the 2 ⁇ 1 shift of the subtransmission mechanism 30 is necessary, the process proceeds to step S4, and if it is determined that the 2 ⁇ 1 shift of the subtransmission mechanism 30 is not necessary, the process ends.
  • step S4 the transmission controller 12 determines whether or not the power is off.
  • the transmission controller 12 determines that the power is off when the vehicle is running on the coast, in which the driver does not depress the accelerator pedal.
  • the fact that the power is off means that the accelerator pedal is depressed, but the amount of depression is relatively small, and therefore it may include a running state that is substantially coasting. If it is determined that the power is off, the process proceeds to step S5. If it is determined that the power is not off, the process ends.
  • step S5 the transmission controller 12 determines whether or not a predetermined delay time has elapsed from the downshift instruction.
  • the transmission controller 12 includes, for example, a timer that starts counting when it is determined in step S2 that a downshift instruction has been input, and when the timer value reaches a predetermined value, a predetermined delay time from the downshift instruction. It is determined that has passed.
  • the predetermined delay time is a minute time set in consideration of a response delay from when the downshift instruction is input until the gear shift of the variator 20 is actually started. If it is determined that a predetermined delay time has elapsed from the downshift instruction, the process proceeds to step S6, and if it is determined that the delay time has not elapsed, the process ends.
  • step S6 the transmission controller 12 outputs a torque-up request for increasing the torque of the engine 1 to the engine controller 13.
  • the engine controller 13 increases torque by increasing the intake air amount and the fuel injection amount of the engine 1.
  • the torque increase amount of the engine 1 is set to a value that can suppress a decrease in the durability of the friction material when the low brake 32 is engaged.
  • the transmission controller 12 Since the engine torque before the torque increase is a negative value, the transmission controller 12 increases the torque request value at a predetermined shock prevention increase rate. As a result, it is possible to prevent the torque request value of the engine 1 from rapidly increasing and causing acceleration G in the vehicle when the Low brake 32 is engaged.
  • step S7 the transmission controller 12 determines whether or not the 2 ⁇ 1 shift of the auxiliary transmission mechanism 30 has been completed.
  • the transmission controller 12 It is determined that the 2 ⁇ 1 shift has been completed. If it is determined that the 2 ⁇ 1 shift of the auxiliary transmission mechanism 30 has been completed, the process proceeds to step S8. If it is determined that the 2 ⁇ 1 shift of the auxiliary transmission mechanism 30 has not been completed, the process returns to step S6.
  • step S8 the transmission controller 12 cancels the torque-up request output to the engine controller 13 in step S6.
  • the transmission controller 12 reduces the torque request value to a pre-torque engine torque at a predetermined shock prevention reduction rate.
  • the transmission controller 12 performs the coordinated shift from the start of the variator shift when the power OFF downshift is performed in the manual mode and the subtransmission mechanism 30 needs to be downshifted. Increase the engine torque until the end of.
  • FIG. 6 is a time chart showing a state during power OFF downshift in the manual mode.
  • the shift phase of the auxiliary transmission mechanism 30 shifts to a preparation phase in which preparation for downshifting of the auxiliary transmission mechanism 30 is started.
  • the preparation phase the low brake 32 is engaged and the high clutch 33 is released.
  • the torque-up request is output after a predetermined delay time has elapsed. Therefore, when there is a response delay from when the downshift instruction is input until the gear shift of the variator 20 is actually started, the vehicle deceleration G It is possible to prevent the driver from feeling uncomfortable due to a decrease in the vehicle speed and a feeling of acceleration.
  • the torque request value is increased at a predetermined shock prevention increase rate, it is possible to prevent the driver from feeling uncomfortable due to the acceleration feeling of the vehicle despite the downshifting due to the variator shift.
  • the shift phase of the subtransmission mechanism 30 shifts to a torque phase in which torque is switched between the engagement-side low brake 32 and the release-side high clutch 33.
  • the hydraulic pressure supplied to the high clutch 33 decreases and the hydraulic pressure supplied to the low brake 32 increases.
  • the shift phase of the subtransmission mechanism 30 shifts to an inertia phase in which the subtransmission mechanism 30 and the variator 20 are shifted.
  • the subtransmission mechanism 30 is downshifted from the second speed to the first speed, and at the same time, a coordinated shift is performed in which the speed ratio vRatio of the variator 20 is shifted to the lower speed ratio.
  • the high clutch 33 is gradually released and the low brake 32 is gradually engaged, so that the shift speed of the subtransmission mechanism 30 gradually shifts from the second speed to the first speed.
  • the engine torque is increased due to a torque increase request. Therefore, even if the low brake 32 is engaged, the occurrence of inertia is suppressed and the deceleration G of the vehicle is increased. Can be suppressed.
  • the torque request value is decreased at a predetermined shock prevention reduction rate, it is possible to prevent the driver from feeling uncomfortable due to a feeling of deceleration of the vehicle even though the downshift is completed.
  • the engine torque is increased from the torque before the downshift instruction is determined.
  • the low brake 32 can suppress the occurrence of deceleration G due to the absorption of the difference in rotational speed before and after the cooperative shift, and can suppress the occurrence of an unintended drag feeling. Furthermore, by suppressing the generation of the deceleration G, the coordinated shift time can be shortened, and a decrease in the proof stress of the friction material can be prevented.
  • the select shift stage selected by the driver is the lowest shift stage that can be realized by the shift stage of the auxiliary transmission mechanism 30 before the shift instruction, that is, the downshift instruction from the M4 speed to the M3 speed. Therefore, it is determined that a 2 ⁇ 1 shift of the auxiliary transmission mechanism 30 is necessary. In this case, the engine torque is increased. Therefore, the coordinated shift is performed immediately after the variator shift, thereby reducing the feeling of deceleration during the variator shift. By continuing until the coordinated shift, it is possible to prevent the driver from feeling uncomfortable and causing the driver to feel uncomfortable.
  • the transmission controller 12 increases the torque after a predetermined delay time from the input of the downshift instruction from the driver, the transmission of the variator 20 is actually started after the downshift instruction is input. Even if there is a response delay, it is possible to prevent the driver from feeling uncomfortable due to a decrease in the deceleration G of the vehicle and a feeling of acceleration.
  • the transmission controller 12 increases the torque request value at a predetermined shock prevention increase rate, the vehicle feels uncomfortable due to a feeling of acceleration of the vehicle despite the downshift due to the variator shift. Can be prevented.
  • the transmission controller 12 reduces the torque request value at a predetermined shock prevention reduction rate, the driver feels uncomfortable by causing the vehicle to feel a deceleration despite the completion of the downshift. Can be prevented.
  • a belt-type continuously variable transmission mechanism is provided as the variator 20, but the variator 20 is a continuously variable transmission mechanism in which a chain belt is wound between pulleys 21 and 22 instead of the V-belt 23. It may be.
  • the engine 1 is provided as a power source
  • the power source may be a combination of the motor with the engine 1 or a single motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 無段変速機は、バリエータと、副変速機構と、セレクト変速段に対応する変速比をバリエータ及び副変速機構の全体の変速比であるスルー変速比の目標値として設定する目標値設定手段と、スルー変速比が目標値となるようにバリエータをダウンシフトさせるバリエータ変速とバリエータのダウンシフト直後に副変速機構をダウンシフトさせながらスルー変速比を維持させるようにバリエータをアップシフトさせる協調変速とを行う変速制御手段と、協調変速中に動力源から無段変速機へ入力されるトルクをダウンシフト指示の判定前より増大させるトルク増大手段と、を備える。

Description

無段変速機及びその制御方法
 本発明は、無段変速機及びその制御方法に関し、特に、無段変速機が無段変速機構と副変速機構とを備えるものに関する。
 無段変速機構(バリエータ)と副変速機構とを組み合わせた無段変速機(以下、「副変速機構付きCVT」という。)では、通常の無段変速機に比べて変速領域を拡大することができ、燃費向上を図ることができる。
 この副変速機構付きCVTで副変速機構を変速させる場合には、バリエータの変速比を副変速機構の変速方向と逆の方向に変速させる協調変速を行うことで、変速機全体の変速比であるスルー変速比が変速前後で変化するのを抑制し、変速ショックを抑制することができる。
 JP2012-57710Aには、運転者によって選択される変速段に対応する変速比にスルー変速比を制御するマニュアルモードを備えた副変速機構付きCVTが開示されている。マニュアルモードでは、運転者のシフト操作に応じてバリエータの変速比のみを変更してスルー変速比を変化させるバリエータ変速によって変速応答性を向上させている。
 また、変速領域によっては、次回の変速指示に備えて、バリエータ変速の直後に協調変速によって副変速機構の変速段を切り換えている。これは以下の理由による。
 例えば、副変速機構の変速段がHigh側の変速段であって運転者がマニュアルモードのM3速からM2速へとダウンシフトを指示した場合、バリエータを最もLow側に変速してもM2速に対応するスルー変速比を実現することができなくなる。
 そこで、運転者がM4速からM3速へのダウンシフトを指示した時に、バリエータ変速によってM3速に対応するスルー変速比を実現した上で、それに続いて協調変速を行って副変速機構の変速段をLow側の変速段へと切り換えつつバリエータの変速比をHigh側へと変化させるようにしている。
 これにより、その後に、M3速からM2速へのダウンシフト指示があった場合には、バリエータ変速のみによってM2速に対応するスルー変速比を即座に実現できるので、変速応答性を向上させることができる。
 マニュアルモードにおいてコースト走行中に運転者のシフト操作に応じてダウンシフトを行う場合であって、上述のようにバリエータ変速の直後に、次回の変速に備えた、スルー変速比を変化させない協調変速を行う場合、協調変速によって副変速機構の変速段がLow側に変速されるのと同時にバリエータの変速比がHigh側に変更される。
 この協調変速によってスルー変速比は変化しないが、バリエータのセカンダリ回転速度、すなわち副変速機構の入力回転速度が上昇する。よって、副変速機構の締結側摩擦要素は協調変速前後の回転速度差を吸収しながら徐々に締結することで、変速前後でトルクの受け渡しが発生し、減速Gが生じる。
 特に、エンジントルクが負の値であるコースト走行中には、副変速機構の変速がトルクフェーズ、イナーシャフェーズの順に行われるので、減速Gの発生がバリエータ変速によって生じる減速Gより遅れることとなり、減速Gが長引くことによる引き摺り感によって、運転者がマニュアルモードを操作していないにも関わらず、G変動が発生し、運転者に違和感を与える可能性がある。
 この発明の目的は、マニュアルモードでコースト走行中にダウンシフトが行われた場合における引き摺り感の発生を抑制することである。
 本発明のある態様によれば、車両に搭載されて動力源の出力回転を変速し伝達する無段変速機であって、変速比を無段階に変化させることができるバリエータと、バリエータに対して直列に設けられる有段の副変速機構と、運転者からの変速指示が判定されると、予め設定されている複数のセレクト変速段から前記変速指示に対応した一つを選択し、選択されたセレクト変速段に対応する変速比をバリエータ及び副変速機構の全体の変速比であるスルー変速比の目標値として設定する目標値設定手段と、変速指示がダウンシフトであって副変速機構の変速条件が成立する場合、スルー変速比が目標値となるようにバリエータをダウンシフトさせるバリエータ変速と、バリエータのダウンシフト直後に副変速機構をダウンシフトさせながらスルー変速比を維持させるようにバリエータをアップシフトさせる協調変速と、を行う変速制御手段と、車両がコースト走行時である場合、協調変速中に、動力源から無段変速機へ入力されるトルクを、ダウンシフト指示の判定前より増大させるトルク増大手段と、を備える無段変速機が提供される。
 また、本発明の別の態様によれば、変速比を無段階に変化させることができるバリエータと、バリエータに対して直列に設けられる有段の副変速機構と、を備え、車両に搭載されて動力源の出力回転を変速し伝達する無段変速機の制御方法であって、運転者からの変速指示が判定されると、予め設定されている複数のセレクト変速段から前記変速指示に対応した一つを選択し、選択されたセレクト変速段に対応する変速比をバリエータ及び副変速機構の全体の変速比であるスルー変速比の目標値として設定し、変速指示がダウンシフトであって副変速機構の変速条件が成立する場合、スルー変速比が目標値となるようにバリエータをダウンシフトさせるバリエータ変速と、バリエータのダウンシフト直後に副変速機構をダウンシフトさせながらスルー変速比を維持させるようにバリエータをアップシフトさせる協調変速と、を行い、車両がコースト走行時である場合、協調変速中に、動力源から無段変速機へ入力されるトルクを、ダウンシフト指示の判定前より増大させる、無段変速機の制御方法が提供される。
 これらの態様によれば、マニュアルモードでコースト走行中、運転者からの指示に基づいてダウンシフトした際の協調変速中に、動力源から無段変速機へ入力されるトルクを増大させる。これにより、協調変速時に副変速機構の締結側摩擦要素が協調変速前後の回転速度差を吸収することによる減速Gの発生を抑え、意図しない引き摺り感の発生を抑制することができる。
図1は、本発明の実施形態に係る無段変速機を搭載した車両の概略構成図である。 図2は、変速機コントローラの内部構成を示した図である。 図3は、オートモードで使用する変速マップの一例を示した図である。 図4は、マニュアルモードで使用する変速マップの一例を示した図である。 図5は、マニュアルモードにおけるパワーOFFダウンシフト時の変速制御の内容を示したフローチャートである。 図6は、マニュアルモードにおけるパワーOFFダウンシフト時の様子を示したタイムチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。なお、以下の説明において、ある変速機構の「変速比」は、当該変速機構の入力回転速度を当該変速機構の出力回転速度で割って得られる値である。また、「最Low変速比」は当該変速機構の最大変速比を意味し、「最High変速比」は当該変速機構の最小変速比を意味する。
 図1は本実施形態に係る無段変速機を搭載した車両の概略構成図である。この車両は動力源としてエンジン1を備える。エンジン1の出力回転は、ロックアップクラッチ付きトルクコンバータ2、第1ギヤ列3、無段変速機(以下、単に「変速機4」という。)、第2ギヤ列5、差動装置6を介して駆動輪7へと伝達される。第2ギヤ列5には駐車時に変速機4の出力軸を機械的に回転不能にロックするパーキング機構8が設けられている。
 また、車両には、エンジン1の動力の一部を利用して駆動されるオイルポンプ10と、オイルポンプ10からの油圧を調圧して変速機4の各部位に供給する油圧制御回路11と、油圧制御回路11を制御する変速機コントローラ12と、変速機コントローラ12からの指令に基づいてエンジン1のトルクを制御するエンジンコントローラ13と、が設けられている。
 各構成について説明すると、変速機4は、無段変速機構(以下、「バリエータ20」という。)と、バリエータ20に対して直列に設けられる副変速機構30とを備える。「直列に設けられる」とは同動力伝達経路においてバリエータ20と副変速機構30が直列に設けられるという意味である。副変速機構30は、この例のようにバリエータ20の出力軸に直接接続されていてもよいし、その他の変速ないし動力伝達機構(例えば、ギヤ列)を介して接続されていてもよい。
 バリエータ20は、プライマリプーリ21と、セカンダリプーリ22と、プーリ21、22の間に掛け回されるVベルト23とを備えるベルト式無段変速機構である。プーリ21、22は、それぞれ固定円錐板と、この固定円錐板に対してシーブ面を対向させた状態で配置され固定円錐板との間にV溝を形成する可動円錐板と、この可動円錐板の背面に設けられて可動円錐板を軸方向に変位させる油圧シリンダ23a、23bとを備える。油圧シリンダ23a、23bに供給される油圧を調整すると、V溝の幅が変化してVベルト23と各プーリ21、22との接触半径が変化し、バリエータ20の変速比vRatioが無段階に変化する。
 副変速機構30は前進2段・後進1段の変速機構である。副変速機構30は、2つの遊星歯車のキャリアを連結したラビニョウ型遊星歯車機構31と、ラビニョウ型遊星歯車機構31を構成する複数の回転要素に接続され、それらの連係状態を変更する複数の摩擦締結要素(Lowブレーキ32、Highクラッチ33、Revブレーキ34)とを備える。各摩擦締結要素32~34への供給油圧を調整し、各摩擦締結要素32~34の締結・解放状態を変更すると、副変速機構30の変速段が変更される。例えば、Lowブレーキ32を締結し、Highクラッチ33とRevブレーキ34を解放すれば副変速機構30の変速段は1速となる。Highクラッチ33を締結し、Lowブレーキ32とRevブレーキ34を解放すれば副変速機構30の変速段は1速よりも変速比が小さな2速となる。また、Revブレーキ34を締結し、Lowブレーキ32とHighクラッチ33を解放すれば副変速機構30の変速段は後進となる。なお、以下の説明では、副変速機構30の変速段が1速であるとき「変速機4が低速モードである」と表現し、2速であるとき「変速機4が高速モードである」と表現する。
 変速機コントローラ12は、図2に示すように、CPU121と、RAM・ROMからなる記憶装置122と、入力インターフェース123と、出力インターフェース124と、これらを相互に接続するバス125とから構成される。
 入力インターフェース123には、アクセルペダルの開度(以下、「アクセル開度APO」という。)を検出するアクセル開度センサ41の出力信号、変速機4の入力回転速度(=プライマリプーリ21の回転速度、以下、「プライマリ回転速度Npri」という。)を検出するプライマリ回転速度センサ42pの出力信号、変速機4の出力回転速度(=セカンダリプーリ22の回転速度、以下、「セカンダリ回転速度Nsec」という。)を検出するセカンダリ回転速度センサ42sの出力信号、車両の走行速度(以下、「車速VSP」という。)を検出する車速センサ43の出力信号、変速機4の油温を検出する油温センサ44の出力信号、セレクトレバー45の位置を検出するインヒビタスイッチ46の出力信号、ブレーキペダルが踏み込まれていることを検出するブレーキスイッチ47の出力信号、ステアリングの周辺近傍に配設され、後述するマニュアルモードで変速段を選択するパドルスイッチ48の出力信号などが入力される。
 記憶装置122には、変速機4の変速制御プログラム、この変速制御プログラムで用いる変速マップ(図3、図4)が格納されている。CPU121は、記憶装置122に格納されている変速制御プログラムを読み出して実行し、入力インターフェース123を介して入力される各種信号に対して各種演算処理を施して変速制御信号及びエンジン制御信号を生成し、生成した変速制御信号及びエンジン制御信号を出力インターフェース124を介してそれぞれ油圧制御回路11及びエンジンコントローラ13に出力する。CPU121が演算処理で使用する各種値、その演算結果は記憶装置122に適宜格納される。
 油圧制御回路11は複数の流路、複数の油圧制御弁で構成される。油圧制御回路11は、変速機コントローラ12からの変速制御信号に基づき、複数の油圧制御弁を制御して油圧の供給経路を切り換えるとともにオイルポンプ10で発生した油圧から必要な油圧を調製し、これを変速機4の各部位に供給する。これにより、バリエータ20の変速比vRatio、副変速機構30の変速段が変更され、変速機4の変速が行われる。
 また、エンジンコントローラ13は、変速機コントローラ12からのエンジン制御信号に基づき、エンジン1のトルクを制御する。
 図3は変速機コントローラ12の記憶装置122に格納される変速マップの一例を示している。この変速マップは、セレクトレバー45がDレンジにあり、アクセル開度APO及車速VSPに基づき変速機4の変速、すなわちバリエータ20及び副変速機構30の変速が自動的に行われるモード(以下、「オートモード」という。)で使用されるマップである。
 この変速マップ上では変速機4の動作点が車速VSPとプライマリ回転速度Npriとに基づき決定される。変速機4の動作点と変速マップ左下隅の零点を結ぶ線の傾きが変速機4の変速比(バリエータ20の変速比vRatioに副変速機構30の変速比subRatioを掛けて得られる全体の変速比、以下、「スルー変速比Ratio」という。)を表している。この変速マップには、従来のベルト式無段変速機の変速マップと同様に、アクセル開度APO毎に変速線が設定されており、変速機4の変速はアクセル開度APOに応じて選択される変速線に従って行われる。なお、図3には簡単のため、全負荷線(アクセル開度APO=8/8のときの変速線)、パーシャル線(アクセル開度APO=4/8のときの変速線)、コースト線(アクセル開度APO=0のときの変速線)のみが示されている。
 変速機4が低速モードのときは、変速機4はバリエータ20の変速比vRatioを最大にして得られる低速モード最Low線とバリエータ20の変速比vRatioを最小にして得られる低速モード最High線の間で変速することができる。このとき、変速機4の動作点はA領域とB領域内を移動する。一方、変速機4が高速モードのときは、変速機4はバリエータ20の変速比vRatioを最大にして得られる高速モード最Low線とバリエータ20の変速比vRatioを最小にして得られる高速モード最High線の間で変速することができる。このとき、変速機4の動作点はB領域とC領域内を移動する。
 副変速機構30の各変速段の変速比は、低速モード最High線に対応する変速比(低速モード最High変速比)が高速モード最Low線に対応する変速比(高速モード最Low変速比)よりも小さくなるように設定される。これにより、低速モードでとりうる変速機4のスルー変速比Ratioの範囲である低速モードレシオ範囲と高速モードでとりうる変速機4のスルー変速比Ratioの範囲である高速モードレシオ範囲とが部分的に重複し、変速機4の動作点が高速モード最Low線と低速モード最High線で挟まれるB領域にあるときは、変速機4は低速モード、高速モードのいずれのモードも選択可能になっている。
 変速機コントローラ12は、この変速マップを参照して、車速VSP及びアクセル開度APOに対応するスルー変速比Ratioを到達スルー変速比DRatioとして設定する。この到達スルー変速比DRatioは、当該運転状態でスルー変速比Ratioが最終的に到達すべき目標値である。そして、変速機コントローラ12は、スルー変速比Ratioを所望の応答特性で到達スルー変速比DRatioに追従させるための過渡的な目標値である目標スルー変速比tRatioを設定し、スルー変速比Ratioが目標スルー変速比tRatioに一致するようにバリエータ20及び副変速機構30を制御する。
 また、変速マップ上には副変速機構30の変速を行うモード切換変速線が低速モード最High線上に重なるように設定されている。モード切換変速線に対応するスルー変速比(以下、「モード切換変速比mRatio」という。)は低速モード最High変速比に等しい。
 そして、変速機4の動作点がモード切換変速線を横切った場合、すなわち、変速機4のスルー変速比Ratioがモード切換変速比mRatioを跨いで変化した場合は、変速機コントローラ12はモード切換変速制御を行う。このモード切換変速制御では、変速機コントローラ12は、副変速機構30の変速を行うとともに、バリエータ20の変速比vRatioを副変速機構30の変速比subRatioが変化する方向と逆の方向に変化させる協調変速を行う。
 協調変速では、変速機4のスルー変速比Ratioがモード切換変速比mRatioよりも大きい状態から小さい状態になったときは、変速機コントローラ12は、副変速機構30の変速段を1速から2速にアップシフト(1-2変速)させるとともに、バリエータ20の変速比vRatioを変速比大側に変化させる。逆に、変速機4のスルー変速比Ratioがモード切換変速比mRatioよりも小さい状態から大きい状態になったときは、変速機コントローラ12は、副変速機構30の変速段を2速から1速にダウンシフト(2-1変速)させるとともに、バリエータ20の変速比vRatioを変速比小側に変化させる。
 モード切換変速時、協調変速を行うのは、変速機4のスルー変速比Ratioの段差により生じる入力回転の変化に伴う運転者の違和感を抑えるためである。また、モード切換変速をバリエータ20の変速比vRatioが最High変速比のときに行うのは、この状態では副変速機構30に入力されるトルクがそのときにバリエータ20に入力されるトルクのもとでは最小になっており、この状態で副変速機構30を変速すれば副変速機構30の変速ショックを緩和することができるからである。
 図4は変速機コントローラ12の記憶装置122に格納される変速マップの一例を示している。この変速マップは、運転者がセレクトレバー操作又はパドル操作によって変速指示をした場合に、予め設定されている複数の変速段から変速指示に対応した一つが選択され、選択された変速段に変速比を固定するようにバリエータ20及び副変速機構30の少なくとも一方が制御されるモード(以下、「マニュアルモード」という。)において使用される。
 なお、マニュアルモードにおける変速段とは、変速マップ上に疑似的に設定された固定変速線のことを指すものであり、副変速機構30の変速段と区別するため、以下の説明では、マニュアルモードにおける変速機4の変速段をそれぞれM1速~M7速と称する。
 図4に示すマニュアルモード変速マップには、低速モードの最Low線にほぼ沿うように設定されたM1速線と、高速モードの最High線よりLow側であって低速モード最High線よりHigh側に設定されたM7速線と、M1速線とM7速線との間に設定されたM2速線~M6速線と、の合計7速分の変速線が設定されている。
 運転者は、マニュアルモードへの移行を希望する場合は、セレクトレバー45やパドル48等を操作して、マニュアルモードへの移行を指示する。これを受けて変速機コントローラ12は、変速マップを図3のオートモードの変速マップから図4のマニュアルモードの変速マップへと変更する。これにより、マニュアルモードに移行する。
 マニュアルモードに移行したとき、変速機コントローラ12は、まず、マニュアルモード変速マップのうち、現在の変速比に最も近いマニュアルモード変速線に変速比を変更する。または、マニュアルモードに移行したとき、現在の変速比を固定しておき、運転者から変速の指示があったときに、変速線に沿って変速させてもよい。
 マニュアルモードに移行後、運転者がセレクトレバー操作又はパドル操作によって所望の変速段(M1~M7)を指示した場合は、変速機コントローラ12は、指示された変速段に変速比が固定されるように、図4に示すマニュアルモード変速マップの所定の変速線上に動作点を移動させる。これにより、マニュアルモード変速が実現される。
 このマニュアルモードの変速線のうち、M1速線及びM2速線は、副変速機構30が低速モードの時にのみ実現可能であり、M7速線は、副変速機構30が高速モードのときにのみ実現可能である。また、M3速線、M4速線、M5速線及びM6速線は、副変速機構30が、低速モード及び高速モードのいずれの状態であっても実現可能である。
 したがって、副変速機構30が低速モード及び高速モードのいずれであっても実現可能な領域(B領域)に、副変速機構30を高速モードから低速モードへとダウンシフトさせる2-1DOWN線と、副変速機構30を低速モードから高速モードへとアップシフトさせる1-2UP線と、が設定されている。すなわち、2-1DOWN線はM3速とM4速との間に設定され、1-2UP線はM5速とM6速との間に設定される。
 副変速機構30が高速モードにある状態でかつM4速が選択されている場合に、運転者の指示によりM3速にダウンシフトが行われる場合、変速機コントローラ12は、今後、副変速機構30の変速が必要となるM2速に移行する可能性が高いと判断して、バリエータ20のみによるM4速からM3速に変速が行われた直後に、副変速機構30のダウンシフトを実行する。
 また、副変速機構30が低速モードにある状態でかつM5速が選択されている場合に、運転者の指示によりM6速にアップシフトが行われる場合、変速機コントローラ12は、今後、副変速機構30の変速が必要となるM7速に移行する可能性が高いと判断して、バリエータ20のみによるM5速からM6速に変速が行われた直後に、副変速機構30のアップシフトを実行する。
 すなわち、マニュアルモードでは、現在の変速段に対して、運転者の指示に基づいて変速された後の変速段のさらに一つ先の変速段が、副変速機構30を変速しないと実現できない変速段である場合、変速機コントローラ12は、運転者の変速指示に基づくバリエータ20の変速直後に、副変速機構30の変速を実行する。
 このように、変速線が2-1DOWN線又は1-2UP線を跨ぐ際の変速は、変速の応答性を高めるために、まず、バリエータ20を変速させてスルー変速比Ratioを目標スルー変速比tRatioへと追従させて、指示された変速段への変速を完了(以下、この変速を「バリエータ変速」という)した後に、バリエータ20と副変速機構30とでスルー変速比Ratioが変化しないように協調変速を行う。
 これにより、変速機の動作点が、高速モード最Low線と低速モード最High線で挟まれるB領域である場合、運転者の指示に基づく変速はバリエータ変速によって変速応答性を確保しつつ、次の変速で副変速機構30の変速が予測される場合は、協調制御によって予め副変速機構30を変速させておくことができる。したがって、その後の運転者の変速指示に基づく変速段に対応する変速比がA領域やC領域の変速比である場合は、既に副変速機構30の変速は完了しているので、バリエータ変速によって変速応答性を確保することができる。
 つまり、マニュアルモードにおいて、運転者の変速指示に基づいて変速を行う場合、スルー変速比Ratioは常にバリエータ変速によって変化させるので、変速パターン(M4速→M3速、M5速→M6速など)にかかわらず常に高い変速応答性を実現することができる。
 ここで、マニュアルモードにおいて運転者のシフト操作に応じてダウンシフトを行う場合であって、上述のようにバリエータ変速の直後に協調変速を行う場合(M4速→M3速変速の場合)、協調変速によって副変速機構30が低速モードへとダウンシフトされるのと同時にバリエータ20の変速比vRatioがHigh側に変化する。
 この協調変速によってスルー変速比Ratioは変化しないが、バリエータ20のセカンダリ回転速度、すなわち副変速機構30の入力回転速度が上昇する。よって、副変速機構30の締結側摩擦要素であるLowブレーキ32は協調変速前後の回転速度差を吸収しながら締結することで、変速前後でトルクの受け渡しが発生し、減速Gが生じる。
 特に、エンジントルクが負の値であるコースト走行中には、副変速機構30の変速がトルクフェーズ、イナーシャフェーズの順に行われるので、バリエータ変速直後の協調変速における副変速機構30のトルクフェーズでの減速Gの発生が、協調変速前のバリエータ変速によって生じる減速Gより遅れることとなり、減速Gが長引くことによる引き摺り感によって運転者に違和感を与える可能性がある。
 また、Lowブレーキ32の締結時間(解放状態から締結状態への移行に要する時間)を長くすることで、減速Gを小さくすることが可能であるが、この場合、Lowブレーキ32の摩擦材の発熱量が増加して摩擦材の耐久性が低下する可能性がある。
 反対に、Lowブレーキ32の締結時間を短くすることで摩擦材の発熱量を低下させることが可能であるが、単位時間当たりのエンジン回転速度の変動が大きくなり、運転者の意図しないショックが生じて運転性が悪化する可能性がある。
 そこで、本実施形態では以下のように制御している。図5は変速機コントローラ12が実行する制御のうち、マニュアルモード時に変速機コントローラ12からエンジンコントローラ13へ指令を出力する制御の内容を示したフローチャートである。したがって、本フローチャート以外に、変速機コントローラ12から油圧制御回路11に指令を出力するフローチャートがあり、本フローチャートとは別に実行されている。なお、これらのフローチャートは一定時間(例えば、10msec)毎に繰り返し実行される。
 ステップS1において変速機コントローラ12は、変速機4がマニュアルモードであるか否かを判定する。変速機コントローラ12は、例えば、セレクトレバー45がMレンジにある場合又はパドルスイッチ48が操作された場合にマニュアルモードであると判定する。マニュアルモードであると判定されると処理がステップS2へ進み、マニュアルモードでないと判定されると処理が終了する。
 ステップS2において変速機コントローラ12は、運転者からのダウンシフト指示が入力されたか否かを判定する。変速機コントローラ12は、例えば、セレクトレバー45又はパドルスイッチ48がダウンシフト側に操作された場合、ダウンシフト指示が入力されたと判定する。ダウンシフト指示が入力されたと判定されると処理がステップS3へ進み、ダウンシフト指示が入力されていないと判定されると処理が終了する。
 ステップS3において変速機コントローラ12は、副変速機構30の2→1変速が必要であるか否かを判定する。変速機コントローラ12は、例えば、図4に示すマニュアルモード時の変速マップ上で動作点が2-1DOWN線を跨ぐことになる変速、すなわちM4速からM3速への変速指示が入力された場合、副変速機構30の2→1変速が必要であると判定する。副変速機構30の2→1変速が必要であると判定されると処理がステップS4へ進み、副変速機構30の2→1変速が必要でないと判定されると処理が終了する。
 ステップS4において変速機コントローラ12は、パワーOFFであるか否かを判定する。変速機コントローラ12は、運転者がアクセルペダルを踏み込んでいない状態である車両のコースト走行時にパワーOFFであると判定する。なお、パワーOFFであることは、アクセルペダルを踏み込んでいるが、その踏み込み量が比較的小さいため、実質的にはコースト走行となる走行状態を含んでいてもよい。パワーOFFであると判定されると処理がステップS5へ進み、パワーOFFでないと判定されると処理が終了する。
 ステップS5において変速機コントローラ12は、ダウンシフト指示から所定のディレイ時間が経過したか否かを判定する。変速機コントローラ12は、例えば、ステップS2においてダウンシフト指示が入力されたと判定された場合にカウントを開始するタイマを備え、タイマ値が所定の値に達した場合、ダウンシフト指示から所定のディレイ時間が経過したと判定する。所定のディレイ時間は、ダウンシフト指示が入力されてから実際にバリエータ20の変速が開始されるまでの応答遅れを考慮して設定される微小時間である。ダウンシフト指示から所定のディレイ時間が経過したと判定されると処理がステップS6へ進み、ディレイ時間が経過していないと判定されると処理が終了する。
 ステップS6において変速機コントローラ12は、エンジンコントローラ13に対しエンジン1のトルクを増大させるトルクアップ要求を出力する。エンジンコントローラ13は、エンジン1の吸気量及び燃料噴射量を増大させることでトルクアップを行う。エンジン1のトルク増大量は、Lowブレーキ32の締結に際して摩擦材の耐久性の低下を抑制できる程度の値に設定される。
 トルク増大前のエンジントルクは負の値であるので、変速機コントローラ12は、トルク要求値を所定のショック防止上昇率で増加させる。これにより、エンジン1のトルク要求値が急激に上昇して、Lowブレーキ32の締結時に車両に加速Gが生じることを防止できる。
 ステップS7において変速機コントローラ12は、副変速機構30の2→1変速が終了したか否かを判定する。変速機コントローラ12は、副変速機構30のHighクラッチ33(解放側摩擦要素)とLowブレーキ32(締結側摩擦要素)との掛け替えが終了した(終了フェーズが完了した)時、副変速機構30の2→1変速が終了したと判定する。副変速機構30の2→1変速が終了したと判定されると処理がステップS8へ進み、副変速機構30の2→1変速が終了していないと判定されると処理がステップS6へ戻る。
 ステップS8において変速機コントローラ12は、ステップS6においてエンジンコントローラ13に対して出力したトルクアップ要求を解除する。このとき、変速機コントローラ12は、トルク要求値をトルクアップ前のエンジントルクまで所定のショック防止減少率で低下させる。トルク要求値が所定のショック防止減少率で低下することにより、エンジントルクが急激に低下することによる減速Gの発生を防止することができる。
 以上の処理をまとめると、変速機コントローラ12は、マニュアルモードにおいてパワーOFFダウンシフトが行われる場合であって、副変速機構30のダウンシフトが必要な場合には、バリエータ変速の開始時から協調変速の終了時点までエンジントルクを増大させる。
 図6は、マニュアルモードにおけるパワーOFFダウンシフト時の様子を示したタイムチャートである。
 時刻t1において、マニュアルモードで走行中にセレクトレバー45又はパドルスイッチ48が操作されてセレクト変速段がM4速からM3速に変更されると、M3速に対応する到達スルー変速比DRatioに基づいて決定された目標スルー変速比tRatioにスルー変速比Ratioが追従するように、バリエータ20の変速比vRatioがLow側に変化する。これにより、スルー変速比Ratioが変化してエンジン回転速度がM3速に対応するエンジン回転速度である到達回転速度まで上昇する。
 また、時刻t1において、副変速機構30の変速フェーズが、副変速機構30のダウンシフトの準備を開始する準備フェーズに移行する。準備フェーズでは、Lowブレーキ32の締結及びHighクラッチ33の解放を準備する。
 時刻t1から所定のディレイ時間が経過すると、トルクアップ要求が出力され、トルク要求値が所定のショック防止上昇率で上昇する。これに伴って、エンジントルクもトルク要求値に追従するように徐々に上昇する。
 トルクアップ要求は所定のディレイ時間が経過してから出力されるので、ダウンシフト指示が入力されてから実際にバリエータ20の変速が開始されるまでの応答遅れがあった場合に、車両の減速Gが低下して加速感が生じることによって運転者に違和感を与えることを防止することができる。
 さらに、トルク要求値は所定のショック防止上昇率で上昇させるので、バリエータ変速によってダウンシフト中であるにもかかわらず車両の加速感が生じて運転者に違和感を与えることを防止することができる。
 その後、スルー変速比Ratioが到達スルー変速比DRatioに達してバリエータ変速が完了する。これにより、ダウンシフトが完了し、運転者の変速指示通りのセレクト変速段(M3速)が実現される。
 時刻t2において、副変速機構30の変速フェーズが、締結側のLowブレーキ32と解放側のHighクラッチ33とでトルクの架け替えを行うトルクフェーズに移行する。これにより、Highクラッチ33への供給油圧が低下するとともにLowブレーキ32への供給油圧が上昇する。
 このとき、トルクアップ要求によってエンジントルクが増大しているので、Lowブレーキ32が締結する際に、Lowブレーキ32でバリエータ20側の回転速度を上昇させることによるイナーシャの発生を抑制して、車両の減速Gが増大することを抑制することができる。
 時刻t3において、副変速機構30の変速フェーズが、副変速機構30とバリエータ20とを変速するイナーシャフェーズに移行する。このイナーシャフェーズでは、副変速機構30を2速から1速にダウンシフトさせると同時に、バリエータ20の変速比vRatioを変速比小側に変速させる協調変速が行われる。これにより、Highクラッチ33が徐々に解放されるとともにLowブレーキ32が徐々に締結されて、副変速機構30の変速段が2速から1速へと徐々に移行する。
 このときもトルクフェーズと同様に、トルクアップ要求によってエンジントルクが増大しているので、Lowブレーキ32の締結が進行しても、それによるイナーシャの発生が抑制されて、車両の減速Gの増大を抑制することができる。
 時刻t4において、副変速機構30の変速フェーズが終了フェーズに移行する。
 時刻t5において、協調変速が終了すると、トルクアップ要求が解除され、トルク要求値がトルクアップ前のエンジントルクまで所定のショック防止減少率で低下する。これに伴って、エンジントルクもトルク要求値に追従するように徐々に低下する。
 トルク要求値は所定のショック防止減少率で低下させるので、ダウンシフトが完了しているにもかかわらず車両の減速感が生じて運転者に違和感を与えることを防止することができる。
 これにより、マニュアルモードにおけるパワーOFFダウンシフト時の処理が終了する。
 以上のように本実施形態では、マニュアルモードにおけるパワーOFFダウンシフト時であって協調変速中に、エンジントルクをダウンシフト指示が判定される前のトルクより増大させるので、協調変速時に副変速機構30のLowブレーキ32が協調変速前後の回転速度差を吸収することによる減速Gの発生を抑え、意図しない引き摺り感の発生を抑制することができる。さらに、減速Gの発生が抑制されることにより、協調変速時間を短縮できるとともに、摩擦材の耐力の低下を防止することができる。
 さらに、エンジン1のトルクアップを、バリエータ変速が開始されてから協調変速が終了するまでの間行うので、協調変速が行われている間により確実に減速Gの発生を抑えることができ、意図しない引き摺り感の発生を抑制することができる。
 さらに、運転者によって選択されたセレクト変速段が、変速指示前の副変速機構30の変速段で実現可能な最もLow側の変速段である場合、つまり、M4速からM3速へのダウンシフト指示があった場合に副変速機構30の2→1変速が必要であると判定され、この場合にエンジントルクを増大させるので、バリエータ変速の直後に協調変速が行わることでバリエータ変速時の減速感が協調変速時まで継続することによって引き摺り感が生じて運転者に違和感を与えることを防止することができる。
 さらに、変速機コントローラ12は、運転者からのダウンシフト指示が入力されてから所定のディレイ時間後にトルクを増大させるので、ダウンシフト指示が入力されてから実際にバリエータ20の変速が開始されるまでの応答遅れがあったとしても、車両の減速Gが低下して加速感が生じることによって運転者に違和感を与えることを防止することができる。
 さらに、変速機コントローラ12は、トルク要求値を所定のショック防止上昇率で増大させるので、バリエータ変速によってダウンシフト中であるにもかかわらず車両の加速感が生じることによって運転者に違和感を与えることを防止することができる。
 さらに、変速機コントローラ12は、トルク要求値を所定のショック防止減少率で低下させるので、ダウンシフトが完了しているにもかかわらず車両の減速感が生じることによって運転者に違和感を与えることを防止することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例を示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上記実施形態では、バリエータ20としてベルト式無段変速機構を備えているが、バリエータ20は、Vベルト23の代わりにチェーンベルトがプーリ21、22の間に掛け回される無段変速機構であってもよい。
 また、動力源としてエンジン1を備えているが、動力源はエンジン1にモータを組み合わせたもの、又は、モータ単体であってもよい。
 本願は2012年10月15日に日本国特許庁に出願された特願2012-227840に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (7)

  1.  車両に搭載されて動力源の出力回転を変速し伝達する無段変速機であって、
     変速比を無段階に変化させることができるバリエータと、
     前記バリエータに対して直列に設けられる有段の副変速機構と、
     運転者からの変速指示が判定されると、予め設定されている複数のセレクト変速段から前記変速指示に対応した一つを選択し、選択されたセレクト変速段に対応する変速比を前記バリエータ及び前記副変速機構の全体の変速比であるスルー変速比の目標値として設定する目標値設定手段と、
     前記変速指示がダウンシフトであって前記副変速機構の変速条件が成立する場合、スルー変速比が前記目標値となるように前記バリエータをダウンシフトさせるバリエータ変速と、前記バリエータのダウンシフト直後に前記副変速機構をダウンシフトさせながらスルー変速比を維持させるように前記バリエータをアップシフトさせる協調変速と、を行う変速制御手段と、
     前記車両がコースト走行時である場合、前記協調変速中に、前記動力源から前記無段変速機へ入力されるトルクを、前記ダウンシフト指示の判定前より増大させるトルク増大手段と、
    を備える無段変速機。
  2.  請求項1に記載の無段変速機であって、
     前記トルク増大手段は、前記バリエータ変速が開始されてから前記協調変速が終了するまでの間、トルクを増大させる、
    無段変速機。
  3.  請求項1又は請求項2に記載の無段変速機であって、
     前記副変速機構の変速条件は、運転者によって選択されたセレクト変速段が、変速指示前の前記副変速機構の変速段で実現可能な最もLow側の変速段である場合に成立する、
    無段変速機。
  4.  請求項1から請求項3までのいずれか一項に記載の無段変速機であって、
     前記トルク増大手段は、運転者からのダウンシフト指示が判定されてから所定時間経過後にトルクを増大させる、
    無段変速機。
  5.  請求項1から請求項4までのいずれか一項に記載の無段変速機であって、
     前記トルク増大手段は、トルクの増大によるショックの発生を防止可能なショック防止上昇率でトルクを増大させる、
    無段変速機。
  6.  請求項1から請求項5までのいずれか一項に記載の無段変速機であって、
     前記トルク増大手段は、トルクの低下によるショックの発生を防止可能なショック防止減少率で、増大させたトルクを低下させる、
    無段変速機。
  7.  変速比を無段階に変化させることができるバリエータと、前記バリエータに対して直列に設けられる有段の副変速機構と、を備え、車両に搭載されて動力源の出力回転を変速し伝達する無段変速機の制御方法であって、
     運転者からの変速指示が判定されると、予め設定されている複数のセレクト変速段から前記変速指示に対応した一つを選択し、選択されたセレクト変速段に対応する変速比を前記バリエータ及び前記副変速機構の全体の変速比であるスルー変速比の目標値として設定し、
     前記変速指示がダウンシフトであって前記副変速機構の変速条件が成立する場合、スルー変速比が前記目標値となるように前記バリエータをダウンシフトさせるバリエータ変速と、前記バリエータのダウンシフト直後に前記副変速機構をダウンシフトさせながらスルー変速比を維持させるように前記バリエータをアップシフトさせる協調変速と、を行い、
     前記車両がコースト走行時である場合、前記協調変速中に、前記動力源から前記無段変速機へ入力されるトルクを、前記ダウンシフト指示の判定前より増大させる、
    無段変速機の制御方法。
PCT/JP2013/077808 2012-10-15 2013-10-11 無段変速機及びその制御方法 WO2014061601A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13846525.7A EP2907714B1 (en) 2012-10-15 2013-10-11 Continuously variable transmission and control method therefor
CN201380050287.2A CN104684777B (zh) 2012-10-15 2013-10-11 无级变速器及其控制方法
US14/430,367 US9421978B2 (en) 2012-10-15 2013-10-11 Continuously variable transmission and control method therefor
KR1020157006596A KR101633592B1 (ko) 2012-10-15 2013-10-11 무단 변속기 및 그 제어 방법
JP2014514662A JP5736508B2 (ja) 2012-10-15 2013-10-11 無段変速機及びその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-227840 2012-10-15
JP2012227840 2012-10-15

Publications (1)

Publication Number Publication Date
WO2014061601A1 true WO2014061601A1 (ja) 2014-04-24

Family

ID=50488167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077808 WO2014061601A1 (ja) 2012-10-15 2013-10-11 無段変速機及びその制御方法

Country Status (6)

Country Link
US (1) US9421978B2 (ja)
EP (1) EP2907714B1 (ja)
JP (1) JP5736508B2 (ja)
KR (1) KR101633592B1 (ja)
CN (1) CN104684777B (ja)
WO (1) WO2014061601A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155688A (ja) * 2016-03-03 2017-09-07 マツダ株式会社 エンジンの制御装置
CN107709841A (zh) * 2015-06-23 2018-02-16 加特可株式会社 变速器及变速器的控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6476025B2 (ja) * 2015-03-17 2019-02-27 ジヤトコ株式会社 車両制御装置、及びその制御方法
US9545929B1 (en) * 2015-10-19 2017-01-17 GM Global Technology Operations LLC Method and apparatus to control a continuously variable transmission
JP6692935B2 (ja) 2017-02-03 2020-05-13 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
US11365805B2 (en) * 2017-08-09 2022-06-21 Jatco Ltd Control device for vehicle and control method for vehicle
US10518778B2 (en) * 2017-10-24 2019-12-31 GM Global Technology Operations LLC Control system for a continuously variable transmission in a vehicle propulsion system
US10900563B2 (en) * 2018-06-14 2021-01-26 Kawasaki Jukogyo Kabushiki Kaisha Utility vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322015A (ja) * 1992-05-18 1993-12-07 Mazda Motor Corp 自動変速機の変速制御装置
JPH09229180A (ja) * 1996-02-27 1997-09-02 Toyota Motor Corp 自動変速機の制御装置
JPH1047100A (ja) * 1996-07-30 1998-02-17 Toyota Motor Corp エンジンおよび自動変速機を備えた車両の制御装置
JPH10304514A (ja) * 1997-04-24 1998-11-13 Toyota Motor Corp ハイブリッド車両の駆動力制御装置
JP2004340202A (ja) * 2003-05-14 2004-12-02 Toyota Motor Corp 車両用自動変速機の変速制御装置
JP2006015873A (ja) * 2004-07-01 2006-01-19 Aisin Aw Co Ltd 自動変速機の変速制御装置
JP2012057710A (ja) 2010-09-08 2012-03-22 Jatco Ltd 無段変速機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1002245C2 (nl) * 1996-02-05 1997-08-07 Doornes Transmissie Bv Continu variabele transmissie.
WO2004085883A1 (ja) 1996-02-27 2004-10-07 Atsushi Tabata 自動変速機の制御装置
US8585544B2 (en) * 2009-03-09 2013-11-19 Toyota Jidosha Kabushiki Kaisha Drive force control system
JP4923080B2 (ja) * 2009-03-27 2012-04-25 ジヤトコ株式会社 無段変速機及びその制御方法
JP4779030B2 (ja) * 2009-03-27 2011-09-21 ジヤトコ株式会社 無段変速機及びその制御方法
JP4914467B2 (ja) * 2009-07-17 2012-04-11 ジヤトコ株式会社 無段変速機及びその制御方法
JP5526006B2 (ja) * 2010-11-25 2014-06-18 ジヤトコ株式会社 コーストストップ車両及びコーストストップ車両の制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322015A (ja) * 1992-05-18 1993-12-07 Mazda Motor Corp 自動変速機の変速制御装置
JPH09229180A (ja) * 1996-02-27 1997-09-02 Toyota Motor Corp 自動変速機の制御装置
JPH1047100A (ja) * 1996-07-30 1998-02-17 Toyota Motor Corp エンジンおよび自動変速機を備えた車両の制御装置
JPH10304514A (ja) * 1997-04-24 1998-11-13 Toyota Motor Corp ハイブリッド車両の駆動力制御装置
JP2004340202A (ja) * 2003-05-14 2004-12-02 Toyota Motor Corp 車両用自動変速機の変速制御装置
JP2006015873A (ja) * 2004-07-01 2006-01-19 Aisin Aw Co Ltd 自動変速機の変速制御装置
JP2012057710A (ja) 2010-09-08 2012-03-22 Jatco Ltd 無段変速機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709841A (zh) * 2015-06-23 2018-02-16 加特可株式会社 变速器及变速器的控制方法
KR20180018709A (ko) * 2015-06-23 2018-02-21 쟈트코 가부시키가이샤 변속기 및 변속기의 제어 방법
JPWO2016208438A1 (ja) * 2015-06-23 2018-04-05 ジヤトコ株式会社 変速機及び変速機の制御方法
EP3315823A4 (en) * 2015-06-23 2018-07-25 JATCO Ltd Transmission and transmission control method
KR101992069B1 (ko) 2015-06-23 2019-06-21 쟈트코 가부시키가이샤 변속기 및 변속기의 제어 방법
CN107709841B (zh) * 2015-06-23 2019-08-02 加特可株式会社 变速器及变速器的控制方法
JP2017155688A (ja) * 2016-03-03 2017-09-07 マツダ株式会社 エンジンの制御装置

Also Published As

Publication number Publication date
US9421978B2 (en) 2016-08-23
JPWO2014061601A1 (ja) 2016-09-05
EP2907714B1 (en) 2017-09-06
KR20150046123A (ko) 2015-04-29
JP5736508B2 (ja) 2015-06-17
CN104684777A (zh) 2015-06-03
EP2907714A4 (en) 2016-11-30
CN104684777B (zh) 2017-03-08
US20150239476A1 (en) 2015-08-27
KR101633592B1 (ko) 2016-06-24
EP2907714A1 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5055414B2 (ja) 無段変速機
JP4660584B2 (ja) 無段変速機及びその変速制御方法
JP5736508B2 (ja) 無段変速機及びその制御方法
JP4660583B2 (ja) 無段変速機及びその変速制御方法
JP5244875B2 (ja) 無段変速機及びその制御方法
JP2010078030A (ja) 無段変速機及びその変速制御方法
EP2275710B1 (en) Control device of and control method for vehicle continuously variable transmission
JP5669779B2 (ja) 無段変速機の変速制御装置
JP5849102B2 (ja) 無段変速機及びその制御方法
JP6034505B2 (ja) 副変速機付き無段変速機の制御装置
WO2014021117A1 (ja) 車両用の自動変速機
WO2015053072A1 (ja) 副変速機付き無段変速機の制御装置
WO2014061563A1 (ja) 無段変速機及びその制御方法
WO2014021118A1 (ja) 車両用の自動変速機
JP5977271B2 (ja) 無段変速機及びその制御方法
JP2019158024A (ja) 車両の運転制御装置
WO2016152327A1 (ja) 無段変速機の制御装置、及びその制御方法
JP6876135B2 (ja) 無段変速機の制御装置及び無段変速機の制御方法
JP5292494B2 (ja) 無段変速機
JP2018105443A (ja) 副変速機付無段変速機の制御装置および制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014514662

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006596

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013846525

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14430367

Country of ref document: US

Ref document number: 2013846525

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE