WO2014061343A1 - 燃料ガス噴射弁、デュアルフューエルガスエンジンおよび燃料ガス噴射方法 - Google Patents

燃料ガス噴射弁、デュアルフューエルガスエンジンおよび燃料ガス噴射方法 Download PDF

Info

Publication number
WO2014061343A1
WO2014061343A1 PCT/JP2013/071980 JP2013071980W WO2014061343A1 WO 2014061343 A1 WO2014061343 A1 WO 2014061343A1 JP 2013071980 W JP2013071980 W JP 2013071980W WO 2014061343 A1 WO2014061343 A1 WO 2014061343A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
needle valve
valve
fuel
injection
Prior art date
Application number
PCT/JP2013/071980
Other languages
English (en)
French (fr)
Inventor
石田 裕幸
晃洋 三柳
平岡 直大
繁樹 田中
壮太 渡邉
耕之 駒田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP13847809.4A priority Critical patent/EP2857668A4/en
Priority to KR1020157000209A priority patent/KR101677862B1/ko
Priority to US14/414,093 priority patent/US20150211464A1/en
Priority to CN201380032587.8A priority patent/CN104428522B/zh
Publication of WO2014061343A1 publication Critical patent/WO2014061343A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M67/00Apparatus in which fuel-injection is effected by means of high-pressure gas, the gas carrying the fuel into working cylinders of the engine, e.g. air-injection type
    • F02M67/14Apparatus in which fuel-injection is effected by means of high-pressure gas, the gas carrying the fuel into working cylinders of the engine, e.g. air-injection type characterised by provisions for injecting different fuels, e.g. main fuel and readily self-igniting starting fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0257Details of the valve closing elements, e.g. valve seats, stems or arrangement of flow passages
    • F02M21/026Lift valves, i.e. stem operated valves
    • F02M21/0263Inwardly opening single or multi nozzle valves, e.g. needle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/024Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0689Injectors for in-cylinder direct injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0275Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M43/00Fuel-injection apparatus operating simultaneously on two or more fuels, or on a liquid fuel and another liquid, e.g. the other liquid being an anti-knock additive
    • F02M43/04Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/04Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure using fluid, other than fuel, for injection-valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1893Details of valve member ends not covered by groups F02M61/1866 - F02M61/188
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0028Valves characterised by the valve actuating means hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • F02D41/3047Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug said means being a secondary injection of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/44Valves, e.g. injectors, with valve bodies arranged side-by-side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/46Valves, e.g. injectors, with concentric valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1813Discharge orifices having different orientations with respect to valve member direction of movement, e.g. orientations being such that fuel jets emerging from discharge orifices collide with each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel gas injection valve, a dual fuel gas engine and a fuel gas injection method applied to a (dual fuel two cycle) gas engine capable of burning both fuel oil and fuel gas by high pressure injection.
  • a fuel gas such as natural gas is used as a main fuel
  • a fuel oil such as light oil having a good compression ignition property is used as a pilot fuel
  • a fuel oil such as light oil is injected into a combustion chamber under a high temperature atmosphere to cause self ignition.
  • Gas engines are known which burn fuel gas which is the main fuel.
  • Patent Document 1 discloses a dual-fuel diesel engine in which a low cetane number fuel having poor compression ignition properties such as fuel gas is used as a main fuel and a fuel oil having good compression ignition properties is used as a pilot fuel.
  • the engine of Patent Document 1 includes a fuel gas injection valve and a pilot fuel injection valve provided in a cylinder head, and injects fuel gas and pilot fuel from the fuel gas injection valve and the pilot fuel injection valve toward the combustion chamber.
  • the pilot fuel fuel oil
  • the main fuel fuel gas
  • Patent Document 2 discloses a gas engine which uses a fuel gas having poor compression ignition properties as a main fuel and diesel fuel such as light oil or kerosene having good compression ignition properties as a pilot fuel.
  • the gas engine of Patent Document 2 includes an intake port and a diesel fuel injection device provided in a cylinder head, and a fuel gas injection device provided in a cylinder peripheral wall. Then, air is introduced into the combustion chamber from the intake port during the intake stroke in which the piston descends, and fuel gas is injected from the fuel gas injection device into the combustion chamber at an appropriate time between the late stage of the intake stroke and the late stage of the compression stroke. It has become.
  • the diesel fuel is injected from the diesel fuel injection device into the combustion chamber at a timing when the piston rises to the vicinity of the top dead center, and the diesel fuel is self-ignited in the combustion chamber to burn the fuel gas as the main fuel. It is configured.
  • the main fuel and the pilot fuel are supplied to the combustion chamber substantially simultaneously near the top dead center, so the main fuel injected into the combustion chamber is burned immediately after being stirred. Be done. Therefore, the combustion mode of the main fuel is diffusion combustion. In the case of diffusion combustion, uniform combustion is more difficult than in the case of premixed combustion, and there is a problem that NOx (nitrogen oxide) is easily generated in a high temperature combustion region.
  • the gas engine of Patent Document 2 mentioned above is an invention made for increasing the amount of air taken into the combustion chamber. That is, although the invention of Patent Document 2 has conventionally introduced a mixture of fuel gas and air from the intake port, only the air is sucked from the intake port, and a fuel gas injection device is separately provided. Is configured as. Then, the fuel gas injection device injects the fuel gas into the combustion chamber at different timing from the suction stroke to increase the amount of air taken into the combustion chamber from the intake port, thereby improving the engine output. ing.
  • Such a patent document 2 does not disclose any technical idea of suppressing the generation of NOx (nitrogen oxide) by promoting the pre-mixing.
  • the present invention is an invention made in view of the problems of the prior art as described above, and it is possible to suppress generation of NOx (nitrogen oxide) by promoting premixing of fuel gas and air.
  • An object of the present invention is to provide an injection valve, a dual fuel gas engine and a fuel gas injection method.
  • a fuel gas injection valve according to the present invention is a fuel gas injection valve applied to a dual fuel gas engine capable of burning both a fuel oil and a fuel gas by high pressure injection, and the dual fuel gas engine is configured When the first piston, which jets the fuel gas serving as the premixed fuel, is positioned approximately 5 ° before the top dead center, when the piston is positioned 40.degree. To 100.degree.
  • a holder provided with a second injection hole for injecting fuel gas to be diffused fuel, and reciprocably slidably inside the holder along the axial direction to open the first injection hole
  • a first needle valve which closes the second injection hole and opens the second injection hole when the first injection hole is closed, and a needle valve seat provided in the holder
  • the sealing surface that contacts is provided at the tip, and A through hole through which the first needle valve is slidably inserted is provided in an axial direction along the axial direction, and the seal surface reciprocates in the axial direction, and the sealing surface is the needle
  • the flow of fuel gas to the first injection hole or the second injection hole is shut off when the valve seat is in contact, and the first seal face is separated from the needle valve seat.
  • a second needle valve for allowing the fuel gas to flow to the second injection hole or the second injection hole.
  • the fuel gas injection method according to the present invention is a fuel gas injection method applied to a dual fuel gas engine capable of burning both fuel oil and fuel gas by high pressure injection, wherein the dual fuel gas engine
  • the piston that makes up When the piston that makes up is positioned at 40 ° to 100 ° before top dead center, it ejects the fuel gas that is premixed fuel, and when it is located approximately 5 ° before top dead center, it becomes diffusion fuel Erupt fuel gas.
  • the premixing of the fuel gas and the air can be promoted, and the generation of NOx (nitrogen oxide) can be suppressed.
  • the first needle valve be a slide valve that reciprocates along the axial direction in the holder by the in-cylinder pressure of the dual fuel gas engine.
  • the first needle valve (slide valve) moves to the opposite side to the inside of the cylinder only by the in-cylinder pressure acting on the first needle valve (slide valve). become.
  • components for moving the first needle valve (slide valve) to the side opposite to the inside of the cylinder for example, the first solenoid valve 41, the first flow path switching valve 42, and the first shown in FIG.
  • the hydraulic oil pipe 43 of 1 can be omitted, and the configuration can be simplified.
  • an oil reservoir is respectively provided in a portion of the nozzle where the second needle valve slides and the through hole, and a portion where the second needle valve slides. It is further preferable that the provided oil reservoir and the oil reservoir provided in the through hole communicate with each other through a communication hole provided in the nozzle along the radial direction.
  • lubricating oil can be supplied to the sliding portion, and abrasion and sticking of the sliding portion can be prevented.
  • a fuel gas injection valve is a fuel gas injection valve applied to a dual fuel gas engine capable of burning both a fuel oil and a fuel gas by high pressure injection, and the dual fuel gas engine is configured
  • a holder provided with a second injection hole for spouting a fuel gas which becomes diffusion fuel when it is positioned, and reciprocably slidably along the axial direction in the holder to open the first injection hole
  • a sealing surface is provided at the tip that contacts the valve seat, And reciprocate along the axial direction in the holder, and block the flow of fuel gas to the first injection hole and the second injection hole when the seal surface is in contact with the needle
  • the premixing of the fuel gas and the air can be promoted, and the generation of NOx (nitrogen oxide) can be suppressed.
  • NOx nitrogen oxide
  • the fuel gas injection valve according to the present invention for example, as shown in FIG. 8, it is not necessary to manufacture the first needle valve and the second needle valve as concentric ones. The process can be simplified and the manufacturing cost can be reduced.
  • an oil sump is provided at a portion of the nozzle where the first needle valve slides and a portion where the second needle valve slides.
  • lubricating oil can be supplied to the sliding portion, and abrasion and sticking of the sliding portion can be prevented.
  • a dual fuel gas engine according to the present invention includes any one of the fuel gas injection valves described above.
  • the fuel gas injection valve can promote the premixing of the fuel gas and the air, and can suppress the generation of NOx (nitrogen oxide).
  • NOx nitrogen oxide
  • the fuel gas injection valve can promote the premixing of the fuel gas and the air, and can suppress the generation of NOx (nitrogen oxide).
  • NOx nitrogen oxide
  • emitted from the dual fuel gas engine can be reduced, and the performance of the dual fuel gas engine can be improved.
  • the fuel gas injection valve of the present invention it is possible to promote the premixing of the fuel gas and the air, and it is possible to suppress the generation of NOx (nitrogen oxide).
  • FIG. 7B is a cross-sectional view showing a state where the piston is positioned at about 5 ° before top dead center.
  • FIG. 6B is a cross-sectional view showing a state in which the piston is positioned at 4 ° before top dead center to 40 ° after top dead center.
  • the upper half is a view for explaining the operation of the fuel gas injection valve according to the first embodiment of the present invention
  • the lower half is opening and closing of a first needle valve, opening and closing of a second needle valve
  • It is a graph which shows the relationship between in-cylinder pressure and a crank angle.
  • the upper half shows the operation of the fuel gas injection valve according to the second embodiment of the present invention
  • the lower half shows the opening and closing of the needle valve, the opening and closing of the slide valve, the in-cylinder pressure, and the crank
  • It is a chart showing a relation with an angle.
  • It is a figure showing the section and the hydraulic system of the fuel gas injection valve concerning a 4th embodiment of the present invention.
  • FIGS. 1 to 5 a first embodiment of a fuel gas injection valve according to the present invention will be described with reference to FIGS. 1 to 5.
  • the scope of the present invention is not limited to the following embodiments. Unless stated otherwise, the dimensions, materials, shapes, relative arrangements, etc. of components described in the following embodiments are not intended to limit the scope of the present invention alone, but merely illustrative examples.
  • FIG. 1 is a schematic view for explaining the basic configuration of a gas engine to which a fuel gas injection valve according to the present invention is applied (dual fuel two-stroke cycle), wherein (a) is a piston about 5 ° before top dead center.
  • FIG. 7B is a cross-sectional view showing a state where the piston is positioned at about 5 ° before top dead center.
  • FIG. 2 is a schematic view for explaining the basic configuration of a gas engine to which the fuel gas injection valve according to the present invention is applied, wherein (a) is a piston from 4 ° before top dead center to 40 ° after top dead center
  • FIG. 7B is a cross-sectional view showing a state in which the piston is positioned at 4 ° before top dead center to 40 ° after top dead center.
  • FIG. 1 is a schematic view for explaining the basic configuration of a gas engine to which a fuel gas injection valve according to the present invention is applied (dual fuel two-stroke cycle), wherein (a) is a piston about 5 ° before
  • FIG. 3 is a schematic view for explaining the basic configuration of a gas engine to which the fuel gas injection valve according to the present invention is applied, where (a) is a piston located at 40 ° to 100 ° before top dead center. (B) is a top view and a cross-sectional view showing a state where the piston is positioned at about 5 ° before the top dead center, and (c) a piston is at 4 ° to above the top dead center It is a top view and sectional drawing which show the state located at 40 degrees after a dead center.
  • FIG. 4 is a view showing a cross section and a hydraulic system of the fuel gas injection valve according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the operation of the fuel gas injection valve according to the first embodiment of the present invention, the upper half of which shows the opening and closing of the first needle valve and the second needle valve. It is a chart showing the relation between the opening and closing of the cylinder, the in-cylinder pressure and the crank angle.
  • a gas engine 1 to which a fuel gas injection valve according to the present invention is applied includes a cylindrical cylinder 2, a cylinder head 3 coupled to the upper end side of the cylinder 2, and a cylinder And a piston 4 accommodated in the inside of 2 in a freely retractable manner.
  • a combustion chamber c is defined by the peripheral wall 2 a of the cylinder 2, the cylinder head 3 and the top surface 4 a of the piston 4.
  • symbol 5 in the figure has shown the piston ring.
  • the scavenging port 6 is opened in the peripheral wall 2 a on the lower side of the cylinder 2.
  • the scavenging port 6 is formed at a position above the top surface 4a (indicated by a two-dot chain line in the drawing) of the piston 4 located near the bottom dead center, and the piston 4 is located near the bottom dead center Occasionally, air is supplied from the scavenging port 6 to the combustion chamber c.
  • an exhaust port is opened, and an exhaust valve 7 for opening and closing the exhaust port is provided at the top of the cylinder head 3, and an exhaust valve 7 for opening and closing the exhaust port is provided.
  • the exhaust valve 7 is opened until the piston 4 reaches a position of about 100 ° before top dead center during a scavenging stroke in which the piston 4 is in a rising stroke. Then, the exhaust gas in the previous stroke remaining in the combustion chamber c is scavenged by the air supplied from the scavenging port 6 to the combustion chamber c.
  • the cylinder head 3 is provided with a fuel gas injection valve (fuel gas injection device) 8 for injecting the fuel gas 8a to the combustion chamber c, and a fuel oil for injecting the fuel oil 10a having good compression ignition performance to the combustion chamber c.
  • An injection valve (fuel oil injection device) 10 is provided.
  • the fuel gas injection valve 8 and the fuel oil injection valve 10 are provided one by one at positions 180 ° apart in the circumferential direction with the cylinder center o as the rotation center.
  • the fuel gas injection valve 8 and the fuel oil injection valve 10 are each provided with four injection holes. Further, in the present invention, the number of installed fuel gas injection valves 8 and the number of fuel oil injection valves 10 are not particularly limited, and may be one, for example. However, in the present embodiment in which the exhaust valve 7 is provided at the top of the cylinder head 3, a plurality of fuel gas injection valves 8 and fuel oil injection valves 10 are arranged at equal intervals in the circumferential direction. Is preferred.
  • the fuel gas injection valve 8 and the fuel oil injection valve 10 are connected to an engine control unit (ECU) 12 via a cable 14. Further, the ECU 12 is connected to a crank angle sensor 15 that detects the rotation angle of the crankshaft 17 via a cable 16. The phase of the piston 4 is detected by receiving a signal applied to the rotation angle of the crankshaft 17 from the crank angle sensor 15. Further, the fuel gas injection valve 8 and the fuel oil injection valve 10 inject the fuel gas 8a and the fuel oil 10a to the combustion chamber c at a predetermined timing based on a signal transmitted from the ECU 12.
  • ECU engine control unit
  • the ECU 12 constitutes the fuel gas injection timing control means in the present embodiment, and when the piston 4 is positioned at 4 ° before top dead center to 40 ° after top dead center, the fuel oil injection valve 10
  • the ignition timing control means in the present embodiment for igniting the fuel gas of
  • the gas engine 1 injects the fuel gas 8b when the piston 4 is positioned at 40 ° to 100 ° before the top dead center, and the piston 4 is positioned at about 5 ° before the top dead center. It is comprised so that fuel gas 8a and fuel oil 10a may be injected at the time of doing. Therefore, when the piston 4 is positioned at 40 ° to 100 ° before top dead center, premixing of the fuel gas 8b injected with air is promoted to generate the mixture 20, which is a part of the combustion mode. Is the premix combustion. Therefore, the generation of NOx (nitrogen oxide) can be suppressed as compared with the conventional gas engine in which all of the combustion modes are diffusion combustion.
  • NOx nitrogen oxide
  • the gas engine 1 according to the present embodiment is configured only by controlling the injection timing of the fuel gas injection valve 8 by the fuel gas injection timing control means configured by the ECU 12. Therefore, it is possible to easily promote pre-mixing in the existing gas engine without the need for new additional devices and the like.
  • the fuel gas injection valve 8 includes a nozzle holder 21, a nozzle 22, a first needle valve 23, a first needle valve pressing spring 24, and a second needle.
  • a valve 25 and a second needle valve pressing spring 26 are provided.
  • a first diameter expansion provided at one end (the top) of the first needle valve 23 which extends along the axial direction (vertical direction in FIG. 4) and reciprocates along the axial direction.
  • the recess 32 for slidably accommodating the portion 31 and the lower surface (bottom surface) 33 of the first expanded diameter portion 31 which extends along the radial direction (left and right direction in FIG. 4) and becomes the pressure receiving surface.
  • the first needle valve 23 is moved in the opening direction by extending in the radial direction, the first communication hole 34 for guiding the hydraulic oil for moving the needle valve 23 in the opening direction (upward in FIG. 4).
  • the second communication hole 36 for guiding the hydraulic oil pushed out by the upper surface (top surface) 35 of the first enlarged diameter portion 31 to the outside of the nozzle holder 21 is provided.
  • the hydraulic oil pushed out by the upper surface 35 of the first expanded diameter portion 31 leaks between the sliding portion, that is, the outer peripheral surface of the first expanded diameter portion 31 and the inner peripheral surface of the recess 32. Hydraulic oil.
  • the first communication hole 34 is connected via a first hydraulic oil pipe 43 to a first flow path switching valve 42 whose flow path is switched by the first solenoid valve 41.
  • the downstream end of the first hydraulic oil supply pipe 44 and the upstream end of the first hydraulic oil return pipe 45 are connected to the first flow path switching valve 42.
  • the upstream end of the first hydraulic oil supply pipe 44 is disposed inside the hydraulic oil tank 46 and in the vicinity of the bottom surface of the hydraulic oil tank 46, and in the middle of the first hydraulic oil supply pipe 44
  • the hydraulic oil pump 47 is connected.
  • the downstream end of the first hydraulic oil return pipe 45 is such that the hydraulic oil returned via the first hydraulic oil pipe 43 and the first hydraulic oil return pipe 45 is collected inside the hydraulic oil tank 46. It is arranged.
  • the nozzle 22 has a first recess 51 extending in the axial direction to accommodate the first needle valve pressing spring 24 and the second needle valve pressing spring 26, and reciprocating along the axial direction.
  • a second recess 52 slidably accommodating the second needle valve 25 and a second end provided at the other end (tip end) of the first needle valve 23 reciprocating in the axial direction
  • On the lower surface (bottom surface) 56 of the enlarged diameter portion 55 of the second needle valve 25 which extends in the radial direction and serves as a pressure receiving surface.
  • a first communication hole 57 for introducing hydraulic oil for moving the second needle valve 25 in the opening direction (upward direction in FIG.
  • the first communication hole 57 is connected via a second hydraulic oil pipe 73 to a second flow path switching valve 72 whose flow path is switched by the second solenoid valve 71.
  • the downstream end of the second hydraulic oil supply pipe 74 and the upstream end of the second hydraulic oil return pipe 75 are connected to the second flow path switching valve 72.
  • the upstream end of the second hydraulic oil supply pipe 74 is connected to an intermediate portion of the first hydraulic oil supply pipe 44 located downstream of the hydraulic oil pump 47, and the downstream end of the second hydraulic oil return pipe 75 is , And is connected to the middle of the first hydraulic oil return pipe 45.
  • the third communication hole 60 is connected to the downstream end of a fuel gas supply pipe 76 whose upstream end is connected to a fuel gas supply source (not shown).
  • the command signal for setting the first solenoid valve 41 and the second solenoid valve 71 to the energized state and the command signal for releasing the energized state of the first solenoid valve 41 and the second solenoid valve 71 are the engine control unit 12 (see FIG. It sends to the electricity supply machine 63 from FIG. 1 etc.). Based on these command signals, the first solenoid valve 41 and the second solenoid valve 71 are energized, or the first solenoid valve 41 and the second solenoid valve 71 are unenergized. ing.
  • the first needle valve 23 is provided with a first enlarged diameter portion 31 at one end in the axial direction and a second enlarged diameter portion 53 at the other end in the axial direction so that the one end is more than the center in the axial direction
  • a solid cylindrical member provided with a third enlarged diameter portion 81 on its side, and the other end (tip end) is provided with a seal surface (seat surface) 83 that abuts on the first needle valve seat 82 ing.
  • the upper surface of the third enlarged diameter portion 81 is a spring receiving surface 84 that abuts on the lower end of the first needle valve pressing spring 24.
  • the second enlarged diameter portion 53 has a through hole penetrating the second enlarged diameter portion 53 along the axial direction, that is, a communication hole 85 communicating the upper surface and the lower surface of the second enlarged diameter portion 53. Are provided along the circumferential direction.
  • the first needle valve pressing spring 24 biases the first needle valve 23 in the closing direction (biases the first needle valve seat 82 and the seal surface 83 to abut each other).
  • the needle valve 23 is biased in the closing direction.
  • the second needle valve 25 is a hollow cylindrical member in which a through hole 91 through which the first needle valve 23 is slidably inserted is provided at the center in the radial direction along the axial direction.
  • the upper surface (top surface) is a spring receiving surface 92 in contact with the lower end of the second needle valve pressing spring 26, and the other end (tip) is a sealing surface (seat in contact with the second needle valve seat 93).
  • Surface) 94 is provided.
  • the second needle valve pressing spring 26 biases the second needle valve 25 in the closing direction (biases the second needle valve seat 93 and the seal surface 94 to abut each other).
  • the second hydraulic oil return pipe 75 is in communication with the second hydraulic oil pipe 73, that is, in a state in which the hydraulic pressure of the hydraulic oil is not applied to the lower surface 56 of the enlarged diameter portion 55 of the second needle valve 25.
  • the second needle valve 25 is biased in the closing direction.
  • the operation of the fuel gas injection valve 8 will be described with reference to FIGS. 4 and 5.
  • the first hydraulic oil pipe 43 and the first hydraulic oil return pipe 45 communicate with each other, and In the state where the hydraulic oil pipe 73 and the second hydraulic oil return pipe 75 are in communication with each other, the lifts of the first needle valve 23 and the second needle valve 25 both become 0 (zero), and the first The needle valve 23 and the second needle valve 25 are both closed.
  • the solenoid valve 41 shown in FIG. 4 is energized, the flow path of the first flow path switching valve 42 is switched, and the first hydraulic oil pipe 43 and the first hydraulic oil supply pipe 44 communicate with each other.
  • the hydraulic oil which is brought into the state and guided through the first communication hole 34, acts on the lower surface 33 of the first enlarged diameter portion 31, and is shown in the second position from the left in the upper half of FIG.
  • the first needle valve 23 lifts up (moves in the opening direction), and the outer peripheral surface of the second enlarged diameter portion 53 closes the second injection hole 62.
  • the solenoid valve 71 shown in FIG. 4 is energized, the flow path of the second flow path switching valve 72 is switched, and the second hydraulic oil pipe 73 and the second hydraulic oil supply pipe 74 communicate with each other.
  • the hydraulic oil which is brought into the state and guided through the first communication hole 57, acts on the lower surface 56 of the enlarged diameter portion 55 of the second needle valve 25, and is positioned third from the left in the upper half of FIG.
  • the second needle valve 25 lifts up (moves in the opening direction), and the fuel gas introduced into the chamber 59 through the third communication hole 60 is transferred to the communication hole 85.
  • Through the first injection hole 61 and is injected from the first injection hole 61 as a premixed fuel.
  • the solenoid valve 71 shown in FIG. 4 is energized, the flow path of the second flow path switching valve 72 is switched, and the second hydraulic oil pipe 73 and the second hydraulic oil supply pipe 74 communicate with each other.
  • the working oil which is brought into the state and guided through the first communication hole 57, acts on the lower surface 56 of the enlarged diameter portion 55 of the second needle valve 25, and the fifth position from the left in the upper half of FIG.
  • the second needle valve 25 lifts up (moves in the opening direction), and the fuel gas introduced into the chamber 59 through the third communication hole 60 It is led to the injection hole 62 and injected from the second injection hole 62 as diffusion fuel.
  • the solenoid valve 41 shown in FIG. 4 since the solenoid valve 41 shown in FIG. 4 is not energized, the lift of the first needle valve 23 is 0 (zero), and the first needle valve 23 is closed.
  • FIG. 6 the state in which the second hydraulic oil pipe 73 and the second hydraulic oil return pipe 75 are in communication, that is, the state in which the first needle valve 23 and the second needle valve 25 are both closed. become.
  • the chart in the lower half of FIG. 5 shows the relationship between the opening and closing of the first needle valve 23, the opening and closing of the second needle valve 25, the in-cylinder pressure, and the crank angle.
  • the third figure from the left in the upper half of FIG. 5 corresponds to FIG. 3 (a), and the fifth figure from the left in the upper half of FIG. It is a figure corresponding to 3 (b).
  • the premixing of the fuel gas and the air can be promoted, and the generation of NOx (nitrogen oxide) can be suppressed.
  • the premixing of the fuel gas and the air can be promoted, and the generation of NOx (nitrogen oxide) can be suppressed. Since the fuel gas injection valve 8 capable of reducing fuel consumption is provided, NOx (nitrogen oxide) discharged from the gas engine 1 can be reduced, and the performance of the gas engine 1 can be improved.
  • FIG. 6 shows a cross section and a hydraulic system of a fuel gas injection valve according to a second embodiment of the present invention
  • FIG. 7 shows an operation of the fuel gas injection valve according to the second embodiment of the present invention in the upper half thereof.
  • the lower half of the figure is a chart showing the relationship between the opening and closing of the needle valve, the opening and closing of the slide valve, the in-cylinder pressure, and the crank angle.
  • the fuel gas injection valve 108 according to the present embodiment includes the nozzle holder 121, the nozzle 122, the slide valve 123, the slide valve pressing spring 124, the needle valve 125, and the needle valve pressing spring 126. And have.
  • the nozzle 122 is provided with a first recess 151 which extends in the axial direction and accommodates the slide valve pressing spring 124 and the needle valve pressing spring 126, and the needle valve 125 which reciprocates along the axial direction.
  • a second recess 152 which is accommodated movably, and a third recess 154 which accommodates the other end (tip) 153 of the slide valve 123 which reciprocates along the axial direction,
  • the first communication that leads hydraulic fluid to move the needle valve 125 in the opening direction (upward direction in FIG.
  • the first injection hole 161 leading into (see FIG. 1 etc.), and the second injection hole leading the fuel gas introduced into the chamber 159 and the third recess 154 into the combustion chamber c during diffusion fuel injection And 162 are provided.
  • the first communication hole 157 is connected via a hydraulic oil pipe 173 to a flow path switching valve 172 whose flow path is switched by the solenoid valve 171.
  • the downstream end of the hydraulic oil supply pipe 174 and the upstream end of the hydraulic oil return pipe 175 are connected to the flow path switching valve 172.
  • the upstream end of the hydraulic oil supply pipe 174 is disposed inside the hydraulic oil tank 146 and in the vicinity of the bottom surface of the hydraulic oil tank 146, and the hydraulic oil pump 147 is disposed in the middle of the hydraulic oil supply pipe 174. It is connected.
  • the downstream end of the hydraulic oil return pipe 175 is disposed such that the hydraulic oil returned via the hydraulic oil pipe 173 and the hydraulic oil return pipe 175 is collected inside the hydraulic oil tank 146.
  • the third communication hole 160 is connected to the downstream end of a fuel gas supply pipe 176 whose upstream end is connected to a fuel gas supply source (not shown).
  • a command signal for bringing the solenoid valve 171 into the energized state and a command signal for canceling the energized state of the solenoid valve 171 are sent from the engine control unit 12 (see FIG. 1 etc.) to the electric generator 163.
  • the solenoid valve 171 is energized based on these command signals, or the energization state of the solenoid valve 171 is canceled.
  • the slide valve 123 is a solid cylindrical member having a first enlarged diameter portion 131 at one end in the axial direction, and the gas in the combustion chamber c (in-cylinder gas) on the outer peripheral surface of the other end
  • the circumferential grooves 182 and 183 are provided along the circumferential direction from the side of the end face 181 which is the pressure receiving surface of the above. Further, the circumferential groove 182 and the circumferential groove 183 are a first hole (longitudinal hole) 184 and a first hole 184 which are formed along the axial direction at the radial center of the other end of the slide valve 123. It communicates with the 2nd hole (lateral hole) 185 perforate
  • the upper surface of the first enlarged diameter portion 131 is a spring receiving surface 186 that abuts on the lower end of the slide valve pressing spring 124.
  • the slide valve pressing spring 124 biases the slide valve 123 in the closing direction
  • the needle valve 125 is a hollow cylindrical member provided along the axial direction with a through hole 191 in which the slide valve 123 is slidably inserted at a central portion in the radial direction, and the upper surface (top surface) Is a spring receiving surface 192 in contact with the lower end of the needle valve pressing spring 126, and a seal surface (seat surface) 194 in contact with the needle valve seat 193 is provided at the other end (tip).
  • the needle valve pressing spring 126 biases the needle valve 125 in the closing direction (biases the needle valve seat 193 and the seal surface 194 to abut each other), and the hydraulic oil pipe 173 and the hydraulic oil return pipe 175
  • the needle valve 25 is biased in the closing direction in a state in which the hydraulic pressure of the hydraulic fluid is not applied to the lower surface 156 of the enlarged diameter portion 155 of the needle valve 125.
  • the solenoid valve 171 shown in FIG. 6 is energized, the flow path of the flow path switching valve 172 is switched, and the hydraulic oil pipe 173 and the hydraulic oil supply pipe 174 are in communication with each other.
  • the hydraulic oil introduced through 157 acts on the lower surface 156 of the enlarged diameter portion 155, and the needle valve 125 lifts up as shown in the second position from the left in the upper half of FIG.
  • the fuel gas introduced into the chamber 159 through the third communication hole 160) moves in the opening direction), the circumferential groove 183, the second hole 185, the first hole 184, the second hole 185,
  • the circumferential groove 182 is sequentially passed to be guided to the first injection holes 161, and injected from the first injection holes 161 as premixed fuel.
  • the second injection hole 162 is closed by the outer peripheral surface of the other end portion 153 located between the circumferential groove 182 and the circumferential groove 183.
  • the solenoid valve 171 shown in FIG. 6 is energized, the flow path of the flow path switching valve 172 is switched, and the hydraulic oil pipe 173 and the hydraulic oil supply pipe 174 are in communication with each other.
  • the hydraulic oil introduced through 157 acts on the lower surface 156 of the enlarged diameter portion 155 of the needle valve 125, and the needle valve 125 is lifted as shown in the fourth figure from the left in the upper half of FIG.
  • the fuel gas introduced up (moved in the opening direction) and introduced into the chamber 159 through the third communication hole 160 is transmitted to the circumferential groove 183, the second hole 185, the first hole 184, the second The hole 185 and the circumferential groove 182 are sequentially introduced to the second injection hole 162 and injected from the second injection hole 162 as a premixed fuel.
  • the first injection hole 161 is closed by the outer peripheral surface of the other end portion 153 located between the circumferential groove 182 and the end surface 181.
  • the premixing of the fuel gas and the air can be promoted, and the generation of NOx (nitrogen oxide) can be suppressed.
  • the slide valve 123 moves to the opposite side to the inside of the cylinder only by the in-cylinder pressure acting on the slide valve 123.
  • components for moving the slide valve 123 (the first needle valve 23) to the side opposite to the inside of the cylinder for example, the first solenoid valve 41 and the first flow path switching valve 42 shown in FIG.
  • the first hydraulic oil pipe 43 can be omitted, and the configuration can be simplified.
  • the premixing of the fuel gas and the air can be promoted, and the generation of NOx (nitrogen oxide) can be suppressed. Since the fuel gas injection valve 8 capable of reducing fuel consumption is provided, NOx (nitrogen oxide) discharged from the gas engine 1 can be reduced, and the performance of the gas engine 1 can be improved.
  • FIG. 8 is a view showing a cross section and a hydraulic system of a fuel gas injection valve according to a third embodiment of the present invention.
  • the fuel gas injection valve 308 according to this embodiment includes a nozzle holder 321, a nozzle 322, a first needle valve 323, a first needle valve holding spring 324, and a second needle.
  • a valve 325 and a second needle valve pressing spring 326 are provided.
  • a first diameter expansion provided at one end (top) of a first needle valve 323 which extends along the axial direction (vertical direction in FIG. 8) and reciprocates along the axial direction.
  • the recess 332 for slidably accommodating the portion 331 and the lower surface (bottom surface) 333 of the first enlarged diameter portion 331 which extends along the radial direction (left and right direction in FIG. 8) and serves as a pressure receiving surface.
  • the first needle valve 323 is moved in the opening direction, extending in the radial direction, and the first communication hole 334 for guiding the hydraulic oil for moving the needle valve 323 in the opening direction (upward in FIG. 8).
  • the second communication hole 336 for guiding the hydraulic oil pushed out by the upper surface (top surface) 335 of the first enlarged diameter portion 331 to the outside of the nozzle holder 321 is provided.
  • the hydraulic oil pushed out by the upper surface 335 of the first enlarged diameter portion 331 leaks between the sliding portion, that is, the outer peripheral surface of the first enlarged diameter portion 331 and the inner peripheral surface of the recess 332. Hydraulic oil.
  • the first communication hole 334 is connected to a first flow passage switching valve 342 whose flow passage is switched by the first solenoid valve 341 via a first hydraulic oil pipe 343.
  • the downstream end of the first hydraulic oil supply pipe 344 and the upstream end of the first hydraulic oil return pipe 345 are connected to the first flow path switching valve 342.
  • the upstream end of the first hydraulic oil supply pipe 344 is disposed inside the hydraulic oil tank 346 and in the vicinity of the bottom surface of the hydraulic oil tank 346, and in the middle of the first hydraulic oil supply pipe 344 , And a hydraulic oil pump 347 is connected.
  • the downstream end of the first hydraulic oil return pipe 345 is such that the hydraulic oil returned via the first hydraulic oil pipe 343 and the first hydraulic oil return pipe 345 is recovered inside the hydraulic oil tank 346. It is arranged.
  • the nozzle 322 has a first recess 351 that extends along the axial direction and accommodates the first needle valve pressing spring 324 and the second needle valve pressing spring 326, and reciprocates along the axial direction.
  • a second recess 352 slidably receiving the first needle valve 323, and a third recess 353 slidably receiving the second needle valve 325 reciprocating along the axial direction
  • a fourth recess 355 slidably accommodating a second enlarged diameter portion 354 provided at the other end (tip end) of the first needle valve 323 that reciprocates along the axial direction;
  • the second needle valve 325 is moved in the opening direction (upward in FIG.
  • the first communication hole 358 is connected via a second hydraulic oil pipe 373 to a second flow path switching valve 372 whose flow path is switched by the second solenoid valve 371.
  • the downstream end of the second hydraulic oil supply pipe 374 and the upstream end of the second hydraulic oil return pipe 375 are connected to the second flow path switching valve 372.
  • the upstream end of the second hydraulic oil supply pipe 374 is connected to the middle of the first hydraulic oil supply pipe 344 located downstream of the hydraulic oil pump 347, and the downstream end of the second hydraulic oil return pipe 375 is , Is connected to the middle of the first hydraulic oil return pipe 345.
  • the third communication hole 361 is connected to the downstream end of a fuel gas supply pipe 376 whose upstream end is connected to a fuel gas supply source (not shown).
  • the command signal for setting the first solenoid valve 341 and the second solenoid valve 371 in the energized state and the command signal for releasing the energized state of the first solenoid valve 341 and the second solenoid valve 371 are the engine control unit 12 (see FIG. It sends to the electricity supply machine 377 from FIG. Based on these command signals, the first solenoid valve 341 and the second solenoid valve 371 are turned on, and the first solenoid valve 341 and the second solenoid valve 371 are turned off. ing.
  • the first needle valve 323 is provided with a first enlarged diameter portion 331 at one end in the axial direction, and a second enlarged diameter portion 354 at the other end in the axial direction, and one end than the center in the axial direction And a seal surface (seat surface) 383 that abuts on the first needle valve seat 382 at the other end (tip).
  • the upper surface of the third expanded diameter portion 381 is a spring receiving surface 384 that abuts on the lower end of the first needle valve pressing spring 324.
  • the second enlarged diameter portion 354 is a through hole penetrating the second enlarged diameter portion 354 in the axial direction, that is, a communication hole 385 communicating the upper surface and the lower surface of the second enlarged diameter portion 354. Are provided along the circumferential direction.
  • the first needle valve pressing spring 324 biases the first needle valve 323 in the closing direction (biases the first needle valve seat 382 and the sealing surface 383 to abut each other).
  • the first hydraulic oil return pipe 345 is in communication with the first hydraulic oil pipe 343, that is, in a state where the hydraulic pressure of the hydraulic oil is not applied to the lower surface 333 of the first enlarged diameter portion 331, the first The needle valve 323 is biased in the closing direction.
  • the second needle valve 325 is a solid cylindrical member formed such that one end in the axial direction is fitted with the lower end of the second needle valve pressing spring 326, and the second end is a second cylindrical member.
  • a spring receiving surface 392 that contacts the lower end of the needle valve pressing spring 326 is provided along the circumferential direction, and a seal surface (seat surface) that contacts the second needle valve seat 393 at the other end (tip). 394 is provided.
  • the second needle valve pressing spring 326 biases the second needle valve 325 in the closing direction (biases the second needle valve seat 393 and the seal surface 394 to abut each other). In a state where the second hydraulic oil return pipe 375 communicates with the second hydraulic oil pipe 373, that is, in a state where the hydraulic pressure of the hydraulic oil is not applied to the lower surface 357 of the enlarged diameter portion 356 of the second needle valve 325 , And the second needle valve 325 is biased in the closing direction.
  • the solenoid valve 341 is energized, the flow path of the first flow path switching valve 342 is switched, and the first hydraulic oil pipe 343 and the first hydraulic oil supply pipe 344 communicate with each other.
  • the hydraulic oil guided through the first communication hole 334 acts on the lower surface 333 of the first enlarged diameter portion 331, and the first needle valve 323 lifts up (moves in the opening direction), The outer peripheral surface of the second enlarged diameter portion 354 closes the second injection hole 364.
  • the solenoid valve 371 is energized, the flow path of the second flow path switching valve 372 is switched, and the second hydraulic oil pipe 373 and the second hydraulic oil supply pipe 374 communicate with each other.
  • the hydraulic oil introduced through the first communication hole 358 acts on the lower surface 357 of the enlarged diameter portion 356 of the second needle valve 325, and the second needle valve 325 lifts up (moves in the opening direction).
  • the fuel gas introduced into the chamber 360 through the third communication hole 361 is introduced into the first injection hole 363 through the communication passage 362 and the communication hole 385, and is used as the first mixed fuel. It injects from the injection hole 363 of this.
  • the solenoid valve 341 and the solenoid valve 371 are de-energized, the flow path of the first flow path switching valve 342 and the flow path of the second flow path switching valve 372 are switched, and the first hydraulic oil pipe 343 and the first hydraulic oil return pipe 345 are in communication with each other, and the second hydraulic oil pipe 373 and the second hydraulic oil return pipe 375 are in communication, that is, the first needle valve Both the H.323 and the second needle valve 325 are closed.
  • the solenoid valve 371 is energized, the flow path of the second flow path switching valve 372 is switched, and the second hydraulic oil pipe 373 and the second hydraulic oil supply pipe 374 communicate with each other.
  • the hydraulic oil introduced through the first communication hole 358 acts on the lower surface 357 of the enlarged diameter portion 356 of the second needle valve 325, and the second needle valve 325 lifts up (moves in the opening direction).
  • the fuel gas led into the chamber 360 through the third communication hole 361 is led to the second injection hole 364 through the communication passage 362, and is diffused from the second injection hole 364 as the diffusion fuel. It is injected.
  • the solenoid valve 341 since the solenoid valve 341 is not energized, the lift of the first needle valve 323 is 0 (zero), and the first needle valve 323 is closed.
  • the solenoid valve 371 is de-energized, the flow path of the second flow path switching valve 372 is switched, and the second hydraulic oil pipe 373 and the second hydraulic oil return pipe 375 communicate with each other.
  • the first needle valve 323 and the second needle valve 325 are closed together.
  • the premixing of the fuel gas and the air can be promoted, and the generation of NOx (nitrogen oxide) can be suppressed.
  • the fuel gas injection valve 308 according to the present embodiment, it is not necessary to manufacture the first needle valve 323 and the second needle valve 325 as concentric ones, thus simplifying the manufacturing process. It is possible to reduce manufacturing costs.
  • the gas engine 1 equipped with the fuel gas injection valve 308 according to the present embodiment it is possible to promote premixing of the fuel gas and the air, and to suppress the generation of NOx (nitrogen oxide). Since the fuel gas injection valve 8 capable of reducing fuel consumption is provided, NOx (nitrogen oxide) discharged from the gas engine 1 can be reduced, and the performance of the gas engine 1 can be improved.
  • FIG. 9 is a view showing a cross section and a hydraulic system of a fuel gas injection valve according to a fourth embodiment of the present invention.
  • the fuel gas injection valve 208 according to the present embodiment differs from that of the first embodiment described above in that the nozzle 222 and the second needle valve 225 are provided instead of the nozzle 22 and the second needle valve 25.
  • symbol is attached
  • the nozzle 222 is located between the first communication hole 57 and the third communication hole 60 and extends along the radial direction to form an oil reservoir
  • a fourth communication hole 232 for guiding the lubricating oil into the space 231 is provided.
  • the downstream end of the lubricating oil supply pipe 233 whose upstream end is connected to a lubricating oil tank (not shown) is connected to the fourth communication hole 232, and the lubricating oil is supplied to the middle of the lubricating oil supply pipe 233.
  • the pump 234 is connected.
  • the through hole 91 of the second needle valve 225 is provided with an oil reservoir (annular space) 235 extending along the circumferential direction, and the second needle valve 225 extends along the radial direction.
  • a communication hole 236 for communicating the reservoir 231 with the oil reservoir 235 is provided.
  • lubricating oil can be supplied to the sliding portion, and abrasion and sticking of the sliding portion can be prevented.
  • the lubricating oil having a pressure higher than the gas pressure of the fuel gas is supplied through the lubricating oil supply pipe 233, the fuel gas is sealed in the oil reservoir 231, and the oil reservoir 231 is sealed. It is possible to prevent the blowout of the fuel gas upward (gas leakage).
  • the other operational effects are the same as those of the first embodiment described above, and thus the description thereof is omitted here.
  • the present invention is not limited to the above-described embodiment, and may be modified or changed as needed.
  • the configuration described in the fourth embodiment can be applied to the second and third embodiments.
  • the numerical values of 40 ° to 100 ° before top dead center, about 5 ° before top dead center, 4 ° before top dead center to 40 ° after top dead center described in the first embodiment explain the embodiment. These numerical values may be changed as appropriate depending on the maximum output of the gas engine 1 and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

予混合燃料となる燃料ガスを噴出する第1の噴孔(61)と、拡散燃料となる燃料ガスを噴出する第2の噴孔(62)とを備えたホルダ(22)と、ホルダ(22)内を軸方向に沿って摺動自在に往復動し、第1の噴孔(61)および第2の噴孔(62)を開閉する第1の針弁(23)と、ホルダ(22)に設けられた針弁座(93)と当接するシール面(94)が先端に設けられ、径方向における中央部に、第1の針弁(23)が摺動自在に挿通される貫通穴(91)が、軸方向に沿って設けられており、ホルダ(22)内を軸方向に沿って往復動し、シール面(94)が針弁座(93)に当接しているときに第1の噴孔(61)および第2の噴孔(62)への燃料ガスの流通を遮断し、シール面(94)が針弁座(93)から離間しているときに第1の噴孔(61)または第2の噴孔(62)への燃料ガスの流通を許容する第2の針弁(25)と、を備えている。

Description

燃料ガス噴射弁、デュアルフューエルガスエンジンおよび燃料ガス噴射方法
 本発明は、高圧噴射によって、燃料油および燃料ガスの両方を燃焼させることができる(デュアルフューエル2サイクル)ガスエンジンに適用される燃料ガス噴射弁、デュアルフューエルガスエンジンおよび燃料ガス噴射方法に関する。
 従来、天然ガス等の燃料ガスを主燃料とし、圧縮着火性の良い軽油等の燃料油をパイロット燃料とし、高温雰囲気下の燃焼室内に軽油等の燃料油を噴射して自己着火させることで、主燃料である燃料ガスを燃焼させるガスエンジンが公知である。
 例えば、特許文献1には、燃料ガス等の圧縮着火性の悪い低セタン価燃料を主燃料とし、圧縮着火性の良い燃料油をパイロット燃料とした二元燃料ディーゼルエンジンが開示されている。特許文献1のエンジンは、シリンダヘッドに設けられた燃料ガス噴射弁およびパイロット燃料噴射弁を備えており、これら燃料ガス噴射弁およびパイロット燃料噴射弁から燃焼室に向けて燃料ガスおよびパイロット燃料を噴射することで、高温の燃焼室内でパイロット燃料(燃料油)を自己着火させ、これにより主燃料(燃料ガス)を燃焼せしめるように構成されている。
 また、例えば、特許文献2には、圧縮着火性の悪い燃料ガスを主燃料とし、圧縮着火性の良い軽油や灯油等のディーゼル燃料をパイロット燃料としたガスエンジンが開示されている。特許文献2のガスエンジンは、シリンダヘッドに設けられた吸気ポートおよびディーゼル燃料噴射装置と、シリンダ周壁に設けられた燃料ガス噴射装置とを備えている。そして、ピストンが下降する吸入行程時に吸気ポートから燃焼室に空気が導入され、吸入行程後期から圧縮行程後期の間の適正な時期に燃料ガス噴射装置から燃焼室に燃料ガスが噴射されるようになっている。そして、ピストンが上死点近傍まで上昇したタイミングでディーゼル燃料噴射装置から燃焼室にディーゼル燃料が噴射され、燃焼室内でディーゼル燃料が自己着火することで、主燃料である燃料ガスを燃焼せしめるように構成されている。
実開昭62-45339号公報 特開平6-137150号公報
 ところで、上述した特許文献1のエンジンは、主燃料とパイロット燃料とが上死点近傍にて略同時に燃焼室に供給されるため、燃焼室に噴射された主燃料は、撹拌される間もなく直ぐに燃焼される。したがって、その主燃料の燃焼形態は拡散燃焼となる。拡散燃焼の場合は、予混合燃焼の場合と比べて均一燃焼が難しく、高温の燃焼領域において、NOx(窒素酸化物)が発生しやすくなるとの問題がある。
 また、上述した特許文献2のガスエンジンは、燃焼室内に吸入する空気量を増大させるためになされた発明である。すなわち、特許文献2の発明は、従来、吸気ポートから燃料ガスと空気との混合気を導入していたのに対して、吸気ポートからは空気だけを吸入し、別途、燃料ガス噴射装置を備えるように構成されている。そして、該燃料ガス噴射装置によって吸入行程とはタイミングをずらして燃焼室に燃料ガスを噴射することで、吸気ポートから燃焼室内に吸入される空気量を増大させ、これによりエンジン出力の向上を図っている。
 このような特許文献2には、予混合化を促進することでNOx(窒素酸化物)の発生を抑制するとの技術的思想は何ら開示されていない。
 本発明は上述したような従来技術の課題に鑑みなされた発明であって、燃料ガスと空気との予混合化を促進することでNOx(窒素酸化物)の発生を抑制することができる燃料ガス噴射弁、デュアルフューエルガスエンジンおよび燃料ガス噴射方法を提供することを目的としている。
 
 本発明に係る燃料ガス噴射弁は、高圧噴射によって、燃料油および燃料ガスの両方を燃焼させることができるデュアルフューエルガスエンジンに適用される燃料ガス噴射弁であって、前記デュアルフューエルガスエンジンを構成するピストンが、上死点の40°~100°手前に位置するときに、予混合燃料となる燃料ガスを噴出する第1の噴孔と、上死点の約5°手前に位置するときに拡散燃料となる燃料ガスを噴出する第2の噴孔とを備えたホルダと、前記ホルダ内を軸方向に沿って摺動自在に往復動し、前記第1の噴孔を開としているときに前記第2の噴孔を閉とし、前記第1の噴孔を閉としているときに前記第2の噴孔を開とする第1の針弁と、前記ホルダに設けられた針弁座と当接するシール面が先端に設けられ、径方向における中央部に、前記第1の針弁が摺動自在に挿通される貫通穴が、軸方向に沿って設けられており、前記ホルダ内を軸方向に沿って往復動し、前記シール面が前記針弁座に当接しているときに前記第1の噴孔または前記第2の噴孔への燃料ガスの流通を遮断し、前記シール面が前記針弁座から離間しているときに前記第1の噴孔または前記第2の噴孔への燃料ガスの流通を許容する第2の針弁と、を備えている。
 また、本発明に係る燃料ガス噴射方法は、高圧噴射によって、燃料油および燃料ガスの両方を燃焼させることができるデュアルフューエルガスエンジンに適用される燃料ガス噴射方法であって、前記デュアルフューエルガスエンジンを構成するピストンが、上死点の40°~100°手前に位置するときに、予混合燃料となる燃料ガスを噴出し、上死点の約5°手前に位置するときに拡散燃料となる燃料ガスを噴出する。
 本発明に係る燃料ガス噴射弁および燃料ガス噴射方法によれば、燃料ガスと空気との予混合化を促進することができ、NOx(窒素酸化物)の発生を抑制することができる。
 上記燃料ガス噴射弁において、前記第1の針弁が、前記デュアルフューエルガスエンジンの筒内圧によって前記ホルダ内を軸方向に沿って往復動するスライド弁とされているとさらに好適である。
 このような燃料ガス噴射弁によれば、第1の針弁(スライド弁)に筒内圧が作用するだけで、第1の針弁(スライド弁)が、筒内と反対の側に移動することになる。
 これにより、第1の針弁(スライド弁)を筒内と反対の側に移動させるための構成要素、例えば、図4に示す第1の電磁弁41、第1の流路切替弁42、第1の作動油管43を省略することができ、構成の簡略化を図ることができる。
 上記燃料ガス噴射弁において、前記ノズルの、前記第2の針弁が摺動する部分、および前記貫通穴に、油溜まりがそれぞれ設けられており、前記第2の針弁が摺動する部分に設けられた油溜まりと、前記貫通穴に設けられた油溜まりとが、径方向に沿って前記ノズルに設けられた連通穴を介して連通されているとさらに好適である。
 このような燃料ガス噴射弁によれば、摺動部分に潤滑油を供給することができ、摺動部分の磨耗および固着を防止することができる。
 本発明に係る燃料ガス噴射弁は、高圧噴射によって、燃料油および燃料ガスの両方を燃焼させることができるデュアルフューエルガスエンジンに適用される燃料ガス噴射弁であって、前記デュアルフューエルガスエンジンを構成するピストンが、上死点前40°~100°に位置するときに、予混合燃料となる燃料ガスを噴出する第1の噴孔と、上死点前10°~上死点後15°に位置するときに拡散燃料となる燃料ガスを噴出する第2の噴孔とを備えたホルダと、前記ホルダ内を軸方向に沿って摺動自在に往復動し、前記第1の噴孔を開としているときに前記第2の噴孔を閉とし、前記第1の噴孔を閉としているときに前記第2の噴孔を開とする第1の針弁と、前記ホルダに設けられた針弁座と当接するシール面が先端に設けられており、前記ホルダ内を軸方向に沿って往復動し、前記シール面が前記針弁座に当接しているときに前記第1の噴孔および前記第2の噴孔への燃料ガスの流通を遮断し、前記シール面が前記針弁座から離間しているときに前記第1の噴孔または前記第2の噴孔への燃料ガスの流通を許容する第2の針弁と、を備えている。
 本発明に係る燃料ガス噴射弁によれば、燃料ガスと空気との予混合化を促進することができ、NOx(窒素酸化物)の発生を抑制することができる。
 また、本発明に係る燃料ガス噴射弁によれば、例えば、図8に示すように、第1の針弁と、第2の針弁とを、同心のものとして作製する必要がなくなるので、製造工程の簡略化を図ることができ、製造費の削減を図ることができる。
 上記燃料ガス噴射弁において、前記ノズルの、前記第1の針弁が摺動する部分、および前記第2の針弁が摺動する部分に、油溜まりがそれぞれ設けられているとさらに好適である。
 このような燃料ガス噴射弁によれば、摺動部分に潤滑油を供給することができ、摺動部分の磨耗および固着を防止することができる。
 本発明に係るデュアルフューエルガスエンジンは、上記いずれかの燃料ガス噴射弁を具備している。
 本発明に係るデュアルフューエルガスエンジンによれば、燃料ガスと空気との予混合化を促進することができ、NOx(窒素酸化物)の発生を抑制することができる燃料ガス噴射弁を具備していることになるので、当該デュアルフューエルガスエンジンから排出されるNOx(窒素酸化物)を低減させることができ、当該デュアルフューエルガスエンジンの性能を向上させることができる。
 本発明に係る燃料ガス噴射弁によれば、燃料ガスと空気との予混合化を促進することができ、NOx(窒素酸化物)の発生を抑制することができるという効果を奏する。
本発明に係る燃料ガス噴射弁が適用される(デュアルフューエル2サイクル)ガスエンジンの基本構成を説明するための概略図であり、(a)はピストンが上死点前約5°に位置している状態を示す上面図、(b)はピストンが上死点前約5°に位置している状態を示す断面図である。 本発明に係る燃料ガス噴射弁が適用されるガスエンジンの基本構成を説明するための概略図であり、(a)はピストンが上死点前4°~上死点後40°に位置している状態を示す上面図、(b)はピストンが上死点前4°~上死点後40°に位置している状態を示す断面図である。 本発明に係る燃料ガス噴射弁が適用されるガスエンジンの基本構成を説明するための概略図であり、(a)はピストンが上死点前40°~100°に位置している状態を示す上面図および断面図、(b)はピストンが上死点前約5°に位置している状態を示す上面図および断面図、(c)ピストンが上死点前4°~上死点後40°に位置している状態を示す上面図および断面図である。 本発明の第1実施形態に係る燃料ガス噴射弁の断面および油圧系統を示す図である。 その上半部が本発明の第1実施形態に係る燃料ガス噴射弁の作動を説明するための図、その下半部が第1の針弁の開閉と、第2の針弁の開閉と、筒内圧力と、クランク角度との関係を示す図表である。 本発明の第2実施形態に係る燃料ガス噴射弁の断面および油圧系統を示す図である。 その上半部が本発明の第2実施形態に係る燃料ガス噴射弁の作動を説明するための図、その下半部が針弁の開閉と、スライド弁の開閉と、筒内圧力と、クランク角度との関係を示す図表である。 本発明の第3実施形態に係る燃料ガス噴射弁の断面および油圧系統を示す図である。 本発明の第4実施形態に係る燃料ガス噴射弁の断面および油圧系統を示す図である。
〔第1実施形態〕
 以下、本発明に係る燃料ガス噴射弁の第1実施形態について、図1から図5を用いて説明する。
 ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限り、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。
 図1は、本発明に係る燃料ガス噴射弁が適用される(デュアルフューエル2サイクル)ガスエンジンの基本構成を説明するための概略図であり、(a)はピストンが上死点前約5°に位置している状態を示す上面図、(b)はピストンが上死点前約5°に位置している状態を示す断面図である。図2は、本発明に係る燃料ガス噴射弁が適用されるガスエンジンの基本構成を説明するための概略図であり、(a)はピストンが上死点前4°~上死点後40°に位置している状態を示す上面図、(b)はピストンが上死点前4°~上死点後40°に位置している状態を示す断面図である。図3は、本発明に係る燃料ガス噴射弁が適用されるガスエンジンの基本構成を説明するための概略図であり、(a)はピストンが上死点前40°~100°に位置している状態を示す上面図および断面図、(b)はピストンが上死点前約5°に位置している状態を示す上面図および断面図、(c)ピストンが上死点前4°~上死点後40°に位置している状態を示す上面図および断面図である。図4は、本発明の第1実施形態に係る燃料ガス噴射弁の断面および油圧系統を示す図である。図5は、その上半部が本発明の第1実施形態に係る燃料ガス噴射弁の作動を説明するための図、その下半部が第1の針弁の開閉と、第2の針弁の開閉と、筒内圧力と、クランク角度との関係を示す図表である。
 図1から図3に示すように、本発明に係る燃料ガス噴射弁が適用されるガスエンジン1は、円筒状のシリンダ2と、該シリンダ2の上端側に結合されたシリンダヘッド3と、シリンダ2の内部に進退自在に収容されたピストン4と、を備えている。そして、これらシリンダ2の周壁2aと、シリンダヘッド3と、ピストン4の頂面4aとで燃焼室cが画成されている。
 なお、図中の符号5は、ピストンリングを示している。
 シリンダ2の下方側の周壁2aには掃気ポート6が開口している。この掃気ポート6は、下死点近傍に位置するピストン4の頂面4a(図中に二点鎖線で表示)よりも上方の位置に形成されており、ピストン4が下死点近傍に位置する時に、掃気ポート6から燃焼室cに空気が供給されるようになっている。また、シリンダヘッド3の頂部には排気ポートが開口するとともに、該排気ポートを開閉する排気バルブ7が設けられている。この排気バルブ7は、ピストン4が上昇行程にある掃気行程時において、ピストン4が上死点の手前約100°の位置に到達するまで開放される。そして、掃気ポート6から燃焼室cに供給される空気によって、燃焼室cに残留する前行程の排ガスが掃気されるようになっている。
 シリンダヘッド3には、燃焼室cに燃料ガス8aを噴射する燃料ガス噴射弁(燃料ガス噴射装置)8が設けられるとともに、同じく燃焼室cに圧縮着火性の良い燃料油10aを噴射する燃料油噴射弁(燃料油噴射装置)10が設けられている。この燃料ガス噴射弁8および燃料油噴射弁10は、シリンダ中心oを回転中心として円周方向に180°離れた位置にそれぞれ1つずつ設けられている。
 なお、本実施形態では、燃料ガス噴射弁8および燃料油噴射弁10には、それぞれ4つの噴孔が設けられている。また、本発明において、上述した燃料ガス噴射弁8および燃料油噴射弁10の設置数は特に限定されず、例えば、1つであっても構わない。しかしながら、シリンダヘッド3の頂部に排気バルブ7が設けられる本実施形態にあっては、複数個の燃料ガス噴射弁8および燃料油噴射弁10が、それぞれ円周方向に等間隔で配置されるのが好ましい。
 図1および図2に示すように、燃料ガス噴射弁8および燃料油噴射弁10は、ケーブル14を介してエンジンコントロールユニット(ECU)12に接続されている。また、ECU12は、ケーブル16を介してクランク軸17の回転角を検出するクランク角センサ15に接続されている。そして、クランク角センサ15からクランク軸17の回転角にかかる信号を受信することで、ピストン4の位相を検知するようになっている。また、燃料ガス噴射弁8および燃料油噴射弁10は、ECU12から送信される信号に基づいて、所定のタイミングで燃焼室cに燃料ガス8aおよび燃料油10aを噴射するようになっている。
 すなわち、ECU12は、本実施形態における燃料ガス噴射タイミング制御手段を構成するとともに、ピストン4が上死点前4°~上死点後40°に位置する時に燃料油噴射弁10によって燃焼室c内の燃料ガスに点火する本実施形態における点火タイミング制御手段を構成している。
 そして、図3(a)に示すように、ピストン4が上昇行程にあり、かつ、ピストン4が上死点前40°~100°に位置する時には、ECU12(燃料ガス噴射タイミング制御手段)から送信される信号に基づいて、燃料ガス噴射弁8から燃焼室cに燃料ガス8bが噴射されるようになっている。このように、ピストン4が上死点前40°~100°に位置する時に燃焼室cに燃料ガス8bが噴射されると、ピストン4がさらに上死点近傍まで上昇する過程において、噴射された燃料ガス8bと燃焼室cの内部の空気とが混じり合って予混合化が促進される。
 つぎに、図1および図3(b)に示すように、ピストン4が上死点前約5°に達すると、ECU12(燃料ガス噴射タイミング制御手段および点火タイミング制御手段)から送信される信号に基づいて、燃料ガス噴射弁8から燃料ガス8aが噴射されるとともに、燃料油噴射弁10から燃料油10aが噴射され、高温雰囲気下にある燃焼室c内において圧縮着火性の良い燃料油10aが自己着火する。これにより略同時に噴射された燃料ガス8aが燃焼し、図2および図3(c)に示すように、燃焼室cの内部に燃焼火炎fが生成され、この燃焼火炎fが上述した混合気20に伝播して、燃焼室cの全体で爆発的な燃焼が発生するようになっている。
 このように本実施形態に係るガスエンジン1は、ピストン4が上死点前40°~100°に位置する時に燃料ガス8bを噴射し、さらに、ピストン4が上死点前約5°に位置する時に燃料ガス8aと燃料油10aとを噴射するように構成されている。したがって、ピストン4が上死点前40°~100°に位置する時に噴射された燃料ガス8bと空気との予混合化が促進されて混合気20が生成されることで、燃焼形態の一部が予混合燃焼となる。このため、燃焼形態の全部が拡散燃焼である従来のガスエンジンと比べて、NOx(窒素酸化物)の発生を抑制することができる。
 また、本実施形態に係るガスエンジン1は、ECU12によって構成される燃料ガス噴射タイミング制御手段によって、燃料ガス噴射弁8の噴射タイミングを制御するだけで構成される。よって、新たな追加装置等を必要とすることなく、既存のガスエンジンにおいて簡単に予混合化を促進することが可能である。
 図4に示すように、本実施形態に係る燃料ガス噴射弁8は、ノズルホルダ21と、ノズル22と、第1の針弁23と、第1の針弁押さえバネ24と、第2の針弁25と、第2の針弁押さえバネ26と、を備えている。
 ノズルホルダ21には、軸方向(図4において上下方向)に沿って延びて、軸方向に沿って往復動する第1の針弁23の一端部(頂部)に設けられた第1の拡径部31を摺動自在に収容する凹所32と、径方向(図4において左右方向)に沿って延びて、受圧面となる第1の拡径部31の下面(底面)33に、第1の針弁23を開方向(図4において上方向)に移動させる作動油を導く第1の連通穴34と、径方向に沿って延びて、第1の針弁23が開方向に移動させられた際、第1の拡径部31の上面(頂面)35によって押し出された作動油をノズルホルダ21の外に導く第2の連通穴36と、が設けられている。
 なお、第1の拡径部31の上面35によって押し出される作動油は、摺動部分、すなわち、第1の拡径部31の外周面と、凹所32の内周面との間をリークしてきた作動油である。
 第1の連通穴34は、第1の電磁弁41によって流路の切換が行われる第1の流路切替弁42に、第1の作動油管43を介して接続されている。第1の流路切替弁42には、第1の作動油供給管44の下流端と、第1の作動油戻り管45の上流端と、が接続されている。第1の作動油供給管44の上流端は、作動油タンク46の内部で、かつ、作動油タンク46の底面近傍に位置するように配置され、第1の作動油供給管44の途中には、作動油ポンプ47が接続されている。第1の作動油戻り管45の下流端は、第1の作動油管43および第1の作動油戻り管45を介して戻された作動油が作動油タンク46の内部に回収されるようにして配置されている。
 ノズル22には、軸方向に沿って延びて、第1の針弁押さえバネ24と、第2の針弁押さえバネ26とを収容する第1の凹所51と、軸方向に沿って往復動する第2の針弁25を摺動自在に収容する第2の凹所52と、軸方向に沿って往復動する第1の針弁23の他端部(先端部)に設けられた第2の拡径部53を摺動自在に収容する第3の凹所54と、径方向に沿って延びて、受圧面となる第2の針弁25の拡径部55の下面(底面)56に、第2の針弁25を開方向(図4において上方向)に移動させる作動油を導く第1の連通穴57と、径方向に沿って延びて、第2の針弁25が開方向に移動させられた際、拡径部55が上昇することによって押し出された作動油をノズル22の外に導く第2の連通穴58と、径方向に沿って延びて、第2の凹所52と第3の凹所54との間に設けられたチャンバ(環状空間)59内に燃料ガスを導く第3の連通穴60と、予混合燃料噴射時、チャンバ59および第3の凹所54内に導かれた燃料ガスを燃焼室c(図1等参照)内に導く第1の噴孔61と、拡散燃料噴射時、チャンバ59および第3の凹所54内に導かれた燃料ガスを燃焼室c内に導く第2の噴孔62と、が設けられている。
 第1の連通穴57は、第2の電磁弁71によって流路の切換が行われる第2の流路切替弁72に、第2の作動油管73を介して接続されている。第2の流路切替弁72には、第2の作動油供給管74の下流端と、第2の作動油戻り管75の上流端と、が接続されている。第2の作動油供給管74の上流端は、作動油ポンプ47よりも下流側に位置する第1の作動油供給管44の途中に接続され、第2の作動油戻り管75の下流端は、第1の作動油戻り管45の途中に接続されている。
 また、第3の連通穴60には、上流端が燃料ガス供給源(図示せず)に接続された燃料ガス供給管76の下流端が接続されている。
 なお、第1の電磁弁41および第2の電磁弁71を通電状態にする指令信号および第1の電磁弁41および第2の電磁弁71の通電状態を解く指令信号は、エンジンコントロールユニット12(図1等参照)から通電器63に送られる。これら指令信号に基づいて第1の電磁弁41および第2の電磁弁71が通電状態にされたり、第1の電磁弁41および第2の電磁弁71の通電状態が解かれたりするようになっている。
 第1の針弁23は、軸方向における一端部に第1の拡径部31を備え、軸方向における他端部に第2の拡径部53を備えて、軸方向における中央よりも一端部の側に第3の拡径部81を備えた中実円筒状の部材であり、他端(先端)には、第1の針弁座82と当接するシール面(シート面)83が設けられている。また、第3の拡径部81の上面は、第1の針弁押さえバネ24の下端と当接するバネ受け面84になっている。そして、第2の拡径部53には、軸方向に沿って第2の拡径部53を貫通する貫通穴、すなわち、第2の拡径部53の上面と下面とを連通する連通穴85が、周方向に沿って複数本設けられている。
 第1の針弁押さえバネ24は、第1の針弁23を閉方向に付勢する(第1の針弁座82とシール面83とが当接するように付勢する)ものであり、第1の作動油管43と、第1の作動油戻り管45とが連通している状態、すなわち、第1の拡径部31の下面33に作動油の油圧が加わっていない状態において、第1の針弁23は、閉方向に付勢されていることになる。
 第2の針弁25は、径方向における中央部に、第1の針弁23が摺動自在に挿通される貫通穴91が、軸方向に沿って設けられた中空円筒状の部材であり、その上面(頂面)は、第2の針弁押さえバネ26の下端と当接するバネ受け面92とされ、他端(先端)には、第2の針弁座93と当接するシール面(シート面)94が設けられている。
 第2の針弁押さえバネ26は、第2の針弁25を閉方向に付勢する(第2の針弁座93とシール面94とが当接するように付勢する)ものであり、第2の作動油管73と、第2の作動油戻り管75とが連通している状態、すなわち、第2の針弁25の拡径部55の下面56に作動油の油圧が加わっていない状態において、第2の針弁25は、閉方向に付勢されていることになる。
 つぎに、図4および図5を用いて、燃料ガス噴射弁8の作動を説明する。
 まず、図4および図5の上半分における左から一番目に位置する図に示すように、第1の作動油管43と、第1の作動油戻り管45とが連通しているとともに、第2の作動油管73と、第2の作動油戻り管75とが連通している状態では、第1の針弁23および第2の針弁25のリフトは、ともに0(ゼロ)となり、第1の針弁23および第2の針弁25は、ともに閉じている。
 つづいて、図4に示す電磁弁41に通電され、第1の流路切替弁42の流路が切り替えられて、第1の作動油管43と、第1の作動油供給管44とが連通する状態とされ、第1の連通穴34を介して導かれた作動油が、第1の拡径部31の下面33に作用し、図5の上半分における左から二番目に位置する図に示すように、第1の針弁23がリフトアップして(開方向に移動して)、第2の拡径部53の外周面が、第2の噴孔62を塞ぐ。
 つぎに、図4に示す電磁弁71に通電され、第2の流路切替弁72の流路が切り替えられて、第2の作動油管73と、第2の作動油供給管74とが連通する状態とされ、第1の連通穴57を介して導かれた作動油が、第2の針弁25の拡径部55の下面56に作用し、図5の上半分における左から三番目に位置する図に示すように、第2の針弁25がリフトアップして(開方向に移動して)、第3の連通穴60を介してチャンバ59内に導かれた燃料ガスが、連通穴85を介して第1の噴孔61に導かれ、予混合燃料として第1の噴孔61から噴射される。
 つづいて、図4に示す電磁弁41および電磁弁71への通電が解かれ、第1の流路切替弁42の流路および第2の流路切替弁72の流路が切り替えられて、図4および図5の上半分における左から四番目に位置する図に示すように、第1の作動油管43と、第1の作動油戻り管45とが連通しているとともに、第2の作動油管73と、第2の作動油戻り管75とが連通している状態、すなわち、第1の針弁23および第2の針弁25が、ともに閉じた状態になる。
 つぎに、図4に示す電磁弁71に通電され、第2の流路切替弁72の流路が切り替えられて、第2の作動油管73と、第2の作動油供給管74とが連通する状態とされ、第1の連通穴57を介して導かれた作動油が、第2の針弁25の拡径部55の下面56に作用し、図5の上半分における左から五番目に位置する図に示すように、第2の針弁25がリフトアップして(開方向に移動して)、第3の連通穴60を介してチャンバ59内に導かれた燃料ガスが、第2の噴孔62に導かれ、拡散燃料として第2の噴孔62から噴射される。
 なお、このとき、図4に示す電磁弁41には通電されていないので、第1の針弁23のリフトは0(ゼロ)となり、第1の針弁23は閉じている。
 つづいて、図4に示す電磁弁71への通電が解かれ、第2の流路切替弁72の流路が切り替えられて、図4および図5の上半分における左から六番目に位置する図に示すように、第2の作動油管73と、第2の作動油戻り管75とが連通している状態、すなわち、第1の針弁23および第2の針弁25が、ともに閉じた状態になる。
 なお、図5の下半分における図表は、第1の針弁23の開閉と、第2の針弁25の開閉と、筒内圧力と、クランク角度との関係を示している。
 また、図5の上半分における左から三番目に位置する図は、図3(a)に対応した図であり、図5の上半分における左から五番目に位置する図は、図1および図3(b)に対応した図である。
 本実施形態に係る燃料ガス噴射弁8および燃料ガス噴射方法によれば、燃料ガスと空気との予混合化を促進することができ、NOx(窒素酸化物)の発生を抑制することができる。
 また、本実施形態に係る燃料ガス噴射弁8を具備したガスエンジン1によれば、燃料ガスと空気との予混合化を促進することができ、NOx(窒素酸化物)の発生を抑制することができる燃料ガス噴射弁8を具備していることになるので、ガスエンジン1から排出されるNOx(窒素酸化物)を低減させることができ、ガスエンジン1の性能を向上させることができる。
〔第2実施形態〕
 本発明に係る燃料ガス噴射弁の第2実施形態について、図6および図7を用いて説明する。
 図6は、本発明の第2実施形態に係る燃料ガス噴射弁の断面および油圧系統を示す図、図7は、その上半部が本発明の第2実施形態に係る燃料ガス噴射弁の作動を説明するための図、その下半部が針弁の開閉と、スライド弁の開閉と、筒内圧力と、クランク角度との関係を示す図表である。
 図6に示すように、本実施形態に係る燃料ガス噴射弁108は、ノズルホルダ121と、ノズル122と、スライド弁123と、スライド弁押さえバネ124と、針弁125と、針弁押さえバネ126と、を備えている。
 ノズル122には、軸方向に沿って延びて、スライド弁押さえバネ124と、針弁押さえバネ126とを収容する第1の凹所151と、軸方向に沿って往復動する針弁125を摺動自在に収容する第2の凹所152と、軸方向に沿って往復動するスライド弁123の他端部(先端部)153を摺動自在に収容する第3の凹所154と、径方向に沿って延びて、受圧面となる針弁125の拡径部155の下面(底面)156に、針弁125を開方向(図6において上方向)に移動させる作動油を導く第1の連通穴157と、径方向に沿って延びて、針弁125が開方向に移動させられた際、拡径部155が上昇することによって押し出された作動油をノズル122の外に導くとともに、針弁125が閉方向(図6において下方向)に移動させられた際、ノズル122の外から凹所151内に作動油を導く第2の連通穴158と、径方向に沿って延びて、第2の凹所152と第3の凹所154との間に設けられたチャンバ(環状空間)159内に燃料ガスを導く第3の連通穴160と、予混合燃料噴射時、チャンバ159および第3の凹所154内に導かれた燃料ガスを燃焼室c(図1等参照)内に導く第1の噴孔161と、拡散燃料噴射時、チャンバ159および第3の凹所154内に導かれた燃料ガスを燃焼室c内に導く第2の噴孔162と、が設けられている。
 第1の連通穴157は、電磁弁171によって流路の切換が行われる流路切替弁172に、作動油管173を介して接続されている。流路切替弁172には、作動油供給管174の下流端と、作動油戻り管175の上流端と、が接続されている。作動油供給管174の上流端は、作動油タンク146の内部で、かつ、作動油タンク146の底面近傍に位置するように配置され、作動油供給管174の途中には、作動油ポンプ147が接続されている。作動油戻り管175の下流端は、作動油管173および作動油戻り管175を介して戻された作動油が作動油タンク146の内部に回収されるようにして配置されている。
 また、第3の連通穴160には、上流端が燃料ガス供給源(図示せず)に接続された燃料ガス供給管176の下流端が接続されている。
 なお、電磁弁171を通電状態にする指令信号および電磁弁171の通電状態を解く指令信号は、エンジンコントロールユニット12(図1等参照)から通電器163に送られる。これら指令信号に基づいて電磁弁171が通電状態にされたり、電磁弁171の通電状態が解かれたりするようになっている。
 スライド弁123は、軸方向における一端部に第1の拡径部131を備えた中実円筒状の部材であり、他端部の外周面には、燃焼室c内のガス(筒内ガス)の受圧面となる端面181の側から、周溝182,183が周方向に沿って設けられている。また、周溝182と周溝183とは、スライド弁123の他端部の径方向における中央部において軸方向に沿って穿設された第1の穴(縦穴)184と、第1の穴184の両端部において径方向に沿って穿設された第2の穴(横穴)185とを介して連通されている。第1の拡径部131の上面は、スライド弁押さえバネ124の下端と当接するバネ受け面186になっている。
 スライド弁押さえバネ124は、スライド弁123を閉方向に付勢するものである。
 針弁125は、径方向における中央部に、スライド弁123が摺動自在に挿通される貫通穴191が、軸方向に沿って設けられた中空円筒状の部材であり、その上面(頂面)は、針弁押さえバネ126の下端と当接するバネ受け面192とされ、他端(先端)には、針弁座193と当接するシール面(シート面)194が設けられている。
 針弁押さえバネ126は、針弁125を閉方向に付勢する(針弁座193とシール面194とが当接するように付勢する)ものであり、作動油管173と、作動油戻り管175とが連通している状態、すなわち、針弁125の拡径部155の下面156に作動油の油圧が加わっていない状態において、針弁25は、閉方向に付勢されていることになる。
 つぎに、図6および図7を用いて、燃料ガス噴射弁108の作動を説明する。
 まず、図6および図7の上半分における左から一番目に位置する図に示すように、燃焼室c内のガス圧(筒内ガス圧)が端面181に作用しておらず、かつ、作動油管173と、作動油戻り管175とが連通している状態では、スライド弁123および針弁125のリフトは、ともに0(ゼロ)となり、スライド弁123および針弁125は、ともに閉じている。
 つづいて、図6に示す電磁弁171に通電され、流路切替弁172の流路が切り替えられて、作動油管173と、作動油供給管174とが連通する状態とされ、第1の連通穴157を介して導かれた作動油が、拡径部155の下面156に作用し、図7の上半分における左から二番目に位置する図に示すように、針弁125がリフトアップして(開方向に移動して)、第3の連通穴160を介してチャンバ159内に導かれた燃料ガスが、周溝183、第2の穴185、第1の穴184、第2の穴185、周溝182を順に通って第1の噴孔161に導かれ、予混合燃料として第1の噴孔161から噴射される。
 なお、このとき、第2の噴孔162は、周溝182と周溝183との間に位置する他端部153の外周面により塞がれている。
 つづいて、図6に示す電磁弁171への通電が解かれ、流路切替弁172の流路が切り替えられて、図7の上半分における左から三番目に位置する図に示すように、作動油管173と、作動油戻り管175とが連通しているとともに、燃焼室c内のガス圧(筒内ガス圧)が端面181に作用している状態、すなわち、針弁125が閉じ、スライド弁123がリフトアップした状態(開いた状態)になる。
 つぎに、図6に示す電磁弁171に通電され、流路切替弁172の流路が切り替えられて、作動油管173と、作動油供給管174とが連通する状態とされ、第1の連通穴157を介して導かれた作動油が、針弁125の拡径部155の下面156に作用し、図7の上半分における左から四番目に位置する図に示すように、針弁125がリフトアップして(開方向に移動して)、第3の連通穴160を介してチャンバ159内に導かれた燃料ガスが、周溝183、第2の穴185、第1の穴184、第2の穴185、周溝182を順に通って第2の噴孔162に導かれ、予混合燃料として第2の噴孔162から噴射される。
 なお、このとき、第1の噴孔161は、周溝182と端面181との間に位置する他端部153の外周面により塞がれている。
 つづいて、図6に示す電磁弁171への通電が解かれ、流路切替弁172の流路が切り替えられて、図6および図7の上半分における左から五番目に位置する図に示すように、燃焼室c内のガス圧(筒内ガス圧)が端面181に作用しておらず、かつ、作動油管173と、作動油戻り管175とが連通している状態、すなわち、スライド弁123および針弁125が、ともに閉じた状態になる。
 なお、図7の下半分における図表は、スライド弁123の開閉と、針弁125の開閉と、筒内圧力と、クランク角度との関係を示している。
 また、図7の上半分における左から二番目に位置する図は、図3(a)に対応した図であり、図7の上半分における左から四番目に位置する図は、図1および図3(b)に対応した図である。
 本実施形態に係る燃料ガス噴射弁108および燃料ガス噴射方法によれば、燃料ガスと空気との予混合化を促進することができ、NOx(窒素酸化物)の発生を抑制することができる。
 また、本実施形態に係る燃料ガス噴射弁108によれば、スライド弁123に筒内圧が作用するだけで、スライド弁123が、筒内と反対の側に移動することになる。
 これにより、スライド弁123(第1の針弁23)を筒内と反対の側に移動させるための構成要素、例えば、図4に示す第1の電磁弁41、第1の流路切替弁42、第1の作動油管43を省略することができ、構成の簡略化を図ることができる。
 さらに、本実施形態に係る燃料ガス噴射弁8を具備したガスエンジン1によれば、燃料ガスと空気との予混合化を促進することができ、NOx(窒素酸化物)の発生を抑制することができる燃料ガス噴射弁8を具備していることになるので、ガスエンジン1から排出されるNOx(窒素酸化物)を低減させることができ、ガスエンジン1の性能を向上させることができる。
〔第3実施形態〕
 本発明に係る燃料ガス噴射弁の第3実施形態について、図8を用いて説明する。
 図8は、本発明の第3実施形態に係る燃料ガス噴射弁の断面および油圧系統を示す図である。
 図8に示すように、本実施形態に係る燃料ガス噴射弁308は、ノズルホルダ321と、ノズル322と、第1の針弁323と、第1の針弁押さえバネ324と、第2の針弁325と、第2の針弁押さえバネ326と、を備えている。
 ノズルホルダ321には、軸方向(図8において上下方向)に沿って延びて、軸方向に沿って往復動する第1の針弁323の一端部(頂部)に設けられた第1の拡径部331を摺動自在に収容する凹所332と、径方向(図8において左右方向)に沿って延びて、受圧面となる第1の拡径部331の下面(底面)333に、第1の針弁323を開方向(図8において上方向)に移動させる作動油を導く第1の連通穴334と、径方向に沿って延びて、第1の針弁323が開方向に移動させられた際、第1の拡径部331の上面(頂面)335によって押し出された作動油をノズルホルダ321の外に導く第2の連通穴336と、が設けられている。
 なお、第1の拡径部331の上面335によって押し出される作動油は、摺動部分、すなわち、第1の拡径部331の外周面と、凹所332の内周面との間をリークしてきた作動油である。
 第1の連通穴334は、第1の電磁弁341によって流路の切換が行われる第1の流路切替弁342に、第1の作動油管343を介して接続されている。第1の流路切替弁342には、第1の作動油供給管344の下流端と、第1の作動油戻り管345の上流端と、が接続されている。第1の作動油供給管344の上流端は、作動油タンク346の内部で、かつ、作動油タンク346の底面近傍に位置するように配置され、第1の作動油供給管344の途中には、作動油ポンプ347が接続されている。第1の作動油戻り管345の下流端は、第1の作動油管343および第1の作動油戻り管345を介して戻された作動油が作動油タンク346の内部に回収されるようにして配置されている。
 ノズル322には、軸方向に沿って延びて、第1の針弁押さえバネ324と、第2の針弁押さえバネ326とを収容する第1の凹所351と、軸方向に沿って往復動する第1の針弁323を摺動自在に収容する第2の凹所352と、軸方向に沿って往復動する第2の針弁325を摺動自在に収容する第3の凹所353と、軸方向に沿って往復動する第1の針弁323の他端部(先端部)に設けられた第2の拡径部354を摺動自在に収容する第4の凹所355と、径方向に沿って延びて、受圧面となる第2の針弁325の拡径部356の下面(底面)357に、第2の針弁325を開方向(図8において上方向)に移動させる作動油を導く第1の連通穴358と、径方向に沿って延びて、第2の針弁325が開方向に移動させられた際、拡径部356が上昇することによって押し出された作動油をノズル322の外に導く第2の連通穴359と、径方向に沿って延びて、第3の凹所353の下方に設けられたチャンバ(環状空間)360内に燃料ガスを導く第3の連通穴361と、予混合燃料噴射時、チャンバ360、第4の凹所355、およびチャンバ360と第4の凹所355とを連通する連通路362内に導かれた燃料ガスを燃焼室c(図1等参照)内に導く第1の噴孔363と、拡散燃料噴射時、チャンバ360、第4の凹所355、および連通路362内に導かれた燃料ガスを燃焼室c内に導く第2の噴孔364と、が設けられている。
 第1の連通穴358は、第2の電磁弁371によって流路の切換が行われる第2の流路切替弁372に、第2の作動油管373を介して接続されている。第2の流路切替弁372には、第2の作動油供給管374の下流端と、第2の作動油戻り管375の上流端と、が接続されている。第2の作動油供給管374の上流端は、作動油ポンプ347よりも下流側に位置する第1の作動油供給管344の途中に接続され、第2の作動油戻り管375の下流端は、第1の作動油戻り管345の途中に接続されている。
 また、第3の連通穴361には、上流端が燃料ガス供給源(図示せず)に接続された燃料ガス供給管376の下流端が接続されている。
 なお、第1の電磁弁341および第2の電磁弁371を通電状態にする指令信号および第1の電磁弁341および第2の電磁弁371の通電状態を解く指令信号は、エンジンコントロールユニット12(図1等参照)から通電器377に送られる。これら指令信号に基づいて第1の電磁弁341および第2の電磁弁371が通電状態にされたり、第1の電磁弁341および第2の電磁弁371の通電状態が解かれたりするようになっている。
 第1の針弁323は、軸方向における一端部に第1の拡径部331を備え、軸方向における他端部に第2の拡径部354を備えて、軸方向における中央よりも一端部の側に第3の拡径部381を備えた中実円筒状の部材であり、他端(先端)には、第1の針弁座382と当接するシール面(シート面)383が設けられている。また、第3の拡径部381の上面は、第1の針弁押さえバネ324の下端と当接するバネ受け面384になっている。そして、第2の拡径部354には、軸方向に沿って第2の拡径部354を貫通する貫通穴、すなわち、第2の拡径部354の上面と下面とを連通する連通穴385が、周方向に沿って複数本設けられている。
 第1の針弁押さえバネ324は、第1の針弁323を閉方向に付勢する(第1の針弁座382とシール面383とが当接するように付勢する)ものであり、第1の作動油管343と、第1の作動油戻り管345とが連通している状態、すなわち、第1の拡径部331の下面333に作動油の油圧が加わっていない状態において、第1の針弁323は、閉方向に付勢されていることになる。
 第2の針弁325は、軸方向における一端部が第2の針弁押さえバネ326の下端部と嵌合するように形成された中実円筒状の部材であり、一端部には、第2の針弁押さえバネ326の下端と当接するバネ受け面392が周方向に沿って設けられており、他端(先端)には、第2の針弁座393と当接するシール面(シート面)394が設けられている。
 第2の針弁押さえバネ326は、第2の針弁325を閉方向に付勢する(第2の針弁座393とシール面394とが当接するように付勢する)ものであり、第2の作動油管373と、第2の作動油戻り管375とが連通している状態、すなわち、第2の針弁325の拡径部356の下面357に作動油の油圧が加わっていない状態において、第2の針弁325は、閉方向に付勢されていることになる。
 つぎに、燃料ガス噴射弁308の作動を説明する。
 まず、第1の作動油管343と、第1の作動油戻り管345とが連通しているとともに、第2の作動油管373と、第2の作動油戻り管375とが連通している状態では、第1の針弁323および第2の針弁325のリフトは、ともに0(ゼロ)となり、第1の針弁323および第2の針弁325は、ともに閉じている。
 つづいて、電磁弁341に通電され、第1の流路切替弁342の流路が切り替えられて、第1の作動油管343と、第1の作動油供給管344とが連通する状態とされ、第1の連通穴334を介して導かれた作動油が、第1の拡径部331の下面333に作用し、第1の針弁323がリフトアップして(開方向に移動して)、第2の拡径部354の外周面が、第2の噴孔364を塞ぐ。
 つぎに、電磁弁371に通電され、第2の流路切替弁372の流路が切り替えられて、第2の作動油管373と、第2の作動油供給管374とが連通する状態とされ、第1の連通穴358を介して導かれた作動油が、第2の針弁325の拡径部356の下面357に作用し、第2の針弁325がリフトアップして(開方向に移動して)、第3の連通穴361を介してチャンバ360内に導かれた燃料ガスが、連通路362および連通穴385を介して第1の噴孔363に導かれ、予混合燃料として第1の噴孔363から噴射される。
 つづいて、電磁弁341および電磁弁371への通電が解かれ、第1の流路切替弁342の流路および第2の流路切替弁372の流路が切り替えられて、第1の作動油管343と、第1の作動油戻り管345とが連通しているとともに、第2の作動油管373と、第2の作動油戻り管375とが連通している状態、すなわち、第1の針弁323および第2の針弁325が、ともに閉じた状態になる。
 つぎに、電磁弁371に通電され、第2の流路切替弁372の流路が切り替えられて、第2の作動油管373と、第2の作動油供給管374とが連通する状態とされ、第1の連通穴358を介して導かれた作動油が、第2の針弁325の拡径部356の下面357に作用し、第2の針弁325がリフトアップして(開方向に移動して)、第3の連通穴361を介してチャンバ360内に導かれた燃料ガスが、連通路362を介して第2の噴孔364に導かれ、拡散燃料として第2の噴孔364から噴射される。
 なお、このとき、電磁弁341には通電されていないので、第1の針弁323のリフトは0(ゼロ)となり、第1の針弁323は閉じている。
 つづいて、電磁弁371への通電が解かれ、第2の流路切替弁372の流路が切り替えられて、第2の作動油管373と、第2の作動油戻り管375とが連通している状態、すなわち、第1の針弁323および第2の針弁325が、ともに閉じた状態になる。
 本実施形態に係る燃料ガス噴射弁308および燃料ガス噴射方法によれば、燃料ガスと空気との予混合化を促進することができ、NOx(窒素酸化物)の発生を抑制することができる。
 また、本実施形態に係る燃料ガス噴射弁308によれば、第1の針弁323と、第2の針弁325とを、同心のものとして作製する必要がなくなるので、製造工程の簡略化を図ることができ、製造費の削減を図ることができる。
 さらに、本実施形態に係る燃料ガス噴射弁308を具備したガスエンジン1によれば、燃料ガスと空気との予混合化を促進することができ、NOx(窒素酸化物)の発生を抑制することができる燃料ガス噴射弁8を具備していることになるので、ガスエンジン1から排出されるNOx(窒素酸化物)を低減させることができ、ガスエンジン1の性能を向上させることができる。
〔第4実施形態〕
 本発明に係る燃料ガス噴射弁の第4実施形態について、図9を用いて説明する。
 図9は、本発明の第4実施形態に係る燃料ガス噴射弁の断面および油圧系統を示す図である。
 本実施形態に係る燃料ガス噴射弁208は、ノズル22および第2の針弁25の代わりにノズル222および第2の針弁225を備えているという点で上述した第1実施形態のものと異なる。
 なお、上述した第1実施形態と同じ部材には同じ符号を付し、ここではそれら部材についての説明は省略する。
 図9に示すように、本実施形態に係るノズル222には、第1の連通穴57と第3の連通穴60との間に位置するとともに、径方向に沿って延びて、油溜まり(環状空間)231内に潤滑油を導く第4の連通穴232が設けられている。第4の連通穴232には、上流端が潤滑油タンク(図示せず)に接続された潤滑油供給管233の下流端が接続されており、潤滑油供給管233の途中には、潤滑油ポンプ234が接続されている。
 第2の針弁225の貫通穴91には、周方向に沿って延びる油溜まり(環状空間)235が設けられており、第2の針弁225には、径方向に沿って延びて、油溜まり231と油溜まり235とを連通する連通穴236が設けられている。
 本実施形態に係る燃料ガス噴射弁208によれば、摺動部分に潤滑油を供給することができ、摺動部分の磨耗および固着を防止することができる。
 また、燃料ガスのガス圧よりも高い圧力を有する潤滑油が潤滑油供給管233を介して供給される場合には、油溜まり231において燃料ガスがシールされることになり、油溜まり231よりも上方への燃料ガスの吹き抜け(ガス漏れ)を防止することができる。
 その他の作用効果は、上述した第1実施形態のものと同じであるので、ここではその説明を省略する。
 なお、本発明は上述した実施形態に限定されるものではなく、適宜必要に応じて変形・変更して実施することもできる。
 例えば、第4実施形態のところで説明した構成は、第2実施形態および第3実施形態にも適用することができる。
 また、第1実施形態のところに記載した上死点前40°~100°、上死点前約5°、上死点前4°~上死点後40°という数値は、実施形態を説明するための一例であり、これらの数値は、ガスエンジン1の最大出力等によって適宜変更され得る。
  1 (デュアルフューエル2サイクル)ガスエンジン
  4 ピストン
  8 燃料ガス噴射弁
 22 ホルダ
 23 第1の針弁
 25 第2の針弁
 61 第1の噴孔
 62 第2の噴孔
 91 貫通穴
 93 針弁座
 94 シール面
108 燃料ガス噴射弁
122 ホルダ
123 スライド弁(第1の針弁)
125 針弁(第2の針弁)
161 第1の噴孔
162 第2の噴孔
191 貫通穴
193 針弁座
194 シール面
208 燃料ガス噴射弁
222 ホルダ
225 第2の針弁
231 油溜まり
235 油溜まり
236 連通穴

Claims (7)

  1.  高圧噴射によって、燃料油および燃料ガスの両方を燃焼させることができるデュアルフューエルガスエンジンに適用される燃料ガス噴射弁であって、
     前記デュアルフューエルガスエンジンを構成するピストンが、上死点前40°~100°に位置するときに、予混合燃料となる燃料ガスを噴出する第1の噴孔と、上死点前10°~上死点後15°に位置するときに拡散燃料となる燃料ガスを噴出する第2の噴孔とを備えたホルダと、
     前記ホルダ内を軸方向に沿って摺動自在に往復動し、前記第1の噴孔を開としているときに前記第2の噴孔を閉とし、前記第1の噴孔を閉としているときに前記第2の噴孔を開とする第1の針弁と、
     前記ホルダに設けられた針弁座と当接するシール面が先端に設けられ、径方向における中央部に、前記第1の針弁が摺動自在に挿通される貫通穴が、軸方向に沿って設けられており、前記ホルダ内を軸方向に沿って往復動し、前記シール面が前記針弁座に当接しているときに前記第1の噴孔および前記第2の噴孔への燃料ガスの流通を遮断し、前記シール面が前記針弁座から離間しているときに前記第1の噴孔または前記第2の噴孔への燃料ガスの流通を許容する第2の針弁と、を備えている燃料ガス噴射弁。
  2.  前記第1の針弁が、前記デュアルフューエルガスエンジンの筒内圧によって前記ホルダ内を軸方向に沿って往復動するスライド弁とされている請求項1に記載の燃料ガス噴射弁。
  3.  前記ノズルの、前記第2の針弁が摺動する部分、および前記貫通穴に、油溜まりがそれぞれ設けられており、前記第2の針弁が摺動する部分に設けられた油溜まりと、前記貫通穴に設けられた油溜まりとが、径方向に沿って前記ノズルに設けられた連通穴を介して連通されている請求項1または2に記載の燃料ガス噴射弁。
  4.  高圧噴射によって、燃料油および燃料ガスの両方を燃焼させることができるデュアルフューエルガスエンジンに適用される燃料ガス噴射弁であって、
     前記デュアルフューエルガスエンジンを構成するピストンが、上死点前40°~100°に位置するときに、予混合燃料となる燃料ガスを噴出する第1の噴孔と、上死点前10°~上死点後15°に位置するときに拡散燃料となる燃料ガスを噴出する第2の噴孔とを備えたホルダと、
     前記ホルダ内を軸方向に沿って摺動自在に往復動し、前記第1の噴孔を開としているときに前記第2の噴孔を閉とし、前記第1の噴孔を閉としているときに前記第2の噴孔を開とする第1の針弁と、
     前記ホルダに設けられた針弁座と当接するシール面が先端に設けられており、前記ホルダ内を軸方向に沿って往復動し、前記シール面が前記針弁座に当接しているときに前記第1の噴孔および前記第2の噴孔への燃料ガスの流通を遮断し、前記シール面が前記針弁座から離間しているときに前記第1の噴孔または前記第2の噴孔への燃料ガスの流通を許容する第2の針弁と、を備えている燃料ガス噴射弁。
  5.  前記ノズルの、前記第1の針弁が摺動する部分、および前記第2の針弁が摺動する部分に、油溜まりがそれぞれ設けられている請求項4に記載の燃料ガス噴射弁。
  6.  請求項1から5のいずれか一項に記載の燃料ガス噴射弁を具備しているデュアルフューエルガスエンジン。
  7.  高圧噴射によって、燃料油および燃料ガスの両方を燃焼させることができるデュアルフューエルガスエンジンに適用される燃料ガス噴射方法であって、
     前記デュアルフューエルガスエンジンを構成するピストンが、上死点前40°~100°に位置するときに、予混合燃料となる燃料ガスを噴出し、上死点前10°~上死点後15°に位置するときに拡散燃料となる燃料ガスを噴出するようにした燃料ガス噴射方法。
PCT/JP2013/071980 2012-10-19 2013-08-15 燃料ガス噴射弁、デュアルフューエルガスエンジンおよび燃料ガス噴射方法 WO2014061343A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13847809.4A EP2857668A4 (en) 2012-10-19 2013-08-15 FUEL GAS INJECTION VALVE, DOUBLE FUEL GAS ENGINE AND FUEL GAS INJECTION METHOD
KR1020157000209A KR101677862B1 (ko) 2012-10-19 2013-08-15 연료 가스 분사 밸브, 듀얼 퓨얼 가스 엔진 및 연료 가스 분사 방법
US14/414,093 US20150211464A1 (en) 2012-10-19 2013-08-15 Fuel gas injection valve, dual-fuel gas engine, and fuel gas injection method
CN201380032587.8A CN104428522B (zh) 2012-10-19 2013-08-15 燃料气体喷射阀、双燃料燃气发动机及燃料气体喷射阀的喷射方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012232065A JP5925104B2 (ja) 2012-10-19 2012-10-19 燃料ガス噴射弁、デュアルフューエルガスエンジン及び燃料ガス噴射弁の噴射方法
JP2012-232065 2012-10-19

Publications (1)

Publication Number Publication Date
WO2014061343A1 true WO2014061343A1 (ja) 2014-04-24

Family

ID=50487920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071980 WO2014061343A1 (ja) 2012-10-19 2013-08-15 燃料ガス噴射弁、デュアルフューエルガスエンジンおよび燃料ガス噴射方法

Country Status (6)

Country Link
US (1) US20150211464A1 (ja)
EP (2) EP2998559A1 (ja)
JP (1) JP5925104B2 (ja)
KR (1) KR101677862B1 (ja)
CN (1) CN104428522B (ja)
WO (1) WO2014061343A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112065593A (zh) * 2020-09-03 2020-12-11 一汽解放汽车有限公司 一种双燃料喷射器及内燃机
CN112081687A (zh) * 2019-06-14 2020-12-15 曼能源解决方案公司(德国曼能源解决方案股份公司子公司) 内燃发动机

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6746268B2 (ja) * 2014-06-05 2020-08-26 三菱重工業株式会社 内燃機関およびこれを備えた船舶ならびに内燃機関の制御方法
EP3015679B1 (de) * 2014-10-31 2018-12-05 Winterthur Gas & Diesel AG Zylinder für eine hubkolbenbrennkraftmaschine, hubkolbenbrennkraftmaschine, sowie verfahren zum betreiben einer hubkolbenbrennkraftmaschine
EP3015699B1 (de) 2014-10-31 2018-12-05 Winterthur Gas & Diesel AG Gaszuführsystem mit einem Kontrollsystem und Zylinder für eine Hubkolbenbrennkraftmaschine, Hubkolbenbrennkraftmaschine, sowie Verfahren zum Betreiben einer Hubkolbenbrennkraftmaschine
CN107429635B (zh) 2015-04-10 2021-02-12 欧根赛驰股份公司 用于控制流体流的阀
DE102015006999A1 (de) * 2015-05-29 2016-12-01 L'orange Gmbh Brenngasinjektor
EP3147477B1 (de) 2015-09-23 2018-10-17 Winterthur Gas & Diesel AG Gaszuführsystem und zylinderliner für eine hubkolbenbrennkraftmaschine, hubkolbenbrennkraftmaschine, sowie verfahren zum betreiben einer hubkolbenbrennkraftmaschine
US9915215B2 (en) * 2016-04-28 2018-03-13 Caterpillar Inc. Fuel injector for pulsed injections and system and method thereof
WO2019018578A1 (en) 2017-07-18 2019-01-24 Prometheus Applied Technologies, Llc COMBUSTION OF IGNITION ENGINE CONTROLLED BY LUBRICATING OIL
DE102017123315A1 (de) * 2017-10-09 2019-04-11 Man Diesel & Turbo Se Dual-Fuel-Injektor, Dual-Fuel-Kraftstoffsystem, Brennkraftmaschine und Verfahren zum Betreiben derselben
US11035332B2 (en) * 2017-12-19 2021-06-15 Caterpillar Inc. Fuel injector having dual solenoid control valves
CN109555620B (zh) * 2018-10-22 2023-09-22 中船动力研究院有限公司 带有自动保护装置的燃气喷射阀及其工作方法
CN109372658B (zh) * 2018-12-10 2020-10-13 大连理工大学 一种气体发动机的燃气喷射器及其工作方法
DE102019209232A1 (de) * 2019-06-26 2020-12-31 Technische Universität München HPDF-Betriebsverfahren für eine Brennkraftmaschine, Brennkraftmaschine und Arbeitsvorrichtung
CN110410249B (zh) * 2019-07-29 2021-08-17 大连民族大学 一种双燃料喷嘴及其使用方法
CN110344975B (zh) * 2019-07-29 2021-08-17 大连民族大学 一种发动机双燃料喷嘴工作方法
CN110374776B (zh) * 2019-07-29 2021-07-13 大连民族大学 一种采用等离子体激励技术的发动机双燃料喷嘴
CN111878276B (zh) * 2020-07-24 2021-09-14 一汽解放汽车有限公司 一种燃料喷射器及发动机
CN112177824B (zh) * 2020-09-30 2021-11-02 重庆红江机械有限责任公司 一种液驱电控甲醇陶瓷柱塞泵
CN112282995B (zh) * 2020-10-28 2021-12-21 哈尔滨工程大学 一种气相射流辅助预混喷油器及其控制方法
CN112343739B (zh) * 2020-11-26 2024-07-26 中船动力研究院有限公司 一种燃气喷射阀
DK180809B1 (en) * 2020-12-09 2022-04-07 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland Internal combustion engine
CN113833592B (zh) * 2021-09-30 2023-03-24 潍柴动力股份有限公司 一种喷射阀组件、发动机及车辆
CN114233528B (zh) * 2021-12-01 2024-01-05 漫索(苏州)控制系统有限公司 燃气喷嘴

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245339U (ja) 1985-09-10 1987-03-19
JPH0185453U (ja) * 1987-11-27 1989-06-06
JPH06137150A (ja) 1992-10-23 1994-05-17 Ishikawajima Shibaura Mach Co Ltd ガスエンジンの燃料供給装置
JPH1047165A (ja) * 1996-07-30 1998-02-17 Yanmar Diesel Engine Co Ltd ガスエンジンの燃焼ガス供給方法及び構造
JP2000320334A (ja) * 1999-05-13 2000-11-21 Isuzu Ceramics Res Inst Co Ltd 副室式ガスエンジン
JP2009024512A (ja) * 2007-07-17 2009-02-05 Denso Corp インジェクタ
JP2010242699A (ja) * 2009-04-09 2010-10-28 Ihi Corp ガスエンジンの燃焼方法及び装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024935Y2 (ja) * 1980-04-15 1985-07-26 日立造船株式会社 燃料噴射弁
JPS61218772A (ja) * 1985-03-25 1986-09-29 Mitsui Eng & Shipbuild Co Ltd デイ−ゼル機関用燃料噴射装置
JPS6245339A (ja) 1985-08-23 1987-02-27 Sumitomo Chem Co Ltd 有機溶剤の脱水方法
JPS63208664A (ja) * 1987-02-25 1988-08-30 Daihatsu Diesel Kk 2種燃料機関の燃料噴射ノズル
JPH08144896A (ja) * 1994-11-25 1996-06-04 Zexel Corp 可変噴孔型燃料噴射ノズル
CA2204983A1 (en) * 1997-05-09 1998-11-09 Westport Research Inc. Hydraulically actuated gaseous or dual fuel injector
JP2000204988A (ja) * 1999-01-11 2000-07-25 Isuzu Ceramics Res Inst Co Ltd 吸気燃料ノズルを備えた副室式ガスエンジン
EP1063416A3 (en) * 1999-06-25 2003-08-06 Delphi Technologies, Inc. Fuel injector
US6912992B2 (en) * 2000-12-26 2005-07-05 Cummins Westport Inc. Method and apparatus for pilot fuel introduction and controlling combustion in gaseous-fuelled internal combustion engine
US6725838B2 (en) * 2001-10-09 2004-04-27 Caterpillar Inc Fuel injector having dual mode capabilities and engine using same
US20050235951A1 (en) * 2002-05-14 2005-10-27 Weber James R Air and fuel supply system for combustion engine operating in HCCI mode
JP4419795B2 (ja) * 2004-10-25 2010-02-24 株式会社デンソー インジェクタ
JP2009108778A (ja) * 2007-10-30 2009-05-21 Toyota Motor Corp 圧縮着火式内燃機関の燃料噴射装置
KR101148683B1 (ko) * 2010-06-07 2012-05-21 현대중공업 주식회사 디젤엔진과 가스엔진용 하이브리드형 노즐을 구비한 이중 연료분사밸브장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245339U (ja) 1985-09-10 1987-03-19
JPH0185453U (ja) * 1987-11-27 1989-06-06
JPH06137150A (ja) 1992-10-23 1994-05-17 Ishikawajima Shibaura Mach Co Ltd ガスエンジンの燃料供給装置
JPH1047165A (ja) * 1996-07-30 1998-02-17 Yanmar Diesel Engine Co Ltd ガスエンジンの燃焼ガス供給方法及び構造
JP2000320334A (ja) * 1999-05-13 2000-11-21 Isuzu Ceramics Res Inst Co Ltd 副室式ガスエンジン
JP2009024512A (ja) * 2007-07-17 2009-02-05 Denso Corp インジェクタ
JP2010242699A (ja) * 2009-04-09 2010-10-28 Ihi Corp ガスエンジンの燃焼方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2857668A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112081687A (zh) * 2019-06-14 2020-12-15 曼能源解决方案公司(德国曼能源解决方案股份公司子公司) 内燃发动机
JP2020204326A (ja) * 2019-06-14 2020-12-24 マン・エナジー・ソリューションズ、フィリアル・エフ・マン・エナジー・ソリューションズ・エスイー、ティスクランド 内燃機関
CN112081687B (zh) * 2019-06-14 2023-09-05 曼能源解决方案公司(德国曼能源解决方案股份公司子公司) 内燃发动机
CN112065593A (zh) * 2020-09-03 2020-12-11 一汽解放汽车有限公司 一种双燃料喷射器及内燃机
CN112065593B (zh) * 2020-09-03 2022-06-10 一汽解放汽车有限公司 一种双燃料喷射器及内燃机

Also Published As

Publication number Publication date
EP2857668A4 (en) 2015-07-15
CN104428522B (zh) 2017-03-08
EP2998559A1 (en) 2016-03-23
JP5925104B2 (ja) 2016-05-25
KR101677862B1 (ko) 2016-11-18
KR20150020663A (ko) 2015-02-26
US20150211464A1 (en) 2015-07-30
JP2014084729A (ja) 2014-05-12
EP2857668A1 (en) 2015-04-08
CN104428522A (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2014061343A1 (ja) 燃料ガス噴射弁、デュアルフューエルガスエンジンおよび燃料ガス噴射方法
US9822692B2 (en) Fuel gas feed and ignition apparatus for a gas engine
US9957936B2 (en) Fuel gas feed and ignition apparatus for a gas engine
CN103782021B (zh) 用于双燃料共轨系统的燃料喷射器
WO2013153842A1 (ja) 2サイクルガスエンジン
CN104685188B (zh) 单流扫气式二冲程发动机
KR101564866B1 (ko) 이원 연료 디젤 엔진
KR101386364B1 (ko) 피스톤 엔진용의 프리챔버구조
WO2013153840A1 (ja) 2サイクルガスエンジン
CN114233465A (zh) 氨燃料燃烧系统、发动机及燃烧控制方法
KR102057802B1 (ko) 이원연료엔진용 연료분사밸브
JP5065168B2 (ja) エンジン
JP2017155735A (ja) クロスヘッド式内燃機関
KR102048097B1 (ko) 이원연료엔진용 연료분사밸브
KR101792831B1 (ko) 유니플로 소기식 2사이클 엔진
CN102086827A (zh) 具有热负载控制的流体喷射器
JPH11280610A (ja) 燃料噴射ノズル
CN205779397U (zh) 组合式压电喷油‑电磁喷气混合燃料喷射装置
WO2018163245A1 (ja) ユニフロー掃気式2サイクルエンジン
JP2004092574A (ja) 副室掃気装置を備えたガスエンジン
CN216894617U (zh) 燃烧系统及发动机
CN216518261U (zh) 氨燃料燃烧系统及发动机
JP6737149B2 (ja) エンジン
CN105840371A (zh) 组合式压电喷油-电磁喷气混合燃料喷射装置
CN114233464A (zh) 燃烧系统、发动机及燃烧控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847809

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013847809

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157000209

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14414093

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE