WO2014057961A1 - ピーニング装置及びピーニング方法 - Google Patents
ピーニング装置及びピーニング方法 Download PDFInfo
- Publication number
- WO2014057961A1 WO2014057961A1 PCT/JP2013/077437 JP2013077437W WO2014057961A1 WO 2014057961 A1 WO2014057961 A1 WO 2014057961A1 JP 2013077437 W JP2013077437 W JP 2013077437W WO 2014057961 A1 WO2014057961 A1 WO 2014057961A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- peening
- angle
- vibration
- vibration state
- work surface
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D31/00—Other methods for working sheet metal, metal tubes, metal profiles
- B21D31/06—Deforming sheet metal, tubes or profiles by sequential impacts, e.g. hammering, beating, peen forming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B39/00—Burnishing machines or devices, i.e. requiring pressure members for compacting the surface zone; Accessories therefor
- B24B39/006—Peening and tools therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
- C21D7/06—Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
- C21D7/08—Modifying the physical properties of iron or steel by deformation by cold working of the surface by burnishing or the like
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F3/00—Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2221/00—Treating localised areas of an article
Definitions
- the present invention relates to a peening apparatus and a peening method.
- the peening apparatus reciprocates a pin, which is impact means, by ultrasonic vibration, for example, to strike a work surface of a workpiece (a metal plate or the like) to generate compressive residual stress on the surface of the work surface. Bending (peen forming) of workpieces and improving fatigue characteristics of workpieces and their welds.
- the peening apparatus When the peening apparatus is operated manually and peening is performed on the surface to be processed, the worker directly receives the vibration due to the reciprocating motion of the pin. For this reason, the conventional peening apparatus has the problem that the stability of the peening process is poor due to vibration, and the problem that the striking angle by the operator varies.
- Patent Document 1 discloses a structure in which a peening apparatus main body is vertically held on the basis of a work surface, and a spring absorbs vibration. Further, in Patent Document 2, there is a device for holding a peening apparatus main body by a holding mechanism such as a robot, positioning the holding mechanism so as to be perpendicular to a processing surface and automatically striking it while pressing against a weld bead. It is disclosed.
- the holding mechanism etc. such as a robot is brought into contact with the workpiece surface to be vertical. It is difficult to take the reference plane of In addition, when the object is to be formed by bending, if the workpiece is thin, the surface to be machined changes momentarily by peening, so even if the body of the peening machine and the surface to be machined are positioned before peening, Maintaining vertical is difficult. Furthermore, since it is also difficult to predict the process of shape change of the surface to be processed, it is not possible to perform pre-teaching on the robot holding mechanism according to the shape change.
- the present invention has been made in view of such circumstances, and is capable of performing good peening following a work surface whose shape is changing momentarily by peening. Intended to provide a method.
- the peening device and peening method of the present invention adopt the following means.
- a peening apparatus comprises a striking means for striking a work surface, an apparatus body for reciprocating the impact means with respect to the work surface, and an inclination of the apparatus body with respect to the work surface.
- the striking means provided on the apparatus main body reciprocates with respect to the work surface to strike the work surface.
- the shape of the work surface changes momentarily by peening, the angle between the work surface and the device body including the striking means changes, and the vibration state of the device body changes. Therefore, the peening apparatus can not always perform good peening on the surface to be processed.
- the vibration detection means detects the vibration state of the device body, and adjusts the inclination of the device body with respect to the processing surface so that the detected vibration state is a predetermined vibration state. Adjustment means are controlled by the control means.
- a predetermined vibration state is a vibration state in the case of performing favorable peening.
- the shape of the present configuration changes momentarily by peening. Good peening can be performed by following the surface to be processed.
- the tilt adjustment means is a motor for rotating the device body about a predetermined axis
- the control means is based on the rotation angle of the motor and the device body and the work surface.
- the inclination adjusting means based on the difference between the calculated angle and a predetermined angle, and the difference between the vibration state detected by the vibration detection means and the predetermined vibration state; It is preferable to determine the operation amount for.
- the inclination adjustment means makes the angle between the apparatus body and the work surface an angle suitable for peening, and the object of the apparatus body is in a favorable vibration state.
- the inclination to the processing surface is adjusted. Therefore, it is possible to perform better peening following the work surface whose shape is changing momentarily by peening.
- a peening apparatus comprises a striking means for striking a work surface, an apparatus main body for reciprocating the striking means by vibration with respect to the work surface, and the work surface of the apparatus main body. So that the angle detected by the angle detection means becomes a predetermined angle, the inclination adjustment means adjusting the inclination with respect to the angle, the angle detection means detecting the angle formed between the apparatus main body and the work surface, And control means for controlling the tilt adjustment means.
- the angle detection means detects the angle between the apparatus body and the work surface, and adjusts the inclination of the apparatus body with respect to the work surface such that the detected angle becomes a predetermined angle.
- the inclination adjusting means is controlled by the control means.
- the predetermined angle is, for example, 90 °.
- the present configuration is peened Good peening can be performed following the work surface whose shape is changing momentarily.
- the apparatus further includes vibration detection means for detecting a vibration state of the device body, and the control means detects a difference between an angle detected by the angle detection means and the predetermined angle, and the vibration detection. It is preferable to determine the operation amount for the tilt adjusting means based on the difference between the vibration state detected by the means and the predetermined vibration state.
- the inclination adjustment means makes the angle between the apparatus body and the work surface an angle suitable for peening, and the object of the apparatus body is in a favorable vibration state.
- the inclination to the processing surface is adjusted. Therefore, it is possible to perform better peening following the work surface whose shape is changing momentarily by peening.
- the angle detection unit detects an angle between the device body and the work surface by detecting distances between the device body and the work surface at a plurality of locations. .
- the predetermined vibration state is the detected vibration state. Preferably updated.
- a peening method comprises striking means for striking a work surface, an apparatus body for reciprocating the impact means with respect to the work surface, and an inclination of the apparatus body with respect to the work surface.
- Peening method of a peening apparatus comprising: tilt adjustment means for adjusting the vibration state of the device body; and a first step of detecting the vibration state of the device body by the vibration detection means And a second step of controlling the tilt adjusting means such that the detected vibration state is a predetermined vibration state.
- a peening method comprises a striking means for striking a work surface, an apparatus main body for reciprocating the striking means by vibration with respect to the work surface, and the work surface of the apparatus main body
- Peening method of a peening apparatus comprising: inclination adjusting means for adjusting an inclination with respect to the angle; and angle detecting means for detecting an angle formed between the apparatus main body and the work surface, wherein the apparatus main body And a second step of controlling the tilt adjusting means such that the detected angle is a predetermined angle.
- the peening device includes vibration detection means for detecting a vibration state of the device body, and the first step is an angle formed between the device body and the work surface by the angle detection means. And the vibration detection means detects the vibration state of the apparatus body, and the second step determines the difference between the detected angle and the predetermined angle, and the detected vibration state and the predetermined value. It is preferable to determine an operation amount for the inclination adjusting means on the basis of the difference from the determined vibration state.
- FIG. 1 and 2 are external views of the peening apparatus 10 according to the first embodiment.
- the direction perpendicular to the paper is y-axis
- the lateral direction is x-axis
- the vertical direction is z-axis.
- the direction perpendicular to the paper is x-axis
- the lateral direction is y-axis
- the vertical direction is z It will be the axis.
- the peening apparatus 10 is connected to a feeding apparatus 12 such as a robot or a balancer, and is automatically moved to strike a work surface of a workpiece to reduce residual stress generated by bending or welding. Do.
- the workpiece is, for example, a metal such as aluminum or an aluminum alloy.
- the peening device 10 may be held by an operator and moved by the operator without being connected to the feeding device 12.
- a peening striking pin 16 for striking the work surface is provided at a lower portion of the device body 14 of the peening apparatus 10, that is, a portion facing the work surface.
- the apparatus body 14 reciprocates the peening striking pin 16 with respect to the surface to be processed by vibration (for example, ultrasonic vibration of about 20 kHz or more).
- vibration for example, ultrasonic vibration of about 20 kHz or more.
- shape of the peening striking pin 16 and the method of making it reciprocate are not limited.
- a vibration sensor 18 for detecting the vibration state of the device body 14 is provided on the upper portion of the device body 14.
- the vibration sensor 18 a sensor that detects the acceleration of the device body 14 is used. Further, the position of the vibration sensor 18 is an example, and may be provided at another position in the device body 14.
- a plurality of laser displacement gauges 20 are provided on the side surface of the apparatus body 14.
- the laser displacement gauges 20 are provided at two positions facing each other on the x-axis and two positions facing each other on the y-axis, with the z-axis of the device body 14 as the center.
- the laser displacement gauges 20 function as angle detection means for detecting an angle (hereinafter, referred to as “apparatus angle”) between the apparatus main body 14 and the processing surface.
- the laser displacement meter 20 detects the distance between the device body 14 and the surface to be processed, which is perpendicular to the z-axis direction, by detecting the distance between the device body 14 and the surface to be processed at a plurality of locations.
- the apparatus body 14 is provided with a servomotor 22x whose rotation axis is the x axis and a servomotor 22y whose rotation axis is the y axis as inclination adjustment means for adjusting the inclination of the apparatus body 14 with respect to the work surface .
- the machined surface changes its device angle as the shape changes momentarily with peening, and the vibration state of the device body 14 changes.
- the conventional peening apparatus can not always perform good (large vibration) peening with respect to a to-be-processed surface. Therefore, the vibration sensor 18, the laser displacement gauges 20A, 20B, 20C, 20D, and the servomotors 22x, 22y can always perform good peening on the surface to be machined according to the first embodiment.
- the attitude control device 30 of the peening device 10 is configured.
- FIG. 3 is a block diagram showing the electrical configuration of the control device 40 of the peening apparatus 10 according to the first embodiment, and particularly shows the electrical configuration regarding attitude control of the apparatus main body 14.
- the control device 40 mainly includes, for example, a central processing unit (CPU), a random access memory (RAM), a computer readable recording medium, and the like.
- CPU central processing unit
- RAM random access memory
- FIG. 3 is a block diagram showing the electrical configuration of the control device 40 of the peening apparatus 10 according to the first embodiment, and particularly shows the electrical configuration regarding attitude control of the apparatus main body 14.
- the control device 40 mainly includes, for example, a central processing unit (CPU), a random access memory (RAM), a computer readable recording medium, and the like.
- angle command output unit 42 subtraction units 44x and 44y, posture calculation unit 46, operation amount calculation units 48x and 48y, vibration reference waveform output unit 50, and vibration deviation calculation unit 52 described later.
- the series of processes are recorded in the form of a program on a
- the angle command output unit 42 outputs a command value (hereinafter referred to as “angle command value”) of a predetermined device angle.
- the angle command output unit 42 outputs the angle command value ⁇ xref in the x direction to the subtraction unit 44 x and outputs the angle command value ⁇ yref in the y direction to the subtraction unit 44 y.
- the angle command values ⁇ xref and ⁇ yref are, for example, 90 degrees.
- the posture calculation unit 46 receives displacement sensor signals Z A , Z B , Z C and Z D which are distances detected by the laser displacement meters 20 A, 20 B, 20 C and 20 D , and these displacement sensor signals Z A and Z B A device angle ⁇ x in the x direction and a device angle ⁇ y in the y direction are calculated based on Z, Z C and Z D. Then, the posture calculation unit 46 outputs the device angle ⁇ x to the subtraction unit 44 x and outputs the device angle ⁇ y to the subtraction unit 44 x.
- Subtraction unit 44x the deviation between the input device angular theta x and angle command value theta xref (hereinafter referred to as “x-direction angular deviation e [theta] x.”) Is calculated and outputted to the operation amount calculation unit 48x.
- Subtraction unit 44y is a deviation between the input device angular theta y and angle command value theta yref (hereinafter referred to as "y-direction angular deviation e [theta] y.”) Is calculated and outputted to the operation amount calculation unit 48y.
- the vibration reference waveform output unit 50 stores and outputs a reference waveform of the vibration state of the device main body 14.
- FIG. 4 is an example of a graph showing the vibration state of the peening apparatus 10. The vibration state is different between a state where the frequency is lower than the vibration frequency of the peening striking pin 16 and the frequency is 200 Hz or less and the vibration is good and the vibration is bad. As shown in FIG. 4, the better vibration state has larger vibration than the bad vibration state.
- the vibration reference waveform output unit 50 outputs a waveform in a good vibration state as shown in the example of FIG. 4 to the vibration deviation calculation unit 52 as a predetermined reference waveform e ref .
- the vibration deviation calculation unit 52 calculates a deviation between the vibration sensor signal S output from the vibration sensor 18 and the reference waveform e ref (hereinafter referred to as “vibration deviation e s ”), and outputs it to the operation amount calculation units 48 x and 48 y. Do. Incidentally, the vibration deviation calculation unit 52, by using a low-pass filter, 200 Hz frequencies below as shown in the example of FIG. 4, preferably calculates the vibration deviation e s of frequencies below 100 Hz.
- Operation amount calculating unit 48x calculates an operation amount command value V x indicating the operation amount to the servo motor 22x, outputs to the servo amplifier 54x.
- the operation amount calculation unit 48x may calculate the operation amount command value V x by, for example, a predetermined function, or the x direction angular deviation e ⁇ x , the vibration deviation e s and the operation amount command value V x
- the manipulated variable command value V x may be calculated based on table information indicating the relationship of
- Operation amount calculation unit 48y based on the vibration deviation e s and y-direction angular deviation e [theta] y input, calculates an operation amount command value V y indicating the operation amount to the servo motor 22y, and outputs to the servo amplifier 54y.
- the operation amount calculation unit 48y may calculate the operation amount command value V y by, for example, a predetermined function, or the y direction angle deviation e ⁇ y , the vibration deviation e s and the operation amount command value V y
- the manipulated variable command value V y may be calculated based on table information indicating the relationship of
- manipulated variable command values V x and V y are, for example, voltage values.
- the servo amplifier 54 x supplies the current i x for driving the servo motor 22 x to the servo motor 22 x based on the input operation amount command value V x .
- the servomotor 22x rotates the rotating shaft in accordance with the supplied current i x .
- the rotational state of the rotary shaft is detected by the encoder 56x.
- Servo amplifier 54y supplies current i y to drive the servo motor 22y based on the input operation amount command value V y to the servo motor 22y.
- Servomotor 22y rotates the rotating shaft in accordance with the supplied current i y.
- the rotational state of the rotary shaft is detected by the encoder 56y.
- the detected device angles ⁇ x , ⁇ y and the detected vibration sensor signal S are fed back, and the device angles ⁇ x , ⁇ y and predetermined angle command values ⁇ xref , ⁇
- the manipulated variables for the servomotors 22x and 22y are determined based on the difference with yref and the difference between the vibration sensor signal S and the predetermined reference waveform e ref .
- FIG. 5 is a flow chart showing the flow of peening processing using the peening apparatus 10 according to the first embodiment.
- step 100 driving of the peening apparatus 10 is started. Thereby, the striking on the surface to be processed by the peening striking pin 16 is started.
- the pressing force applied to the surface to be processed by the peening apparatus 10 is, for example, 5 to 10 kg, which is weaker than when the peening apparatus is not provided with the posture control apparatus 30.
- the peening apparatus 10 is connected to the feeding apparatus 12, for example, it is biased by a spring provided between the feeding apparatus 12 and the peening apparatus 10 to generate the above-mentioned pressing force on the work surface.
- the posture calculation unit 46 detects the device angles ⁇ x and ⁇ y based on the detection results by the laser displacement gauges 20A, 20B, 20C and 20D, and the vibration sensor 18 detects the vibration of the device body 14 Do.
- step 104 device angle theta x, theta by feedback y and the vibration sensor signal S, the operation amount calculation unit 48x calculates the operation amount command values V x, operation amount calculation unit 48y operation amount command value V y Calculate
- the current I x servo amplifier 54x is based on the operation amount command value V x is supplied to the servo motor 22x, it rotates the rotary shaft of the servomotor 22x in x-axis.
- the device body 14 pivots around the x axis.
- the current I y servo amplifier 54y is based on the operation amount command value V y is supplied to the servo motor 22y, it rotates the rotary shaft of the servo motor 22y in y-axis.
- the device body 14 pivots around the y axis.
- the peening apparatus 10 which concerns on embodiment can perform favorable peening following the to-be-processed surface to which shape is changing momentarily by peening.
- step 108 it is determined whether or not the driving stop of the peening apparatus 10 is instructed. If the determination is affirmative, the present peening processing is ended. If the determination is negative, the process proceeds to step 102 to process the surface Continue peening against
- the peening apparatus 10 includes the peening striking pin 16 for striking the work surface and the apparatus main body 14 for causing the peening striking pin 16 to reciprocate with respect to the work surface by vibration.
- the servomotors 22x and 22y adjust the inclination of the device body 14 with respect to the work surface, the laser displacement gauges 20A, 20B, 20C and 20D for detecting the device angle, and the vibration sensor 18 for detecting the vibration state of the device body 14.
- the control device 40 of the peening apparatus 10 controls the servomotors 22x and 22y such that the vibration state detected by the vibration sensor 18 becomes a predetermined vibration state. Accordingly, the peening apparatus 10 according to the first embodiment can perform good peening following the work surface whose shape is changing momentarily by peening.
- FIG. 8 is a block diagram showing an electrical configuration of the control device 40 of the peening apparatus 10 according to the second embodiment, and particularly shows an electrical configuration regarding attitude control.
- the same components in FIG. 8 as in FIG. 3 will be assigned the same reference numerals as in FIG. 3 and the description thereof will be omitted.
- the peening apparatus 10 which concerns on the 2nd embodiment of this invention does not perform feedback based on the detection result by the vibration sensor 18, as FIG. 8 shows. That is, the control device 40 performs only feedback based on the detection results of the laser displacement meters 20A, 20B, 20C, and 20D, and calculates the operation amount command values V x and V y .
- the detection result of the vibration sensor 18 is separately monitored, and it is determined by the operator or the like whether the vibration state of the apparatus main body 14 is a good vibration state.
- FIG. 9 is a flowchart showing the flow of peening processing according to the second embodiment. Steps in FIG. 9 identical to those in FIG. 5 are assigned the same reference numerals as in FIG. 5, and the description thereof will be partially or completely omitted.
- step 100 when the driving of the peening apparatus 10 is started in step 100, the process proceeds to step 102 '.
- step 102 ′ the posture calculation unit 46 detects the device angles ⁇ x and ⁇ y based on the detection results of the laser displacement meters 20A, 20B, 20C, and 20D.
- step 104 device angle theta x, by feedback theta y, the operation amount calculation unit 48x calculates the operation amount command values V x, operation amount calculation unit 48y calculates the operation amount command value V y, The process moves to step 106.
- step 106 the current I x servo amplifier 54x is based on the operation amount command value V x is supplied to the servo motor 22x, supplying a current I y servo amplifier 54y is based on the operation amount command value V y to the servo motor 22y Do.
- step 108 it is determined whether or not the driving stop of the peening apparatus 10 is instructed. If the determination is affirmative, the peening processing is ended. If the determination is negative, the process proceeds to step 102 'to process the workpiece Continue peening the surface.
- the peening apparatus 10 includes the peening striking pin 16 for striking the work surface and the apparatus main body 14 for causing the peening striking pin 16 to reciprocate with respect to the work surface by vibration. And servomotors 22x and 22y for adjusting the inclination of the device body 14 with respect to the work surface, and laser displacement meters 20A, 20B, 20C and 20D for detecting the device angle. Then, the control device 40 of the peening device 10 controls the servomotors 22x and 22y such that the device angle detected by the laser displacement gauges 20A, 20B, 20C and 20D becomes a predetermined device angle. Therefore, the peening apparatus 10 according to the second embodiment can perform good peening following the work surface whose shape is changing momentarily by peening.
- the peening apparatus 10 and 11 are external views of the peening apparatus 10 according to the third embodiment.
- the direction perpendicular to the paper is y-axis
- the lateral direction is x-axis
- the vertical direction is z-axis.
- the direction perpendicular to the paper is x-axis
- the lateral direction is y-axis
- the vertical direction is z It will be the axis.
- the peening apparatus 10 according to the third embodiment does not include the laser displacement gauges 20A, 20B, 20C, and 20D, and in addition, FIGS.
- FIGS The same components as those in FIG. 2 are assigned the same reference numerals as those in FIGS.
- FIG. 12 is a block diagram showing the electrical configuration of the control device 40 of the peening apparatus 10 according to the third embodiment, and in particular shows the electrical configuration relating to attitude control.
- the same components in FIG. 12 as in FIG. 3 will be assigned the same reference numerals as in FIG. 3 and descriptions thereof will be omitted.
- control device 40 performs feedback based on the detection result of the vibration sensor 18, and calculates operation amount command values V x and V y .
- the encoder 56x detects the rotation angle ⁇ Mx of the rotation shaft of the servo motor 22x, and outputs the rotation angle ⁇ Mx to the operation amount calculation unit 48x.
- Operation amount calculation unit 48x calculates the device angle theta x based on the rotation angle theta Mx, it is calculated which is the difference between the calculated device angle theta x and angle command value theta xref x-direction angular deviation e [theta] x. Then, based on the calculated x-direction angle deviation e ⁇ x and vibration deviation e s , the operation amount calculation unit 48 x calculates the operation amount command value V x indicating the operation amount to the servo motor 22 x and outputs it to the servo amplifier 54 x .
- the encoder 56y detects the rotation angle ⁇ My of the rotation axis of the servomotor 22y, and outputs the rotation angle ⁇ My to the operation amount calculation unit 48y.
- Operation amount calculation unit 48y calculates the device angle theta y based on the rotation angle theta My, it is calculated which is the difference between the calculated device angle theta y and angle command value theta yref y-direction angular deviation e [theta] y. Then, based on the calculated y-direction angle deviation e ⁇ y and vibration deviation e s , the operation amount calculation unit 48 y calculates the operation amount command value V y indicating the operation amount for the servomotor 22 y and outputs it to the servo amplifier 54 y .
- the rotation angles ⁇ Mx and ⁇ My of the servomotors 22 x and y and the vibration sensor signal S are fed back and calculated based on the rotation angles ⁇ Mx and ⁇ My
- the manipulated variables for the servomotors 22 x, 22 y are decide.
- FIG. 13 is a flow chart showing the flow of peening processing according to the third embodiment. The same steps in FIG. 13 as in FIG. 5 will be assigned the same reference numerals as in FIG. 5 and the description will be partially or completely omitted.
- step 100 when the driving of the peening apparatus 10 is started in step 100, the process proceeds to step 102 ′ ′.
- step 102 ′ ′ the operation amount computing units 48x and 48y calculate the device angles ⁇ x and ⁇ y based on the rotation angles ⁇ Mx and ⁇ My of the servomotors 22x and y, and the vibration sensor 18 detects the vibration of the device body 14 To detect.
- the operation amount calculation unit 48x calculates the operation amount command value V x by feedback of the calculated device angles ⁇ x , ⁇ y and the detected vibration sensor signal S, and the operation amount calculation unit 48 y operates The amount command value Vy is calculated, and the process proceeds to step 106.
- step 106 the current I x servo amplifier 54x is based on the operation amount command value V x is supplied to the servo motor 22x, supplying a current I y servo amplifier 54y is based on the operation amount command value V y to the servo motor 22y Do.
- step 108 it is determined whether or not the driving stop of the peening apparatus 10 is instructed. If the determination is affirmative, the present peening processing is ended, and if the determination is negative, the process proceeds to step 102 ′ ′ to be processed Continue peening the surface.
- the peening apparatus 10 includes the peening striking pin 16 for striking the work surface and the apparatus main body 14 for causing the peening striking pin 16 to reciprocate with respect to the work surface by vibration. And servomotors 22x and 22y for adjusting the inclination of the device body 14 with respect to the work surface, and a vibration sensor 18 for detecting the vibration state of the device body 14. Then, the control device 40 of the peening apparatus 10 controls the servomotors 22x and 22y such that the vibration state detected by the vibration sensor 18 becomes a predetermined vibration state. Therefore, the peening apparatus 10 according to the third embodiment can perform good peening following the work surface whose shape is changing momentarily by peening.
- the feedback is also performed using the device angles ⁇ x and ⁇ y based on the rotation angles ⁇ Mx and ⁇ My of the servomotors 22 x and y, but the rotation angles ⁇ Mx and ⁇ My Alternatively, only the vibration state detected by the vibration sensor 18 may be fed back without using the device angles ⁇ x and ⁇ y based on the above.
- the configuration of the peening apparatus 10 according to the fourth embodiment is the same as that of the peening apparatus 10 according to the first embodiment shown in FIG.
- FIG. 14 is a block diagram showing an electrical configuration of the control device 40 of the peening apparatus 10 according to the fourth embodiment, and particularly shows an electrical configuration regarding attitude control.
- the same components in FIG. 14 as in FIG. 3 will be assigned the same reference numerals as in FIG. 3 and descriptions thereof will be omitted.
- the control device 40 includes a reference waveform comparison unit 60.
- the reference waveform comparison unit 60 compares the reference waveform e ref stored in the vibration reference waveform output unit 50 with the vibration sensor signal S output from the vibration sensor 18. If the vibration sensor signal S than the reference waveform e ref is large, the reference waveform e ref is updated to the detected vibration sensor signal S.
- control device 40 controls the servomotors 22x and 22y such that the reference waveform e ref in which the vibration state detected by the vibration sensor 18 is updated is the same.
- the peening apparatus 10 which concerns on the 4th embodiment can enlarge a vibration state more, it can perform better peening.
- the vibration sensor 18 for detecting the acceleration of the device body 14 is described as the vibration detection means for detecting the vibration state of the device body 14, but the present invention is limited thereto Since the vibration state of the apparatus main body 14 and the sound emitted by the peening do not correlate with each other, a sound sensor (microphone) may be used as the vibration detection means.
- the sound sensor does not necessarily have to be provided in the apparatus body 14 and may be provided in the vicinity of the processing surface.
- Peening Device 10 Peening Impact Pin 18 Vibration Sensor 20 Laser Displacement Gauge 22x Servo Motor 22y Servo Motor 40 Controller
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Numerical Control (AREA)
- Laser Beam Processing (AREA)
Abstract
ピーニング装置は、被加工面に打撃を与えるピーニング打撃ピンと、ピーニング打撃ピンを振動により被加工面に対して往復運動させる装置本体と、装置本体の被加工面に対する傾きを調整するサーボモータ22x,22yと、装置角度を検出するレーザ変位計20A,20B,20C,20Dと、装置本体の振動状態を検出する振動センサ18とを備える。そして、ピーニング装置の制御装置40は、振動センサ18によって検出された振動状態が予め定められた振動状態となるように、サーボモータ22x,22yを制御する。これにより、ピーニング装置は、ピーニングにより時々刻々と形状が変化している被加工面に追従して、良好なピーニングを行える。
Description
本発明は、ピーニング装置及びピーニング方法に関するものである。
ピーニング装置は、例えば超音波振動によって打撃手段であるピンを往復運動させ、被加工物(金属板材等)の被加工面に打撃を与えて、被加工面の表面に圧縮残留応力を発生させ、被加工物の曲げ成形(ピーン成形)や被加工物やその溶接部の疲労特性の改善を行う。
ピーニング装置を手動で操作し、被加工面に対してピーニングを行う場合、ピンの往復運動による振動を作業者が直接受ける。このため、従来のピーニング装置は、振動によりピーニング処理の安定性が悪いという問題や、作業者による打撃角度にばらつきが生じるという問題があった。
この問題を解決するために特許文献1には、被加工面を基準にピーニング装置本体を垂直に保持し、バネにより振動を吸収する構造が開示されている。
また、特許文献2には、ロボット等保持機構にピーニング装置本体を保持させ、ロボット等保持機構と被加工面とが垂直となるように位置決めし、溶接ビード部に押し付けながら自動で打撃する装置が開示されている。
また、特許文献2には、ロボット等保持機構にピーニング装置本体を保持させ、ロボット等保持機構と被加工面とが垂直となるように位置決めし、溶接ビード部に押し付けながら自動で打撃する装置が開示されている。
しかしながら、被加工面を有する被加工材が薄い等の理由で、被加工材自体がピーニングの影響を受けて振動している場合には、ロボット等保持機構等を被加工面に接触させて垂直の基準面を取ることが困難である。
また、曲げ成形を目的とする場合、被加工材が薄いと被加工面はピーニングにより時々刻々と形状変化しているので、ピーニングの前に予めピーニング装置本体と被加工面とを位置決めしても垂直を維持することは困難である。さらに、被加工面の形状変化の過程を予測することも困難であるため、形状変化にあわせたロボット等保持機構に対する事前のティーチングを行えない。
また、曲げ成形を目的とする場合、被加工材が薄いと被加工面はピーニングにより時々刻々と形状変化しているので、ピーニングの前に予めピーニング装置本体と被加工面とを位置決めしても垂直を維持することは困難である。さらに、被加工面の形状変化の過程を予測することも困難であるため、形状変化にあわせたロボット等保持機構に対する事前のティーチングを行えない。
本発明は、このような事情に鑑みてなされたものであって、ピーニングにより時々刻々と形状が変化している被加工面に追従して、良好なピーニングを行うことができる、ピーニング装置及びピーニング方法を提供することを目的とする。
上記課題を解決するために、本発明のピーニング装置及びピーニング方法は以下の手段を採用する。
本発明の第一態様に係るピーニング装置は、被加工面に打撃を与える打撃手段と、前記打撃手段を被加工面に対して往復運動させる装置本体と、前記装置本体の前記被加工面に対する傾きを調整する傾き調整手段と、前記装置本体の振動状態を検出する振動検出手段と、前記振動検出手段によって検出された振動状態が予め定められた振動状態となるように、前記傾き調整手段を制御する制御手段と、を備える。
本構成によるピーニング装置は、装置本体に備えられた打撃手段が被加工面に対して往復運動し、被加工面に打撃を与える。
被加工面は、ピーニングにより時々刻々と形状が変化することに伴い、被加工面と打撃手段を備える装置本体とのなす角度が変化し、装置本体の振動状態が変化する。このため、ピーニング装置は、被加工面に対して常に良好なピーニングを行えるとは限らない。
そこで、本構成によれば、振動検出手段によって装置本体の振動状態が検出され、検出された振動状態が予め定められた振動状態となるように、装置本体の被加工面に対する傾きを調整する傾き調整手段が制御手段によって制御される。なお、予め定められた振動状態とは、良好なピーニングを行っている場合における振動状態である。
このように、傾き調整手段が装置本体の振動状態が良好な振動状態となるように、装置本体の被加工面に対する傾きが調整されるので、本構成は、ピーニングにより時々刻々と形状が変化している被加工面に追従して、良好なピーニングを行うことができる。
上記第一態様では、前記傾き調整手段が、前記装置本体を所定の軸回りに回動させるモータであり、前記制御手段が、前記モータの回転角度に基づいて前記装置本体と前記被加工面とのなす角度を算出し、算出した角度と予め定められた角度との差分、及び前記振動検出手段によって検出された振動状態と前記予め定められた振動状態との差分に基づいて、前記傾き調整手段に対する操作量を決定することが好ましい。
本構成によれば、傾き調整手段によって、装置本体と被加工面とのなす角度がピーニングに適した角度となると共に、装置本体の振動状態が良好な振動状態となるように、装置本体の被加工面に対する傾きが調整される。従って、ピーニングにより時々刻々と形状が変化している被加工面に追従して、より良好なピーニングを行うことができる。
本発明の第二態様に係るピーニング装置は、被加工面に打撃を与える打撃手段と、前記打撃手段を振動により被加工面に対して往復運動させる装置本体と、前記装置本体の前記被加工面に対する傾きを調整する傾き調整手段と、前記装置本体と前記被加工面とのなす角度を検出する角度検出手段と、前記角度検出手段によって検出された角度が予め定められた角度となるように、前記傾き調整手段を制御する制御手段と、を備える。
本構成によれば、角度検出手段によって装置本体と被加工面とのなす角度が検出され、検出された角度が予め定められた角度となるように、装置本体の被加工面に対する傾きを調整する傾き調整手段が制御手段によって制御される。なお、予め定められた角度とは、例えば90°である。
このように、傾き調整手段によって、装置本体と被加工面とのなす角度がピーニングに適した角度となるように、装置本体の被加工面に対する傾きが調整されるので、本構成は、ピーニングにより時々刻々と形状が変化している被加工面に追従して、良好なピーニングを行うことができる。
上記第二態様では、前記装置本体の振動状態を検出する振動検出手段を備え、前記制御手段が、前記角度検出手段によって検出された角度と前記予め定められた角度との差分、及び前記振動検出手段によって検出された振動状態と予め定められた振動状態との差分に基づいて、前記傾き調整手段に対する操作量を決定することが好ましい。
本構成によれば、傾き調整手段によって、装置本体と被加工面とのなす角度がピーニングに適した角度となると共に、装置本体の振動状態が良好な振動状態となるように、装置本体の被加工面に対する傾きが調整される。従って、ピーニングにより時々刻々と形状が変化している被加工面に追従して、より良好なピーニングを行うことができる。
上記第二態様では、前記角度検出手段が、前記装置本体と前記被加工面との距離を複数箇所で検出することにより、前記装置本体と前記被加工面とのなす角度を検出することが好ましい。
本構成によれば、ピーニングにより時々刻々と被加工面の形状が変化していても、装置本体と被加工面とのなす角度を精度良く検出することができる。
上記第一態様又は上記第二態様では、前記予め定められた振動状態よりも前記振動検出手段で検出された振動状態が大きい場合、前記予め定められた振動状態は、検出された該振動状態に更新されることが好ましい。
本構成によれば、振動状態をより大きくできるので、より良好なピーニングを行うことができる。
本発明の第三態様に係るピーニング方法は、被加工面に打撃を与える打撃手段と、前記打撃手段を被加工面に対して往復運動させる装置本体と、前記装置本体の前記被加工面に対する傾きを調整する傾き調整手段と、前記装置本体の振動状態を検出する振動検出手段と、を備えるピーニング装置のピーニング方法であって、前記振動検出手段によって前記装置本体の振動状態を検出する第1工程と、検出した振動状態が予め定められた振動状態となるように、前記傾き調整手段を制御する第2工程と、を含む。
本発明の第四態様に係るピーニング方法は、被加工面に打撃を与える打撃手段と、前記打撃手段を振動により被加工面に対して往復運動させる装置本体と、前記装置本体の前記被加工面に対する傾きを調整する傾き調整手段と、前記装置本体と前記被加工面とのなす角度を検出する角度検出手段と、を備えるピーニング装置のピーニング方法であって、前記角度検出手段によって、前記装置本体と前記被加工面とのなす角度を検出する第1工程と、検出した角度が予め定められた角度となるように、前記傾き調整手段を制御する第2工程と、を含む。
上記第四態様では、前記ピーニング装置が、前記装置本体の振動状態を検出する振動検出手段を備え、前記第1工程が、前記角度検出手段によって、前記装置本体と前記被加工面とのなす角度を検出すると共に、前記振動検出手段によって、前記装置本体の振動状態を検出し、前記第2工程が、検出した角度と前記予め定められた角度との差分、及び検出した振動状態と前記予め定められた振動状態との差分に基づいて、前記傾き調整手段に対する操作量を決定することが好ましい。
本発明によれば、ピーニングにより時々刻々と形状が変化している被加工面に追従して、良好なピーニングを行うことができる、という優れた効果を有する。
以下に、本発明に係るピーニング装置及びピーニング方法の一実施形態について、図面を参照して説明する。
〔第1実施形態〕
以下、本発明の第1実施形態について説明する。
以下、本発明の第1実施形態について説明する。
図1,2は、本第1実施形態に係るピーニング装置10の外観図である。図1は、紙面に垂直な方向がy軸、左右方向がx軸、上下方向がz軸とされ、図2は、紙面に垂直な方向がx軸、左右方向がy軸、上下方向がz軸とされる。
ピーニング装置10は、ロボット又はバランサ等の送り装置12に接続されており、自動的に移動し、被加工物の被加工面に打撃を与え、曲げ成形や溶接によって生じた残留応力の低減等を行う。被加工物は、例えばアルミやアルミ合金等の金属である。
なお、ピーニング装置10は、送り装置12に接続されることなく、作業者により保持され、作業者によって移動されてもよい。
ピーニング装置10は、ロボット又はバランサ等の送り装置12に接続されており、自動的に移動し、被加工物の被加工面に打撃を与え、曲げ成形や溶接によって生じた残留応力の低減等を行う。被加工物は、例えばアルミやアルミ合金等の金属である。
なお、ピーニング装置10は、送り装置12に接続されることなく、作業者により保持され、作業者によって移動されてもよい。
ピーニング装置10の装置本体14の下部、すなわち被加工面と対向する部分には、被加工面に打撃を与えるピーニング打撃ピン16が備えられる。装置本体14は、振動(例えば約20kHz以上の超音波振動)によりピーニング打撃ピン16を被加工面に対して往復運動させる。なお、ピーニング打撃ピン16の形状や往復運動させる方法は限定されない。
装置本体14の上部には、装置本体14の振動状態を検出する振動センサ18が備えられている。振動センサ18としては、装置本体14の加速度を検出するセンサが用いられる。また、振動センサ18の位置は一例であり、装置本体14における他の位置に備えられてもよい。
装置本体14の側面には、複数のレーザ変位計20(レーザ変位計20A,20B,20C,20D)が備えられている。レーザ変位計20は、一例として装置本体14のz軸を中心として、x軸上で相対する位置に2つとy軸上で相対する位置に2つ備えられている。
これらレーザ変位計20は、装置本体14と被加工面とのなす角度(以下、「装置角度」という。)を検出する角度検出手段として機能する。すなわち、レーザ変位計20は、装置本体14と被加工面との距離を複数箇所で検出することにより、z軸方向を垂直とした装置本体14と被加工面とのなす角度を検出する。
これらレーザ変位計20は、装置本体14と被加工面とのなす角度(以下、「装置角度」という。)を検出する角度検出手段として機能する。すなわち、レーザ変位計20は、装置本体14と被加工面との距離を複数箇所で検出することにより、z軸方向を垂直とした装置本体14と被加工面とのなす角度を検出する。
さらに、装置本体14は、装置本体14の被加工面に対する傾きを調整する傾き調整手段として、x軸を回転軸線としたサーボモータ22xとy軸を回転軸線としたサーボモータ22yが備えられている。
ここで、被加工面は、ピーニングにより時々刻々と形状が変化することに伴い、装置角度が変化し、装置本体14の振動状態が変化する。このため、従来のピーニング装置は、被加工面に対して常に良好(振動の大きい)なピーニングを行えるとは限らない。
そこで、本第1実施形態に係るピーニング装置10が被加工面に対して常に良好なピーニングを行えるように、振動センサ18、レーザ変位計20A,20B,20C,20D、及びサーボモータ22x,22yが、ピーニング装置10の姿勢制御装置30を構成する。
そこで、本第1実施形態に係るピーニング装置10が被加工面に対して常に良好なピーニングを行えるように、振動センサ18、レーザ変位計20A,20B,20C,20D、及びサーボモータ22x,22yが、ピーニング装置10の姿勢制御装置30を構成する。
図3は、本第1実施形態に係るピーニング装置10の制御装置40の電気的構成を示すブロック図であり、特に装置本体14の姿勢制御に関する電気的構成を示す。
なお、制御装置40は、主に、例えばCPU(Central Processing Unit)、RAM(Random Access Memory)、及びコンピュータ読み取り可能な記録媒体等から構成されている。そして、後述する角度指令出力部42、減算部44x,44y、姿勢演算部46、及び操作量演算部48x,48y、振動参照波形出力部50、及び振動偏差演算部52の各種機能を実現するための一連の処理は、一例として、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。
なお、制御装置40は、主に、例えばCPU(Central Processing Unit)、RAM(Random Access Memory)、及びコンピュータ読み取り可能な記録媒体等から構成されている。そして、後述する角度指令出力部42、減算部44x,44y、姿勢演算部46、及び操作量演算部48x,48y、振動参照波形出力部50、及び振動偏差演算部52の各種機能を実現するための一連の処理は、一例として、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。
角度指令出力部42は、予め定められた装置角度の指令値(以下、「角度指令値」という。)を出力する。なお、角度指令出力部42は、x方向の角度指令値θxrefを減算部44xへ出力し、y方向の角度指令値θyrefを減算部44yへ出力する。
なお、角度指令値θxref,θyrefは、例えば90度である。
なお、角度指令値θxref,θyrefは、例えば90度である。
姿勢演算部46は、レーザ変位計20A,20B,20C,20Dによって検出された距離である変位センサ信号ZA,ZB,ZC,ZDが入力され、これら変位センサ信号ZA,ZB,ZC,ZDに基づいてx方向の装置角度θx及びy方向の装置角度θyを算出する。そして、姿勢演算部46は、装置角度θxを減算部44xへ出力し、装置角度θyを減算部44xへ出力する。
減算部44xは、入力された装置角度θxと角度指令値θxrefとの偏差(以下「x方向角度偏差eθx」という。)を算出し、操作量演算部48xへ出力する。
減算部44yは、入力された装置角度θyと角度指令値θyrefとの偏差(以下「y方向角度偏差eθy」という。)を算出し、操作量演算部48yへ出力する。
減算部44yは、入力された装置角度θyと角度指令値θyrefとの偏差(以下「y方向角度偏差eθy」という。)を算出し、操作量演算部48yへ出力する。
振動参照波形出力部50は、装置本体14の振動状態の参照波形を記憶し、出力する。
図4は、ピーニング装置10の振動状態を表わすグラフの一例である。ピーニング打撃ピン16の振動周波数よりも低い周波数であって、周波数が200Hz以下で、振動が良好な状態と振動が不良な状態とで振動状態が異なる。図4に示されるように良好な振動状態の方が、不良な振動状態に比べてより振動が大きい。
図4は、ピーニング装置10の振動状態を表わすグラフの一例である。ピーニング打撃ピン16の振動周波数よりも低い周波数であって、周波数が200Hz以下で、振動が良好な状態と振動が不良な状態とで振動状態が異なる。図4に示されるように良好な振動状態の方が、不良な振動状態に比べてより振動が大きい。
振動参照波形出力部50は、図4の例に示されるような良好な振動状態の波形を予め定められた参照波形erefとして、振動偏差演算部52へ出力する。
振動偏差演算部52は、振動センサ18から出力される振動センサ信号Sと参照波形erefとの偏差(以下「振動偏差es」という。)を算出し、操作量演算部48x,48yへ出力する。
なお、振動偏差演算部52は、ローパスフィルタを用いることにより、図4の例で示されるように200Hz以下の周波数、好ましくは100Hz以下の周波数の振動偏差esを算出する。
なお、振動偏差演算部52は、ローパスフィルタを用いることにより、図4の例で示されるように200Hz以下の周波数、好ましくは100Hz以下の周波数の振動偏差esを算出する。
操作量演算部48xは、入力されたx方向角度偏差eθxと振動偏差esに基づいて、サーボモータ22xに対する操作量を示す操作量指令値Vxを演算し、サーボアンプ54xへ出力する。なお、操作量演算部48xは、例えば予め定められた関数によって、操作量指令値Vxを演算してもよいし、x方向角度偏差eθxと振動偏差esと操作量指令値Vxとの関係を示したテーブル情報によって、操作量指令値Vxを演算してもよい。
操作量演算部48yは、入力されたy方向角度偏差eθyと振動偏差esに基づいて、サーボモータ22yに対する操作量を示す操作量指令値Vyを演算し、サーボアンプ54yへ出力する。なお、操作量演算部48yは、例えば予め定められた関数によって、操作量指令値Vyを演算してもよいし、y方向角度偏差eθyと振動偏差esと操作量指令値Vyとの関係を示したテーブル情報によって、操作量指令値Vyを演算してもよい。
また、操作量指令値Vx,Vyは、例えば電圧値である。
サーボアンプ54xは、入力された操作量指令値Vxに基づいてサーボモータ22xを駆動させるための電流ixをサーボモータ22xへ供給する。
サーボモータ22xは、供給された電流ixに応じて回転軸を回転させる。回転軸の回転状態は、エンコーダ56xによって検出される。
サーボモータ22xは、供給された電流ixに応じて回転軸を回転させる。回転軸の回転状態は、エンコーダ56xによって検出される。
サーボアンプ54yは、入力された操作量指令値Vyに基づいてサーボモータ22yを駆動させるための電流iyをサーボモータ22yへ供給する。
サーボモータ22yは、供給された電流iyに応じて回転軸を回転させる。回転軸の回転状態は、エンコーダ56yによって検出される。
サーボモータ22yは、供給された電流iyに応じて回転軸を回転させる。回転軸の回転状態は、エンコーダ56yによって検出される。
このように制御装置40は、検出された装置角度θx,θyと検出された振動センサ信号Sとがフィードバックされ、装置角度θx,θyと予め定められた角度指令値θxref,θyrefとの差分、及び振動センサ信号Sと予め定められた参照波形erefとの差分に基づいて、サーボモータ22x,22yに対する操作量を決定する。
これにより、本第1実施形態に係るピーニング装置10は、装置本体14の振動状態を簡易に良好な振動状態とすることができる。
これにより、本第1実施形態に係るピーニング装置10は、装置本体14の振動状態を簡易に良好な振動状態とすることができる。
図5は、本第1実施形態に係るピーニング装置10を用いたピーニング処理の流れを示すフローチャートである。
まず、ステップ100では、ピーニング装置10の駆動を開始する。これにより、ピーニング打撃ピン16による被加工面への打撃が開始される。
なお、ピーニング装置10による被加工面への押圧力は、ピーニング装置が姿勢制御装置30を備えない場合に比べて弱く、例えば5~10kgである。ピーニング装置10が送り装置12に接続される場合は、例えば、送り装置12とピーニング装置10との間に設けられたバネにより付勢され、被加工面へ上記押圧力を生じさせる。
なお、ピーニング装置10による被加工面への押圧力は、ピーニング装置が姿勢制御装置30を備えない場合に比べて弱く、例えば5~10kgである。ピーニング装置10が送り装置12に接続される場合は、例えば、送り装置12とピーニング装置10との間に設けられたバネにより付勢され、被加工面へ上記押圧力を生じさせる。
次のステップ102では、レーザ変位計20A,20B,20C,20Dによる検出結果に基づいて、姿勢演算部46が装置角度θx,θyを検出し、振動センサ18が装置本体14の振動を検出する。
次のステップ104では、装置角度θx,θy及び振動センサ信号Sのフィードバックによって、操作量演算部48xが操作量指令値Vxを算出し、操作量演算部48yが操作量指令値Vyを算出する。
次のステップ106では、サーボアンプ54xが操作量指令値Vxに基づいた電流Ixをサーボモータ22xへ供給し、サーボモータ22xの回転軸をx軸回りに回転させる。これにより、図6に示されるように、装置本体14がx軸回りに回動する。また、サーボアンプ54yが操作量指令値Vyに基づいた電流Iyをサーボモータ22yへ供給し、サーボモータ22yの回転軸をy軸回りに回転させる。これにより、図7に示されるように、装置本体14がy軸回りに回動する。
このように、装置本体14の振動状態が参照波形erefにより示される良好な振動状態となるように、サーボモータ22x,22yが装置本体14の被加工面に対する傾きを調整するので、本第1実施形態に係るピーニング装置10は、ピーニングにより時々刻々と形状が変化している被加工面に追従して、良好なピーニングを行うことができる。
次のステップ108では、ピーニング装置10の駆動停止が指示されたか否かを判定し、肯定判定の場合は、本ピーニング処理を終了し、否定判定の場合は、ステップ102へ移行して被加工面に対するピーニングを継続する。
以上説明したように、本第1実施形態に係るピーニング装置10は、被加工面に打撃を与えるピーニング打撃ピン16と、ピーニング打撃ピン16を振動により被加工面に対して往復運動させる装置本体14と、装置本体14の被加工面に対する傾きを調整するサーボモータ22x,22yと、装置角度を検出するレーザ変位計20A,20B,20C,20Dと、装置本体14の振動状態を検出する振動センサ18とを備える。そして、ピーニング装置10の制御装置40は、振動センサ18によって検出された振動状態が予め定められた振動状態となるように、サーボモータ22x,22yを制御する。
従って、本第1実施形態に係るピーニング装置10は、ピーニングにより時々刻々と形状が変化している被加工面に追従して、良好なピーニングを行うことができる。
従って、本第1実施形態に係るピーニング装置10は、ピーニングにより時々刻々と形状が変化している被加工面に追従して、良好なピーニングを行うことができる。
〔第2実施形態〕
以下、本発明の第2実施形態について説明する。
以下、本発明の第2実施形態について説明する。
なお、本第2実施形態に係るピーニング装置10の構成は、図1に示す第1実施形態に係るピーニング装置10の構成と同様であるので説明を省略する。
図8は、本第2実施形態に係るピーニング装置10の制御装置40の電気的構成を示すブロック図であり、特に姿勢制御に関する電気的構成を示す。なお、図8における図3と同一の構成部分については図3と同一の符号を付して、その説明を省略する。
本第2実施形態に係るピーニング装置10は、図8に示されるように、振動センサ18による検出結果に基づいてフィードバックを行わない。すなわち、制御装置40は、レーザ変位計20A,20B,20C,20Dによる検出結果に基づいたフィードバックのみを行い、操作量指令値Vx,Vyを演算する。
なお、振動センサ18による検出結果は、別途モニタされ、装置本体14の振動状態が良好な振動状態であるか否かが作業者等によって判断される。
なお、振動センサ18による検出結果は、別途モニタされ、装置本体14の振動状態が良好な振動状態であるか否かが作業者等によって判断される。
図9は、本第2実施形態に係るピーニング処理の流れを示すフローチャートである。なお、図9における図5と同一のステップについては図5と同一の符号を付して、その説明を一部又は全部省略する。
まず、ステップ100でピーニング装置10の駆動が開始されると、ステップ102’へ移行する。
ステップ102’では、レーザ変位計20A,20B,20C,20Dによる検出結果に基づいて、姿勢演算部46が装置角度θx,θyを検出する。
次のステップ104’では、装置角度θx,θyのフィードバックによって、操作量演算部48xが操作量指令値Vxを算出し、操作量演算部48yが操作量指令値Vyを算出し、ステップ106へ移行する。
ステップ106では、サーボアンプ54xが操作量指令値Vxに基づいた電流Ixをサーボモータ22xへ供給し、サーボアンプ54yが操作量指令値Vyに基づいた電流Iyをサーボモータ22yへ供給する。
次のステップ108では、ピーニング装置10の駆動停止が指示されたか否かを判定し、肯定判定の場合は、本ピーニング処理を終了し、否定判定の場合は、ステップ102’へ移行して被加工面に対するピーニングを継続する。
以上説明したように、本第2実施形態に係るピーニング装置10は、被加工面に打撃を与えるピーニング打撃ピン16と、ピーニング打撃ピン16を振動により被加工面に対して往復運動させる装置本体14と、装置本体14の被加工面に対する傾きを調整するサーボモータ22x,22yと、装置角度を検出するレーザ変位計20A,20B,20C,20Dとを備える。そして、ピーニング装置10の制御装置40は、レーザ変位計20A,20B,20C,20Dによって検出された装置角度が予め定められた装置角度となるように、サーボモータ22x,22yを制御する。
従って、本第2実施形態に係るピーニング装置10は、ピーニングにより時々刻々と形状が変化している被加工面に追従して、良好なピーニングを行うことができる。
従って、本第2実施形態に係るピーニング装置10は、ピーニングにより時々刻々と形状が変化している被加工面に追従して、良好なピーニングを行うことができる。
〔第3実施形態〕
以下、本発明の第3実施形態について説明する。
以下、本発明の第3実施形態について説明する。
図10,11は、本第3実施形態に係るピーニング装置10の外観図である。図10は、紙面に垂直な方向がy軸、左右方向がx軸、上下方向がz軸とされ、図11は、紙面に垂直な方向がx軸、左右方向がy軸、上下方向がz軸とされる。
本第3実施形態に係るピーニング装置10は、第1実施形態に係るピーニング装置10とは異なり、レーザ変位計20A,20B,20C,20Dを備えておらず、その他図10,11における図1,2と同一の構成部分については図1,2と同一の符号を付して、その説明を省略する。
本第3実施形態に係るピーニング装置10は、第1実施形態に係るピーニング装置10とは異なり、レーザ変位計20A,20B,20C,20Dを備えておらず、その他図10,11における図1,2と同一の構成部分については図1,2と同一の符号を付して、その説明を省略する。
図12は、本第3実施形態に係るピーニング装置10の制御装置40の電気的構成を示すブロック図であり、特に姿勢制御に関する電気的構成を示す。なお、図12における図3と同一の構成部分については図3と同一の符号を付して、その説明を省略する。
本第3実施形態に係る制御装置40は、図12に示されるように、振動センサ18による検出結果に基づいたフィードバックを行い、操作量指令値Vx,Vyを演算する。
また、エンコーダ56xは、サーボモータ22xの回転軸の回転角度θMxを検出し、操作量演算部48xへ出力する。
操作量演算部48xは、回転角度θMxに基づいて装置角度θxを算出し、算出した装置角度θxと角度指令値θxrefとの偏差であるx方向角度偏差eθxを算出する。
そして、操作量演算部48xは、算出したx方向角度偏差eθxと振動偏差esに基づいて、サーボモータ22xに対する操作量を示す操作量指令値Vxを演算し、サーボアンプ54xへ出力する。
そして、操作量演算部48xは、算出したx方向角度偏差eθxと振動偏差esに基づいて、サーボモータ22xに対する操作量を示す操作量指令値Vxを演算し、サーボアンプ54xへ出力する。
エンコーダ56yは、サーボモータ22yの回転軸の回転角度θMyを検出し、操作量演算部48yへ出力する。
操作量演算部48yは、回転角度θMyに基づいて装置角度θyを算出し、算出した装置角度θyと角度指令値θyrefとの偏差であるy方向角度偏差eθyを算出する。
そして、操作量演算部48yは、算出したy方向角度偏差eθyと振動偏差esに基づいて、サーボモータ22yに対する操作量を示す操作量指令値Vyを演算し、サーボアンプ54yへ出力する。
そして、操作量演算部48yは、算出したy方向角度偏差eθyと振動偏差esに基づいて、サーボモータ22yに対する操作量を示す操作量指令値Vyを演算し、サーボアンプ54yへ出力する。
このように、本第3実施形態に係る制御装置40は、サーボモータ22x,yの回転角度θMx,θMy及び振動センサ信号Sがフィードバックされ、回転角度θMx,θMyに基づいて算出した装置角度θx,θyと角度指令値θxref,θyrefとの差分、及び振動センサ信号Sと予め定められた参照波形erefとの差分に基づいて、サーボモータ22x,22yに対する操作量を決定する。
図13は、本第3実施形態に係るピーニング処理の流れを示すフローチャートである。なお、図13における図5と同一のステップについては図5と同一の符号を付して、その説明を一部又は全部省略する。
まず、ステップ100でピーニング装置10の駆動が開始されると、ステップ102”へ移行する。
ステップ102”では、操作量演算部48x,48yがサーボモータ22x,yの回転角度θMx,θMyに基づいて装置角度θx,θyを算出し、振動センサ18が装置本体14の振動を検出する。
次のステップ104”では、算出した装置角度θx,θy及び検出した振動センサ信号Sのフィードバックによって、操作量演算部48xが操作量指令値Vxを算出し、操作量演算部48yが操作量指令値Vyを算出し、ステップ106へ移行する。
ステップ106では、サーボアンプ54xが操作量指令値Vxに基づいた電流Ixをサーボモータ22xへ供給し、サーボアンプ54yが操作量指令値Vyに基づいた電流Iyをサーボモータ22yへ供給する。
次のステップ108では、ピーニング装置10の駆動停止が指示されたか否かを判定し、肯定判定の場合は、本ピーニング処理を終了し、否定判定の場合は、ステップ102”へ移行して被加工面に対するピーニングを継続する。
以上説明したように、本第3実施形態に係るピーニング装置10は、被加工面に打撃を与えるピーニング打撃ピン16と、ピーニング打撃ピン16を振動により被加工面に対して往復運動させる装置本体14と、装置本体14の被加工面に対する傾きを調整するサーボモータ22x,22yと装置本体14の振動状態を検出する振動センサ18とを備える。そして、ピーニング装置10の制御装置40は、振動センサ18によって検出された振動状態が予め定められた振動状態となるように、サーボモータ22x,22yを制御する。
従って、本第3実施形態に係るピーニング装置10は、ピーニングにより時々刻々と形状が変化している被加工面に追従して、良好なピーニングを行うことができる。
従って、本第3実施形態に係るピーニング装置10は、ピーニングにより時々刻々と形状が変化している被加工面に追従して、良好なピーニングを行うことができる。
なお、本第3実施形態では、サーボモータ22x,yの回転角度θMx,θMyに基づいた装置角度θx,θyも用いてフィードバックする形態について説明したが、回転角度θMx,θMyに基づいた装置角度θx,θyは用いずに、振動センサ18によって検出された振動状態のみをフィードバックする形態としてもよい。
〔第4実施形態〕
以下、本発明の第4実施形態について説明する。
以下、本発明の第4実施形態について説明する。
本第4実施形態に係るピーニング装置10の構成は、図1に示す第1実施形態に係るピーニング装置10の構成と同様であるので説明を省略する。
図14は、本第4実施形態に係るピーニング装置10の制御装置40の電気的構成を示すブロック図であり、特に姿勢制御に関する電気的構成を示す。なお、図14における図3と同一の構成部分については図3と同一の符号を付して、その説明を省略する。
図14に示されるように、本第4実施形態に係る制御装置40は、参照波形比較部60を備えている。参照波形比較部60は、振動参照波形出力部50に記憶されている参照波形erefと振動センサ18から出力される振動センサ信号Sとを比較する。参照波形erefよりも振動センサ信号Sが大きい場合、参照波形erefは、検出された振動センサ信号Sに更新される。
その後、制御装置40は、振動センサ18によって検出された振動状態が更新された参照波形erefはとなるように、サーボモータ22x,22yを制御する。
従って、本第4実施形態に係るピーニング装置10は、振動状態をより大きくできるので、より良好なピーニングを行うことができる。
以上、本発明を、上記各実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。
例えば、上記各実施形態では、装置本体14の振動状態を検出する振動検出手段として、装置本体14の加速度を検出する振動センサ18を備える形態について説明したが、本発明は、これに限定されるものではなく、装置本体14の振動状態とピーニングにより発せられる音とは相関関係があるため、振動検出手段として音センサ(マイクロホン)を用いる形態としてもよい。音センサは、必ずしも装置本体14に備えられる必要はなく、被加工面の近傍に設けられていてもよい。
また、上記各実施形態で説明したピーニング処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。
10 ピーニング装置
16 ピーニング打撃ピン
18 振動センサ
20 レーザ変位計
22x サーボモータ
22y サーボモータ
40 制御装置
16 ピーニング打撃ピン
18 振動センサ
20 レーザ変位計
22x サーボモータ
22y サーボモータ
40 制御装置
Claims (9)
- 被加工面に打撃を与える打撃手段と、
前記打撃手段を被加工面に対して往復運動させる装置本体と、
前記装置本体の前記被加工面に対する傾きを調整する傾き調整手段と、
前記装置本体の振動状態を検出する振動検出手段と、
前記振動検出手段によって検出された振動状態が予め定められた振動状態となるように、前記傾き調整手段を制御する制御手段と、
を備えるピーニング装置。 - 前記傾き調整手段は、前記装置本体を所定の軸回りに回動させるモータであり、
前記制御手段は、前記モータの回転角度に基づいて前記装置本体と前記被加工面とのなす角度を算出し、算出した角度と予め定められた角度との差分、及び前記振動検出手段によって検出された振動状態と前記予め定められた振動状態との差分に基づいて、前記傾き調整手段に対する操作量を決定する請求項1記載のピーニング装置。 - 被加工面に打撃を与える打撃手段と、
前記打撃手段を振動により被加工面に対して往復運動させる装置本体と、
前記装置本体の前記被加工面に対する傾きを調整する傾き調整手段と、
前記装置本体と前記被加工面とのなす角度を検出する角度検出手段と、
前記角度検出手段によって検出された角度が予め定められた角度となるように、前記傾き調整手段を制御する制御手段と、
を備えるピーニング装置。 - 前記装置本体の振動状態を検出する振動検出手段を備え、
前記制御手段は、前記角度検出手段によって検出された角度と前記予め定められた角度との差分、及び前記振動検出手段によって検出された振動状態と予め定められた振動状態との差分に基づいて、前記傾き調整手段に対する操作量を決定する請求項3記載のピーニング装置。 - 前記角度検出手段は、前記装置本体と前記被加工面との距離を複数箇所で検出することにより、前記装置本体と前記被加工面とのなす角度を検出する請求項3又は請求項4記載のピーニング装置。
- 前記予め定められた振動状態よりも前記振動検出手段で検出された振動状態が大きい場合、前記予め定められた振動状態は、検出された該振動状態に更新される請求項1、請求項2、請求項4、及び請求項5の何れか1項記載のピーニング装置。
- 被加工面に打撃を与える打撃手段と、前記打撃手段を被加工面に対して往復運動させる装置本体と、前記装置本体の前記被加工面に対する傾きを調整する傾き調整手段と、前記装置本体の振動状態を検出する振動検出手段と、を備えるピーニング装置のピーニング方法であって、
前記振動検出手段によって前記装置本体の振動状態を検出する第1工程と、
検出した振動状態が予め定められた振動状態となるように、前記傾き調整手段を制御する第2工程と、
を含むピーニング方法。 - 被加工面に打撃を与える打撃手段と、前記打撃手段を振動により被加工面に対して往復運動させる装置本体と、前記装置本体の前記被加工面に対する傾きを調整する傾き調整手段と、前記装置本体と前記被加工面とのなす角度を検出する角度検出手段と、を備えるピーニング装置のピーニング方法であって、
前記角度検出手段によって、前記装置本体と前記被加工面とのなす角度を検出する第1工程と、
検出した角度が予め定められた角度となるように、前記傾き調整手段を制御する第2工程と、
を含むピーニング方法。 - 前記ピーニング装置は、前記装置本体の振動状態を検出する振動検出手段を備え、
前記第1工程は、前記角度検出手段によって、前記装置本体と前記被加工面とのなす角度を検出すると共に、前記振動検出手段によって、前記装置本体の振動状態を検出し、
前記第2工程は、検出した角度と予め定められた角度との差分、及び検出した振動状態と予め定められた振動状態との差分に基づいて、前記傾き調整手段に対する操作量を決定する請求項8記載のピーニング方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2887011A CA2887011C (en) | 2012-10-10 | 2013-10-09 | Peening device and peening method |
EP13844919.4A EP2907599B1 (en) | 2012-10-10 | 2013-10-09 | Peening device and peening method |
US14/433,552 US9889488B2 (en) | 2012-10-10 | 2013-10-09 | Peening device and peening method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012225321A JP6138450B2 (ja) | 2012-10-10 | 2012-10-10 | ピーニング装置及びピーニング方法 |
JP2012-225321 | 2012-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014057961A1 true WO2014057961A1 (ja) | 2014-04-17 |
Family
ID=50477429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/077437 WO2014057961A1 (ja) | 2012-10-10 | 2013-10-09 | ピーニング装置及びピーニング方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9889488B2 (ja) |
EP (1) | EP2907599B1 (ja) |
JP (1) | JP6138450B2 (ja) |
CA (1) | CA2887011C (ja) |
WO (1) | WO2014057961A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020082164A (ja) * | 2018-11-29 | 2020-06-04 | 株式会社アドウェルズ | 超音波加工装置 |
CN115505690A (zh) * | 2022-10-25 | 2022-12-23 | 华北电力大学 | 一种温磁振复合时效的张拉装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6949503B2 (ja) | 2017-02-15 | 2021-10-13 | 三菱重工業株式会社 | 部品製造システム及び部品製造方法 |
CN111089809B (zh) * | 2019-12-23 | 2022-05-27 | 台州市椒江建设工程质量检测中心有限公司 | 一种落锤冲击试验仪控制系统 |
TWI773220B (zh) * | 2020-03-26 | 2022-08-01 | 日商日本製鐵股份有限公司 | 珠擊處理裝置、珠擊處理方法及構造物的製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04146043A (ja) * | 1990-10-08 | 1992-05-20 | Toshiba Corp | 3次元表面切削用工作機械のnc制御装置 |
JP2006095598A (ja) * | 2004-08-30 | 2006-04-13 | Nippon Steel Corp | 金属構造体の衝撃塑性加工装置、加工システム、加工方法、プログラム及び記憶媒体 |
JP2010029897A (ja) | 2008-07-28 | 2010-02-12 | Nippon Steel Corp | 溶接継手の疲労特性改善打撃処理方法及びその疲労特性改善打撃処理装置並びに耐疲労特性に優れた溶接構造物 |
JP4952856B1 (ja) | 2011-07-19 | 2012-06-13 | Jfeエンジニアリング株式会社 | 打撃処理方法及び装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE516720C2 (sv) * | 1999-04-01 | 2002-02-19 | Abb Ab | Utrustning för styrning av en industrirobot och förfarande för programmering och/eller justering av robotens rörelse |
JP4831807B2 (ja) | 2005-06-14 | 2011-12-07 | 三菱重工業株式会社 | 超音波ショットピーニング装置及び超音波ショットピーニング方法 |
KR100894499B1 (ko) | 2008-05-14 | 2009-04-22 | (주)디자인메카 | 초음파 나노 개질기를 이용한 베어링 가공장치 및 가공방법 |
US8224492B2 (en) * | 2008-09-30 | 2012-07-17 | Lakomiak Jason E | Auto-configuring condition monitoring system and method |
US9789582B2 (en) * | 2012-07-05 | 2017-10-17 | Surface Technology Holdings Ltd. | Method and compression apparatus for introducing residual compression into a component having a regular or an irregular shaped surface |
-
2012
- 2012-10-10 JP JP2012225321A patent/JP6138450B2/ja active Active
-
2013
- 2013-10-09 CA CA2887011A patent/CA2887011C/en not_active Expired - Fee Related
- 2013-10-09 EP EP13844919.4A patent/EP2907599B1/en not_active Not-in-force
- 2013-10-09 WO PCT/JP2013/077437 patent/WO2014057961A1/ja active Application Filing
- 2013-10-09 US US14/433,552 patent/US9889488B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04146043A (ja) * | 1990-10-08 | 1992-05-20 | Toshiba Corp | 3次元表面切削用工作機械のnc制御装置 |
JP2006095598A (ja) * | 2004-08-30 | 2006-04-13 | Nippon Steel Corp | 金属構造体の衝撃塑性加工装置、加工システム、加工方法、プログラム及び記憶媒体 |
JP2010029897A (ja) | 2008-07-28 | 2010-02-12 | Nippon Steel Corp | 溶接継手の疲労特性改善打撃処理方法及びその疲労特性改善打撃処理装置並びに耐疲労特性に優れた溶接構造物 |
JP4952856B1 (ja) | 2011-07-19 | 2012-06-13 | Jfeエンジニアリング株式会社 | 打撃処理方法及び装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2907599A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020082164A (ja) * | 2018-11-29 | 2020-06-04 | 株式会社アドウェルズ | 超音波加工装置 |
JP7126055B2 (ja) | 2018-11-29 | 2022-08-26 | 株式会社アドウェルズ | 超音波加工装置 |
CN115505690A (zh) * | 2022-10-25 | 2022-12-23 | 华北电力大学 | 一种温磁振复合时效的张拉装置 |
CN115505690B (zh) * | 2022-10-25 | 2023-11-14 | 华北电力大学 | 一种温磁振复合时效的张拉装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2014076466A (ja) | 2014-05-01 |
CA2887011C (en) | 2018-01-02 |
EP2907599B1 (en) | 2019-06-12 |
US9889488B2 (en) | 2018-02-13 |
JP6138450B2 (ja) | 2017-05-31 |
EP2907599A4 (en) | 2015-11-04 |
EP2907599A1 (en) | 2015-08-19 |
US20150258596A1 (en) | 2015-09-17 |
CA2887011A1 (en) | 2014-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4813912B2 (ja) | 未加工品と工作機械の工具との間の相対運動の運動分割方法、および運動分割を実施するための工作機械 | |
WO2014057961A1 (ja) | ピーニング装置及びピーニング方法 | |
JP5480198B2 (ja) | 学習制御機能を備えたスポット溶接ロボット | |
JP5793200B2 (ja) | 工作機械の切削力検出装置、切削力検出方法、加工異常検出方法、および加工条件制御システム | |
JP5566469B2 (ja) | 数値制御方法 | |
CN102189198B (zh) | 用于折弯零件的生产的方法和设备 | |
JP5236596B2 (ja) | 加工ロボットシステム | |
JP7359657B2 (ja) | ロボットの位置または姿勢の修正方法を判定する制御装置 | |
WO2011077791A1 (ja) | 制御パラメータ調整方法及び調整装置 | |
JP6240133B2 (ja) | 溶接を行う打点の位置を測定するスポット溶接システム | |
TWI469500B (zh) | 面鏡角定位設備和處理設備 | |
JP2001225288A (ja) | 溶接ロボットの教示位置を補正する方法 | |
JP2010231575A (ja) | ロボットのオフライン教示装置、ロボットのオフライン教示方法、及びロボットシステム | |
JP6978350B2 (ja) | ワーク姿勢調整方法、造形物の製造方法及び製造装置 | |
JP5019001B2 (ja) | 数値制御方法及びその装置 | |
JP2018034224A (ja) | 位置決め制御装置の制御方法及び位置決め制御装置 | |
JP2019104097A (ja) | ロボットシステム | |
CN110154043B (zh) | 基于加工结果进行学习控制的机器人系统及其控制方法 | |
WO2010098169A1 (ja) | 加工装置及び加工方法 | |
US20220314441A1 (en) | Method For Controlling Robot, Robot System, And Storage Medium | |
Kim et al. | Development of the end-effector measurement system for a 6-axis welding robot | |
US20220314450A1 (en) | Method For Controlling Robot, Robot System, And Storage Medium | |
JPWO2002055249A1 (ja) | 放電加工装置 | |
JP6985563B1 (ja) | 数値制御装置 | |
JP2007025888A (ja) | 制御装置及び制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13844919 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2887011 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013844919 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14433552 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |