WO2014057901A1 - 復水器 - Google Patents

復水器 Download PDF

Info

Publication number
WO2014057901A1
WO2014057901A1 PCT/JP2013/077214 JP2013077214W WO2014057901A1 WO 2014057901 A1 WO2014057901 A1 WO 2014057901A1 JP 2013077214 W JP2013077214 W JP 2013077214W WO 2014057901 A1 WO2014057901 A1 WO 2014057901A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
heat transfer
heater
flow direction
downstream
Prior art date
Application number
PCT/JP2013/077214
Other languages
English (en)
French (fr)
Inventor
尚教 永井
晃 福井
賢 平岡
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to DE112013004969.4T priority Critical patent/DE112013004969B4/de
Priority to KR1020157006954A priority patent/KR101701653B1/ko
Priority to JP2014540836A priority patent/JP5978435B2/ja
Priority to US14/431,421 priority patent/US9708936B2/en
Priority to CN201380049907.0A priority patent/CN104718350B/zh
Publication of WO2014057901A1 publication Critical patent/WO2014057901A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/02Auxiliary systems, arrangements, or devices for feeding steam or vapour to condensers

Definitions

  • the present invention relates to a condenser that generates condensate by cooling and condensing steam discharged from a steam turbine by heat exchange.
  • the steam obtained by a steam generator is supplied to the steam turbine to drive the steam turbine to generate power, and the steam that has finished work in the steam turbine is After condensate is generated by condensing in the condenser, the condensate is returned to the steam generator side. That is, in the steam turbine power plant, the steam discharged from the steam turbine is caused to flow into the condenser, whereby the thermal energy of the steam is recovered to improve the plant thermal efficiency.
  • the condenser is provided with a heat transfer thin tube group that includes a plurality of heat transfer thin tubes through which a cooling medium flows, and the steam that has flowed into the condenser is transferred to the heat transfer thin tubes.
  • Condensate is produced by cooling and condensing by groups.
  • internal structural members such as a heater, piping, and a reinforcing plate are arranged on the upstream side in the steam flow direction of the steam flowing into the condenser. For this reason, the steam that has flowed into the condenser flows toward the heat transfer thin tube group while passing between the internal structural members.
  • the internal structural member arranged in the condenser becomes a fluid resistance to the steam flowing toward the heat transfer thin tube group, the flow of the steam is disturbed. As a result, the condensation efficiency in the condenser may be reduced.
  • the turbine exhaust flow (steam flow) containing fine droplets that has passed through the piping is directed to the heat transfer narrow tube with a certain distribution, and performs heat exchange by convection.
  • the droplets collide with the heat transfer tubules at a high flow rate. As a result, droplet erosion occurs and the heat transfer thin tubes may corrode.
  • the temperature difference between the surface of the heat transfer thin tube and the bulk fluid is important, but the temperature distribution on the fluid side may not be considered.
  • JP 2003-14381 A Japanese Patent Laid-Open No. 11-325751
  • the internal structural member disposed in the condenser includes not only a heater but also a pipe and a reinforcing plate.
  • the internal structural member disposed in the condenser includes not only a heater but also a pipe and a reinforcing plate.
  • a baffle plate is provided outside the pipe (bypass steam jet pipe) so that a large amount of turbine bypass steam can be processed without increasing pressure loss during normal operation.
  • a protective tube is provided to protect the heat transfer tubes.
  • the condenser of Patent Document 2 controls the flow of the turbine exhaust flow, there is a possibility that the heat exchange efficiency cannot be improved.
  • the first object of the present invention is to provide a condenser capable of controlling the flow of steam that has flowed in and appropriately improving the condensation efficiency by appropriately setting the installation position of the internal structural member. To do.
  • the present invention provides a condenser that can prevent droplet erosion, improve heat exchange efficiency, and improve condensation efficiency by appropriately setting the installation position of the internal structural member.
  • the second purpose is to do.
  • the condenser has a heat transfer tube through which a cooling medium flows, a bottom portion on which the heat transfer tube is disposed, and a trunk portion that communicates with the bottom portion, and is a steam turbine.
  • the first upstream heater and the second upstream heater arranged orthogonal to the steam flow direction, and in the body section, the downstream of the steam flow direction from the first and second upstream heaters.
  • first downstream heater and the second downstream heater disposed in parallel with the first and second upstream heaters, and the body portion, wherein the first and second upstream heaters and the first and second heaters Parallel to the second downstream heater and orthogonal to the steam flow direction
  • the first downstream heater and the first turbine bypass pipe are arranged at the same position in the steam flow direction, and a gap length between the first downstream heater and the first turbine bypass pipe is The length is equal to or shorter than the radius of the first turbine bypass pipe.
  • the second downstream heater and the second turbine bypass pipe are arranged at the same position in the steam flow direction, and a gap length between the second downstream heater and the second turbine bypass pipe is The length is equal to or shorter than the radius of the second turbine bypass pipe.
  • the flow of the inflowing steam can be controlled by appropriately setting the installation positions of the upstream heater, the downstream heater, and the turbine bypass pipe.
  • the first and second bleed pipes are disposed outside the trunk width direction of the first and second turbine bypass pipes.
  • the first extraction pipe is disposed between the first upstream heater, the first downstream heater, and the first turbine bypass pipe in the steam flow direction.
  • it is disposed between the first upstream heater and the first downstream heater and the first turbine bypass pipe in the trunk width direction.
  • the second extraction pipe is disposed between the second upstream heater, the second downstream heater, and the second turbine bypass pipe in the steam flow direction, and in the trunk width direction, It arrange
  • the flow of the steam that flows in can be controlled by appropriately setting the installation positions of the extraction pipe and the turbine bypass pipe.
  • the condenser is disposed in the bottom so as to cover the heat transfer tube from the upstream side in the steam flow direction, and is connected to the steam flow direction.
  • a first cover part formed with a series of communication parts is further provided.
  • the condenser since the upstream surface of the heat transfer tube is covered by the first cover portion having a plurality of first communication portions, it is possible to suppress the liquid droplets from directly colliding with the heat transfer tube. it can. Thereby, generation
  • the flow of the steam can be rectified by passing the steam through the first communication part.
  • the condenser according to the fourth aspect is arranged in the bottom portion so as to extend in the steam flow direction from the first cover portion, and the heat transfer tube. It further includes a second cover portion that is arranged so as to cover from a direction that intersects with the steam flow direction, and is formed with a plurality of second communication portions that communicate in a direction that intersects with the steam flow direction.
  • the steam since the heat transfer tube is covered by the second cover portion from the direction intersecting the steam flow direction, the steam is guided to the heat transfer tube so that the steam flow is wound into the plurality of second communication portions. be able to. Thereby, since an appropriate temperature gradient is formed around the heat transfer tube, the heat transfer effect from the steam to the heat transfer tube can be promoted.
  • the condenser has a heat transfer tube through which a cooling medium flows, a bottom portion on which the heat transfer tube is disposed, and a trunk portion in communication with the bottom portion, and a steam turbine.
  • the steam discharged from the body is caused to flow from the upper part of the body part into the bottom part and brought into contact with the heat transfer tube, thereby condensing the steam and generating condensate, the condenser having the bottom part
  • a first cover portion is provided, which is disposed so as to cover the heat transfer tube from the upstream side in the steam flow direction, and is formed with a plurality of first communication portions communicating in the steam flow direction.
  • the upstream surface of the heat transfer tube is covered by the first cover portion having a plurality of first communication portions, it is possible to suppress the liquid droplets from directly colliding with the heat transfer tube. it can. Thereby, generation
  • the condenser has a heat transfer tube through which a cooling medium flows, a bottom portion on which the heat transfer tube is disposed, and a trunk portion in communication with the bottom portion, and a steam turbine.
  • the steam discharged from the body is caused to flow from the upper part of the body part into the bottom part and brought into contact with the heat transfer tube, thereby condensing the steam and generating condensate, the condenser having the bottom part
  • the first cover part which is arranged so as to cover the heat transfer tube from the upstream side in the steam flow direction, and is formed with a plurality of first communication parts communicating in the steam flow direction, and in the bottom part,
  • a plurality of second pipes extending from the first cover portion in the steam flow direction and covering the heat transfer tube from a direction intersecting the steam flow direction and communicating in a direction intersecting the steam flow direction.
  • a second cover part formed with two communicating parts.
  • the condenser since the upstream surface of the heat transfer tube is covered by the first cover portion having a plurality of first communication portions, it is possible to suppress the liquid droplets from directly colliding with the heat transfer tube. it can. Thereby, generation
  • the flow of the steam can be rectified by passing the steam through the first communication part.
  • the heat transfer tube is covered by the second cover portion from a direction intersecting the steam flow direction, the steam is entrained in the plurality of second communication portions so that the steam is transferred to the heat transfer tube. Can lead to. Thereby, since an appropriate temperature gradient is formed around the heat transfer tube, the heat transfer effect from the steam to the heat transfer tube can be promoted.
  • the condenser described above by appropriately setting the installation positions of the upstream heater, the downstream heater, and the turbine bypass pipe, the flow of the introduced steam can be controlled, so that the condensation efficiency can be improved. Can be planned. Moreover, according to the condenser mentioned above, since the surface of the upstream side of the heat transfer tube is covered by the first cover part in which a plurality of first communication parts are formed, the occurrence of droplet erosion is suppressed. And can prevent the heat transfer thin tube from being damaged. Moreover, since a 1st cover part is arrange
  • the heat transfer tube is covered by the second cover part from the direction intersecting the steam flow direction, the steam flow is entangled in the plurality of second communication parts, and a temperature gradient is created.
  • the heat transfer effect can be promoted. As a result, it is possible to improve the condensation efficiency.
  • FIG. 2 is a view showing a flow velocity distribution of steam at a position II-II in FIG. It is a schematic block diagram of the condenser which concerns on 2nd Embodiment of this invention. It is a schematic enlarged view around the heat transfer thin tube group in the condenser according to the third and fourth embodiments of the present invention.
  • a steam turbine power plant (not shown) is provided with a steam turbine 11 and a condenser 12 that communicates with a lower portion of the steam turbine 11.
  • the steam turbine 11 is connected to a steam generator (not shown) such as a boiler or a nuclear reactor.
  • the steam turbine 11 can supply high-temperature and high-pressure steam generated by the steam generator.
  • the steam turbine 11 rotates and a generator (not shown) is driven.
  • the steam that has finished work in the steam turbine 11 flows into the condenser 12.
  • the arrow shown in the figure represents the flow of steam.
  • the condenser 12 includes a main body cylinder 21 (bottom part) disposed at the lower part of the condenser 12 and an intermediate cylinder 22 (body cylinder) disposed between the upper part of the main body cylinder 21 and the lower part of the steam turbine 11. Part). That is, the upper end inlet 21 a of the main body cylinder 21 and the lower end outlet 22 a of the intermediate cylinder 22 are in communication.
  • heat transfer tube groups 31 heat transfer tubes composed of a plurality of heat transfer tubes are provided in the bottom region of the main body barrel 21. These heat transfer narrow tube groups 31 are arranged in parallel along a direction orthogonal to the axial center direction (rotational axis direction) of the steam turbine 11. Cooling water is circulated in the heat transfer thin tubes constituting the heat transfer thin tube group 31.
  • the intermediate cylinder 22 is composed of a pair of upstream heaters composed of a first upstream heater 41a and a second upstream heater 41b, a first downstream heater 42a, and a second downstream heater 42b.
  • a pair of downstream heaters are arranged along a direction orthogonal to the axial direction of the steam turbine 11.
  • the upstream heaters 41a and 41b and the downstream heaters 42a and 42b are water heaters that use steam extracted from the steam turbine 11 to preheat the condensate before being supplied to the steam generator side.
  • the condensate discharged from the bottom of the main body barrel 21 can be contacted.
  • interval (distance between shafts) between the downstream heaters 42a and 42b are the same length.
  • the distance in the flow direction (distance between the axes) is the same length. That is, the upstream heaters 41 a and 41 b and the downstream heaters 42 a and 42 b are arranged in parallel along the steam flow direction in the intermediate cylinder 22.
  • the intermediate drum 22 has a first bleed pipe 43a and a second bleed pipe 43b outside the body width direction.
  • the pair of extracted bleed pipes are arranged along a direction orthogonal to the axial center direction of the steam turbine 11.
  • These extraction pipes 43a and 43b are formed to have a smaller diameter than the upstream heaters 41a and 41b and the downstream heaters 42a and 42b, and extract the steam discharged from the steam turbine 11 to extract the downstream heaters 42a and 43b. 42b is supplied to each.
  • the first bleed pipe 43a is located between the inner surface of the intermediate cylinder 22 and the first upstream heater 41a and the first downstream heater 42a, on the downstream side in the steam flow direction of the first upstream heater 41a, and the first It arrange
  • the second bleed pipe 43b is between the inner surface of the intermediate cylinder 22 and the second upstream heater 41b and the second downstream heater 42b, on the downstream side in the steam flow direction of the second upstream heater 41b, and It arrange
  • a pair of turbine bypass pipes constituted by a first turbine bypass pipe 44a and a second turbine bypass pipe 44b are provided outside the first downstream heater 42a and the second downstream heater 42b in the trunk width direction. It is arrange
  • These turbine bypass pipes 44a and 44b connect between the steam generator and the condenser 12, and bypass the steam turbine 11 to directly generate steam generated by the steam generator in the intermediate cylinder 22. To supply.
  • the axial center height of the first turbine bypass pipe 44a is the same as the axial center height of the first downstream heater 42a in the steam flow direction, and the first downstream heater 42a and the first extraction pipe 43a in the trunk width direction. It is arranged between.
  • the axial height of the second turbine bypass pipe 44b is the same as the axial height of the second downstream heater 42b in the steam flow direction, and the second downstream heater 42b and the second extraction in the trunk width direction. It arrange
  • the turbine bypass pipes 44a and 44b are formed so as to have a smaller diameter than the upstream heaters 41a and 41b and the downstream heaters 42a and 42b and a larger diameter than the extraction pipes 43a and 43b.
  • the upstream heaters 41 a and 41 b, the downstream heaters 42 a and 42 b, the extraction pipes 43 a and 43 b, and the turbine bypass pipes 44 a and 44 b are members that constitute internal structural members disposed inside the condenser 12. is there.
  • the installation positions of the turbine bypass pipes 44a and 44b are on the inner side in the trunk width direction compared to the conventional installation positions (positions indicated by two-dot chain lines in FIG. 1). Has moved.
  • the steam discharged from the steam turbine 11 flows in from the upper portion of the intermediate cylinder 22, and the upstream heaters 41a and 41b, the downstream heaters 42a and 42b, the extraction pipes 43a and 43b, and the turbine bypass pipes 44a and 44b. After passing through each of the gaps, the air flows toward the heat transfer thin tube group 31 provided in the main body barrel 21.
  • the flow rate distribution of the steam substantially corresponds to the flow rate distribution of the steam, so that the upper end inlet 21a of the main body cylinder 21 (the lower end outlet 22a of the intermediate cylinder 22) on the upstream side in the steam flow direction with respect to the heat transfer thin tube group 31.
  • the flow velocity distribution of steam at is as shown in FIG.
  • the installation positions of the downstream heaters 42a and 42b and the turbine bypass pipes 44a and 44b are shown.
  • the steam flow velocity distribution based on the upper installation position is shown.
  • the solid line corresponds to the condenser 12 of the present embodiment, and the two-dot chain line corresponds to the conventional condenser.
  • the steam S between the downstream heaters 42 a and 42 b and the turbine bypass pipes 44 a and 44 b is made smaller than the conventional gaps, thereby Are divided into an interference region H1 where the steam directly interferes with the heat transfer thin tube group 31 and a non-interference region H2, H3 where the steam does not directly interfere with the heat transfer thin tube group 31.
  • the flow velocity distribution is reduced by reducing the vapor flow velocity.
  • the flow velocity of the vapor is higher than the flow velocity in the interference area H1.
  • the steam immediately enters the periphery of the heat transfer thin tube group 31, so that the condensation efficiency in the condenser 12 can be further improved.
  • the installation positions of the extraction pipes 43a and 43b are compared with the conventional installation positions (positions indicated by two-dot chain lines in FIG. 3). It moves to the inner side in the trunk width direction and is set downstream of the upstream heaters 41a and 41b in the steam flow direction.
  • the first extraction pipe 43a is disposed between the first upstream heater 41a, the first downstream heater 42a, and the first turbine bypass pipe 44a in the steam flow direction, and in the trunk width direction, It arrange
  • the second bleed pipe 43b is disposed between the second upstream heater 41b, the second downstream heater 42b, and the second turbine bypass pipe 44b in the steam flow direction, and the second bleed pipe 43b in the trunk width direction.
  • the upstream heater 41b and the second downstream heater 42b are disposed between the second turbine bypass pipe 44b.
  • the bleed pipes 43a and 43b in the downstream (wake) region in the steam flow direction of the upstream heater 41b, the flow velocity of the inflowing steam can be reduced, so that the pressure loss of the steam is reduced. be able to.
  • the flow rate of the steam flowing along the inner surface of the main body cylinder 21 is increased by moving the installation positions of the extraction pipes 43a and 43b to the inner side in the body width direction, a larger amount of steam is transferred to the heat transfer thin tube group 31. It can penetrate into the surroundings. As a result, the temperature distribution of the steam around the heat transfer thin tube group 31 can be formed uniformly, so that the heat exchange efficiency of the heat transfer tube group 31 can be improved.
  • the condenser 12 As shown in FIG. 4, the condenser 12 according to the third embodiment includes a first cover portion 32 inside the main body barrel 21.
  • the first cover portion 32 is formed with a plurality of first communication portions communicating in the steam flow direction.
  • the first cover portion 32 is configured to extend in the steam flow direction toward the both sides in the direction intersecting the steam flow direction.
  • the first cover portion 32 is disposed on the upper end inlet 21a side (upstream side in the steam flow direction) from the heat transfer narrow tube group 31.
  • the first cover portion 32 covers the thermal thin tube group 31 along the surface (upstream surface) on the upper end inlet 21 a side of the heat transfer thin tube group 31.
  • the first cover part 32 is formed from a plurality of dummy bars 32a (bar-shaped steel materials). The interval between the plurality of dummy bars 32a is the first series passage.
  • the shape of the first cover portion 32 viewed from the side may be an arc shape, a V shape, or a planar shape.
  • the first cover portion 32 may employ punching metal instead of the plurality of dummy bars 32a.
  • the first cover portion 32 covers the surface of the heat transfer thin tube group 31 on the upper end inlet 21a side, the droplet D contained in the turbine exhaust flow flows into the main body barrel 21 at a high flow rate. Even in this case, the droplet D can be prevented from colliding with the heat transfer narrow tube group 31. As a result, the occurrence of droplet erosion can be suppressed and the heat transfer thin tube can be prevented from being damaged.
  • the first cover portion 32 is disposed on the upper end inlet 21 a side with respect to the heat transfer narrow tube group 31, the flow of the steam can be rectified by the first continuous portion of the first cover portion 32. . Thereby, heat exchange between the steam and the heat transfer thin tube group 31 can be promoted.
  • the condenser 12 As shown in FIG. 4, the condenser 12 according to the fourth embodiment includes a second cover portion 33 inside the main body barrel 21.
  • the second cover portion 33 is formed with a plurality of second communication portions that communicate with each other in a direction crossing the steam flow direction.
  • the second cover portion 33 is configured to extend in the steam flow direction from both sides of the first cover portion 32 in the direction intersecting the steam flow direction.
  • the second cover part 33 is formed from a plurality of dummy bars 33a (bar-shaped steel materials). An interval between the plurality of dummy bars 33a is a second communicating portion. The interval between the plurality of dummy bars 32 a of the first cover portion 32 (first communication portion) is arranged closer than the interval between the plurality of dummy rods 33 a of the second cover portion 33 (second communication portion). ing.
  • the shape of the second cover portion 33 viewed from the side may be a planar shape or an arc shape.
  • the second cover portion may employ punching metal instead of the plurality of dummy bars 33a.
  • the dummy bar 33a of the second cover part 33 may have the same shape and material as the dummy bar 32a of the first cover part 32.
  • the second cover portion 33 may be disposed on both sides of the two heat transfer thin tube groups 31 in the trunk width direction, but may be disposed on both sides of the one heat transfer thin tube group 31 in the trunk width direction. Good.
  • a part of the vapor (bulk fluid) that does not contact the surface of the heat transfer thin tubes passing through the periphery of the heat transfer thin tube group 31 is peeled off at the second communication portion of the second cover portion 33.
  • the separated fluid is guided to the surface of the heat transfer thin tube group 31.
  • the second cover portion 33 covers the heat transfer thin tube group 31 from the steam flow direction, so that the steam flow can be wound around the surface of the heat transfer thin tube group 31.
  • a temperature gradient can be formed around the heat transfer thin tube group 31 and the heat transfer effect from the steam to the heat transfer thin tube group 31 can be promoted.
  • the peeling effect can be enhanced by making the second communication portion of the second cover portion 33 rougher than the first communication portion of the first cover portion 32, the flow of steam is transferred to the surface of the heat transfer narrow tube group 31. Can be involved.
  • the above condenser is applicable to a condenser that can obtain an appropriate amount of condensing according to the flow rate of steam that has flowed in.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 冷却媒体が流通する伝熱細管群(31)と、伝熱細管群(31)が配置される本体胴(21)と、本体胴(21)と連通する中間胴(22)とを有し、蒸気タービン(11)から排出された蒸気を、中間胴(22)の上部から流入させて、伝熱細管群(31)に接触させることにより、復水を生成する復水器であって、中間胴(21)において、上流側ヒータ(41a,41b)と下流側ヒータ(42a,42b)とを、蒸気流れ方向に沿って平行に配置し、下流側ヒータ(42a,42b)とタービンバイパス管(44a,44b)とを、蒸気流れ方向において同じ位置に配置して、上流側ヒータ(41a,41b)及び下流側ヒータ(42a,42b)とタービンバイパス管(44a,44b)との間における隙間(S)の長さを、タービンバイパス管(44a,44b)の半径以下の長さとする。

Description

復水器
 本発明は、蒸気タービンから排出された蒸気を、熱交換により冷却して、凝縮させることにより、復水を生成するようにした復水器に関する。本願は、2012年10月11日に、日本に出願された特願2012-225592号に基づき優先権を主張し、その内容をここに援用する。
 一般に、蒸気タービン発電プラントにおいては、蒸気発生器で得られた蒸気を、蒸気タービンに供給することにより、前記蒸気タービンを駆動させて、発電を行うと共に、蒸気タービンで仕事を終えた蒸気を、復水器において凝縮させることにより、復水を生成した後、この復水を蒸気発生器側に還流させるようにしている。つまり、蒸気タービン発電プラントにおいては、蒸気タービンから排出された蒸気を復水器に流入させることにより、その蒸気が有する熱エネルギを回収して、プラント熱効率の向上を図るようにしている。
 また、復水器内には、複数の伝熱細管で構成され、その内部を冷却媒体が流通する伝熱細管群が設けられており、復水器内に流入した蒸気を、その伝熱細管群によって冷却して、凝縮させることにより、復水を生成するようにしている。このとき、復水器内に流入した蒸気の蒸気流れ方向上流側には、加熱器、配管、補強板等の内部構造部材が配置されている。このため、復水器内に流入した蒸気は、その内部構造部材間を通り抜けながら、伝熱細管群に向けて流れることになる。
 しかしながら、復水器内に配置された内部構造部材は、伝熱細管群に向けて流れる蒸気に対して、流体抵抗となるため、蒸気の流れを乱す要因となってしまう。この結果、復水器における凝縮効率を低下させる可能性がある。
 また、配管を通過した微小な液滴を含むタービン排気流(蒸気の流れ)は、一定の分布をもって伝熱細管に向い、対流による熱交換を行う。しかし、蒸気の流れの分布と伝熱細管の配置によっては、液滴が高流速で伝熱細管に衝突する。この結果、ドロップレットエロージョンが生じて、伝熱細管が腐食する可能性がある。
 また、熱交換効率を考える際、伝熱細管表面とバルク流体との温度差が重要となるが、流体側での温度分布は考慮されていない可能性がある。
 そこで、従来から、蒸気の流れを良好にして、凝縮効率の向上を図るようにした復水器が、種々提供されている。このような、従来の復水器は、例えば、特許文献1及び2に開示されている。
特開2003-14381号公報 特開平11-325751号公報
 上記特許文献1に記載の従来の復水器のおいては、蒸気の流れを良好にするため、加熱器の周囲に、整流板を設けるようにしている。しかしながら、復水器内に配置される内部構造部材は、上述したように、加熱器だけでなく、配管や補強板も存在する。特に、複雑な配管系統に対して、整流板を適切に設けることは、非常に困難となる。これにより、従来の復水器の構成を採用しても、整流板による整流効果を十分に得られず、凝集効率の向上を図ることができない可能性がある。
 また、上記特許文献2に記載の復水器においては、通常運転中の圧力損失を増加させることなく大量のタービンバイパス蒸気を処理できるよう、配管(バイパス蒸気噴出管)の外側にバッフル板と、伝熱細管を保護する保護管を設けている。しかしながら、上記特許文献2の復水器では、タービン排気流の流れを制御するものの、熱交換効率の向上を図ることが出来ない可能性がある。
 本発明は、内部構造部材の設置位置を適切に設定することにより、流入した蒸気の流れを制御して、凝縮効率の向上を図ることができる復水器を提供することを第一の目的とする。
 また、本発明は、内部構造部材の設置位置を適切に設定することにより、ドロップレットエロージョンを防止し、且つ熱交換効率を改善して、凝縮効率の向上を図ることができる復水器を提供することを第二の目的とする。
 本発明の第一の態様によれば、復水器は、冷却媒体が流通する伝熱管と、前記伝熱管が配置される底部と、前記底部と連通する胴部と、を有し、蒸気タービンから排出された蒸気を、前記胴部の上部から前記底部へ流入させて、前記伝熱管に接触させることにより、前記蒸気を凝縮させて、復水を生成する復水器であって、前記胴部において、蒸気流れ方向に直交して配置される第一上流側ヒータ及び第二上流側ヒータと、前記胴部において、前記第一及び第二上流側ヒータよりも前記蒸気流れ方向の下流側に、且つ、前記第一及び第二上流側ヒータと平行に配置される第一下流側ヒータ及び第二下流側ヒータと、前記胴部において、前記第一及び第二上流側ヒータと前記第一及び第二下流側ヒータと平行で、且つ、前記蒸気流れ方向に直交する胴幅方向を基準に、前記第一及び第二上流側ヒータと前記第一及び第二下流側ヒータの前記胴幅方向の外側に配置され、前記蒸気タービンをバイパスした蒸気を、前記胴部内に供給する第一タービンバイパス管及び第二タービンバイパス管と、前記胴部において、前記第一及び第二上流側ヒータと前記第一及び第二下流側ヒータと平行に配置され、前記蒸気タービンから排出された蒸気を抽気して、前記第一及び第二上流側ヒータと前記第一及び第二下流側ヒータに供給する第一抽気管及び第二抽気管と、を備える。
 前記第一下流側ヒータと前記第一タービンバイパス管は、前記蒸気流れ方向において同じ位置に配置して、前記第一下流側ヒータと前記第一タービンバイパス管との間の隙間長さは、前記第一タービンバイパス管の半径以下の長さとする。前記第二下流側ヒータと前記第二タービンバイパス管は、前記蒸気流れ方向において同じ位置に配置して、前記第二下流側ヒータと前記第二タービンバイパス管との間の隙間長さは、前記第二タービンバイパス管の半径以下の長さとする。
 前記復水器では、上流側ヒータ及び下流側ヒータとタービンバイパス管との設置位置を適切に設定することで、流入した蒸気の流れを制御することができる。
 本発明の第二の態様によれば、前記第一及び第二抽気管は、前記第一及び第二タービンバイパス管の前記胴幅方向の外側に配置される。
 本発明の第三の態様によれば、前記第一抽気管は、前記蒸気流れ方向おいて、前記第一上流側ヒータと前記第一下流側ヒータ及び前記第一タービンバイパス管との間に配置されると共に、前記胴幅方向において、前記第一上流側ヒータ及び前記第一下流側ヒータと前記第一タービンバイパス管との間に配置される。前記第二抽気管は、前記蒸気流れ方向おいて、前記第二上流側ヒータと前記第二下流側ヒータ及び前記第二タービンバイパス管との間に配置されると共に、前記胴幅方向において、前記第二上流側ヒータ及び前記第二下流側ヒータと前記第二タービンバイパス管との間に配置される。
 前記復水器では、抽気管とタービンバイパス管との設置位置を適切に設定することで、流入した蒸気の流れを制御することができる。
 本発明の第四の態様によれば、前記復水器は、前記底部内に、前記伝熱管を前記蒸気流れ方向の上流側から覆うように配置され、前記蒸気流れ方向に連通する複数の第一連通部が形成された第一カバー部をさらに備える。
 前記復水器では、複数の第一連通部を有する第一カバー部によって伝熱管の上流側の面が覆われているため、液滴が伝熱管に直接的に衝突すること抑制することができる。これにより、ドロップレットエロージョンの発生を抑制することができる。また、第一連通部を蒸気が通過することで蒸気の流れを整流化することができる。
 本発明の第五の態様によれば、前記第四の態様に係わる前記復水器は、前記底部内に、前記第一カバー部から前記蒸気流れ方向に延びるように、且つ、前記伝熱管を前記蒸気流れ方向に交差する方向から覆うように配置され、前記蒸気流れ方向に交差する方向に連通する複数の第二連通部が形成された第二カバー部をさらに備える。
 前記復水器では、伝熱管が蒸気流れ方向に交差する方向から第二カバー部によって覆われているため、蒸気の流れを複数の第二連通部内に巻き込むようにして該蒸気を伝熱管に導くことができる。これによって、伝熱管の周囲に、適切な温度勾配が形成されるため、蒸気から伝熱管への伝熱効果を促進させることができる。
 本発明の第六の態様によれば、復水器は、冷却媒体が流通する伝熱管と、前記伝熱管が配置される底部と、前記底部と連通する胴部と、を有し、蒸気タービンから排出された蒸気を、前記胴部の上部から前記底部へ流入させて、前記伝熱管に接触させることにより、前記蒸気を凝縮させて、復水を生成する復水器であって、前記底部内に、前記伝熱管を前記蒸気流れ方向の上流側から覆うように配置され、前記蒸気流れ方向に連通する複数の第一連通部が形成された第一カバー部を備える。
 前記復水器では、複数の第一連通部を有する第一カバー部によって伝熱管の上流側の面が覆われているため、液滴が伝熱管に直接的に衝突すること抑制することができる。これにより、ドロップレットエロージョンの発生を抑制することができる。また、第一連通部を蒸気が通過することで蒸気の流れを整流化することができる。
 本発明の第七の態様によれば、復水器は、冷却媒体が流通する伝熱管と、前記伝熱管が配置される底部と、前記底部と連通する胴部と、を有し、蒸気タービンから排出された蒸気を、前記胴部の上部から前記底部へ流入させて、前記伝熱管に接触させることにより、前記蒸気を凝縮させて、復水を生成する復水器であって、前記底部内に、前記伝熱管を前記蒸気流れ方向の上流側から覆うように配置され、前記蒸気流れ方向に連通する複数の第一連通部が形成された第一カバー部と、前記底部内に、前記第一カバー部から前記蒸気流れ方向に延びるように、且つ、前記伝熱管を前記蒸気流れ方向に交差する方向から覆うように配置され、前記蒸気流れ方向に交差する方向に連通する複数の第二連通部が形成された第二カバー部と、を備える。
 前記復水器では、複数の第一連通部を有する第一カバー部によって伝熱管の上流側の面が覆われているため、液滴が伝熱管に直接的に衝突すること抑制することができる。これにより、ドロップレットエロージョンの発生を抑制することができる。また、第一連通部を蒸気が通過することで蒸気の流れを整流化することができる。さらに、前記復水器では、伝熱管が蒸気流れ方向に交差する方向から第二カバー部によって覆われているため、蒸気の流れを複数の第二連通部内に巻き込むようにして該蒸気を伝熱管に導くことができる。これによって、伝熱管の周囲に、適切な温度勾配が形成されるため、蒸気から伝熱管への伝熱効果を促進させることができる。
 上述した復水器によれば、上流側ヒータ及び下流側ヒータとタービンバイパス管との設置位置を適切に設定することにより、流入した蒸気の流れを制御することができるので、凝縮効率の向上を図ることができる。
 また、上述した復水器によれば、複数の第一連通部が形成された第一カバー部によって伝熱管の上流側の面が覆われているため、ドロップレットエロージョンの発生を抑制することができ、伝熱細管の破損を防止することができる。また、第一カバー部が伝熱管に対して蒸気流れ方向の上流側に配置されることによって、蒸気の流れを整流化することができるため、凝縮効率の向上を図ることができる。
 また、上述した復水器によれば、伝熱管が蒸気流れ方向に交差する方向から第二カバー部によって覆われているため、蒸気の流れを複数の第二連通部に巻き込み、温度勾配をつけ伝熱効果を促進させることができる。この結果、凝縮効率の向上を図ることができる。
本発明の第1実施形態に係る復水器の概略構成図である。 図1のII-II位置における蒸気の流速分布を示した図である。 本発明の第2実施形態に係る復水器の概略構成図である。 本発明の第3及び第4実施形態に係る復水器における、伝熱細管群周りの概略拡大図である。
 以下、本発明の実施形態に係る復水器について、図面を用いて詳細に説明する。
 図1に示すように、蒸気タービン発電プラント(図示省略)には、蒸気タービン11と、この蒸気タービン11の下部と連通する復水器12とが、設けられている。
 蒸気タービン11には、ボイラや原子炉等の蒸気発生器(図示省略)が接続されている。蒸気タービン11は、前記蒸気発生器により発生された高温・高圧の蒸気が供給可能となっている。蒸気が蒸気タービン11に供給されると、前記蒸気タービン11が回転して、発電機(図示省略)が駆動する。これと共に、蒸気タービン11において仕事を終えた蒸気は、復水器12に流入する。なお、図中に示した矢印は、蒸気の流れを表している。
 また、復水器12は、復水器12の下部に配置される本体胴21(底部)と、この本体胴21の上部と蒸気タービン11の下部との間に配置される中間胴22(胴部)とから構成されている。即ち、本体胴21の上端入口21aと、中間胴22の下端出口22aとは、連通している。
 本体胴21の底部領域には、複数の伝熱細管から構成される伝熱細管群31(伝熱管)が4つ設けられている。これら伝熱細管群31は、蒸気タービン11の軸心方向(回転軸方向)と直交する方向に沿って、並列して配置されている。伝熱細管群31を構成する伝熱細管内には、冷却水が循環されている。
 つまり、本体胴21に流入した蒸気が伝熱細管群31に接触すると、蒸気と冷却水との間で熱交換が行われ、前記蒸気が凝縮して、復水が生成される。なお、生成された復水は、一旦、本体胴21の底部に貯溜された後、蒸気発生器側に給水される。
 一方、中間胴22内には、第一上流側ヒータ41aと第二上流側ヒータ41bで構成された一対の上流側ヒータと、第一下流側ヒータ42aと第二下流側ヒータ42bで構成された一対の下流側ヒータが、蒸気タービン11の軸心方向と直交する方向に沿って配置されている。これら上流側ヒータ41a,41b及び下流側ヒータ42a,42bは、蒸気タービン11から抽気した蒸気を使用して、蒸気発生器側に供給する前の復水を予め加熱する、給水加熱器であって、本体胴21の底部から排出された復水と接触可能となっている。
 そして、上流側ヒータ41a,41b間における胴幅方向の間隔(軸間距離)と、下流側ヒータ42a,42b間における胴幅方向の間隔(軸間距離)とは、同じ長さとなっている。同様に、第一上流側ヒータ41aと第一下流側ヒータ42aとの間における蒸気流れ方向の間隔(軸間距離)と、第二上流側ヒータ41bと第二下流側ヒータ42bとの間における蒸気流れ方向の間隔(軸間距離)とは、同じ長さとなっている。即ち、上流側ヒータ41a,41b及び下流側ヒータ42a,42bは、中間胴22において、蒸気流れ方向に沿って並列して配置されている。
 また、上流側ヒータ41a,41b及び下流側ヒータ42a,42bを一群としたヒータ群に対して、中間胴22の胴幅方向の外側には、第一抽気管43aと第二抽気管43bで構成された一対の抽気管が、蒸気タービン11の軸心方向と直交する方向に沿って配置されている。これら抽気管43a,43bは、上流側ヒータ41a,41b及び下流側ヒータ42a,42bよりも小径となるように形成されており、蒸気タービン11から排出された蒸気を抽気して下流側ヒータ42a,42bにそれぞれ供給する。
 なお、上流側ヒータ41a,41bに蒸気を抽気する抽気管については、図示を省略している。
 第一抽気管43aは、中間胴22の内面と第一上流側ヒータ41a及び第一下流側ヒータ42aとの間において、第一上流側ヒータ41aの蒸気流れ方向の下流側で、且つ、第一下流側ヒータ42aの蒸気流れ方向の上流側に配置されている。一方、第二抽気管43bは、中間胴22の内面と第二上流側ヒータ41b及び第二下流側ヒータ42bとの間において、第二上流側ヒータ41bの蒸気流れ方向の下流側で、且つ、第二下流側ヒータ42bの蒸気流れ方向の上流側に配置されている。
 更に、第一下流側ヒータ42a及び第二下流側ヒータ42bの胴幅方向外側には、第一タービンバイパス管44aと第二タービンバイパス管44bで構成された一対のタービンバイパス管が、蒸気タービン11の軸心方向と直交する方向に沿って配置されている。これらタービンバイパス管44a,44bは、蒸気発生器と復水器12との間を接続しており、蒸気発生器により発生された蒸気を、蒸気タービン11をバイパスして、直接、中間胴22内に供給する。
 第一タービンバイパス管44aの軸心高さは、第一下流側ヒータ42aの軸心高さと蒸気流れ方向において同じ高さとなると共に、胴幅方向において第一下流側ヒータ42aと第一抽気管43aとの間に配置されている。一方、第二タービンバイパス管44bの軸心高さは、第二下流側ヒータ42bの軸心高さと蒸気流れ方向において同じ高さとなると共に、胴幅方向において第二下流側ヒータ42bと第二抽気管43bとの間に配置されている。
 なお、タービンバイパス管44a,44bは、上流側ヒータ41a,41b及び下流側ヒータ42a,42bよりも小径で、且つ、抽気管43a,43bよりも大径となるように形成されている。また、上流側ヒータ41a,41b、下流側ヒータ42a,42b、抽気管43a,43b、及び、タービンバイパス管44a,44bは、復水器12の内部に配置された内部構造部材を構成する部材である。
 (第1実施形態)
 第1実施形態に係る復水器12においては、タービンバイパス管44a,44bの設置位置を、従来の設置位置(図1において2点鎖線で示した位置)と比べて、胴幅方向の内側に移動している。第一下流側ヒータ42aと第一タービンバイパス管44aとの間の隙間(軸間距離)S、及び、第二下流側ヒータ42bと第二タービンバイパス管44bとの間の隙間(軸間距離)Sを小さく(短く)することにより、流入した蒸気の流れを制御している。具体的には、上述した隙間Sの長さを、タービンバイパス管44a,44bの半径以下の長さとしている。
 従って、蒸気タービン11から排出された蒸気は、中間胴22の上部から流入して、上流側ヒータ41a,41b、下流側ヒータ42a,42b、抽気管43a,43b、及び、タービンバイパス管44a,44bの各隙間を通過した後、本体胴21に設けられる伝熱細管群31に向けて流れる。
 このとき、下流側ヒータ42a,42bとタービンバイパス管44a,44bとの間の隙間Sを小さくしているので、前記隙間Sを通過する蒸気の流量が減少する。その分、下流側ヒータ42a,42b間を通過する蒸気の流量、及び、中間胴22の内面に沿って流れる蒸気の流量が、増加する。
 これにより、蒸気の流量分布は、蒸気の流速分布とほぼ対応するため、伝熱細管群31に対し蒸気流れ方向の上流側となる本体胴21の上端入口21a(中間胴22の下端出口22a)における蒸気の流速分布は、図2に示した通りとなる。
 なお、図2の上段おいては、下流側ヒータ42a,42b及びタービンバイパス管44a,44bの設置位置を示している。図2の下段おいては、上段の設置位置に基づいた蒸気の流速分布を示している。更に、図2の上段及び下段においては、実線は、本実施形態の復水器12に対応し、2点鎖線は、従来の復水器に対応している。
 つまり、図2に示すように、復水器12においては、下流側ヒータ42a,42bとタービンバイパス管44a,44bとの間の隙間Sを、従来のそれらの隙間よりも小さくすることにより、蒸気の流速分布を、蒸気が伝熱細管群31に直接干渉する干渉領域H1と、蒸気が伝熱細管群31に直接干渉しない非干渉領域H2,H3とに、区画するようにしている。
 干渉領域H1においては、蒸気の流速を低減させることにより、その流速分布の一様化を図っている。これにより、伝熱細管群31の蒸気流れ方向上流側における蒸気の流速を、従来の流速と比べて、一様に形成することができるので、蒸気を伝熱細管群31に均一に接触させることができる。この結果、復水器12における凝縮効率を向上させることができる。また、伝熱細管群31には、低流速となる蒸気が接触するため、前記伝熱細管群31が蒸気や液滴の衝撃を受けて損傷することを抑制することができる。
 また、非干渉領域H2,H3においては、その蒸気の流速が、干渉領域H1の流速よりも高くなっている。これにより、蒸気が伝熱細管群31の周囲に即座に浸入するため、更に、復水器12における凝縮効率を向上させることができる。
 (第2実施形態)
 図3に示すように、第2実施形態に係る復水器12においては、抽気管43a,43bの設置位置を、従来の設置位置(図3において2点鎖線で示した位置)と比べて、胴幅方向内側に移動して、上流側ヒータ41a,41bの蒸気流れ方向下流側に設定している。
 即ち、第一抽気管43aは、蒸気流れ方向において、第一上流側ヒータ41aと第一下流側ヒータ42a及び第一タービンバイパス管44aとの間に配置されると共に、胴幅方向において、第一上流側ヒータ41a及び第一下流側ヒータ42aと第一タービンバイパス管44aとの間に配置されている。
 一方、第二抽気管43bは、蒸気流れ方向において、第二上流側ヒータ41bと第二下流側ヒータ42b及び第二タービンバイパス管44bとの間に配置されると共に、胴幅方向において、第二上流側ヒータ41b及び第二下流側ヒータ42bと第二タービンバイパス管44bとの間に配置されている。
 よって、抽気管43a,43bを、上流側ヒータ41bの蒸気流れ方向下流側(ウェーク)領域に配置することにより、流入した蒸気の流速を低下させることができるので、その蒸気の圧力損失を低減することができる。
 また、抽気管43a,43bの設置位置を胴幅方向内側に移動させた分、本体胴21の内面に沿って流れる蒸気の流量が増加するため、より多量の蒸気を、伝熱細管群31の周囲に浸入させることができる。この結果、伝熱細管群31の周囲における蒸気の温度分布を一様に形成することができるので、伝熱管群31の熱交換効率を向上させることができる。
 (第3実施形態)
 図4に示す通り、第3実施形態に係る復水器12においては、本体胴21の内部に第一カバー部32を備えている。第一カバー部32には、蒸気流れ方向に連通する複数の第一連通部が形成されている。
 第一カバー部32は、蒸気流れ方向に交差する方向両側に向うに従って蒸気流れ方向に延びるように構成されている。第一カバー部32は、伝熱細管群31よりも上端入口21a側(蒸気流れ方向の上流側)に配置されている。第一カバー部32は、伝熱細管群31の上端入口21a側の面(上流側の面)に沿って熱細管群31を覆っている。
 第一カバー部32は、複数のダミー棒32a(棒状の鋼材)から形成されている。複数のダミー棒32a同士の間の間隔は、第一連通部とされている。
 なお、第一カバー部32を側面視した形状(図4に示している形状)は、円弧状であってもよいし、V字形状や、平面形状であってもよい。また、第一カバー部32は、複数のダミー棒32aの代わりに、パンチングメタルを採用してもよい。
 本実施形態では、第一カバー部32が伝熱細管群31の上端入口21a側の面を覆っているため、タービン排気流の中に含まれる液滴Dが高流速で本体胴21に流入した場合であっても、液滴Dが伝熱細管群31に衝突することを抑制することができる。この結果、ドロップレットエロージョンの発生を抑制し、伝熱細管の破損を防止することができる。
 また、第一カバー部32が伝熱細管群31に対して上端入口21a側に配置されているため、第一カバー部32の第一連通部によって、蒸気の流れを整流化することができる。これによって、蒸気と伝熱細管群31との熱交換を促進することができる。
 (第4実施形態)
 図4に示す通り、第4実施形態に係る復水器12においては、本体胴21の内部に第二カバー部33を備えている。第二カバー部33には、前記蒸気流れ方向に交差する方向に連通する複数の第二連通部が形成されている。
 第二カバー部33は、第一カバー部32の蒸気流れ方向に交差する方向両側から、蒸気流れ方向に延びるように構成されている。
 第二カバー部33は、複数のダミー棒33a(棒状の鋼材)から形成されている。複数のダミー棒33a同士の間の間隔は、第二連通部とされている。第一カバー部32の複数のダミー棒32a同士の間隔(第一連通部)は、第二カバー部33の複数のダミー棒33a同士の間隔(第二連通部)よりも、密に配置されている。
 第二カバー部33を側面視した形状(図4に示している形状)は、平面形状であってもよいし、円弧形状であってもよい。また、第二カバー部は、複数のダミー棒33aの代わりに、パンチングメタルを採用してもよい。なお、第二カバー部33のダミー棒33aは、第一カバー部32のダミー棒32aと同一の形状や材質であってもよい。
 第二カバー部33は、図4に示す通り、2つの伝熱細管群31の胴幅方向両側に配置されてもよいが、1つの伝熱細管群31の胴幅方向両側に配置されてもよい。
 本実施形態では、伝熱細管群31の周辺を通過する伝熱細管表面に接しない蒸気(バルク流体)は、第二カバー部33の第二連通部で一部が剥離する。この剥離した流体は、伝熱細管群31の表面へと導かれる。このように、第二カバー部33が伝熱細管群31を蒸気流れ方向から覆う事で、蒸気の流れを伝熱細管群31の表面へ巻き込むことができる。この結果、伝熱細管群31の周囲に温度勾配を形成することができ、蒸気から伝熱細管群31への伝熱効果を促進することができる。
 また、第二カバー部33の第二連通部を第一カバー部32の第一連通部よりも粗くすることで、剥離効果を高められるため、蒸気の流れを伝熱細管群31の表面へ巻き込むことができる。
 以上、本発明による復水器の実施の形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
 本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。
 上記復水器は、流入した蒸気流量に応じて適切な凝縮量を得ることができるようにした復水器に適用可能である。
11   蒸気タービン
12   復水器
21   本体胴(底部)
21a  上端入口
22   中間胴(胴部)
22a  下端出口
31   伝熱細管群(伝熱管)
32   第一カバー部
32a   ダミー棒
33   第二カバー部
33a   ダミー棒
41a   第一上流側ヒータ(上流側ヒータ)
41b   第二上流側ヒータ(上流側ヒータ)
42a   第一下流側ヒータ(下流側ヒータ)
42b   第二下流側ヒータ(下流側ヒータ)
43a   第一抽気管(抽気管)
43b   第二抽気管(抽気管)
44a   第一タービンバイパス管(タービンバイパス管)
44b   第二タービンバイパス管(タービンバイパス管)
 S   隙間
 D   液滴

Claims (7)

  1.  冷却媒体が流通する伝熱管と、前記伝熱管が配置される底部と、前記底部と連通する胴部と、を有し、蒸気タービンから排出された蒸気を、前記胴部の上部から前記底部へ流入させて、前記伝熱管に接触させることにより、前記蒸気を凝縮させて、復水を生成する復水器であって、
     前記胴部において、蒸気流れ方向に直交して配置される第一上流側ヒータ及び第二上流側ヒータと、
     前記胴部において、前記第一及び第二上流側ヒータよりも前記蒸気流れ方向の下流側に、且つ、前記第一及び第二上流側ヒータと平行に配置される第一下流側ヒータ及び第二下流側ヒータと、
     前記胴部において、前記第一及び第二上流側ヒータと前記第一及び第二下流側ヒータと平行で、且つ、前記蒸気流れ方向に直交する胴幅方向を基準に、前記第一及び第二上流側ヒータと前記第一及び第二下流側ヒータの前記胴幅方向の外側に配置され、前記蒸気タービンをバイパスした蒸気を、前記胴部内に供給する第一タービンバイパス管及び第二タービンバイパス管と、
     前記胴部において、前記第一及び第二上流側ヒータと前記第一及び第二下流側ヒータと平行に配置され、前記蒸気タービンから排出された蒸気を抽気して、前記第一及び第二上流側ヒータと前記第一及び第二下流側ヒータに供給する第一抽気管及び第二抽気管と、を備え、
     前記第一下流側ヒータと前記第一タービンバイパス管とを、前記蒸気流れ方向において同じ位置に配置して、前記第一下流側ヒータと前記第一タービンバイパス管との間の隙間長さを、前記第一タービンバイパス管の半径以下の長さとし、
     前記第二下流側ヒータと前記第二タービンバイパス管とを、前記蒸気流れ方向において同じ位置に配置して、前記第二下流側ヒータと前記第二タービンバイパス管との間の隙間長さを、前記第二タービンバイパス管の半径以下の長さとする
     復水器。
  2.  請求項1に記載の復水器であって、
     前記第一及び第二抽気管は、前記第一及び第二タービンバイパス管の前記胴幅方向の外側に配置される復水器。
  3.  請求項1に記載の復水器であって、
     前記第一抽気管は、前記蒸気流れ方向おいて、前記第一上流側ヒータと前記第一下流側ヒータ及び前記第一タービンバイパス管との間に配置されると共に、前記胴幅方向において、前記第一上流側ヒータ及び前記第一下流側ヒータと前記第一タービンバイパス管との間に配置され、
     前記第二抽気管は、前記蒸気流れ方向おいて、前記第二上流側ヒータと前記第二下流側ヒータ及び前記第二タービンバイパス管との間に配置されると共に、前記胴幅方向において、前記第二上流側ヒータ及び前記第二下流側ヒータと前記第二タービンバイパス管との間に配置される復水器。
  4.  請求項1~3に記載の復水器であって、
     前記底部内に、前記伝熱管を前記蒸気流れ方向の上流側から覆うように配置され、前記蒸気流れ方向に連通する複数の第一連通部が形成された第一カバー部をさらに備える復水器。
  5.  請求項4に記載の復水器であって、
     前記底部内に、前記第一カバー部から前記蒸気流れ方向に延びるように、且つ、前記伝熱管を前記蒸気流れ方向に交差する方向から覆うように配置され、前記蒸気流れ方向に交差する方向に連通する複数の第二連通部が形成された第二カバー部をさらに備える復水器。
  6.  冷却媒体が流通する伝熱管と、前記伝熱管が配置される底部と、前記底部と連通する胴部と、を有し、蒸気タービンから排出された蒸気を、前記胴部の上部から前記底部へ流入させて、前記伝熱管に接触させることにより、前記蒸気を凝縮させて、復水を生成する復水器であって、
     前記底部内に、前記伝熱管を前記蒸気流れ方向の上流側から覆うように配置され、前記蒸気流れ方向に連通する複数の第一連通部が形成された第一カバー部を備える
     復水器。
  7.  冷却媒体が流通する伝熱管と、前記伝熱管が配置される底部と、前記底部と連通する胴部と、を有し、蒸気タービンから排出された蒸気を、前記胴部の上部から前記底部へ流入させて、前記伝熱管に接触させることにより、前記蒸気を凝縮させて、復水を生成する復水器であって、
     前記底部内に、前記伝熱管を前記蒸気流れ方向の上流側から覆うように配置され、前記蒸気流れ方向に連通する複数の第一連通部が形成された第一カバー部と、
     前記底部内に、前記第一カバー部から前記蒸気流れ方向に延びるように、且つ、前記伝熱管を前記蒸気流れ方向に交差する方向から覆うように配置され、前記蒸気流れ方向に交差する方向に連通する複数の第二連通部が形成された第二カバー部と、を備える
     復水器。
PCT/JP2013/077214 2012-10-11 2013-10-07 復水器 WO2014057901A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112013004969.4T DE112013004969B4 (de) 2012-10-11 2013-10-07 Kondensator
KR1020157006954A KR101701653B1 (ko) 2012-10-11 2013-10-07 복수기
JP2014540836A JP5978435B2 (ja) 2012-10-11 2013-10-07 復水器
US14/431,421 US9708936B2 (en) 2012-10-11 2013-10-07 Condenser
CN201380049907.0A CN104718350B (zh) 2012-10-11 2013-10-07 冷凝器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-225592 2012-10-11
JP2012225592 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014057901A1 true WO2014057901A1 (ja) 2014-04-17

Family

ID=50477368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077214 WO2014057901A1 (ja) 2012-10-11 2013-10-07 復水器

Country Status (6)

Country Link
US (1) US9708936B2 (ja)
JP (1) JP5978435B2 (ja)
KR (1) KR101701653B1 (ja)
CN (1) CN104718350B (ja)
DE (1) DE112013004969B4 (ja)
WO (1) WO2014057901A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145404A1 (ja) * 2016-02-25 2017-08-31 三菱日立パワーシステムズ株式会社 復水器、及びこれを備える蒸気タービンプラント

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151475A (ja) * 1993-11-30 1995-06-16 Toshiba Corp 復水器
JPH08135404A (ja) * 1994-11-07 1996-05-28 Toshiba Corp 復水器およびタービンプラントのバイパス蒸気導入方法
JPH08158811A (ja) * 1994-12-07 1996-06-18 Toshiba Corp 復水器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215406A (ja) * 1985-03-20 1986-09-25 Toshiba Corp 復水タ−ビン
JPS6373004A (ja) 1986-09-16 1988-04-02 株式会社東芝 蒸気タ−ビンプラント
JPS63186907A (ja) 1987-01-29 1988-08-02 Toru Morimoto マフラ−
JPH0791162B2 (ja) 1987-07-14 1995-10-04 北興化学工業株式会社 病害虫の省力防除方法及び水溶紙状農薬成形物
JPH07174888A (ja) * 1993-12-21 1995-07-14 Toshiba Corp 復水器
WO1999051858A1 (de) * 1998-04-06 1999-10-14 Siemens Aktiengesellschaft Dampfturbine
JPH11325751A (ja) * 1998-05-18 1999-11-26 Toshiba Corp 復水器
JP3907894B2 (ja) * 1999-11-30 2007-04-18 株式会社東芝 復水器
CN1148557C (zh) * 2000-04-26 2004-05-05 陶骏昌 过热干蒸气加湿换热装置
JP2002243386A (ja) * 2001-02-22 2002-08-28 Toshiba Corp 復水器の据付工事方法
JP2003014381A (ja) * 2001-06-28 2003-01-15 Toshiba Corp 復水器
JP5403978B2 (ja) * 2008-09-16 2014-01-29 三菱重工業株式会社 復水器
CN201363970Y (zh) * 2008-12-29 2009-12-16 清华大学 一种分段式汽液相变换热器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151475A (ja) * 1993-11-30 1995-06-16 Toshiba Corp 復水器
JPH08135404A (ja) * 1994-11-07 1996-05-28 Toshiba Corp 復水器およびタービンプラントのバイパス蒸気導入方法
JPH08158811A (ja) * 1994-12-07 1996-06-18 Toshiba Corp 復水器

Also Published As

Publication number Publication date
KR20150043498A (ko) 2015-04-22
JPWO2014057901A1 (ja) 2016-09-05
DE112013004969T5 (de) 2015-07-09
CN104718350B (zh) 2016-06-22
US9708936B2 (en) 2017-07-18
US20150252693A1 (en) 2015-09-10
JP5978435B2 (ja) 2016-08-24
DE112013004969B4 (de) 2016-06-09
KR101701653B1 (ko) 2017-02-01
CN104718350A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
WO2010099931A2 (de) Verfahren und vorrichtung zur rückgewinnung von energie in einer anlage zur herstellung eines metallischen guts
KR101714946B1 (ko) 복수기, 및 이를 구비하는 증기터빈 플랜트
ITCO20090057A1 (it) Sistema evaporatore diretto e metodo per sistemi a ciclo rankine organico
EP3086032B1 (en) Molten salt once-through steam generator
JP2011220165A (ja) 蒸気タービンプラント
EP2824290A2 (en) Method for increasing the efficiency of power generation in nuclear power plants
JP2016519273A (ja) 排熱回収ボイラにおける局所的な煙道ガス希釈
KR20130117857A (ko) 보일러 플랜트
JP5978435B2 (ja) 復水器
US11454452B2 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (III)
JP5479191B2 (ja) 蒸気タービンプラント
WO2014113109A1 (en) Dual end plate subcooling zone for a feedwater heater
EP3049719B1 (en) Heat exchanging system and method for a heat recovery steam generator
JP2011219850A (ja) タービン系熱交換器の補修方法
Brodov et al. State of the art and trends in the design and operation of high-and low-pressure heaters for steam turbines at thermal and nuclear power plants in Russia and abroad: Part 1. Heater types and designs
JP4304006B2 (ja) 蒸気タービン
JP6081110B2 (ja) 複合復水器
KR20190076461A (ko) 집광형 태양열 발전소 (ⅲ) 의 용융 염 증기 발생기용 열교환기
JP2011127869A (ja) 湿分分離加熱器及び給水加熱器
JP6273222B2 (ja) 湿分分離器
JP6294844B2 (ja) 湿分分離器
JP2012112590A (ja) 蒸気発生器及び原子力プラント
JPH10122505A (ja) 給水加熱器のベント管装置
JP3808170B2 (ja) 蒸気過熱低減器と蒸気発生器とボイラ
JP2020056552A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540836

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157006954

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431421

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130049694

Country of ref document: DE

Ref document number: 112013004969

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845772

Country of ref document: EP

Kind code of ref document: A1