WO2014057867A1 - 太陽光発電装置および電力管理システム、並びに、そのための電力負荷と計測装置 - Google Patents

太陽光発電装置および電力管理システム、並びに、そのための電力負荷と計測装置 Download PDF

Info

Publication number
WO2014057867A1
WO2014057867A1 PCT/JP2013/076991 JP2013076991W WO2014057867A1 WO 2014057867 A1 WO2014057867 A1 WO 2014057867A1 JP 2013076991 W JP2013076991 W JP 2013076991W WO 2014057867 A1 WO2014057867 A1 WO 2014057867A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
generated
solar
voltage
maximum
Prior art date
Application number
PCT/JP2013/076991
Other languages
English (en)
French (fr)
Inventor
小坂 忠義
渡辺 雅浩
勝弘 松田
Original Assignee
株式会社日立製作所
東北電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 東北電力株式会社 filed Critical 株式会社日立製作所
Publication of WO2014057867A1 publication Critical patent/WO2014057867A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • H02J3/472For selectively connecting the AC sources in a particular order, e.g. sequential, alternating or subsets of sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • the present invention relates to a solar power generation apparatus and a power management system that can generate power with a power smaller than the maximum power that can be generated in an environment provided with a solar panel, and a power load and a measurement apparatus therefor.
  • the situation in which power is generated with less power than the maximum power that can be generated in a given environment is when the solar power generator is operated independently during a power outage or when the grid-connected solar power generator is in the distribution system. It is conceivable that the output is suppressed in order to reduce the reverse power flow in response to a request from the administrator.
  • the solar power generation device or the power management system in the present invention includes a function of taking out power by controlling the direct current voltage and direct current of the solar panel.
  • the inverter function which converts the direct-current power of a solar panel into alternating current power is included.
  • the solar power generation device or power management system according to the present invention assumes both cases where it is installed in a consumer such as a home, a building, a store, or a factory, and when installed in a power plant such as a mega solar.
  • FIG. 2 shows the relationship between the solar panel DC voltage and power generation output.
  • the power generation output draws a curve with the maximum value at a certain DC voltage.
  • the maximum value of the power generation output is referred to as the maximum power that can be generated.
  • the curve fluctuates depending on the amount of solar radiation and the panel temperature, but the operation of the solar panel is such that a normal solar power generation device is always clipped to the maximum power that can be generated while monitoring the direct current voltage or direct current of the solar panel.
  • FIG. 3 shows a circuit diagram of a typical photovoltaic power generation apparatus. The output from the solar panel is boosted with a boost chopper and converted to alternating current with an inverter.
  • the measured values of the direct current voltage and direct current of the solar panel are input to the control block, and the opening and closing of the switch S1 is controlled so that it is always clipped to the maximum power that can be generated.
  • the control block converts the direct current into alternating current by PWM control using the switches S2-S5 and outputs it.
  • Patent Document 2 discloses a power management system that cuts off a remote switch in order from a low-priority power load based on a preset priority order to reduce power.
  • Non-Patent Document 1 a technique for obtaining a target value of a direct current that outputs maximum power using a short-circuit current pulse of a solar cell is disclosed in Non-Patent Document 1 below.
  • Patent Documents 1 and 2 described above describe means for continuing the self-sustained operation by predicting the maximum power that can be generated according to the amount of solar radiation and opening and closing the power supply path of the demand device. It is configured to analyze the measurement result of the meter in the control device and directly operate the switch, however, it cannot be accurately predicted due to the positional deviation between the photovoltaic power generation panel to generate power and the measuring instrument. It is thought that the installation cost will increase due to the additional installation of measuring instruments outdoors.
  • Patent Document 1 discloses a method for predicting the maximum power that can be generated from the open circuit voltage of the solar cell for monitoring. However, since the open circuit voltage is affected by the panel temperature and an error increases, accurate prediction is possible. I guess it can't be done.
  • Non-Patent Document 1 discloses a technique for obtaining a target value of a direct current that outputs maximum power, but does not disclose a technique for obtaining maximum power that can be generated. That is, there is a problem that there is no method for accurately predicting the maximum power that can be generated at a low cost when generating power with a power that is smaller than the maximum power that can be generated in an environment where the photovoltaic power generation apparatus is given, such as during self-sustained operation is there.
  • Patent Document 1 Patent Document 1, Patent Document 2, and Non-Patent Document 1 have a problem that there is no function of transmitting information on the maximum power that can be generated to the outside.
  • the present invention has been achieved in view of the above-described problems in the prior art, and the object thereof is a photovoltaic power generation apparatus and a power management system capable of solving the problems in the prior art, and power for the same. To provide a load and a measuring device.
  • a solar power generation apparatus having a means for generating power with a power smaller than the maximum power that can be generated in a given environment and a data communication means. And providing a photovoltaic power generation device having a function of transmitting the predicted value of the maximum power generation possible of the solar panel in the environment through the data communication means when generating power with a power smaller than the maximum power generation possible power. Is done.
  • a solar power generation device and a power management system that can solve the above-described problems in the related art, and a power load and a measurement device therefor are provided.
  • Example 1 of this invention It is a block diagram in connection with Example 1 of this invention. It is a figure which shows the relationship between the DC voltage of a solar panel, and a power generation output. It is a circuit diagram of a typical solar power generation device. It is a figure which shows the relationship between the direct-current voltage at the time of being set as an output suppression state, and an electric power generation output. It is a figure which shows the relationship between a direct current at the time of setting it as an output suppression state, and a direct current voltage. It is a figure which shows the relationship 1 of the electric current at the time of changing solar radiation conditions and panel temperature conditions, and maximum electric power which can be generated.
  • FIG. 6 is a configuration diagram related to Example 2. It is a figure which shows the operation
  • FIG. 6 is a configuration diagram related to Example 2. It is a figure which shows the operation
  • FIG. 10 is a configuration diagram related to Example 3. It is a figure which shows the operation
  • FIG. 10 is a figure which shows the calculation procedure of the maximum output possible electric power in Example 3.
  • FIG. 10 is a configuration diagram related to Example 4;
  • FIG. 10 is a configuration diagram related to Example 5;
  • FIG. 10 is a configuration diagram related to Example 6;
  • FIG. 10 is a configuration diagram related to Example 7.
  • FIG. 10 is a configuration diagram related to Example 8. It is an equivalent circuit of a photovoltaic power generation panel. It is a figure which shows the relationship between the DC voltage when the panel temperature changes, and the power generation output.
  • FIG. 10 is a configuration diagram related to Example 9.
  • FIG. 10 is a circuit diagram of a measuring device 13 in Example 9.
  • FIG. 10 is a diagram illustrating a search method for maximum outputable power according to the tenth embodiment. It is a figure which shows the time transition of the operation state of the apparatus in Example 3.
  • FIG. 10 is a configuration diagram related to Example 8. It is an equivalent circuit of a photovoltaic power generation panel. It is a figure which shows the relationship between the DC voltage when the panel temperature changes, and the power generation output.
  • FIG. 10 is a configuration diagram related to Example 9.
  • FIG. 10 is a circuit diagram of a measuring device 13 in Example 9.
  • FIG. 10 is a diagram illustrating a search method for maximum outputable power according to the tenth embodiment. It is a
  • the photovoltaic power generation apparatus has a function of predicting the maximum power that can be generated, and the measured DC current value and the measured DC voltage value at the controlled operating point are used while controlling the operating condition of the solar panel.
  • the maximum power that can be generated is predicted and transmitted to an external device through data communication means.
  • An external device may be a control device for a demand device when installed in a customer facility, a gateway for connecting to a management server via the Internet, or a power company and its own device. It may be a smart meter connected via a network, or may be a monitor screen in a customer facility, or an information device such as a smartphone or a PC.
  • a power generation facility such as a mega solar, it may be a gateway for communicating with an electric power company.
  • the calculation of the maximum power that can be generated when the output of the solar power generation device in the present invention is suppressed is a direct current value in a state where the solar panel is operated at a voltage lower than a voltage that can obtain the maximum power that can be generated.
  • DC voltage value is measured and calculated using a pre-stored calculation formula or calculation table.
  • FIG. 4 is a diagram showing an example of the relationship between the DC voltage and the power generation output when the output is suppressed. It can be seen that there are two operating points that output the suppressed power across the maximum power that can be generated.
  • FIG. 5 is a diagram illustrating an example of a relationship between a direct current and a direct voltage when the output is suppressed.
  • FIG. 6 shows an example of the relationship between the short-circuit current (DC voltage 100 V) and the maximum power that can be generated when the solar radiation condition and the panel temperature condition are changed. Although there is an error of about 10%, it can be seen that the maximum power that can be generated is approximately proportional to the short-circuit current.
  • FIG. 7 shows an example of the relationship between the DC current at the DC voltage of 100V and the maximum power that can be generated.
  • FIG. 8 shows an example of the relationship between the DC current at the DC voltage of 150V and the maximum power that can be generated. 6, 7, and 8 are almost the same graphs with only slightly different slopes. For this reason, in the means of the present invention, the voltage at the operating point 1 differs depending on the output power, but after calculating the proportionality coefficient between the current value at that voltage and the maximum output power, the maximum output power from the DC current. Can be predicted.
  • the proportionality coefficient varies depending on the panel type and installation conditions, it is desirable to operate at an operating point 1 intermittently during normal operation without output suppression, and to store a table of maximum power that can be generated, DC voltage, and DC current. It is better to calculate and store the slope of the maximum power that can be generated by the direct current.
  • FIG. 27 shows an equivalent circuit of a solar panel.
  • the solar panel is composed of a constant current source for supplying a current Iph corresponding to solar radiation, a diode, and wiring resistances R s and R sh .
  • the relationship between currents I and V is expressed by the following equation.
  • I I ph -I 0 (exp (q (V + R s I) / nkT) -1)-(V + R s I) / R sh
  • I 0 is the reverse saturation current
  • Q is the elementary charge
  • n is the ideal diode factor
  • k is the Boltzmann constant
  • T is the absolute temperature of the panel.
  • Fig. 28 shows the relationship between DC voltage and power generation output when the amount of solar radiation is constant and the panel temperature changes.
  • the open circuit voltage is proportional to the panel temperature.
  • the error of the maximum power that can be generated is proportional to the open circuit voltage and proportional to the panel temperature.
  • the influence of the panel temperature is considered to be large as in the case of the open circuit voltage, so the error between the voltage at the operating point 2 and the maximum power that can be generated is considered to be approximately proportional. That is, by correcting using the direct current and direct current voltage at the operating point 2, the relational expression between the direct current and the maximum power that can be generated in FIGS. 6, 7, and 8 can be made more accurate. .
  • the present invention when predicting the maximum output possible power at the time of output suppression of solar power generation, by using the direct current and direct current voltage output from the solar panel to generate power, because no additional measurement device such as a solar radiation meter is required, the prediction error of the maximum output possible power prediction value due to the positional deviation of the measurement device and the solar panel and the temperature of the solar panel is reduced, and high accuracy prediction is reduced. Can be realized at a cost.
  • the present invention it is possible to add a new service or function using information on the maximum power that can be generated. And according to this invention, the electric power supply-and-demand management of an electric power system finer than the conventional method can be performed using the information of the maximum electric power which can be generated.
  • FIG. 1 shows an apparatus configuration of a customer system including a photovoltaic power generation apparatus according to the first embodiment.
  • the customer system 100 is not connected to the power system, and performs a self-sustained operation only with the photovoltaic power generated by the solar panel 2.
  • the solar power generation device 1 converts the direct current output of the solar panel 2 into alternating current and outputs it to the distribution board 4.
  • the solar power generation device 1 adjusts the direct current and direct current voltage of the solar panel 2 so that the alternating current output voltage becomes constant.
  • the solar power generation device 1 receives the information request from the control device 3, and sends the maximum power generation possible power information and the current generated power at that time to the control device 3.
  • the control device 3 grasps the supply and demand gap that is the difference between the maximum power that can be generated and the generated power, and when the supply and demand gap becomes smaller, sends a control signal for limiting power to the demand load 5 or the demand load 6, Even if there is a change in the power supply capacity due to changes in the amount of solar radiation, etc., or when the demand changes depending on the usage status of the user, the demand is suppressed by sending a switch open / close control signal to the switchboard 4. Make adjustments so that supply and demand do not exceed supply.
  • the demand load 5 is an air conditioner, the set temperature is changed or the cooling / heating setting is switched to air blowing.
  • the demand load 6 is TV, the brightness is reduced.
  • FIG. 25 shows the operation state of the demand equipment with respect to the time change of the supply and demand gap.
  • the control device 3 stores the priority for each demand load, and reduces the power of the demand load 7 having a low priority when the supply and demand gap is equal to or less than the set value 1. After that, when the supply and demand gap further decreases and becomes the set value 1 or less again, the power of the demand load 6 having the next lowest priority is reduced. After that, when the supply and demand gap becomes larger and exceeds the set value 2, the power of the demand load 6 having a high priority is restored in the demand load for which power reduction control is performed.
  • FIG. 9 shows a circuit diagram of the photovoltaic power generation apparatus 1 of the present embodiment.
  • An ammeter 20 and a voltmeter 21 measure the DC voltage and DC voltage of the solar panel 2.
  • the control block 23 of the photovoltaic power generator 1 performs PWM control using the switches S2 to S5 so that the output voltage is constant, and at the same time controls the switch S1 so that the voltage of the capacitor 22 is constant.
  • FIG. 10 shows an example of the relationship between the DC voltage and the output voltage under a certain installation condition and a certain weather condition
  • FIG. 11 shows an example of the relationship between the DC voltage and the DC current under the same conditions.
  • Fig. 12 shows the procedure for calculating the maximum output power in this embodiment.
  • the maximum power that can be generated by the solar panel is compared with the case where an additional measuring device such as a solar cell for monitoring or a solar radiation meter is used. It is possible to calculate with high accuracy, and by adjusting the demand of demand equipment according to the supply and demand gap, which is the difference between the maximum power that can be generated and the generated power, there is a change in power supply capacity due to changes in solar radiation, etc. Even when the demand changes depending on the use situation of the user, the customer system can be controlled so that the supply and demand does not always exceed the supply.
  • FIG. 13 shows an apparatus configuration of a customer system including the photovoltaic power generation apparatus according to the second embodiment.
  • the customer system 100 can switch between a state connected to the power system by the switchgear 8 and an independent operation state not connected to the power system.
  • the solar power generation device 1 converts the direct current output of the solar panel 2 into alternating current and outputs it to the distribution board 4.
  • the photovoltaic power generation device 1 adjusts the DC current and DC voltage of the solar panel 2 so as to maximize the AC output current in synchronization with the AC voltage waveform of the power system.
  • the operating point is intermittently set to a voltage smaller than the maximum output possible power for a short time, and the DC current, the DC voltage, and the previous maximum output possible power are stored.
  • the measurement with the operating point changed is measured once every 10 seconds for about 20 ms.
  • the measurement frequency, measurement time, measurement voltage, and number of measurement points are not limited by this combination.
  • the output power decreases but only for a short time, so that the influence can be reduced to less than 1% of the generated power.
  • the solar power generation device 1 adjusts the direct current and direct current voltage of the solar panel 2 so that the independent output voltage becomes constant.
  • the solar power generation device 1 receives the information request from the control device 3, and sends the maximum power generation possible power information and the current generated power at that time to the control device 3.
  • the control device 3 grasps the supply and demand gap that is the difference between the maximum power that can be generated and the generated power, and when the supply and demand gap becomes smaller, sends a control signal for limiting power to the demand load 5 or the demand load 6, Even if there is a change in the power supply capacity due to changes in the amount of solar radiation, etc., or when the demand changes depending on the usage status of the user, the demand is suppressed by sending a switch open / close control signal to the switchboard 4. Make adjustments so that supply and demand do not exceed supply.
  • the circuit configuration of the photovoltaic power generation apparatus 1 of the present embodiment is the same as that of the first embodiment shown in FIG.
  • FIGS. This is the same as the operation method of the first embodiment using 11 operation points 1.
  • the calculation procedure of the maximum output possible power in the self-sustained operation state not linked to the power system in this embodiment is the same as that in the first embodiment, but the current at the operating point 1 and the maximum power that can be generated are the basis of the calculation.
  • the relational expression with Pmax1 uses a value measured in a state connected to the power system.
  • the present embodiment it is possible to reflect the installation condition of the solar panel and the characteristic deterioration after the installation by correcting the parameter for calculating the maximum power that can be generated during the independent operation during the interconnection operation. Further, according to the present embodiment, the influence of the solar panel temperature that varies depending on the season is corrected every day, so that the maximum power that can be generated can be predicted with higher accuracy than in the first embodiment.
  • the supply and demand will not always exceed the supply. The customer system can be controlled.
  • FIG. 18 shows an apparatus configuration of a customer system including the photovoltaic power generation apparatus according to the third embodiment.
  • the device configuration of the present embodiment is almost the same as that of the second embodiment, but a storage battery 9 is connected between the distribution board 4 and the switchgear 8 and charged or discharged in response to an instruction from the control device 3. Can do.
  • the photovoltaic power generation device 1 adjusts the DC current and DC voltage of the solar panel 2 so as to maximize the AC output current in synchronization with the AC voltage waveform of the power system.
  • the operating point is intermittently set to a voltage lower than the maximum output power for a short time, and the direct current, the direct current voltage, and the maximum output just before are adjusted. Memorize possible power.
  • the operating point is intermittently set to a voltage higher than the maximum output power for a short time, and the DC current, the DC voltage, and the immediately preceding maximum output power are stored. The measurement with the operating point changed is measured once every 10 seconds for about 20 ms.
  • a voltage larger than a maximum output power and a voltage smaller than the maximum output power may be measured alternately, or may be switched to one after the other.
  • the operating point is set to a voltage that is smaller or larger than the maximum output power, the output power is reduced but only for a short time, so that the influence can be reduced to less than 1% of the generated power.
  • the solar power generation device 1 adjusts the direct current and direct current voltage of the solar panel 2 so that the self-sustained output voltage is constant.
  • the solar power generation device 1 receives an information request from the control device 3, the solar power generation device 1 sends the maximum power generation possible power information and the current generated power at that time to the control device 3.
  • the storage battery 9 is operated in the discharge mode at night, and the customer system is operated with the stored power. During the day, it works as one of the loads that charge the power from the solar power generation device 1.
  • the control device 3 grasps the supply and demand gap that is the difference between the maximum power that can be generated and the generated power, and when the supply and demand gap becomes smaller, sends a control signal for limiting power to the demand load 5 or the demand load 6, Demand is controlled by sending a switch open / close control signal to the switchboard 4 or stopping the charging of the storage battery 9, and there is a change in power supply capacity due to changes in the amount of solar radiation, etc. Even when demand changes, adjustments are always made so that supply and demand do not exceed supply. When the amount of solar radiation becomes small and the control device 3 determines that the output from the solar power generation device 1 does not satisfy the power demand, the control device 3 stops the solar power generation and simultaneously changes the storage battery 9 from the charge mode to the discharge mode. Switch.
  • the solar battery is switched to the stop at the same time as the solar battery. Operate power generation and switch power sources instantly.
  • the control device 3 stops the storage battery 9 and simultaneously causes the output of the solar power generation device 1 to flow to the distribution board 4.
  • the demand load 7 having a low priority is turned on.
  • the storage battery 9 is switched to the charging mode and charged.
  • the operation of the storage battery 9 is temporarily stopped. Furthermore, in the period F in which the supply and demand gap is reduced, the demand load 7 having a low priority is turned off. Thereafter, in the period G when the supply-demand gap is recovered due to the movement of the clouds, the demand load 7 is turned ON, and in the period H in which the supply-demand gap is increased, the storage battery 9 is charged again. Thereafter, in the period I when the amount of solar radiation is low and the supply and demand gap is reduced, the storage battery 9 is first stopped, and in the period J when the supply and demand gap is further reduced, the demand load 7 having a low priority is turned off. Thereafter, when the maximum power that can be generated is further reduced, the output of the solar power generation device 1 is turned off and the storage battery 9 is discharged at the same time.
  • the circuit configuration of the photovoltaic power generation apparatus 1 of the present embodiment is the same as that of the first embodiment shown in FIG.
  • FIG. 15 shows the relationship between the DC voltage of the solar panel 2 and the power generation output
  • FIG. 16 shows the relationship between the DC voltage and the DC current.
  • DC voltage and DC current are measured while controlling the switch S1 so as to operate at the operating point 1 which is a voltage lower than the voltage capable of obtaining the maximum output power. Then, once every 10 seconds, the DC voltage and DC current are measured by operating at the operating point 2 for about 20 ⁇ ms.
  • the measurement frequency and the measurement time are not limited.
  • the measurement time may be about 10 ⁇ ms once every 20 seconds.
  • the previous DC voltage is memorized, and the DC voltage is set as the target operating point immediately after switching. Controls the switch S1 so that the voltage of the capacitor 22 becomes constant while finely adjusting the operating point.
  • the maximum power that can be generated by the solar panel during the self-sustaining operation is obtained by using the data of two points of the operating point 1 and the operating point 2, and the method shown in the first and second embodiments. It is possible to calculate with high accuracy.
  • the customer system can be stably maintained by adjusting the demand load and the charging power of the storage battery even when the output of the solar panel is unstable due to the influence of clouds or the like during the independent operation. I can do it.
  • FIG. 21 shows a device configuration of a customer system including a solar power generation device according to the fourth embodiment.
  • a display device 11 that displays power information such as the maximum power that can be generated and generated power sent from the control device, and the power supply / demand gap that is the difference between them.
  • the operation method in the state linked to the power system in the present embodiment is the same as that in the third embodiment shown in FIGS.
  • the operation method of the customer system 100 in a self-sustained operation state not linked to the power system is basically the same as that of the third embodiment.
  • the display device 11 allows the user to generate the maximum power that can be generated and the generated power. Therefore, it is possible to check power information such as the power supply-demand gap that is the difference between them, and by operating the demand equipment according to the supply-demand gap, it becomes possible to use limited power according to needs.
  • the circuit configuration of the photovoltaic power generation apparatus 1 of the present embodiment is the same as that of the first embodiment shown in FIG.
  • the operation method of the photovoltaic power generation apparatus 1 in the self-sustaining operation state not linked to the power system in the present embodiment will be described.
  • the relationship between the DC voltage and the output voltage is the same as that shown in FIG.
  • the relationship of current is the same as that shown in FIG.
  • the operation is mainly performed at the operating point 1 which is a voltage lower than the voltage capable of obtaining the maximum output power.
  • the DC voltage and the DC current are measured while controlling the switch S1 so as to operate at the operating point 2 that is higher than the voltage at which the maximum output power can be obtained, and once every 10 seconds. Operate at operating point 1 for about 20 ms and measure DC voltage and DC current.
  • the measurement frequency and the measurement time are not limited. For example, the measurement time may be about 10 ⁇ ms once every 20 seconds.
  • the calculation procedure of the maximum output possible power in the self-sustaining operation state not linked to the power system in the present embodiment is the same as that of the third embodiment shown in FIG.
  • the direct current can be made smaller than the operation at the operating point 1 and the heat generation of the circuit can be reduced.
  • the user can operate the demand equipment while confirming the supply and demand gap, which is the difference between the maximum power that can be generated at home and the power demand, by the display device during the independent operation, and thus the amount of solar radiation varies. Even in this case, it is possible to maintain the customer system continuously while meeting the user's needs.
  • FIG. 22 shows an apparatus configuration of a customer system including the photovoltaic power generation apparatus according to the fifth embodiment.
  • the demand load 5 and the demand load 6 are not control signals, but information on the power generation surplus that is the difference between the maximum power that can be generated and the generated power is received from the control device 3. be delivered.
  • the demand load 5 and the demand load 6 have a function of voluntarily changing the operation mode based on the generated power generation surplus. For example, the stability of the customer system 100 against a change in power supply and demand is improved by changing the set temperature of the air conditioner when the power generation surplus is small and large. According to the method of the present embodiment, if the room temperature is a level that is harmful to health, the temperature setting is not changed.
  • the power generation surplus information is distributed from the control device 3, but the photovoltaic power generation device 1 sends the power generation surplus information to the network by multicast, and the demand load 5 and the demand load 6 are independent. It may be configured to receive and operate automatically.
  • the demand load independently adjusts the electric power according to the power generation surplus and its own state, so that it is possible to reduce the possibility of giving an unreasonable instruction to the demand load side when adjusting the power. .
  • FIG. 23 shows an apparatus configuration of a customer system including the photovoltaic power generation apparatus according to the sixth embodiment.
  • the control device 3 of the customer system 100 is connected to the Internet via the router 10 and further connected to the management server 200.
  • the management server 200 instructs the control device 3 about the maximum reverse power flow.
  • the control device 3 calculates the reverse power flow power from the generated power of the solar power generation device 1 and the power used obtained from the distribution board 4 so that the solar power is less than the maximum reverse power flow instructed from the management server 200.
  • the power generated by the power generation device 1 is suppressed.
  • the control device 3 transmits to the management server 200 the power generation surplus that is the difference between the maximum power that can be generated from the solar power generation device 1 and the current power generation.
  • the operation of the solar power generation apparatus 1 when power is suppressed and the calculation method of the maximum power that can be generated are in accordance with those shown in the first to fourth embodiments.
  • the management server 200 is connected similarly to a plurality of customer systems including the customer system 100, and manages the current power supply and demand in the region. By grasping the power generation surplus from each customer system, when the solar power generation power drops due to a cloud in a part of the same area, the maximum reverse power flow of the customer system without the cloud is calculated. Balance can be achieved by giving large instructions. At this time, accurate power management can be performed by grasping the power generation surplus of each customer system.
  • FIG. 24 shows a device configuration of a power generation system including the solar power generation device according to the seventh embodiment.
  • the gateway 14 of the power generation system 101 is connected to the Internet and further connected to the management server 200.
  • Management server 200 instructs gateway 14 to suppress power.
  • the gateway 14 issues an instruction to suppress the generated power of the solar power generation device 1 so that it is equal to or lower than the power instructed from the management server 200. Further, the gateway 14 transmits the maximum power that can be generated from the photovoltaic power generation apparatus 1 and the current generated power to the management server 200.
  • the operation of the solar power generation device 1 and the calculation method of the maximum power that can be generated are in accordance with those shown in the first to fourth embodiments.
  • the management server 200 is connected to a plurality of power generation systems including the power generation system 101, and manages the current power supply and demand in the region. By grasping the power generation surplus from each power generation system, when the solar power generation power drops due to clouding in a part of the same area, etc., the instruction to reduce the suppression amount of the power generation system without clouding etc. Can be balanced. At this time, accurate power management can be performed by grasping the maximum power that can be generated by each power generation system.
  • FIG. 26 shows a device configuration of a customer system including a solar power generation device according to the eighth embodiment.
  • a control screen 12 which displays power information such as the maximum power that can be generated and generated power sent from the control device 3, and simultaneously displays control information from the user. 3 is transmitted.
  • the control screen 12 is equipped with input devices such as a touch panel and buttons.
  • control device 3 stores the power used for each demand device, predicts how much the supply-demand gap will change when it is turned on, and cancels the user's operation when the supply-demand gap falls below a certain level. , The control screen 12 displays the cancellation.
  • the output of the photovoltaic power generator 1 is suddenly reduced by detecting the overload state caused by the user's operation in advance and canceling the operation. Has the effect of deterring
  • FIG. 29 shows a device configuration of a customer system including a solar power generation device according to the ninth embodiment.
  • a measuring device 13 that transmits power information such as maximum power that can be generated and generated power to the control device 3 in response to an information request sent from the control device 3. .
  • FIG. 30 shows a circuit diagram of the measuring device 13.
  • the solar power generation device 1 operates with the maximum power that can be generated.
  • the control block 24 of the measuring device 13 measures the open voltage with the voltmeter 21 in a state where the switch S7 is OFF and the switch S6 is OFF for a short time. Thereafter, the short-circuit current is measured using the ammeter 20 with the switch S7 turned off and the switch S6 turned on.
  • the switch S6 With the switch S7 turned on, the switch S6 is turned on and off intermittently to reduce the direct current flowing through the photovoltaic power generation device 1 to create a state of the operating point 1 in a pseudo manner, and the voltmeter 21 and ammeter 20 DC voltage and DC current may be measured using The control block 24 acquires data corresponding to FIG. 20A from these measured values.
  • the solar power generation device 1 operates at the operating point 2 that is a voltage higher than the maximum power that can be generated.
  • the control block 24 of the measuring device 13 measures the open voltage with the voltmeter 21 in a state where the switch S7 is OFF and the switch S6 is OFF for a short time.
  • the short-circuit current is measured using the ammeter 20 with the switch S7 turned off and the switch S6 turned on.
  • the switch S7 is turned on and the switch S6 is turned on and off intermittently to reduce the direct current flowing to the photovoltaic power generation device 1 to create the state of the operating point 1 in a pseudo manner.
  • a method of measuring DC voltage and DC current using the voltmeter 21 and the ammeter 20 may be used.
  • the maximum output possible power is calculated by the method shown in FIG. 20 and transmitted to the control device 1.
  • the maximum power generation possible of the solar panel is accurately calculated.
  • the demand of demand equipment according to the gap between supply and demand, which is the difference between the maximum power that can be generated and the generated power, there is a change in power supply capacity due to changes in solar radiation, etc. Even when the demand changes depending on the usage status, the customer system can always be controlled so that the supply and demand does not exceed the supply.
  • the device configuration of the customer system including the solar power generation device in the tenth embodiment is the same as the configuration of Example 3 shown in FIG. Moreover, the circuit diagram of the solar power generation device 1 is the same as that according to the first embodiment shown in FIG.
  • the solar power generation device 1 operates at the operating point 1 as shown in FIG. 31, but intermittently searches for the maximum power that can be generated for a short time.
  • the direct current and direct current voltage of the solar panel 2 are adjusted. Since the output increases during the search, the voltage of the capacitor 22 may rise. For example, if the time is about 10 ms once every 10 seconds, the search can be made with little influence.
  • the present embodiment when generating power with a power smaller than the maximum power that can be generated, it is possible to accurately calculate the maximum power that can be generated by the solar panel, and the difference between the maximum power that can be generated and the generated power
  • supply and demand will always be supplied even when there is a change in power supply capacity due to changes in the amount of solar radiation and when the demand changes depending on the user's usage conditions.
  • the customer system can be controlled so as not to exceed.
  • SYMBOLS 1 Solar power generation device, 2 ... Solar panel, 3 ... Control device, 4 ... Distribution board, 5-7 ... Demand load, 8 ... Switchgear, 9 ... Storage battery, 10 ... Router, 11 ... Display device, 12 ... control screen, 13 ... measuring device, 14 ... gateway, 20 ... ammeter, 21 ... voltage system, 22 ... capacitor, 23 ... control block, 24 ... control block, 100, 102, 103 ... consumer system, 101 ... power generation System 200 ... Management server S1-S7 ... Switch element

Abstract

 突然過負荷状態による出力停止のない太陽光発電装置および電力管理システム、並びに、そのための電力負荷と計測装置を提供する。 太陽光パネルを与えられた環境下での最大発電可能電力よりも小さな電力で発電する手段と、データ通信手段を有する太陽光発電装置は、前記最大発電可能電力よりも小さな電力で発電する際に、前記環境における前記太陽光パネルの最大発電可能電力の予測値を、前記データ通信手段を通じて伝達する機能を有する。

Description

太陽光発電装置および電力管理システム、並びに、そのための電力負荷と計測装置
 本発明は、太陽光パネルを与えられた環境下での最大発電可能電力よりも小さな電力で発電することが出来る太陽光発電装置および電力管理システム、並びに、そのための電力負荷と計測装置に関する。
 ここで、与えられた環境下での最大発電可能電力よりも小さな電力で発電する状況は、停電時に太陽光発電装置を自立運転する場合や、系統連系している太陽光発電装置が配電系統の管理者からの依頼に応じて逆潮流の低減のために出力抑制する場合などが考えられる。なお、本発明における太陽光発電装置あるいは電力管理システムは、太陽光パネルの直流電圧,直流電流を制御して電力を取り出す機能を含む。また、交流出力をする場合には、太陽光パネルの直流電力を交流電力に変換するインバーター機能を含む。本発明における太陽光発電装置あるいは電力管理システムは、家庭やビル、店舗,工場などの需要家に設置される場合と、メガソーラーなどの発電所に設置される場合の両方のケースを想定する。
 図2に太陽光パネルの直流電圧と発電出力の関係を示す。発電出力はある直流電圧で最大値をもつ曲線を描く。ここで、発電出力の最大値を最大発電可能電力と呼ぶ。曲線は日射量やパネル温度などで変動するが,通常の太陽光発電装置は、太陽光パネルの直流電圧や直流電流をモニターしながら常に最大発電可能電力にクリップされるように太陽光パネルの動作を制御する。図3に代表的な太陽光発電装置の回路図を示す。太陽光パネルからの出力を昇圧チョッパで昇圧し、インバーターで交流に変換する。太陽光パネルの直流電圧と直流電流の測定値を制御ブロックに入力し、常に最大発電可能電力にクリップされるようにスイッチS1の開閉を制御する。制御ブロックは、スイッチS2-S5を用いてPWM制御で直流を交流に変換して出力する。
 家庭内に設置した太陽光発電装置を自立運転させた際の最大発電可能電力をモニター用太陽電池の開放電圧を用いて予測し、最大発電可能電力が設定値以下になった際に、所定の電力負荷に接続されたリモート開閉器を遮断して電力を低減する電力管理システムが、以下の特許文献1に開示されている。
 また、需要家に設置した太陽光発電装置の出力を日射量計の計測結果を基に推定し、蓄電装置の利用可能電力と合算して利用可能電力を予測し、利用可能電力が小さい場合には予め設定した優先順位に基づいて優先順位の低い電力負荷から順番にリモート開閉器を遮断して電力を低減する電力管理システムが、以下の特許文献2に開示されている。
 更に、太陽電池の短絡電流パルスを用いて最大電力を出力する直流電流の目標値を求める手法が以下の非特許文献1に開示されている。
特開平9-149554号公報 特開2008-125295号公報
電学論D,121巻,1号,80-83頁
 従来の太陽光発電装置は、停電などにより家庭内で自立運転をする際には、ユーザーにはどの程度の電力まで使えるかが分からない為、雲の移動などによって日射量が変動すると電力供給能力が低下して突然出力が停止したり、機器の動作が不安定になる場合がある。
 上記の特許文献1および2では、日射量に応じた最大発電可能電力を予測して需要機器の電力供給経路を開閉することで自立運転を継続させる手段について述べており、モニター用太陽電池や日射量計の計測結果を制御装置内で解析して開閉器を直接操作する構成になっているが、しかしながら、発電する太陽光発電パネルと計測器との位置のずれにより正確に予測できず、また、屋外に計測器を付加的に設置するために設置コストが上昇すると考えられる。特に、特許文献1については、モニター用太陽電池の開放電圧から最大発電可能電力を予測する手法が示されているが、開放電圧はパネル温度の影響を受けて誤差が大きくなるので正確な予測が出来ないと推測される。また、特許文献2については、パネル温度の要素が考慮されていないので特許文献1と同様に正確な予測が出来ないと推測される。そして、非特許文献1では、最大電力を出力する直流電流の目標値を求める手法が開示されているが,最大発電可能電力を求める手法は開示されていない。即ち、自立運転時など、太陽光発電装置が与えられた環境下での最大発電可能電力より小さな電力で発電する際に、最大発電可能電力を低コストで正確に予測する手法がないという課題がある。
 また、従来の太陽光発電装置が電力系統の電力供給に占める割合が大きい場合には、日射量が大きくて電力供給が電力需要を上回ると予測される時間帯には、太陽光発電の出力を抑制する必要が生じる。その際、天候の変化などで太陽光発電出力が急激に低下した場合には、大容量の蓄電池、揚水発電、火力発電、水力発電など電力供給を調整する方法が考えられているが、設備コストが高く、特に、火力発電の場合には、CO2を排出する上に更に燃料費が必要である。
 そこで、出力が抑制された状態にある各太陽光発電装置の最大発電可能電力の情報を地域の配電管理設備が把握できれば、天候の変化などで太陽光発電の出力が変動した場合に、発電抑制条件を適正に緩和する事で電力平準化を行う方法が考えられる。しかしながら、特許文献1、特許文献2および非特許文献1には、最大発電可能電力の情報を外部に伝達する機能が無いという課題がある。
 本発明は、上述した従来技術における課題に鑑みて達成されたものであり、その目的は、かかる従来技術における課題を解決することが可能な太陽光発電装置および電力管理システム、並びに、そのための電力負荷と計測装置を提供することにある。
 本発明では、上述した目的を達成するため、例えば、太陽光パネルを与えられた環境下での最大発電可能電力よりも小さな電力で発電する手段と、データ通信手段を有する太陽光発電装置であって、前記最大発電可能電力よりも小さな電力で発電する際に、前記環境における前記太陽光パネルの最大発電可能電力の予測値を、前記データ通信手段を通じて伝達する機能を有する太陽光発電装置が提供される。
 上述した本発明によれば、上述した従来技術における課題を解決することが可能な太陽光発電装置および電力管理システム、並びに、そのための電力負荷と計測装置が提供される。
本発明の実施例1に関わる構成図である。 太陽光パネルの直流電圧と発電出力の関係を示す図である。 代表的な太陽光発電装置の回路図である。 出力抑制状態にした場合の直流電圧と発電出力の関係を示す図である。 出力抑制状態にした場合の直流電流と直流電圧の関係を示す図である。 日射条件,パネル温度条件を変えた場合の電流と最大発電可能電力の関係1を示す図である。 日射条件,パネル温度条件を変えた場合の電流と最大発電可能電力の関係2を示す図である。 日射条件,パネル温度条件を変えた場合の電流と最大発電可能電力の関係3を示す図である。 本発明の太陽光発電装置1の回路図である。 直流電圧と出力電圧の関係を示す図である。 直流電圧と直流電流の関係を示す図である。 実施例1における最大出力可能電力の計算手順を示す図である。 実施例2に関わる構成図である。 実施例2における電力系統と連系する状態における動作方法を示す図である。 実施例3における直流電圧と発電出力の関係を示す図である。 実施例3における直流電圧と直流電流の関係を示す図である。 実施例3における動作点2から動作点1に切り換える際の動作を示す図である。 実施例3に関わる構成図である。 実施例3における電力系統と連系する状態における動作方法を示す図である。 実施例3における最大出力可能電力の計算手順を示す図である。 実施例4に関わる構成図である。 実施例5に関わる構成図である。 実施例6に関わる構成図である。 実施例7に関わる構成図である。 実施例1における需給ギャップの時間変化と需要機器の状態を表す図である。 実施例8に関わる構成図である。 太陽光発電パネルの等価回路である。 パネル温度が変化した場合の直流電圧と発電出力の関係を示す図である。 実施例9に関わる構成図である。 実施例9における測定装置13の回路図である。 実施例10に関わる最大出力可能電力の探索方法を表す図である。 実施例3における機器の動作状態の時間推移を示す図である。
 以下、本発明の実施例について、添付の図面を用いて詳細に説明する。しかしながら、それに先立ち、まず、本発明の特徴について、以下に要約して述べる。
 本発明によれば、最大発電可能電力の予測機能を太陽光発電装置に持たせ、太陽光パネルの動作条件を制御しながら、制御された動作点における直流電流計測値と直流電圧計測値を用いて最大発電可能電力を予測し、データ通信手段を通じて外部の装置に伝達する。外部の装置とは、需要家施設に設置する場合には需要機器の制御装置であっても良いし、インターネット経由で管理サーバに接続するためのゲートウェイであっても良いし、電力会社と独自のネットワークで接続されるスマートメータでも良いし、需要家施設内のモニター画面や、スマートフォンやPCなどの情報機器であっても良い。メガソーラーなどの発電設備に設ける場合には、電力会社との通信を行うゲートウェイであっても良い。
 また、本発明における太陽光発電装置の出力を抑制する際の最大発電可能電力の算出は、最大発電可能電力を得られる電圧よりも低い電圧で太陽光パネルを動作させた状態での直流電流値と直流電圧値を計測し、あらかじめ記憶した計算式もしくは計算テーブルを用いて計算する。
 図4、は出力抑制状態にした場合の直流電圧と発電出力の関係の例を示した図である。抑制された電力を出力する動作点は最大発電可能電力を挟んで二つ存在する事が分かる。図5は、出力抑制状態にした場合の直流電流と直流電圧の関係の例を示した図である。
 ここで、日射条件、パネル温度条件を変えた場合の短絡電流(直流電圧100V)と最大発電可能電力の関係の例を図6に示す。10%程度の誤差が存在するが、最大発電可能電力は短絡電流に略比例する事が分かる。図7に、直流電圧100Vにおける直流電流と最大発電可能電力の関係の例を示し、図8に、直流電圧150Vにおける直流電流と最大発電可能電力の関係の例を示す。図6、図7、図8は、傾きが多少異なるのみで殆ど同じグラフとなる。このため、本発明の手段においては、出力電力に応じて動作点1の電圧が異なるが、その電圧での電流値と最大出力可能電力の比例係数を算出したのち、直流電流から最大出力可能電力を予測する事が可能である。
 比例係数はパネル種類や設置状況によって変わるので、望ましくは、出力抑制のない平常時に断続的に動作点1で動作させ、最大発電可能電力、直流電圧、直流電流のテーブルを記憶し、直流電圧毎の最大発電可能電力の直流電流による傾きを計算して記憶するのが良い。
 図27に太陽光パネルの等価回路を示す。太陽光パネルは日射に応じた電流Iphを流す定電流源とダイオード、配線抵抗Rs,Rshから構成される。電流IとVの関係は以下の式で表される。
 式1:I=Iph-I0(exp(q(V+RsI)/nkT)-1)-(V+RsI)/Rshここで、「I0」は逆方向飽和電流、「q」は電気素量、「n」は理想ダイオード因子、「k」はボルツマン定数、「T」はパネルの絶対温度である。Vが小さい時にはIphの項が支配的となり、最大発電可能電力を示す電圧においてもIphの影響が大きいものと推測される。従って、電圧の小さい範囲の電流値が最大発電可能電力と略比例関係になるものと推測される。
 なお、図6、図7、図8における直流電流と最大発電可能電力の10%程度の誤差は式1におけるI0(exp(q(V+RsI)/nkT)-1)の項によるものであり、パネル温度Tの影響が大きいと考えられる。図5における開放電圧においては、I=0となるので、式1は式2のように表される。
 式2:0=Iph-I0(exp(qV/nkT-1))-V/Rshここで、RshがVより十分大きいと考えると以下のように計算できる。
 式3:Iph=I0(exp(qV/nkT-1)
 式4:ln(Iph/I0+1)=qV/nkT
従って、式4よりIphが一定の場合には、VとTは比例関係になる事が分かる。
 図28に日射量が一定でパネル温度が変化した場合の直流電圧と発電出力の関係を示す。式4より、開放電圧はパネル温度に比例する。図28より、最大発電可能電力の誤差は開放電圧に比例し、パネル温度に比例する。最大発電可能電力を示す電圧よりも大きな電圧範囲では開放電圧と同様にパネル温度の影響が大きいと考えられるので、動作点2の電圧と最大発電可能電圧の誤差は略比例すると考えられる。つまり、動作点2での直流電流,直流電圧を用いて補正する事で、図6、図7、図8の直流電流と最大発電可能電力の関係式をさらに高精度にすることが可能である。
 そして、上述した本発明によれば,太陽光パネルを与えられた環境下での最大発電可能電力よりも小さな電力で発電する際に、過負荷状態を事前に予測して需要調整する事で突発的な出力停止を防止する事ができる。
 また、本発明によれば、太陽光発電の出力抑制時における最大出力可能電力を予測する際に、発電する太陽光パネルから出力される直流電流と直流電圧を用いる事で、モニター用太陽電池や日射量計など付加的な測定装置を必要としないため、測定装置と太陽光パネルの位置ずれや太陽光パネルの温度による最大出力可能電力予測値の予測誤差が少なくなり、高精度の予測を低コストで実現することができる。
 また、本発明によれば、最大発電可能電力の情報を用いた新たなサービスや機能の追加を行うことができる。
 そして、本発明によれば、最大発電可能電力の情報を用いて、従来の方法より細かな電力系統の電力需給管理が行える。
 図1に第1の実施形態における太陽光発電装置を含んだ需要家システムの装置構成を示す。本実施例では需要家システム100は電力系統と連系せず、太陽光パネル2による太陽光発電電力のみで自立動作を行う。太陽光発電装置1は太陽光パネル2の直流出力を交流に変換して分電盤4に出力する。太陽光発電装置1は交流出力電圧が一定になるように太陽光パネル2の直流電流、直流電圧を調整する。太陽光発電装置1は、制御装置3からの情報要求を受け、その時点での最大発電可能電力情報と現在の発電電力を制御装置3に送る。制御装置3は最大発電可能電力と発電電力の差である需給ギャップを把握し、需給ギャップが小さくなった場合には、需要負荷5もしくは需要負荷6に電力を制限する制御信号を送ったり、分電盤4へスイッチの開閉制御信号を送る事で需要を抑制し、日射量の変化などによる電力供給能力の変化がある場合や、使用者の使用状況によって需要が変化する場合においても、常に、需給が供給を上回らないように調整を行う。需要負荷5がエアコンの場合は、設定温度を変更したり、冷房・暖房設定を送風に切り換える。需要負荷6がTVの場合には、明るさを暗くする。
 図25に需給ギャップの時間変化に対する需要機器の動作状況を示す。制御装置3は需要負荷別に優先度を記憶し、需給ギャップが設定値1以下になった場合に、優先度の低い需要負荷7の電力を低減させる。その後需給ギャップがさらに低下し、再び設定値1以下になった場合に、次に優先度の低い需要負荷6の電力を低減させる。その後需給ギャップが大きくなり、設定値2を超えた場合には電力低減制御を行っている需要負荷の中で優先度の高い需要負荷6の電力を回復させる。
 図9に本実施例の太陽光発電装置1の回路図を示す。電流計20と電圧計21が太陽光パネル2の直流電圧および直流電圧を測定する。太陽光発電装置1の制御ブロック23は出力電圧が一定になるようにスイッチS2~S5を用いてPWM制御すると同時に、コンデンサ22の電圧が一定になるようにスイッチS1を制御する。図10に、ある設置条件、ある気象条件における直流電圧と出力電圧の関係図の例をし、図11に同じ条件下での直流電圧と直流電流の関係の例を示す。最大出力可能電力以下の出力電力を得る場合には直流電圧と直流電流の組み合わせは2通りある。例えば電力需要が2000 Wだった場合、本実施例では最大出力可能電力を得られる電圧よりも低い電圧である動作点1で動作するようにスイッチS1を制御する。
 図12に本実施例における最大出力可能電力の計算手順を示す。図9における制御ブロック23には、予め図12(a)に示したように最大出力可能電力Pmax1と動作点1での直流電流の関係式が、動作点1での直流電圧V=0 (V)、V=50 (V)、V=100 (V)、V=150 (V)のそれぞれの場合について「0(零)」を通る直線として記憶されている。次に、図11より動作点1で動作させている際の直流電圧V=88 (V)なので、図12(b)に示したように、これに近い電圧V=50 (V)の傾き142と, V=100 (V)の傾き145よりV=88 (V)の場合の直線の傾きを比例計算すると144.3になる。図12(c)に示したように、図11における動作点1の直流電流I=22.8 (A)であることから、V=88 (V)の直線上の位置を特定すると最大出力可能電力であるPmax1=3290 (W)が求められる。本実施例における計算手順では,太陽光パネル2の温度に起因する誤差を含んでいるものの、誤差10%程度の精度で予測する事ができる。
 本実施例によれば、最大発電可能電力よりも小さな電力で発電する際に、太陽光パネルの最大発電可能電力をモニター用太陽電池や日射量計など付加的な測定装置を用いた場合と比較して精度よく算出する事が可能となり、最大発電可能電力と発電電力の差である需給ギャップに応じて需要機器の需要調整をすることで、日射量の変化などによる電力供給能力の変化がある場合や、使用者の使用状況によって需要が変化する場合においても、常に、需給が供給を上回らないように需要家システムを制御することができる。
 図13に第2の実施形態における太陽光発電装置を含んだ需要家システムの装置構成を示す。本実施例では需要家システム100は、開閉装置8によって電力系統と連系する状態と、連系しない自立運転状態を切り換えることができる。太陽光発電装置1は太陽光パネル2の直流出力を交流に変換して分電盤4に出力する。
 本実施例における電力系統と連系する状態においては、太陽光発電装置1は電力系統の交流電圧波形に同調して交流出力電流が最大になるように太陽光パネル2の直流電流、直流電圧を調整するが、図14に示したように、断続的に短時間の間、動作点を最大出力可能電力よりも小さい電圧にし、直流電流と直流電圧と直前の最大出力可能電力を記憶する。動作点を変更した測定は10秒に1回、約20 msの間測定するものとし、測定する電圧は、V=0 (V)、V=50 (V)、V=100 (V)、V=150 (V)の4点を毎回変えながら測定する。ただし、本実施例では,測定頻度、測定時間、測定電圧、測定ポイント数をこの組み合わせで限定するものではなく、例えば、20秒に1回、約10 msの測定時間で、V=75 (V),V=125 (V)、 V=150 (V)の3点にしてもよい。なお,動作点を最大出力可能電力よりも小さい電圧にした場合,出力電力が減少するが短時間だけなので、発電電力の1%未満に影響を少なくすることができる。
 本実施例において電力系統と連系しない自立運転状態での動作方法を説明する。太陽光発電装置1は自立出力電圧が一定になるように太陽光パネル2の直流電流、直流電圧を調整する。太陽光発電装置1は、制御装置3からの情報要求を受け、その時点での最大発電可能電力情報と現在の発電電力を制御装置3に送る。制御装置3は最大発電可能電力と発電電力の差である需給ギャップを把握し、需給ギャップが小さくなった場合には、需要負荷5もしくは需要負荷6に電力を制限する制御信号を送ったり、分電盤4へスイッチの開閉制御信号を送る事で需要を抑制し、日射量の変化などによる電力供給能力の変化がある場合や、使用者の使用状況によって需要が変化する場合においても、常に、需給が供給を上回らないように調整を行う。
 本実施例の太陽光発電装置1の回路構成は図9に示した実施例1のものと同じである。
 太陽光パネル2の動作特性および日射量や気温などの外部環境が第1の実施形態と同じ場合においては、本実施例において電力系統と連系しない自立運転状態での動作方法は図10、図11の動作点1を用いる実施例1の動作方法と同じである。
 本実施形態において電力系統と連系しない自立運転状態での最大出力可能電力の計算手順は、第1の実施形態と同じであるが、計算の基となる動作点1の電流と最大発電可能電力Pmax1との関係式は電力系統と連系した状態において測定した値を用いる。
 本実施例によれば、自立運転時の最大発電可能電力を計算するパラメータを連系運転時に補正する事で、太陽光パネルの設置条件や設置後の特性劣化を反映させることができる。また、本実施例によれば、季節などによって変動する太陽光パネル温度の影響を毎日補正していることになるので、実施例1よりも高精度に最大発電可能電力を予測する事ができる。本実施例を用いて、自立運転時に,日射量の変化などによる電力供給能力の変化がある場合や、使用者の使用状況によって需要が変化する場合においても、常に、需給が供給を上回らないように需要家システムを制御することができる。
 図18に第3の実施形態における太陽光発電装置を含んだ需要家システムの装置構成を示す。本実施例の装置構成は実施例2と殆ど同じであるが、分電盤4と開閉装置8の間に蓄電池9が接続されており、制御装置3からの指示を受けて充電もしくは放電する事ができる。
 本実施例における電力系統と連系する状態においては、太陽光発電装置1は電力系統の交流電圧波形に同調して交流出力電流が最大になるように太陽光パネル2の直流電流、直流電圧を調整するが、実施例2と同様に、図14に示したように、断続的に短時間の間、動作点を最大出力可能電力よりも小さい電圧にし、直流電流と直流電圧と直前の最大出力可能電力を記憶する。また、図19に示したように、断続的に短時間の間、動作点を最大出力可能電力よりも大きい電圧にし、直流電流と直流電圧と直前の最大出力可能電力を記憶する。動作点を変更した測定は10秒に1回、約20 msの間測定するものとし、測定する電圧は、最大出力可能電力よりも小さい電圧の場合にはV=0 (V)、V=50 (V)、V=100 (V)、V=150 (V)の4点とし,最大出力可能電力よりも大きい場合にはI=0 (A)、I=5 (A)、I=10 (A)、I=15 (A) の4点の合計8点を毎回変えながら測定する。ただし、本実施例では、測定頻度、測定時間、測定電圧、測定ポイント数をこの組み合わせで限定するものではなく、例えば、20秒に1回、約10 msの測定時間で、V=75 (V)、V=125 (V)、V=150 (V)、I=7 (A)、I=12 (A)、I=17 (A)、の3点の合計6点にしてもよい。また、最大出力可能電力よりも大きい電圧と小さい電圧を交互に測定しても良いし、どちらかが終わってからどちらかに切り替えても良い。なお、動作点を最大出力可能電力よりも小さい電圧あるいは大きい電圧にした場合、出力電力が減少するが短時間だけなので、発電電力の1%未満に影響を少なくすることができる。
 本実施例において、電力系統と連系しない自立運転状態での需要家システム100全体の動作を説明する。本実施例における電力系統と連系しない自立運転状態では、太陽光発電装置1は、自立出力電圧が一定になるように太陽光パネル2の直流電流、直流電圧を調整する。太陽光発電装置1は、制御装置3からの情報要求を受けた場合には、その時点での最大発電可能電力情報と現在の発電電力を制御装置3に送る。蓄電池9は夜間に放電モードで運転し、蓄えられた電力で需要家システムを運転する。日中は太陽光発電装置1からの電力を充電する負荷の一つとして働く。制御装置3は最大発電可能電力と発電電力の差である需給ギャップを把握し、需給ギャップが小さくなった場合には、需要負荷5もしくは需要負荷6に電力を制限する制御信号を送ったり、分電盤4へスイッチの開閉制御信号を送ったり、蓄電池9への充電を停止する事で需要を抑制し、日射量の変化などによる電力供給能力の変化がある場合や、使用者の使用状況によって需要が変化する場合においても、常に、需給が供給を上回らないように調整を行う。制御装置3は、日射量が小さくなって太陽光発電装置1からの出力が電力需要を満たさないと判断した場合には、太陽光発電を停止すると同時に蓄電池9を充電モードから放電モードへ瞬時に切替る。また、逆に、蓄電池9が放電している状態で、日射量が大きくなって太陽光発電装置1からの出力が電力需要を満たすと判断した場合には、蓄電池を停止に切り換えると同時に太陽光発電を運転し、電力源を瞬時に切り替える。
 需要システム100の機器の具体的な動作の流れを図32を用いて説明する。日の昇らない未明に相当する期間Aでは、蓄電池の放電によって家庭内の電力需要を賄う。この際、優先順位の低い需要負荷7はOFF状態にある。日が昇って最大発電可能電力が電力需要を超えた期間Bでは、制御装置3は、蓄電池9を停止すると同時に、太陽光発電装置1の出力を分電盤4に流す。最大発電可能電力と電力需要の需給ギャップが大きくなった期間Cでは、優先順位の低い需要負荷7をON状態にする。需給ギャップがさらに大きくなった期間Dでは、蓄電池9を充電モードに切り替えて充電する。その後、雲などによって需給ギャップが小さくなった期間Eでは、一旦、蓄電池9の動作を停止する。さらに、需給ギャップが小さくなった期間Fでは、優先順位の低い需要負荷7をOFFにする。その後雲の移動によって、需給ギャップが回復した期間Gでは、需要負荷7をONにし、さらに、需給ギャップが大きくなった期間Hでは、蓄電池9を再度充電する。その後、日射量が低くなり、需給ギャップが小さくなった期間Iではまず蓄電池9を停止状態にし,さらに需給ギャップが小さくなった期間Jでは、優先順位の低い需要負荷7をOFFにする。その後さらに最大発電可能電力が小さくなれば、太陽光発電装置1の出力をOFFにすると同時に蓄電池9を放電させる。
 本実施例の太陽光発電装置1の回路構成は、図9に示した実施例1のものと同じである。
 本実施例における電力系統と連系しない自立運転状態での太陽光発電装置1の動作方法を説明する。太陽光パネル2の直流電圧と発電出力の関係を図15に示し、直流電圧と直流電流の関係を図16に示す。最大出力可能電力以下の出力電力を得る場合には直流電圧と直流電流の組み合わせは2通りある。例えば、電力需要が2000 Wだった場合、本実施例では最大出力可能電力を得られる電圧よりも低い電圧である動作点1で動作するようにスイッチS1を制御しながら直流電圧および直流電流を測定し、10秒に1回、約20 msの間、動作点2で動作させて直流電圧および直流電流を測定する。ただし、本実施例では、測定頻度、測定時間を限定するものではなく、例えば,20秒に1回、約10 msの測定時間にしてもよい。動作点1を主に用いる事で、動作点1での測定結果が安定する為、最大動作可能電力の算出結果が安定するという利点がある。最大動作可能電力の算出においては、動作点1での測定値の方が動作点2での測定値よりも支配的である為である。
 動作点を動作点2から動作点1にあるいは動作点1から動作点2に変更する際には、前回の直流電圧を記憶しておき、その直流電圧を切換え直後の目標動作点とし、切換え後は動作点を微調整しながらコンデンサ22の電圧が一定になるようにスイッチS1を制御する。
 この際、図17に示したように、例えば、動作点2から動作点1に切り換える際には、記憶された1つ前の動作点1の直流電圧における出力電力が、日射量の変動などで必要な電力に足りない場合には、コンデンサ22の電圧が下がるため,それを補うために一時的に直流電圧を高めに移動させ、コンデンサ22の電圧を補正する。それとは逆に、日射量の変動などで必要な電力より大きかった場合には、コンデンサ22の電圧が上がるため、それを補うために一時的に直流電圧を低めに移動させ、コンデンサ22の電圧を補正する。
 また,例えば、動作点1から動作点2に切り換える際に、記憶された1つ前の動作点2の直流電圧における出力電力が、日射量の変動などで必要な電力に足りない場合には、コンデンサ22の電圧が下がるため、それを補うために一時的に直流電圧を低めに移動させ、コンデンサ22の電圧を補正する。それとは逆に、日射量の変動などで必要な電力より大きかった場合には、コンデンサ22の電圧が上がるため、それを補うために、一時的に直流電圧を高めに移動させ、コンデンサ22の電圧を補正する。
 本実施例における電力系統と連系しない自立運転状態での最大出力可能電力の計算手順を図20を用いて説明する。制御ブロック23には、予め図20(a)に示したように最大出力可能電力Pmax1と動作点1での直流電流の関係式が、動作点1での直流電圧V=0 (V)、V=50 (V)、V=100 (V)、V=150 (V)のそれぞれの場合について記憶されている。次に、図16より動作点1で動作させている際の直流電圧V=88 (V)なので、図20(b)に示したように、これに近い電圧V=50 (V)、V=100 (V)の直線よりV=88 (V)の関係式を近似計算する。次に、図20(c)に示したように、図16における動作点1の直流電流I=22.8 (A)からV=88 (V)の直線上の位置を特定し、最大出力可能電力であるPmax1=3300 (W)を求める。ここまでは第1の実施形態、第2の実施形態と同じであるが、この方法による最大出力可能電力の推定値Pmax1には太陽光パネル2の温度に起因する計算誤差が10%前後含まれるので、さらに精度を高める為、動作点2での直流電圧、直流電流を用いて計算する。図9における制御ブロック23には、予め図20(d)に示したように、真の最大出力可能電力PmaxとPmax1の比と動作点2での直流電圧の関係式が、I=0 (A), I=5 (A), I=10 (A), I=15 (A)のそれぞれの場合について記憶されている。次に、図16より、動作点2の直流電流I=12 (A)なので、図20(e)に示したように、これに近い電流I=10 (A)、I=15 (A)の直線よりI=12 (A)の直線を近似計算する。次に、図20(f)に示したように、動作時の直流電圧V=200 (V)からI=12 (A)の直線上の位置を特定し、真の最大出力可能電力Pmaxと図20(a)~(c)で求められたPmax1=3300 (W)との比1.02を求める。真の最大出力可能電力PmaxはPmax1=3300 (W)と1.02の乗算なので、Pmax=3366 (W)となる。
 本実施例によれば、自立運転時の太陽光パネルの最大発電可能電力を、動作点1及び動作点2の2ポイントのデータを用いる事で、実施例1乃至実施例2に示した方法より精度よく算出する事が可能である。また、本実施例によれば、自立運転時に、雲などの影響で太陽光パネルの出力が不安定な時にも、需要負荷と蓄電池の充電電力を調整する事で安定的に需要家システムを維持する事ができる。
 第4の実施形態における太陽光発電装置を含んだ需要家システムの装置構成を図21に示す。図18に示した実施例3の構成に加えて表示装置11があり、制御装置から送られてくる最大発電可能電力や発電電力、それらの差分である電力需給ギャップなどの電力情報を表示する。
 本実施例における電力系統と連系する状態の動作方法は図14、図19に示した実施例3のものと同じである。
 本実施例において、電力系統と連系しない自立運転状態での需要家システム100の動作方法は、基本的に実施例3と同じであるが、表示装置11によってユーザーが最大発電可能電力や発電電力、それらの差分である電力需給ギャップなどの電力情報を確認する事ができ、需給ギャップに応じて需要機器を操作する事で、限られた電力をニーズに応じて使用する事が可能となる。
 本実施例の太陽光発電装置1の回路構成は、図9に示した実施例1のものと同じである。
 本実施例における電力系統と連系しない自立運転状態での太陽光発電装置1の動作方法を説明する。太陽光パネル2の動作特性および日射量や気温などの外部環境が第3の実施形態と同じ場合においては、直流電圧と出力電圧の関係は図15に示したものと同じで、直流電圧と直流電流の関係は図16に示したものと同じである。最大出力可能電力以下の出力電力を得る場合には直流電圧と直流電流の組み合わせは2通りあり、実施例3では主に最大出力可能電力を得られる電圧よりも低い電圧である動作点1で動作させたが、本実施例では最大出力可能電力を得られる電圧よりも高い電圧である動作点2で動作するようにスイッチS1を制御しながら直流電圧および直流電流を測定し、10秒に1回、約20 msの間動作点1で動作させて直流電圧および直流電流を測定する。ただし、本実施例では,測定頻度、測定時間を限定するものではなく、例えば、20秒に1回、約10 msの測定時間にしてもよい。
 本実施例における電力系統と連系しない自立運転状態での最大出力可能電力の計算手順は、図20で示した実施例3のものと同じである。
 本実施例によれば、動作点2を主に用いることによって、動作点1で動作させるよりも直流電流を小さくすることができ、回路の発熱を小さくできるという利点がある。また、本実施例によれば、自立運転時に表示装置によってユーザーが自宅の最大発電可能電力と電力需要の差分である需給ギャップを確認しながら需要機器の操作ができるため、日射量の変動がある場合でもユーザーのニーズに合わせながら連続して需要家システムを維持する事ができる。
 図22に第5の実施形態における太陽光発電装置を含んだ需要家システムの装置構成を示す。本実施例の構成と動作は実施例2とほぼ同じだが、需要負荷5と需要負荷6には制御信号ではなく、最大発電可能電力と発電電力の差分である発電余力の情報が制御装置3から配信される。また、需要負荷5と需要負荷6は送られた発電余力を基に動作モードを自主的に変更する機能を持つ。例えば、発電余力が小さい時と大きい時でエアコンの設定温度を変化させることで、需要家システム100の電力需給変化に対する安定性を向上させる。本実施例の方法によれば、室温が健康に害を及ぼすレベルなら温度設定を変化させないなど、需要負荷側の状況に応じて独自のルールで対応する事ができる。
 本実施例では、発電余力の情報は制御装置3から配信される構成を取っているが、太陽光発電装置1がマルチキャストでネットワークに発電余力の情報を流し、需要負荷5と需要負荷6が自主的に受け取って動作するという構成を取っても良い。
 本実施例によれば,需要負荷が発電余力と自分の状態に応じて自主的に電力を調整するので,電力調整をする際に需要負荷側に無理な指示をする可能性を減らすことができる。
 図23に第6の実施形態における太陽光発電装置を含んだ需要家システムの装置構成を示す。本実施例では需要家システム100の制御装置3はルータ10を介してインターネットと接続され、さらに管理サーバ200と接続されている。
 管理サーバ200は制御装置3へ最大逆潮流電力を指示する。制御装置3は、太陽光発電装置1の発電電力、分電盤4から得られた使用電力から逆潮流電力を計算し、管理サーバ200から指示された最大逆潮流電力以下になるように太陽光発電装置1の発電電力を抑制する。また、制御装置3は、太陽光発電装置1から得られた最大発電可能電力と現在の発電電力の差分である発電余力を管理サーバ200へ伝達する。
 電力抑制している際の太陽光発電装置1の動作および最大発電可能電力の計算方法は、実施例1乃至実施例4に示したものに準じる。
 管理サーバ200は需要家システム100を含む複数の需要家システムと同様に接続され、地域の現在の電力需給を管理する。各需要家システムからの発電余力を把握する事で、同じ地域の一部に雲がかかるなどして太陽光発電電力が低下した場合に、雲がかかっていない需要家システムの最大逆潮流電力を大きく指示するなどしてバランスを図ることができる。この際,各需要家システムの発電余力を把握する事で、正確な電力管理をすることが可能となる。
 図24に第7の実施形態における太陽光発電装置を含んだ発電システムの装置構成を示す。本実施例では発電システム101のゲートウェイ14はインターネットと接続され、さらに管理サーバ200と接続されている。
 管理サーバ200はゲートウェイ14へ電力抑制を指示する。ゲートウェイ14は、管理サーバ200から指示された電力以下になるように太陽光発電装置1の発電電力を抑制為の指示を出す。また、ゲートウェイ14は、太陽光発電装置1から得られた最大発電可能電力と現在の発電電力を管理サーバ200へ伝達する。
 太陽光発電装置1の動作および最大発電可能電力の計算方法は、実施例1乃至実施例4に示したものに準じる。
 管理サーバ200は発電システム101を含む複数の発電システムと接続され,地域の現在の電力需給を管理する。各発電システムからの発電余力を把握する事で、同じ地域の一部に雲がかかるなどして太陽光発電電力が低下した場合に、雲がかかっていない発電システムの抑制量を小さく指示するなどして、バランスを図ることができる。この際、各発電システムの最大発電可能電力を把握する事で、正確な電力管理をすることが可能となる。
 第8の実施形態における太陽光発電装置を含んだ需要家システムの装置構成を図26に示す。図18に示した実施例3の構成に加えて制御画面12があり、制御装置3から送られてくる最大発電可能電力や発電電力などの電力情報を表示すると同時にユーザーからの制御情報を制御装置3に伝達する。制御画面12にはタッチパネルやボタンなどの入力装置が搭載されている。
 需要家システム100が自立運転している状態で,ユーザーが需要負荷5をOFFからONにするという制御を制御画面12に入力すると,その制御情報が制御装置3に送られる。制御装置3には需要機器毎の使用電力が記憶されており,ONにすることでどの程度需給ギャップが変化するか予測し,需給ギャップが一定以下になる場合にはユーザーの操作をキャンセルすると同時に,制御画面12にキャンセルした旨を表示する。
 本実施例によれば、需要家システム100が自立運転している状態で、ユーザーの操作による過負荷状態をあらかじめ察知して操作をキャンセルすることで、突発的な太陽光発電装置1の出力ダウンを抑止する効果がある。
 第9の実施形態における太陽光発電装置を含んだ需要家システムの装置構成を図29に示す。図18に示した実施例3の構成に加えて測定装置13があり、制御装置3から送られてくる情報要求に応じて最大発電可能電力や発電電力などの電力情報を制御装置3に伝達する。
 図30に測定装置13の回路図を示す。需要家システム100を電力系統と連系させる状態では太陽光発電装置1は最大発電可能電力で運転する。このとき、測定装置13の制御ブロック24は短時間の間、スイッチS7をOFF、スイッチS6をOFFの状態において、電圧計21で開放電圧を測定する。その後、スイッチS7をOFF、スイッチS6をONの状態において、電流計20を用いて短絡電流を測定する。スイッチS7をONの状態でスイッチS6を断続的にONとOFFを繰り返して太陽光発電装置1に流れる直流電流を減らし、疑似的に動作点1の状態を作り出して、電圧計21と電流計20を用いて直流電圧と直流電流を測定しても良い。制御ブロック24はこれらの測定値より、図20(a)に相当するデータを取得する。
 需要家システム100が電力系統と連系しない自立運転状態では、太陽光発電装置1は最大発電可能電力より高い電圧である動作点2で運転する。このとき、測定装置13の制御ブロック24は短時間の間、スイッチS7をOFF、スイッチS6をOFFの状態において、電圧計21で開放電圧を測定する。その後、スイッチS7をOFF、スイッチS6をONの状態において、電流計20を用いて短絡電流を測定する。短絡電流を測定する代わりにスイッチS7をONの状態でスイッチS6を断続的にONとOFFを繰り返して太陽光発電装置1に流れる直流電流を減らし、疑似的に動作点1の状態を作り出して、電圧計21と電流計20を用いて直流電圧と直流電流を測定する方法でも良い。その後、図20に示した方法で最大出力可能電力を計算し、制御装置1に伝達する。
 本実施例によれば,従来の太陽光発電装置1に測定装置13を追加するだけで、最大発電可能電力よりも小さな電力で発電する際に、太陽光パネルの最大発電可能電力を精度よく算出する事が可能となり、最大発電可能電力と発電電力の差である需給ギャップに応じて需要機器の需要調整をすることで、日射量の変化などによる電力供給能力の変化がある場合や、使用者の使用状況によって需要が変化する場合においても、常に、需給が供給を上回らないように需要家システムを制御することができる。
 第10の実施形態における太陽光発電装置を含んだ需要家システムの装置構成は、図18に示した実施例3の構成と同じである。また、太陽光発電装置1の回路図は図9に示した第1実施例によるものと同じである。
 需要家システム100が電力系統と連系しない自立運転状態では、太陽光発電装置1は、図31に示すように動作点1で動作させるが、断続的に短時間最大発電可能電力を探索するために、太陽光パネル2の直流電流、直流電圧を調整する。探索中は出力が大きくなるのでコンデンサ22の電圧が上昇する可能性があるが、例えば10秒に1回10ms程度の短時間であれば殆ど影響を与えることなく探索する事ができる。
 本実施例によれば、最大発電可能電力よりも小さな電力で発電する際に、太陽光パネルの最大発電可能電力を精度よく算出する事が可能となり、最大発電可能電力と発電電力の差である需給ギャップに応じて需要機器の需要調整をすることで、日射量の変化などによる電力供給能力の変化がある場合や、使用者の使用状況によって需要が変化する場合においても、常に、需給が供給を上回らないように需要家システムを制御することができる。
 1…太陽光発電装置、2…太陽光パネル、3…制御装置、4…分電盤、5~7…需要負荷、8…開閉装置、9…蓄電池、10…ルータ、11…表示装置、12…制御画面、13…測定装置、14…ゲートウェイ、20…電流計、21…電圧系、22…コンデンサ、23…制御ブロック、24…制御ブロック、100、102、103…需要家システム、101…発電システム、200…管理サーバ、S1~S7…スイッチ素子

Claims (18)

  1.  太陽光パネルを与えられた環境下での最大発電可能電力よりも小さな電力で発電する手段と、
     データ通信手段を有する太陽光発電装置であって、
     前記最大発電可能電力よりも小さな電力で発電する際に、前記環境における前記太陽光パネルの最大発電可能電力の予測値を、前記データ通信手段を通じて伝達する機能を有することを特徴とする太陽光発電装置。
  2.  前記請求項1に記載の太陽光発電装置において、更に、
     前記太陽光パネルの直流電圧もしくは直流電流を制御する手段と、
     前記直流電圧および前記直流電流を計測する手段を有し、
     少なくとも前記環境において前記太陽光パネルの最大発電可能電力を得られる電圧よりも低い電圧で動作させた際の前記直流電流値と前記直流電圧値を用いて、前記環境における最大発電可能電力を算出する太陽光発電装置。
  3.  前記請求項2に記載の太陽光発電装置において、
     前記太陽光パネルを前記環境における最大発電可能電力よりも低い電力で動作させる際に、前記環境における前記太陽光パネルの最大発電可能電力を得られる電圧よりも低い電圧で動作させることを特徴とする太陽光発電装置。
  4.  前記請求項2に記載の太陽光発電装置において、
     前記太陽光パネルを前記環境における最大発電可能電力で発電するモードと最大発電可能電力よりも低い電力で動作させるモードを持ち、
     最大発電可能電力で発電するモードにおいて、断続的に短時間最大発電可能電力よりも低い電力で動作する太陽光発電装置。
  5.  前記請求項2に記載の太陽光発電装置において、
     前記低い電圧で動作させた際の前記直流電流値と前記直流電圧値に加えて、
     少なくとも、前記最大発電可能電力を得られる電圧よりも高い電圧で動作させた際の前記直流電流値と前記直流電圧値を用いて、前記環境における最大発電可能電力を算出する太陽光発電装置。
  6.  前記請求項5に記載の太陽光発電装置において、
     前記太陽光パネルを前記環境における最大発電可能電力よりも低い電力で動作させる際に、前記環境における前記太陽光パネルの最大発電可能電力を得られる電圧よりも低い電圧で動作させ、断続的に短時間、最大発電可能電力を得られる電圧よりも高い電圧で動作させることを特徴とする太陽光発電装置。
  7.  前記請求項2又は請求項5に記載の太陽光発電装置において、
     前記太陽光パネルを前記環境における最大発電可能電力よりも低い電力で動作させる際に、前記環境における前記太陽光パネルの最大発電可能電力を得られる電圧よりも高い電圧で動作させ、断続的に短時間、最大発電可能電力を得られる電圧よりも低い電圧で動作させることを特徴とする太陽光発電装置。
  8.  前記請求項6又は請求項7に記載の太陽光発電装置において、
     前記低い電圧と前記高い電圧を一方から一方へ切替えた直後に,切替直後の発電電力が切替直前の発電電力より高い場合には、一時的に切替直後の発電電力よりも低い電力で発電し、切替直後の発電電力が切替直前の発電電力より低い場合には、一時的に切替直後の発電電力よりも高い電力で発電する事を特徴とする太陽光発電装置。
  9.  前記請求項1に記載の太陽光発電装置において、更に、
     前記太陽光パネルの直流電圧もしくは直流電流を制御する手段と、
     前記直流電圧および前記直流電流を計測する手段を有し、
     前記太陽光パネルを前記環境における最大発電可能電力よりも低い電力で動作させる際に、断続的に短時間,前記直流電流と直流電圧を変化させ、前記太陽光パネルの最大発電可能電力を得られる電圧を探索することを特徴とする太陽光発電装置。
  10.  前記請求項1に記載の太陽光発電装置と、
     画面表示手段を有する電力管理システムであって、
     前記太陽光発電装置から得られた前記最大発電可能電力もしくは前記最大発電可能電力を元に加工した数値を画面に表示することを特徴とする電力管理システム。
  11.  前記請求項1に記載の太陽光発電装置と、
     前記太陽光発電装置と接続された複数の電力負荷の使用電力の合計を測定する手段と、
     前記電力負荷の動作状態を変化させる制御装置を有する電力管理システムであって、
     前記太陽光発電装置から得られた前記最大発電可能電力もしくは前記最大発電可能電力と現在使用している前記使用電力の合計との差分を元に、電力負荷の動作状態を変化させることを特徴とする電力管理システム。
  12.  請求項11記載の電力管理システムにおいて、更に、
     同時に制御される複数の電力負荷毎に優先順位を設定する手段、もしくは,前記電力負荷毎の動作状態別の個別電力を記憶する手段を備え、
     前記最大発電可能電力と現在使用している前記使用電力の合計との差分が小さくなった場合に、前記優先順位もしくは前記個別電力もしくはその両方を元に電力負荷の動作状態を変化させて前記使用電力の合計を低減することを特徴とする電力管理システム。
  13.  前記請求項11記載の電力管理システムにおいて、更に、
     同時に制御される複数の電力負荷毎の動作状態別の個別電力を記憶する手段を備え、
     任意の電力負荷の動作状態を変化させたい場合に、選択した電力負荷の動作状態変化前後の使用電力予測値の差分と、前記最大発電可能電力と現在使用している前記使用電力の合計との差分とを比較して、事前に前記動作状態の変化の可否を選別することを特徴とする電力管理システム。
  14.  前記請求項1に記載の太陽光発電装置と、
     前記太陽光発電装置と接続された複数の電力負荷の使用電力の合計を測定する手段と、
     前記電力負荷の動作状態を変化させる制御装置とを有する電力管理システムであって、
     前記太陽光発電装置から得られた前記最大発電可能電力と現在使用している前記使用電力の合計との差分を前記電力負荷に通知することを特徴とする電力管理システム。
  15.  前記請求項14に記載の電力管理システムに用いられる電力負荷であって、
     前記電力管理システムから送られてくる前記差分を元に自己の動作状態を選択することを特徴とする電力負荷。
  16.  前記請求項1に記載の太陽光発電装置と、
     複数の前記太陽光発電装置を管理する管理サーバへの外部通信手段を有する電力管理システムであって、
     前記太陽光発電装置から得られた前記最大発電可能電力もしくは前記最大発電可能電力を元に加工した数値を、前記外部通信手段を通じて前記管理サーバに伝達することを特徴とする電力管理システム。 
  17.  前記請求項14に記載の電力管理システムにおいて、
     前記管理サーバからの指示に応じて、前記太陽光発電装置の発電量を増減することを特徴とする電力管理システム。
  18.  太陽光パネルを与えられた環境下での最大発電可能電力よりも小さな電力で発電する手段を有する太陽光発電装置の前記環境における前記最大発電可能電力を計測する計測装置であって、
     前記太陽光パネルの直流電流と直流電圧を計測する手段と、
     太陽光パネルからのプラスとマイナスの直流出力を導通させるスイッチを有し、
     前記太陽光発電装置が最大発電可能電力よりも小さな電力で発電する際に、前記スイッチを導通させた際の前記直流電流値と前記直流電圧値を用いて、前記環境における最大発電可能電力を算出することを特徴とする計測装置。
PCT/JP2013/076991 2012-10-09 2013-10-03 太陽光発電装置および電力管理システム、並びに、そのための電力負荷と計測装置 WO2014057867A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-223900 2012-10-09
JP2012223900A JP6081125B2 (ja) 2012-10-09 2012-10-09 太陽光発電装置および電力管理システム、並びに、そのための電力負荷と計測装置

Publications (1)

Publication Number Publication Date
WO2014057867A1 true WO2014057867A1 (ja) 2014-04-17

Family

ID=50477334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076991 WO2014057867A1 (ja) 2012-10-09 2013-10-03 太陽光発電装置および電力管理システム、並びに、そのための電力負荷と計測装置

Country Status (2)

Country Link
JP (1) JP6081125B2 (ja)
WO (1) WO2014057867A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208131A (ja) * 2014-04-21 2015-11-19 三菱電機株式会社 系統連系インバータおよび発電電力推定方法
EP3306780A4 (en) * 2015-06-08 2018-11-07 Kyocera Corporation Power conversion device, power management device, and power management method
EP3306771A4 (en) * 2015-06-08 2018-11-07 Kyocera Corporation Electric power conversion device, electric power management device, and electric power management method
WO2020203993A1 (ja) * 2019-04-03 2020-10-08 株式会社Ihi 電力管理システム
JP2020171132A (ja) * 2019-04-03 2020-10-15 株式会社Ihi 電力管理システム
JP2020171131A (ja) * 2019-04-03 2020-10-15 株式会社Ihi 電力管理システム
JP2020171129A (ja) * 2019-04-03 2020-10-15 株式会社Ihi 電力管理システム
JP2020171130A (ja) * 2019-04-03 2020-10-15 株式会社Ihi 電力管理システム
WO2023218378A1 (en) 2022-05-11 2023-11-16 Daiichi Sankyo Company, Limited Combination of an antibody specific for a tumor antigen and a cd47 inhibitor
US11837870B2 (en) 2020-08-24 2023-12-05 Ihi Corporation Power management system, power management method, and power management program

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6333668B2 (ja) * 2014-08-26 2018-05-30 株式会社日立製作所 電力自立システム
JP6479425B2 (ja) * 2014-11-07 2019-03-06 ユーケーシー エレクトロニクス(ホンコン)カンパニー., リミテッド 最大電力点追跡装置及び太陽電池モジュールの評価方法
JP6920191B2 (ja) * 2017-12-28 2021-08-18 株式会社日立製作所 太陽電池診断装置、太陽電池診断方法及び太陽光発電システム
JP6958456B2 (ja) * 2018-03-29 2021-11-02 住友電気工業株式会社 電力変換装置及び最大電力点追従制御方法
JP7006499B2 (ja) * 2018-05-15 2022-01-24 住友電気工業株式会社 電力変換装置及びその制御方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287382A (ja) * 1999-03-30 2000-10-13 Matsushita Electric Works Ltd 蓄電池充放電装置
JP2003244848A (ja) * 2002-02-14 2003-08-29 Yanmar Co Ltd 電源切替機器及び分散電源用発電システム
JP2005033952A (ja) * 2003-07-09 2005-02-03 Nec Corp 電力需給管理システム、電力需給管理方法及び電力需給管理プログラム
JP2008061308A (ja) * 2006-08-29 2008-03-13 Sharp Corp 給電システムおよび給電システムの制御方法
JP2008125295A (ja) * 2006-11-14 2008-05-29 Central Res Inst Of Electric Power Ind 需要家における負荷選択遮断方法及び需要家における負荷選択遮断装置
JP2009189226A (ja) * 2008-01-11 2009-08-20 Panasonic Corp 分散型発電システム、及びその制御方法
JP2011082277A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd 給電管理装置
JP2011172457A (ja) * 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The 発電出力制御装置、統括電力制御装置、発電出力制御方法及び統括電力制御方法
JP2012080736A (ja) * 2010-10-06 2012-04-19 Sadao Iguchi 分散直流電源制御回路
WO2012105197A1 (ja) * 2011-01-31 2012-08-09 株式会社日立製作所 太陽電池の特性演算方法及び太陽光発電システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002108988A (ja) * 2000-09-28 2002-04-12 Sanyo Electric Co Ltd 太陽光発電システム
JP2003018763A (ja) * 2001-06-27 2003-01-17 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電における発電量予測方法
JP2009213240A (ja) * 2008-03-04 2009-09-17 Tokyo Electric Power Co Inc:The 電力系統の周波数制御システム、給電所、および電気機器
EP2518517A4 (en) * 2009-12-25 2014-11-26 Panasonic Corp ELECTRIC HOUSEHOLD DEVICE
JP2013529051A (ja) * 2010-05-07 2013-07-11 アドバンスド エナージィ インダストリーズ,インコーポレイテッド 太陽光発電予測システム並びに方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287382A (ja) * 1999-03-30 2000-10-13 Matsushita Electric Works Ltd 蓄電池充放電装置
JP2003244848A (ja) * 2002-02-14 2003-08-29 Yanmar Co Ltd 電源切替機器及び分散電源用発電システム
JP2005033952A (ja) * 2003-07-09 2005-02-03 Nec Corp 電力需給管理システム、電力需給管理方法及び電力需給管理プログラム
JP2008061308A (ja) * 2006-08-29 2008-03-13 Sharp Corp 給電システムおよび給電システムの制御方法
JP2008125295A (ja) * 2006-11-14 2008-05-29 Central Res Inst Of Electric Power Ind 需要家における負荷選択遮断方法及び需要家における負荷選択遮断装置
JP2009189226A (ja) * 2008-01-11 2009-08-20 Panasonic Corp 分散型発電システム、及びその制御方法
JP2011082277A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd 給電管理装置
JP2011172457A (ja) * 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The 発電出力制御装置、統括電力制御装置、発電出力制御方法及び統括電力制御方法
JP2012080736A (ja) * 2010-10-06 2012-04-19 Sadao Iguchi 分散直流電源制御回路
WO2012105197A1 (ja) * 2011-01-31 2012-08-09 株式会社日立製作所 太陽電池の特性演算方法及び太陽光発電システム

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208131A (ja) * 2014-04-21 2015-11-19 三菱電機株式会社 系統連系インバータおよび発電電力推定方法
EP3306780A4 (en) * 2015-06-08 2018-11-07 Kyocera Corporation Power conversion device, power management device, and power management method
EP3306771A4 (en) * 2015-06-08 2018-11-07 Kyocera Corporation Electric power conversion device, electric power management device, and electric power management method
US10381832B2 (en) 2015-06-08 2019-08-13 Kyocera Corporation Power conversion apparatus, power management apparatus, and power management method
JP2020171131A (ja) * 2019-04-03 2020-10-15 株式会社Ihi 電力管理システム
JP2020171132A (ja) * 2019-04-03 2020-10-15 株式会社Ihi 電力管理システム
WO2020203993A1 (ja) * 2019-04-03 2020-10-08 株式会社Ihi 電力管理システム
JP2020171129A (ja) * 2019-04-03 2020-10-15 株式会社Ihi 電力管理システム
JP2020171130A (ja) * 2019-04-03 2020-10-15 株式会社Ihi 電力管理システム
JP7044090B2 (ja) 2019-04-03 2022-03-30 株式会社Ihi 電力管理システム
JP7044091B2 (ja) 2019-04-03 2022-03-30 株式会社Ihi 電力管理システム
US20220209539A1 (en) * 2019-04-03 2022-06-30 Ihi Corporation Power management system
US11837870B2 (en) 2020-08-24 2023-12-05 Ihi Corporation Power management system, power management method, and power management program
WO2023218378A1 (en) 2022-05-11 2023-11-16 Daiichi Sankyo Company, Limited Combination of an antibody specific for a tumor antigen and a cd47 inhibitor

Also Published As

Publication number Publication date
JP2014078055A (ja) 2014-05-01
JP6081125B2 (ja) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6081125B2 (ja) 太陽光発電装置および電力管理システム、並びに、そのための電力負荷と計測装置
JP5933857B1 (ja) 電圧制御装置および電圧計測装置
JP6025197B2 (ja) 電力制御システム及び方法
JP5973612B2 (ja) 電力管理システム及び電力管理方法
JP5766364B1 (ja) 電圧監視制御装置および電圧制御装置
JP2007306744A (ja) 配電系統電圧調節システム
US9638545B2 (en) Power management apparatus, power management system and power management method
JP2015019538A (ja) 系統用蓄電装置
EP2849302B1 (en) Energy management device, energy management method and program
CN114846716A (zh) 控制能量存储器的能量模块的接通时间
JP6478588B2 (ja) 電圧制御装置および電圧計測装置
JP5951747B2 (ja) 電力系統制御装置
JP6607134B2 (ja) Dc/dcコンバータ及び太陽発電システム
JP6075348B2 (ja) 電圧調整装置
US9851734B2 (en) Alert presentation apparatus and alert presentation method
RU2642510C1 (ru) Способ адаптивной регулировки нагрузки в системе электроснабжения центра обработки данных
KR101522859B1 (ko) 건물의 목표전력 관리기능을 갖는 에너지관리시스템 및 그 제어방법
JP6278813B2 (ja) 発電システムの出力制御方法、パワーコンディショナおよび発電システム
GB2569910A (en) System for frequency regulation on a power distribution network
JP2017050951A (ja) 電源装置
JP7368814B1 (ja) 電気機器および電気機器を備える電力システム
JP7005444B2 (ja) サーバ装置、制御システム、及び制御方法
Shang et al. A new control scheme for a distributed generator providing network voltage support
WO2023058533A1 (ja) 空気調和装置および制御システム
Gao et al. An autonomic voltage coordination control in ADN based on MPC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845349

Country of ref document: EP

Kind code of ref document: A1