WO2014056429A1 - 吸湿性聚酯纤维及其制备方法 - Google Patents

吸湿性聚酯纤维及其制备方法 Download PDF

Info

Publication number
WO2014056429A1
WO2014056429A1 PCT/CN2013/084901 CN2013084901W WO2014056429A1 WO 2014056429 A1 WO2014056429 A1 WO 2014056429A1 CN 2013084901 W CN2013084901 W CN 2013084901W WO 2014056429 A1 WO2014056429 A1 WO 2014056429A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester fiber
polyester
poly
hygroscopic
phosphorus
Prior art date
Application number
PCT/CN2013/084901
Other languages
English (en)
French (fr)
Inventor
范志恒
杨娟
望月克彦
Original Assignee
东丽纤维研究所(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽纤维研究所(中国)有限公司 filed Critical 东丽纤维研究所(中国)有限公司
Priority to JP2015534903A priority Critical patent/JP6296059B2/ja
Priority to CN201380045855.XA priority patent/CN104619897B/zh
Publication of WO2014056429A1 publication Critical patent/WO2014056429A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters

Definitions

  • the present invention relates to a hygroscopic polyester fiber and a process for the preparation thereof. Specifically, by adding a moisture absorbing component and a phosphorus-based heat stabilizer to the polyester, a hygroscopic polyester fiber which can be applied to a material for clothing such as underwear and sportswear is obtained. Background technique
  • Polyester fiber is a typical thermoplastic synthetic fiber. Since its birth, it has been widely used in clothing and industry due to its excellent mechanical strength, drug resistance and heat resistance.
  • the polyester fiber has extremely low moisture absorption and desorption, and does not discharge sweat in time. When it is in direct contact with the skin or close to the skin, it has a sticky feeling, thus limiting the development of the polyester fiber in the use of underwear materials.
  • the method for improving the hygroscopicity of the polyester fiber is, for example, copolymerization of a moisture absorbing component into a polyester or addition of a hygroscopic compound.
  • a method of copolymerizing with a diol having a hydroxyalkylene glycol in a side chain or a copolymerization with a dicarboxylic acid containing a metal sulfonate in a polyester reaction is a problem of low strength and weather resistance.
  • the hygroscopic compound may be chemically attached to the polyester fiber.
  • the polyester fiber in the fabric is grafted with acrylic acid or methacrylic acid, and the carboxyl group therein is replaced with an alkali metal, thereby improving the hygroscopicity of the polyester fiber.
  • the hygroscopic compound adheres to the surface of the fiber, there are problems such as a decrease in strength, a poor hand feeling, and poor light resistance during use.
  • Japanese Laid-Open Patent Publication No. Hei 2-99612 discloses a core-sheath type composite fiber in which a moisture-absorbing resin having a moisture absorption rate of 10% or more is used as a core portion and a general polyester is used as a sheath portion.
  • a moisture-absorbing resin having a moisture absorption rate of 10% or more is used as a core portion
  • a general polyester is used as a sheath portion.
  • the object of the present invention is to provide a hygroscopic polyester fiber and a preparation method thereof, which are provided by adding a hygroscopic substance poly N-vinyl lactam to a polyester to slightly disperse it in the polyester, thereby improving the polyester fiber. Hygroscopicity. Further, in order to obtain a fiber excellent in color tone and excellent in light fastness, a phosphorus-based heat stabilizer is added to the fiber.
  • a hygroscopic polyester fiber comprising a polyester, a poly N-vinyl lactam hygroscopic component and a phosphorus-based heat stabilizer, wherein the poly N-vinyl lactam comprises 3 to 15 wt% of the weight of the polyester fiber %, the dispersion diameter is 200 nm or less; and the content of the phosphorus-based heat stabilizer is 50 to 500 ppm by weight of the polyester fiber.
  • the content of the poly N-vinyllactam is from 3 to 15% by weight based on the weight of the polyester fiber.
  • the content of the poly N-vinyl lactam in the polyester fiber is less than 3% by weight, the fiber does not have sufficient hygroscopicity, and the practical applicability is poor; when the content of the poly N-vinyl lactam in the polyester fiber exceeds 15% by weight, The fibers are sticky, uncomfortable to contact, and the fiber properties are degraded.
  • the content of the poly N-vinyl lactam is preferably 5 to 12% by weight.
  • the average dispersion diameter of the poly N-vinyl lactam in the polyester fiber of the present invention is preferably 200 nm or less, preferably 150 nm or less.
  • the poly N-vinyllactam having an average dispersion diameter of 200 nm or less can be well complexed with the polyester fiber, thereby suppressing the elution of the poly N-vinyllactam, preventing the hygroscopicity of the polyester fiber from decreasing, and improving the polyester.
  • the moisture absorption durability of the fiber is preferably 200 nm or less, preferably 150 nm or less.
  • the poly N-vinyl lactam described in the present invention may be, for example, an N-vinyl lactam such as N-vinyl-2-pyrrolidone, N-vinyl-2-piperidone or N-vinylcaprolactam. a class of polymers.
  • N-vinyl lactam a polymer of N-vinyl-2-pyrrolidone is preferably used as the poly N-vinyl lactam. , namely polyvinylpyrrolidone (PVP).
  • polyvinylpyrrolidone having a K value of 15 to 90 is preferably used. More preferably, polyvinylpyrrolidone having a K value of 20 to 70 is used. If the K value of the polyvinylpyrrolidone is too low, the complexing ability of the polyvinylpyrrolidone with the polyester is not strong, and it is easily eluted during the water-cooling process after extrusion, so that the fiber does not have good hygroscopicity. On the other hand, if the K value is too high, the viscosity of the polyester system is greatly increased, the mixing and discharging are poor, and it is difficult to granulate, resulting in low production efficiency.
  • the polyester fiber described in the present invention further contains 50% of the weight of the polyester fiber based on the P element. 500 ppm of phosphorus-based heat stabilizer.
  • a phosphorus-based heat stabilizer by adding a phosphorus-based heat stabilizer, it is possible to suppress thermal degradation and hydrolysis of the polyester when blended with the moisture-absorbing component, to improve the color tone of the obtained polyester fiber, and to improve the light fastness thereof.
  • the phosphorus-based heat stabilizer may be a phosphoric acid, a phosphorous acid, a phosphonic acid, a phosphate or the like. Specific examples thereof include phosphoric acid, trimethyl phosphate, triethyl phosphate, trisphenol aldehyde, phosphorous acid, trimethyl phosphite, methyl phosphoric acid, phenolic acid phosphate, diphenylphosphoric acid, methyl methyl phosphate, and phenolic acid phosphate.
  • Ethyl ester phenolic diphenyl phosphate, ethyl ethoxylate, distearyl pentaerythritol diphosphate, bis(2,4,6-tri-tert-butylphenyl) pentaerythritol diphosphate, resorcinol [Bis(pentaerythritol)] phosphate, bis(2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate or bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphate .
  • Ri and R 2 are each independently an aromatic hydrocarbon group which may have a substituent.
  • the aromatic hydrocarbon group is preferably a C6-C10 aromatic hydrocarbon group, and the substituent may be, for example, a C1 to C6 hydrocarbon group, an amino group, a hydroxyl group, and a sulfo group.
  • the R n may be, for example, a phenyl group, a phenyl group having a fluorenyl substituent having 1 to 5 carbon atoms in the meta position, a p-nonylphenyl group, an aromatic hydrocarbon group which may be substituted by an amino group or an aromatic group which may be substituted by a sulfo group. Hydrocarbyl group and the like.
  • Ri and the ground are preferably one of the groups of the following formulas 2 to 4:
  • the diphosphate-based compound represented by the above formula 1 When the diphosphate-based compound represented by the above formula 1 is used as a stabilizer, it is preferable because it has a better effect of improving the color tone of the polyester fiber.
  • the diphosphate When the diphosphate is used as a stabilizer, it is particularly preferable because it has an excellent effect of improving the color tone of the polyester fiber.
  • the polyester to be used in the present invention is not particularly limited, and may be, for example, an aliphatic polyester or an aromatic polyester. Usually, it mainly consists of a dibasic acid repeating unit and a glycol repeating unit.
  • the diol repeating unit may specifically be an aliphatic diol or an aromatic diol such as ethylene glycol, propylene glycol, butylene glycol and isomers thereof, pentanediol and isomers thereof, and C6 to C20 straight Chain or branched aliphatic diol and isomer thereof, bisphenol A and epoxy oxime addition product, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, cyclobutanediol, cyclopentanediol, ring One or more of hexanediol, benzenedimethanol, naphthalene dimethanol, and the like.
  • an aromatic diol such as ethylene glycol, propylene glycol, butylene glycol and isomers thereof, pentanediol and isomers thereof, and C6 to C20 straight Chain or branched aliphatic diol and isomer thereof, bisphenol A and epoxy oxime
  • the dibasic acid repeating unit may specifically be malonic acid, succinic acid, glutaric acid, adipic acid, C7 ⁇ C20 alicyclic diacids and isomers thereof, terephthalic acid and esterified derivatives thereof, A C8-C18 aromatic dibasic acid such as isophthalic acid and its esterified derivative, other dibasic acid containing a benzene ring, naphthalene diacid or a derivative thereof.
  • the polyester used in the present invention a polyester having a melting point of 200 ° C to 240 ° C is preferable, that is, the melting point Tm of the polyester is 200 ° C or more and 240 ° C or less.
  • the poly N-vinyl lactam has poor heat resistance at high temperatures, and the color tone of the fibers obtained after blending with the polyester tends to yellow. Therefore, in order to obtain a polyester fiber having good hygroscopicity and excellent color tone, the processing needs to be controlled as much as possible at a lower temperature. Therefore, the use of low melting point polyester can achieve this effect.
  • the polyester having a melting point of 200 ° C to 240 ° C is preferably a polyethylene terephthalate polyester, a polyethylene terephthalate polyester or a polybutylene terephthalate polyester.
  • polyethylene terephthalate polyester More preferably, polyethylene terephthalate polyester, polytrimethylene terephthalate polyester, polybutylene terephthalate polyester which further contains a glycol copolymerization unit and/or a dibasic acid copolymerization unit ester.
  • the copolymerized glycol repeating unit may be an aliphatic diol or an aromatic diol, preferably one or more of propylene glycol, butylene glycol, bisphenol A and epoxy oxime addition.
  • the copolymerized dibasic acid repeating unit may be an aliphatic dibasic acid, an aromatic dibasic acid or a derivative thereof.
  • the derivative may be a methyl ester, an ethyl ester or a propyl ester of the above dibasic acid, and preferably a methyl ester of a dibasic acid.
  • the aliphatic dibasic acid is preferably a saturated aliphatic dibasic acid having 3 to 20 carbon atoms, and most preferably one or more of malonic acid, succinic acid, glutaric acid, adipic acid, and sebacic acid;
  • the aromatic dibasic acid is preferably isophthalic acid or naphthalene dicarboxylic acid.
  • the copolymeric dibasic acid repeating unit of the present invention is most preferably an isophthalic acid or isophthalic acid sulfonate unit.
  • polyethylene terephthalate polyester polytrimethylene terephthalate polyester, polybutylene terephthalate polyester, which further contains a sulfonate copolymerization unit and/or a polyether copolymer repeating unit ester.
  • the copolymerized sulfonate component may be sodium 5-sulfonate isophthalate, lithium 5-sulfonate isophthalate, calcium 5-sulfonate isophthalate, ethylene isophthalate 5-sulfonic acid Sodium, ethylene isophthalate 5-lithium sulfonate, ethylene isophthalate 5-sulfonate, dimethyl isophthalate 5-sulfonate, dimethyl isophthalate One or more of lithium 5-sulfonate, dimethyl isophthalate 5-calcium sulfonate.
  • the copolymerized polyether component may be one or more of polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • the polyethylene terephthalate polyester, the polytrimethylene terephthalate polyester, and the polybutylene terephthalate polyester may further contain benzene without affecting the effects of the present invention.
  • a polyfunctional copolymeric repeating unit such as tricarboxylic acid, pyromellitic acid, glycerol, pentaerythritol or the like.
  • the polyester can be produced by a polymerization method generally used in the industry, i.e., first by esterification or transesterification to obtain a low molecular weight polyester compound, and then further subjected to a polycondensation reaction under high temperature and high vacuum to obtain a polymer.
  • the catalyst may be added at the esterification or transesterification stage, and the catalyst is a compound containing a metal element such as sodium, lithium, magnesium, calcium, manganese, titanium, zinc, cobalt or tin, preferably an acetate containing these metal elements, most A titanate compound is preferred.
  • the present invention also relates to a method for preparing the above polyester fiber, in which a polyester and a poly N-vinyl lactam are blended on a two-axis extruder having an aspect ratio L/D of 45 or more.
  • the poly-vinyl lactam is added in an amount of 3 to 15% by weight based on the weight of the polyester fiber; the obtained blend is melt-spun to obtain a nascent fiber, and the nascent fiber is further drawn to obtain a polyester fiber;
  • a phosphorus-based heat stabilizer containing 50 ppm to 500 ppm by weight of the polyester fiber in terms of phosphorus element is added in the mixing stage or the melt spinning stage.
  • the invention adopts a two-axis extruder with L/D of 45 or more, and can improve the dispersibility of the poly N-vinyl lactam in the polyester, and the dispersion diameter thereof is less than 200 nm, thereby further improving the blend. Spinning. If the L/D is less than 45, the dispersion diameter of the poly N-vinyllactam increases, and in the subsequent spinning process, problems such as frequent yarn breakage and poor fiber properties may occur.
  • the kneading and spinning temperature must be set above this temperature, so that the poly N-vinyl lactam has a very high Good liquidity. Therefore, in the present invention, it is preferred to use a polyester having a melting point of 200 ° C to 240 ° C, which can be blended with a poly N-vinyl lactam at a relatively low temperature to control the temperature of the molten portion at the time of kneading.
  • the melting point temperature of the polyester is in the range of 10 to 20 ° C, and the temperature of the kneading section is 180 to 230 ° C.
  • poly-N-vinyl lactam is easy to absorb water and stick in air, so a water-cooling device can be added to the feed port of the blending extruder to control the temperature of the feed port below 80 ° C, so that the feeding is smooth. get on.
  • polyvinylpyrrolidone having a K value of from 15 to 90 Preference is given in the invention to polyvinylpyrrolidone having a K value of from 15 to 90.
  • Polyethylene with a K value in this range Pyrrolidone is more easily blended with polyester, has a stronger complexing ability with polyester, and is not easily eluted during water cooling after blending and extrusion, and can obtain a polyester fiber having good hygroscopicity;
  • the viscosity of the polyester system obtained by blending polyvinylpyrrolidone in this range is stable, and there is no problem that the kneading discharge is poor, the granulation is difficult, and the production efficiency is low.
  • the polyvinylpyrrolidone has a K value of 20 to 70.
  • the phosphorus-based heat stabilizer may be added during blending or may be added during melt spinning, and the amount thereof is 50 ppm to 500 ppm which is equivalent to the weight of the polyester fiber based on the P element.
  • a phosphorus-based heat stabilizer is added during the blending stage.
  • the heat stabilizer is added in the blending stage, and the heat stabilizer is uniformly dispersed by the shearing action in the blending, and the heat stabilizing effect on the matrix can be maximized. At the same time, the uniformly dispersed heat stabilizer does not affect the subsequent melt spinning.
  • melt spinning is preferably carried out at a relatively low temperature, and specifically, the spinning temperature is preferably from 220 ° C to 270 ° C, more preferably from 235 ° C to 260 ° C.
  • Spinning at a lower temperature condition can reduce the thermal decomposition of each of the blend components, thereby obtaining fibers having excellent color tone.
  • the hygroscopic polyester fiber has a hygroscopicity parameter AMR of 1.0% or more, a hue b value of 5.0 or less, and a light fastness of 3 or more.
  • the fiber has a tensile strength of 15.0 or more and has mechanical properties for general clothing use.
  • the obtained polyester fiber was evaluated by the following method.
  • the swell without swell is marked as ⁇
  • the swell with slight swell is recorded as ⁇
  • the swell with severe swell is recorded as X, where ⁇ is judged to be acceptable.
  • the spinning condition within 2 hours of spinning was evaluated by the following method. No broken yarn was recorded as ⁇ , a small amount of broken yarn (1 to 3 times) was recorded as ⁇ , and broken yarn was frequently (4 times or more) as X, where ⁇ and judged to be qualified.
  • the fibers were cut perpendicularly to the longitudinal direction, and the cross section of the monofilament was taken for enamel staining, and the blending state was observed by a transmission electron microscope (100,000 times).
  • the fiber exhibits a sea-island structure in which a continuous matrix component (white portion) is a sea component and an approximately circularly dispersed component (grey component) is an island component.
  • the island component is regarded as a circle, and the diameter is converted from the island component area.
  • the diameter was defined as the dispersion diameter of the polyvinylpyrrolidone constituting the island component, and the average value of the 20 island components was defined as the average dispersion diameter.
  • the poly N-vinyl lactam is formulated into an aqueous solution having a mass concentration of 1%, the relative viscosity is measured, and the K value is calculated by using a fikentscher.
  • ⁇ value X10 3
  • C aqueous solution concentration (W/V%)
  • Z relative viscosity of the aqueous solution of concentration c.
  • the strength is the stress/denier (cN/dtex) of the maximum breaking point at the fiber stress-strain stretching, and the elongation is the strain (%) at the maximum breaking point of the fiber.
  • the oil was removed from the fibers, and about lg of the sample was placed in a weighing bottle having a glass weight of W, placed in a dryer, and dried at 110 ° C for 2 hours.
  • the weighing bottle was sealed and placed in a desiccator for 30 minutes.
  • the weighing bottle Wi of the sample was measured.
  • it was placed in a thermostatted humidifier set at 20 ° C and 65% RH in an open state, and left for 24 hours. Subsequently, it was placed in a desiccator for 30 minutes in a sealed state. Then, the weighing bottle weight W 2 was measured again.
  • a constant temperature and humidity machine set at 30 ° C, 90% RH, place for 24 hours, and then place in the desiccator for 30 minutes in the sealed state, then measure the weight of the weighing bottle W 3 ,
  • the characteristic peak position and intensity of the hygroscopic substance were measured based on the hydrogen spectrum of the nuclear magnetic resonance, and the content of the hygroscopic substance was derived from the chemical formula.
  • Dimethyl terephthalate, dimethyl isophthalate-sodium 5-sulfonate (SIPM), ethylene glycol, adipic acid and tetrabutyl titanate as catalyst are added to the esterification kettle, wherein The amount of SIPM added is equivalent to 2.6 mol% of the amount of dimethyl terephthalate added, and the amount of adipic acid added is equivalent to 5.4 mol% of the amount of dimethyl terephthalate added, and the amount of tetrabutyl titanate added.
  • SIPM dimethyl isophthalate-sodium 5-sulfonate
  • ethylene glycol ethylene glycol
  • adipic acid and tetrabutyl titanate as catalyst
  • the molar ratio of the total acid component and the glycol component (ethylene glycol) composed of dimethyl terephthalate, SIPM and adipic acid is 1:1.8, which is equivalent to 10.5 ppm of the copolyester.
  • manganese acetate equivalent to 200 ppm of the copolyester is added at the same time; the reaction is carried out at 230 ° C under normal pressure for 4 hours, and after the methanol distillation fraction reaches 95% or more, a small molecule is obtained.
  • the prepolymer was maintained at 230 ° C under normal pressure, and a phosphorus-based stabilizer phosphoric acid equivalent to 50 ppm of the copolyester was added to the prepolymer.
  • Polyvinylpyrrolidone (PVP, product of BASF Corporation) having a K value of 30, pentaerythritol diphosphate of bis(2,6-di-tert-butyl-4-methylphenyl) and a melting point of 230 obtained by the above method
  • the polyester of °C was blended and extruded on a two-axis extruder ( ⁇ 44 ⁇ , L/D: 52).
  • the amount of PVP added was 3 wt% of the polyester fiber
  • the amount of the diphosphate added was 150 ppm of the polyester fiber.
  • the temperature of the extruder was set to 245 ° C in the molten portion and 200 ° C in the kneading section.
  • the extrusion is in good condition.
  • the average dispersion diameter of PVP in the obtained blend was 80 nm.
  • the obtained blend was melt-spun, the spinning temperature was 255 V, the spinning speed was 2,500 m/min, the nascent fiber was obtained, and the virgin fiber was subjected to a 2.2-fold extension process to obtain a polyester fiber.
  • the polyester fiber was evaluated for each of the above parameters and properties. The results are shown in Table 1.
  • Example 1 The results in Table 1 show that in Examples 1 to 4, the obtained polyester fiber has a hygroscopicity parameter A MR of 1.1% or more, a hue b value of 4.8 or less, a strong extensibility product of 19.8 or less, and a light fastness of 3 or less. the above.
  • kneading stability and spinnability were good, and in Example 4, kneading stability and spinnability were practical.
  • Comparative Example 1 the amount of PVP added to the polyester fiber was 1 wt%, and although the kneading and spinning required practical use, the obtained fiber had poor hygroscopicity.
  • Comparative Example 2 The amount of PVP added to the polyester fiber was 20% by weight, and the extrusion swell was severe during kneading, and granulation was difficult.
  • the addition amount of PVP relative to the polyester fiber was changed to 7 wt%, and the addition of bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphate as a P element relative to the polyester fiber was added.
  • the amounts were changed to 50 ppm, 250 ppm, 350 ppm, and 450 ppm, respectively, and the same as in Example 1.
  • the evaluation results are shown in Table 2. Comparative example 3
  • the terephthalic acid, ethylene glycol and the catalyst antimony trioxide were added to the esterification kettle, and the molar ratio of terephthalic acid to ethylene glycol was 1:1.8, and the esterification reaction was carried out at 230 ° C under normal pressure. In hours, a small molecule prepolymer is obtained.
  • the prepolymer was kept at 230 ° C under normal pressure, and a stabilizer phosphorus compound phosphoric acid equivalent to 50 ppm of the copolyester was added, and after 5 minutes, the pressure was reduced and the temperature was raised. The temperature was raised from 250 ° C to 290 ° C in 90 minutes and the pressure was reduced to 80 Pa. After the stirring, nitrogen gas was introduced into the reaction system to return to normal pressure, and the polycondensation reaction was stopped to obtain a polyester having a melting point of 252 °C.
  • the amount of PVP added was 7 wt% with respect to the polyester fiber, and the amount of bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphate added was 150 ppm based on the phosphorus element content.
  • the mixing temperature was 265 ° C and the spinning temperature was 280 ° C.
  • the evaluation results are shown in Table 2.
  • Example 3 show that, in Examples 9 to 1 1 , the average dispersion diameter of the polyvinylpyrrolidone was 180 nm or less in the obtained polyester fiber, and the average dispersion diameter of the polyester fiber of Example 11 was as small as 90 nm. In Comparative Examples 5 and 6, the average dispersion diameter of the polyester fibers was 250 nm or more. It is shown that the use of a biaxial extruder with a specific aspect ratio /D is important for controlling the average dispersion diameter of polyvinylpyrrolidone in polyester fibers.
  • Example 12
  • PVP product of BASF
  • polyester with a melting point of 220 ° C were blended and extruded on a biaxial extruder ( ⁇ 44 ⁇ , L/D: 52), wherein the addition amount of PVP was occupied. 7 wt% of the ester fiber, and the temperature of the extruder was set to 235 ° C in the molten portion and 180 ° C in the kneading portion, and the extrusion state was good.
  • the average dispersion diameter of PVP in the obtained blend was 100 nm.
  • the obtained blend was melt-spun, and bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphate was added during the spinning, and the amount thereof was added to 150 ppm of the polyester fiber based on the phosphorus element.
  • the spinning temperature was 245 ° C
  • the spinning speed was 2000 m / min
  • the nascent fiber was obtained
  • the virgin fiber was subjected to a 2.4-fold extension process to obtain a polyester fiber.
  • the evaluation results of the obtained polyester fiber are shown in Table 4.
  • Example 15 A polyester having a melting point of 230 ° C prepared in Example 1 and a polyester having a melting point of 240 ° C were selected (except for the amount of adipic acid added equivalent to 4.0 mol % of the methyl terephthalate addition).
  • the spinning temperature at the time of melt spinning was changed to 255 ° C and 260 ° C, respectively, and the same as in Example 12.
  • a PVP having a K value of 60 (product of BASF Corporation) and a polyester having a melting point of 230 ° C prepared in the above Example 1 were blended and extruded on a biaxial extruder ( ⁇ 44 wt ⁇ , L/D: 52).
  • the amount of PVP added was 7 wt% of the polyester fiber, and the temperature of the extruder was set to 180 ° C in the kneading section of the melting section 245, and the extrusion state was good.
  • Example 15 The resulting blend was melt spun, and trimethyl phosphate (Example 15), methyl methyl phosphate (Example 16), resorcinol bis(pentaerythritol) phosphate ( Example 17) was added in an amount equivalent to 150 ppm of the polyester fiber based on the phosphorus element.
  • the spinning temperature was 255 ° C, the spinning speed was 3000 m / min, virgin fibers were obtained, and the virgin fibers were processed by a 1.7-fold extension to obtain polyester fibers.
  • the evaluation results of the obtained polyester fiber are shown in Table 4. Comparative Example 7 ⁇ 8
  • Examples 12 to 17 in Table 4 show that in the method for producing a polyester fiber of the present invention, a phosphorus-based heat stabilizer is added in the melt-spinning stage, and a hygroscopic parameter A MR, a hue b value, and the like are also obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种吸湿性聚酯纤维及其制备方法,该聚酯纤维中含有聚N—乙烯基内酰胺吸湿成分和磷系热稳定剂,其中聚N—乙烯基内酰胺占聚酯纤维重量的3〜15wt%,其分散径为200nm以下;磷系热稳定剂的含量以P元素计占聚酯纤维重量的50〜500ppm。聚N—乙烯基内酰胺与聚酯共混时,使用L/D为45以上的二轴挤出机在较低温度下共混,并在较低温度下纺丝,得到聚酯纤维。磷系热稳定剂在共混时或熔融纺丝时加入。最终得到的聚酯纤维具有良好耐久的吸湿性、纤维的色调好,耐光坚牢度优异,可用于内衣或运动衣料。

Description

吸湿性聚酯纤维及其制备方法 技术领域
本发明涉及一种吸湿性聚酯纤维及其制备方法。 具体地说, 通过在聚酯中添 加吸湿成分以及磷系热稳定剂, 得到能应用于内衣、 运动衣等衣料用材料的吸湿 性聚酯纤维。 背景技术
聚酯纤维是典型的热可塑性合成纤维, 自诞生以来, 由于其机械强度、 耐药 品性、 耐热性等优良, 在衣料及产业方面得到广泛的应用。
但是, 聚酯纤维的吸放湿性极低, 不能及时排出汗水, 在直接接触皮肤或贴 近皮肤穿着时, 会有发粘的感觉, 因此限制了聚酯纤维在内衣类衣料用途上的发 展。
改善聚酯纤维吸湿性的方法例如有在聚酯中共聚入吸湿成分或添加具有吸湿 性的化合物。 例如, 在聚酯反应过程中与侧链上具有羟基亚垸基二醇的二醇共聚, 或者与含有磺酸金属盐的二羧酸共聚等方法。 但是, 共聚合得到的吸湿性聚酯纤 维存在强度及耐候性低的问题。
除上述通过赋予纤维原料聚酯以吸湿性、 使纤维具有吸湿性的方法之外, 还 可以通过化学方法使吸湿性化合物附着在聚酯纤维上。 例如在后加工过程中对织 物中的聚酯纤维进行丙烯酸或甲基丙烯酸接枝, 再用碱金属取代其中的羧基, 从 而提高聚酯纤维的吸湿性。 但是由于吸湿性化合物附着在纤维表面上, 在使用过 程中存在强度下降、 手感不良、 耐光性差等问题。
日本特开平 2-99612公开了一种将吸湿率为 10%以上的吸湿性树脂作为芯部、 普通聚酯作为鞘部的芯鞘型复合纤维。 用这种方法得到的纤维在做精炼、 染色等 热处理时, 由于芯部分的吸湿性树脂易吸水而膨胀, 会在纤维表面形成裂纹, 且 由于吸湿性树脂对水的溶解性高而向外流出, 使得吸湿性消失。
日本特願平 8-311326中公开了将聚乙烯吡咯垸酮添加到尼龙中以提高尼龙纤 维吸湿能力的技术。 聚乙烯吡咯垸酮的添加对尼龙纤维的性能不会产生负作用, 但是将聚乙烯吡咯垸酮添加到聚酯中并将其纤维化的技术未见报道过。 发明内容
本发明的目的在于提供一种吸湿性聚酯纤维及其制备方法, 通过在聚酯中添 加吸湿性物质聚 N—乙烯基内酰胺, 使其在聚酯中微分散, 从而提高聚酯纤维的 吸湿性。 并且为了得到色调优良、 耐光坚牢度优异的纤维, 在该纤维中还添加了 磷系热稳定剂。
本发明的技术解决方案是:
一种吸湿性聚酯纤维, 该聚酯纤维中含有聚酯、 聚 N—乙烯基内酰胺吸湿成 分和磷系热稳定剂,其中聚 N—乙烯基内酰胺占聚酯纤维重量的 3〜15wt%,其分 散径为 200nm 以下; 磷系热稳定剂的含量以 P 元素计占聚酯纤维重量的 50〜 500ppm。
在本发明的所述聚酯纤维中, 相对于聚酯纤维的重量, 聚 N—乙烯基内酰胺 的含量为 3〜15wt%。 当聚酯纤维中聚 N—乙烯基内酰胺的含量小于 3wt%时, 纤 维不具有足够的吸湿性, 实际应用性差; 当聚酯纤维中聚 N—乙烯基内酰胺的含 量超过 15wt%时, 纤维有粘感, 接触时很不舒服, 而且纤维物性下降。 为了使聚 酯纤维获得更理想的吸湿特性, 优选聚 N—乙烯基内酰胺的含量为 5〜12wt%。
聚 N—乙烯基内酰胺在本发明的所述聚酯纤维中的平均分散径宜在 200nm以 下, 优选在 150nm以下。 平均分散径在 200nm以下的聚 N—乙烯基内酰胺可以与 聚酯纤维很好地络合, 从而能够抑制聚 N—乙烯基内酰胺的溶出, 防止聚酯纤维 的吸湿性下降, 提高聚酯纤维的吸湿耐久性。
本发明中所述的聚 N—乙烯基内酰胺例如可以是 N—乙烯基一 2—吡咯垸酮、 N—乙烯基一 2—哌啶酮、 N—乙烯基己内酰胺等 N—乙烯基内酰胺类的聚合物。 从具有较小的空间位阻、 容易吸附以及放出水分子的方面考虑, 在本发明中, 作 为所述聚 N—乙烯基内酰胺, 优选使用 N—乙烯基一 2—吡咯垸酮的聚合物, 即聚 乙烯吡咯垸酮 (PVP)。
在本发明中, 优选使用 K值为 15〜90的聚乙烯吡咯垸酮。 更优选使用 K值 为 20〜70的聚乙烯吡咯垸酮。如果聚乙烯吡咯垸酮的 K值过低, 则聚乙烯吡咯垸 酮与聚酯的络合能力不强, 在挤出后的水冷过程中容易溶出, 致使纤维得不到很 好的吸湿性。 而如果其 K值过高, 则聚酯体系的粘度大大增加, 混炼吐出不良, 很难造粒, 导致生产效率低下。
本发明中所述的聚酯纤维中还含有以 P 元素计相当于聚酯纤维重量的 50〜 500ppm的磷系热稳定剂。 在本发明中, 通过添加磷系热稳定剂, 可以抑制聚酯在 与吸湿成分共混时出现热降解以及加水分解, 改善所得聚酯纤维的色调, 提高其 耐光坚牢度。
所述磷系热稳定剂可以是磷酸类、 亚磷酸类、 膦酸类、 磷酸酯类等。 具体可 以列举的有磷酸、 磷酸三甲酯、 磷酸三乙酯、 磷酸三酚醛、 亚磷酸、 亚磷酸三甲 酯、 甲基磷酸、 酚醛磷酸、 二苯基磷酸、 甲基磷酸甲酯、 酚醛磷酸乙酯、 二苯基 磷酸酚醛酯、 磷酰基乙酸乙酯、 二硬脂基季戊四醇二磷酸酯、 双(2, 4, 6—三叔丁 基苯基) 季戊四醇二磷酸酯、 间苯二酚一双 〔二 (季戊四醇)〕 磷酸酯、 双 (2, 6 一二叔丁基一 4一甲基苯基) 季戊四醇二磷酸酯或双 (2, 4一二叔丁基苯基) 季戊 四醇二磷酸酯等。
酸酯系化合物:
Figure imgf000004_0001
式中 Ri、 R2各自独立地为可具有取代基的芳香族烃基。 所述芳香族烃基优选 为 C6〜C10芳香族烃基, 所述取代基可以例如 C1〜C6烃基、 氨基、 羟基和磺基。 所述 R n 例如可以是苯基、 间位具有碳原子数为 1〜5的垸基取代基的苯基、 对垸基苯基、 可被氨基取代的芳香烃基或可被磺基取代的芳香烃基等。 本发明中, Ri、 地优选为如下所示式 2〜式 4的基团中的一种:
Figure imgf000004_0002
上述式 1 所示的二磷酸酯系化合物作为稳定剂使用时, 其对聚酯纤维色调的 改善效果更好, 因而成为优选。 上述式 1所示的二磷酸酯系化合物中的双 (2, 6—二叔丁基一 4一甲基苯基) 季戊四醇二磷酸酯或双(2, 4一二叔丁基苯基)季戊四醇二磷酸酯作为稳定剂使用 时, 其对聚酯纤维色调的改善效果特别好, 因而最优选。
对在本发明中使用的聚酯无特别限定, 例如可以是脂肪族聚酯, 也可以是芳 香族聚酯。 通常, 主要由二元酸重复单元和二元醇重复单元构成。
二元醇重复单元具体地可以是脂肪族二醇或芳香族二元醇, 如乙二醇、 丙二 醇、 丁二醇及其异构体、 戊二醇及其异构体、 C6〜C20 的直链或支链状脂肪族二 醇及其异构体、 双酚 A与环氧乙垸附加产物、 聚乙二醇、 聚丙二醇、 聚丁二醇、 环丁二醇、 环戊二醇、 环己二醇、 苯二甲醇、 萘二甲醇等中的一种或几种。
二元酸重复单元具体可以是丙二酸、 丁二酸、 戊二酸、 己二酸、 C7〜C20 的 脂环族二酸及其异构体、 对苯二甲酸及其酯化衍生物、 间苯二甲酸及其酯化衍生 物、 含苯环的其他二元酸、 萘二酸或其衍生物等 C8〜C18芳香族二元酸。
作为本发明中使用的聚酯, 优选熔点为 200°C〜240°C的聚酯, 即聚酯的熔点 Tm大于等于 200°C小于等于 240°C。 聚 N—乙烯基内酰胺在高温下耐热性较差, 与聚酯共混后所得到的纤维色调容易变黄。 因此, 为了制得吸湿性好且色调优良 的聚酯纤维, 加工需要尽量控制在较低温度下进行。 所以选用低熔点的聚酯可以 达到此效果。
所述熔点为 200°C〜240°C的聚酯优选为聚对苯二甲酸乙二醇系聚酯、 聚对苯 二甲酸丙二醇系聚酯、 聚对苯二甲酸丁二醇系聚酯。
更优选还含有二元醇共聚单元和 /或二元酸共聚单元的聚对苯二甲酸乙二醇系 聚酯、 聚对苯二甲酸丙二醇系聚酯、 聚对苯二甲酸丁二醇系聚酯。
共聚的二元醇重复单元可以是脂肪族二醇或芳香族二元醇, 优选丙二醇、 丁 二醇、 双酚 A与环氧乙垸加成物中的一种或几种。
共聚的二元酸重复单元可以是脂肪族二元酸、芳香族二元酸或它们的衍生物。 衍生物可以是上述二元酸的甲酯、 乙酯、 丙酯等, 优选二元酸的甲酯。 脂肪族二 元酸优选为碳原子数 3〜20 的饱和脂肪族二元酸, 最优选为丙二酸、 丁二酸、 戊 二酸、 己二酸、 壬二酸的一种或几种; 芳香族二元酸优选为间苯二甲酸或萘二甲 酸。本发明的共聚二元酸重复单元最优选为间苯二甲酸或间苯二甲酸磺酸盐单元。
最优选还含有磺酸盐共聚单元和 /或聚醚共聚重复单元的聚对苯二甲酸乙二醇 系聚酯、 聚对苯二甲酸丙二醇系聚酯、 聚对苯二甲酸丁二醇系聚酯。 共聚的磺酸盐成分可以是间苯二甲酸 5—磺酸钠、 间苯二甲酸 5—磺酸锂、 间 苯二甲酸 5—磺酸钙、 间苯二甲酸乙二醇酯 5—磺酸钠、 间苯二甲酸乙二醇酯 5— 磺酸锂、 间苯二甲酸乙二醇酯 5—磺酸钙、 间苯二甲酸二甲酯 5—磺酸钠、 间苯二 甲酸二甲酯 5—磺酸锂、 间苯二甲酸二甲酯 5—磺酸钙中的一种或几种。
共聚的聚醚成分可以是聚乙二醇、 聚丙二醇、 聚丁二醇中的一种或几种。 在不影响本发明效果的情况下, 所述聚对苯二甲酸乙二醇系聚酯、 聚对苯二 甲酸丙二醇系聚酯、 聚对苯二甲酸丁二醇系聚酯中还可以包含苯三甲酸、 苯四甲 酸、 丙三醇、 季戊四醇等多官能的共聚重复单元。
所述聚酯可以用工业上通常使用的聚合方法进行生产, 即首先进行酯化或酯 交换反应, 得到低分子量的聚酯化合物后, 然后进一步在高温高真空下进行缩聚 反应, 得到聚合物。 可以在酯化或酯交换阶段添加催化剂, 所述催化剂为含有钠、 锂、 镁、 钙、 锰、 钛、 锌、 钴或锡等金属元素的化合物, 优选含这些金属元素的 醋酸盐, 最优选钛酸酯类化合物。
本发明还涉及一种上述聚酯纤维的制备方法, 在该方法中, 将聚酯和聚 N— 乙烯基内酰胺在长径比 L/D为 45以上的二轴挤出机上进行共混,其中聚 N—乙烯 基内酰胺的添加量占聚酯纤维重量的 3〜15wt%;将得到的共混物熔融纺丝得到初 生纤维, 将该初生纤维进一步进行拉伸得到聚酯纤维; 在共混阶段或熔融纺丝阶 段添加以磷元素计占聚酯纤维重量 50ppm〜500ppm的磷系热稳定剂。
本发明采用 L/D为 45以上的二轴挤出机进行混炼,能提高聚 N—乙烯基内酰 胺在聚酯中的分散性, 使其分散径达到 200nm以下, 进而提高共混物的纺丝性。 如果 L/D不足 45,会使聚 N—乙烯基内酰胺的分散径增大,在之后的纺丝过程中, 会出现频繁断丝、 纤维物性不良等问题。
另一方面, 由于大部分的聚 N—乙烯基内酰胺的玻璃化温度在 170°C附近, 混 炼及纺丝温度必须设定在此温度之上, 让聚 N—乙烯基内酰胺有很好的流动性。 因此, 在本发明中, 优选使用熔点为 200°C〜240°C的聚酯, 其可以与聚 N—乙烯 基内酰胺在较低温度下共混, 在混炼时控制熔融部温度在比聚酯熔点温度高 10〜 20°C的范围内, 混炼部温度为 180〜230°C。 从另外, 聚 N—乙烯基内酰胺在空气 中容易吸水发粘, 因此可以在共混挤出机喂料口添加水冷装置, 控制喂料口的温 度在 80°C以下, 从而使喂料顺利进行。
本发明优选使用 K值为 15〜90的聚乙烯吡咯垸酮。 K值在该范围内的聚乙烯 吡咯垸酮与聚酯更容易共混, 与聚酯的络合能力强, 在共混挤出后的水冷过程中 不容易溶出, 能够得到吸湿性良好的聚酯纤维; 另外, 与 K值在该范围内的聚乙 烯吡咯垸酮共混后的聚酯体系的粘度稳定, 不会产生混炼吐出不良、 造粒困难、 生产效率低等的问题。 更优选聚乙烯吡咯垸酮的 K值为 20〜70。
本发明中, 磷系热稳定剂可以在共混时加入, 也可以在熔融纺丝过程中加入, 其添加量为以 P元素计相当于聚酯纤维重量的 50ppm〜500ppm。 优选在共混阶段 加入磷系热稳定剂。 在共混阶段加入热稳定剂, 通过共混中的剪切作用, 使热稳 定剂均匀分散, 能最大程度地发挥其对基体的热稳定效果。 同时, 均匀分散的热 稳定剂对之后的熔融纺丝不会产生影响。
在本发明的所述方法中, 熔融纺丝优选在较低温度下进行, 具体地, 优选纺 丝温度为 220°C〜270°C, 更优选为 235°C〜260°C。 在较低温度条件下纺丝, 可以 减少各共混组分的受热分解, 从而得到色调优良的纤维。
在本发明中, 优选所述吸湿性聚酯纤维的吸湿性参数 AMR在 1.0%以上, 色 调 b值在 5.0以下, 耐光坚牢度在 3级以上。 该纤维的强伸度积在 15.0以上, 具 有一般衣料用途用的机械特性。
在本发明中, 对所得到的聚酯纤维用以下方法进行评价。
( 1 ) 混炼安定性
通过观察挤出机出口处聚酯的挤出胀大程度进行判定。无挤出胀大的记为〇, 轻微挤出胀大的记为 Δ, 严重挤出胀大的记为 X, 其中〇和 判定为合格。
(2) 纺丝性
对纺丝 2小时内的纺丝情况通过下列方法进行评价, 无断丝的记为〇, 有少 量断丝 (1〜3 次) 的记为△, 断丝频繁 (4次以上) 的记为 X, 其中〇和 判定 为合格。
(3 ) 聚 Ν—乙烯基内酰胺的平均分散径
与长度方向垂直地切割纤维, 取单丝截面切片进行钌染色, 用透射电子显微 镜 (ΤΕΜ) ( 10 万倍) 观察、 拍摄共混状态。 纤维呈现以连续的基体成分 (白色 部分) 为海成分、 以近似圆形地分散的成分 (灰色成分) 为岛成分的海岛结构。 将岛成分视作圆, 从岛成分面积换算出直径。 将该直径作为构成岛成分的聚乙烯 基吡咯垸酮的分散径, 以 20个岛成分的平均值作为平均分散径。
(4) 聚 Ν—乙烯基内酰胺 Κ值 将聚 N—乙烯基内酰胺配制成质量浓度为 1%的水溶液,测定其相对粘度, 再 用 fikentscher计算其 K值,
logZ = C[75K2/ (1+1.5KC) +K],
其中 Κ: Κ值 X103, C: 水溶液浓度 (W/V%), Z: 浓度为 c的水溶液的相 对粘度。
(5) 纤维的强伸度积
强伸度积=强度 X (伸度) 5
强度为纤维应力一应变拉伸时最大破断点的应力 /纤度 (cN/dtex), 伸度为纤 维最大破断点的应变 (%)。
(6) 吸湿性参数 AMR
从纤维中去除油剂, 将约 lg的试样放入玻璃重量为 W的称量瓶内, 置于干 燥机中, 于 110°C干燥 2小时。 将该称量瓶密封, 置于干燥器中冷却 30分钟。 测 定装有试样的称量瓶重量 Wi。 接着, 以开放的状态放入设定在 20 °C、 65%RH的 恒温恒湿机内, 放置 24小时。 随后, 再在密封状态下于干燥器中放置 30分钟。 然后, 再次测定称量瓶重量 W2。 继续以开放的状态放入设定在 30°C、 90%RH的 恒温恒湿机内, 放置 24小时, 再在密封状态下在干燥器中放置 30分钟后, 再测 定称量瓶重量 W3
(W2-W!) *100%/ (Wj-W) ,
M 2= (Ws-Wj) *100%/ (Wj-W) ,
AM =M 2-M 1O
(7) 耐光坚牢度
按照日本 JIS L— 0842标准进行测试, 级数越高表示耐光色牢度越好。
(8) 纤维中吸湿性物质及其含量的测定
根据核磁共振的氢谱测得吸湿性物质的特征峰位置和强度, 再根据化学式推 算出该吸湿性物质的含量。
(9) 聚酯中的金属含量
将 6g聚合物压成片状, 用荧光 X线分析装置 (理学电气公司制造的 X线分 析装置 3270型)测定它的强度, 用已知金属含量的样品事先作成的检测线进行换 具体实施方式
下面结合实施例对本发明进一步说明。 实施例 1
将对苯二甲酸二甲酯、 间苯二甲酸二甲酯一 5—磺酸钠 (SIPM)、 乙二醇、 己 二酸和作为催化剂的钛酸四丁酯, 加入酯化釜中, 其中 SIPM 的添加量相当于对 苯二甲酸二甲酯添加量的 2.6mol%, 己二酸的添加量相当于对苯二甲酸二甲酯添 加量的 5.4mol%, 钛酸四丁酯的添加量以钛元素计相当于共聚酯的 10.5ppm, 由对 苯二甲酸二甲酯、 SIPM和己二酸构成的总的酸成分和二元醇成分(乙二醇) 的摩 尔比为 1 : 1.8,在酯化釜中还同时加入以锰元素计相当于共聚酯 200ppm的醋酸锰; 在 230°C、 常压条件下进行反应 4小时, 甲醇馏出分达到 95%以上后, 得到小分 子的预聚物。将预聚物保持在 230°C、常压下,加入以磷元素计相当于共聚酯 50ppm 的磷系稳定剂磷酸, 5分钟后开始减压、 升温。用 90分钟使温度由 250°C升至 290 V、 压力降至 80Pa。 搅拌后, 向反应体系里导入氮气回至常压, 停止缩聚反应, 由此得到熔点为 230°C的聚酯。
将 K值为 30的聚乙烯吡咯垸酮 (PVP, 巴斯夫公司产品)、 双 (2,6—二叔丁 基一 4一甲基苯基) 季戊四醇二磷酸酯与用上述方法得到的熔点为 230°C的聚酯在 二轴挤出机 (Φ 44ιηιη、 L/D:52 ) 上共混挤出。 其中, PVP的添加量占聚酯纤维的 3wt% , 二磷酸酯的添加量以磷元素计相当于聚酯纤维的 150ppm。 挤出机的温度 设定为熔融部 245 °C、 混炼部 200°C。 挤出状况良好。 所得共混物中 PVP的平均 分散径为 80nm。 将得到的共混物进行熔融纺丝, 纺丝温度为 255 V, 纺丝速度为 2500m/min, 得到初生纤维, 再将初生纤维通过 2.2倍延伸加工得到聚酯纤维。 对 该聚酯纤维进行上述各项参数和性能的评价。 结果示于表 1。 实施例 2〜4
将相对于聚酯纤维的 PVP添加量分别改为 5wt%、 10wt%、 15wt% , 其他同 实施例 1。 评价结果见表 1。 比较例 1〜2
将相对于聚酯纤维的 PVP添加量分别改为 lwt%、 20wt% , 其他同实施例 1。 评价结果见表 1。 表 1
Figure imgf000010_0001
表 1结果显示, 在实施例 1〜4中, 所得聚酯纤维的吸湿性参数 A MR在 1.1 %以上, 色调 b值在 4.8以下, 强伸度积在 19.8以下, 耐光坚牢度在 3级以上。 在实施例 1〜3中, 混炼安定性和纺丝性良好, 在实施例 4中, 混炼安定性和纺丝 性达到实用要求。 另一方面, 在比较例 1, 相对于聚酯纤维的 PVP添加量为 lwt % , 虽然混炼和纺丝达到实用要求, 但是所得纤维的吸湿性不好。 在比较例 2中, 相对于聚酯纤维的 PVP添加量为 20wt%, 混炼时挤出胀大严重, 造粒困难。 实施例 5〜8
将相对于聚酯纤维的 PVP添加量改为 7wt%, 相对于聚酯纤维的以 P元素计 的双 (2, 6—二叔丁基一 4一甲基苯基) 季戊四醇二磷酸酯的添加量分别改为 50ppm、 250ppm、 350ppm、 450ppm, 其他同实施例 1。 评价结果见表 2。 比较例 3
除不添加磷系热稳定剂之外, 按与实施例 5相同的方法得到纤维。 评价结果 见表 2。 比较例 4
将对苯二甲酸、 乙二醇和催化剂三氧化二锑加入酯化釜中, 对苯二甲酸和乙 二醇的摩尔比为 1 : 1.8, 在 230°C、 常压条件下进行酯化反应 4小时, 得到小分子 的预聚物。将预聚物保持在 230°C、 常压下, 加入以磷元素计相当于共聚酯 50ppm 的稳定剂磷化合物磷酸, 5分钟后开始减压、 升温。 用 90分钟使温度由 250°C升 至 290°C、 压力降至 80Pa。 搅拌后, 向反应体系里导入氮气回至常压, 停止缩聚 反应, 由此得到熔点为 252°C的聚酯。
相对于聚酯纤维, PVP添加量为 7wt%, 双 (2, 6—二叔丁基一 4一甲基苯基) 季戊四醇二磷酸酯的添加量以磷元素含量计为 150ppm。
混炼温度为 265 °C, 纺丝温度为 280°C。 评价结果见表 2。
表 2
Figure imgf000012_0001
表 2结果显示, 在实施例 5〜8中, 所得聚酯纤维的吸湿性参数 A MR、色调 b 值、 强伸度积和耐光坚牢度以及混炼安定性和纺丝性均良好。 另一方面, 在比较 例 3和 4中, 所得纤维的色调 b值分别为 6.0和 10.0, 纤维耐光坚牢度分别为 3 级以下和 1级。 实施例 9〜11
选择长径比 L/D分别为 45、 48、 55的二轴挤出机进行共混, 其他同实施例 5。 评价结果见表 3。 比较例 5〜6
选择长径比 L/D分别为 30、 35的二轴挤出机进行共混, 其他同实施例 5。 评 价结果见表 3。 表 3
Figure imgf000013_0001
表 3结果显示, 在实施例 9〜1 1 中, 所得聚酯纤维中, 聚乙烯吡咯垸酮的平 均分散径在 180nm以下, 实施例 1 1的聚酯纤维的平均分散径小至 90nm。 而在比 较例 5和 6中, 聚酯纤维的平均分散径在 250nm以上。 表明使用特定长径比 /D的 二轴挤出机对控制聚酯纤维中的聚乙烯吡咯垸酮的平均分散径具有重要意义。 实施例 12
取对苯二甲酸 5.7Kg, 丁二醇 5.4Kg, 聚乙二醇 (分子量 4000) 3.75Kg进行 充分混合后投入带有搅拌和加热控温的反应器中, 并加入催化剂钛酸四丁酯 8g及 15g抗氧化剂 IR1010, 逐渐升温到 230°C进行脱水的酯化反应, 酯化率达到 95% 及以上时, 结束酯化反应, 逐渐升温至 250°C, 同时降低反应压力至 130Pa以下, 脱出小分子反应, 达到设定的聚合物粘度后, 进行吐出切料, 得到熔点为 220°C的 聚酯。
将 K值为 60的 PVP (巴斯夫公司产品)与上述熔点为 220°C的聚酯在二轴挤 出机上共混挤出 (Φ 44ιηιη、 L/D:52), 其中 PVP的添加量占聚酯纤维的 7wt%, 挤出机的温度设定为熔融部 235°C、 混炼部 180°C, 挤出状况良好。 所得共混物中 PVP的平均分散径为 100nm。 将得到的共混物进行熔融纺丝, 在纺丝过程中添加 双 (2,4一二叔丁基苯基) 季戊四醇二磷酸酯, 其添加量以磷元素计相当于聚酯纤 维的 150ppm。 纺丝温度为 245°C, 纺丝速度为 2000m/min, 得到初生纤维, 再将 初生纤维通过 2.4倍延伸加工得到聚酯纤维。 对所得聚酯纤维的评价结果见表 4。 实施例 13〜14
选用熔点分别为由实施例 1制得的熔点为 230°C的聚酯、 以及熔点为 240°C的 聚酯 (除己二酸添加量相当于对苯二甲酸甲酯添加量的 4.0mol%之外, 按与实施 例 1相同的方法制得), 相应的改变熔融纺丝时的纺丝温度分别为 255°C、 260 °C , 其他同实施例 12。 实施例 15〜17
将 K值为 60的 PVP (巴斯夫公司产品)与上述实施例 1中制得的熔点 230°C 的聚酯在二轴挤出机( Φ 44ιηιη、 L/D:52)上共混挤出, 其中 PVP的添加量占聚酯 纤维的 7wt%, 挤出机的温度设定为熔融部 245混炼部 180°C, 挤出状况良好。 将 得到的共混物进行熔融纺丝, 在纺丝过程中添加三甲基磷酸酯(实施例 15 ), 甲基 磷酸甲酯 (实施例 16), 间苯二酚二 (季戊四醇) 磷酸酯 (实施例 17), 其添加量 以磷元素计相当于聚酯纤维的 150ppm。纺丝温度为 255°C, 纺速度为 3000m/min, 得到初生纤维, 再将初生纤维通过 1.7倍延伸加工得到聚酯纤维。对所得聚酯纤维 的评价结果见表 4。 比较例 7〜8
选取 K值为 10和 120的 PVP (巴斯夫公司产品), 其他同实施例 12。 比较 例 7中 PVP的 K值为 10时, 混炼安定, 但是由于其耐热性差在纺丝时引起较多 的断丝。比较例 8中 PVP的 K值为 120时, 由于混炼体系粘度大, 出现挤出胀大, 混炼性变差。
表 4
Figure imgf000016_0001
表 4中的实施例 12〜17的结果显示, 在本发明的聚酯纤维的制备方法中, 在 熔融纺丝阶段添加磷系热稳定剂, 同样能够得到吸湿性参数 A MR、 色调 b值、 强 伸度积和耐光坚牢度以及混炼安定性和纺丝性均良好的聚酯纤维。

Claims

权 利 要 求 书
1. 吸湿性聚酯纤维, 其特征在于, 该聚酯纤维中含有聚酯、 以及聚 N—乙烯 内酰胺和磷系热稳定剂, 其中聚 N—乙烯内酰胺占聚酯纤维重量的 3〜15wt%, 其 分散径为 200nm以下; 磷系热稳定剂的含量以 P元素计占聚酯纤维重量的 50〜 500ppm。
2. 根据权利要求 1 所述的吸湿性聚酯纤维, 其特征在于, 所述聚酯为熔点 200〜240°C的聚酯。
3. 根据权利要求 1或 2所述的吸湿性聚酯纤维, 其特征在于, 所述聚酯纤维 中聚 N—乙烯基内酰胺占聚酯纤维重量的 5〜12wt%。
4. 根据权利要求 1〜3所述的吸湿性聚酯纤维, 其特征在于, 所述聚 N—乙 烯内酰胺为聚乙烯吡咯垸酮。
5. 根据权利要求 4所述的吸湿性聚酯纤维, 其特征在于, 所述聚乙烯吡咯垸 酮的 K值为 15〜90。
6. 根据权利要求 1〜5所述的吸湿性聚酯纤维, 其特征在于, 所述磷系热稳 定剂
Figure imgf000017_0001
式中 Ri、 R2各自独立地为可具有取代基的芳香族烃基。
7. 根据权利要求 6所述的吸湿性聚酯纤维, 其特征在于, 所述磷系热稳定剂 为双(2, 6—二叔丁基一 4一甲基苯基)季戊四醇二磷酸酯或双(2, 4一二叔丁基苯 基) 季戊四醇二磷酸酯。
8. 根据权利要求 1所述的吸湿性聚酯纤维, 其特征在于, 该聚酯纤维的吸湿 性参数 AMR在 1.0%以上, 色调 b值在 5.0以下, 耐光坚牢度在 3级以上。
9. 吸湿性聚酯纤维的制备方法, 其特征在于, 将聚酯和聚 N—乙烯内酰胺在 长径比 L/D为 45以上的二轴挤出机上进行共混,其中聚 N—乙烯内酰胺的添加量 占聚酯纤维重量的 3〜15wt%; 将得到的共混物熔融纺丝得到初生纤维, 将该初生 纤维进一步进行拉伸得到聚酯纤维; 在共混阶段或熔融纺丝阶段添加以磷元素计 占聚酯纤维重量 50ppm〜500ppm的磷系热稳定剂。
10. 根据权利要求 9所述的吸湿性聚酯纤维的制备方法, 其特征在于, 所述 磷系热稳定剂在共混阶段添加。
11 . 根据权利要求 9或 10所述的吸湿性聚酯纤维的制备方法, 其特征在于, 所述聚酯为熔点 200〜240°C的聚酯, 所述熔融纺丝温度在 220〜270°C的范围内。
PCT/CN2013/084901 2012-10-09 2013-10-09 吸湿性聚酯纤维及其制备方法 WO2014056429A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015534903A JP6296059B2 (ja) 2012-10-09 2013-10-09 吸湿性ポリエステル繊維及びその製造方法
CN201380045855.XA CN104619897B (zh) 2012-10-09 2013-10-09 吸湿性聚酯纤维及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210379074.1A CN103710781A (zh) 2012-10-09 2012-10-09 一种吸湿性聚酯纤维及其制备方法
CN201210379074.1 2012-10-09

Publications (1)

Publication Number Publication Date
WO2014056429A1 true WO2014056429A1 (zh) 2014-04-17

Family

ID=50404116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084901 WO2014056429A1 (zh) 2012-10-09 2013-10-09 吸湿性聚酯纤维及其制备方法

Country Status (3)

Country Link
JP (1) JP6296059B2 (zh)
CN (2) CN103710781A (zh)
WO (1) WO2014056429A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061009A (ja) * 2014-09-12 2016-04-25 東レ株式会社 吸放湿性ポリエステル繊維の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107502990A (zh) * 2017-08-30 2017-12-22 广州弘雅服装科技有限公司 一种高吸水吸湿聚酯纤维、高吸水吸湿面料及制备与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167844A (zh) * 1996-03-29 1997-12-17 东丽株式会社 高吸湿性聚酰胺纤维、它的制造方法和用途
CN1372020A (zh) * 2002-03-29 2002-10-02 东华大学 抗静电纳米复合聚酯纤维及制备方法
CN102796352A (zh) * 2011-05-23 2012-11-28 东丽纤维研究所(中国)有限公司 一种吸湿性聚酯、制备方法及由其制成的纤维
CN102838739A (zh) * 2011-06-22 2012-12-26 东丽纤维研究所(中国)有限公司 一种吸湿共聚酯及其制备方法
CN103122494A (zh) * 2011-11-18 2013-05-29 东丽纤维研究所(中国)有限公司 一种吸湿性聚酯纤维及其制备方法
CN103120375A (zh) * 2011-11-18 2013-05-29 东丽纤维研究所(中国)有限公司 一种吸湿性织物及其用途
JP2013185279A (ja) * 2012-03-08 2013-09-19 Toray Ind Inc 吸放湿性ポリエステル繊維およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167419A (ja) * 1974-12-05 1976-06-11 Toray Industries Kyusuikyushitsuseiseni
TW317577B (zh) * 1995-01-25 1997-10-11 Toray Industries
JP3139315B2 (ja) * 1995-01-25 2001-02-26 東レ株式会社 吸湿性に優れた共重合ポリエステルを用いた吸湿性複合繊維
JPH09132823A (ja) * 1995-11-06 1997-05-20 Nippon Ester Co Ltd ポリエステル複合繊維
JP2000178845A (ja) * 1998-12-10 2000-06-27 Du Pont Toray Co Ltd 被覆弾性糸およびその製造方法
JP2002155425A (ja) * 2000-11-15 2002-05-31 Nippon Shokubai Co Ltd 吸湿性繊維及び熱可塑性ポリエステル系樹脂組成物の製造方法
JP2003129340A (ja) * 2001-10-19 2003-05-08 Teijin Ltd ポリエステル繊維及びその製造方法
JP4375073B2 (ja) * 2004-03-24 2009-12-02 東レ株式会社 吸湿性ポリエステル繊維及びその製造方法
JP5946255B2 (ja) * 2010-09-17 2016-07-06 株式会社日本触媒 N−ビニルラクタム系重合体及びその製造方法
JP5655632B2 (ja) * 2011-02-28 2015-01-21 東レ株式会社 アルカリ易溶出性ポリエステルからなる海島複合断面繊維

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167844A (zh) * 1996-03-29 1997-12-17 东丽株式会社 高吸湿性聚酰胺纤维、它的制造方法和用途
CN1372020A (zh) * 2002-03-29 2002-10-02 东华大学 抗静电纳米复合聚酯纤维及制备方法
CN102796352A (zh) * 2011-05-23 2012-11-28 东丽纤维研究所(中国)有限公司 一种吸湿性聚酯、制备方法及由其制成的纤维
CN102838739A (zh) * 2011-06-22 2012-12-26 东丽纤维研究所(中国)有限公司 一种吸湿共聚酯及其制备方法
CN103122494A (zh) * 2011-11-18 2013-05-29 东丽纤维研究所(中国)有限公司 一种吸湿性聚酯纤维及其制备方法
CN103120375A (zh) * 2011-11-18 2013-05-29 东丽纤维研究所(中国)有限公司 一种吸湿性织物及其用途
JP2013185279A (ja) * 2012-03-08 2013-09-19 Toray Ind Inc 吸放湿性ポリエステル繊維およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JI WEI ET AL.: "Research Progress on phosphate Antioxidant", PLASTICS SCIENCE AND TECHNOLOGY, vol. 36, no. 6, 10 June 2008 (2008-06-10), pages 88 - 93 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061009A (ja) * 2014-09-12 2016-04-25 東レ株式会社 吸放湿性ポリエステル繊維の製造方法

Also Published As

Publication number Publication date
JP2015532366A (ja) 2015-11-09
JP6296059B2 (ja) 2018-03-20
CN104619897B (zh) 2016-05-04
CN104619897A (zh) 2015-05-13
CN103710781A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2000026301A1 (fr) Composition et fibres de resine polyester
JP5243410B2 (ja) ポリ乳酸組成物およびそれよりなる繊維
TW200407471A (en) Poly (trimethylene terephthalate) bicomponent fibers
CN105506776B (zh) 一种改性聚乳酸纤维及其制备方法
JPH06502694A (ja) ポリアミド顔料分散系
TWI753033B (zh) 一種聚酯
TWI607034B (zh) Copolymerized polyester and polyester fiber composed of the same
JP3398958B2 (ja) Ppd−tとpvpが入っている溶液およびそれから製造される製品
DK2467426T3 (en) PROCEDURE FOR MANUFACTURING FORMED ARTICLES OF POLY (TRIMETHYLENARYLATE) / POLYSTYRENE
JP6578945B2 (ja) ポリフェニレンスルフィド繊維およびその製造方法
WO2014056429A1 (zh) 吸湿性聚酯纤维及其制备方法
JP5669844B2 (ja) ポリ(トリメチレンアリーレート)/ポリスチレン組成物及び調製方法
TW200411095A (en) Poly (trimethylene terephthalate) bicomponent fiber process
JP2013087153A (ja) 共重合ポリエステル及びそれからなる吸湿性に優れたポリエステル繊維
CN106702525B (zh) 用于产制纤维的材料及由其所制得的纤维
CN105463614B (zh) 吸放湿性聚酯纤维的制造方法
TW200403276A (en) Polyester composition and method of manufacturing the same
CN112543790B (zh) 聚酯组合物
JPS61243827A (ja) 高速製糸用ナイロン66ポリマの製造方法
JP2002266158A (ja) 耐熱性ポリプロピレン繊維及び耐熱性ポリプロピレンマルチフィラメント糸並びに耐熱性ポリプロピレン繊維の製造方法
WO2023183654A2 (en) Melt spinning of blended polylactic acid fibers
JP4595714B2 (ja) ブレンド型複合繊維の製造方法
CN105780188A (zh) 一种吸放湿性聚酯纤维及其制备方法
JP2022040592A (ja) 繊維製造方法
JP2019059853A (ja) 吸放湿性ポリエステル組成物および繊維

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380045855.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534903

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844969

Country of ref document: EP

Kind code of ref document: A1